Daml SDK Documentation

DAML

Digital Asset

Version: 2.7.3

Copyright (c) 2023 Digital Asset (Switzerland) GmbH and/or its affiliates. All rights reserved. Any unauthorized use,
duplication or distribution is strictly prohibited.

Table of contents

Table of contents i
1 Canton References 1
11 AnIntroduction To Multi-Party Applicationsand Daml 1
111 Multi-Party Applications L 1

112 Why Do Multi-Party Applications Matter? 1

11.3 What s a Multi-Party Application? 3

114 Important Concepts in Multi-Party Applications 3

11.5 Key Architectural ConceptsinDaml 4

116 Transfer ExampleUsingDaml 7

117 NexXt Steps . . . ot e e e 7

1.2 System Requirements e 7
1.2.1 Feature/Component System Requirementsc.... 8

1.3 Installingthe SDK o o e 8
1.3.1 Installthe Dependencies. it e 8

1.3.2 Choose Daml Enterprise or DamlOpenSource 8

1.3.3 Install Daml Open Source SDK e 8

1.3.4 Install DamlEnterprise. o i e e e e 9

1.3.5 Download Manually e e 9

1.3.6 NexXt Steps o o i e e e e e e e 9

14 Setting JAVA_HOME and PATH Variables 9
T4 WINdOWS . . o e e e e 9

142 MacOS .. e e 10

TA3 LiNUX. o o it e e e e e e e e e e e e n

1.5 Manually Installingthe SDK o e 12
1.6 Getting Started withDaml e 15
161 Prerequisites e 15

16.2 RUNThe APp . . . o i e e e e 15

1.7 App Architecture e e e e e e 19
171 TheDamlModel e 20

172 TypeScriptCode Generation o ittt e 22

173 The Ul . . e e e e e e e 22

1.8 YourFirstFeature e e 25
181 DamlChanges i e e e e 25

182 Messaging Ul e 26

1.83 RuntheUpdated Ul 30

184 NextSteps o i e e e 32

19 Testing Your Web App oot e 32
191 SetUptheTests e e e e e 32

192 Example:Loglnand Out e 33

1.10

1m

112

113

114

1.15

19.3 AccessingUIElements i e 34

194 Writing CSS Selectors. o . i e 35
195 TheFullTestSuite e e 36
Overview: Important Considerations When Building Applications With Daml 44
110.1 Overall Considerations i e 44
110.2 DeveloperConsiderations i e 44
110.3 Operational Considerations i i e 45
1104 Next Steps o e e 46
Write Smart ContractswithDaml.o 46
1111 AnlintroductiontoDamlo e 46
1112 BasicContracts. i e 47
111.3 TestTemplates Using Daml Script. i i 49
114 DataTypes . . . o o i e e e e 55
111.5 Transform Data Using Choices it 70
111.6 Add ConstraintstoaContract 76
1117 Partiesand Authority e 85
11,8 Composing Choices oot e 94
1119 Damlinterfaces e 102
11110 ExceptionHandling e 108
11111 Work with Dependencies. i i e e n2
11112 Functional Programming 101 o e e 15
11113 Introduction to the Daml Standard Library 127
11114 Good Design Patterns o i i e 133
11115 TestDamlContracts. o oo o e 152
T8 NexXt Steps o o i e e e e e e e e e e e 169
Integrate Daml with Off-Ledger Services 169
1121 Building Applications e 169
1122 Daml Application Architecture o o 169
112.3 Partiesand UsersOnaDamlledger 175
1124 JSON APl . o e e e e e e e 178
112.5 The Ledger APl o o e e e e e 244
112.6 Daml Off-Ledger Automation e 390
1127 EITOrS . o o e e e 426
112.8 Authorization e 433
112.9 Explicit Contract Disclosure (Alpha) 439
Resource Management in Daml ApplicationDesign 447
1131 Managing Latency and Throughput oo oL 447
113.2 Avoid Contention ISSUES o ottt i e 452
1.13.3 Managing Active Contract Set (ACS) Size 463
Upgrading and Extending Daml Applications, 465
1141 Extending Daml Applications e 465
1142 Upgrading Daml Applications e 466
114.3 Automating the Upgrade ProCcessottt it it 472
Developer Tools o i i e e e e e 475
1150 DamlAssistant (daml)ottt e e 475
1152 CantonConsole i e 480
115.3 DeploytoaGenericDamlledger. 481
1154 DamlREPL e e e e e e 482
1155 DamlStudio o e 485
1156 DamlSandbox e 495

1157 Navigator. e 507

116

117

118

1.19

1.20

1.21

1.22

1.23

1.24

115.8 Daml Profiler o e e e e e e e e e 518

1159 DamlCodegen i i e 520
Daml Finance Documentation L e 522
1161 Content e 522
116.2 Starting Points L e e e e 522
116.3 Releases i it i e e e e e 523
OVEIVIBW . o i et e e e e e e e e e e e e e 527
1170 Introduction oo e e e 527
117.2 Architecture e 529
117.3 Building Applications e 531
1174 Extending DamlFinance i 533
CONCEPTS . . . o e e e e e e e e e e e e e e 535
1181 AssetModel e e 535
118.2 Settlement L e 542
118.3 Lifecycling o e e e 548
InStruments e 554
T190 BONAS . vt e 554
1192 EQUITES . . o o i e e e e e e e 554
1193 OpLioNS .« . o oo e e e 555
1194 SWaAPS . . ot e e e e e e e e e 555
119.5 OtherlInstruments L e 555
119.6 How to use the Token Instrument packages 555
119.7 How to use the Bond Instrumentpackages 556
119.8 How to use the Equity Instrumentpackages 564
119.9 How To Use the Option Extension Package 571
119.10 How To Use the Swap Instrument Packages 576
11911 How to use the Generic Instrumentpackages, 586
PacKages e e e e 596
1.20.1 Interface Packages it e e 596
1.20.2 Implementation Packages e 608
Tutorials .« . o e e e 620
1211 Getting Started tutorials L L 620
1212 Settlementtutorials. L 636
1.21.3 Lifecycling tutorials e 650
1214 Payoff Modeling tutorials 662
121.5 Advanced TOPICS . . . v i vt i et e e e e e e e e e e e e e e e e e e e 668
Reference o i e 680
1220 GlOSSaAry . . . i e e e e e e 680
1.22.2 Patterns e 682
1223 DamlFiNance e e 684
o 897
123.1 IntroductiontoCanton e 897
1.23.2 Overview and ASsumptions i e e e e e e 897
1233 CantonDemo e e 913
1234 Getting Started L 914
1.23.5 DamlSDKand Canton e 934
123.6 Composability e 937
1237 Versioning o v it i e e e e e e e e e 954
Obtaining Canton e e e e e e e 957
1.24.1 Choosing Open-Source or Enterprise Edition. 957

1.24.2 Downloading the Open Source Edition 957

1.25

1.26
1.27

1.28

1.29

1.30

1.31

1.32

1.33

1.24.3 Downloading the Enterprise Edition 958

1244 InstallingCanton. o i e 958
1245 RunninginDoCKer e e 964
1.24.6 Static Configuration e 966
1247 EnNterprise Drivers o i it e e e e e e e e e e 971

High Availability (HA) 983
1251 IntrotoHAINCanton e 983
1.25.2 HAfor Production Systems e 991

1.25.3 High AvailabilityUsage e e e 1026
Disaster Recovery (DR) o vt it i e e e e e 1033
Persistence e 1034
1270 POSEEres o e e 1035
127.2 0racle . .. e 1036
127.3 General Settings e 1043
1274 Backupand Restore i e 1044
1.27.5 Database Replication for Disaster Recovery, 1046
Canton Administration Quickstart e e e 1046
1281 Command-line Arguments e e 1046
1282 CantonConsole e e 1049
1283 ConsoleCommands o i e 1053
MONITOrING . . . e e e e 1161

1291 Introduction e et

1.29.2 Golden Signals and Key Metrics Quick Start 1163
1.29.3 SetUp Metrics Scrapingo oottt e 1164
1294 MEriCS . . o ittt e e e e e e e e e 1165
1295 LOZEING . o o o vt e 1210
129.6 TraCing . . o i i it e e e e e e e e e e e e e e e e e 1212
129.7 NodeHealthStatus e 1216
1.29.8 Health Checks. e 1217
129.9 Health DUMPS o e e e e e 1218
1.29.10 Example Monitoring Setup i e 1218
12901 GlOSSArY . . ot e e e e e 1240
Identity Management e 1243
1.30.1 Introduction L e 1243
1.30.2 Userldentity Management e 1249
1.30.3 CookbooKk e 1250
Common Operational Tasks 1261
1.31.1 Manage Darsand Packages e 1261
1312 Upgrading ot it e e e e e e e e 1272
1.31.3 AuthO Example Configuration 1283
1314 SeCUrity . . . o v e 1288
Scaling and Performance e e e 1302
1.32.1 Network Scaling e 1302
1.32.2 Node Scaling e e e 1304
1.32.3 Performance and Sizing e 1304
1324 Batching o e e e e 1304
1.32.5 Asynchronous SUbMISSIONS it e 1305
1.32.6 Storage Estimation e 1305
1.32.7 Set Up Canton to Get the Best Performance 1306
Advanced Ledger Operations e 1311

1.33.1 Manage Domains it i it e e e e e e e e 1311

1.34

1.35

1.36

1.37

1.38

1.39

1.40

1.33.2 Manage Domain Entities. i e 1317

1.33.3 LedgerPruning o i e e e e e e 1323
1.33.4 Participant Pruning e 1325
1.33.,5 ParticipantMetering e 1328
1.33.6 APIConfiguration e 1329
1.33.7 SequencerConnections 1338
1.33.8 Repairing NOdes i e e e e e e 1346
Troubleshooting Guide e 1361
1341 Introduction e 1361
1.34.2 Enable Information Gathering 1361
1.34.3 KeyKnowledge e e 1363
1344 Log Files . . .o e e 1364
1.34.5 UsingLNAVtoViewLogFiles i 1365
1.34.6 SetUp ISSUES i i e e e e e e e 1366
1347 TIMEOULEITOrS . . .ot it e e e e e 1366
1.34.8 AULNEITOrS ot o e e 1367
1.34.9 Performancelssueso i i e 1368
13400 Contention o e 1371

1.34.11 Use Bisection to Narrow DowntheRootCause 1372
Error Codes ot i e 1374
1351 OVEIVIEW . o it e e e e e e e e e e e 1374
1.35.2 GlOSSArY . v o vttt e e e e e e e e e e e e e e 1374
1.35.3 AnatomyofanError e 1375
1.35.4 Error CodesIn CantonOperations 1377
1.35.5 ErrorCategories it it e e 1378
1.35.6 Machine Readable Information 1378
1.35.7 EXample . . . e e e e e e e 1379
1.35.8 Error CategoriesInventory i 1380
1.35.9 Error CodesInventory-Daml e 1384
1.35.10 Error Codes Inventory-Canton e 1411

Troubleshooting o e 1486
1.36.1 Error: <X>is not authorized tocommitanupdate 1486
1.36.2 Error: Argumentis not of serializabletype 1486
1.36.3 Modeling QUESTIONS i ot i e e 1486
1.36.4 Testing QUESLIONS L e e e 1489
Getting Help . . . o oo e 1489
1.371 SupportExpectations. 1490
Portability, Compatibility, and Support Durations 1490
1.38.1 Ledger API Compatibility: Application Portability 1491

1.38.2 Driver and Participant Compatibility: Network Upgradeability 1494
1.38.3 SDK, Runtime Component, and Library Compatibility: Daml Upgradeability ... 1494
1.38.4 Ledger APl SupportDuration e 1494
Daml Ecosystem Overview i e 1495
1391 Architecture 1495
1.39.2 DamlNetworks e 1496
1.39.3 ParticipantNodes e e 1496
1.39.4 Ledger APl . . o e 1496
1.39.5 DamlComponentso it e 1497
1.39.6 Status Definitions e 1497
1.39.7 Feature and ComponentStatuses. 1500

Releases and Versioning i i e 1503

1400 Versioning . . . v v it i e e e e e 1503

1402 CadencCe i e 1503
1.40.3 SupportDuration e e e e 1504
1404 Release NOtes i i e e 1504
T40.5 ProCeSS . . . it i e e 1504
141 Glossaryofconcepts o e 1505
1411 Key CoNncCepts . . . o ot i i i e e e e e 1505
1412 DamllanguageConcepts i e 1506
141.3 DeveloperTools o e e e 151
1414 Building Applications L e 1512
1415 Canton Concepts o v it i e e 1515
142 Daml Example Applications e e 1516
143 Daml Language References i i i e e e 1516
1.43.1 Daml Language CheatSheet 1516
143.2 LanguageReference. e 1516
143.3 Thestandard library. e 1574
1.43.4 Daml ScriptLibrary e 1650
1.43.5 DamlTrigger Library e e 1658
144 Damlledger References i e 1672
1441 DamlLedger Model e e e 1672
1442 Canton Advanced Architecture it 1726
1.44.3 Frequently Asked Questions e 1800
145 Test EVIENCE o it i e e e e e e e 1805
146 Participant Query StoreUserGuide. i i e 1805
1460 Introduction e 1805
1.46.2 Early Access Purpose and Limitations 1805
T4B.3 OVEIVIEW . o ittt e e e e e e e e e 1806
146.4 |Installing and StartingPQS 1809
146.5 PQS Development e e e e 1814
146.6 Operating PQS o e 1822
1467 Optimizing PQS o e 1824
1.46.8 Troubleshooting e 1827
1.47 Daml Ledger Interoperability e 1829
1471 Interoperability Examples 1830
1.47.2 Multi-ledger Causality Graphs e 1832
1.47.3 Ledger-aware Projection it e 1836
1474 Ledger APl OrderingGuarantees 1840
148 Non-repudialion e e e e e e e e e 1841
1481 Architecture e e 1841
1.48.2 Run the Server-side Components i 1841
1483 UsetheClient e 1842
1.48.4 Non-repudiation Over the HTTPJSON APl i 1842
1485 TLS SUPPOIrt . . o o o e e e e e e e e e e e 1842
Bibliography 1843

Bibliography 1843

Chapter1

Canton References

1.1 An Introduction To Multi-Party Applications and Daml

1.1.1 Multi-Party Applications
Multi-party applications, and multi-party application platforms like Daml, solve problems that were near

why multi-party applications matter

what a multi-party application is

important concepts in multi-party applications
key architectural concepts in Daml

a transfer example using Daml

1.1.2 Why Do Multi-Party Applications Matter?

Have you ever wondered why bank transfers, stock purchases or healthcare claims take days to pro-
cess? Given our technological advances, including the speed of networks, you might expect these
transactions to take less than a second to complete. An inefficient protocol like email takes only a
few seconds to send and receive, while these important business workflows take days or weeks.

What delays these transactions? The processes in question all involve multiple organizations that
each keep their own records, resulting in data silos. The processes to ensure consistency between
those data silos are complex and slow. When inconsistencies arise, the correction processes (some-
times referred to as reconciliation) are expensive, time-consuming and often require human inter-
vention to determine why two parties have differing views of the result of a business interaction.
There are a myriad of reasons for these discrepancies, including differences in data models and
error handling logic, inconsistent business process implementations and system faults.

Here’s a deeper look at the problem via the example of a transfer of $100 from Alice’s account in Bank
AtoBob’s accountin Bank B.(Moneyis an easily understood example of an asset transferred between
parties. The same problems occur in other industries with other assets, for example, healthcare
claims, invoices or orders.) Money cannot simply appear or disappear during a transfer. The banks
need to ensure that at some point in time, T_0O, $100 are in Alice’s account, and at the next point in
time, T_1, those $100 are gone from Alice’s account and present in Bob’s account - but at no point
are the $100 present in both accounts or in neither account.

Daml SDK Documentation, 2.7.3

In legacy systems, each bank keeps track of cash holdings independently of the other banks. Each
bank stores data in its own private database. Each bank performs its own processes to validate,
secure, modify and regulate the workflows that transfer money. The coordination between multiple
banks is highly complex. The banks have an obligation to limit their counterparty risk - the proba-
bility that the other party in the transaction may not fulfill its part of the deal and may default on
the contractual obligations.

Today’s common, albeit highly inefficient and costly, solution for a bank account transfer involves
the following steps:

1. Bank A sends a message to Bank B via a messaging standard and provider like SWIFT or SEPA.

2. Bank A and Bank B determine a settlement plan, possibly including several intermediaries.
Gaining an agreement on the settlement planis time-consuming and often includes additional
fees.

3. The settlement process entails (i) debiting $100 from Alice’s account at Bank A, (ii) crediting the
commercial account at Bank B, and (iii) once Bank B has the money, crediting Bob’s account
at Bank B.

In order to make this process atomic (that is, to make it take place between a point T_0 and a point
T_1) banks discretize time into business days. On day T_O the instruction is made and a settle-
ment plan is created. Outside of business hours between day T_0 and day T_1, the plan is executed
through end of day netting and settlement processes. In a sense, banks agree to stop time outside
of business hours.

If intermediaries are involved, the process is more complex. Cross-border payments or currency
conversion add yet more complexity. The resulting process is costly and takes days. During this
multi-day process the $100 is locked within the system where it is useless to both Alice and Bob.
Delays are common, and if there are problems reconciliation is hugely expensive. Consolidating
through centralized intermediaries introduces systemic risk, including the risk of unauthorized dis-
closure and privacy breaches - and with that risk comes increased latency. Banks insist on this ap-
proach, despite the downsides, to reduce counterparty risk and to comply with regulations. At every
point in time, ownership of the money is completely clear. (To learn more about cash transfers in
traditional banking systems, read this accessible writeup on international money transfers.)

Services like PayPal, Klarna and credit cards, which provide an experience of instant payments in-
ternationally, do this by accepting the counterparty risk or acting as banks themselves. If a shop
accepts credit cards and you pay with a credit card, both you and the shop have an account with the
credit card company. When you purchase, the credit card company can instantly debit $100 from
your account and credit $100 to the shop’s account because it is as if both Alice and Bob are using
accounts at the same bank - the bank is certain that Alice has $100 in her account and can execute
a simple transaction that deducts $100 from Alice’s account and adds $100 to Bob’s.

Wouldn’tit be great if a system existed that allowed multiple parties to transact with each other with
the same immediacy and consistency guarantees a single organization can achieve on a database
while each kept sovereignty and privacy of their data? That’s Daml!

Daml is a platform and framework for building real-time multi-party systems, enabling organiza-
tions to deliver the experiences modern users expect without assuming counterparty risk or the
expense of reconciliation. The sections below describe how Daml achieves this, including the archi-
tectural concepts and considerations necessary to build and deploy a solution with Daml effectively.

2 Chapter 1. Canton References

https://web.archive.org/web/20220731223958/https://medium.com/@yudapramad/how-international-money-transfers-actually-work-bac65f075bb5

Daml SDK Documentation, 2.7.3

1.1.3 What Is a Multi-Party Application?

A multi-party application is one in which data, and the rules and workflows that govern the data, are
shared between two or more parties without any party having to give up sovereignty or any single
party (including the application provider) being able to control or override the agreed rules of the
system. A party could be a company, a department within a company, an organization, an individual
or a person. The specific definition of a party will be unique to the application and the domain of that
application.

A well-designed multi-party application provides several benefits:
a clean, consistent view of all data managed by the application across all parties
consistent, connected, and efficient processes between all parties involved in the appli-
cation
privacy controls over portions of the shared data, such that each party sees only the data
that it is explicitly entitled to view and/or modify
individual party ownership of and responsibility for sensitive data

In most cases, no single party can view all of the data within a multi-party application.

Multi-party applications solve complex operational processes while keeping data clean and consis-
tent, thereby eliminating isolated, disconnected and inefficient processes that often require expen-
sive reconciliation. Multi-party applications manage the relationships, agreements and transac-
tions between parties, providing consistent real-time views of all data.

Multi-party solutions utilize distributed ledger (blockchain) technology to ensure each party has an
immutable, consistent view of the shared data and business processes that govern the data. By
providing a consistent view of data with all counterparties, a multi-party application removes fric-
tion, cost, and risk within a joint business process. A distributed ledger protects against a malicious
participant in the network, attempting to write or overwrite data to the detriment of other parties.

1.1.4 Important Concepts in Multi-Party Applications

For a multi-party application to fully deliver its value, the following conditions must be met:

Multiple involved parties have data sovereignty - that is, they keep their data within their own sys-
tems and require strong guarantees that no external party can access or modify that data outside
of pre-agreed rules. Shared state and rules are codified into an executable schema that determines
what data can move between parties, who can read that data, and how that data is manipulated. Pro-
cesses happen in real time as there is no additional reconciliation or manual processing required
between organizations.

For each individual party to gain the full benefits of a multi-party system, it should:

Integrate the application - Bank A must treat the multi-party infrastructure as the golden
source of truth for payment information and integrate it as such with the rest of their
infrastructure. Otherwise they are merely trading inter-bank reconciliation for intra-bank
reconciliation.

Utilize composability by building advanced systems thatrely on the base-level multi-party
agreements. For example, a healthcare claim application should be built using the pay-
ment solution. Integrating one multi-party application with another preserves all the
properties of each across both applications. In this example, the patient privacy require-
ments of a health claims application are retained, as are the financial guarantees of the
payment application. Without composability, multi-party applications become bigger si-

11. An Introduction To Multi-Party Applications and Daml 3

Daml SDK Documentation, 2.7.3

los and you end up reconciling the healthcare claims multi-party application with the pay-
ments multi-party application.

Smart contracts, distributed ledgers, and blockchains are commonly used to build and deliver
multi-party applications. A smart contract codifies the terms of the agreement between parties,
including the rights and obligations of each party, directly written into lines of code. The code con-
trols the execution, and transactions are trackable and irreversible. In a multi-party application, the
smart contract defines the data workflow through actions taken by the parties involved.

Distributed ledgers and blockchains provide consensus between the parties, with a cryptographic
audit trail maintained and validated by the system. Within multi-party solutions, the dis-
tributed ledger ensures no one party can unilaterally change the system’s state and protects data
sovereignty, while the distributed ledger synchronizes the nodes securely in real time.

1.1.5 Key Architectural Concepts in Daml

Daml comprises two layers necessary for building multi-party applications: the Daml smart contract
language and the Canton blockchain and protocol.

The Daml language is a smart contract language for multi-party applications. Conceptually, Daml
is similar to the Structured Query Language (SQL) used in traditional database systems, describing
the data schema and rules for manipulating the data.

The Daml language:
defines the shared state between the parties, including process permissions and data
ownership
defines workflows, execution policies, and read/write permissions
enables developers to build rich transactions that codify strict business rules
defines the APIs through which multi-party applications can talk to each other and com-
pose

The Daml code that collectively makes up the data schema and rules for an application is called a
Daml model. Increasingly sophisticated and valuable solutions are composed from existing Daml
models, enabling a rich ecosystem that accelerates application development.

Using the Daml language, developers define the schema for a virtual shared system of record (VSSR).
AVSSRisthecombined data from all parties involved in the application. The Canton protocol ensures
that each party gets a unique view into the VSSR, which is their projection of the full system.

In the execution model for Canton, each party of the application is hosted on a Participant Node
(Diagram 1). The Participant Node stores the party’s unique projection and history of the shared
system of record. Participant Nodes synchronize by running a consensus protocol (the Canton Pro-
tocol) between them. The protocol is executed by sending encrypted messages through Domains,
which route messages and offer guaranteed delivery and order consistency. Domains are also units
of access control and availability, meaning an application can be additionally protected from inter-
ference by other applications or malicious actors by synchronizing it only through a given domain,
and restricting which participants can connect to it.

Diagram 1:

In a composed solution, each domain is a sub-network. A Participant Node connects to one or more
Domains, enabling transactions that span Domains (Diagram 2).

Diagram 2:

4 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Participant

Node 3

Participant

Node 1

’ / A Domain could be \

’ centralized or distributed, \

’ private or public. !
1

Participant
Node 4

Participant : | :
Node 2 : :
Party D Party E Party F

Virtual Shared System of Record

11. An Introduction To Multi-Party Applications and Daml 5

Daml SDK Documentation, 2.7.3

Adaml

Adaml
Domain A
Participant

Domain
Node

Participant

Daml Ledger API
HL Fabric

Adaml

\
Domain B \
Participant ’
Node 3

Adaml

Participant
"\ Node4
Party E

Participant |
R B Node 5

Virtual Shared System of Record

Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.1.6 Transfer Example Using Daml

Consider the transfer example described above with Alice and Bob. Using Daml, the process looks
like this:

1. Alice logs into her online banking at Bank A and enters a transfer to Bob at Bank B.

2. The online banking backend creates a transaction that deducts $100 from Alice’s account and
creates a transfer to Bob at Bank B.

3. When Bank B accepts the transfer, Bank A credits $100 to Bank B’s account at Bank A and Bank
B simultaneously credits Bob’s account by $100.

4. Bob’s online banking interfaces with the Daml Ledger and can see the incoming funds in real
time.

At every point, ownership of the $100 is completely clear and all systems are fully consistent.

1.1.7 Next Steps

The suggested next steps are:

Learn about the Daml language and the Daml Ledger Model. Writing Daml will introduce you
to the basics of a Daml contract, the Daml Ledger model, and the core features of the Daml
language. You’ll notice that testing your contracts, including testing for failures, is presented
very early in this introduction. We strongly recommend that you write tests as part of the initial
development of every Daml project.

Learn about operating a Daml application with the Ledger Administration Introduction.

1.2 System Requirements

Unless otherwise stated, all Daml runtime components require the following dependencies:

1. For development, an x86-compatible system running a modern Linux, Windows, or MacOS op-
erating system. For a production deployment, an x86-compatible system running a modern
Linux operating system.

Java 11 or greater.

An RDBMS system,

W

Either PostgreSQL 11.17 or greater.
Or Oracle Database 19.11 or greater.

N -

4. JDBC drivers compatible with the chosen RDBMS.
Daml is tested using the following specific dependencies in default installations.
1. Operating Systems:

Ubuntu 20.04 for development. Ubuntu 20.04 and Debian 11 is also tested for production use.
Windows Server 2016
MacOS 10.15 Catalina

Eclipse Adoptium version 11 for Java.
PostgreSQL 11.17
4. Oracle Database 19.11

WP WP -

In terms of hardware requirements, minimal deployments running simple Daml applications are
regularly tested with as little as 2 GB of memory and access to a single, shared vCPU.

1.2. System Requirements 7

https://adoptium.net

Daml SDK Documentation, 2.7.3

1.2.]1 Feature/Component System Requirements

1. The JavaScript Client Libraries are tested on Node 14.18.3. with typescript compiler 4.5.4. Ver-
sions greater or equal to these are recommended.

1.3 Installing the SDK

1.3.1 Install the Dependencies

The Daml SDK currently runs on Windows, macOS and Linux.
You need to install:

1. Visual Studio Code.

2. JDK 11 or greater. If you don’t already have a JDK installed, try Eclipse Adoptium.
As part of the installation process you may need to set up the JAVA HOME variable. You can
find instructions for this process on Windows,macOS, and Linux here.

1.3.2 Choose Daml Enterprise or Daml Open Source

Daml comes in two variants: Daml Enterprise or Daml Open Source. Both include the best in class
SDK, Canton and all of the components that you need to write and deploy multi-party applications
in production, but they differ in terms of enterprise and non-functional capabilities:

Capability Enterprise Open Source
Sub-Transaction Privacy Yes Yes
Transaction Processing Parallel (fast) Sequential (slow)
High Availability Yes No

Horizontal scalability Yes No

Ledger Pruning Yes No

Local contract store in PostgreSQL Yes Yes

Local contract store in Oracle Yes No
PostgreSQL driver Yes Yes

Oracle driver Yes No

Besu driver Yes No

Fabric driver Yes No

Profiler Yes No
Non-repudiation Middleware Yes (early access) No

1.3.3 Install Daml Open Source SDK

1.3.3.1 Windows 10

Download and run the installer, which will install Daml and set up the PATH variable for you.

Chapter 1. Canton References

../app-dev/bindings-ts/index.html
https://code.visualstudio.com/download
https://adoptium.net
https://docs.daml.com/concepts/ledger-model/ledger-privacy.html
https://docs.daml.com/canton/architecture/overview.html#node-scaling
https://docs.daml.com/canton/usermanual/ha.html
https://docs.daml.com/canton/usermanual/ha.html#sequencer
https://docs.daml.com/canton/usermanual/pruning.html
https://docs.daml.com/tools/non-repudiation.html
https://github.com/digital-asset/daml/releases/download/v2.7.3/daml-sdk-2.7.3-windows.exe

Daml SDK Documentation, 2.7.3

1.3.3.2 Mac and Linux

Open a terminal and run:

curl -sSL https://get.daml.com/ | sh

The installer will setup the PATH variable for you. In order for it to take effect, you will have to log out
and log in again.

If the dam1l command is not available in your terminal after logging out and logging in again, you
need to set the PATH environment variable manually. You can find instructions on how to do this
here.

1.3.4 Install Daml Enterprise

If you have a license for Daml Enterprise, you can install it as follows:

On Windows, download the installer from Artifactory instead of Github releases.

On Linux and MacOS, download the corresponding tarball, extract it and run ./install.sh.
Afterwards, modify the global daml-config.yaml and add an entry with your Artifactory API key.
The API key can be found in your Artifactory user profile.

artifactory-api-key: YOUR API KEY

This will be used by the assistant to download other versions automatically from artifactory.

If you already have an existing installation, you only need to add this entry to daml-config. yaml.
To overwrite a previously installed version with the corresponding Daml Enterprise version, use daml
install --force VERSION.

1.3.5 Download Manually

If you want to verify the SDK download for security purposes before installing, you can look at our
detailed instructions for manual download and installation.

1.3.6 Next Steps

Follow the getting started guide.
Use daml —--help to see all the commands that the Daml assistant (daml) provides.
If you run into any other problems, you can use the support page to get in touch with us.

1.4 Setting JAVA_HOME and PATH Variables

1.4.1 Windows

To set up JAVA HOME and PATH variables on Windows:

1.4. Setting JAVA_HOME and PATH Variables 9

https://digitalasset.jfrog.io/ui/repos/tree/General/sdk-ee

Daml SDK Documentation, 2.7.3

1.4.1.1 Set the JAVA_HOME Variable

1. Search for Advanced System Settings (open Search, type advanced system settings and hit

Enter).

Find the Advanced tab and click Environment Variables.

3. ClickNewinthe System variables section (if you want to set JAVA HOME system wide) orin
the User variables section (if you want to set JAVA HOME for a single user). This will open
a modal window for Variable name.

4. Inthe variable name window type JAVA HOME, and forthe Variable value setthe pathto
the JDK installation.

5. Click OK in the Vvariable name window.

6. Click OK in the tab and click Apply to apply the changes.

n

1.4.1.2 Set the PATH Variable

The PATH variable is automatically set by the Windows installer.

1.4.2 Mac OS

First, determine whether you are running Bash or zsh. Open a Terminal and run:

echo S$SHELL

This should return either /bin/bash, in which case you are running Bash, or /bin/zsh, in which
case you are running zsh.

If you get any other output, you have a non-standard setup. If you’re not sure how to set up environ-
ment variables in your setup, ask on the Daml forum and we will be happy to help.

Open a terminal and run the following commands. Copy/paste one line at a time if possible. None of
these should produce any output on success.

To set the variables in bash:

echo 'export JAVA HOME="$ (/usr/libexec/java home)"' >> ~/.bash profile
echo 'export PATH="SHOME/.daml/bin:$PATH"' >> ~/.bash profile

To set the variables in zsh:

echo 'export JAVA HOME="$ (/usr/libexec/java home)"' >> ~/.zprofile
echo 'export PATH="$HOME/.daml/bin:$PATH"' >> ~/.zprofile

For both shells, the above will update the configuration for future, newly opened terminals, but will
not affect any existing one.

To test the configuration of JAVA HOME (on either shell), open a new terminal and run:

echo $JAVA HOME

You should see the path to the JDK installation, which is something like /Library/Java/
JavaVirtualMachines/jdk version number/Contents/Home.

Next, please verify the PATH variable by running (again, on either shell):

10 Chapter 1. Canton References

https://github.com/digital-asset/daml/releases/latest
https://discuss.daml.com

Daml SDK Documentation, 2.7.3

daml version

You should see the header SDK versions: followed by a list of installed (or available) SDK versions
(possibly a list of just one if you just installed).

If you do not see the expected outputs, contact us on the Dam| forum and we will be happy to help.

1.4.3 Linux

To set up JAVA HOME and PATH variables on Linux for bash:

1.4.3.1 Set the JAVA_HOME Variable

Javais typically installed in a folder like /usr/1ib/jvm/java-version. Before running the follow-
ing command make sure to change the java-version with the actual folder found on your com-
puter:

echo "export JAVA HOME=/usr/lib/jvm/java-version" >> ~/.bash profile

1.4.3.2 Set the PATH Variable

The installer will ask to set the PATH variable for you. If you want to set the PATH variable manually
instead, run the following command:

echo 'export PATH="SHOME/.daml/bin:S$PATH"' >> ~/.bash profile

1.4.3.3 Verify the Changes

In order for the changes to take effect you will need to restart your computer. After the restart, verify
that everything was set up correctly using the following steps:

Verify the JAVA_HOME variable by running:

echo $JAVA HOME

You should see the path you gave for the JDK installation, which is something like /usr/1ib/jvm/
java-version.

Then verify the PATH variable by running:

echo S$PATH

You should see a series of paths which includes the path to the SDK, which is something like /home/
your username/.daml/bin.

1.4. Setting JAVA_HOME and PATH Variables n

https://discuss.daml.com

Daml SDK Documentation, 2.7.3

1.5 Manually Installing the SDK

If you require a higher level of security, you can instead install the Daml SDK by manually download-
ing the compressed tarball, verifying its signature, extracting it and manually running the install
script.

Note that the Windows installer is already signed (within the binary itself), and that signature is
checked by Windows before starting it. Nevertheless, you can still follow the steps below to check its
external signature file.

To do that:

1.

2.

Go to https://github.com/digital-asset/daml/releases. Confirm your browser sees a valid cer-
tificate for the github.com domain.

Download the artifact (Assets section, after the release notes) for your platform as well as the
corresponding signature file. For example, if you are on macOS and want to install the latest
release (2.0.0 at the time of writing), you would download the files daml-sdk-2.0.0-macos.
tar.gz and daml-sdk-2.0.0-macos.tar.gz.asc. Note that for Windows you can choose
between the tarball (ends in . tar.gz), which follows the same instructions as the Linux and
macOS ones (but assumes you have a number of typical Unix tools installed), or the installer,
which ends with . exe. Regardless, the steps to verify the signature are the same.

. To verify the signature, you need to have gpg installed (see https://gnupg.org for more infor-

mation on that) and the Digital Asset Security Public Key imported into your keychain. Once
you have gpg installed, you can import the key by running:

gpg —--keyserver hkp://pgp.mit.edu --searchl]
—~F26D8A0AADF666CCB28F2AB1650EC3253B6A8FFS

This should come back with a key belonging to Digital Asset Holdings, LLC
<security@digitalasset.com>, created on 2023-01-10 and expiring on 2025-01-09. |If
any of those details are different, something is wrong. In that case please contact Digital Asset
immediately.

Alternatively, if keyservers do not work for you (we are having a bit of trouble getting them to
work reliably for us), you can find the full public key at the bottom of this page.

. Oncethe keyisimported, you can ask gpg to verify that the file you have downloaded has indeed

been signed by that key. Continuing with our example of 2.0.0 on macOS, you should have both
files in the current directory and run:

gpg —-verify daml-sdk-2.0.0-macos.tar.gz.asc

and that should give you a result that looks like:

gpg: assuming signed data in 'daml-sdk-2.0.0-macos.tar.gz'

gpg: Signature made Wed Aug 12 13:30:49 2020 CEST

gpg: using RSA key CADC3D1E3B5C4C5F94A65D78A7TBF65AAADBRBC494

gpg: Good signature from "Digital Asset Holdings, LLC <security@digitalasset.

—com>" [unknown]

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to the owner.

Primary key fingerprint: F26D 8AOA ADF6 66CC B28F 2ABl1 650E C325 3B6A 8FF5
Subkey fingerprint: CADC 3D1E 3B5C 4C5F 94A6 5D78 AT7BF 65AA ADBB C494

Note: This warning means you have not told gnupg that you trust this key actually belongs to
Digital Asset. The [unknown] tag next to the key has the same meaning: gpg relies on a web
of trust, and you have not told it how far you trust this key. Nevertheless, at this point you have
verified that this is indeed the key that has been used to sign the archive.

12

Chapter 1. Canton References

https://github.com/digital-asset/daml/releases
https://gnupg.org

Daml SDK Documentation, 2.7.3

5. The next step is to extract the tarball and run the install script (unless you chose the Windows
installer, in which case the next step is to double-click it):

tar xzf daml-sdk-2.0.0-macos.tar.gz
cd sdk-2.0.0
./install.sh

6. Just like for the more automated install procedure, you may want to add ~/ .daml/bin to your
SPATH.

To import the public key directly without relying on a keyserver, you can copy-paste the following
Bash command:

gpg -—import < <(cat <<EOF

mQINBGO9KhIBEAC/D5WTgMJIQGQs0ol1JENSRTq6Y1ICBwI+L84YEKCPUoLlyW7 /RQOHNZ
+5rYUQPGE1K5KCIhHt JeQyANZzPyIKWnhDX61Iaoau6Dg9JIK3SwNv20jDyCzZ0j NW
GfajyT7xVTWXmYM/us8/A5kIN4pwEGIUL73n2u0t0zhpJ6TGLUjNKBSEfGUO1L2Jr
vIBGx2ghv+dbdR3kPX6SYuj7U+tDvoaqdB8729kL14grpBgYy2YhF5eoLyvBaE9x
brDydUCubt2Xpr7yI7xGOhUSn2ygoP3e9YSjOhowjS5US0FtTGxvgSE7xd9gkFazyY
UA58X3sulnxz/9nbvb2RIPKt1Ue0JS8pggXVSSGrHfWw3Bnu2GlpQNO+MYCSOCu/
gMxQTnJ41tUNoFb3c9dSnB/VXWxsv1K3F+EAFg9HLNIStIJVxPhPwgTol1380hTI1H
4eGAXpRPZSKNXGRRtWdbEseYBSDBzROulANSTDXEDEF]jJI5u7KJIfdN7pOYaXWkXpB
+hvsiWJuvUDxTG1QE02PQjyN5vzj1NaU7CRRLvVOYSstsOyTmuYqg/xxvgA9XbPdti
g9Atae¥SjRzg/70Bq79FhcmKDOfh7Zc07RRXHy2xTdvw+IySHEJkOfYFz+1Gtp78U
0iTv8tdgyh8dPvmuF7UbGWMJEMMD5d2goEw2ZnkgmLPFK5jg8gqAshaQwIwARAQAR
tDAEaWdpdGFsIEFzc2V0IEhvbGRpbmdz LCBMTEMgPHN1Y 3VyaXR5QGRpZ210YWxh
c3N1dC59b20+iQJOBBMBCAA4FiEESM2KCq32Zsyy] yaxZQ7DJITtq]j /UFAMO9khIC
GWMFCwkIBwWIGFQoJCASCBBYCAWECHGECF4AACGkQZQ7DITty) /WMbg/+KOMte y+
fCaWxFctfUbtd/JZBzpSCVMLNTPJZYZ50SwN/CqILUTFzzVLIx7uj/CyH/el1IV20
RR7TMWETSADmkdrM45RBCvDs2UEIL13Rpsg/41iRpCZo01YQLI9Y1XyUid8F3cQYmwPk
4YMY +tggEhObAgqONngrGWiEWMU1xbbRVgl PvRZDMeUNGAvmSOCs 9LZLENE9m4g2Kn
1NKddfLZ+sHag2bfOiB+mZECX6wTusjqQWe JPRAf 1VWwMxZ7TkGOYoQHG1g8 £TMd
3NgPE9OHOQ1ZhN4MbY6QZ70WexUNab8Pzf1C04sSGhywVI3JibcgCNIbHW21+1py
OItJvdMxeSscOde2Fm5Dgmhf8UE+xgvPXabxA5Yf40AgqwuKt 7boGsMf09LEf7z1itX
5%Z2181saIPVC40cM51t+sNDP6uJIynP5Dplfxallb8gcQDgyWB/RErOvY1pRE/61
M8+3 fUP3RIMbX/tUiCXEG+1uDSGTq]2Ac4TqiXfFKpg+TdEZNF] 9Vt rzTJIT/tI1g]
Q1rKM9P9iB/JrNtggeYrhaBZSpVKx4J7LNeIGAVIVRVZ1W3tvCsTIT/1p/iJ1YJI
FCdb761eR/PgQONdk4wyU4JLXOYueEPAbyiBgQwgmOoT8GpY1PP4dsFfu7MoV0Cq7
//g+tuwegRr51LV6LwSBuFdlhgQ97djAmmRi 5SAg0EY72SEgEQAKP+D3bVJIPC6SXS]
q/3UH9hixNhcmG61weX1uW0x5JMMYN721i1nDLbgsgA3gEyZ8G/134nUU4K/WZkWg
nJd5910PIVE05yzEnesS6hbHXUzd6ayeWhPUzwxLBPy3yJUw7IRKFFOPOAMBaraAp
27ZuWy40Ta8bVKc9DgEeWuesyFAqs74W7cREGMOSCAP8R3I+Syo]j66+jpXYJ7sFt
eW4dITqrQcj64jBtGB8kQ0e8JvC4COudXJ1BpKjExxIQ1SK729tz0vsi+hzQfac/1
m3j082sH89ZU8y4GQpjWo6YyEZIxKBgoEogDOCvY0eJ9nK1Uv3pVFKyClKdysQ+h
v+9V3zQo0aGF6115¢cIwQUlewISUkiCOHzZMYkrEXsbBOJ1CmomuLnjMhsXht5tVie
c8axn6QM7gRESR/3RORZwWAAca00ZBN4Z0okUuZnR7/FxyiOhKilGW51X+0mlVvKH
BImFM/VmCXwdhzcWZUZabK6Ebpeg7zWN3alkXZ+Kb2glgWYT5Pg3d1lm+RtJOiuyn
uyrl1BnX60v]TNWTmKPgO8x223dZzpNGdK6sfUUeZ6700kI/12dALOUZRcuCLK32LB
uJmk/dLt4Bjem9ITFt2ECb1+RTalaWom8uS7BKUiDGedW6239h3HebdVeniplvoY
3EdwpiQxgsCD3g2Sbzj IM5UGOsWzABEBAAGIAJWEGAETIACYCGWWWIQTybYoKrfZm
zLKPKrF1DsM102gP9QUCY72SxAUJA8InsgAKCRB1DsM102gP9dfyD/9076RZYI 6w
8xIEOOK/cw//4IAO0bbN/vC2tn511zUbabTrXhCYKr96//YJISOFd239Gf4kC7AEDLS
yf4ARLbezjtOVG33GlfrEFHfghMKhpiMQOgb68NFw5U2eLMFc7BB/FudvSHCMZ 31
ajM/465kg+JLxTNiull14MFs10LGD5WbA0OVEzBUb13mK/CB4xv2UEd2y6ZAZUCX0O
P2+Pr2P7W94ECu/NOdhnitkAirgXrS3nzSdulpjK/SkUzvdY642GHwy01i3M20Ztr
p701Uu7zt1D9yDUbksMyhskG7I+k2NGLAwWzZ/CG91GRrYdUpoWsP1U5XLyxjHCmMSC

(continues on next page)

1.5. Manually Installing the SDK 13

Daml SDK Documentation, 2.7.3

(continued from previous page)

gq97giRSK1GO3LbIiTRatrv+4fcdntNOEM/nJdefdtKS8+qZgkPMGQURIDJIcPnIpHk
jGccrEJz4aGB0/4Kr9UDBNWDPsHI92E61Ra5Q1zD001EqgFHyyRP1JYJH3RGKV1YK
rcL11uADiRYXCadwtXvnkJIGxfg2DGICN5bEINPtM+bEhO3IfqrjipvT/Qx3/N6T+
hiHy12Yyi0loUhbWsTuuSz+D07wj/4X1levuaaAc56RSwv0x6rLSjkYJ1I7V3nMvc
e2fwNF1JvLdGEfMcIYyxrOwO24cFwzYMYOTDFmE8MkN/H/khKZiksdnIxfcBFfyWu
PA8s503Zs90Ack3IvK7uAhRDz1PpR6Y+1bkCDQRJVZKEARAAUTGK6INJWBE z £ rDM
vM157ZGAM/ Tpyev])O0WCDhgqiCFdpH3MVt 7+wq0tmR8005Lt4AXgVtznlbwl sSMAKWK
UbyxLtS7cMiXOAPOtemTzWQkvkI0lFFygRQ80oyp4RUP4w)+W41YaDhY+tJRDr/sR
6grY¥t/1ZbfvEPuxL4jGW/dLSKHTLs8kh367XmlgxqaGlCltSLusTPb/8uNpOCANh
A2HAJRCGMoxT7£295+mEWXujif8yIfYtSQldgh+2bA6vaV3WKtHTPdLalzzB20rf9
Mguz4 ff3XDJCHPWOKeBOfqVS9CL67TZeO0x0nJ6u2JnND1wlzX7R63v1D/tSTYZPL
mJeosIjpROg4ELyyLSkj01ANVY/AwlKeTPkvoc76UwsQRFgxx 627 JKObjAok6TQK
HjszRNkeBWbbi8J+zvEiS6U3+1gY¥tvEiSEnpplv1CWEEKZMC68MgspNCzLSOpkoAfe
k21Q/XsjKXSsaUXY5A1D1jQTVbSs9G30kQA0EYyv4JPj2KEXPOF/0sIt2QRrayygk
11gN4k9a3zEZ2WpkQLIRK5DgCE /ORHXkperEWrDiAfSvuv1999jxr+Jgi8qv1Prm
aQdOX5Wc5gpb7X72FMsb2UHaWsUEs 6nwoAWNXgA3PGd0r9LihZMJIXfMc+LSF/dRK
fx+PizkTXQbfML8fi7I19JA1p4UAEQEAAYKECgQYAQAJhYhBPJtiggt 9mbMso8g
SWUOwyU7a0/1BQJjvZKEAhsCBQkDwmcAAKAJEGUOwyU7a0/1wXQgBBkBCAAJFiEE
YEtwOHItcTF+Upll4p791gg27xIJQFAMO9koQACgkQOp791gg27xJQG2hAAP4813NAU
AOg4C/Yvg8agnDRDHW/ISs5XsQTfVwbIssSiSTqddb4jX0rbKWlgzM6115EmMESPV
SMCGEN8xfP5+UeeVIJaXLg3BMYJf1ANn8sun9f8Bp2Wdw6ID1r9VwEZ170J02xYvg
VJ+s/rxbCJIJ8K9IneDPelzN/KXMyUV/uA5D1G92TI1ItinwdZgD9%/CIJPfIBwENEMNnZ
nYakud4dVGJfzaMHezaUTB8UVYFVN6ZVv2PGYEUBCWISM61IdnGKnJzaONMnEvGstXN
vtnWk7H/1204/rDpApy68Qbuo8gbzZIifjNY00u2iyx4BEv)i418NfTdF5HUPHR4m
gl0cz+FcWxol3PGTXHKprNCIY4M5nMAZW82z05/2geD87zmY9Yz3m0GSVE/0cD3pB
rQ/LXirxgJ2prCuE7Ax8XTTBg7+cjggk0InKh2pF0sK+2UCbnN4hR+SQVR256hWI
F+TP/rDryaqdubgCOh7kytPnPgZtL8VgK7yDRhfmgxv3+bpvm+B2gmlokUCkH3bb
AkvowTBOcyTgLw7hYsREHKYVROYg57GGhMStkzaD+1lep9kEUgcaXZF41W02WJeS3
VYXwooxFBKMhzm+cluLV+ujC+FnRs1h7q/u90+3N2V1jEjxA40j3RNAARZpOsSOV?2
BtuUsiPCTvhRLBmdG3RH25jm2hUPexP2+pMyEw//V211M6+MT5a8kCybK5e9313+
eT2bfAfdlk0OkcQcfbocymxW5DIJUQHgB]+G9ZC5PTIAeFk+Jf1d0y3M186NAVPEI4+
ZNsJExdQyplCN53mSWtxAadgHNNhDKX0KwyCarCk04xbf0qgjlsriWNbsUIO4sMlzt
C46N/0JsCuG4uAztAfUINhIbLmSxpjf04QgpcS5NDIGLgZ2xQTVMXP1FglDgrF6fIg
WZwPa7zleihkrEERPjnisjuwMd4uO5BIkgh8F 7HAONARYXpftg9LReV9732718n9
4rhpBedAHWVRgWo8owM8DOVTaHAQzMnnzB+6nCoOcZc7PzhWtKKhZupW2DYaLdIh
nlVCrmMSozkFn3shtOJ76XF2DMDpk0353w6i6rKghWC7TdpXPnWkHkExw4Pjnlse
INP2vdz183NKgEKros4631+h0szQj7jb5DiFxxOnKUfxBNEMIXTQY zXdEzw7Sncw
NwTv4pFxnk3XFJID3IIXMdaCDYmHIJYKS5FwgcO0Cop3dRAMIIB+0Q1/p+urDXqZphg
AGroZz227Z1DXzv7rmlx2drZyOBohc+dgn3zjEx+1wZ6CY8XPiQgbWEzSzY8YT40UA
xRcs9cJ+0SK/HhW/EG51YNbr5IMDb3HvycHEreszEvwg2HAdnsMIYdAM8GC7£17Zpp
0r+S1089BYMgKmhepps=

=srz3

14 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.6 Getting Started with Daml

The goal of this tutorial is to get you up and running with full-stack Daml development. Through the
example of a simple social networking application, you will learn:

1. How to build and run the application
2. The design of its different components (App Architecture)
3. How to write a new feature for the app (Your First Feature)

The goal is that by the end of this tutorial, you’ll have a good idea of the following:

What Daml contracts and ledgers are
How a user interface (Ul) interacts with a Daml ledger
How Daml helps you build a real-life application fast.

This is not a comprehensive guide to all Daml concepts and tools or all deployment options; these
are covered in-depth in the User Guide. For a quick overview of the most important Daml concepts
used in this tutorial you can refer to the Daml| cheat-sheet.

With that, let’s get started!

1.6.1 Prerequisites

Make sure that you have the Daml SDK, Java 11 or higher, and Visual Studio Code (the only supported
IDE) installed as per the instructions in Installing the SDK.

You will also need some common software tools to build and interact with the template project:

Node and the associated package manager npm. Use the Active LTS Node version, currently v18
(check with node --version).
A terminal application for command line interaction.

1.6.2 Run the App

To get the app up and running:

1. Open a terminal, select a folder in which to create your first application, and instantiate the tem-
plate project.

daml new create-daml-app --template create-daml-app

This creates a new folder with contents from our template. To see a list of all available templates run
daml new --list.

2. Change to the new folder:

cd create-daml-app

3. Open two terminal windows.
4. In one terminal, at the root of the create-daml-app directory, run the command:

daml start

1.6. Getting Started with Daml 15

https://docs.daml.com/cheat-sheet/
https://nodejs.org/en/
https://nodejs.org/en/about/releases/

Daml SDK Documentation, 2.7.3

Any commands starting with daml are using the Daml/ Assistant, a command line tool in the SDK for
building and running Daml apps.

The command has started successfully when you see the INFO com.daml.http.Main$ -
Started server: ServerBinding(/127.0.0.1:7575) message in the terminal. The com-
mand does a few things:

1. Compiles the Daml code to a DAR (Daml Archive) file

2. Generates a JavaScript library in ui/daml. js to connect the Ul with your Daml code

3. Starts aninstance of the Sandbox, an in-memory ledger useful for development, loaded with our
DAR

4. Starts a server for the HTTP JSON API, a simple way to run commands against a Daml ledger (in
this case the running Sandbox)

Wwe’ll leave these processes running to serve requests from our Ul.

5. In the second terminal, navigate to the create-daml-app/ui folder and use npm to install
the project dependencies:

cd create-daml-app/ui
npm install

This step may take a couple of moments. You should see success Saved lockfile. intheoutput
if everything worked as expected.

6. Start the Ul with:

npm start

This starts the web Ul connected to the running Sandbox and JSON API server. The command should
automatically open a window in your default browser at http://localhost:3000.

Once the web Ul has been compiled and started, you should see Compiled successfully! inyour
terminal. If you don’t, open http://localhost:3000 in a web browser. Depending on your firewall set-
tings, you may be asked whether to allow the app to receive network connections. It is safe to accept.

You should now see the login page for the social network. For simplicity, in this app there is no
password or sign-up required.

1. Enter a user name. Valid user names are bob, alice, or charlie (note that these are all lower-case,
although they are displayed in the social network Ul by their alias instead of their user id, with
the usual capitalization).

2. Click Log in.

create ,\ daml App

16 Chapter 1. Canton References

http://localhost:3000
http://localhost:3000

Daml SDK Documentation, 2.7.3

You should see the main screen with two panels. The top panel displays the social network users you
are following; the bottom displays the aliases of the users who follow you. Initially these are both
empty as you are not following anyone and you don’t have any followers. To start following a user,
select their name in the drop-down list and click the Follow button in the top panel. At the moment,
you will notice that the drop-down shows only your own user because no other user has registered

yet.

You are logged in as bob. [C g

Adaml

Welcome, Bob!

@ Bob

& scrsI'm following

Follow

ZAx The Network
¥ My followers and users they are following

Next, open a new browser window/tab at http://localhost:3000 and log in as a different user. (Having
separate windows/tabs allows you to see both your own screen and the screen of the user you are
following at the same time.)

Now that the other user (Alice in this example) has logged in, go back to the previous window/tab,
select them drop-down list and click the Follow button in the top panel.

The user you just started following appears in the Following panel. However, they do not yet appear
in the Network panel. This is because they have not yet started following you. This social network is
similar to Twitter and Instagram, where by following someone, say Alice, you make yourself visible
to her but not vice versa. We will see how we encode this in Daml in the next section.

You are logged in as bob. ®

Adaml

Welcome, Bob!

@ Bob
ab Users I'm following

& Alice
Alice

Follow

& The Network
v My followers and users they are following

1.6. Getting Started with Daml 17

http://localhost:3000

Daml SDK Documentation, 2.7.3

To make this relationship reciprocal, go back to the other window/tab where you logged in as the
second user (Alice in this example). You should now see your name in her network. In fact, Alice can
see the entire list of users you are following in the Network panel. This is because this list is part of
the user data that became visible when you started following her.

Adaml You are logged in as alice. ®

Welcome, Alice!

@ Alice

ab Users I'm following

Follow

&& The Network
w My followers and users they are following

& Bob 2
& Alice o

When Alice starts following you, you can see her in your network as well. Switch to the window where
you are logged in as yourself - the network should update automatically.

You are logged in as bob. (g

Adaml

Welcome, Bob!

@ Bob

ab Users I'm following

& Alice
Alice v

Follow

&~ The Network
w My followers and users they are following

& Alice 2
& Bob o

Play around more with the app at your leisure: create new users and start following more users.
Observe when a user becomes visible to others - this will be important to understanding Daml’s
privacy model later. When you’re ready, let’s move on to the architecture of our app.

Tip: Congratulations on completing the first part of the Getting Started Guide! Join our forum and
share a screenshot of your accomplishment to get your first of 3 getting started badges! You can get
the next one by implementing your first feature.

18 Chapter 1. Canton References

https://discuss.daml.com
https://discuss.daml.com/badges/125/it-works

Daml SDK Documentation, 2.7.3

1.7 App Architecture

In this section we’ll look at the different components of the social network app we created in Building
Your App. The goal is to familiarize yourself with the basics of Daml architecture enough to feel com-
fortable extending the code with a new feature in the next section. There are two main components:

the Daml model
the React/TypeScript frontend

We generate TypeScript code to bridge the two.

Overall, the social networking app follows the recommended architecture of a fullstack Daml application.
Below is a simplified version of the architecture represented in the app.

User Code

Daml Component

Damil Application Frontend

React Application Code
| Daml Generated Code | Daml Model
Daml React Libraries i

{ External Component J

L4

Typescript Generated Code }< — { DAR Files ‘
Utilized by
..................>
Communication Daml Application Backend
—_—

_ . Participant Node
HTTP JSOM Service Ledger AP

There are four types of building blocks that go into our application: user code, generated code from
Daml, Daml components, and external components. The Daml model determines the DAR files that
underpin both the frontend and backend. The frontend includes React application code, Daml React

libraries, and Typescript generated code. From the client point of view, the backend consists of the
JSON API and a participant node.

Let’s start by looking at the Daml model, which defines the core logic of the application. Have the
Daml cheat-sheet open in a separate tab for a quick overview of the most common Daml concepts.

1.7. App Architecture 19

https://docs.daml.com/getting-started/index.html
https://docs.daml.com/getting-started/index.html
https://docs.daml.com/cheat-sheet/
https://docs.daml.com/cheat-sheet/

Daml SDK Documentation, 2.7.3

1.7.1 The Daml Model

In your terminal, navigate to the root create-daml-app directory and run:

daml studio

This should open the Visual Studio Code editor at the root of the project. (You may get a new tab pop
up with release notes for the latest version of Daml - close this.) Using the file Explorer on the left
sidebar, navigate to the daml folder and double-click on the User.daml file.

The Daml code defines the data and workflow of the application. Both are described in the User con-
tract template. Let’s look at the data portion first:

template User with
username: Party
following: [Party]
where
signatory username
observer following

There are two important aspects here:

1. The data definition (a schema in database terms), describing the data stored with each user con-
tract. In this case it is an identifier for the user and the list of users they are following. Both fields
use the built-in Party type which lets us use them in the following clauses.

2. The signatories and observers of the contract. The signatories are the parties whose authorization
is required to create or archive contracts, in this case the user herself. The observers are the parties
who are able to view the contract on the ledger. In this case all users that a particular useris following
are able to see the user contract.

It’s also important to distinguish between parties, users, and aliases in terms of naming:
Parties are unique across the entire Daml network. These must be allocated before you can
use them to log in, and allocation results in a random-looking (but not actually random)
string that identifies the party and is used in your Daml code. Parties are a builtin concept.
On each participant node you can create users with human-readable user ids. Each user
can be associated with one or more parties allocated on that participant node, and refers
to that party only on that node. Users are a purely local concept, meaning you can never
address a user on another node by user id, and you never work with users in your Daml
code; party ids are always used for these purposes. Users are also a builtin concept.
Lastly we have user aliases. These are not a builtin concept, they are defined by an Alias
template (discussed below) within the specific model used in this guide. Aliases serve as
a way to address parties on all nodes via a human readable name.

The social network users discussed in this guide are really a combination of all three of these con-
cepts. Alice, Bob, and Charlie are all aliases that correspond to a single test user and a single party
id each. As part of running daml start, the init-script specified in daml.yaml is executed. This points
at the Setup:setup function which defines a Daml Script which creates 3 users alice, bob and charlie as
well as a corresponding party for each they can act as. In addition to that, we also create a separate
public party and allow the three users to read contracts for that party. This allows us to share the
alias contracts with that public party and have them be visible to all 3 users.

Now let’s see what the signatory and observer clauses mean in our app in more concrete terms.
The userwith the alias Alice can see another user, alias Bob, in the network only when Bob is following
Alice (only if Alice is in the following list in his user contract). For this to be true, Bob must have

20 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

previously started to follow Alice, as he is the sole signatory on his user contract. If not, Bob will be
invisible to Alice.

This illustrates two concepts that are central to Daml: authorization and privacy. Authorization is
about who can do what, and privacy is about who can see what. In Daml you must answer these
questions upfront, as they are fundamental to the design of the application.

The next part of the Daml model is the operation to follow users, called a choice in Daml:

nonconsuming choice Follow: ContractlId User with
userToFollow: Party
controller username

do
assertMsg "You cannot follow yourself" (userToFollow /= username)
assertMsg "You cannot follow the same user twice" (notElem userToFollow!l!
—~following)
archive self
create this with following = userToFollow :: following

Daml contracts are immutable (can not be changed in place), so the only way to update one is to
archive it and create a new instance. That is what the Follow choice does: after checking some
preconditions, it archives the current user contract and creates a new one with the new user to follow
added to the list. Here is a quick explanation of the code:

The choice starts with the nonconsuming choice keyword followed by the choice name Fol-
low.

The return type of a choice is defined next. In this case itis ContractId User.

After that we declare choice parameters with the with keyword. Here this is the user we want
to start following,

The keyword controller defines the Party thatis allowed to execute the choice. In this case,
itis the username party associated with the User contract.

The do keyword marks the start of the choice body where its functionality will be written.
After passing some checks, the current contract is archived with archive self.

A new User contract with the new user we have started following is created (the new user is
added to the following list).

More detailed information on choices can be found in our docs.

Finally, the User.daml file contains the Alias template that manages the link between user ids and
their aliases. The alias template sets the public party we created in the setup script as the observer
of the contract. Because we allow all users to read contracts visible to the public party, this allows
e.g., Alice to see Bob’s Alias contract.

template Alias with
username: Party
alias: Text
public: Party
where
signatory username
observer public

key (username, public) : (Party, Party)
maintainer key. 1

nonconsuming choice Change: ContractId Alias with
newAlias: Text

(continues on next page)

1.7. App Architecture 21

Daml SDK Documentation, 2.7.3

(continued from previous page)

controller username
do
archive self
create this with alias = newAlias

Let’s move on to how our Daml model is reflected and used on the Ul side.

1.7.2 TypeScript Code Generation

The user interface for our app is written in TypeScript. TypeScript is a variant of JavaScript that
provides more support during development through its type system.

To build an application on top of Daml, we need a way to refer to our Daml templates and choices in
TypeScript. We do this using a Daml to TypeScript code generation tool in the SDK.

To run code generation, we first need to compile the Daml model to an archive format (a .dar file).
The daml codegen js command then takes this file as argument to produce a number of Type-
Script packages in the output folder.

daml build
daml codegen js .daml/dist/create-daml-app-0.1.0.dar -o daml.js

Now we have a TypeScript interface (types and companion objects) to our Daml model, which we’ll
use in our Ul code next.

1.7.3 The Ul

On top of TypeScript, we use the Ul framework React. React helps us write modular Ul components
using afunctional style-acomponentisrerendered wheneverone of its inputs changes - with careful
use of global state.

Let’s see an example of a React component. All components are in the ui/src/components folder.
You can navigate there within Visual Studio Code using the file explorer on the left sidebar. We’ll first
look at App . tsx, which is the entry point to our application.

const App: React.FC = () => {
const [credentials, setCredentials] = React.useState<
Credentials | undefined
>();
if (credentials) {
const PublicPartyledger: React.FC ({ children }) => {
const publicToken = usePublicToken();
const publicParty = usePublicParty();
if (publicToken && publicParty) {
return (
<publicContext.DamlLedger
token={publicToken.token}
party={publicParty}>
{children}
</publicContext.DamlLedger>

) ;

} else {

(continues on next page)

22 Chapter 1. Canton References

https://www.typescriptlang.org/
https://reactjs.org/

Daml SDK Documentation, 2.7.3

(continued from previous page)

return <hl>Loading ...</hl>;
}
}:
const Wrap: React.FC = ({ children }) =>
isRunningOnHub () 2 (

<DamlHub token={credentials.token}>
<PublicPartyLedger>{children}</PublicPartyLedger>
</DamlHub>
) |
<div>{children}</div>
) ;
return (
<Wrap>
<userContext.DamlLedger
token={credentials.token}
party={credentials.party}
user={credentials.user}>

<MainScreen
getPublicParty={credentials.getPublicParty}
onLogout={ () => {
if (authConfig.provider === "daml-hub") {
damlHubLogout () ;

}
setCredentials (undefined) ;
1}
/>
</userContext.DamlLedger>
</Wrap>
)7
} else {
return <LoginScreen onlLogin={setCredentials} />;
}
}i

An important tool in the design of our components is a React feature called Hooks. Hooks allow you
to share and update state across components, avoiding the need to thread it through manually. We
take advantage of hooks to share ledger state across components. Custom Daml React hooks query
the ledger for contracts, create new contracts, and exercise choices. This is the library you will use
most often when interacting with the ledger' .

The useState hook (not specific to Daml) here keeps track of the user’s credentials. If they are not
set, we render the LoginScreen with a callback to setCredentials. If they are set, we render the
MainScreen of the app. This is wrapped in the DamlLedger component, a React context with a
handle to the ledger.

Let’s move on to more advanced uses of our Daml React library. The MainScreen is a simple frame
around the MainView component, which houses the main functionality of our app. It uses Daml
React hooks to query and update ledger state.

const MainView: React.FC () => {

const username = userContext.useParty();

const myUserResult = userContext.useStreamFetchByKeys (User.User, () =>[
— [username], [username]) ;

(continues on next page)

' Behind the scenes the Daml React hooks library uses the Daml Ledger TypeScript library to communicate with a ledger
implementation via the HTTP JSON API.

1.7. App Architecture 23

https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/context.html

Daml SDK Documentation, 2.7.3

(continued from previous page)

const aliases = publicContext.useStreamQueries (User.Alias, () => []1, [1):
const myUser = myUserResult.contracts[0]?.payload;
const allUsers = userContext.useStreamQueries (User.User) .contracts;

The useParty hook returns the current user as stored in the DamlLedger context. A more interest-
ing example isthe allUsers line. This uses the useStreamQueries hook to get all User contracts
on the ledger. (User.User here is an object generated by daml codegen js - it stores metadata
of the User template defined in User.daml.) Note however that this query preserves privacy: only
users that follow the current user have their contracts revealed. This behaviour is due to the ob-
servers on the User contract being exactly in the list of users that the current user is following.

Afinal point on this is the streaming aspect of the query. Results are updated as they come in - there
is no need for periodic or manual reloading to see updates.

Another example, showing how to update ledger state, is how we exercise the Follow choice of the
User template.

const ledger = userContext.useledger();

const follow = async (userToFollow: Party): Promise<boolean> => ({
try {
await ledger.exerciseByKey (User.User.Follow, username, {userToFollow});
return true;
} catch (error) {
alert (Unknown error:\nS${JSON.stringify (error) });
return false;

The useLedger hook returns an object with methods for exercising choices. The core of the follow
function here is the call to ledger.exerciseByKey. The key in this case is the username of the
current user, used to look up the corresponding User contract. The wrapper function follow is
then passed to the subcomponents of MainView. For example, follow is passed to the UserList
component as an argument (a prop in React terms). This is triggered when you click the icon next to
a user’s name in the Network panel.

<Userlist
users={followers}
partyToAlias={partyToAlias}
onFollow={follow}

/>

This should give you a taste of how the Ul works alongside a Daml ledger. You’ll see this more as you
develop your first feature for our social network.

24 Chapter 1. Canton References

https://reactjs.org/docs/components-and-props.html

Daml SDK Documentation, 2.7.3

1.8 Your First Feature

To get a better idea of how to develop Daml applications, let’s try implementing a new feature for our
social network app.

Atthe moment, our app lets us follow users in the network, but we have no way to communicate with
them. Let’s fix that by adding a direct messaging feature. This should let users that follow each other
send messages to each other, respecting authorization and privacy. This means:

You cannot send a message to someone unless they have given you the authority by following
you back.
You cannot see a message unless you sent it or it was sent to you.

Daml lets us implement these guarantees in a direct and intuitive way.
Creating a feature involves three steps:

1. Adding the necessary changes to the Daml| model
2. Making the corresponding changes in the Ul
3. Running the app with the new feature

As usual, we must start with the Daml model and base our Ul changes on top of that.

1.8.1 Daml Changes

The Daml code defines the data and workflow of the application; you can read about this in more detail
in the architecture section. The workflow refers to the interactions between parties that are permitted
by the system. In the context of a messaging feature, these are essentially the authorization and
privacy concerns listed above.

For the authorization part, we take the following approach: a user Bob can message another user Al-
ice when Alice starts following Bob back. When Alice starts following Bob back, she gives permission
or authority to Bob to send her a message.

To implement this workflow, let’s start by adding the new data for messages. Navigate to the daml/
User.daml file and copy the following Message template to the bottom. Indentation is important:
it should be at the top level like the original User template.

template Message with
sender: Party
receiver: Party
content: Text
where
signatory sender, receiver

This template is very simple: it contains the data for a message and no choices. The interesting part
is the signatory clause: both the sender and receiver are signatories on the template. This
enforces that creation and archival of Message contracts must be authorized by both parties.

Now we can add messaging into the workflow by adding a new choice to the User template. Copy the
following choice to the User template afterthe Followchoice. The indentation for the SendMessage
choice must match the one of Follow. Make sure you save the file after copying the code.

nonconsuming choice SendMessage: ContractId Message with
sender: Party

(continues on next page)

1.8. Your First Feature 25

Daml SDK Documentation, 2.7.3

(continued from previous page)

content: Text
controller sender
do
assertMsg "Designated user must follow you back to send a message" (elem]
—sender following)
create Message with sender, receiver = username, content

As with the Follow choice, there are a few aspects to note here.

By convention, the choice returns the ContractId of the resulting Message contract.

The parameters to the choice are the sender and content of this message; the receiver is the
party named on this User contract.

The controller clause states that it is the sender who can exercise the choice.

The body of the choice first ensures that the sender is a user that the receiver is following and
then creates the Message contractwiththe receiver being the signatory of the User contract.

This completes the workflow for messaging in our app.
Navigate to the terminal window where the daml start process is running and press ‘r. This will

Compile our Daml code into a DAR file containing the new feature
Update the JavaScript library under ui/daml. js to connect the Ul with your Daml code
Upload the new DAR file to the sandbox

As mentioned previously, Daml Sandbox uses an in-memory store, which means it loses its state -
which here includes all user data and follower relationships - when stopped or restarted.

Now let’s integrate the new functionality into the Ul

1.8.2 Messaging Ul
The Ul for messaging consists of a new Messages panel in addition to the Follow and Network panel.
This new panel has two parts:

1. Alist of messages you’ve received with their senders.
2. Aform with a dropdown menu for follower selection and a text field for composing the message.

We implement each part as a React component, named MessageList and MessageEdit respec-
tively. Let’s start with the simpler MessageList.

1.8.2.1 MessagelList Component

The goal of the MessageList component is to query all Message contracts where the receiveris
the current user, and display their contents and senders in a list. The entire component is shown
below. Copy this into a new MessageList.tsx fileinui/src/components and save it.

import React from 'react'

import { List, ListItem } from 'semantic-ui-react';
import { User } from '@daml.]js/create-daml-app';
import { userContext } from './Rpp';

type Props = {
partyToAlias: Map<string, string>

(continues on next page)

26 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

}

/**
* React component displaying the list of messages for the current user.
*/

const MessageList: React.FC<Props> = ({partyToAlias}) => {
const messagesResult = userContext.useStreamQueries (User.Message) ;

return (
<List relaxed>
{messagesResult.contracts.map (message => ({
const {sender, receiver, content} = message.payload;
return (
<ListItem
className='test-select-message-item'
key={message.contractId}>
{partyToAlias.get (sender) ?? sender} → {partyToAlias.
—get (receiver) ?7? receiver}: {content}
</ListItem>
) ;
1)}
</List>
) ;
}i

export default MessageList;

In the component body, messagesResult gets the stream of all Message contracts visible to the
current user. The streaming aspect means that we don’t need to reload the page when new mes-
sages come in. For each contract in the stream, we destructure the payload (the data as opposed to
metadata like the contract ID) into the {sender, receiver, content} object pattern. Then we
construct a ListItem Ul element with the details of the message.

An important point about privacy: no matter how we write our Message query in the Ul code, it is
impossible to break the privacy rules given by the Daml model. That s, itis impossible to see a Mes-
sage contract of which you are not the sender or the receiver (the only parties that can observe
the contract). This is a major benefit of writing apps on Daml: the burden of ensuring privacy and
authorization is confined to the Daml model.

1.8.2.2 MessageEdit Component

Next we need the MessageEdit component to compose and send messages to our followers. Again
we show the entire component here; copy this into a new MessageEdit.tsx file in ui/src/
components and save it.

import React from 'react'

import { Form, Button } from 'semantic-ui-react';
import { Party } from '@daml/types';

import { User } from '@daml.]js/create-daml-app';
import { userContext } from './Rpp';

type Props = {
followers: Partyl[];
partyToAlias: Map<string, string>;

(continues on next page)

1.8. Your First Feature 27

Daml SDK Documentation, 2.7.3

(continued from previous page)

/**
* React component to edit a message to send to a follower.
*/

const MessageEdit: React.FC<Props> = ({followers, partyToAlias}) => {
const sender = userContext.useParty();
const [receiver, setReceiver] = React.useState<string | undefined>();
const [content, setContent] = React.useState("");
const [isSubmitting, setIsSubmitting] = React.useState (false);

const ledger = userContext.useledger();

const submitMessage = async (event: React.FormEvent) => {

try {
event.preventDefault () ;
if (receiver === undefined) {
return;

}

setIsSubmitting (true);

await ledger.exerciseByKey (User.User.SendMessage, receiver, {sender,!]
—content});

setContent ("") ;
} catch (error) {

alert (Error sending message:\ns5{JSON.stringify(error) /));
} finally {

setIsSubmitting (false) ;
}
}i

return (
<Form onSubmit={submitMessage}>
<Form.Select

fluid

search

className='test-select-message-receiver'

placeholder={receiver ? partyToAlias.get (receiver) ?? receiver : "Selectl]

—a follower"}
value={receiver}
options={followers.map (follower => ({ key: follower, text: partyToAlias.
—get (follower) ?? follower, value: follower }))}
onChange={ (event, data) => setReceiver (data.value?.toString())}
/>
<Form.Input
className='test-select-message-content'
placeholder="Write a message"
value={content}
onChange={event => setContent (event.currentTarget.value) }
/>
<Button
fluid
className='test-select-message-send-button'
type="submit"
disabled={isSubmitting || receiver === undefined || content === ""}
loading={isSubmitting}
content="Send"

/>

(continues on next page)

28 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

</Form>
) ;
}s

export default MessageEdit;

You will first notice a Props type near the top of the file with a single followers field. A prop in React
is an input to a component; in this case a list of users from which to select the message receiver.
The prop will be passed down from the MainView component, reusing the work required to query
users from the ledger. You can see this followers field bound at the start of the MessageEdit
component.

We use the React useState hook to get and set the current choices of message receiver and
content. The Daml-specific useLedger hook gives us an object we can use to perform ledger op-
erations. The call to ledger.exerciseByKey in submitMessage looks up the User contract with
the receiver’s username and exercises the SendMessage choice with the appropriate arguments.
If the choice fails, the catch block reports the error in a dialog box. Additionally, submitMessage
setsthe isSubmitting state sothat the Send button is disabled while the request is processed. The
result of a successful call to submitMessage is a new Message contract created on the ledger.

The return value of this component is the React Form element. This contains a dropdown menu to
select a receiver from the followers, a text field for the message content, and a Send button which
triggers submitMessage

Note how authorization is enforced here. Due to the logic of the SendMessage choice, it is impossible
to send a message to a user who is not following us (even if you could somehow access their User
contract). The assertion thatelem sender followingin SendMessage ensures this: no mistake
or malice by the Ul programmer could breach this.

1.8.2.3 MainView Component

Finally we can see these components come together in the MainView component. We want to add a
new panel to house our messaging Ul.Opentheui/src/components/MainView. tsx file and start
by adding imports for the two new components.

import MessageEdit from './MessageEdit';
import Messagelist from './MessagelList';

Next, find where the Network Segment closes, towards the end of the component. This is where we’ll
add a new Segment for Messages. Make sure you save the file after copying over the code.

<Segment>
<Header as='h2'>
<Icon name='pencil square' />
<Header.Content>
Messages
<Header.Subheader>Send a message to a follower</Header.
—Subheader>
</Header.Content>
</Header>
<MessageEdit
followers={followers.map (follower => follower.username) }
partyToAlias={partyToAlias}

(continues on next page)

1.8. Your First Feature 29

Daml SDK Documentation, 2.7.3

(continued from previous page)

/>

<Divider />

<Messagelist partyToAlias={partyToAlias}/>
</Segment>

Following the formatting of the previous panels, we include the new messaging components: Mes-
sageEdit supplied with the usernames of all visible parties as props, and MessageList to display
all messages.

That is all for the implementation! Let’s give the new functionality a spin.

1.8.3 Run the Updated Ul

If you have the frontend Ul up and running you’re all set. If you don’t have the Ul running, open a
new terminal window and navigate to the create-daml-app/ui folder, then run the npm start
command to start the UL

You should see the same login page as before at http://localhost:3000.

create ,\ damlApp

Once you’ve logged in, you’ll see a familiar Ul but with our new Messages panel at the bottom!

Go ahead and follow more users, and log in as some of those users in separate browser windows
to follow yourself back. Then click on the dropdown menu in the Messages panel to see a choice of
followers to message!

Send some messages between users and make sure you can see each one from the other side. Notice
that each new message appears in the Ul as soon as it is sent (due to the streaming React hooks).

Tip: You completed the second part of the Getting Started Guide! Join our forum and share a screen-
shot of your accomplishment to get your second of 3 badges! Get the third badge by deploying to
Daml Hub.

30 Chapter 1. Canton References

http://localhost:3000
https://discuss.daml.com
https://discuss.daml.com/badges/126/hey-look-what-i-can-do
https://hub.daml.com/docs/quickstart/#deploy-your-own-daml-hub-sample-app
https://hub.daml.com/docs/quickstart/#deploy-your-own-daml-hub-sample-app

Daml SDK Documentation, 2.7.3

DAML You are logged in as Bob. [c g
Welcome, Bob!

@ Bob

& oersim following

Follow

&4 The Network

w My followers and users they are following

Messages

Send a message to a follower

Messages

Send a message to a follower

Alice

Messages

Send a message to a follower

Alice -

Bob - Alice: Hi Alice!

1.8. Your First Feature 31

Daml SDK Documentation, 2.7.3

1.8.4 Next Steps

We’ve gone through the process of setting up a full-stack Daml app and implementing a useful fea-
ture end to end. As the next step we encourage you to really dig into the fundamentals of Daml and
understand its core concepts such as parties, signatories, observers, and controllers. You can do
that either by going through our docs or by taking an online course.

After you’ve got a good grip on these concepts learn how to conduct end-to-end testing of your app.

1.9 Testing Your Web App

When developing a Ul for your Daml application, you will want to test that user flows work from end
to end. This means that actions performed in the web Ul trigger updates to the ledger and give the
desired results on the page. In this section we show how you can do such testing automatically
in TypeScript (equally JavaScript). This will allow you to iterate on your app faster and with more
confidence!

There are two tools that we chose to write end to end tests for our app. Of course there are more to
choose from, but this is one combination that works.

Jestis ageneral-purpose testing framework forJavaScript that’s well integrated with both Type-
Script and React. Jest helps you structure your tests and express expectations of the app’s
behaviour.

Puppeteer is a library for controlling a Chrome browser from JavaScript/TypeScript. Puppeteer
allows you to simulate interactions with the app in place of a real user.

To install Puppeteer and some other testing utilities we are going to use, run the following command
in the ui directory:

npm i1 --save-dev puppeteer@~10.0.0 wait-on@~6.0.1 Q@types/jest@~29.2.3 Qtypes/
—node@~18.11.9 @types/puppeteer@~7.0.4 @types/wait-on@~5.3.1

You may need to run npm install again afterwards.

Because these things are easier to describe with concrete examples, this section will show how to set
up end-to-end tests for the application you would end with at the end of the Your First Feature section.

1.9.1 Set Up the Tests

Let’s see how to use these tools to write some tests for our social network app. You can see the full
suitein section The Full Test Suite at the bottom of this page. Torun this test suite, create a new fileui/
src/index.test.ts, copy the code in this section into that file and run the following command in
the ui folder:

npm test

The actual tests are the clauses beginning with test. You can scroll down to the important ones
with the following descriptions (the first argument to each test):

‘log in as a new user, log out and log back in’

‘log in as three different users and start following each other’
‘error when following self’

‘error when adding a user that you are already following’

32 Chapter 1. Canton References

https://digitalasset.com/developers/interactive-tutorials/fundamental-concepts
https://jestjs.io/
https://pptr.dev/

Daml SDK Documentation, 2.7.3

Before this, we need to set up the environment in which the tests run. At the top of the file we have
some global state that we use throughout. Specifically, we have child processes for the daml start
and npm start commands, which run for the duration of our tests. We also have a single Puppeteer
browser that we share among tests, opening new browser pages for each one.

The beforeAll () section is a function run once before any of the tests run. We use it to spawn the
daml startandnpm start processesandlaunchthebrowser. OntheotherhandtheafterAll ()
sectionis used toshutdown these processes and close the browser. This step is important to prevent
child processes persisting in the background after our program has finished.

1.9.2 Example: Log In and Out

Now let’s get to a test! The idea is to control the browser in the same way we would expect a user to
in each scenario we want to test. This means we use Puppeteer to type text into input forms, click
buttons and search for particular elements on the page. In order to find those elements, we do need
to make some adjustments in our React components, which we’ll show later. Let’s start at a higher
level with a test.

test ("log in as a new user, log out and log back in", async () => {
const [user, party] = await getParty():

// Log in as a new user.
const page = await newUiPage () ;
await login (page, user);

// Check that the ledger contains the new User contract.
const token = insecure.makeToken (user) ;

const ledger = new Ledger ({ token });

const users = await ledger.query(User.User);

expect (users) .toHavelLength (1) ;

expect (users[0] .payload.username) .toEqual (party) ;

// Log out and in again as the same user.
await logout (page) ;
await login (page, user);

// Check we have the same one user.

const usersFinal = await ledger.query (User.User);
expect (usersFinal) .toHaveLength (1) ;

expect (usersFinal [0] .payload.username) .toEqual (party) ;

await page.close();
}, 40_000);

we’ll walk though this step by step.

The test syntax is provided by Jest to indicate a new test running the function given as an
argument (along with a description and time limit).

getParty () gives us a new party name. Right now itis just a string unique to this set of tests,
but in the future we will use the Party Management Service to allocate parties.

newUiPage () is a helper function that uses the Puppeteer browser to open a new page (we use
one page per party in these tests), navigate to the app URL and return a Page object.

Next we login () using the new page and party name. This should take the user to the main
screen. We’ll show how the 1ogin () function does this shortly.

1.9. Testing Your Web App 33

Daml SDK Documentation, 2.7.3

We use the @daml/ledger library to check the ledger state. In this case, we want to ensure
there is a single Usexr contract created for the new party. Hence we create a new connection to
the Ledger, query () it and state what we expect of the result. When we run the tests, Jest
will check these expectations and report any failures for us to fix.

The test also simulates the new user logging out and then logging back in. We again check the
state of the ledger and see that it’s the same as before.

Finally we must close () the browser page, which was opened in newUiPage (), to avoid run-
away Puppeteer processes after the tests finish.

You will likely use test, getParty (), newUiPage () and Browser.close () for all your tests. In
this case we use the @daml/ledger library to inspect the state of the ledger, but usually we just
check the contents of the web page match our expectations.

1.9.3 Accessing Ul Elements

We showed how to write a simple test at a high level, but haven’t shown how to make individual
actions in the app using Puppeteer. This was hidden in the 1ogin () and logout () functions. Let’s
see how login () is implemented.

// Log in using a party name and wait for the main screen to load.
const login = async (page: Page, partyName: string) => ({
const usernameInput = await page.waitForSelector (
".test-select-username-field",
) ;
if (usernamelInput) {
await usernameInput.click();
await usernamelnput.type (partyName) ;
await page.click(".test-select-login-button");
await page.waitForSelector (".test-select-main-menu") ;
}
}i

We first wait to receive a handle to the username input element. This is important to ensure the page
and relevant elements are loaded by the time we try to act on them. We then use the element handle
to click into the input and type the party name. Next we click the login button (this time assuming
the button has loaded along with the rest of the page). Finally, we wait until we find we’ve reached
the menu on the main page.

The strings used to find Ul elements, eg. '.test-select-username-field' and '.
test-select-login-button', are CSS Selectors. You may have seen them before in CSS styling
of web pages. In this case we use class selectors, which look for CSS classes we’ve given to elements
in our React components.

This means we must manually add classes to the components we want to test. For example, here is
a snippet of the LoginScreen React component with classes added to the Form elements.

<Form.Input

fluid

placeholder="Username"

value={username}

className="test-select-username-field"

onChange={ (e, { value }) => setUsername (value?.toString() 2?2 "")}
/>
<Button

(continues on next page)

34 Chapter 1. Canton References

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors

Daml SDK Documentation, 2.7.3

(continued from previous page)

primary
fluid
className="test-select-login-button"
onClick={handleLogin}>
Log in

</Button>

You can see the className attributes in the Input and Button, which we select in the 1ogin ()
function. Note that you can use other features of an element in your selector, such as its type and
attributes. We’ve only used class selectors in these tests.

1.9.4 Writing CSS Selectors

When writing CSS selectors for your tests, you will likely need to check the structure of the rendered
HTML in your app by running it manually and inspecting elements using your browser’s developer
tools. For example, the image below is from inspecting the username field using the developer tools
in Google Chrome.

Elements Console Sources Network Performance »

<!doctype html>

ia-hidden="true" class="user icon">
efore

Create D'\ M I_ App

lass="ui fluid primary button test-select-login-button!

There is a subtlety to explain here due to the Semantic Ul framework we use for our app. Semantic
Ul provides a convenient set of Ul elements which get translated to HTML. In the example of the
username field above, the original Semantic Ul Input is translated to nested div nodes with the
input inside. You can see this highlighted on the right side of the screenshot. While harmless in
this case, in general you may need to inspect the HTML translation of Ul elements and write your CSS
selectors accordingly.

1.9. Testing Your Web App 35

https://semantic-ui.com/

Daml SDK Documentation, 2.7.3

1.9.5 The Full Test Suite

// Copyright (c) 2022 Digital Asset (Switzerland) GmbH and/or its affiliates. Alll]
—rights reserved.
// SPDX-License-Identifier: Apache-2.0

// Keep in sync with compatibility/bazel tools/create-daml-app/index.test.ts

import { ChildProcess, spawn, spawnSync, SpawnOptions } from "child process";
import { promises as fs } from "fs";

import puppeteer, { Browser, Page } from "puppeteer";

import waitOn from "wait-on";

import Ledger, { UserRightHelper, UserRight } from "@daml/ledger";
import { User } from "@daml.js/create-daml-app";
import { insecure } from "./config";

const JSON API PORT FILE NAME = "json-api.port";
const UI PORT = 3000;

// “daml start' process
let startProc: ChildProcess | undefined = undefined;

// ‘npm start' process
let uiProc: ChildProcess | undefined = undefined;

// Chrome browser that we run 1in headless mode
let browser: Browser | undefined = undefined;

let publicUser: string | undefined;
let publicParty: string | undefined;

const adminLedger = new Ledger ({

token: insecure.makeToken ("participant admin™),
httpBaseUrl: "http://127.0.0.1:7575/",
1)

const toAlias = (userId: string): string =>
userId.charAt (0) .toUpperCase () + userId.slice(l);

// Function to generate unique party names for us.
let nextPartylId = 1;

const getParty = async (): Promise<[string, string]> => {
const allocResult = await adminlLedger.allocateParty({});
const user = "u${nextPartyId/ ;
const party = allocResult.identifier;
const rights: UserRight[] = [UserRightHelper.canActAs (party)].concat (
publicParty !== undefined ? [UserRightHelper.canReadAs (publicParty)] : [],

)

await adminledger.createUser (user, rights, party):;
nextPartyId++;

return [user, partyl;

}i

test ("Party names are unique", async () => {
let r: string[] = [];

(continues on next page)

36 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

for (let i = 0; i < 10; ++i) {
r = r.concat ((await getParty()) [1]);
}
const parties = new Set(r);
expect (parties.size) .toEqual (10) ;
},» 20_000);

const removeFile = async (path: string) => {
try {
await fs.stat (path);
await fs.unlink (path);
} catch (_ e) {
// Do nothing if the file does not exist.
}
}i

// Start the Daml and UI processes before the tests begin.
// To reduce test times, we reuse the same processes between all the tests.
// This means we need to use a different set of parties and a new browser pagell
—for each test.
beforeaAll (async () => {
// Run ‘daml start' from the project root (where the ‘daml.yaml' is located).
// The path should include '.daml/bin' in the environment where this is run,
// which contains the “daml’ assistant executable.
const startOpts: SpawnOptions = { cwd: "..", stdio: "inherit" };

console.debug ("Starting daml start");

startProc = spawn("daml", ["start"], startOpts);
await waitOn ({ resources: [tcp:127.0.0.1:6865"]1 1});
console.debug ("daml sandbox is running");

await waitOn ({ resources: [tcp:127.0.0.1:7575°1 1});

console.debug ("JSON API is running");
[publicUser, publicParty] = await getParty();

// Run ‘npm start’' in another shell.
// Disable automatically opening a browser using the env var described here:
// https://github.com/facebook/create-react-app/issues/873#issuecomment—
266318338
const env = { ...process.env, BROWSER: "none" };
console.debug ("Starting npm start");
uiProc = spawn ("npm", ["start"], {
env,
stdio: "inherit",
detached: true,
1)
// Note (kill-npm-start): The ‘detached' flag starts the process Iin a new]
—process group.
// This allows us to kill the process with all its descendents after the testsl]
—~finish,
// following https://azimi.me/2014/12/31/kill-child process-node-js.html.

// Ensure the UI server is ready by checking that the port is available.
await waitOn({ resources: [tcp:127.0.0.1:5{UI PORT}] });

(continues on next page)

1.9. Testing Your Web App 37

Daml SDK Documentation, 2.7.3

(continued from previous page)

console.debug ("npm start is running");

// Launch a single browser for all tests.
console.debug ("Starting puppeteer");
browser = await puppeteer.launch();
console.debug ("Puppeteer is running");

}, 60_000);

afterAll (async () => {
// Kill the “daml start’' process, allowing the sandbox and JSON API server to
// shut down gracefully.
// The latter process should also remove the JSON API port file.
// TODO: Test this on Windows.
if (startProc) {
startProc.kill ("SIGTERM") ;

// Kill the ‘npm start’ process including all its descendents.
// The "= indicates to kill all processes in the process group.
// See Note (kill-npm-start).
// TODO: Test this on Windows.
if (uiProc && uiProc.pid) {

process.kill (-uiProc.pid);

if (browser) {
browser.close () ;
}
1)

test ("create and look up user using ledger library", async () => {
const [user, party] = await getParty();
const token = insecure.makeToken (user);
const ledger = new Ledger ({ token });

const usersO = await ledger.query(User.User);

expect (users0) .toEqual ([]) s

const userPayload = { username: party, following: [], public: publicParty };
const userContractl = await ledger.create (User.User, userPayload);

const userContract2 await ledger.fetchByKey (User.User, party);
expect (userContractl) .toEqual (userContract?);
const users = await ledger.query (User.User) ;
expect (users[0]) .toEqual (userContractl) ;
}, 20_000);

// The tests following use the headless browser to interact with the app.

// We select the relevant DOM elements using CSS class names that we embedded
// specifically for testing.

// See https://developer.mozilla.org/en-US/docs/Web/CSS/CSS Selectors.

const newUiPage =
if (!browser) {
throw Error ("Puppeteer browser has not been launched");

async (): Promise<Page> => {

}

const page = await browser.newPage () ;

await page.setViewport ({ width: 1366, height: 1080 });
page.on("console", message =>

(continues on next page)

38 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

console.log(
" S{message.type () .substr (0, 3).toUpperCase()) ${message.text() /) ,
)l
)
await page.goto(http://127.0.0.1:5{UI PORT}); // ignore the Response
return page;

b

// Note that Follow is a consuming choice on a contract
// with a contract key so it is crucial to wait between follows.
// Otherwise, you get errors due to contention.
// Those can manifest in puppeteer throwing 'Target closed’
// but that is not the underlying error (the JSON API will
// output the contention errors as well so look through the log).
const waitForFollowers = async (page: Page, n: number) => ({
await page.waitForFunction (
(n: number) =>
document.querySelectorAll (".test-select-following") .length == n,
{1,
n,
)
}i

// LOGIN FUNCTION BEGIN
// Log in using a party name and wait for the main screen to load.
const login = async (page: Page, partyName: string) => ({
const usernamelnput = await page.waitForSelector (
".test-select-username-field",
)
if (usernamelInput) {
await usernameInput.click();
await usernamelInput.type (partyName) ;
await page.click(".test-select-login-button");
await page.waitForSelector (".test-select-main-menu");
}
}i
// LOGIN FUNCTION END

// Log out and wait to get back to the login screen.
const logout = async (page: Page) => ({
await page.click(".test-select-log-out");
await page.waitForSelector (".test-select-login-screen");

}i

// Follow a user using the text input in the follow panel.
const follow = async (page: Page, userToFollow: string) => {
const followInput = await page.waitForSelector (".test-select-follow-input");
if (followInput) {
await followInput.click();
await followInput.type (userToFollow);
await followInput.press("Enter");
await page.click(".test-select-follow-button");

// Wait for the request to complete, either successfully or after the error
// dialog has been handled.
// We check this by the absence of the ‘loading’ class.

(continues on next page)

1.9. Testing Your Web App 39

Daml SDK Documentation, 2.7.3

(continued from previous page)

// (Both the ‘test-... and 'loading’' classes appear in 'div' s surrounding
// the “input', due to the translation of Semantic UI's “Input’ element.)
await page.waitForSelector(".test-select-follow—-input > :not(.loading)", {
timeout: 40_000,
1) :
}
}i

// LOGIN TEST BEGIN
test ("log in as a new user, log out and log back in", async () => {
const [user, party] = await getParty();

// Log in as a new user.
const page = await newUiPage();
await login (page, user);

// Check that the ledger contains the new User contract.
const token = insecure.makeToken (user);

const ledger = new Ledger ({ token });

const users = await ledger.query (User.User) ;

expect (users) .toHavelLength (1) ;

expect (users[0] .payload.username) .toEqual (party) ;

// Log out and in again as the same user.
await logout (page);
await login (page, user);

// Check we have the same one user.

const usersFinal = await ledger.query (User.User);
expect (usersFinal) .toHavelLength (1) ;

expect (usersFinal [0] .payload.username) .toEqual (party) ;

await page.close();
}, 40_000);
// LOGIN TEST END

// This tests following users in a few different ways:
// - using the text box in the Follow panel

// - using the icon in the Network panel

// - while the user that is followed is logged in

// - while the user that is followed is logged out

// These are all successful cases.

test ("log in as three different users and start following each other", async () =>
= |

const [userl, partyl] = await getParty();

const [user2, party2] = await getParty();

const [user3, party3] = await getParty();

// Log in as Party 1.
const pagel = await newUiPage();
await login(pagel, userl);

// Log in as Party 2.
const page2 = await newUiPage();
await login (page2, user2);

(continues on next page)

40 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

// Log in as Party 3.
const page3 = await newUiPage();
await login(page3, user3);

// Party 1 should initially follow no one.
const noFollowingl = await pagel.$$(".test-select-following");
expect (noFollowingl) .toEqual ([]);

// Follow Party 2 using the text input.

// This should work even though Party 2 has not logged in yet.

// Check Party 1 follows exactly Party 2.

await follow(pagel, party2);

await waitForFollowers (pagel, 1);

const followingListl = await pagel.S$$eval (
".test-select-following",
following => following.map (e => e.innerHTML),

) ;

expect (followingListl) .toEqual ([toAlias (user2)]);

// Add Party 3 as well and check both are in the 1list.
await follow (pagel, party3);
await waitForFollowers (pagel, 2);
const followingListll = await pagel.$Seval (
".test-select-following",
following => following.map(e => e.innerHTML),
)
expect (followingListll) .toHaveLength (2);
expect (followingListll) .toContain(toAlias (user?2));
expect (followingListll) .toContain (toAlias (user3));

// Party 2 should initially follow no one.
const noFollowing2 = await page2.$$(".test-select-following");
expect (noFollowing2) .toEqual ([]);

// However, Party 2 should see Party 1 in the network.
await page2.waitForSelector (".test-select-user-in-network");

const network2 = await page2.S$Seval (".test-select-user-in-network", users =>
users.map (e => e.innerHTML),

)

expect (network2) .toEqual ([toAlias (userl)]);

// Follow Party 1 using the 'add user' icon on the right.

await page2.waitForSelector (".test-select-add-user-icon");
const userlIcons = await page2.$$(".test-select-add-user-icon");
expect (userIcons) .toHaveLength (1) ;

await userIcons[0].click();

await waitForFollowers (page2, 1);

// Also follow Party 3 using the text input.

// Note that we can also use the icon to follow Party 3 as they appear in the
// Party 1's Network panel, but that's harder to test at the

// moment because there 1is no loading indicator to tell when it's done.

await follow (page2, party3);

// Check the following list is updated correctly.

(continues on next page)

1.9. Testing Your Web App 41

Daml SDK Documentation, 2.7.3

(continued from previous page)

await waitForFollowers (page2, 2);

const followingList2 = await page2.$Seval (
".test-select-following",
following => following.map(e => e.innerHTML),

)

expect (followingList2) .toHaveLength (2) ;

expect (followingList2) .toContain(toAlias (userl));

expect (followingList2) .toContain(toAlias (user3));

// Party 1 should now also see Party 2 in the network (but not Party 3 as they
// didn't yet started following Party 1).
await pagel.waitForSelector (".test-select-user-in-network");
const networkl = await pagel.S$Seval (
".test-select-user-in-network",
following => following.map(e => e.innerHTML),
) ;
expect (networkl) .toEqual ([toAlias (user2)]);

// Party 3 should follow no one.
const noFollowing3 = await page3.$$(".test-select-following");
expect (noFollowing3) .toEqual ([]);

// However, Party 3 should see both Party 1 and Party 2 in the network.
await page3.waitForSelector (".test-select-user-in-network");
const network3 = await page3.$Seval (
".test-select-user-in-network",
following => following.map (e => e.innerHTML),
) ;
expect (network3) . toHaveLength (2) ;
expect (network3) .toContain(toAlias (userl));
expect (network3) .toContain (toAlias (user2));

await pagel.close();
await page2.close();
await page3.close();

}, 60_000);
test ("error when following self", async () => {
const [user, party] = await getParty();

const page = await newUiPage () ;

const dismissError = jest.fn(dialog => dialog.dismiss());
page.on("dialog", dismissError);

await login (page, user);
await follow (page, party):;

expect (dismissError) .toHaveBeenCalled() ;

await page.close();

});

test ("error when adding a user that you are already following", async () => {
const [userl, partyl] = await getParty();
const [user2, party2] = await getParty();

const page = await newUiPage () ;

(continues on next page)

42 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

const dismissError = Jjest.fn(dialog => dialog.dismiss()):;
page.on("dialog", dismissError);

await login (page, userl);

// First attempt should succeed

await follow (page, party2);

// Second attempt should result in an error
await follow (page, party2);

expect (dismissError) .toHaveBeenCalled () ;

await page.close();
}, 10000);

const failedLogin = async (page: Page, partyName: string) => ({
let error: string | undefined = undefined;
await page.exposeFunction ("getError", () => error);
const dismissError = jest.fn(async dialog => {
error = dialog.message();
await dialog.dismiss () ;
1)
page.on("dialog", dismissError);
const usernamelnput = await page.waitForSelector (
".test-select-username-field",
) ;
if (usernamelInput) {
await usernamelInput.click();
await usernamelInput.type (partyName) ;
await page.click(".test-select-login-button");
await page.waitForFunction (
// Casting window as any so the TS compiler doesn't flag this as an
// error.
// The window object normally doesn't have a .getError method, but
// we're adding one above with exposeFunction.
async () => (await (window as any) .getError()) !== undefined,
) ;
expect (dismissError) .toHaveBeenCalled () ;
return error;
}
}i

test ("error on user id with invalid format", async () => {
// user ids should not contains %'
const invalidUser = "Alice%";

const page = await newUiPage();

const error = await failedLogin(page, invalidUser);

expect (error) .toMatch (/User ID \\"Alice%\\" does not match regex/);
await page.close();

}, 40_000);
test ("error on non-existent user id", async () => {
const invalidUser = "nonexistent";

const page = await newUiPage () ;
const error = await failedLogin (page, invalidUser);
expect (error) .toMatch (

(continues on next page)

1.9. Testing Your Web App 43

Daml SDK Documentation, 2.7.3

(continued from previous page)

/getting user failed for unknown user \\"nonexistent\\"/,
)
await page.close();

}, 40_000);

test ("error on user with no primary party", async () => {
const invalidUser = '"noprimary";
await adminledger.createUser (invalidUser, []);

const page = await newUiPage () ;
const error = await failedLogin (page, invalidUser);
expect (error) .toMatch (/User 'noprimary' has no primary party/);
await page.close();
}, 40 _000);

110 Overview: Important Considerations When Building Applica-
tions With Daml

1.10.1 Overall Considerations

Because Daml provides a unique and innovative solution to the problem of multi-party applications,
some of the common architectural approaches used in existing solutions do not apply when working
with Daml. You mustunderstand Daml’s architecture and principles and design your application and
deployment approaches accordingly.

Cantonis fastand highly scalable, but it performs differently than traditional databases, particularly
those that follow a monolithic architecture. Transactions are processed in fractions of a second -
quite fast for a distributed ledger (the blockchains used in cryptocurrencies like Bitcoin or Ethereum
take many minutes to complete transactions) but slower than most traditional databases due to its
distributed nature. Application design must take this into account.

Each component of Daml can be scaled, including running multiple domains and domain nodes,
multiple participant nodes, and multiple parties. Integration components, e.g. HTTP JSON API Service
and Trigger Service, also scale. Some components require that data is sharded in order to scale.

1.10.2 Developer Considerations

When programming within a distributed system like Daml, the developer must view every action of
the system as an asynchronous operation; contention is natural and expected. This contention can
stifle the performance of applications if not handled properly. The aim is to reduce contention and
handle it gracefully, not to eliminate it at all costs. If contention only occurs rarely, it may be cheaper
in terms of both performance and complexity to let the occasional allocation fail and retry it than to
implement sharding or other complex processes.

Application design must understand the sources of contention; this allows you to use different tech-
niques to manage it and improve performance by increasing throughput and decreasing latency.
These techniques include:

Bundling or batching business logic to increase business transaction throughput - the
marginal cost of extra business logic within a transaction is often small, so bundling or batch-
ing business logic cleverly can allow for throughput an order of magnitude higher.

44 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Maximizing parallelism with techniques like sharding, ensuring there is no contention between
shards.

When designing Daml applications:

Understand where contention occurs

Split contracts across natural lines to reduce single high contention contracts (e.g., don’t rep-
resent asset holdings for all owners and types as a dictionary on a single contract, but as indi-
vidual contracts)

Partition contracts along natural lines and touch as few partitions as possible in each transac-
tion (e.g., partition all asset positions into total asset positions, and then only touch one total
asset position per transaction)

Use contention-free representations where possible

For more information, see the section on Avoiding Contention.

The Daml language follows functional programming principles. To build safe, secure smart contracts
with Daml, we recommend that the developers embrace functional programming.

The Daml SDK contains tools and libraries that simplify multi-party application development, includ-
ing defining the application’s schema and implementing off-ledger code that leverages the Canton
APIs.

1.10.3 Operational Considerations

Most components of Daml store state, so deployment techniques that follow stateless practices can
be problematic within Daml. Achieving high availability and scalability requires clear understanding
of the purpose of each component within the Daml solution. While all components in Daml scale
horizontally, stateful components (e.g. participant nodes) scale horizontally via sharding.

The diagram below shows the components often used in a Daml deployment. High availability is
achieved via either active-active (HTTP JSON API Service, sequencer) or active-passive (participant
node, mediator) clustering. Node scaling is achieved via horizontal scaling with participant nodes
requiring sharding across participants.

1.10. Overview: Important Considerations When Building Applications With Daml 45

resource-management/contention-avoiding.html

Daml SDK Documentation, 2.7.3

Application Trigger ____| oAuth20
- Service Service
| T~ ~ o 7 !
| S ’ |
l -~ 7 |
| |
| JSON API |
[y Server |
| ’ |
l 7 - —_- — — - — — 4
| > -~
IS

Participant

Node

|
: /] Mediator

rd
Sequencer N

Topology
Manager

Postgres HA for
Synchronization Layer

1.10.4 Next Steps

Go to An Introduction to Daml to begin learning how to write smart contracts with Daml.

1.11 Write Smart Contracts with Daml

1.11.1 An Introduction to Daml
Daml is a smart contract language designed to build composable applications on an abstract Daml!
Ledger Model.

In this introduction, you will learn about the structure of a Daml Ledger, and how to write Daml ap-
plications that run on any Daml Ledger implementation, by building an asset-holding and -trading

46 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

application. You will gain an overview over most important language features, how they relate to the
Daml Ledger Model and how to use Daml’s developer tools to write, test, compile, package and ship
your application.

This introduction is structured such that each section presents a new self-contained application
with more functionality than that from the previous section. You can find the Daml code for each
section here ordownload them using the Daml assistant. Forexample, to load the sources for section
1into a folder called introl, rundaml new introl --template daml-intro-1.

Prerequisites:
You have installed the Daml SDK

Next: Basic Contracts.

1.11.2 Basic Contracts

To begin with, you're going to write a very small Daml template, which represents a self-issued,
non-transferable token. Because it’'s a minimal template, it isn’t actually useful on its own - you’ll
make it more useful later - but it’s enough that it can show you the most basic concepts:

Transactions

Daml Modules and Files
Templates

Contracts

Signatories

Hint: Remember that you can load all the code for this section into a folder introl by running daml
new introl --template daml-intro-1

1.11.2.1 Daml Ledger Basics
Like most structures called ledgers, a Daml Ledger is just a list of commits. When we say commit, we
mean the final result of when a party successfully submits a transaction to the ledger.

Transaction is a conceptwe’ll coverin more detail through this introduction. The most basic examples
are the creation and archival of a contract.

A contract is active from the point where there is a committed transaction that creates it, up to the
point where there is a committed transaction that archives it.

Individual contracts are immutable in the sense that an active contract can not be changed. You can
only change the active contract set by creating a new contract, or archiving an old one.

Daml specifies what transactions are legal on a Daml Ledger. The rules the Daml code specifies are
collectively called a Daml model or contract model.

1.11. Write Smart Contracts with Daml 47

https://github.com/digital-asset/daml/tree/main/docs/source/daml/intro/daml

Daml SDK Documentation, 2.7.3

1.11.2.2 Daml Files and Modules

Each .daml file defines a Daml Module at the top:

module Token where

Code comments in Daml are introduced with —-:

-— A Daml file defines a module.
module Token where

1.11.2.3 Templates

A template defines a type of contract that can be created, and who has the right to do so. Contracts
are instances of templates.

Listing 1: A simple template

template Token
with
owner : Party
where
signatory owner

You declare a template starting with the template keyword, which takes a name as an argument.

Daml is whitespace-aware and uses layout to structure blocks. Everything that’s below the first line
is indented, and thus part of the template’s body.

Contracts contain data, referred to as the create arguments or simply arguments. The with block defines
the data type of the create arguments by listing field names and their types. The single colon :
means of type , soyou can read this as template Token with a field owner of type Party .

Token contracts have a single field owner of type Party. The fields declared in a template’s with
block are in scope in the rest of the template body, which is contained in a where block.

1.11.2.4 Signatories

The signatory keyword specifies the signatories of a contract. These are the parties whose authority
is required to create the contract or archive it - just like a real contract. Every contract must have at
least one signatory.

Furthermore, Daml ledgers guarantee that parties see all transactions where their authority is used.
This means that signatories of a contract are guaranteed to see the creation and archival of that
contract.

48 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.11.2.5 Next Up

In Test Templates Using Daml Script, you’ll learn about how to try out the Token contract template in
Daml’s inbuilt Daml Script testing language.

1.11.3 Test Templates Using Daml Script

In this section we test the Token model from Basic Contracts using the Daml Scriptintegration in Daml!
Studio. This includes:

Script basics

Running scripts

Creating contracts

Testing for failure

Archiving contracts

Viewing the ledger and ledger history

Hint: Rememberthatyou canload all the code for this sectioninto a folder called intro2 byrunning
daml new intro2 --template daml-intro-2

1.11.3.1 Script Basics

A Script is like a recipe for a test, letting you create a scenario where different parties submit a
series of transactions to check that your templates behave as you expect. You can also script some
external information like party identities and ledger time.

Below is a basic script that creates a Token for a party called Alice :

token test 1 = script do
alice <- allocateParty "Alice"
submit alice do
createCmd Token with owner = alice

You declare a Script as a top-level variable and introduce it using script do. do always starts a
block, so the rest of the scriptis indented.

Before you can create any Token contracts, you need some parties on the test ledger. The above
script uses the function allocateParty to put a party called Alice inavariablealice. Thereare
two things of note there:

Use of <- instead of =.

The reason for thisis that allocatePartyis an Action that can only be performed once the
Script is runin the context of a ledger. <- means run the action and bind the result . It can
only be run in that context because, depending on the ledger state, allocateParty gives you
back a party with the name you specified or appends a suffix to that name if such a party has
already been allocated. You can read more about Actions and do blocks in Add Constraints to a
Contract.

If that doesn’t quite make sense yet, for the time being you can think of this arrow as extracting
the right-hand-side value from the ledger and storing it into the variable on the left.

The argument "Alice" to allocateParty does not have to be enclosed in brackets. Func-
tions in Daml are called using the syntax fn argl arg2 arg3.

1.11. Write Smart Contracts with Daml 49

Daml SDK Documentation, 2.7.3

With avariable alice of type Partyinhand, you can submityourfirsttransaction using the submit
function. submit takes two arguments: the Party and the Commands.

Just like Script is a recipe for a test, Commands is a recipe for a transaction. createCmd Token
with owner = alice is a Commands, which translates to a list of commands to be submitted to
the ledger. These commands create a transaction which in turns creates a Token with owner Alice.

You’ll learn all about the syntax Token with owner = alice in Data Types.

You could write this as submit alice (createCmd Token with owner = alice), butaswith
scripts, you can assemble commands using do blocks. A do block always takes the value of the last
statement within it so the syntax shown in the commands above gives the same result, whilst being
easier to read. Note, however, that the commands submitted as part of a transaction are not allowed
to depend on each other.

1.11.3.2 Run the Scripts

There are a few ways to run Daml Scripts:

In Daml Studio against a test ledger, providing visualizations of the resulting ledger.

Using the command line daml test also against a test ledger, useful for continuous integra-
tion.

Against a real ledger. See the documentation for Dam/ Script for more information.
Interactively using Daml REPL.

In Daml Studio, you should see the text Script results just above the line token test 1 = do.
Click on that text to display the outcome of the script.

Script results
token_test_1 = script do
alice « allocateParty "Alice”

submit alice do
createCmd Token with owner = alice

This opens the script view in a separate column in VS Code. The default view is a tabular represen-
tation of the final state of the ledger:

What this display means:

The big title reading Token Test:Token identifies the type of contract that’s listed below.
Token Test is the module name, Token is the template name.

The first column shows the ID of the contract. This will be explained later.

The second column shows the status of the contract, either active or archived.

The next section of columns show the contract arguments, with one column per field. As ex-
pected, here there is one field and thus one column: the field owner is 'Alice'. The single
quotation marks indicate that Alice is a party.

The remaining columns, labelled vertically, show which parties know about which contracts. In
this simple script, the sole party Alice knows about the contract she created.

50 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

= Script: token_test_1 X

SR Ui R A B Show archived 8 Show detailed disclosure

Token_Test:Token

#0:0]active ['Alice’ | X |

To run the same test from the command line, save your module in a file Token Test.daml and run
daml test --files Token Test.daml. If your file contains more than one script, this runs all
of them.

1.11.3.3 Test for Failure

In Basic Contracts you learned that creating a Token requires the authority of its owner. In other
words, it should not be possible for Alice to create a token for another party, e.g. Bob, or vice versa. A
reasonable attempt to test that would be:

failing test 1 = do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"
submit alice do
createCmd Token with owner
submit bob do
createCmd Token with owner = alice

bob

However, if you open the script view for that script, you see the following message:

create of at DA.Internal.Template.Functions:229:3
failed due to a missing authorization from 'Bob'’

Ledger time: 1970-01-01T00:00:00Z

Partial transaction:
Sub-transactions:

L— 'Bob'

owner = 'Bob'

The script failed, as expected, but scripts abort at the first failure. This means that it only tested that
Alice cannot create a token for Bob; the second submit statement was never reached.

1.11. Write Smart Contracts with Daml 51

Daml SDK Documentation, 2.7.3

To test for failing submits and keep the script running thereafter, or fail if the submission succeeds,
you can use the submitMustFail function:

token test 2 = do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"

submitMustFail alice do
createCmd Token with owner = bob
submitMustFail bob do

createCmd Token with owner = alice
submit alice do
createCmd Token with owner = alice

submit bob do
createCmd Token with owner = bob

submitMustFail never has animpacton the ledger, so the resulting tabular script view only shows
the two tokens resulting from the successful submit statements. Note the new column for Bob as
well as the visibilities. Alice and Bob cannot see each others’ tokens.

= Script: token_test_2 X [

SR e R A B Show archived ® Show detailed

disclosure

Token_Test:Token

o
21}

#2:0|active ['Alice’ [X| -
#3:0|active ['Bob" |- [X

111.3.4 Archive Contracts

Archiving contracts is the counterpart to creating contracts. Contracts are immutable, so whenever
you want to update one (loosely: change its state) you must archive the current contract residing on
the ledger and create a new one.

To archive a contract, use archiveCmd instead of createCmd. Whereas createCmd takes an in-
stance of a template, archiveCmd takes a reference to a created contract. Archiving requires au-
thorization from controllers.

Contracts are also archived whenever a consuming choice is exercised.

52 Chapter 1. Canton References

/daml/intro/4_Transformations.html#choices-in-the-ledger-model

Daml SDK Documentation, 2.7.3

Important: Archive choices are present on all templates and cannot be removed.

References to contracts have the type ContractId a,where a is a type parameter representing the
template type of the contract that the id refers to. For example, a reference to a Token would be a
ContractId Token.

To archiveCmd the token Alice has created, you need the contract id. Retrieve the contract id from
the ledger with the <- notation. How this works is discussed in Add Constraints to a Contract.

This script first checks that Bob cannot archive Alice’s token. Then Alice successfully archives it:

token test 3 = do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"

alice token <- submit alice do
createCmd Token with owner = alice

submitMustFail bob do
archiveCmd alice token

submit alice do
archiveCmd alice token

1.11.3.5 View the Ledger and Ledger History
Once you archive the contract the resulting script view is empty; there are no contracts left on the

ledger. If you want to see the history of the ledger, e.g. to see how you got to that state, tick the Show
archived box at the top of the ledger view:

= Script: token_test_3 X

S A UCE AR A ¥ Show archived B Show detailed disclosure

Token_Test:Token

You can see that there was a Token contract, which is now archived, indicated both by the archived
value in the status column as well as by a strikethrough.

Click on the adjacent Show transaction view button to see the entire transaction graph:

In the Daml Studio script runner, committed transactions are numbered sequentially. In the image
above, the lines starting with TX indicate that there are three committed transactions, with ids #0,

1.11. Write Smart Contracts with Daml 53

Daml SDK Documentation, 2.7.3

= Script: token_test_3 X

Show table view

Transactions:
1970-01-01T00:00:00Z (

"Alice’ (0)

owner = 'Alice’

1970-01-01T00:00:00Z
actAs: {'Bob'} readAs: {} (

1970-01-01T00:00:00Z (

L_ "Alice' (2)
> 'Alice’ Archive (

Active contracts:

Return value: {}

54 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

#1,and #2. These correspond to the three submit and submitMustFail statements in the script.

Transaction #0 has one sub-transaction #0:0, which the arrow indicates is a create of a Token.
Identifiers #X:Y mean commit X, sub-transaction Y.All transactions have this formatin the
script runner. However, this format is a testing feature. In general, you should consider Transaction
and Contract IDs to be opaque.

The lines above and below create Token Test:Token give additional information:

consumed by: #2:0 tells you that the contract is archived in sub-transaction 0 of commit

2.

referenced by #2:0 tells you that the contract was used in other transactions, and lists
their IDs.

disclosed to (since): 'Alice' (#0) tellsyouwho knows aboutthe contract. The fact

that 'Alice' appears in the listis equivalent to an x in the tabular view. The (#0) gives you
the additional information that Alice learned about the contract in commit #0.
Everything following with shows the create arguments.

1.11.3.6 Exercises

To get a better understanding of script, try the following exercises:

1. Write a template for a second type of token.

2. Write a script with two parties and two types of tokens, creating one token of each type for each
party and archiving one token for each party, leaving one token of each type in the final ledger
view.

3. In Archive Contracts you tested that Bob cannot archive Alice’s token. Can you guess why the
submit fails? How can you find out why the submit fails?

Hint: Rememberthatin Test for Failure we saw a proper error message for a failing submit.

111.3.77 Next Up

In Data Types you will learn about Daml’s type system, and how you can think of templates as tables
and contracts as database rows.

1.11.4 Data Types

In Basic Contracts, you learnt about contract templates, which specify the types of contracts that can
be created on the ledger, and what data those contracts hold in their arguments.

In Test Templates Using Dam| Script, you learnt about the script view in Daml Studio, which displays the
current ledger state. It shows one table per template, with one row per contract of that type and one
column per field in the arguments.

This actually provides a useful way of thinking about templates: like tables in databases. Templates
specify a data schema for the ledger:

each template corresponds to a table
each field in the with block of a template corresponds to a column in that table
each contract of that type corresponds to a table row

1.11. Write Smart Contracts with Daml 55

Daml SDK Documentation, 2.7.3

In this section, you’ll learn how to create rich data schemas for your ledger. Specifically you’ll learn
about:

Daml’s built-in and native data types
Record types

Derivation of standard properties
Variants

Manipulating immutable data
Contract keys

After this section, you should be able to use a Daml ledger as a simple database where individual
parties can write, read and delete complex data.

Hint: Rememberthatyoucanload all the code for this section into afolder called intro3 byrunning
daml new intro3 --template daml-intro-3

1.11.4.1 Native Types

You have already encountered a few native Daml types: Party in Basic Contracts, and Text and Con-
tractIdin Test Templates Using Daml Script. Here are those native types and more:

Party Stores the identity of an entity that is able to act on the ledger, in the sense that they
can sign contracts and submit transactions. In general, Party is opaque.

Text Stores a unicode character string like "Alice".

ContractId a Stores areference to a contract of type a.

Int Stores signed 64-bit integers. For example, -123.

Decimal Stores fixed-point number with 28 digits before and 10 digits after the decimal point.
For example, 0.0000000001 0r =9999999999999999999999999999.9999999999.

Bool Stores True or False.

Date Stores a date.

Time Stores absolute UTC time.

RelTime Stores a difference in time.

The below script instantiates each one of these types, manipulates it where appropriate, and tests
the result:

import Daml.Script
import DA.Time
import DA.Date

native test = script do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"

let
my int = -123
my dec = 0.001 : Decimal
my text = "Alice"
my bool = False
my date = date 2020 Jan O1
my time = time my date 00 00 00

my rel time = hours 24

(continues on next page)

56 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

assert
assert
assert
assert
assert
assert
assert

(alice /= bob)

(-my int == 123)

(1000.0 * my dec == 1.0)
(my text == "Alice")
(not my bool)

(

(

addDays my date 1 == date 2020 Jan 02)
addRelTime my time my rel time == time

(addDays my date 1) 00 00 00)

Despite its simplicity, there are quite a few things to note in this script:

The import statements at the top import two packages from the Daml Standard Library, which
contain all the date and time related functions we use here as well as the functions used in
Daml Scripts. More on packages, imports and the standard library later.

Most of the variables are declared inside a 1et block.

That’s because the script do block expects script actions like submit or allocateParty.
An integer like 123 is not an action, it’s a pure expression, something we can evaluate without
any ledger. You can think of the 1et as turning variable declaration into an action.

Most variables do not have annotations to say what type they are.

That’s because Daml is very good at inferring types. The compiler knows that 123 is an Int, so
if you declare my int = 123, itcan infer thatmy int is also an Int. This means you don’t
have to write the type annotationmy int : Int = 123.

However, if the type is ambiguous so that the compiler can’t infer it, you do have to add a type
annotation. This is the case for 0.001 which could be any Numeric n. Here we specify 0.
001 : Decimal which is a synonym for Numeric 10. You can always choose to add type
annotations to aid readability.

The assert function is an action that takes a boolean value and succeeds with True and fails
with False.

Try putting assert False somewhere in a script and see what happens to the script result.

With templates and these native types, it’s already possible to write a schema akin to a table in a
relational database. Below, Token is extended into a simple CashBalance, administered by a party
in the role of an accountant:

template CashBalance

with

accountant : Party
currency : Text
amount : Decimal

owner

Party

account number : Text

bank

Party

bank address : Text
bank telephone : Text

where

signatory accountant

cash balance test = script do

accountant <- allocateParty "Bob"

alice <- allocateParty "Alice"

bob <- allocateParty "Bank of Bob"

submit accountant do
createCmd CashBalance with
accountant

(continues on next page)

1.11. Write Smart Contracts with Daml

57

Daml SDK Documentation, 2.7.3

(continued from previous page)

currency = "USD"

amount = 100.0

owner = alice

account number = "ABC123"

bank = bob

bank address = "High Street”
bank telephone = "012 3456 789"

1.11.4.2 Assemble Types

There’s quite a lot of information on the CashBalance above and it would be nice to be able to give
that data more structure. Fortunately, Daml’s type system has a number of ways to assemble these
native types into much more expressive structures.

Tuples

A common task is to group values in a generic way. Take, for example, a key-value pair with a Text
key and an Int value. In Daml, you could use a two-tuple of type (Text, Int) to do so. If you
wanted to express a coordinate in three dimensions, you could group three Decimal values using a
three-tuple (Decimal, Decimal, Decimal):

import DA.Tuple
import Daml.Script

tuple test = script do

let
my key value = ("Key", 1)
my coordinate = (1.0 : Decimal, 2.0 : Decimal, 3.0 : Decimal)
assert (fst my key value == "Key'")
assert (snd my key value == 1)
assert (my key value. 1 == "Key")
assert (my key value. 2 == 1)
assert (my coordinate == (fst3 my coordinate, snd3 my coordinate, thd3 my
—coordinate))
assert (my coordinate == (my coordinate. 1, my coordinate. 2, my coordinate. 3))

You can access the data in the tuples using:

functions fst, snd, £st3, snd3, thd3
a dot-syntax with field names 1, 2, 3,etc.

Daml supports tuples with up to 20 elements, but accessor functions like £st are only included for
2- and 3-tuples.

58 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Lists

Lists in Daml take a single type parameter defining the type of thing in the list. So you can have a
list of integers [Int] or alist of strings [Text], but not a list mixing integers and strings.

That’s because Daml is statically and strongly typed. When you get an element out of a list, the
compiler needs to know what type that element has.

The below script instantiates a few lists of integers and demonstrates the most important list func-
tions.

import DA.List
import Daml.Script

list test = script do

let
empty : [Int] = []
one = [1]
two = [2]
many = [3, 4, 5]

-— ‘head’ gets the first element of a 1list
assert (head one == 1)
assert (head many == 3)

-— ‘tail’ gets the remainder after head
assert (tail one == empty)
assert (tail many == [4, 5])

-— '++ concatenates lists
assert (one ++ two ++ many == [1, 2, 3, 4, 5])
assert (empty ++ many ++ empty == many)

-— '::° adds an element to the beginning of a list.
assert (1 :: 2 :: 3 :: 4 :: 5 1 empty == :: 2 :: many)

Note the type annotation on empty : [Int] = []. It's necessary because [] is ambiguous. It
could be a list of integers or of strings, but the compiler needs to know which it is.

Records

You can think of records as named tuples with named fields. Declare them using the data keyword:
data T = C with,where T is the type name and C is the data constructor. In practice, it’s a good
idea to always use the same name for type and data constructor:

data MyRecord = MyRecord with
my txt : Text
my int : Int
my dec : Decimal
my list : [Text]

-— Fields of same type can be declared in one line
data Coordinate = Coordinate with
X, y, z : Decimal

(continues on next page)

1.11. Write Smart Contracts with Daml 59

Daml SDK Documentation, 2.7.3

(continued from previous page)

-- Custom data types can also have variables
data KeyValue k v = KeyValue with

my key : k

my val : v

data Nested = Nested with
my coord : Coordinate
my record : MyRecord
my kv : KeyValue Text Int

record test = script do
let
my record = MyRecord with
my txt = "Text"
my int = 2
my dec = 2.5
my list = ["One", "Two", "Three"]

my coord = Coordinate with
= 1.

N
o O O

2.
= 3.

-- ‘my text int’ has type 'KeyValue Text Int’
my text int = KeyValue with

my key = "Key"

my val =1

-- 'my int decimal’ has type ‘KeyValue Int Decimal’
my int decimal = KeyValue with

my key = 2

my val = 2.0 : Decimal

-- If variables are in scope that match field names, we can pick them up
-- implicitly, writing just "my coord’' instead of 'my coord = my coord .
my nested = Nested with

my coord

my record

my kv = my text int

-— Fields can be accessed with dot syntax

assert (my coord.x == 1.0)
assert (my text int.my key == "Key")
assert (my nested.my record.my dec == 2.5)

You’ll notice that the syntax to declare records is very similar to the syntax used to declare templates.
That’s no accident because a template is really just a special record. When you write template
Token with,one of the things that happens inthe background is that this becomes adata Token
= Token with.

In the assert statements above, we always compared values of in-built types. If you wrote as-
sert (my record == my record) inthescript,you maybe surprised to get an error message No
instance for (Eg MyRecord) arising from a use of ‘==’. Equality in Daml is always
value equality and we haven’t written a function to check value equality for MyRecord values. But
don’tworry, you don’t have to implement this rather obvious function yourself. The compileris smart
enough to do it for you, if you use deriving (Eq):

60 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

data EgRecord = EgqRecord with
my txt : Text
my int : Int
my dec : Decimal
my list : [Text]
deriving (Eq)

data MyContainer a = MyContainer with
contents : a

deriving (Eq)

eq test = script do

let
eq _record = EqRecord with
my txt = "Text"
my int = 2
my dec = 2.5
my list = ["One", "Two", "Three"]

my container = MyContainer with
contents = eq record

other container = MyContainer with
contents = eq record

assert (my container.contents == eq record)
assert (my container == other container)

Eqg is what is called a typeclass. You can think of a typeclass as being like an interface in other lan-
guages: it is the mechanism by which you can define a set of functions (for example, == and /=
in the case of Eq) to work on multiple types, with a specific implementation for each type they can
apply to.

There are some other typeclasses that the compiler can derive automatically. Most prominently,
Show to get access to the function show (equivalentto toStringin manylanguages) and Ord, which
gives access to comparison operators <, >, <=, >=.

It’s a good idea to always derive Eq and Show using deriving (Eq, Show). The record types cre-
ated using template T with do this automatically, and the native types have appropriate type-
class instances. Eg Int derives Eq, Show and Ord, and ContractId a derives Eqand Show.

Records can give the data on CashBalance a bit more structure:

data Bank = Bank with
party : Party
address: Text
telephone : Text
deriving (Eq, Show)

data Account = Account with
owner : Party
number : Text
bank : Bank
deriving (Eq, Show)

data Cash = Cash with
currency : Text

(continues on next page)

1.11. Write Smart Contracts with Daml 61

Daml SDK Documentation, 2.7.3

(continued from previous page)

amount : Decimal
deriving (Eq, Show)

template CashBalance
with
accountant : Party
cash : Cash
account : Account
where
signatory accountant

cash balance test = script do
accountant <- allocateParty "Bob"
owner <- allocateParty "Alice"
bank party <- allocateParty "Bank"
let
bank = Bank with
party = bank party

address = "High Street"
telephone = "012 3456 789"
account = Account with
owner
bank
number = "ABC123"
cash = Cash with
currency = "USD"

amount = 100.0

submit accountant do
createCmd CashBalance with
accountant
cash
account
pure ()

If you look at the resulting script view, you’ll see that this still gives rise to one table. The records are
expanded out into columns using dot notation.

Variants and Pattern Matching

Suppose now that you also wanted to keep track of cash in hand. Cash in hand doesn’t have a bank,
but you can’t just leave bank empty. Daml doesn’t have an equivalent to null. Variants can express
that cash can either be in hand or at a bank:

data Bank = Bank with
party : Party
address: Text
telephone : Text
deriving (Eq, Show)

data Account = Account with
number : Text
bank : Bank
deriving (Eq, Show)

(continues on next page)

62 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

data Cash = Cash with
currency : Text
amount : Decimal
deriving (Eq, Show)

data Location
= InHand
| InAccount Account
deriving (Eq, Show)

template CashBalance
with
accountant : Party
owner : Party
cash : Cash
location : Location
where
signatory accountant

cash balance test = do
accountant <- allocateParty "Bob"
owner <- allocateParty "Alice"
bank party <- allocateParty "Bank"
let
bank = Bank with
party = bank party

address = "High Street"
telephone = "012 3456 789"
account = Account with
bank
number = "ABC123"
cash = Cash with
currency = "USD"

amount = 100.0

submit accountant do
createCmd CashBalance with
accountant
owner
cash
location = InHand

submit accountant do
createCmd CashBalance with
accountant
owner
cash
location = InAccount account

The way to read the declaration of Location is A Location either has value InHand OR has a value
InAccount a where a is of type Account . This is quite an explicit way to say that there may or may
not be an Account associated with a CashBalance and gives both cases suggestive names.

Another option is to use the built-in Optional type. The None value of type Optional a is the

closest Daml has to anull value:

1.11. Write Smart Contracts with Daml

63

Daml SDK Documentation, 2.7.3

data Optional a
= None
| Some a
deriving (Eq, Show)

Variant types where none of the data constructors take a parameter are called enums:

data DayOfWeek
= Monday
| Tuesday

| Wednesday

| Thursday

| Friday

| Saturday

| Sunday

deriving (Eq, Show)

To access the data in variants, you need to distinguish the different possible cases. For example, you
can no longer access the account number of a Location directly, because if it is InHand, there may
be no account number.

To do this, you can use pattern matching and either throw errors or return compatible types for all
cases:

{_
-—- Commented out as ‘Either' 1is defined in the standard library.
data Either a b

= Left a
| Right b
—}
variant access test = script do
let
1 : Either Int Text = Left 1
r : Either Int Text = Right "r"

-- If we know that '1° is a 'Left', we can error on the ‘Right case.
1 value = case 1 of
Left i -> 1
Right i -> error "Expecting Left"
-- Comment out at your own peril
{_
r value = case r of
Left i -> 1
Right i -> error "Expecting Left"
-}

-- If we are unsure, we can return an "Optional’ in both cases
ol value = case 1 of

Left i -> Some i

Right i -> None
or value = case r of

Left i -> Some i

Right i -> None

-— If we don't care about values or even constructors, we can use wildcards

(continues on next page)

64 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

1 value2 = case 1 of

Left 1 -> 1

Right _ -> error "Expecting Left"
1 value3 = case 1 of

Left i -> 1

_ —> error "Expecting Left"

day = Sunday

weekend = case day of
Saturday -> True
Sunday -> True

_ —> False
assert (1 value == 1)
assert (1 value2Z == 1)
assert (1 value3 == 1)
assert (ol value == Some 1)
assert (or value == None)

assert weekend

1.11.4.3 Manipulate Data

You’ve got all the ingredients to build rich types expressing the data you want to be able to write to
the ledger, and you have seen how to create new values and read fields from values. But how do you

manipulate values once created?

All data in Daml is immutable, meaning once a value is created, it will never change. Rather than
changing values, you create new values based on old ones with some changes applied:

manipulation demo = script do
let
eq record = EqRecord with
my txt = "Text"
my int = 2
my dec = 2.5
my list = ["One", "Two'", "Three"]

-- A verbose way to change "eq record’
changed record = EqRecord with

my txt = eq record.my txt

my int = 3

my dec = eq_record.my dec

my list = eqg record.my list

-—- A better way
better changed record = eq record with
my int = 3

record with changed list = eq record with
my list = "Zero" eq record.my list

assert
assert

(eqg record.my int == 2)
(changed record == better changed record)

(continues on next page)

1.11. Write Smart Contracts with Daml

65

Daml SDK Documentation, 2.7.3

(continued from previous page)

-— The list on "eq record can't be changed.

assert (eq record.my list == ["One", "Two", "Three"])
-— The list on ‘record with changed list’ is a new one.
assert (record with changed list.my list == ["Zero", "One", "Two", "Three"])

changed record and better changed record are each a copy of eq record with the field
my int changed. better changed record shows the recommended way to change fields on a
record. The syntax is almost the same as for a new record, but the record name is replaced with the
old value: eq record with instead of EqRecord with. The with block no longer needs to give
values to all fields of EqRecord. Any missing fields are taken from eq_record.

Throughout the script, eq record never changes. The expression "Zero" :: eq record.
my list doesn’t change the list in-place, but creates a new list, which is eq record.my list
with an extra element in the beginning.

1.11.4.4 Contract Keys

Daml’s type system lets you store richly structured data on Daml templates, but just like most
database schemas have more than one table, Daml contract models often have multiple templates
thatreference each other. For example, you may not want to store your bank and accountinformation
on each individual cash balance contract, but instead store those on separate contracts.

You have already met the type ContractId a, which references a contract of type a. The below
shows a contract model where Account is split out into a separate template and referenced by Con-
tractId, butit also highlights a big problem with that kind of reference: just like data, contracts
are immutable. They can only be created and archived, so if you want to change the data on a con-
tract, you end up archiving the original contract and creating a new one with the changed data. That
makes contract IDs very unstable, and can cause stale references.

data Bank = Bank with
party : Party
address: Text
telephone : Text
deriving (Eq, Show)

template Account

with
accountant : Party
owner : Party
number : Text
bank : Bank

where
signatory accountant

data Cash = Cash with
currency : Text
amount : Decimal
deriving (Eq, Show)

template CashBalance
with
accountant : Party
cash : Cash

(continues on next page)

66 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

account : ContractId Account
where
signatory accountant

id ref test = do
accountant <- allocateParty "Bob"
owner <- allocateParty "Alice"
bank party <- allocateParty "Bank"
let
bank = Bank with
party = bank party

address = "High Street"

telephone = "012 3456 789"
cash = Cash with

currency = "USD"

amount = 100.0

accountCid <- submit accountant do
createCmd Account with
accountant
owner
bank
number = "ABC123"

balanceCid <- submit accountant do
createCmd CashBalance with
accountant
cash
account = accountCid

-—- Now the accountant updates the telephone number for the bank on the account
Some account <- queryContractId accountant accountCid
new_accountCid <- submit accountant do

archiveCmd accountCid

cid <- createCmd account with

bank = account.bank with
telephone = "098 7654 321"
pure cid

-— The ‘account’ field on the balance now refers to the archived
-—- contract, so this will fail.

Some balance <- queryContractId accountant balanceCid

optAccount <- queryContractId accountant balance.account
OoptAccount === None

The script above uses the queryContractId function, which retrieves the arguments of an active
contractusingits contractID.If thereis no active contract with the given identifiervisible to the given
party, queryContractId returns None. Here, we use a pattern match on Some which will abort the
script if queryContractIdreturns None.

Note that, for the first time, the party submitting a transaction is doing more than one thing as part
of that transaction. To create new _account, the accountant archives the old account and creates a
new account, all in one transaction. More on building transactions in Composing Choices.

You can define stable keys for contracts using the key and maintainer keywords. key defines the
primary key of a template, with the ability to look up contracts by key, and a uniqueness constraint

1.11. Write Smart Contracts with Daml 67

Daml SDK Documentation, 2.7.3

in the sense that only one contract of a given template and with a given key value can be active at a
time:

data Bank = Bank with
party : Party
address: Text
telephone : Text
deriving (Eq, Show)

data AccountKey = AccountKey with
accountant : Party
number : Text
bank party : Party
deriving (Eq, Show)

template Account

with
accountant : Party
owner : Party
number : Text
bank : Bank

where
signatory accountant

key AccountKey with
accountant
number
bank party = bank.party
: AccountKey
maintainer key.accountant

data Cash = Cash with
currency : Text
amount : Decimal
deriving (Eq, Show)

template CashBalance
with
accountant : Party
cash : Cash
account : AccountKey
where
signatory accountant

id ref test = do
accountant <- allocateParty "Bob"
owner <- allocateParty "Alice"
bank party <- allocateParty "Bank"
let
bank = Bank with
party = bank party

address = "High Street"

telephone = "012 3456 789"
cash = Cash with

currency = "USD"

amount = 100.0

(continues on next page)

68 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

accountCid <- submit accountant do
createCmd Account with
accountant
owner
bank
number = "ABC123"

Some account <- queryContractId accountant accountCid
balanceCid <- submit accountant do
createCmd CashBalance with
accountant
cash
account = key account

—-— Now the accountant updates the telephone number for the bank on the account
Some account <- queryContractId accountant accountCid
new_accountCid <- submit accountant do

archiveCmd accountCid

cid <- createCmd account with

bank = account.bank with
telephone = "098 7654 321"
pure cid

-— Thanks to contract keys, the current account contract is fetched

Some balance <- queryContractId accountant balanceCid

Some (new_cid, new_account : Account) <- queryContractKey accountant balance.
—account

new cid === new_accountCid

new_account =/= account

Since Daml is designed to run on distributed systems, you have to assume that there is no global
entity that can guarantee uniqueness, which is why each key expression must come with amain-
tainer expression. maintainer takes one or several parties, all of which have to be signatories of
the contract and be part of the key. That way the index can be partitioned amongst sets of main-
tainers, and each set of maintainers can independently ensure the uniqueness constraint on their
piece of the index. The constraint that maintainers are part of the key is ensured by only having the
variable key in each maintainer expression.

Instead of calling queryContractId to get the contract arguments associated with a given con-
tract identifier, use queryContractKey. queryContractKey takes a value of type AccountKey
and returns an optional tuple. In this case, that optional tuple is of type Optional (ContractId
Account, Account). After archiving the old account (to change the phone number), you can still
fetch the account using the existing, unmodified balance. Where the ContractId Account is
different for the new account, the AccountKey is the same.

When calling queryContractKey a single key type could be used as the key for multiple templates.
Consequently, you need to tell the compiler what type of contract the key is referencing. You can do
that with a type annotation on the returned value.

1.11. Write Smart Contracts with Daml 69

Daml SDK Documentation, 2.7.3

111.4.5 Next Up
You can now define data schemas for the ledger, read, write and delete data from the ledger, and use
keys to reference and look up data in a stable fashion.

In Transform Data Using Choices you’ll learn how to define data transformations and give other parties
the right to manipulate data in restricted ways.

1.11.5 Transform Data Using Choices

Inthe example in Contract Keys the accountant party wanted to change some data on a contract. They
did so by archiving the contract and re-creating it with the updated data. That works because the
accountant is the sole signatory on the Account contract defined there.

But what if the accountant wanted to allow the bank to change their own telephone number? Or what
if the owner of a CashBalance should be able to transfer ownership to someone else?

In this section you will learn about how to define simple data transformations using choices and how
to delegate the right to exercise these choices to other parties.

Hint: Rememberthatyoucanload all the code for this sectioninto a folder called intro4 byrunning
daml new intro4 --template daml-intro-4

1.11.5.1 Choices as Methods

If you think of templates as classes and contracts as objects, where are the methods?

Take as an example a Contact contract on which the contact owner wants to be able to change the
telephone number, just like on the Account in Contract Keys. Rather than requiring them to manually
look up the contract, archive the old one and create a new one, you can provide them a convenience
method on Contact:

template Contact
with
owner : Party
party : Party
address : Text
telephone : Text
where
signatory owner
observer party

choice UpdateTelephone
ContractId Contact
with
newTelephone : Text
controller owner
do
create this with
telephone = newTelephone

70 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

The above defines a choicecalled UpdateTelephone. Choices are part of a contract template. They're
permissioned functions that result in an Update. Using choices, authority can be passed around,
allowing the construction of complex transactions.

Let’s unpack the code snippet above:

The firstline, choice UpdateTelephone indicates achoice definition,UpdateTelephoneis
the name of the choice. It starts a new block in which that choice is defined.

ContractId Contact is the return type of the choice.
This particular choice archives the current Contact, and creates a new one. What it returns is
a reference to the new contract, in the form of a ContractId Contact
The following with block is that of a record. Just like with templates, in the background, a new
record type is declared: data UpdateTelephone = UpdateTelephone with
The line controller owner says that this choice is controlled by owner, meaning owner is
the only party that is allowed to exercise them.
The do starts a block defining the action the choice should perform when exercised. In this
case a new Contact is created.
The new Contact is created using this with. this is a special value available within the
where block of templates and takes the value of the current contract’s arguments.

There is nothing here explicitly saying that the current Contact should be archived. That’s because
choices are consuming by default. That means when the above choice is exercised on a contract, that
contract is archived.

As mentioned in Data Types, within a choice we use create instead of createCmd. Whereas cre-
ateCmd builds up a list of commands to be sent to the ledger, create builds up a more flexible
Update that is executed directly by the ledger. You might have noticed that create returns an Up-
date (ContractId Contact), not a ContractId Contact. As a do block always returns the
value of the last statement within it, the whole do block returns an Update, but the return type on
the choice is just a ContractId Contact. This is a convenience. Choices always return an Update
so for readability it’s omitted on the type declaration of a choice.

Now to exercise the new choice in a script:

choice test = do
owner <- allocateParty "Alice"
party <- allocateParty "Bob"

contactCid <- submit owner do
createCmd Contact with

owner

party

address = "1 Bobstreet"”
telephone = "012 345 6789"

-— Bob can't change his own telephone number as Alice controls
-— that choice.
submitMustFail party do
exerciseCmd contactCid UpdateTelephone with
newTelephone = "098 7654 321"

newContactCid <- submit owner do
exerciseCmd contactCid UpdateTelephone with

newTelephone = "098 7654 321"

Some newContact <- queryContractId owner newContactCid

(continues on next page)

1.11. Write Smart Contracts with Daml 71

Daml SDK Documentation, 2.7.3

(continued from previous page)

assert (newContact.telephone == "098 7654 321")

You exercise choices using the exercise function, which takes a ContractId a, and a value of
type c, where c is a choice on template a. Since c is just a record, you can also just fill in the choice
parameters using the with syntax you are already familiar with.

exerciseCmdreturns a Commands r where risthereturntype specified onthe choice, allowing the
new ContractId Contact to be stored in the variable newContactCid. Just like for createCmd
and create, there is also exerciseCmd and exercise. The versions with the cmd suffix is always
used on the client side to build up the list of commands on the ledger. The versions without the
suffix are used within choices and are executed directly on the server.

There is also createAndExerciseCmd and createAndExercise which we have seen in the pre-
vious section. This allows you to create a new contract with the given arguments and immediately
exercise a choice on it. For a consuming choice, this archives the contract so the contract is created
and archived within the same transaction.

111.5.2 Choices as Delegation

Up to this point all the contracts only involved one party. party may have been stored as Party
field in the above, which suggests they are actors on the ledger, but they couldn’t see the contracts,
nor change them in any way. It would be reasonable for the party for which a Contact is stored to
be able to update their own address and telephone number. In other words, the owner of a Contact
should be able to delegate the right to perform a certain kind of data transformation to party.

The below demonstrates this using an UpdateAddress choice and corresponding extension of the
script:

choice UpdateAddress
ContractId Contact
with
newAddress : Text
controller party
do
create this with
address = newAddress

newContactCid <- submit party do
exerciseCmd newContactCid UpdateAddress with
newAddress = "1-10 Bobstreet"

Some newContact <- queryContractId owner newContactCid

assert (newContact.address == "1-10 Bobstreet")

If you open the script view in the IDE, you will notice that Bob sees the Contact. This is because
party is specified as an observer in the template, and in this case Bob is the party. More on
observers later, but in short, they get to see any changes to the contract.

72 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.11.5.3 Choices In the Ledger Model

In Basic Contracts you learned about the high-level structure of a Daml ledger. With choices and the

exercise function, you have the next important ingredient to understand the structure of the ledger
and transactions.

A transaction is a list of actions, and there are just four kinds of action: create, exercise, fetch
and key assertion.

A create action creates a new contract with the given arguments and sets its status to active.
A fetch action checks the existence and activeness of a contract.

An exercise action exercises a choice on a contract resulting in a transaction (list of
sub-actions) called the consequences. Exercises come in two kinds called consuming and non-
consuming. consuming is the default kind and changes the contract’s status from active to
archived.

A key assertion records the assertion that the given contract key (see Contract Keys) is not
assigned to any active contract on the ledger.

Each action can be visualized as a tree, where the action is the root node, and its children are its
consequences. Every consequence may have further consequences. As fetch, create and key
assertion actions have no consequences, they are always leaf nodes. You can see the actions and
their consequences in the transaction view of the above script:

Transactions:
TX 0 1970-01-01T00:00:00Z (Contact:46:17)
#0:0
| consumed by: #2:0
| referenced by #2:0

| disclosed to (since): 'Alice' (0), 'Bob' (0)
L> '"Alice' creates Contact:Contact
with
owner = 'Alice'; party = 'Bob'; address = "1 Bobstreet";
—telephone = "012 345 6789"

TX 1 1970-01-01T00:00:00%Z
mustFailAt actAs: {'Bob'} readAs: {} (Contact:55:3)

TX 2 1970-01-01T00:00:00Z (Contact:59:20)

#2:0
| disclosed to (since): 'Alice' (2), 'Bob' (2)
L> 'Alice' exercises UpdateTelephone on #0:0 (Contact:Contact)
with
newTelephone = "098 7654 321"

children:

#2:1

| consumed by: #3:0

| referenced by #3:0

| disclosed to (since): 'Alice' (2), 'Bob' (2)

L> 'Alice' creates Contact:Contact

with
owner = 'Alice'; party = 'Bob'; address = "1 Bobstreet";
—telephone = "098 7654 321"

TX 3 1970-01-01T00:00:00Z (Contact:69:20)
#3:0
| disclosed to (since): 'Alice' (3), 'Bob' (3)

(continues on next page)

1.11. Write Smart Contracts with Daml 73

Daml SDK Documentation, 2.7.3

(continued from previous page)

L> '"Bob' exercises UpdateAddress on #2:1 (Contact:Contact)

with
newAddress = "1-10 Bobstreet"
children:
#3:1
| disclosed to (since): 'Alice' (3), 'Bob' (3)
L> 'Alice' creates Contact:Contact
with
owner = 'Alice';
party = 'Bob';
address = "1-10 Bobstreet";
telephone = "098 7654 321"
Active contracts: #3:1

Return value: {}

There are fourcommits corresponding to the four submit statementsinthe script. Withineach com-
mit, we see that it’s actually actions that have IDs of the form #commit number:action number.
Contract IDs are just the ID of their create action.

So commits #2 and #3 contain exercise actions with IDs #2:0 and #3:0. The create actions
of the updated Contact contracts, #2:1 and #3:1, are indented and found below a line reading
children:, making the tree structure apparent.

The Archive Choice

You may have noticed that there is no archive action. That’s because archive cidisjustshorthand
forexercise cid Archive,whereArchiveisachoiceimplicitlyaddedtoeverytemplate, withthe
signatories as controllers.

1.11.5.4 A Simple Cash Model

With the power of choices, you can build your first interesting model: issuance of cash I0Us (I owe
you). The model presented here is simpler than the one in Data Types as it's not concerned with the
location of the physical cash, but merely with liabilities:

-- Copyright (c) 2023 Digital Asset (Switzerland) GmbH and/or its affiliates. AlIlll
—rights reserved.
-— SPDX-License-Identifier: Apache-2.0

module SimpleIou where

import Daml.Script

data Cash = Cash with
currency : Text
amount : Decimal

deriving (Eq, Show)

template Simplelou

(continues on next page)

74 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

with
issuer : Party
owner : Party
cash : Cash
where
signatory issuer
observer owner

choice Transfer
ContractId SimpleIou
with
newOwner : Party
controller owner
do
create this with owner = newOwner

test iou = script do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"
charlie <- allocateParty "Charlie"
dora <- allocateParty "Dora"

-— Dora issues an Iou for $100 to Alice.

iou <- submit dora do
createCmd SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = 100.0
currency = "USD"

-—- Alice transfers it to Bob.
iou2 <- submit alice do
exerciseCmd iou Transfer with
newOwner = bob

-— Bob transfers it to Charlie.
submit bob do
exerciseCmd iou2 Transfer with
newOwner = charlie

The above model is fine as long as everyone trusts Dora. Dora could revoke the Simplelou at any point
by archiving it. However, the provenance of all transactions would be on the ledger so the owner

could prove that Dora was dishonest and cancelled her debt.

1.11. Write Smart Contracts with Daml

75

Daml SDK Documentation, 2.7.3

111.5.5 Next Up
You can now store and transform data on the ledger, even giving other parties specific write access
through choices.

In Add Constraints to a Contract, you will learn how to restrict data and transformations further. In that
context, you will also learn about time on Daml ledgers, do blocks and <- notation within those.

1.11.6 Add Constraints to a Contract
You will often want to constrain the data stored or the allowed data transformations in your contract
models. In this section, you will learn about the two main mechanisms provided in Daml:

The ensure keyword.
The assert, abort and error keywords.

To make sense of the latter, you’ll also learn more about the Update and Script types and do
blocks, which will be good preparation for Composing Choices, where you will use do blocks to com-
pose choices into complex transactions.

Lastly, you will learn about time on the ledger and in Daml Script.

Hint: Rememberthatyou canload all the code for this section into a folder called intro5 by running
daml new intro5 --template daml-intro-5

1.11.6.1 Template Preconditions

The first kind of restriction you may want to put on the contract model are called template
pre-conditions. These are simply restrictions on the data that can be stored on a contract from that
template.

Suppose, for example, that the SimpleIou contract from A Simple Cash Model should only be able to
store positive amounts. You can enforce this using the ensure keyword:

template Simplelou

with
issuer : Party
owner : Party
cash : Cash
where

signatory issuer
observer owner

ensure cash.amount > 0.0

The ensure keyword takes a single expression of type Bool. If you want to add more restrictions, use
logical operators &&, | | and not to build up expressions. The below shows the additional restriction
that currencies are three capital letters:

&& T.length cash.currency ==
&& T.isUpper cash.currency

76 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Hint: The T here stands for the DA. Text standard library which has been imported using import
DA.Text as T:

test restrictions = do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"
dora <- allocateParty "Dora"

-- Dora can't issue negative Ious.
submitMustFail dora do
createCmd SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = -100.0
currency = "USD"

-— Or even zero Ious.
submitMustFail dora do
createCmd SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = 0.0
currency = "USD"
-— Nor positive Ious with invalid currencies.
submitMustFail dora do
createCmd SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = 100.0
currency = "Swiss Francs"

-—- But positive Ious still work, of course.
iou <- submit dora do
createCmd SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = 100.0
currency = "USD"

1.11. Write Smart Contracts with Daml 77

Daml SDK Documentation, 2.7.3

1.11.6.2 Assertions

A second common kind of restriction is one on data transformations.

For example, the simple lou in A Simple Cash Model allowed the no-op where the owner transfers to
themselves. You can prevent that using an assert statement, which you have already encountered
in the context of scripts.

assert does not return an informative error so often it’s better to use the function assertMsgqg,
which takes a custom error message:

choice Transfer

ContractId SimpleIou

with
newOwner : Party

controller owner

do
assertMsg "newOwner cannot be equal to owner." (owner /= newOwner)
create this with owner = newOwner

-— Alice can't transfer to herself...
submitMustFail alice do
exerciseCmd iou Transfer with
newOwner = alice

-— ... but can transfer to Bob.
iou2 <- submit alice do
exerciseCmd iou Transfer with
newOwner = bob

Similarly, you can write a Redeem choice, which allows the owner to redeem an Iou during business
hours on weekdays. The Redeem choice implementation below confirms that getTime returns a value
thatis during business hours on weekdays. If all those checks pass, the choice does not do anything
other than archive the SimpleIou. (This assumes that actual cash changes hands off-ledger:)

choice Redeem
()

controller owner

do
now <- getTime
let
today = toDateUTC now
dow = dayOfWeek today
timeofday = now “subTime time today 0 0 O
hrs = convertRelTimeToMicroseconds timeofday / 3600000000
if (hrs < 8 || hrs > 18) then
abort $ "Cannot redeem outside business hours. Current time: " <> showl!
—timeofday

else case dow of
Saturday -> abort "Cannot redeem on a Saturday."
Sunday -> abort "Cannot redeem on a Sunday."
_ —> return ()

In the above example, the time is taken apartinto day of week and hour of day using standard library
functions from DA .Date and DA.Time. The hour of the day is checked to be in the range from 8 to
18. The day of week is checked to not be Saturday or Sunday.

78 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

The following example shows how the Redeem choice is exercised in a script:

-— June 1st 2019 is a Saturday.
setTime (time (date 2019 Jun 1) 0 0 0)
—-— Bob cannot redeem on a Saturday.
submitMustFail bob do

exerciseCmd iou2 Redeem

-- Not even at mid-day.
passTime (hours 12)
—-— Bob cannot redeem on a Saturday.
submitMustFail bob do
exerciseCmd iou?2 Redeem

-— Bob also cannot redeem at 6am on a Monday.
passTime (hours 42)
submitMustFail bob do

exerciseCmd iou2 Redeem

-— Bob can redeem at 8am on Monday.
passTime (hours 2)
submit bob do

exerciseCmd iou2 Redeem

For the purposes of testing the Redeem choice, the above code sets and advances the ledger time
with the setTime and passTime functions respectively. Exercising the choice should fail or should
not fail depending on the day of week and the time of day. While that is straightforward, the issue of
time on a Daml ledger is worthy of more discussion.

1.11.6.3 Time on Daml Ledgers

Each transaction on a Daml ledger has two timestamps: the ledger time (LT) and the record time (RT).

Ledger time (LT) is the time associated with a transaction in the ledger model, as determined by the
participant. It is the time of a transaction from a business and application perspective. When you
call getTime, it is the LT thatis returned. The LT is used when reasoning about related transactions
and commits. The LT can be compared with other LTs to guarantee model consistency. For example,
LTs are used to enforce that no transaction depends on a contract that does not exist. This is the
requirement known as causal monotonicity.

Record time (RT) is the time assigned by the persistence layer. It represents the time that the trans-
actionis physically recorded. Forexample, The backing database ledger has assigned the times-
tamp of such-and-such time to this transaction. The only purpose of the RT is to ensure that trans-
actions are being recorded in a timely manner.

Each Daml ledger has a policy on the allowed difference between LT and RT called the skew. A consis-
tent zero-skew is not feasible because this is a distributed system. If it is too far off, the transaction
will be rejected. This is the requirement known as bounded skew. The RT is not relevant beyond
this determination of skew.

Returning to the theme of business hours, consider the following example: Suppose that the ledger
had a skew of 10 seconds. At 17:59:55, just before the end of business hours, Alice submits a transac-
tion to redeem an lou. One second later, the transaction is assigned an LT of 17:59:56. However, there
still may be a few seconds before the transaction is persisted to the underlying storage. For exam-
ple, the transaction might be written in the underlying backing store at 18:00:06, after business hours.

1.11. Write Smart Contracts with Daml 79

Daml SDK Documentation, 2.7.3

Because LT is within business hours and LT - RT <= 10 seconds, the transaction will not be rejected.

For details, see Background concepts - time.

Time in Test Scripts

For tests, you can set time using the following functions:

setTime, which sets the ledger time to the given time.
passTime, which takes a RelTime (a relative time) and moves the ledger by that much.

On a distributed Daml ledger, there are no guarantees that LT or RT are strictly increasing. The only
guarantee is that ledger time is increasing with causality. That is, if a transaction TX2 depends on a
transaction TX1, then the ledger enforces that the LT of TX2 is greater than or equal to that of TX1.

The following script illustrates that idea by moving the logical time back by three days and then
trying to exercise a choice on a contract that hasn’t been created yet. That fails, as you would hope.

iou3 <- submit dora do
createCmd SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = 100.0
currency = "USD"

passTime (days (-3))
submitMustFail alice do
exerciseCmd iou3 Redeem

1.11.6.4 Actions and do Blocks

You have come across do blocks and <- notations in two contexts by now: Script and Update.
Both of these are examples of an Action, also called a Monad in functional programming. You can
construct Actions conveniently using do notation.

Understanding Actions and do blocks is therefore crucial to being able to construct correct contract
models and test them, so this section will explain them in some detail.

Pure Expressions Compared to Actions

Expressionsin Damlare pureinthe sensethatthey have no side-effects: they neither read nor modify
any external state. If you know the value of all variables in scope and write an expression, you can
work out the value of that expression on pen and paper.

However, the expressions you’ve seen that used the <- notation are not like that. For example, take
getTime, which is an Action. Here’s the example we used earlier:

now <- getTime

You cannot work out the value of now based on any variable in scope. To put it another way, there is
no expression expr that you could put on the right hand side of now = expr. To get the ledger time,
you must be in the context of a submitted transaction, and then look at that context.

80 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Similarly, you’ve come across fetch. If you have cid : ContractId Account in scope and you
come across the expression fetch cid, you can’t evaluate that to an Account so you can’t write
account = fetch cid. Todo so, you’d have to have a ledger you can look that contract ID up on.

Actions and Impurity

Actions are a way to handle such impure expressions. Action a is a type class with a single
parameter a, and Update and Script are instances of Action. A value of such atypem a wherem
isaninstanceof Actioncanbeinterpretedas arecipeforanactionoftypem, which, when executed,
returns a value a .

You can always write a recipe using just pen and paper, but you can’t cook it up unless you are in
the context of a kitchen with the right ingredients and utensils. When cooking the recipe you have
an effect - you change the state of the kitchen - and a return value - the thing you leave the kitchen
with.

An Update ais a recipe to update a Daml ledger, which, when committed, has the effect of
changing the ledger, and returns a value of type a . An update to a Daml ledger is a transaction
so equivalently, an Update ais arecipe toconstruct atransaction, which, when executed in
the context of a ledger, returns a value of type a .

A Sscript ais a recipe for a test, which, when performed against a ledger, has the effect of
changing the ledger in ways analogous to those available via the API, and returns a value of

type a .

Expressions like getTime, allocateParty party,passTime time, submit party commands,
create contract and exercise choice should make more sense in that light. For example:

getTime : Update Time istherecipe for an empty transaction that also happens toreturn
a value of type Time.

passTime (days 10) : Script () is arecipe for a transaction that doesn’t submit any
transactions, but has the side-effect of changing the LT of the test ledger. It returns (), also
called Unit and can be thought of as a zero-tuple.

create iou : Update (ContractId Iou), whereiou : Iou is a recipe for a transac-
tion consisting of a single create action, and returns the contract id of the created contract
if successful.

submit alice (createCmd iou) : Script (ContractId Iou) is arecipe fora script
in which Alice sends the command createCmd iou to the ledger which produces a transac-
tion and a return value of type ContractId Iou and returns that back to Alice.

Commands is a bit more restricted than Script and Update as it represents a list of independent
commands sent to the ledger. You can still use do blocks but if you have more than one command
in a single do block you need to enable the ApplicativeDo extension at the beginning of your file.
In addition to that, the last statement in such a do block must be of the form return expr orpure
expr. Applicative is a more restricted version of Action that enforces that there are no depen-
dencies between commands. If you do have dependencies between commands, you can always wrap
itin a choice in a helper template and call that via createAndExerciseCmd just like we did to call
fetchByKey. Alternatively, if you do not need them to be part of the same transaction, you can make
multiple calls to submit:

{-# LANGUAGE ApplicativeDo #-}
module Restrictions where

1.11. Write Smart Contracts with Daml 81

Daml SDK Documentation, 2.7.3

Chain Actions With do Blocks

An action followed by another action, possibly depending on the result of the first action, is just

another action. Specifically:

A transaction is a list of actions. So a transaction followed by another transaction is again a

transaction.

A script is a list of interactions with the ledger (submit, allocateParty, passTime, etc). So

a script followed by another script is again a script.

This is where do blocks come in. do blocks allow you to build complex actions from simple ones,

using the results of earlier actions in later ones:

sub scriptl (alice, dora) = do
submit dora do
createCmd SimpleIou with

issuer = dora

owner = alice

cash = Cash with
amount = 100.0
currency = "USD"

sub_script2 = do
passTime (days 1)
passTime (days (-1))
return 42

sub_script3 (bob, dora) = do
submit dora do
createCmd SimpleIou with
issuer = dora
owner = bob
cash = Cash with
amount = 100.0
currency = "USD"

main : Script () do
dora <- allocateParty "Dora"
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"

ioul <- sub scriptl (alice, dora)
sub script2
iou2 <- sub script3 (bob, dora)

submit dora do
archiveCmd ioul
archiveCmd iouZ2
pure ()

Above, we see do blocks in action for both Script and Update.

82

Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Wrap Values in Actions

You may already have noticed the use of return in the redeem choice. return x is a no-op action
which returns value x so return 42 : Update Int. Since do blocks always return the value of
their last action, sub_script2 : Script Int.

1.11.6.5 Failing Actions

Not only are Update and Script examples of Action, they are both examples of actions that can
fail, e.g. because a transaction is illegal or the party retrieved via allocateParty doesn’t exist on
the ledger.

Each has a special action abort txt thatrepresents failure, and that takes on type Update () or
Script () dependingon context.

Transactions succeed or fail atomically as a whole. Scripts on the other hand do not fail atomically:
while each submit is atomic, if a submit succeeded and the script fails later, the effects of that
submit will still be applied to the ledger.

The last expression in the do block of the Redeem choice is a pattern matching expression on dow.
It has type Update () and is either an abort or return depending on the day of week. So during
the week, it’s a no-op and on weekends, it’s the special failure action. Thanks to the atomicity of
transactions, no transaction can ever make use of the Redeem choice on weekends, because it fails
the entire transaction.

1.11.6.6 A Sample Action

If the above didn’t make complete sense, here’s another example to explain what actions are more
generally, by creating a new type thatis also an action. CoinGame aisanAction ainwhichaCoin
is flipped. The Coin is a pseudo-random number generator and each flip has the effect of changing
the random number generator’s state. Based on the Heads and Tails results, a return value of type
a is calculated:

data Face = Heads | Tails
deriving (Eq, Show, Enum)

data CoinGame a = CoinGame with
play : Coin -> (Coin, a)

flipCoin : CoinGame Face
getCoin : Script Coin

A CoinGame a exposes a function play which takes a Coin and returns a new Coin and a result a.
More on the -> syntax for functions later.

Coin and play are deliberately left obscure in the above. All you have is an action getCoin to get
your hands on a Coinina Script context and an action £1ipCoin which represents the simplest
possible game: a single coin flip resulting in a Face.

You can’t play any CoinGame game on pen and paper as you don’t have a coin, but you can write
down a script or recipe for a game:

1.11. Write Smart Contracts with Daml 83

Daml SDK Documentation, 2.7.3

coin test = do
-— The coin is pseudo-random on LT so change the parameter to change the game.
setTime (time (date 2019 Jun 1) 0 0 0)
passTime (seconds 2)
coin <- getCoin
let
game = do
flr <- flipCoin
f2r <- flipCoin
f3r <- flipCoin

if all (== Heads) [flr, f2r, f3r]
then return "Win"
else return "Loss"

(newCoin, result) = game.play coin

assert (result == "Win")

The game expression is a CoinGame in which a coin is flipped three times. If all three tosses return
Heads, the resultis "Win", or else "Loss".

Ina Script context you can get a Coin using the getCoin action, which uses the LT to calculate a
seed, and play the game.

Somehow the Coin is threaded through the various actions. If you want to look through the look-
ing glass and understand in-depth what’s going on, you can look at the source file to see how the
CoinGame action is implemented, though be warned that the implementation uses a lot of Daml
features we haven’t introduced yet in this introduction.

More generally, if you want to learn more about Actions (aka Monads), we recommend a general
course on functional programming, and Haskell in particular. See The Haskell Connection for some
suggestions.

1.11.6.7 Errors

Above, you’ve learnt about assertMsg and abort, which represent (potentially) failing actions. Ac-
tionsonly have an effect when they are performed, so the following script succeeds or fails depending
on the value of abortScript:

nonPerformedAbort do
let abortScript = False
let failingAction : Script () = abort "Foo"
let successfulAction : Script () = return ()
if abortScript then failingAction else successfulAction

However, what about errors in contexts other than actions? Suppose we wanted to implement a
function pow that takes an integer to the power of another positive integer. How do we handle that
the second parameter has to be positive?

One option is to make the function explicitly partial by returning an Optional:

optPow : Int -> Int -> Optional Int
optPow base exponent

| exponent == = Some 1

| exponent > 0 =

(continues on next page)

84 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

let Some result = optPow base (exponent - 1)
in Some (base * result)
| otherwise = None

This is a useful pattern if we need to be able to handle the error case, but it also forces us to always
handle it as we need to extract the result from an Optional. We can see the impact on convenience
in the definition of the above function. In cases, like division by zero or the above function, it can
therefore be preferable to fail catastrophically instead:

errPow : Int -> Int -> Int
errPow base exponent
| exponent == =1
| exponent > 0 = base * errPow base (exponent - 1)
| otherwise = error "Negative exponent not supported"

The big downside to this is that even unused errors cause failures. The following script will fail,
because failingComputation is evaluated:

nonPerformedError = script do
let causeError = False
let failingComputation = errPow 1 (-1)

let successfulComputation = errPow 1 1
return if causeError then failingComputation else successfulComputation

error should therefore only be used in cases where the error case is unlikely to be encountered, and
where explicit partiality would unduly impact usability of the function.

1.11.6.8 Next Up

You can now specify a precise data and data-transformation model for Daml ledgers. In Parties and
Authority, you will learn how to properly involve multiple parties in contracts, how authority works in
Daml, and how to build contract models with strong guarantees in contexts with mutually distrust-
ing entities.

1.11.7 Parties and Authority

Daml is designed for distributed applications involving mutually distrusting parties. In a
well-constructed contract model, all parties have strong guarantees that nobody cheats or circum-
vents the rules laid out by templates and choices.

In this section you will learn about Daml’s authorization rules and how to develop contract models
that give all parties the required guarantees. In particular, you’ll learn how to:

Pass authority from one contract to another
Write advanced choices
Reason through Daml’s Authorization model

Hint: Rememberthatyou canload all the code for this section into a folder called intro6 by running
daml new intro6 --template daml-intro-6

1.11. Write Smart Contracts with Daml 85

Daml SDK Documentation, 2.7.3

1.11.7.1 Preventing IOU Revocation

The SimpleIou contract from Transform Data Using Choices and Add Constraints to a Contract has one
major problem: The contract is only signed by the issuer. The signatories are the parties with the
power to create and archive contracts. If Alice gave Bob a SimpleIou for $100 in exchange for some
goods, she could just archive it after receiving the goods. Bob would have a record of such actions,
but would have to resort to off-ledger means to get his money back:

template SimpleIou
with
issuer : Party
owner : Party
cash : Cash
where
signatory issuer

simple iou test = do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"

-— Alice and Bob enter into a trade.
-—- Alice transfers the payment as a Simplelou.
iou <- submit alice do
createCmd SimpleIou with
issuer = alice
owner = bob
cash = Cash with
amount = 100.0
currency = "USD"

passTime (days 1)
-— Bob delivers the goods.

passTime (minutes 10)
-- Alice just deletes the payment.
submit alice do

archiveCmd iou

For a party to have any guarantees that only those transformations specified in the choices are ac-
tually followed, they either need to be a signatory themselves, or trust one of the signatories to not
agree to transactions that archive and re-create contracts in unexpected ways. To make the Sim-
pleIou safe for Bob, you need to add him as a signatory:

template Iou
with
issuer : Party
owner : Party
cash : Cash
where
signatory issuer, owner

choice Transfer
ContractId Iou
with
newOwner : Party

(continues on next page)

86 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

controller owner
do
assertMsg "newOwner cannot be equal to owner." (owner /= newOwner)
create this with
owner = newOwner

There’s a new problem here: There is no way for Alice to issue or transfer this Tou to Bob. To get an
Iou with Bob’s signature as owner onto the ledger, his authority is needed:

iou test = do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"

-- Alice and Bob enter into a trade.
-- Alice wants to give Bob an Iou, but she can't without Bob's authority.
submitMustFail alice do
createCmd Iou with
issuer = alice
owner = bob
cash = Cash with
amount = 100.0
currency = "USD"

-- She can issue herself an Iou.
iou <- submit alice do
createCmd Iou with
issuer = alice
owner = alice
cash = Cash with
amount = 100.0
currency = "USD"

-- However, she can't transfer it to Bob.
submitMustFail alice do
exerciseCmd iou Transfer with
newOwner = bob

This may seem awkward, but notice that the ensure clause is gone from the Iou again. The above
Tou can contain negative values so Bob should be glad that Alice cannot put his signature on any
Iou.

You’ll now learn a couple of common ways of building issuance and transfer workflows for the above
Iou, before diving into the authorization model in full.

1.11.7.2 Use Propose-Accept Workflows for One-Off Authorization

If there is no standing relationship between Alice and Bob, Alice can propose the issuance of an lou to
Bob, giving him the choice to accept. You can do so by introducing a proposal contract TouProposal:

template IouProposal
with
iou : Iou
where
signatory iou.issuer

(continues on next page)

1.11. Write Smart Contracts with Daml 87

Daml SDK Documentation, 2.7.3

(continued from previous page)

observer iou.owner

choice IouProposal Accept
ContractId Iou
controller iou.owner
do
create iou

Note how we have used the fact that templates are records here to store the Iou in a single field:

iouProposal <- submit alice do
createCmd IouProposal with
iou = Iou with

issuer = alice

owner = bob

cash = Cash with
amount = 100.0
currency = "USD"

submit bob do
exerciseCmd iouProposal IouProposal Accept

The TouProposal contract carries the authority of iou. issuer by virtue of them being a signatory.
By exercising the TouProposal Accept choice, Bob adds his authority to that of Alice, which is why
an Iou with both signatories can be created in the context of that choice.

The choice is called TouProposal Accept, not Accept, because propose-accept patterns are very
common. In fact, you’ll see another one just below. As each choice defines a record type, you cannot

have two choices of the same name in scope. It’s a good idea to qualify choice names to ensure
uniqueness.

The above solves issuance, but not transfers. You can solve transfers exactly the same way, though,
by creating a TransferProposal:

template IouTransferProposal

with
iou : Iou
newOwner : Party
where
signatory (signatory iou)
observer (observer iou), newOwner

choice IouTransferProposal_ Cancel
ContractId Iou
controller iou.owner
do
create iou

choice IouTransferProposal_ Reject
ContractId Iou
controller newOwner
do
create iou

choice IouTransferProposal_ Accept

(continues on next page)

88 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

ContractId Iou
controller newOwner
do

create iou with

owner = newOwner

In addition to defining the signatories of a contract, signatory can also be used to extract the
signatories from another contract. Instead of writing signatory (signatory iou), you could
write signatory iou.issuer, iou.owner.

The TouProposal had a single signatory so it could be cancelled easily by archiving it. Without a
Cancel choice,the newOwner could abuse an open TransferProposal as an option. The triple Accept,
Reject, Cancel is common to most proposal templates.

To allow an iou.owner to create such a proposal, you need to give them the choice to propose a
transfer on the Iou contract. The choice looks just like the above Transfer choice, except that a
IouTransferProposal is created instead of an Iou:

choice ProposeTransfer
ContractlId IouTransferProposal
with
newOwner : Party
controller owner
do
assertMsg "newOwner cannot be equal to owner." (owner /= newOwner)
create IouTransferProposal with
iou = this
newOwner

Bob can now transfer his Iou. The transfer workflow can even be used for issuance:

charlie <- allocateParty "Charlie"

-- Alice issues an Iou using a transfer proposal.
tpab <- submit alice do
createCmd IouTransferProposal with
newOwner = bob
iou = Iou with
issuer = alice
owner = alice
cash = Cash with
amount = 100.0
currency = "USD"

-— Bob accepts the transfer from Alice.
iou2 <- submit bob do
exerciseCmd tpab IouTransferProposal Accept

-- Bob offers Charlie a transfer.
tpbc <- submit bob do
exerciseCmd iou2 ProposeTransfer with
newOwner = charlie

-—- Charlie accepts the transfer from Bob.
submit charlie do
exerciseCmd tpbc IouTransferProposal Accept

1.11. Write Smart Contracts with Daml 89

Daml SDK Documentation, 2.7.3

1.11.7.3 Use Role Contracts for Ongoing Authorization

Many actions, like the issuance of assets or their transfer, can be pre-agreed. You can represent this
succinctly in Daml through relationship or role contracts.

Jointly, an owner and newOwner can transfer an asset, as demonstrated in the script above. In
Composing Choices, you will see how to compose the ProposeTransfer and IouTransferPro-
posal Accept choices into a single new choice, but for now, here is a different way. You can give
them the joint right to transfer an I0U:

choice Mutual Transfer
ContractId Iou
with
newOwner : Party
controller owner, newOwner
do
create this with
owner = newOwner

Up to now, the controllers of choices were known from the current contract. Here, the newOwner
variable is part of the choice arguments, not the Iou.

This is also the first time we have shown a choice with more than one controller. If multiple con-
trollers are specified, the authority of allthe controllers is needed. Here, neither owner, nornewOwner
can execute a transfer unilaterally, hence the name Mutual Transfer.

template IouSender

with
sender : Party
receiver : Party
where

signatory receiver
observer sender

nonconsuming choice Send_Iou
ContractId Iou
with
iouCid : ContractId Iou
controller sender
do
iou <- fetch iouCid
assert (iou.cash.amount > 0.0)

assert (sender == iou.owner)
exercise iouCid Mutual Transfer with
newOwner = receiver

The above ITouSender contract now gives one party, the sender theright to send ITou contracts with
positive amounts to a receiver. The nonconsuming keyword on the choice Send Iouchanges the
behaviour of the choice so that the contract it’s exercised on does not get archived when the choice
is exercised. That way the sender can use the contract to send multiple lous.

Here it is in action:

-— Bob allows Alice to send him Ious.
sab <- submit bob do
createCmd IouSender with

(continues on next page)

90 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

sender = alice
receiver = bob

—-— Charlie allows Bob to send him Ious.
sbc <- submit charlie do
createCmd IouSender with
sender = bob
receiver = charlie

-— Alice can now send the Iou she issued herself earlier.
ioud4d <- submit alice do
exerciseCmd sab Send Iou with
iouCid = iou

-— Bob sends it on to Charlie.
submit bob do
exerciseCmd sbc Send Iou with
iouCid = iou4d

111.7.4 Daml's Authorization Model

Hopefully, the above will have given you a good intuition for how authority is passed around in Daml.
In this section you’ll learn about the formal authorization model to allow you to reason through your
contract models. This will allow you to construct them in such a way that you don’t run into autho-
rization errors at runtime, or, worse still, allow malicious transactions.

In Choices In the Ledger Model you learned that a transaction is, equivalently, a tree of transactions, ora
forest of actions, where each transaction is a list of actions, and each action has a child-transaction
called its consequences.

Each action has a set of required authorizers - the parties that must authorize that action - and each
transaction has a set of authorizers - the parties that did actually authorize the transaction.

The authorization rule is that the required authorizers of every action are a subset of the authorizers
of the parent transaction.

The required authorizers of actions are:

The required authorizers of an exercise action are the controllers on the corresponding choice.
Remember that Archive and archive are just an implicit choice with the signatories as con-
trollers.

The required authorizers of a create action are the signatories of the contract.

The required authorizers of a fetch action (which also includes fetchByKey) are somewhat
dynamic and covered later.

The authorizers of transactions are:

The root transaction of a commit is authorized by the submitting party.
The consequences of an exercise action are authorized by the actors of that action plus the
signatories of the contract on which the action was taken.

1.11. Write Smart Contracts with Daml 91

Daml SDK Documentation, 2.7.3

An Authorization Example

Consider the transaction from the script above where Bob sends an Iouto Charlie using a Send Iou
contract. It is authorized as follows, ignoring fetches:

Bob submits the transaction so he’s the authorizer on the root transaction.

The root transaction has a single action, which is to exercise Send Iouon a IouSender con-
tract with Bob as sender and Charlie as receiver. Since the controller of that choice is the
sender, Bob is the required authorizer.

The consequences of the Send Iou action are authorized by its actors, Bob, as well as signa-
tories of the contract on which the action was taken. That’s Charlie in this case, so the conse-
quences are authorized by both Bob and Charlie.

The consequences contain a single action, which is a Mutual Transfer with Charlie as
newOwner on an Iou with issuer Alice and owner Bob. The required authorizers of the ac-
tion are the owner, Bob, and the newOwner, Charlie, which matches the parent’s authorizers.
The consequences of Mutual Transfer areauthorized by the actors (Bob and Charlie), as well
as the signatories on the lou (Alice and Bob).

The single action on the consequences, the creation of an lou with issuer Alice and owner

Charlie has required authorizers Alice and Charlie, which is a proper subset of the parent’s
authorizers.

You can see the graph of this transaction in the transaction view of the IDE:

TX 12 1970-01-01T00:00:00Z (Parties:276:3)

#12:0
| disclosed to (since): 'Bob' (12), 'Charlie' (12)
L> 'Bob' exercises Send Iou on #10:0 (Parties:IouSender)
with
iouCid = #11:3
children:
#12:1

| disclosed to (since): 'Bob' (12), 'Charlie' (12), 'Alice' (12)
L> 'Alice' and 'Bob' fetch #11:3 (Parties:Iou)

#12:2
| disclosed to (since): 'Bob' (12), 'Charlie' (12), 'Alice' (12)
L> 'Bob' and 'Charlie' exercise Mutual Transfer on #11:3 (Parties:Iou)
with
newOwner = 'Charlie'
children:
#12:3
| disclosed to (since): 'Bob' (12), 'Charlie' (12), 'Alice' (12)
L> 'Alice' and 'Charlie' create Parties:Iou
with
issuer = 'Alice';
owner = 'Charlie';
cash =
(Parties:Cash with

currency = "USD"; amount = 100.0000000000)

Note that authority is not automatically transferred transitively.

template NonTransitive
with
partyA : Party

(continues on next page)

92 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

partyB : Party
where

signatory partyA

observer partyB

choice TryA
ContractId NonTransitive
controller partyA
do
create NonTransitive with
partyA = partyB
partyB = partyA

choice TryB
ContractId NonTransitive
with

other : ContractId NonTransitive

controller partyB
do
exercise other TryA

ntl <- submit alice do
createCmd NonTransitive with
partyA = alice
partyB = bob
nt2 <- submit alice do
createCmd NonTransitive with
partyA = alice
partyB = bob

submitMustFail bob do
exerciseCmd ntl TryB with
other = nt2

The consequences of TryB are authorized by both Alice and Bob, but the action Trya only has Alice

as an actor and Alice is the only signatory on the contract.

Therefore, the consequences of TryA are only authorized by Alice. Bob’s authority is now missing to

create the flipped NonTransitive so the transaction fails.

111.7.5 Next Up

In Composing Choices you will put everything you have learned together to build a simple asset holding
and trading model akin to thatin the Daml|OU Quickstart Tutorial. In that context you’ll learn a bit more
aboutthe Update action and how to use it to compose transactions, as well as about privacy on Daml

ledgers.

1.11. Write Smart Contracts with Daml

93

Daml SDK Documentation, 2.7.3

1.11.8 Composing Choices

It’s time to put everything you’ve learned so far together into a complete and secure Dam| model for
asset issuance, management, transfer, and trading. This application will have capabilities similar
to the one in Daml |0U Quickstart Tutorial. In the process you will learn about a few more concepts:

Daml projects, packages and modules
Composition of transactions
Observers and stakeholders

Daml’s execution model

Privacy

The model in this section is not a single Daml file, but a Daml project consisting of several files that
depend on each other.

Hint: Rememberthatyou canload all the code for this section into a folder called intro7 by running
daml new intro7 --template daml-intro-7

1.11.8.1 Daml Projects

Daml is organized in projects, packages and modules. A Daml project is specified using a single
daml.yaml file, and compiles into a package in Daml’s intermediate language, or bytecode equiva-
lent, Daml-LF. Each Daml file within a project becomes a Daml module, which is a bit like a names-
pace. Each Daml project has a source root specified in the source parameterin the project’s daml.
yaml file. The package will include all modules specified in *.daml files beneath that source direc-
tory.

You can start a new project with a skeleton structure using daml new project-name inthe termi-
nal. A minimal project would contain just a daml.yaml file and an empty directory of source files.

Take a look at the daml.yaml for the this chapter’s project:

sdk-version: VERSION
name: _ PROJECT NAME
source: daml
version: 1.0.0
dependencies:

- daml-prim

- daml-stdlib

- daml-script

You can generally set name and version freely to describe your project. dependencies does
what the name suggests: It includes dependencies. You should always include daml-prim and
daml-stdlib. The former contains internals of compiler and Daml Runtime, the latter gives ac-
cess to the Daml Standard Library. daml-script contains the types and standard library for Daml
Script.

You compile a Daml project by running daml build from the project root directory. This creates
a dar file in .daml/dist/dist/${project name}-${project version}.dar. A dar file is
Daml’s equivalent of a JAR file in Java: it’s the artifact that gets deployed to a ledger to load the
package and its dependencies. dar files are fully self-contained in that they contain all dependen-
cies of the main package. More on all of this in Work with Dependencies.

94 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.11.8.2 Project Structure

This project contains an asset holding model for transferable, fungible assets and a separate trade
workflow. The templates are structured in three modules: Intro.Asset, Intro.Asset.Role, and
Intro.Asset.Trade.

In addition, there are tests in modules Test.Intro.Asset,Test.Intro.Asset.Role,and Test.
Intro.Asset.Trade.

All but the last .-separated segment in module names correspond to paths relative to the project
source directory, and the last one to a file name. The folder structure therefore looks like this:

— daml

F— Intro
|— Asset

| |— Role.daml

| L — Trade.daml

L — Asset.daml

Test

L— Intro
|— Asset
| I— Role.daml
| L Trade.daml
L — Asset.daml

— daml.yaml

—

Each file contains a module header. For example, daml/Intro/Asset/Role.daml:

module Intro.Asset.Role where

You can import one module into another using the import keyword. The LibraryModules module
imports all six modules:

import Intro.Asset

Imports always have to appear just below the module declaration. You can optionally add a list of
names after the import to import only the selected names:

import DA.List (sortOn, groupOn)

If your module contains any Daml Scripts, you need to import the corresponding functionality:

import Daml.Script

1.11.8.3 Project Overview

The project both changes and adds to the Tou model presented in Parties and Authority:

Assets are fungible in the sense that they have Merge and Split choices that allow the owner
to manage their holdings.

Transfer proposals now need the authorities of both issuer and newOwner to accept. This
makes Asset safer than Iou from the issuer’s point of view.

1.11. Write Smart Contracts with Daml 95

Daml SDK Documentation, 2.7.3

With the Tou model, an issuer could end up owing cash to anyone as transfers were autho-
rized by just owner and newOwner. In this project, only parties having an AssetHolder con-
tract can end up owning assets. This allows the i ssuer to determine which parties may own
their assets.

The Trade template adds a swap of two assets to the model.

1.11.8.4 Composed Choices and Scripts

This project showcases how you can putthe Update and Script actions you learned about in Parties

and Authority to good use. For example, the Merge and Split choices each perform several actions
in their consequences.

Two create actions in case of Split
One create and one archive action in case of Merge

choice Split
SplitResult
with
splitQuantity : Decimal
controller owner
do
splitAsset <- create this with
quantity = splitQuantity
remainder <- create this with
quantity = quantity - splitQuantity
return SplitResult with
splitAsset
remainder

choice Merge
ContractId Asset
with
otherCid : ContractId Asset
controller owner

do

other <- fetch otherCid

assertMsg
"Merge failed: issuer does not match"
(issuer == other.issuer)

assertMsg
"Merge failed: owner does not match"
(owner == other.owner)

assertMsg
"Merge failed: symbol does not match"
(symbol == other.symbol)

archive otherCid
create this with
quantity = quantity + other.quantity

The return function used in Split is available in any Action context. The result of return xisa
no-op containing the value x. It has an alias pure, indicating that it’s a pure value, as opposed to a
value with side-effects. The return name makes sense when it’s used as the last statementin ado
block as its argument is indeed the return -value of the do block in that case.

Taking transaction composition a step further, the Trade Settle choice on Trade composes two
exercise actions:

96 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

choice Trade_Settle
(ContractId Asset, ContractId Asset)
with
quoteAssetCid : ContractId Asset
baseApprovalCid : ContractId TransferApproval
controller quoteAsset.owner
do
fetchedBaseAsset <- fetch baseAssetCid
assertMsg
"Base asset mismatch"
(baseAsset == fetchedBaseAsset with
observers = baseAsset.observers)

fetchedQuoteAsset <- fetch quoteAssetCid

assertMsg
"Quote asset mismatch"
(quoteAsset == fetchedQuoteAsset with
observers = quoteAsset.observers)

transferredBaseCid <- exercise
baseApprovalCid TransferApproval Transfer with
assetCid = baseAssetCid

transferredQuoteCid <- exercise
quoteApprovalCid TransferApproval Transfer with
assetCid = quoteAssetCid

return (transferredBaseCid, transferredQuoteCid)

The resulting transaction, with its two nested levels of consequences, can be seen in the
test trade scriptin Test.Intro.Asset.Trade:

TX 14 1970-01-01T00:00:00Z (Test.Intro.Asset.Trade:79:23)

#14:0
| disclosed to (since): 'Alice' (14), 'Bob' (14)
L> 'Bob' exercises Trade Settle on #12:0 (Intro.Asset.Trade:Trade)
with
quoteAssetCid = #9:1; baseApprovalCid = #13:1
children:
#14:1
disclosed to (since): 'Alice' (14), 'Bob' (14), 'USD Bank' (14)
—> 'Alice' and 'USD Bank' fetch #10:1 (Intro.Asset:Asset)
#14:2
disclosed to (since): 'Alice' (14), 'Bob' (14), 'EUR Bank' (14)
—> 'Bob' and 'EUR Bank' fetch #9:1 (Intro.Asset:Asset)
#14:3
disclosed to (since): 'Alice' (14), 'Bob' (14), 'USD Bank' (14)

—> 'Alice' and 'Bob' exercise TransferApproval Transfer on #13:1 (Intro.
—Asset:TransferApproval)

with
assetCid = #10:1
children:
#14:4
| disclosed to (since): 'Alice' (14), 'Bob' (14), 'USD Bank' (14)

(continues on next page)

1.11. Write Smart Contracts with Daml 97

Daml SDK Documentation, 2.7.3

(continued from previous page)

L> 'Alice' and 'USD Bank' fetch #10:1 (Intro.Asset:Asset)
#14:5
| disclosed to (since): 'Alice' (14), 'Bob' (14), 'USD Bank' (14)
L> 'aAlice' and 'USD_Bank' exercise Archive on #10:1 (Intro.Asset:Asset)
#14:6
| disclosed to (since): 'Alice' (14), 'Bob' (14), 'USD Bank' (14)
L> 'Bob' and 'USD_Bank' create Intro.Asset:Asset
with
issuer = 'USD Bank';
owner = 'Bob';
symbol = "USD";
quantity = 100.0000000000;
observers = []
#14:7
| disclosed to (since): 'Alice' (14), 'Bob' (14), 'EUR Bank' (14)
L> 'aAlicer,
'Bob' exercises TransferApproval Transfer on #11:1 (Intro.
—Asset:TransferApproval)
with
assetCid = #9:1
children:
#14:8
| disclosed to (since): 'Alice' (14), 'Bob' (14), 'EUR Bank' (14)
L> 'Bob' and 'EUR Bank' fetch #9:1 (Intro.Asset:Asset)
#14:9
| disclosed to (since): 'Alice' (14), 'Bob' (14), 'EUR Bank' (14)
L> 'Bob' and 'EUR_Bank' exercise Archive on #9:1 (Intro.Asset:Asset)
#14:10
| disclosed to (since): 'Alice' (14), 'Bob' (14), 'EUR Bank' (14)
L> 'Alice' and 'EUR Bank' create Intro.Asset:Asset
with
issuer = 'EUR Bank';
owner = 'Alice';
symbol = "EUR";
quantity = 90.0000000000;
observers = []

Similar to choices, you can see how the scripts in this project are built up from each other:

test issuance = do

setupResultl (alice, bob, bank,

assetCid <- submit bank do
exerciseCmd aha Issue Asset

with
symbol = "USD"
quantity = 100.0

aha,

ahb) <- setupRoles

Some asset <- queryContractId bank assetCid

Asset with
bank

assert (asset
issuer =

(continues on next page)

98

Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

owner = alice
symbol = "USD"
quantity = 100.0
observers = []

)

return (setupResult, assetCid)

In the above, the test issuance scriptin Test.Intro.Asset.Role uses the output of the se-
tupRoles script in the same module.

The same line shows a new kind of pattern matching. Rather than writing setupResult <- se-
tupRoles and then accessing the components of setupResult using 1, 2, etc, you can give
them names. It’s equivalent to writing:

setupResult <- setupRoles
case setupResult of
(alice, bob, bank, aha, ahb) -> ...

Just writing (alice, bob, bank, aha, ahb) <- setupRoles would also be legal, but se-
tupResult is used in the return value of test issuance so it makes sense to give it a name, too.
The notation with @ allows you to give both the whole value as well as its constituents names in one

go.

1.11.8.5 Daml’s Execution Model

Daml’s execution model is fairly easy to understand, but has some important consequences. You
can imagine the life of a transaction as follows:

Command Submission A user submits a list of Commands via the Ledger API of a Participant Node,
acting as a Party hosted on that Node. That party is called the requester.

Interpretation Each Command corresponds to one or more Actions. During this step, the Update
corresponding to each Action is evaluated in the context of the ledger to calculate all conse-
quences, including transitive ones (consequences of consequences, etc.). The result of this is
a complete Transaction. Together with its requestor, this is also known as a Commit.

Blinding On ledgers with strong privacy, projections (see Privacy) for all involved parties are created.
This is also called projecting.

Transaction Submission The Transaction/Commit is submitted to the network.

Validation The Transaction/Commit is validated by the network. Who exactly validates can differ
from implementation to implementation. Validation also involves scheduling and collision
detection, ensuring that the transaction has a well-defined place in the (partial) ordering of
Commits, and no double spends occur.

Commitment The Commitis actually committed according to the commit or consensus protocol of

the Ledger.

Confirmation The network sends confirmations of the commitment back to all involved Participant
Nodes.

Completion The user gets back a confirmation through the Ledger APl of the submitting Participant
Node.

The first important consequence of the above is that all transactions are committed atomically. Ei-
ther a transaction is committed as a whole and for all participants, or it fails.

1.11. Write Smart Contracts with Daml 99

Daml SDK Documentation, 2.7.3

That’s important in the context of the Trade Settle choice shown above. The choice transfers a
baseAsset one way and a quoteAsset the other way. Thanks to transaction atomicity, there is no
chance that either party is left out of pocket.

The second consequence is that the requester of a transaction knows all consequences of their sub-
mitted transaction - there are no surprises in Daml. However, it also means that the requester must
have all the information to interpret the transaction. We also refer to this as Principle 2 a bit later on
this page.

That’s also important in the context of Trade. In order to allow Bob to interpret a transaction that
transfers Alice’s cash to Bob, Bob needs to know both about Alice’s Asset contract, as well as about
some way for Alice to accept a transfer - remember, accepting a transfer needs the authority of
issuer in this example.

1.11.8.6 Observers

Observers are Daml’s mechanism to disclose contracts to other parties. They are declared just like
signatories, but using the ocbserver keyword, as shown in the Asset template:

template Asset
with
issuer : Party
owner : Party
symbol : Text
quantity : Decimal
observers : [Party]
where
signatory issuer, owner
ensure quantity > 0.0

observer observers

The Asset template also gives the owner a choice to set the observers, and you can see how Alice
uses it to show her Asset to Bob just before proposing the trade. You can try out what happens if
she didn’t do that by removing that transaction:

usdCid <- submit alice do
exerciseCmd usdCid SetObservers with
newObservers = [bob]

Observers have guarantees in Daml. In particular, they are guaranteed to see actions that create and
archive the contract on which they are an observer.

Since observers are calculated from the arguments of the contract, they always know about each
other. That’s why, rather than adding Bob as an observer on Alice’s AssetHolder contract, and
using that to authorize the transfer in Trade Settle, Alice creates a one-time authorization in the
formof a TransferAuthorization. If Alice had lots of counterparties, she would otherwise end up
leaking them to each other.

Controllers declared in the choice syntax are not automatically made observers, as they can only be
calculated at the point in time when the choice arguments are known. On the contrary, controllers
declared via the controller cs can syntax are automatically made observers, but this syntax is
deprecated and will be removed in a future version of Daml.

100 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.11.8.7 Privacy

Daml’s privacy model is based on two principles:

Principle 1. Parties see those actions that they have a stake in. Principle 2. Every party that sees an
action sees its (transitive) consequences.

Principle 2 is necessary to ensure that every party can independently verify the validity of every trans-
action they see.

A party has a stake in an action if

they are a required authorizer of it
they are a signatory of the contract on which the action is performed
they are an observer on the contract, and the action creates or archives it

What does that mean for the exercise tradeCid Trade Settle action from test trade?

Alice is the signatory of tradeCid and Bob a required authorizer of the Trade Settled action, so
both of them see it. According to principle 2 above, that means they get to see everything in the
transaction.

The consequences contain, nextto some fetch actions, two exercise actions of the choice Trans-
ferApproval Transfer.

Each of the two involved TransferApproval contracts is signed by a different issuer, which see
the action on their contract. So the EUR_Bank sees the TransferApproval Transfer action
for the EUR Asset and the USD_Bank sees the TransferApproval Transfer action for the USD
Asset.

Some Daml ledgers, like the script runner and the Sandbox, work on the principle of data minimiza-
tion , meaning nothing more than the above information is distributed. That is, the projection of
the overall transaction that gets distributed to EUR_Bank in step 4 of Dam/’s Execution Model would
consistonly of the TransferApproval Transfer and its consequences.

Other implementations, in particular those on public blockchains, may have weaker privacy con-
straints.

Divulgence

Note that principle 2 of the privacy model means that sometimes parties see contracts that they are
not signatories or observers on. If you look at the final ledger state of the test trade script, for
example, you may notice that both Alice and Bob now see both assets, as indicated by the Xs in their
respective columns:

Intro.Asset:Asset

st'-xtus issuer |owner symbol quantlw ohberverb

HE-H #15

1.11. Write Smart Contracts with Daml 101

Daml SDK Documentation, 2.7.3

This is because the create action of these contracts are in the transitive consequences of the
Trade Settle action both of them have a stake in. This kind of disclosure is often called divul-
gence and needs to be considered when designing Daml models for privacy sensitive applications.

1.11.8.8 Next Up

In Exception Handling, we will learn about how errors in your model can be handled in Daml.

1.11.9 Daml Interfaces

After defining a few templates in Daml, you’ve probably found yourself repeating some behaviors
between them. For instance, many templates have a notion of ownership where a party is designated
as the owner of the contract, and this party has the power to transfer ownership of the contract
to a different party (subject to that party agreeing to the transfer!). Daml Interfaces provide a way to
abstract those behaviors into a Daml type.

Hint: Remember that you can load all the code for this section into a folder called introl3 by
running daml new introl3 --template daml-intro-13

1.11.9.1 Context

First, define some templates:

template Cash

with
issuer : Party
owner : Party
currency : Text
amount : Decimal

where
signatory issuer, owner
ensure amount > 0.0

choice ProposeCashTransfer : ContractId CashTransferProposal
with newOwner : Party
controller owner
do
create CashTransferProposal with
cash = this
newOwner = newOwner

template CashTransferProposal
with
cash : Cash
newOwner : Party
where
signatory (signatory cash)
observer newOwner

choice AcceptCashTransferProposal : ContractId Cash

(continues on next page)

102 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

controller newOwner
do
create cash with
owner = newOwner

-—- Note that RejectCashTransferProposal and WithdrawCashTransferProposal are
-- almost identical except for the controller - the "recipient" (the new
-—- owner) can reject the proposal, while the '"sender" (the old owner) can
-—- withdraw the proposal 1if the recipient hasn't accepted it already. The
-—- effect in either case is the same: the CashTransferProposal contract 1is
-- archived and a new Cash contract is created with the same contents as the
-- original, but with a new ContractId on the ledger.
choice RejectCashTransferProposal : ContractId Cash

controller newOwner

do

create cash

choice WithdrawCashTransferProposal : ContractId Cash
controller cash.owner
do
create cash

These declarations from introl3/daml/Cash.daml define Cash as a simple template with an is-
suer, an owner, a currency, and an amount. A Cash contract grants its owner the choice Propose-
CashTransfer, which allows the owner to propose another party, the newOwner, to take over own-
ership of the asset.

This is mediated by the CashTransferProposal template, which grants two choices to the new
owner: AcceptCashTransferProposal and RejectCashTransferProposal, each of which
archives the CashTransferProposal and creates a new Cash contract; in the former case the
owner of the new Cash will be newOwner, in the latter, it will be the existing owner. Finally, the ex-
isting owner also has the choice WithdrawCashTransferProposal, which archives the proposal
and creates a new Cash contract with identical contents to the original one.

Overall, the effect is that a Cash contract can be transferred to another party, if they agree, in two
steps.

The declarations from introl3/daml/NFT.daml declare the templates NFT and NFTTransfer-

Proposal following the same pattern, with names changed where appropriate, with the main differ-

ence beingthatanNFT hasaurl : Text fieldwhereasCashhascurrency : Textandamount
Decimal.

1.11.9.2 Interface Definition

To abstract this behavior, you will next introduce two interfaces: IAsset and IAssetTransfer-
Proposal.

Hint: Itis not mandatory to prefix interface names with the letter I, but it can be convenient to tell
at a glance whether or not a type is an interface.

1.11. Write Smart Contracts with Daml 103

Daml SDK Documentation, 2.7.3

interface IAsset
where
viewtype VAsset

setOwner : Party -> IAsset
toTransferProposal : Party -> IAssetTransferProposal

choice ProposelAssetTransfer : ContractId IAssetTransferProposal
with newOwner : Party
controller (view this) .owner
do
create (toTransferProposal this newOwner)

interface IAssetTransferProposal
where
viewtype VAssetTransferProposal

asset : IAsset

choice AcceptIAssetTransferProposal : ContractId IAsset
controller (view this) .newOwner
do
create $ setOwner (asset this) (view this) .newOwner

choice RejectIAssetTransferProposal : ContractId IAsset
controller (view this) .newOwner
do
create (asset this)

choice WithdrawIAssetTransferProposal : ContractlId IAsset
controller (view (asset this)) .owner
do
create (asset this)

There are a few things happening here:

1. For each interface, you have defined a viewtype. This is mandatory for all interfaces. All view-
types must be serializable records. The viewtype abstracts the read side by providing a uniform
way in which implementations of IAsset are represented on the Ledger API. This declaration
means that the special view method, when applied to a value of this interface, will return the
specified type (in this case VAsset). This is the definition of VAsset:

data VAsset = VAsset with
issuer : Party
owner : Party
description : Text
deriving (Eq, Ord, Show)

Hint: See Serializable Types for more information on serializability requirements.

2. You have defined the methods setOwner and toTransferProposal as part of the IAsset
interface, and method asset as partof the IAssetTransferProposal interface. Later, when
you provide instances of these interfaces, you will see that it is mandatory to implement each
of these methods.

3. You have defined the choice ProposeIAssetTransfer as part of the IAsset interface, and

104 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

the choices AcceptIAssetTransferProposal, RejectIAssetTransferProposal and
WithdrawIAssetTransferProposal as part of the IAssetTransferProposal interface.
These correspond one-to-one with the choices of Cash / CashTransferProposal and NET /
NFTTransferProposal.

Notice that the choice controller and the choice body are defined in terms of the methods that
you bundled with the interfaces, including the special view method. For example, the controller
of choice ProposeIAssetTransfer is (view this) .owner, thatis, it's the owner field
of the view for the implicit current contract this, in other words, the owner of the current
contract. The body of this choice is create (toTransferProposal this newOwner), SO
it creates a new contract whose contents are the result of applying the toTransferProposal
method to the current contract and the newOwner field of the choice argument.

Hint: For a detailed explanation of the syntax used here, check out Reference: Interfaces

1.11.9.3 Interface Instances

On its own, an interface isn’t very useful, since all contracts on the ledger must belong to some
template type. In order to make the link between an interface and a template, you must define
an interface instance inside the body of either the template or the interface. In this example,
add: interface instance IAsset for Cashand interface instance IAssetTransfer-
Proposal for CashTransferProposal:

interface instance IAsset for Cash where
view = VAsset with
issuer
owner
description = show @Cash this

setOwner newOwner =
toInterface (@IAsset $
this with
owner = newOwner

toTransferProposal newOwner =
toInterface (IAssetTransferProposal $
CashTransferProposal with
cash = this
newOwner

interface instance IAssetTransferProposal for CashTransferProposal where
view = VAssetTransferProposal with
assetView = view (toInterface (IAsset cash)
newOwner

asset = toInterface (@IAsset cash

The corresponding interface instances for NFT and NFTTransferProposal are very similar so we
omit them here.

Inside the interface instances, you must implement every method defined for the corresponding in-
terface, including the special view method. Within each method implementation the variable this
is in scope, corresponding to the implict current contract, which will have the type of the template

1.11. Write Smart Contracts with Daml 105

Daml SDK Documentation, 2.7.3

(in this case Cash / CashTransferProposal), as well as each of the fields of the template type.
For example, the view definition in interface instance IAsset for Cash mentions issuer
and owner, which refer to the issuer and owner of the current Cash contract, as well as this, which
refers to the entire Cash contract payload.

The implementations given for each method must match the types given in the interface defini-
tion. Notice that the view definition discussed above returns a VAsset, corresponding to IAs-
set’s viewtype. Similarly, setOwner returns an IAsset, and toTransferProposal returns an
IAssetTransferProposal. In these last two, the function toInterface converts values from a
template type into an interface type. In setOwner, toInterface is applied to a Cash value (this
with owner = newOwner), producing an IAsset value; in toTransferProposal, it is applied
toaCashTransferProposal value (CashTransferProposal with {...}), producingan IAs-
setTransferProposal value.

1.11.9.4 Using an Interface

Now that you have some interfaces and templates with instances for them, you can reduce duplica-
tion in the code for different templates by instead going through the common interface.

For instance, both Cash and NFT are Assets, which means that contracts of either template have
an owner who can propose to transfer the contract to a third party. Thus, you can use Daml Script
(see Test Templates Using Daml Script) to test that the same contract can be created by Alice and
successively transferred to Bob and then Charlie, who then proposes to transfer to Dominic, who
rejects the proposal, and finally to Emily before withdrawing the proposal, so in the end the con-
tract remains in Charlie’s ownership. This procedure is tested on the Cash and NEFT templates by
the Daml Script tests cashTest and nftTest, respectively, both defined in introl3/daml/Main.
daml.

But that’s alotof duplication! cashTest and nftTest only differin the line that creates the original
asset and in the names of the choices used. With the new interfaces IAsset and IAssetTrans-—
ferProposal, you can write the body of this test a single time, with the name mkAssetTest,

mkAssetTest assetTxt Parties {..} mkAsset = do

You now have not the test itself, but rather a recipe for making the test given some inputs - in this
case, assetTxt (a label used for debugging), Parties {..} (a structure containing the Party
values for Alice and friends) and finally mkAsset (a function that returns a contract value of type
t when given two Party arguments - the constraint Implements t IAsset meansthatt mustbe
some template with an interface instance for IAsset).

Before looking at the body of mkAssetTest, notice how you use it to define the new tests cashAs-
setTest and nftAssetTest; these are almost identical except for the label and function given in
each case tomkAssetTest. In effect, you have abstracted those away, so you don’t need to include
those details in the body of mkAssetTest:

cashAssetTest : Script (ContractId IAsset)
cashAssetTest = do

parties <- allocateParties

mkAssetTest "Cash" parties mkCash

mkCash : Party -> Party -> Cash
mkCash issuer owner = Cash with
issuer

(continues on next page)

106 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

owner
currency = "USD"
amount = 42.0

nftAssetTest : Script (ContractId IAsset)
nftAssetTest = do

parties <- allocateParties

mkAssetTest "NET" parties mkNft

mkNft : Party -> Party -> NFT
mkNft issuer owner = NFT with
issuer
owner
url = "https://nyan.feline/"

In turn, mkAssetTest isn’t very different from other Daml Scripts you might have written before:
it uses do notation as usual, including submit blocks constructed from Commands that define the
ordered transactions that take place in the test. The main difference is that when querying values
of interface types you cannot use the functions query and queryContractId; instead you must
use queryInterface (for obtaining the set of visible active contracts of a given interface type) and
queryInterfaceContractId (forobtaining asingle contract givenits ContractId). Importantly,
these functions return the view of the contract corresponding to the used interface, rather than the
contract record itself. This is because the ledger might contain contracts of template types that you
don’t know about but that do implement our interface, so the view is the only sensible thing that can
be returned by the ledger.

Also note that immediately after creating the asset with createCmd, you convert the resulting Con-
tractId tintoaContractId IAsset usingtoInterfaceContractId, which allows you to ex-
ercise IAsset choices on it.

mkAssetTest : forall t.
(Template t, Implements t IAsset, HasAgreement t) =>
Text -> Parties -> (Party -> Party -> t) -> Script (ContractId IAsset)
mkAssetTest assetTxt Parties {..} mkAsset = do
aliceAsset <-
alice “submit® do
toInterfaceContractId @IAsset <S>
createCmd (mkAsset alice alice)

aliceAssetView <-
queryInterfaceContractId (@IAsset alice aliceAsset

debugRaw $ unlines

["Alice's Asset (" <> assetTxt <> "):"
"\tContractId: " <> show aliceAsset
, "\tvalue: " <> show aliceAssetView

]

bobAssetTransferProposal <-
alice “submit’ do
exerciseCmd aliceAsset ProposelAssetTransfer with
newOwner = bob

bobAsset <-

(continues on next page)

1.11. Write Smart Contracts with Daml 107

Daml SDK Documentation, 2.7.3

(continued from previous page)

bob “submit® do
exerciseCmd bobAssetTransferProposal AcceptIAssetTransferProposal

charlieAssetTransferProposal <-
bob “submit® do
exerciseCmd bobAsset ProposelIAssetTransfer with
newOwner = charlie

charlieAsset <-
charlie “submit’ do
exerciseCmd charlieAssetTransferProposal AcceptIAssetTransferProposal

dominicAssetTransferProposal <-
charlie “submit® do
exerciseCmd charlieAsset ProposeIAssetTransfer with
newOwner = dominic

charlieAsset' <-
dominic “submit® do
exerciseCmd dominicAssetTransferProposal RejectIAssetTransferProposal

emilyAssetTransferProposal <-
charlie “submit® do
exerciseCmd charlieAsset' ProposelAssetTransfer with
newOwner = emily

charlieAsset'' <-
charlie “submit’ do

exerciseCmd emilyAssetTransferProposal WithdrawIAssetTransferProposal

charlieAssetView <-
queryInterfaceContractId @IAsset charlie charlieAsset''

debugRaw $ unlines

["Charlie's Asset (" <> assetTxt <> "):"
, "\tContractId: "™ <> show charlieAsset''
, "\tView: " <> show charlieAssetView
]

charlieAssetView ===

Some (view (toInterface (@IAsset (mkAsset alice charlie)))

pure charlieAsset''

1.11.10 Exception Handling

The default behavior in Daml is to abort the transaction on any error and roll back all changes that
have happened until then. However, this is not always appropriate. In some cases, it makes sense
to recover from an error and continue the transaction instead of aborting it.

One option for doing that is to represent errors explicitly via Either or Option as shown in Data
Types. This approach has the advantage that it is very explicit about which operations are allowed to
fail without aborting the entire transaction. However, it also has two major downsides. First, it can be
invasive for operations where aborting the transaction is often the desired behavior, e.g., changing

108 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

division to return Either or an Option to handle division by zero would be a very invasive change
and many call sites might not want to handle the error case explicitly. Second, and more importantly,
this approach does not allow rolling back ledger actions that have happened before the point where
failure is detected; if a contract got created before we hit the error, there is no way to undo that except
for aborting the entire transaction (which is what we were trying to avoid in the first place).

By contrast, exceptions provide a way to handle certain types of errors in such a way that, on the one
hand, most of the code that is allowed to fail can be written just like normal code, and, on the other
hand, the programmer can clearly delimit which part of the current transaction should be rolled
back on failure. All of that still happens within the same transaction and is thereby atomic contrary
to handling the error outside of Daml.

Hint: Rememberthatyoucanload all the code for this sectioninto a folder called intro8 byrunning
daml new intro8 --template daml-intro-8

Our example for the use of exceptions will be a simple shop template. Users can order items by
calling a choice and transfer money (in the form of an lou issued by their bank) from their account
to the owner in return.

First, we need to setup a template to represent the account of a user:

template Account with
issuer : Party
owner : Party
amount : Decimal

where

signatory issuer, owner
ensure amount > 0.0
key (issuer, owner) : (Party, Party)
maintainer key. 2

choice Transfer : () with
newOwner : Party
transferredAmount : Decimal
controller owner, newOwner

do create this with amount = amount - transferredAmount
create Iou with issuer = issuer, owner = newOwner, amount =[]
—transferredAmount
pure ()

Note that the template has an ensure clause that ensures that the amount is always positive so
Transfer cannot transfer more money than is available.

The shop is represented as a template signed by the owner. It has a field to represent the bank
accepted by the owner, a list of observers that can order items, and a fixed price for the items that
can be ordered:

template Shop
with
owner : Party
bank : Party

observers : [Party]
price : Decimal
where

(continues on next page)

1.11. Write Smart Contracts with Daml 109

Daml SDK Documentation, 2.7.3

(continued from previous page)

signatory owner
observer observers

Note: In areal setting the price of each item for sale might be defined in a separate contract.

The ordering process is then represented by a non-consuming choice on this template which calls
Transfer and creates an Order contract in return:

nonconsuming choice OrderItem : ContractId Order
with
shopper : Party
controller shopper
do exerciseByKey (@Account (bank, shopper) (Transfer owner price)
create Order
with
shopOwner = owner
shopper = shopper

However, the shop owner has realized that often orders fail because the account of their users is not
topped up. They have a small trusted userbase they know well so they decide that if the account
is not topped up, the shoppers can instead issue an lou to the owner and pay later. While it would
be possible to check the conditions under which Transfer will fail in OrderItem this can be quite
fragile: In this example, the condition is relatively simple but in larger projects replicating the con-
ditions outside the choice and keeping the two in sync can be challenging.

Exceptions allow us to handle this differently. Rather than replicating the checks in Transfer, we
can instead catch the exception thrown on failure. To do so we need to use a try-catch block. The
try block defines the scope within which we want to catch exceptions while the catch clauses
define which exceptions we want to catch and how we want to handle them. In this case, we want to
catch the exception thrown by a failed ensure clause. This exception is defined in daml-stdlib as
PreconditionFailed. Putting it together our order process for trusted users looks as follows:

nonconsuming choice OrderItemTrusted : ContractId Order
with
shopper : Party
controller shopper
do cid <- create Order

with
shopOwner = owner
shopper = shopper
try do
exerciseByKey (@Account (bank, shopper) (Transfer owner price)
catch
PreconditionFailed _ -> do
create Iou with
issuer = shopper
owner = owner
amount = price
pure ()
pure cid

Let’s walk through this code. First, as mentioned, the shop owner is the trusting kind, so he wants
to start by creating the Order no matter what. Next, he tries to charge the customer for the order.

110 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

We could, at this point, check their balance against the cost of the order, but that would amount
to duplicating the logic already present in Account. This logic is pretty simple in this case, but
duplicating invariants is a bad habit to get into. So, instead, we just try to charge the account. If
that succeeds, we just merrily ignore the entire catch clause; if that fails, however, we do not want
to destroy the Order contract we had already created. Instead, we want to catch the error thrown by
the ensure clause of Account (in this case, it is of type PreconditionFailed) and try something
else: create an Iou contract to register the debt and move on.

Note that if the Tou creation still failed (unlikely with our definition of Tou here, but could happen
in more complex scenarios), because that one is not wrapped in a try block, we would revert to the
default Daml behaviour and the Order creation would be rolled back.

In addition to catching built-in exceptions like PreconditionFailed, you can also define your own
exception types which can be caught and thrown. As an example, let’s consider a variant of the
Transfer choice that only allows for transfers up to a given limit. If the amount is higher than the
limit, we throw an exception called TransferLimitExceeded.

We first have to define the exception and define a way to represent it as a string. In this case, our
exception should store the amount that someone tried to transfer as well as the limit.

exception TransferLimitExceeded
with
limit : Decimal
attempted : Decimal
where
message "Transfer of " <> show attempted <> " exceeds limit of " <> show limit

To throw our own exception, you can use throw in Update and Script or throwPure in other con-
texts.

choice TransferLimited : () with
newOwner : Party
transferredAmount : Decimal
controller owner, newOwner
do let limit = 50.0
when (transferredAmount > limit) $
throw TransferLimitExceeded with

limit = limit
attempted = transferredAmount
create this with amount = amount - transferredAmount
create Iou with issuer = issuer, owner = newOwner, amount =l
—transferredAmount
pure ()

Finally, we can adapt our choice to catch this exception as well:

nonconsuming choice OrderItemTrustedLimited : ContractId Order
with
shopper : Party
controller shopper

do try do
exerciseByKey (@Account (bank, shopper) (TransferLimited owner price)
pure ()
catch
PreconditionFailed _ -> do

create Iou with

(continues on next page)

1.11. Write Smart Contracts with Daml m

Daml SDK Documentation, 2.7.3

(continued from previous page)

issuer = shopper
owner = owner
amount = price
pure ()
TransferLimitExceeded _ _ -> do
create Iou with
issuer = shopper
owner = owner
amount = price
pure ()
create Order
with
shopOwner = owner

shopper = shopper

For more information on exceptions, take a look at the language reference.

1.11.10.1 Next Up

We have now seen how to develop safe models and how we can handle errors in those models in a
robust and simple way. But the journey doesn’t stop there. In Work with Dependencies you will learn
how to extend an already running application to enhance it with new features. In that context you’ll
learn a bit more about the architecture of Daml, about dependencies, and about identifiers.

1.11.11 Work with Dependencies

The application from Composing Choices is a complete and secure model for atomic swaps of assets,
but there is plenty of room for improvement. However, one can’t implement all features before going
live with an application so it’s important to understand how to change already running code. There
are fundamentally two types of change one may want to make:

1. Upgrades, which change existing logic. For example, one might want the Asset template to
have multiple signatories.
2. Extensions, which merely add new functionality through additional templates.

Upgrades are covered in their own section outside this introduction to Daml: Upgrading and Extending
Daml Applications so in this section we will extend the Composing Choices model with a simple second
workflow: a multi-leg trade. In doing so, you’ll learn about:

The software architecture of the Daml Stack
Dependencies and Data Dependencies
Identifiers

Since we are extending Composing Choices, the setup for this chapter is slightly more complex:

1. In a base directory, load the Composing Choices project using daml new intro7 --template
daml-intro-7. The directory intro7 here is important as it’ll be referenced by the other
project we are creating.

2. In the same directory, load this chapter’s project using daml new intro9 --template
daml-intro-9.

Dependencies contains a new module Intro.Asset.MultiTrade and acorresponding test mod-
ule Test.Intro.Asset.MultiTrade.

112 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.11.11.1 DAR, DALF, Daml-LF, and the Engine

In Composing Choices you already learnt a little about projects, Daml-LF, DAR files, and dependencies.
In this chapter we will actually need to have dependencies from the current project to the Composing
Choices project so it’s time to learn a little more about all this.

Let’s have a look inside the DAR file of Composing Choices. DAR files, like Java JAR files, are just ZIP
archives, but the SDK also has a utility to inspect DARs out of the box:

1. Navigate into the intro7 directory.
2. Build using daml build -o assets.dar
3. Rundaml damlc inspect-dar assets.dar

You’ll get a whole lot of output. Under the header DAR archive contains the following files: you’ll
see that the DAR contains:

1. *.dalf files for the project and all its dependencies
2. The original Daml source code

3. *.hiand *.hie files for each *.daml file

4. Some meta-inf and config files

Thefirstfileissomethinglike intro7-1.0.0-887056cbb313b%4ab9%a6cat34f7fedfbfel9chb0c861e50d1
dalf which is the actual compiled package for the project. *.dalf files contain Daml-LF, which is

Daml’s intermediate language. The file contents are a binary encoded protobuf message from the

daml-If schema. Daml-LF is evaluated on the Ledger by the Daml Engine, which is a JVM component

thatis part of tools like the IDE’s Script runner, the Sandbox, or proper production ledgers. If DamlI-LF

is to Daml what Java Bytecode is to Java, the Daml Engine is to Daml what the JVM is to Java.

1.11.11.2 Hashes and Identifiers

Under the heading DAR archive contains the following packages: you get a similar looking list
of package names, paired with only the long random string repeated. That hexadecimal string,
887056cbb313b94ab9abcafl34f7fedfbfel9cb0c861e50d1594c665567ab7625 in this case, is
the package hash and the primary and only identifier for a package that’s guaranteed to be avail-
able and preserved. Meta information like name (intro7) and version (1.0.0) help make it human
readable but should not be relied upon. You may not always get DAR files from your compiler, but be
loading them from a running Ledger, or get them from an artifact repository.

We can see this in action. When a DAR file gets deployed to a ledger, not all meta information is
preserved.

1. Note down your main package hash from running inspect-dar above

2. Start the project using daml start

3. Open a second terminal and run daml ledger fetch-dar --host localhost --port
6865 --main-package-id "887056cbb313b9%4ab%abcaf34f7fedfbfel9cb0c861e50d1594c665
-o assets_ ledger.dar, making sure to replace the hash with the appropriate one.

4. Rundaml damlc inspect-dar assets ledger.dar

You’ll notice two things. Firstly, a lot of the dependencies have lost their names, they are now only
identifiable by hash. We could of course also create a second project intro7-1.0.0 with com-
pletely different contents so even when name and version are available, package hash is the only
safe identifier.

That’s why over the Ledger API, all types, like templates and records are identified by the triple (en-
tity name, module name, package hash). Your client application should know the package

1.11. Write Smart Contracts with Daml N3

https://github.com/digital-asset/daml/tree/main/daml-lf/archive

Daml SDK Documentation, 2.7.3

hashes it wants to interact with. To aid that, inspect-dar also provides a machine-readable for-
mat for the information itemits: daml damlc inspect-dar --json assets ledger.dar.The
main package idfield inthe resulting JSON payload is the package hash of our project.

Secondly, you’ll notice that all the *.daml, *.hi and *.hie files are gone. This leads us to data
dependencies.

1.11.11.3 Dependencies and Data Dependencies

Dependencies under the daml.yaml dependencies group rely on the * .hi files. The information
in these files is crucial for dependencies like the Standard Library, which provide functions, types
and typeclasses.

However, as you can see above, this information isn’t preserved. Furthermore, preserving this infor-
mation may not even be desirable. Imagine we had built intro7 with SDK 1.100.0, and are building
intro9 with SDK 1.101.0. All the typeclasses and instances on the inbuilt types may have changed
and are now present twice - once from the current SDK and once from the dependency. This gets
messy fast, which is why the SDK does not support dependencies across SDK versions. For depen-
dencies on contract models that were fetched from a ledger, or come from an older SDK version, there
is a simpler kind of dependency called data-dependencies. The syntax for data-dependencies
is the same, but they only rely on the binary *.dalf files. The name tries to confer that the main
purpose of such dependencies is to handle data: Records, Choices, Templates. The stuff one needs
to use contract composability across projects.

For an extension model like this one, data-dependencies” are appropriate, so the current project
includes Composing Choices that way:

- daml-script
data-dependencies:
- ../intro7/assets.dar

You’ll notice a module Test.Intro.Asset.TradeSetup, whichis almostacarbon copy ofthe Com-
posing Choices trade setup Scripts. data-dependencies is designed to use existing contracts and
data types. Daml Script is not imported. In practice, we also shouldn’t expect that the DAR file we
download from the ledger using daml ledger fetch-dar containstestscripts. Forlargerprojects
it’s good practice to keep them separate and only deploy templates to the ledger.

1.11.11.4 Structuring Projects

As you’ve seen here, identifiers depend on the package as a whole and packages always bring all their
dependencies with them. Thus changing anything in a complex dependency graph can have signif-
icant repercussions. It is therefore advisable to keep dependency graphs simple, and to separate
concerns which are likely to change at different rates into separate packages.

Forexample,in all our projects in this intro, including this chapter, our scripts are in the same project
as our templates. In practice, that means changing a test changes all identifiers, which is not de-
sirable. It's better for maintainability to separate tests from main templates. If we had done that in
Composing Choices, that would also have saved us from copying Composing Choices.

Similarly, we included Trade in the same project as Asset in Composing Choices, even though Trade
is a pure extension to the core Asset model. If we expect Trade to need more frequent changes, it
may be a good idea to split it out into a separate project from the start.

N4 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

111.11.5 Next Up

TheMultiTrade model has more complex control flow and data handling than previous models. In
Functional Programming 101 you’ll learn how to write more advanced logic: control flow, folds, common
typeclasses, custom functions, and the Standard Library. We’ll be using the same projects so don’t
delete your folders just yet.

1.11.12 Functional Programming 101

In this chapter, you will learn more about expressing complex logic in a functional language like
Daml. Specifically, you’ll learn about

Function signatures and functions
Advanced control flow (i f. . .else, folds, recursion, when)

If you no longer have your Composing Choices and Work with Dependencies projects set up, and want to
look back at the code, please follow the setup instructions in Work with Dependencies to get hold of
the code for this chapter.

Note: There is a project template daml-intro-10 for this chapter, but it only contains a single
source file with the code snippets embedded in this section.

1.11.12.1 The Haskell Connection

The previous chapters of this introduction to Daml have mostly covered the structure of templates,
and their connection to the Daml Ledger Model. The logic of what happens within the do blocks of
choices has been kept relatively simple. In this chapter, we will dive deeper into Daml’s expression
language, the part that allows you to write logic inside those do blocks. But we can only scratch
the surface here. Daml borrows a lot of its language from Haskell. If you want to dive deeper, or
learn about specific aspects of the language you can refer to standard literature on Haskell. Some
recommendations:

Finding Success and Failure in Haskell (Julie Maronuki, Chris Martin)

Haskell Programming from first principles (Christopher Allen, Julie Moronuki)
Learn You a Haskell for Great Good! (Miran Lipova a)

Programming in Haskell (Graham Hutton)

Real World Haskell (Bryan O’Sullivan, Don Stewart, John Goerzen)

When comparing Daml to Haskell it’s worth noting:

Haskell is a lazy language, which allows you to write things like head [1..], meaning take
the first element of an infinite list . Daml by contrast is strict. Expressions are fully evaluated,
which means it is not possible to work with infinite data structures.

Daml has a with syntax for records and dot syntax for record field access, neither of which is
present in Haskell. However, Daml supports Haskell’s curly brace record notation.

Daml has a number of Haskell compiler extensions active by default.

Daml doesn’t support all features of Haskell’s type system. For example, there are no existential
types or GADTs.

Actions are called Monads in Haskell.

1.11. Write Smart Contracts with Daml 15

https://www.haskell.org
https://joyofhaskell.com/
http://haskellbook.com/
http://learnyouahaskell.com/
http://www.cs.nott.ac.uk/~pszgmh/pih.html
http://book.realworldhaskell.org/

Daml SDK Documentation, 2.7.3

1.11.12.2 Functions

In Data Types you learnt about one half of Daml’s type system: Data types. It’'s now time to learn about
the other, which are Function types. Function types in Daml can be spotted by looking for —> which
can beread as mapsto .

Forexample, the function signature Int -> Int mapsanintegertoanotherinteger. There are many
such functions, but one would be:

increment : Int -> Int
increment n = n + 1

You can see here that the function declaration and the function definitions are separate. The dec-
laration can be omitted in cases where the type can be inferred by the compiler, but for top-level
functions (ie ones at the same level as templates, directly under a module), it’s often a good idea to
include them for readability.

In the case of increment it could have been omitted. Similarly, we could define a function add
without a declaration:

add nm=n +m

If you do this, and wonder what type the compiler has inferred, you can hover over the function name
in the IDE:

What you see here is a slightly more complex signature:

add : Additive a => a -> a -> a

There are two interesting things going on here:

1. We have more than one ->.
2. We have a type parameter a with a constraint Additive a.

Function Application

Let’s start by looking attheright hand parta -> a -> a.The->isrightassociative, meaninga ->
a -> alisequivalenttoa -> (a -> a).Usingthe mapsto way of reading ->, we get a maps
to a function that maps atoa .

And this is indeed what happens. We can define a different version of increment by partially applying
add:

increment2 = add 1

116 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

If you try this out in your IDE, you’ll see that the compiler infers type Int -> Int again.Itcandoso
because of the literal 1 : Int.

Soif we have a functionf : a -> b -> ¢ -> dandavaluevalad : a,wegetf vala : b ->
c -> d,i.e. we can apply the function argument by argument. If we also had valB : b, we would
have £ valA valB : ¢ -> d. Whatthis tells you is that function application is left associative: £
valA valB == (f valA) wvalB.

Infix Functions

Now add is clearly just an alias for +, but what is +? + is just a function. It’s only special because it
starts with a symbol. Functions that start with a symbol are infix by default which means they can
be written between two arguments. That’s why we can write 1 + 2 ratherthan+ 1 2. The rules for
converting between normal and infix functions are simple. Wrap an infix function in parentheses to
use it as a normal function, and wrap a normal function in backticks to make it infix:

three = 1 “add’ 2

With that knowledge, we could have defined add more succinctly as the alias that it is:

add?2 : Additive a => a -> a -> a
add2 = (+)

If we want to partially apply an infix operation we can also do that as follows:

increment3 = (1 +)
double = (* 2)

Note: While function application is left associative by default, infix operators can be declared left
or right associative and given a precedence. Good examples are the boolean operations && and | |,
which are declared right associative with precedences 3 and 2, respectively. This allows you to write
True || True && False and getvalue True. See section 4.4.2 of the Haskell 98 report for more
on fixities.

Type Constraints

TheAdditive a =>partofthesignatureofaddisatypeconstraintonthetype parametera. Addi-
tive hereis a typeclass. You already met typeclasses like Eq and Show in Data Types. The Additive
typeclass says that you can add a thing, i.e. there is a function (+) : a -> a -> a. Now the way
toread the full signature of add is Giventhata has aninstance forthe Additive typeclass, a maps
to a function which maps atoa .

Typeclassesin Daml are a bitlike interfaces in other languages. To be able to add two things using the
+function, those things need to expose (have aninstance for) the Additive interface (typeclass).

Unlike interfaces, typeclasses can have multiple type parameters. A good example, which also
demonstrates the use of multiple constraints at the same time, is the signature of the exercise
function:

1.11. Write Smart Contracts with Daml n7

https://www.haskell.org/onlinereport/decls.html

Daml SDK Documentation, 2.7.3

exercise : (Template t, Choice t ¢ r) => ContractlId t -> c -> Update r

Let’s turn this into prose: Given that t is the type of a template, and that t has a choice c with return
type r, the exercise function maps a ContractId for a contract of type t to a function that takes
the choice arguments of type c and returns an Update resulting in type r.

That’s quite a mouthful, and does require one to know what meaning the typeclass Choice gives to
parameters t c and r, but in many cases, that’s obvious from the context or names of typeclasses
and variables.

Using single letters, while common, is not mandatory. The above may be made a little bit clearer by
expanding the type parameter names, at the cost of making the code a bit longer:

exercise : (Template template, Choice template choice result) =>
Contractld template -> choice -> Update result

Pattern Matching in Arguments

You met pattern matching in Data Types, using case expressions which is one way of pattern match-
ing. However, it can also be convenient to do the pattern matching at the level of function arguments.
Think about implementing the function uncurry:

uncurry : (a -> b ->c) -> (a, b) -> ¢

uncurry takes a function with two arguments (or more, since c could be a function), and turns it
into a function from a 2-tuple to c. Here are three ways of implementing it, using tuple accessors,
case pattern matching, and function pattern matching:

uncurryl £ t = f t. 1 t. 2

uncurry?2 f t = case t of
(x, yv) -> £ x vy

uncurry £ (x, y) = f x vy

Any pattern matching you can do in case you can also do at the function level, and the compiler
helpfully warns you if you did not cover all cases, which is called non-exhaustive .

fromSome : Optional a -> a
fromSome (Some x) = X

The above will give you a warning:

warning:
Pattern match(es) are non-exhaustive
In an equation for ‘fromSome’: Patterns not matched: None

Afunction that does not cover all its cases, like fromSome here, is called a partial function. fromSome
None will cause a runtime error.

We can use function level pattern matching together with a feature called Record Wildcards to write
the function issueAsset in Work with Dependencies:

118 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

issueAsset : Asset -> Script (ContractId Asset)

issueAsset asset((Asset with ..) = do
assetHolders <- queryFilter (@AssetHolder issuer
(\ah =-> (ah.issuer == issuer) && (ah.owner == owner))

case assetHolders of
(ahCid, _)::_ -> submit asset.issuer do
exerciseCmd ahCid Issue Asset with
[1 -> abort ("No AssetHolder found for " <> show asset)

The .. in the pattern match here means bind all fields from the given record to local variables, so
we have local variables issuer, owner, etc.

The .. in the second to last line means fill all fields of the new record using local variables of the
matching names, in this case (per the definition of Issue Asset), symbol and quantity, taken
from the asset argument to the function. In other words, this is equivalent to:

exerciseCmd ahCid Issue Asset with symbol = asset.symbol, quantity = asset.
—quantity

because the notation asset@ (Asset with ..) binds asset to the entire record, while also bind-
ing all of the fields of asset to local variables.

Functions Everywhere

You have probably already guessed it: Anywhere you can put a value in Daml you can also put a
function. Even inside data types:

data Predicate a = Predicate with
test : a -> Bool

More often it makes sense to define functions locally, inside a 1et clause or similar. Good examples
of this are the validate and transfer functions defined locally in the Trade Settle choice of
the model from Work with Dependencies:

let
validate (asset, assetCid) = do
fetchedAsset <- fetch assetCid
assertMsg
"Asset mismatch"
(asset == fetchedAsset with
observers = asset.observers)

mapA validate (zip baseAssets baseAssetCids)
mapA validate (zip quoteAssets quoteAssetCids)

let
transfer (assetCid, approvalCid) = do
exercise approvalCid TransferApproval Transfer with assetCid

transferredBaseCids <- mapA transfer (zip baseAssetCids baseApprovalCids)
transferredQuoteCids <- mapA transfer (zip quoteAssetCids!]
—quoteApprovalCids)

1.11. Write Smart Contracts with Daml 119

Daml SDK Documentation, 2.7.3

You can see that the function signature is inferred from the context here. If you look closely (or hover
over the function in the IDE), you’ll see that it has signature

validate : (HasFetch r, Egq r, HasField "observers" r a) => (r, ContractId r) ->[|
—Update ()

Note: Bear in mind that functions are not serializable, so you can’t use them inside template ar-
guments, as choice inputs, or as choice outputs. They also don’t have instances of the Eq or Show
typeclasses which one would commonly want on data types.

ThemapAandmapA functionsloop through the lists of assets and approvals and apply the functions
validate and transfer to each element of those lists, performing the resulting Update action in
the process. We’ll look at that more closely under Looping below.

Lambdas

Daml supports inline functions, called lambda s. They are defined usingthe (\x v z -> ...)
syntax. For example, a lambda version of increment would be (\n -> n + 1).

1.11.12.3 Control Flow

In this section, we will cover branching and looping, and look at a few common patterns of how to
translate procedural code into functional code.

Branching

Until Composing Choices the only real kind of control flow introduced has been case, which is a pow-
erful tool for branching.

If ... Else

Add Constraints to a Contract also showed a seemingly self-explanatory if ... else expression,but
didn’texplainitfurther. Let’'simplementthe functionboolToInt : Bool -> Intwhichintypical
fashion maps True to 1 and False to 0. Here is an implementation using case:

boolToInt b = case b of
True -> 1
False -> 0

If you write this function in the IDE, you’ll get a warning from the linter:

Suggestion: Use if
Found:
case b of
True -> 1
False -> 0
Perhaps:
if b then 1 else 0

120 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

The linter knows the equivalence and suggests a better implementation:

boolToInt2 b = if b
then 1
else 0

Inshort: if ... else expressions are equivalent to case expressions, but can be easier to read.

Control Flow as Expressions

caseandif ... else expressions really are control flow in the sense that they short-circuit:

doError t = case t of
"True" =-> True
"False" -> False
_ => error ("Not a Bool: " <> t)

This function behaves as you would expect: the error only gets evaluated if an invalid text is passed
in.

This is different from functions, where all arguments are evaluated immediately:

ifelse b t e = if b then t else e
boom = ifelse True 1 (error "Boom'")

In the above, boom is an error.

While providing proper control flow, case and 1f ... else expressions do result in a value when
evaluated. You can actually see that in the function definitions above. Since each of the functions is
defined just as a caseorif ... else expression, the value of the evaluated function is just the
value of the case or if ... else expression. Values have a type: the 1f ... else expression
in boolToInt2 has type Int as that is what the function returns; similarly, the case expression
in doError has type Bool. To be able to give such expressions an unambiguous type, each branch
needs to have the same type. The below function does not compile as one branch tries to return an
Int and the other a Text:

typeError b = if b
then 1
else "a"

If we need functions that can return two (or more) types of things we need to encode that in the return
type. For two possibilities, it’'s common to use the Either type:

intOrText : Bool -> Either Int Text
intOrText b = if Db

then Left 1

else Right "a"

When you have more than two possible types (and sometimes even just for two types), it can be
clearer to define your own variant type to wrap all possibilities.

1.11. Write Smart Contracts with Daml 121

Daml SDK Documentation, 2.7.3

Branching in Actions

The most common case where this becomes important is inside do blocks. Say we want to create a
contract of one type in one case, and of another type in another case. Let’s say we have two template
types and want to write a function that creates an S if a condition is met, and a T otherwise.

template T
with
p : Party
where

signatory p

template S
with
p : Party
where

signatory p

It would be tempting to write a simple if ... else, butitwon’t typecheck if each branch returns
a different type:

typeError b p = if b
then create T with p
else create S with p

We have two options:

1. Use the Either trick from above.
2. Getrid of the return types.

ifThenSElseTl b p = if b
then do
cid <- create S with p
return (Left cid)
else do
cid <- create T with p
return (Right cid)

ifThenSElseT2 b p = if b
then do
create S with p
return ()
else do
create T with p
return ()

The latter is so common that there is a utility function in DA.Action to get rid of the return type:
void : Functor £ => f a -> £ ().

ifThenSElseT3 b p = if b
then void (create S with p)
else void (create T with p)

void also helps express control flow of the type Create a T only if a condition is met.

122 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

conditionalS b p = if b
then void (create S with p)
else return ()

Note that we still need the else clause of the same type (). This pattern is so common, it’s encap-
sulated in the standard library function DA.Action.when : (Applicative f) => Bool -> f
0 -> £ 0.

conditionalS2 b p = when b (void (create S with p))

Despite when looking like a simple function, the compiler does some magic so that it short-circuits
evaluation justlike if ... elseand case. The following noop functionis a no-op (i.e. does noth-
ing), not an error as one might otherwise expect:

noop : Update () = when False (error "Foo")

With case,if ... else,void and when, you can express all branching. However, one additional
feature you may want to learn is guards. They are not covered here, but can help avoid deeply nested
if ... else blocks. Here’s just one example. The Haskell sources at the beginning of the chapter
cover this topic in more depth.

tellSize : Int -> Text

tellSize d

| d < 0 = "Negative"

| d == 0 = "Zero"

| d == 1 = "Non-Zero"

| d < 10 = "Small"

| d < 100 = "Big"

| d < 1000 = "Huge"

| otherwise = "Enormous"
Looping

Other than branching, the most common form of control flow is looping. Looping is usually used to
iteratively modify some state. We’ll use JavaScript in this section to illustrate the procedural way of
doing things.

function sum(intArr) {
var result = 0;
intArr.forEach (i => {
result += 1i;
1)

return result;

A more general loop looks like this:

function whileF (init, cont, step, finalize) {
var state = init():;
while (cont(state)) {
state = step(state);

(continues on next page)

1.11. Write Smart Contracts with Daml 123

Daml SDK Documentation, 2.7.3

(continued from previous page)

return finalize (state);

In both cases, state is being mutated: result in the former, state in the latter. Values in Daml are
immutable, so it needs to work differently. In Daml we will do this with folds and recursion.

Folds

Folds correspond to looping with an explicit iterator: for and forEach loops in procedural lan-
guages. The most common iteratoris alist, as is the case in the sum function above. For such cases,
Daml has the foldl function. The 1 stands for left and means the list is processed from the left.
There is also a corresponding foldr which processes from the right.

foldl : (b => a -=> b) =-> b -> [a] -> Db

Let’s give the type parameters semantic names. b is the state, a is an item. foldls first argument
is a function which takes a state and an item and returns a new state. That’s the equivalent of the
inner block of the forEach. It then takes a state, which is the initial state, and a list of items, which
is the iterator. The result is again a state. The sum function above can be translated to Daml almost
instantly with those correspondences in mind:

sum ints = foldl (+) 0 ints

If we wanted to be more verbose, we could replace (+) with alambda (\result i -> result +
i) which makes the correspondence to result += i from the JavaScript clearer.

Almost all loops with explicit iterators can be translated to folds, though we have to take a bit of care
with performance when it comes to translating for loops:

function sumArrs(arrl, arr2) {
var 1 = min (arrl.length, arr2.length);
var result = new int[1l];
for(var 1 = 0; i < 1; i++) {
result[i] = arrl[i] + arr2[i];
1

return result;

Translating the for into a forEach is easy if you can get your hands on an array containing values
[0..(1-1)]. And that’s how you do it in Daml, using ranges. [0.. (1-1)] is shorthand for enum-
FromTo 0 (1-1),which returns the list you’d expect.

Daml also has anoperator (!!) : [a] -> Int -> awhichreturnsanelementin alist. You may
now be tempted to write sumArrs like this:

sumArrs : [Int] -> [Int] -> [Int]
sumArrs arrl arr2 =
let 1 = min (length arrl) (length arr2)
sumAtI 1 = (arrl !! i) + (arr2 !! 1)
in foldl (\state i =-> (sumAtI 1) :: state) [] [1..(1-1)]

Unfortunately, that’s not a very good approach. Lists in Daml are linked lists, which makes access
using (!!) too slow for this kind of iteration. A better approach in Daml is to get rid of the i alto-

124 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

gether and instead merge the lists first using the zip function, and then iterate over the zipped
up lists:

sumArrs2 arrl arr2 = foldl (\state (x, y) -> (x + y) :: state) [] (zip arrl arr2)

zip : [a] -> [b] -> [(a, Db)] takes two lists, and merges them into a single list where the
firstelementis the 2-tuple containing the first element of the two input lists, and so on. It drops any
left-over elements of the longer list, thus making the min logic unnecessary.

Maps

In effect, the lambda passed to foldl only wants to act on a single element of the (zipped-up)
input list, but still has to manage the concatenation of the whole state. Acting on each element
separately is a common-enough pattern that there is a specialized function for it: map : (a ->
b) -> [a]l -> [b].Usingit, wecan rewrite sumArr to:

sumArrs3 arrl arr2 = map (\(x, y) -> (x + y)) (zip arrl arr2)

As a rule, use map if the result has the same shape as the input and you don’t need to carry state
from one iteration to the next. Use folds if you need to accumulate state in any way.

Recursion

If there is no explicit iterator, you can use recursion. Let’s try to write a function that reverses a list,
for example. We want to avoid (!!) sothereis no sensible iterator here. Instead, we use recursion:

reverseWorker rev rem = case rem of
[1 -> rev
X::Xs => reverseWorker (x::rev) xs
reverse xs = reverseWorker [] xs

You may be tempted to make reverseWorker a local definition inside reverse, but Daml only
supports recursion for top-level functions so the recursive part recurseWorker has to be its own
top-level function.

Folds and Maps in Action Contexts

The folds and map function above are pure in the sense introduced in Add Constraints to a Contract:
The functions used to map or process items have no side effects. If you have looked at the Work with
Dependencies models, you’ll have noticed mapA, mapA , and forA, which seem to serve a similar role
but within Actions. A good example is the mapA call in the testMultiTrade script:

let rels =
[Relationship chfbank alice
, Relationship chfbank bob
, Relationship gbpbank alice
, Relationship gbpbank bob

[chfha, chfhb, gbpha, gbphb] <- mapA setupRelationship rels

1.11. Write Smart Contracts with Daml 125

Daml SDK Documentation, 2.7.3

Here we have a list of relationships (type [Relationship]) and a function setupRelationship

Relationship -> Script (ContractId AssetHolder). We want the AssetHolder con-
tracts for those relationships, i.e. something of type [ContractId AssetHolder]. Using the
map function almost gets us there, butmap setupRelationship relswould havetype [Update
(ContractId AssetHolder)]. This is a list of Update actions, each resulting in a ContractId
AssetHolder. Whatwe need is an Update action resultingina [ContractId AssetHolder].The
list and Update are nested the wrong way around for our purposes.

Intuitively, it’s clear how to fix this: we want the compound action consisting of performing each of
the actions in the list in turn. There’s a function for that: sequence : : Applicative m => [m
al -> m [a].ltimplementsthatintuition and allows us to take the Update out of the list , so to
speak. So we could write sequence (map setupRelationship rels). Thisis so common that
it’s encapsulated in the mapA function, a possible implementation of which is

mapA f xs = sequence (map f xs)

The A in mapA stands for Action , and you’ll find that many functions that have something to do
with looping have an A equivalent. The most fundamental of all of these is foldlA : Action m
=> (b ->a ->mb) -> b -> [a]l -> m b,aleftfoldwith side effects. Here the inner function
has a side-effect indicated by the m so the end result m b also has a side effect: the sum of all the
side effects of the inner function.

To improve your familiarity with these concepts, try implementing foldlA intermsof foldl, as well
as sequence and mapA in terms of fold1A. Here is one set of possible implementations:

foldlA2 fn init xs =
let
work accA x = do
acc <- acchA
fn acc x
in foldl work (pure init) xs

mapA2 fn xs
let
work ys x = do
y <- fn x
return (y :: ys)
in foldlA2 work [] xs

sequence?2 actions =
let
work ys action = do
y <- action
return (y :: ys)
in foldlA2 work [] actions

forA is just mapA with its arguments reversed. This is useful for readability if the list of items is
already in a variable, but the function is a lengthy lambda.

[usdCid, chfcCid] <- forA [usdCid, chfcCid] (\cid -> submit alice do
exerciseCmd cid SetObservers with
newObservers = [bob]

Lastly, you’ll have noticed that in some cases we used mapA , not mapA. The underscore indicates
that the result is not used, somapA fn xs fn == void (mapA fn xs). The Daml Linter will

126 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

alert you if you could use mapA instead of mapA, and similarly for forAa .

1.11.12.4 Next Up

You now know the basics of functions and control flow, both in pure and Action contexts. The Work
with Dependencies example shows just how much can be done with just the tools you have encoun-
tered here, but there are many more tools at your disposal in the Daml Standard Library. It provides
functions and typeclasses for many common circumstances and in Introduction to the Dam| Standard
Library, you’ll get an overview of the library and learn how to search and browse it.

1.11.13 Introduction to the Daml Standard Library

In Data Types and Functional Programming 101 you learned how to define your own data types and func-
tions. However, you don’t have to implement everything from scratch. Daml comes with the Daml
Standard Library, which contains types, functions, and typeclasses that cover a large range of use
cases.

In this chapter, you’ll get an overview of the essentials and learn how to browse and search the li-
brary to find functions. Being proficient with the Standard Library will make you considerably more
efficient writing Daml code. Specifically, this chapter covers:

The Prelude

Important types from the Standard Library, and associated functions and typeclasses
Typeclasses

Important typeclasses like Functor, Foldable, and Traversable

How to search the Standard Library

To go in depth on some of these topics, the literature referenced in The Haskell Connection cov-
ers them in much greater detail. The Standard Library typeclasses like Applicative, Foldable,
Traversable,Action (called Monadin Haskell),and many more, are the bread and butter of Haskell
programmers.

Note: There is a project template daml-intro-11 for this chapter, but it only contains a single
source file with the code snippets embedded in this section.

1.11.13.1 The Prelude

You’ve already used a lot of functions, types, and typeclasses without importing anything. Functions
like create,exercise,and (==),typeslike [1, (,),Optional, and typeclasses like Eq, Show, and
Ord. These all come from the Prelude. The Prelude is module that gets implicitly imported into every
other Daml module and contains both Daml specific machinery as well as the essentials needed to
work with the inbuilt types and typeclasses.

1.11. Write Smart Contracts with Daml 127

Daml SDK Documentation, 2.7.3

1.11.13.2 Important Types From the Prelude

In addition to the Native Types, the Prelude defines a number of common types:

Lists
You've already met lists. Lists have two constructors [] and x :: xs, the latter of which is
prepend inthe sensethatl :: [2] == [1, 2].Infact [1,2] is just syntactical sugar for 1
2 s+ 11.
Tuples

In addition to the 2-tuple you have already seen, the Prelude contains definitions for tuples of size
up to 15. Tuples allow you to store mixed data in an ad-hoc fashion. Common use-cases are return
values from functions consisting of several pieces or passing around data in folds, as you saw in
Folds. An example of a relatively wide Tuple can be found in the test modules of the Exception Handling
project. Test.Intro.Asset.TradeSetup.tradeSetup returns the allocated parties and active
contracts in a long tuple. Test.Intro.Asset.MultiTrade.testMultiTrade puts them back
into scope using pattern matching:

return (alice, bob, usdbank, eurbank, usdha, usdhb, eurha, eurhb, usdCid,!!
—eurCid)

(alice, bob, usdbank, eurbank, usdha, usdhb, eurha, eurhb, usdCid, eurCid) <-l|
—tradeSetup

Tuples, like lists have some syntactic magic. Both the types as well as the constructors for tuples are
(,,,) where the number of commas determines the arity of the tuple. Type and data constructor
can be applied with values inside the brackets, or outside, and partial application is possible:

tl (Int, Text) = (1, "a")
t2 (,) Int Text = (1, "a")
t3 : (Int, Text) = (1,) "a"
td : a -> (a, Text) = (,"a")

Note: While tuples of great lengths are available, it is often advisable to define custom records
with named fields for complex structures or long-lived values. Overuse of tuples can harm code
readability.

128 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Optional

The Optional type represents avalue that may be missing. It’s the closest thing Daml hastoa nul-
lable value. Optional has two constructors: Some, which takes a value, and None, which doesn’t
take a value. In many languages one would write code like this:

lookupResult = lookupByKey (k) ;

if(lookupResult == null) {
// Do something

} else {
// Do something else

}

In Daml the same thing would be expressed as:

lookupResult <- lookupByKey (T k
case lookupResult of

None -> do -- Do Something
return ()
Some cid -> do -- Do Something
return ()
Either

Either is used in cases where a value should store one of two types. It has two constructors, Left
and Right, each of which take a value of one or the other of the two types. One typical use-case of
Either is as an extended Optional where Right takes the role of Some and Left the role of None,
but with the ability to store an error value. Either Text, for example behaves just like Optional,
except that values with constructor Left have a text associated to them.

Note: As with tuples, it's easy to overuse Either and harm readability. Consider writing your own
more explicit type instead. For example if you were returning South avs North b using your own
type over Either would make your code clearer.

1.11.13.3 Typeclasses

You’ve seen typeclasses in use all the way from Data Types. It's now time to look under the hood.

Typeclasses are declared using the class keyword:

class HasQuantity a g where
getQuantity : a -> g
setQuantity : g -> a -> a

This is akin to an interface declaration of an interface with a getter and setter for a quantity. To
implement this interface, you need to define instances of this typeclass:

data Foo = Foo with
amount : Decimal

(continues on next page)

1.11. Write Smart Contracts with Daml 129

Daml SDK Documentation, 2.7.3

(continued from previous page)

instance HasQuantity Foo Decimal where
getQuantity foo = foo.amount
setQuantity amount foo = foo with amount

Typeclasses can have constraints like functions. For example: class Eg a => Ord a means ev-
erything that is orderable can also be compared for equality . And that’s almost all there’s to it.

1.11.13.4 Important Typeclasses From the Prelude
Eq

The Eqg typeclass allows values of a type to be compared for (in)-equality. It makes available two
function: == and /=. Most data types from the Standard Library have an instance of Eq. As you
already learned in Data Types, you can let the compiler automatically derive instances of Eq for you
using the deriving keyword.

Templates always have an Eqg instance, and all types stored on a template need to have one.

Ord

The Ord typeclass allows values of a type to be compared for order. It makes available functions: <,
>, <=, and >=. Most of the inbuilt data types have an instance of Ord. Furthermore, types like List
and Optional get an instance of Ord if the type they contain has one. You can let the compiler
automatically derive instances of Ord for you using the deriving keyword.

Show

Show indicates that a type can be serialized to Text,ie shown in a shell. Its key function is show,
which takes a value and converts it to Text. All inbuilt data types have an instance for Show and
types like List and Optional get an instance if the type they contain has one. It also supports the
deriving keyword.

Functor

Functors are the closest thing to containers that Daml has. Whenever you see a type with a single
type parameter, you are probably looking at a Functor: [a], Optional a, Either Text a, Up-
date a. Functors are things that can be mapped over and as such, the key function of Functor is
fmap, which does generically what the map function does for lists.

Other classic examples of Functors are Sets, Maps, Trees, etc.

130 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Applicative Functor

Applicative Functors are a bit like Actions, which you met in Add Constraints to a Contract, except that
you can’t use the result of one action as the input to another action. The only important Applicative
Functor that isn’t an action in Daml is the Commands type submitted in a submit block in Daml
Script. That’s why in order to use do notation in Daml Script, you have to enable the ApplicativeDo
language extension.

Actions

Actions were already covered in Add Constraints to a Contract. One way to think of them is as recipes
for a value, which need to be executed to get at that value. Actions are always Functors (and Ap-
plicative Functors). The intuition for that is simply that fmap f x is the recipe in x with the extra
instruction to apply the pure function £ to the result.

The really important Actions in Daml are Update and Script, but there are many others, like [1,
Optional,and Either a.

Semigroups and Monoids

Semigroups and monoids are about binary operations, but in practice, their important use is for Text
and [1, where they allow concatenation using the {<>} operator.

Additive and Multiplicative

Additive and Multiplicative abstract out arithmetic operations, so that (+), (=), (*), and some other
functions can be used uniformly between Decimal and Int.

1.11.13.5 Important Modules in the Standard Library

For almost all the types and typeclasses presented above, the Standard Library contains a module:

DAList for Lists

DA.Optional for Optional

DATuple for Tuples

DA.Either for Either

DA.Functor for Functors

DAAction for Actions

DA.Monoid and DA.Semigroup for Monoids and Semigroups
DA.Text for working with Text

DA.Time for working with Time

DA.Date for working with Date

You get the idea, the names are fairly descriptive.

Otherthan the typeclasses defined in Prelude, there are two modules generalizing concepts you’ve al-
ready learned, which are worth knowing about: Foldable and Traversable. In Looping you learned
all about folds and their Action equivalents. All the examples there were based on lists, but there are
many other possible iterators. This is expressed in two additional typeclasses: DATraversable, and

1.11. Write Smart Contracts with Daml 131

Daml SDK Documentation, 2.7.3

DA.Foldable. For more detail on these concepts, please refer to the literature in The Haskell Connection,
or https://wiki.haskell.org/Foldable_and_Traversable.

1.11.13.6 Search the Standard Library

Being able to browse the Standard Library starting from The standard library is a start, and the module
naming helps, but it’s not an efficient process for finding out what a function you’ve encountered
does, even less so for finding a function that does a thing you need to do.

Daml has its own version of the Hoogle search engine, which offers search both by name and by
signature. This function is fully integrated into the search bar on https://docs.daml.com/, but for
those wanting a pure Standard Library search, it’s also available on https://hoogle.daml.com.

Search for Functions by Name

Say you come across some functions you haven’t seen before, like the ones in the ensure clause of
theMultiTrade.

ensure (length baseAssetCids == length baseAssets) &&
(length quoteApprovalCids == length quoteAssets) &&
not (null baseAssets) &&
not (null gquoteAssets)

You may be ableto guesswhatnot and null do, buttrysearchingthose names inthe documentation
search. Search results from the Standard Library will show on top. not, for example, gives

not

: Bool -> Bool

Boolean “not”

Signature (including type constraints) and description usually give a pretty clear picture of what a
function does.

Search for Functions by Signature

The other very common use case for the search is that you have some values that you want to do
something with, but don’t know the standard library function you need. On the MultiTrade tem-
plate we have a list baseAssets, and thanks to your ensure clause we know it’s non-empty. In the
original Trade we used baseAsset.owner as the signatory. How do you get the first element of
this list to extract the owner without going through the motions of a complete pattern match using
case?

The trick is to think about the signature of the function that’s needed, and then to search for that
signature. In this case, we want a single distinguished element from a list so the signature should
be [a] -> a. If you search for that, you’ll get a whole range of results, but again, Standard Library
results are shown at the top.

Scanning the descriptions, head is the obvious choice, as used in the 1et of the MultiTrade tem-
plate.

132 Chapter 1. Canton References

https://wiki.haskell.org/Foldable_and_Traversable
https://hoogle.haskell.org/
https://docs.daml.com/
https://hoogle.daml.com

Daml SDK Documentation, 2.7.3

You may notice that in the search results you also get some hits that don’t mention [] explicitly. For
example:

The reason is that there is an instance for Foldable [a].

Let’s try another search. Suppose you didn’t want the first element, but the one atindexn. Remember

that (!!) operator from Functional Programming 101? There are now two possible signatures we could
search for: [a] -> Int -> aand Int -> [a] -> a. Try searching for both. You’ll see that the
search returns (!!) in both cases. You don’t have to worry about the order of arguments.

1.11.13.7 Next Up

In the following section, you’ll find options for testing and interacting with Daml code. We also talk
about the operational semantics of some keywords and their commonly associated failures, and a
little bit about how coverage reports work in Daml testing.

1.11.14 Good Design Patterns

Patterns have been useful in the programming world, as both a source of design inspiration, and a
document of good design practices. This documentis a catalog of Daml patterns intended to provide
the same facility in the Daml application world.

You can checkout the examples locally via daml new daml-patterns --template
daml-patterns.

The Initiate and Accept Pattern The Initiate and Accept pattern demonstrates how to start a bilateral
workflow. One party initiates by creating a proposal or an invite contract. This gives another
party the chance to accept, reject or renegotiate.

The Multiple Party Agreement Pattern The Multiple Party Agreement pattern uses a Pending contract
as a wrapper for the Agreement contract. Any one of the signatory parties can kick off the
workflow by creating a Pending contract on the ledger, filling in themselves in all the signatory
fields. The Agreement contract is not created on the ledger until all parties have agreed to the
Pending contract, and replaced the initiator’s signature with their own.

The Delegation Pattern The Delegation pattern gives one party the right to exercise a choice on behalf
of another party. The agent can control a contract on the ledger without the principal explicitly
committing the action.

The Authorization Pattern The Authorization pattern demonstrates how to make sure a controlling
party is authorized before they take certain actions.

The Locking Pattern The Locking pattern exhibits how to achieve locking safely and efficiently in
Daml. Only the specified locking party can lock the asset through an active and authorized
action. When a contract is locked, some or all choices specified on that contract may not be
exercised.

1.11. Write Smart Contracts with Daml 133

Daml SDK Documentation, 2.7.3

111141 The Initiate and Accept Pattern

The Initiate and Accept pattern demonstrates how to start a bilateral workflow. One party initiates
by creating a proposal or an invite contract. This gives another party the chance to accept, reject or
renegotiate.

Motivation

It takes two to tango, but one party has to initiate. It is no different in the business world. The
contractual relationship between two businesses often starts with an invite, a business proposal,
a bid offering, etc.

Invite When a market operator wants to set up a market, they need to go through an onboarding
process inwhich they invite participants to sign master service agreements and fulfill different
roles in the market. Receiving participants need to evaluate the rights and responsibilities of
each role and respond accordingly.

Propose When issuing an asset, an issuer is making a business proposal to potential buyers. The
proposal lays out what is expected from buyers, and what they can expect from the issuer. Buy-
ers need to evaluate all aspects of the offering, e.g. price, return, and tax implications, before
making a decision.

The Initiate and Accept pattern demonstrates how to write a Daml program to model the initiation
of an inter-company contractual relationship. Daml modelers often have to follow this pattern to
ensure that no participant is forced into an obligation.

Implementation

The Initiate and Accept pattern in general involves two contracts, the initiate contract and the result
contract:

Initiate Contract The initiate contract can be created from a role contract or any other pointin the
workflow. In this example, the initiate contract is the proposal contract CoinlssueProposal which
the issuer created from the master contract CoinMaster.

template CoinMaster
with
issuer: Party
where
signatory issuer

nonconsuming choice Invite : ContractId CoinIssueProposal
with owner: Party
controller issuer
do create CoinIssueProposal
with coinAgreement = CoinIssueAgreement with issuer; owner

The CoinlssueProposal contract has Issuer as the signatory and Owner as the controller to the
Accept choice. In its complete form, the CoinlssueProposal contract should define all choices
available to the owner, i.e. Accept, Reject or Counter (re-negotiate terms).

template CoinIssueProposal
with

(continues on next page)

134 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

coinAgreement: CoinIssueAgreement
where

signatory coinAgreement.issuer

observer coinAgreement.owner

choice AcceptCoinProposal
ContractlId CoinIssueAgreement
controller coinAgreement.owner
do create coinAgreement

Result Contract Once the owner exercises the AcceptCoinProposal choice on the initiate contract to

express their consent, it returns a result contract representing the agreement between the two
parties. In this example, the result contract is of type CoinlssueAgreement. Note, it has both
issuer and owner as the signatories, implying they both need to consent to the creation of this
contract. Both parties could be controller(s) on the result contract, depending on the business
case.

template CoinIssueAgreement
with
issuer: Party
owner: Party
where
signatory issuer, owner

nonconsuming choice Issue : ContractId Coin
with amount: Decimal
controller issuer
do create Coin with issuer; owner; amount; delegates = []

CoinlssueProposal

Issuer, owner CoinlssueAgreement

Issuer, Owner,
issuer

Fig. 1: Initiate and Accept pattern diagram

1.11.

Write Smart Contracts with Daml 135

Daml SDK Documentation, 2.7.3

Trade-offs

Initiate and Accept can be quite verbose if signatures from more than two parties are required to
progress the workflow.

111.14.2 The Multiple Party Agreement Pattern

The Multiple Party Agreement pattern uses a Pending contract as a wrapper for the Agreement con-
tract. Any one of the signatory parties can kick off the workflow by creating a Pending contract on
the ledger, filling in themselves in all the signatory fields. The Agreement contract is not created on
the ledger until all parties have agreed to the Pending contract, and replaced the initiator’s signature
with their own.

Motivation

The The Initiate and Accept Pattern shows how to create bilateral agreements in Daml. However, a
project or a workflow often requires more than two parties to reach a consensus and put their signa-
tures on a multi-party contract. For example, in a large construction project, there are at least three
major stakeholders: Owner, Architect and Builder. All three parties need to establish agreement on
key responsibilities and project success criteria before starting the construction.

If such an agreement were modeled as three separate bilateral agreements, no party could be sure
if there are conflicts between their two contracts and the third contract between their partners. If
the The Initiate and Accept Pattern were used to collect three signatures on a multi-party agreement,
unnecessary restrictions would be put on the order of consensus and a number of additional contract
templates would be needed as the intermediate steps. Both solution are suboptimal.

Following the Multiple Party Agreement pattern, it is easy to write an agreement contract with mul-
tiple signatories and have each party accept explicitly.

Implementation

Agreement contract The Agreement contract represents the final agreement among a group of
stakeholders. Its content can vary per business case, but in this pattern, it always has mul-
tiple signatories.

template Agreement

with
signatories: [Party]
where
signatory signatories
ensure

unigque signatories
-— The rest of the template to be agreed to would follow here

Pending contract The Pending contract needs to contain the contents of the proposed Agreement
contract, as a parameter. This is so that parties know what they are agreeing to, and also so
that when all parties have signed, the Agreement contract can be created.

The Pending contract has a list of parties who have signed it, and a list of parties who have yet to
sign it. If you add these lists together, it has to be the same set of parties as the signatories
of the Agreement contract.

136 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

All of the toSign parties have the choice to Sign. This choice checks that the party isindeed a

member of toSign, then creates a new instance of the Pending contract where they have been
moved to the signed list.

template Pending
with
finalContract: Agreement
alreadySigned: [Party]
where
signatory alreadySigned
observer finalContract.signatories
ensure
-— Can't have duplicate signatories
unique alreadySigned

-— The parties who need to sign is the finalContract.signatories withl]
—alreadySigned filtered out

let toSign = filter ("notElem alreadySigned) finalContract.signatories
choice Sign : ContractId Pending with
signer : Party
controller signer
do
-—- Check the controller is in the toSign 1list,
—sign the Pending contract
assert (signer “elem” toSign)
create this with alreadySigned = signer

and 1if they are,l]

alreadySigned

Once all of the parties have signed, any of them can create the final Agreement contract using

the Finalize choice. This checks that all of the signatories for the Agreement have signed the
Pending contract.

choice Finalize : ContractId Agreement with
signer : Party
controller signer
do

-— Check that all the required signatories have signed Pending
assert (sort alreadySigned ==

sort finalContract.signatories)
create finalContract

Collecting the signatures in practice Since the final Pending contract has multiple signatories, it
cannot be created in that state by any one stakeholder.

However, a party can create a pending contract, with all of the other parties in the toSign list.

parties@@[personl, person2, person3, person4d]
—"Bob", "Clare'", "Dave"]

let finalContract = Agreement with signatories = parties

<- makePartiesFrom ["Alice",

-- Parties cannot create a contract already signed by someone else

initialFailTest <- personl ‘“submitMustFail® do
createCmd Pending with finalContract; alreadySigned = [personl, person2]

-- Any party can create a Pending contract provided they list themselves as
—the only signatory

pending <- personl “submit® do
createCmd Pending with finalContract; alreadySigned =

[personl]

Once the Pending contract is created, the other parties can sign it. For simplicity, the example
code only has choices to express consensus (but you might want to add choices to Accept,

1.11. Write Smart Contracts with Daml 137

Daml SDK Documentation, 2.7.3

Reject, or Negotiate).

-— Each signatory of the finalContract can Sign the Pending contract

pending <- person2 “submit® do
exerciseCmd pending Sign with signer = person?
pending <- person3 “submit’ do

exerciseCmd pending Sign with signer = person3
pending <- person4 “submit’ do
exerciseCmd pending Sign with signer = personi

-- A party can't sign the Pending contract twice
pendingFailTest <- person3 " submitMustFail' do
exerciseCmd pending Sign with signer = person3
-—- A party can't sign on behalf of someone else
pendingFailTest <- person3 submitMustFail® do
exerciseCmd pending Sign with signer = personi

Once all of the parties have signed the Pending contract, any of them can then exercise the
Finalize choice. This creates the Agreement contract on the ledger.

personl “submit® do

exerciseCmd pending Finalize with signer = personl

Pending
personl, person2,
person3, person4

person3, person4

l

Agreement

personl, person2,
person3, person4

It recreates itself each

time when a party
personl, personz, agrees to the contract.

Fig. 2: Multiple Party Agreement Diagram

138

Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

111.14.3 The Delegation Pattern

The Delegation pattern gives one party the right to exercise a choice on behalf of another party. The
agent can control a contract on the ledger without the principal explicitly committing the action.

Motivation

Delegation is prevalent in the business world. In fact, the entire custodian business is based on
delegation. When a company chooses a custodian bank, it is effectively giving the bank the rights to
hold their securities and settle transactions on their behalf. The securities are not legally possessed
by the custodian banks, but the banks should have full rights to perform actions in the client’s name,
such as making payments or changing investments.

The Delegation pattern enables Daml modelers to model the real-world business contractual agree-
ments between custodian banks and their customers. Ownership and administration rights can be
segregated easily and clearly.

Implementation

Pre-condition: There exists a contract, on which controller Party A has a choice and intends to del-
egate execution of the choice to Party B. In this example, the owner of a Coin contract intends to
delegate the Transfer choice.

template Coin

with
owner: Party
issuer: Party
amount: Decimal
delegates : [Party]

where
signatory issuer, owner
observer delegates

choice Transfer : Contractld TransferProposal
with newOwner: Party
controller owner
do
create TransferProposal
with coin=this; newOwner

Delegation Contract
Principal, the original coin owner, is the signatory of delegation contract CoinPoA. This sig-
natory is required to authorize the Transfer choice on coin.

template CoinPoA
with
attorney: Party
principal: Party
where
signatory principal
observer attorney

(continues on next page)

1.11. Write Smart Contracts with Daml 139

Daml SDK Documentation, 2.7.3

(continued from previous page)

choice WithdrawPoA
()
controller principal
do return ()

Whether or not the Attorney party should be a signatory of CoinPoA is subject to the business
agreements between Principal and Attorney. For simplicity, in this example, Attorney is not
a signatory.

Attorney is the controller of the Delegation choice on the contract. Within the choice, Prin-
cipal exercises the choice Transfer on the Coin contract.

nonconsuming choice TransferCoin

ContractId TransferProposal

with
coinId: ContractId Coin
newOwner: Party

controller attorney

do
exercise coinlId Transfer with newOwner

Coin contracts need to be disclosed to Attorney before they can be used in an exercise of
Transfer. This can be done by adding Attorney to Coin as an Observer. This can be done
dynamically, for any specific Coin, by making the observers a List, and adding a choice to
add a party to that List:

choice Disclose : ContractId Coin
with p : Party
controller owner
do create this with delegates = p :: delegates

Note: The technique is likely to change in the future. Daml is actively researching future language
features for contract disclosure.

Coin

“

issuer, owner,
owner

CoinPoA

issuer, owner,
issuer

TransferProposal Coin
coin.issuetr,
coin.owner, issuer, newOwner,
newOwner newOwner

Fig. 3: Delegation pattern diagram

140

Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

111.14.4 The Authorization Pattern

The Authorization pattern demonstrates how to make sure a controlling party is authorized before
they take certain actions.

Motivation

Authorization is an universal conceptin the business world as access to most business resources is
a privilege, and not given freely. For example, security trading may seem to be a plain bilateral agree-
ment between the two trading counterparties, but this could not be further from truth. To be able to
trade, the trading parties need go through a series of authorization processes and gain permission
from a list of service providers such as exchanges, market data streaming services, clearing houses
and security registrars etc.

The Authorization pattern shows how to model these authorization checks prior to a business trans-
action.

Authorization

Here is an implementation of a Coin transfer without any authorization:

template Coin

with
owner: Party
issuer: Party
amount: Decimal
delegates : [Party]

where
signatory issuer, owner
observer delegates

choice Transfer : Contractld TransferProposal
with newOwner: Party
controller owner
do
create TransferProposal
with coin=this; newOwner

This is may be insufficient since the issuer has no means to ensure the newOwner is an accredited
company. The following changes fix this deficiency.

Authorization contract The below shows an authorization contract CoinOwnerAuthorization. In this
example, the issuer is the only signatory so it can be easily created on the ledger. Owner is an
observer on the contract to ensure they can see and use the authorization.

template CoinOwnerAuthorization
with
owner: Party
issuer: Party
where
signatory issuer
observer owner

(continues on next page)

1.11. Write Smart Contracts with Daml 141

Daml SDK Documentation, 2.7.3

(continued from previous page)

choice WithdrawAuthorization
()
controller issuer
do return ()

Authorization contracts can have much more advanced business logic, butin its simplest form,
CoinOwnerAuthorization serves its main purpose, which is to prove the owner is a warranted coin
owner.

TransferProposal contract In the TransferProposal contract, the Accept choice checks that
newOwner has proper authorization. A CoinOwnerAuthorization for the new owner has to be sup-
plied and is checked by the two assert statements in the choice before a coin can be transferred.

choice AcceptTransfer
: ContractId Coin
with token: ContractId CoinOwnerAuthorization
controller newOwner
do
t <- fetch token
assert (coin.issuer == t.issuer)
assert (newOwner == t.owner)
create coin with owner = newOwner

Coin CoinOwnerAuthorization

issuer, owner, .
issuer, owner, owner

issuer
R)
TransferProposal Coin
coin.issuer,
coin.owner, issuer, newOwner,
newOwner newOwner

Fig. 4: Authorization Diagram

142 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

111.14.5 The Locking Pattern

The Locking pattern exhibits how to achieve locking safely and efficiently in Daml. Only the specified
locking party can lock the asset through an active and authorized action. When a contract is locked,
some or all choices specified on that contract may not be exercised.

Motivation

Locking is a common real-life requirement in business transactions. During the clearing and set-
tlement process, once a trade is registered and novated to a central Clearing House, the trade is
considered locked-in. This means the securities under the ownership of seller need to be locked so
they cannot be used for other purposes, and so should be the funds on the buyer’'s account. The
locked state should remain throughout the settlement Payment versus Delivery process. Once the
ownership is exchanged, the lock is lifted for the new owner to have full access.

Implementation

There are three ways to achieve locking:

Lock by Archiving

Pre-condition: there exists a contract that needs to be locked and unlocked. In this section, Coin is
used as the original contract to demonstrate locking and unlocking.

template Coin

with
owner: Party
issuer: Party
amount: Decimal
delegates : [Party]

where
signatory issuer, owner
observer delegates

choice Transfer : Contractld TransferProposal
with newOwner: Party
controller owner
do
create TransferProposal
with coin=this; newOwner

--a coin can only be archived by the issuer under the condition that thell
—~issuer 1is the owner of the coin. This ensures the issuer cannot archive coinsl]
—at will.

choice Archives

()
controller issuer
do assert (issuer == owner)

1.11. Write Smart Contracts with Daml 143

Daml SDK Documentation, 2.7.3

Archiving is a straightforward choice for locking because once a contract is archived, all choices
on the contract become unavailable. Archiving can be done either through consuming choice or
archiving contract.

Consuming Choice

The steps below show how to use a consuming choice in the original contract to achieve locking:

Add a consuming choice, Lock, to the Coin template that creates a LockedCoin.

The controller party on the Lock may vary depending on business context. In this example, owner
is a good choice.

The parameters to this choice are also subject to business use case. Normally, it should have
at least locking terms (eg. lock expiry time) and a party authorized to unlock.

choice Lock : ContractId LockedCoin

with maturity: Time; locker: Party
controller owner
do create LockedCoin with coin=this; maturity; locker

Create a LockedCoin to represent Coin in the locked state. LockedCoin has the following charac-
teristics, all in order to be able to recreate the original Coin:
- The signatories are the same as the original contract.
- It has all data of Coin, either through having a Coin as a field, or by replicating all data of
Coin.
- It has an Unlock choice to lift the lock.

template LockedCoin

with
coin: Coin
maturity: Time
locker: Party

where
signatory coin.issuer, coin.owner
observer locker

choice Unlock
: ContractId Coin
controller locker
do create coin

q Lock
Cain LockedCoin

issuer, owner,

issuer, owner,
owner

owner, unlocker

Fig. 5: Locking By Consuming Choice Diagram

144

Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Archiving Contract

In the event that changing the original contract is not desirable and assuming the original contract
already has an Archive choice, you can introduce another contract, CoinCommitment, to archive Coin
and create LockedCoin.

Examine the controller party and archiving logic in the Archives choice on the Coin contract. A
coin can only be archived by the issuer under the condition that the issuer is the owner of the
coin. This ensures the issuer cannot archive any coin at will.

--a coin can only be archived by the issuer under the condition that thell

—issuer 1is the owner of the coin. This ensures the issuer cannot archive coinsll
—at will.

choice Archives
()
controller issuer
do assert (issuer == owner)

Since we need to call the Archives choice from CoinCommitment, its signatory has to be Issuer.

template CoinCommitment
with
owner: Party
issuer: Party
amount: Decimal
where
signatory issuer
observer owner

The controller party and parameters on the Lock choice are the same as described in locking by
consuming choice. The additional logic required is to transfer the asset to the issuer, and then
explicitly call the Archive choice on the Coin contract.

Once a Coinis archived, the Lock choice creates a LockedCoin that represents Coin in locked state.

nonconsuming choice LockCoin
ContractId LockedCoin
with coinCid: ContractId Coin
maturity: Time
locker: Party
controller owner
do
inputCoin <- fetch coinCid
assert (inputCoin.owner == owner && inputCoin.issuer == issuer &é&!/
—inputCoin.amount == amount)
-—the original coin firstly transferred to issuer and then archived
prop <- exercise coinCid Transfer with newOwner = issuer
do
id <- exercise prop AcceptTransfer
exercise id Archives
--create a lockedCoin to represent the coin in locked state
create LockedCoin with
coin=inputCoin with owner; issuer; amount
maturity; locker

1.11. Write Smart Contracts with Daml 145

Daml SDK Documentation, 2.7.3

Coin

issuer, owner,
owner .. Archive

CoinCommitment)
LockedCoin

Lock

issuer, owner issuer, owner,
owner, unlocker

Fig. 6: Locking By Archiving Contract Diagram

Trade-offs

This pattern achieves locking in a fairly straightforward way. However, there are some tradeoffs.

Locking by archiving disables all choices on the original contract. Usually for consuming
choices this is exactly what is required. But if a party needs to selectively lock only some
choices, remaining active choices need to be replicated on the LockedCoin contract, which can

lead to code duplication.
The choices on the original contract need to be altered for the lock choice to be added. If this

contract is shared across multiple participants, it will require agreement from all involved.

Lock by State

The original Coin template is shown below. This is the basis on which to implement locking by state

template Coin

with
owner: Party
issuer: Party
amount: Decimal
delegates : [Party]

where
signatory issuer, owner
observer delegates

choice Transfer : ContractId TransferProposal
with newOwner: Party
controller owner
do
create TransferProposal
with coin=this; newOwner

146 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

--a coin can only be archived by the issuer under the condition that thell
—issuer is the owner of the coin. This ensures the issuer cannot archive coinsl]
—at will.

choice Archives

()
controller issuer
do assert (issuer == owner)

In its original form, all choices are actionable as long as the contract is active. Locking by State
requires introducing fields to track state. This allows for the creation of an active contract in two
possible states: locked or unlocked. ADaml modeler can selectively make certain choices actionable
only if the contract is in unlocked state. This effectively makes the asset lockable.

The state can be stored in many ways. This example demonstrates how to create a LockableCoin
through a party. Alternatively, you can add a lock contract to the asset contract, use a boolean flag
or include lock activation and expiry terms as part of the template parameters.

Here are the changes we made to the original Coin contract to make it lockable.

Add a locker party to the template parameters.
Define the states.
- if owner == locker, the coin is unlocked
- if owner !=locker, the coin is in a locked state
The contract state is checked on choices.
- Transfer choice is only actionable if the coin is unlocked
- Lock choice is only actionable if the coin is unlocked and a 3rd party locker is supplied
- Unlock is available to the locker party only if the coin is locked

template LockableCoin
with
owner: Party
issuer: Party
amount: Decimal
locker: Party
where
signatory issuer
signatory owner
observer locker

ensure amount > 0.0

--Transfer can happen only if it is not locked
choice Transfer : Contractld TransferProposal
with newOwner: Party
controller owner
do
assert (locker == owner)
create TransferProposal
with coin=this; newOwner

--Lock can be done if owner decides to bring a locker on board
choice Lock : ContractId LockableCoin
with newlLocker: Party
controller owner
do
assert (newLocker /= owner)

(continues on next page)

1.11. Write Smart Contracts with Daml 147

Daml SDK Documentation, 2.7.3

(continued from previous page)

create this with locker = newLocker

--Unlock only makes sense 1if the coin is in locked state
choice Unlock
ContractId LockableCoin
controller locker
do
assert (locker /= owner)
create this with locker = owner

Locking By State Diagram

Transfer choice,

LockableCoin actionable only if it is

locked
issuer,
owner, locker
TransferProposal
coin.issuer,
coin.owner,
newOwner

Trade-offs

It requires changes made to the original contract template. Furthermore you should need to

change all choices intended to be locked.

If locking and unlocking terms (e.g. lock triggering event, expiry time, etc) need to be added to
the template parameters to track the state change, the template can get overloaded.

Lock by Safekeeping

Safekeepingis arealistic way to model locking as itis a common practice in many industries. For ex-
ample, during areal estate transaction, purchase funds are transferred to the sellers lawyer’s escrow
account after the contract is signed and before closing. To understand its implementation, review

the original Coin template first.

template Coin

with
owner: Party
issuer: Party
amount: Decimal
delegates : [Party]

where
signatory issuer, owner
observer delegates

148

Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

choice Transfer : ContractId TransferProposal
with newOwner: Party
controller owner
do
create TransferProposal
with coin=this; newOwner

-—-a coin can only be archived by the issuer under the condition that thell
—~1issuer 1s the owner of the coin. This ensures the issuer cannot archive coinsl]
—at will.

choice Archives

()
controller issuer
do assert (issuer == owner)

There is no need to make a change to the original contract. With two additional contracts, we can
transfer the Coin ownership to a locker party.

Introduce a separate contract template LockRequest with the following features:
- LockRequest has a locker party as the single signatory, allowing the locker party to unilat-
erally initiate the process and specify locking terms.
- Once owner exercises Accept on the lock request, the ownership of coin is transferred to
the locker.
- The Accept choice also creates a LockedCoinV2 that represents Coin in locked state.

template LockRequest

with
locker: Party
maturity: Time
coin: Coin

where
signatory locker
observer coin.owner

choice Accept : LockResult
with coinCid : ContractId Coin
controller coin.owner

do
inputCoin <- fetch coinCid
assert (inputCoin == coin)
tpCid <- exercise coinCid Transfer with newOwner = locker

coinCid <- exercise tpCid AcceptTransfer
lockCid <- create LockedCoinV2 with locker; maturity; coin
return LockResult {coinCid; lockCid}

LockedCoinV2 represents Coin in the locked state. It is fairly similar to the LockedCoin described
in Consuming Choice. The additional logic is to transfer ownership from the locker back to the
owner when Unlock or Clawback is called.

template LockedCoinV2
with
coin: Coin
maturity: Time
locker: Party
where

(continues on next page)

1.11. Write Smart Contracts with Daml 149

Daml SDK Documentation, 2.7.3

(continued from previous page)

signatory locker, coin.owner

choice UnlockV2

ContractId Coin

with coinCid : ContractId Coin

controller locker

do
inputCoin <- fetch coinCid
assert (inputCoin.owner == locker)
tpCid <- exercise coinCid Transfer with newOwner = coin.owner
exercise tpCid AcceptTransfer

choice ClawbackV2

ContractId Coin

with coinCid : ContractId Coin

controller coin.owner

do
currTime <- getTime
assert (currTime >= maturity)
inputCoin <- fetch coinCid
assert (inputCoin == coin with owner=locker)
tpCid <- exercise coinCid Transfer with newOwner = coin.owner
exercise tpCid AcceptTransfer

Coin

issuer, owner,
owner . Transfer

LockRequest
g LockedCoin

locker, owner owner, locker
owner, locker

Fig.7: Locking By Safekeeping Diagram

150 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Trade-offs

Ownership transfer may give the locking party too much access on the locked asset. A rogue lawyer
could run away with the funds. In a similar fashion, a malicious locker party could introduce code to
transfer assets away while they are under their ownership.

1.11.14.6 Diagram Legends

Contract Active contract
Contract Archived contract
AB C Signatories, Controllers, Observers

O Non-consuming choice
& Consuming choice
4] Consuming choice (but recreating itself with an updated state)

Create another contract from a choice

Reference to contractld

1.11. Write Smart Contracts with Daml 151

Daml SDK Documentation, 2.7.3

1.11.15 Test Daml Contracts

This chapter is all about testing and debugging the Daml contracts you’ve built using the tools from
earlier chapters. You’ve already met Daml Script as a way of testing your code inside the IDE. In this
chapter you’ll learn about more ways to test with Daml Script and its other uses, as well as other
tools you can use for testing and debugging. You’ll also learn about a few error cases that are most
likely to crop up only in actual distributed testing, and which need some care to avoid. Specifically
we will cover:

Daml Test tooling - Script, REPL, and Navigator
Checking choice coverage

The trace and debug functions

Contention

Note that this section only covers testing your Daml contracts. For more holistic application testing,
please refer to Testing Your Web App.

If you no longer have your projects set up, load all the code for this parts 1 and 2 of this
section into two folders introl2-partl and introl2-part2, by running daml new in-
trol2-partl --template daml-intro-12-partl and daml new introl2-part2
-—-template daml-intro-12-part2.

1.11.15.1 Daml Test Tooling

There are three primary tools available in the SDK to test and interact with Daml contracts. Itis highly
recommended to explore the respective docs. The Work with Dependencies model lends itself well to
being tested using these tools.

Daml Script

Daml Script should be familiar by now. It's a way to script commands and queries from
multiple parties against a Daml Ledger. Unless you’ve browsed other sections of the doc-
umentation already, you have probably used it mostly in the IDE. However, Daml Script
can do much more than that. It has four different modes of operation:

1. Runon a special Script Service in the IDE, providing the Script Views.

2. Run the Script Service via the CLI, which is useful for quick regression testing.

3. Starta Sandbox and run against that for regression testing against an actual Ledger
API.

4. Run against any other already running Ledger.

Daml Navigator

Daml Navigator is a Ul that runs against a Ledger API and allows interaction with con-
tracts.

Daml REPL

If you want to do things interactively, Daml REPL is the tool to use. The best way to think
of Daml REPL is as an interactive version of Daml Script, but it doubles up as a language
REPL (Read-Evaluate-Print Loop), allowing you to evaluate pure expressions and inspect
the results.

152 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.11.15.2 Debug, Trace, and Stacktraces

The above demonstrates nicely how to test the happy path, but what if a function doesn’t behave as
you expected? Daml has two functions that allow you to do fine-grained printf debugging: debug and
trace. Both allow you to print something to StdOut if the code is reached. The difference between
debug and trace is similar to the relationship between abort and error:

debug : Text -> m () maps atextto an Action that has the side-effect of printing to Std-

Out.
trace : Text -> a -> a printsto StdOut when the expression is evaluated.
daml> let a : Script () = debug "foo"
daml> let b : Script () = trace "bar" (debug "baz")
[Daml.Script:378]: "bar"
daml> a
[DA.Internal.Prelude:532]: "foo"
daml> b
[DA.Internal.Prelude:532]: "baz"
daml>

If in doubt, use debug. It’s the easier of the two to interpret the results of.

The thing in the square brackets is the last location. It'll tell you the Daml file and line number that
triggered the printing, but often no more than that because full stacktraces could violate subtrans-
action privacy quite easily. If you want to enable stacktraces for some purely functional code in your
modules, you can use the machinery in DA.Stack to do so, but we won’t cover that any further here.

1.11.15.3 Diagnose Contention Errors

The above tools and functions allow you to diagnose most problems with Daml code, but they are all
synchronous. The sequence of commands is determined by the sequence of inputs. That means one
of the main pitfalls of distributed applications doesn’t come into play: Contention.

Contention refers to conflicts over access to contracts. Daml guarantees that there can only be one
consuming choice exercised per contract so what if two parties simultaneously submit an exercise
command on the same contract? Only one can succeed. Contention can alsooccurduetoincomplete
or stale knowledge. Maybe a contract was archived a little while ago, but due to latencies, a client
hasn’t found out yet, or maybe due to the privacy model, they never will. What all these cases have
in common is that someone has incomplete knowledge of the state the ledger will be in at the time
a transaction will be processed and/or committed.

For in-depth information, see the section on Avoiding Contention.
If we look back at Dam/’s Execution Model we’ll see there are three places where ledger state is read:

1. Acommand is submitted by someclient, probably looking at the state of the ledger to build that

command. Maybe the command includes references to Contractlds that the client believes are

active.

During interpretation, ledger state is used to look up active contracts.

3. During commit, ledger state is again used to look up contracts and validate the transaction by
reinterpreting it.

n

Collisions can occur both between 1and 2 and between 2 and 3. Only during the commit phase is the
complete relevant ledger state at the time of the transaction known, which means the ledger state
at commit time is king. As a Daml contract developer, you need to understand the different causes

1.11. Write Smart Contracts with Daml 153

../resource-management/contention-avoiding.html

Daml SDK Documentation, 2.7.3

of contention, be able to diagnose the root cause if errors of this type occur, and be able to avoid
collisions by designing contracts appropriately.

Common Errors

The most common error messages you’ll see are listed below. All of them can be due to one of three
reasons.

1. Race Conditions - knowledge of a state change is not yet known during command submission

2. Stale References - the state change is known, but contracts have stale references to keys or
Contractlds

3. Ignorance - due to privacy or operational semantics, the requester doesn’t know the current
state

Following the possible error messages, we’ll discuss a few possible causes and remedies.

Contractld Not Found During Interpretation

Command interpretation error in LF-Damle: dependency error: couldn't findl!
—contractl]
—ContractId(004481eb78464f1ed3291b06504d5619db4£110df71cb5764717elc4d3aal96b9f) .

Contractld Not Found During Validation

Disputed: dependency error: couldn't find contract ContractId!
— (00c06£fa370£8858b20£d100423d928b1d200d8e3c9975600b9c038307ed6e25d6€f) .

fetchByKey Error During Interpretation

Command interpretation error in LF-Damle: dependency error: couldn't find key com.
—daml.lf.transaction.GlobalKey@11£4913d.

fetchByKey Dispute During Validation

Disputed: dependency error: couldn't find key com.daml.lf.transaction.
—GlobalKey@11£4913d

154 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

lookupByKey Dispute During Validation

Disputed: recreated and original transaction mismatch VersionedTransaction(...)
—expected, but VersionedTransaction(...) 1is recreated.

Avoid Race Conditions and Stale References

The first thing to avoid is write-write or write-read contention on contracts. In other words, one re-
quester submitting a transaction with a consuming exercise on a contract while another requester
submits another exercise or fetch on the same contract. This type of contention cannot be elimi-
nated entirely, for there will always be some latency between a client submitting a command to a
participant, and other clients learning of the committed transaction.

Here are a few scenarios and measures you can take to reduce this type of collision:

1. Shard data. Imagine you want to store a user directory on the Ledger. At the core, this is of

type [(Text, Party)], where Text is a display name and Party the associated Party. If you
store this entire list on a single contract, any two users wanting to update their display name
at the same time will cause a collision. If you instead keep each (Text, Party) onaseparate
contract, these write operations become independent from each other.
The Analogy to keep in mind when structuring your data is that a template defines a table, and
a contract is a row in that table. Keeping large pieces of data on a contract is like storing big
blobs in a database row. If these blobs can change through different actions, you get write
conflicts.

2. Use nonconsuming choices if you can. Nonconsuming exercises have the same contention

properties as fetches: they don’t collide with each other.
Contract keys can seem like a way out, but they are not. Contract keys are resolved to Contract
IDs during the interpretation phase on the participant node. So it reduces latencies slightly by
moving resolution from the client layer to the participant layer, but it doesn’t remove the issue.
Going back to the auction example above, if Alice sent a command exerciseByKey QAuc-
tion auctionKey Bid with amount = 100, this would be resolved to an exercise cid
Bid with amount = 100 during interpretation, where cid is the participant’s best guess
what Contractld the key refers to.

3. Avoid workflows that encourage multiple parties to simultaneously try to exercise a consum-
ing choice on the same contract. For example,imagine an Auction contract containing a field
highestBid : (Party, Decimal). IfAlicetriesto bid $100 at the same time that Bob tries
to bid $90, it doesn’t matter that Alice’s bid is higher. The second transaction to be sequenced
will be rejected as it has a write collision with the first. It’s better to record the bids in sepa-
rate Bid contracts, which can be written to independently. Again, think about how you would
structure this data in a relational database to avoid data loss due to race conditions.

4. Think carefully about storing Contractlds. Imagine you had created a sharded user directory
according to 1. Each user has a User contract that store their display name and party. Now you
write a chat application where each Message contract refers to the sender by ContractId
User. If the user changes their display name, that reference goes stale. You either have to
modify all messages that user ever sent, or become unable to use the sender contract in Daml.
If you need to be able to make this link inside Daml, Contract Keys help here. If the only place
you need to link Party to User is the Ul, it might be best to not store contract references in
Daml at all.

1.11. Write Smart Contracts with Daml 155

Daml SDK Documentation, 2.7.3

Collisions Due to Ignorance

The Daml Ledger Model specifies authorization rules, and privacy rules. le it specifies what makes a
transaction conformant, and who gets to see which parts of a committed transaction. It does not
specify how a command is translated to a transaction. This may seem strange at first since the
commands - create, exercise, exerciseByKey, createAndExercise - correspond so closely to actions in
the ledger model. But the subtlety comes in on the read side. What happens when the participant,
during interpretation, encounters a fetch, fetchByKey, or lookupByKey?

To illustrate the problem, let’s assume there is a template T with a contract key, and Alice has wit-
nessed two Create nodes of a contract of type T with key k, but no corresponding archive nodes.
Alice may not be able to order these two nodes causally in the sense of one create came before the
other . See Causality and Local Daml Ledgers for an in-depth treatment of causality on Daml Ledgers.

Sowhat should happen now if Alice’s participant encounters a fetchByKey QT kor lookupByKey
@T k during interpretation? What if it encounters a fetch node? These decisions are part of the
operational semantics, and the decision of what should happen is based on the consideration that
the chance of a participant submitting an invalid transaction should be minimized.

If a fetch or exercise is encountered, the participant resolves the contract as long as it has not
witnessed an archive node for that contract - ie as long as it can’t guarantee that the contractis no
longer active. The rationale behind this is that fetch and exercise use Contractlds, which need
to come from somewhere: Command arguments, Contract arguments, or key lookups. In all three
cases, someone believes the Contractld to be active still so it’s worth trying.

If a fetchByKey or LookupByKey node is encountered, the contract is only resolved if the requester
is a stakeholder on an active contract with the given key. If that’s not the case, there is no reason
to believe that the key still resolves to some contract that was witnessed earlier. Thus, when using
contract keys, make sure you make the likely requesters of transactions observers on your contracts.
If you don’t, fetchByKey will always fail, and 1ookupByKey will always return None.

Let’s illustrate how collisions and operational semantics and interleave:

1. Bob creates T with key k. Alice is not a stakeholder.

2. Alice submits a command resulting in well-authorized 1lookupByKey QT k during interpre-
tation. Even if Alice witnessed 1, this will resolve to a None as Alice is not a stakeholder. This
transaction is invalid at the time of interpretation, but Alice doesn’t know that.

3. Bob submits an exerciseByKey QT k Archive.

4. Depending on which of the transactions from 2 and 3 gets sequenced first, either just 3, or both
2 and 3 get committed. If 3 is committed before 2, 2 becomes valid while in transit.

Asyou can see,the behaviorof fetch, fetchByKeyand lookupByKey atinterpretation time depend
on what information is available to the requester at that time. That’s something to keep in mind
when writing Daml contracts, and something to think about when encountering frequent Disputed
errors.

156 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.11.15.4 Checking Coverage

Whendaml testrunsasetoftests,itanalyzestheledgerrecord fromthoseteststoreporttemplate
and choice coverage. It calculates what percentage of templates defined in the package were created
and what percentage of choices defined in the package were exercised.

You can also save the resulting coverage results for the test set to a file and then read them back
into a future report. In aninvocation of daml test, you can both read results in and run tests simul-
taneously in order to generate a final report which aggregates them. More details on the workflows
that this enables are detailed in Serializing Results Workflows.

Local/External Package Tests
--all, --test-pattern, --files

\

Test Runner
~ (Script Service)

\ Previous Coverage Results
New Coverage Results --load-coverage

| |
v

Final Coverage Results

|
\/ Y

Save to File Output to Screen
--Save-coverage

Flags Controlling Test Set

You can control the set of tests run by daml test using --test-pattern PATTERN, --files
FILE, and —--all.

Passing -—-test-pattern <PATTERN> runs only the local tests which match PATTERN.
Passing -—files <FILE> runs only the tests found in FILE.

Enabling —-all runs tests in dependency modules as well. Note: all external tests are run,
regardless of the setting in test-pattern; test-pattern only restricts local tests.

1.11. Write Smart Contracts with Daml 157

Daml SDK Documentation, 2.7.3

Flags Controlling Serialization

You can save the final coverage results of a daml test invocation using --save-coverage FILE.
This writes the list of templates and choices in scope, along with the list of templates created and
choices exercised.

You can read in previous coverage results using --load-coverage FILE.This flagcan be set mul-
tiple times, in which case the results from each file will be read and aggregated into the final result.

There may be occasions where you only need to aggregate coverage results from files, without run-
ning any tests. To do that, use the --1load-coverage-only flag, which ensures that no tests are
run.

Flags Controlling Report

Enabling —-show-coverage tells the final printed report to include the names of any templates,
choices, and interfaces which are not covered. By default, the report only reports the percentage of
coverage.

You can remove choices from the rendered coverage report with —-coverage-ignore-choice
PATTERN. This flag’s behavior is further documented in Excluding Choices from the Coverage Report.

Define templates, choices, and interfaces

To demonstrate how the coverage report works, we start by defining three dummy templates, T1, T2,
and T3. Each template has two dummy choices:

-- Create three dummy tokens with two dummy choices each
template Tl with owner : Party where
signatory owner

nonconsuming choice C_T1 1 : ()
controller owner
do pure ()

nonconsuming choice C_T1 2 : ()
controller owner
do pure ()

template T2 with owner : Party where
signatory owner

nonconsuming choice C_T2 1 : ()
controller owner
do pure ()

nonconsuming choice C_T2 2 : ()
controller owner
do pure ()

template T3 with owner : Party where
signatory owner

(continues on next page)

158 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

nonconsuming choice C_T3 1 : ()
controller owner
do pure ()

nonconsuming choice C_T3 2 : ()
controller owner
do pure ()

We also define an interface I with instances for T1 and T2:

-—- Create dummy interface with two dummy choices, implement over Tl and T2, andl
—an unused empty view
data IView = IView {}
interface I where
viewtype IView
getController : Party

nonconsuming choice C_I 1 : ()
controller (getController this)
do pure ()

nonconsuming choice C_I_2 ()
controller (getController this)
do pure ()

interface instance I for Tl where
view = IView
getController = owner

interface instance I for T2 where
view = IView
getController = owner

Start testing

By writing a test which selectively creates and exercises only some of these templates and choices,
we will see how the coverage report shows us templates and choices we haven’t created and exer-
cised respectively.

To start, the test allocates a single party, alice, which we will use for the whole test:

main = do
-—- Allocate a party
alice <- allocateParty "Alice"

1.11. Write Smart Contracts with Daml 159

Daml SDK Documentation, 2.7.3

Template creation coverage

The coverage report mentions which templates were defined but never created. For example, the
following test creates contracts out of only T1 and T2, never creating instances of template T3:

-—- Create contracts out of templates T1 and T2
tl <- submit alice (createCmd T1 with owner = alice)
t2 <- submit alice (createCmd T2 with owner = alice)

Running daml test --show-coverage reports how many templates were defined (3), how many
were created (2, 66.7%), and the names of those that weren’t created (T3):

> daml test --show-coverage

Modules internal to this package:
- Internal templates
3 defined
2 (66.7%) created
internal templates never created: 1
Token Coverage Partl:T3

Template choice exercise coverage

The coverage report also tracks which choices were exercised. For example, the following test exer-
cises the first and second choices of T1 and the second choice of T2. It also archives T1, but not
T2.

-—- Exercise all choices & archive tl
submit alice (exerciseCmd tl C_T1_1)
submit alice (exerciseCmd tl C_T1_2)
submit alice (archiveCmd t1)

-—- Exercise only first choice on t2, don't archive
submit alice (exerciseCmd t2 C_T2 1)

daml test --show-coverage reports that the test exercised 4 out of 9 choices, and lists the
choices that weren’t exercised, including the second choice of T2 and all the choices on T3.

Note that Token Coverage Partl:T2:Archive is included in the list of unexercised choices -
because t2 was not archived, its Archive choice was not run.

> daml test --show-coverage

- Internal template choices
9 defined
4 (44.4%) exercised
internal template choices never exercised: 5
Token Coverage Partl:T2:Archive
Token Coverage Partl:T2:C T2 2
Token Coverage Partl:T3:Archive
Token Coverage Partl:T3:C T3 1
Token Coverage Partl:T3:C T3 2

160 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Interface choice exercise coverage

The coverage report also tracks interfaces, with two differences: * Because interfaces are not cre-
ated directly but rather cast from templates which implement them, the coverage report cannot
not track their creation nor their archival. * Because interfaces can be cast from many possible
implementing templates, the report tracks interface choices by what interface they are exercised
on and which template they were cast from. In the report, these interface choices are format-
ted as <module>:<template>:<choice name> - the <choice name> tells us the interface, the
<template> tells us the template type an interface contract was cast from.

The following test creates t1 and t2 as before, but casts them immediately to I to get two contracts
of I: t1 iviaTl,and t2 1iviaT2.Itexercises both choicesonthetl i,butonlythe firstchoiceon
t2 1.

-— Exercise all choices on tl 1
submit alice (exerciseCmd tl i C_I 1)
submit alice (exerciseCmd tl i C_I 2)

-— Exercise only first choice on t2 1
submit alice (exerciseCmd t2 i C_I 1)

In the coverage report, there are four detected choices, as expected: two choices for the imple-
mentation of I for T1, and two choices for the implementation of I for T2. Three were exercised,
so the only choice that wasn’t exercised was C_I 1 for T2, which is reported as Token Cover-
age Partl:T2:C I 1.

> daml test --show-coverage

- Internal interface choices
4 defined
3 (75.0%) exercised
internal interface choices never exercised: 1
Token Coverage Partl:T2:C I 2

1.11.15.5 Checking Coverage of External Dependencies

The coverage report also describes coverage for external templates, interfaces, and choices. In the
introl2-partl directory, run daml build --output introl2-partl.dar, and copy the re-
sulting . /introl2-partl.dar fileintothe introl2-part2 directory, where the remainder of our
commands will be run.

The daml.yaml configuration file in part2 specifies introl2-partl.dar as a dependency, letting
us import its module.

1.11. Write Smart Contracts with Daml 161

Daml SDK Documentation, 2.7.3

Definitions

We begin by defining importing the external dependency Token Coverage Partl asExternal to
bring all of its external templates and interfaces into scope.

import qualified Token Coverage Partl as External

We also define a dummy template T with no choices, but an implementation of external interface
External.l.

template T with owner: Party where
signatory owner

interface instance External.I for T where
view = External.IView
getController = owner

Finally, we define an interface I with one dummy choice, and implementations for our local template
T and the external template External.T1.

data IView = IView {}

interface I where
viewtype IView
getController : Party

nonconsuming choice I _C : ()
controller (getController this)
do pure ()

interface instance I for T where
view = IView
getController = owner

interface instance I for External.Tl where
view = IView
getController = owner

Local Definitions

Running daml test -p '”~$' tocreate a coverage report without running any tests: Because no
tests were run, coverage will be 0% in all cases. However, the report will still tally all discovered
templates, interfaces, and choices, both external and internal.

Modules internal to this package:
- Internal templates

1 defined
0 (0.0%) created
- Internal template choices
1 defined
0 (0.0%) exercised
- Internal interface implementations
3 defined

2 internal interfaces
1 external interfaces

(continues on next page)

162 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

- Internal interface choices
4 defined
0 (0.0%) exercised

Modules external to this package:
- External templates

3 defined
0 (0.0%) created in any tests
0 (0.0%) created in internal tests
0 (0.0%) created in external tests
- External template choices
9 defined
0 (0.0%) exercised in any tests
0 (0.0%) exercised in internal tests
0 (0.0%) exercised in external tests
- External interface implementations
2 defined
- External interface choices
4 defined
0 (0.0%) exercised in any tests
0 (0.0%) exercised in internal tests
0 (0.0%) exercised in external tests

We defined 1template with 1 default choice (Archive), which get reported along with their coverage
in the first two sections:

- Internal templates

1 defined
0 (0.0%) created
- Internal template choices
1 defined
0 (0.0%) exercised

We also have 3 interface implementations that we have defined locally, External.I for T,I for
T,and I for External.Tl. Notethatwhiletheinterface implementations arelocal, the interfaces
that they are defined over can be non-local - in this case we have 2 for the local interface I, and 1
for the external interface External.I. The total number of locally defined implementations, and
the breakdown into local interfaces and external interfaces, is presented in the Internal interface
implementations section.

- Internal interface implementations
3 defined
2 internal interfaces
1 external interfaces

These local interface implementations provide 4 choices, two from External.I for T,onefrom I
for T,andonefromI for External.Tl,reported in the next section along with coverage.

- Internal interface choices
4 defined
0 (0.0%) exercised

1.11. Write Smart Contracts with Daml 163

Daml SDK Documentation, 2.7.3

External Definitions

By importing Token Coverage Partl as External, we have brought 3 templates, 9 template
choices, 2 interface instances, and 4 interface choices into scope from there, which are listed in
the external modules section.

Modules external to this package:
- External templates
3 defined

- External template choices
9 defined

- External interface implementations
2 defined

- External interface choices
4 defined

External, Internal, and “Any” Coverage

Unlike internal types, externally defined types can be covered by both internal and external tests.
As a result, the report for external types distinguishes between coverage provided by internal tests,
external tests,and any tests (both internal and external tests).

Here we cover how to run internal and external tests simultaneously to get an aggregate report, and
how to interpret this report.

The --all flag runs tests in external modules as well. Run daml test --all --test-pattern
notestsinthe introl2-part2 directory - this instructs daml test to run all tests from external
modules, and to run local tests matching notests. We have no local tests named notests, so this
will only run the main test from partl. Because the main test from partl does not use any of the
types defined in part2, the internal section of the resulting coverage report shows 0% everywhere.
However, the main test does exercise many types in partl which are external topart2 - as a result,
the report’s external sectionis similartothe internal section in the reportfor partl:

Modules external to this package:
- External templates

3 defined
2 (66.7%) created in any tests
0 (0.0%) created in internal tests
2 (66.7%) created in external tests
- External template choices
9 defined
4 (44.4%) exercised in any tests
0 (0.0%) exercised in internal tests
4 (44.4%) exercised in external tests
- External interface implementations
2 defined
- External interface choices
4 defined
3 (75.0%) exercised in any tests

(continues on next page)

164 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

0 (0.0%) exercised in internal tests
3 (75.0%) exercised in external tests

Note that unlike the internal section of the report in Part 1, the external section of the report in Part
2 has coverage for internal tests, external tests, and any tests. In this report, we only ran an external
test, External:main, so O is reported for all internal tests.

Let’s write a local test which will create External: T3, a template which the External :main test
does not create.

testT3 : Script ()

testT3 = do
alice <- allocateParty "Alice"
external t3 <- submit alice (createCmd External.T3 with owner = alice)
pure ()

If we run this test on its own using daml test --test-pattern testT3, our external coverage
report will show that 1out of 3 of the external templates in scope were created, 1 by internal tests and
0 by external tests.

modules external to this package:
- external templates

3 defined

1 (33.3%) created in any tests

1 (33.3%) created in internal tests
0 (0.0%) created in external tests

We can run this test alongside the External:main test using daml test --all
--test-pattern testT3, to get an aggregate coverage report. The report now shows that 2
out of 3 of the external templates in scope were created in External:main, and 1 out of 3 by
internal test testT3. Because External:main creates External:T1 and External:T2, and
testT3 creates External:T3, all types are created across our tests, and the overall coverage
across any tests is 3 out of 3 (100%).

Modules external to this package:
- External templates

3 defined

3 (100.0%) created in any tests

1 (33.3%) created in internal tests
2 (66.7%) created in external tests

If we define a different local test, testT1AndT2, which creates T1 and T2, running it alongside Ex-
ternal:Main, our report shows 2 out of 3 for internal tests , 2 out of 3 for external tests , but?2
outof 3for anytests ! Because the templates created by each test overlap, T3 is never created and
never covered, so despite an abundance of testing for external templates, coverage is still less than
100%.

testT1AndT2 : Script ()
testTl1AndT2 = do
alice <- allocateParty "Alice"

(continues on next page)

1.11. Write Smart Contracts with Daml 165

Daml SDK Documentation, 2.7.3

(continued from previous page)

external tl <- submit alice (createCmd External.Tl with owner = alice)
external t2 <- submit alice (createCmd External.T2 with owner = alice)
pure ()

Modules external to this package:
- External templates

3 defined

2 (66.7%) created in any tests

2 (66.7%) created in internal tests
2 (66.7%) created in external tests

External template choices and interface instance choices are also reported with any , internal, and
external coverage - we will not cover them here.

Serializing Results Workflows

The —--save-coverage and --load-coverage flags enable you to write coverage results to a file
and read them back out again. Multiple coverage results from different files can be aggregated,
along with new coverage results from tests, and then written back to a new file.

This enables three new kinds of coverage testing which should be especially useful to those with
large test suites.

Single Test Iteration

When iterating on a single test, you can see the overall coverage of the system by loading in coverage
results from all unchanged tests and running the single test, producing an aggregate result.

> # Run tests 1 through 8, long running
daml test --pattern Test[12345678] --save-coverage unchanged-test-results

\%

> # Run test 9, aggregate with results from tests 1 through 8

> daml test --pattern Test9 --load-coverage unchanged-test-results
> # ... make some changes to test 9

> # Only need to run test 9 to compare coverage report

> daml test --pattern Test9 --load-coverage unchanged-test-results

Multiple Test Aggregation

When running a large test suite, you can split the suite across multiple machines and aggregate the
results.

> # On machine 1:
> daml test --pattern MachinelTest --save-coverage machinel-results

> # On machine 2:

(continues on next page)

166 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

> daml test --pattern Machine2Test --save-coverage machineZ2-results
> # On machine 3:

> daml test --pattern Machine3Test --save-coverage machine3-results
> # Aggregate results into a single report once all three are done
> daml test --load-coverage-only \

--load-coverage machinel-results \
--load-coverage machine2-results \
--load-coverage machine3-results

Test Failure Recovery

If a test failure causes one daml test to fail, other coverage results from other tests can be used,
and only the failing test needs to be rerun.

> # First test run
> daml test --pattern Testl --save-coverage testl-results

Second test run:
> daml test --pattern Test2 --save-coverage test2-results

V .

> # Third test run (failing):

> daml test --pattern Test3 --save-coverage test3-results

FAILED

> # ... fix third test

> # Third test run (succeeds):

> daml test --pattern Test3 --save-coverage test3-results

> # Aggregate results into a single report once all three are done

\4

daml test --load-coverage-only \
--load-coverage testl-results \
--load-coverage test2-results \
--load-coverage test3-results

1.11.15.6 Excluding Choices from the Coverage Report

To exclude choices from the printed coverage report, use —--coverage-ignore-choice PATTERN.
Any choice whose fully qualified name matches the regular expression in PATTERN is removed from
the coverage report. The choice will not be included in counts of defined choices or in counts of
exercised choices. The choice is treated as if it does not exist.

The fully qualified name of a choice depends on whether the choice is defined in the local
package or in an external package. Choices defined in the local package are fully qualified as
<module>:<template>:<choice name>. Choices defined in external packages are fully qualified
as <package id>:<module>:<template>:<choice name>. By defining your pattern to match
different sections in the fully qualified names of your choices, you can exclude choices based on
package id, module, template, or name.

1.11. Write Smart Contracts with Daml 167

Daml SDK Documentation, 2.7.3

Example: Excluding Archive Choices

To exclude the Archive choice from coverage, match for the string Archive inthe name portion
of the fully qualified name. Do this by specifying --coverage-ignore-choice ':Archives$'.

If applied to the coverage report in Template choice exercise coverage, your coverage report changes
from the following:

> daml test --show-coverage

- Internal template choices
9 defined
4 (44.4%) exercised
internal template choices never exercised: 5
Token Coverage Partl:T2:Archive
Token Coverage Partl:T2:C T2 2
Token Coverage Partl:T3:Archive
Token Coverage Partl:T3:C T3 1
Token Coverage Partl:T3:C T3 2

to a report that ignores Archive choices in all cases:

> daml test --show-coverage --coverage-ignore-choice ':Archives$'

- Internal template choices

7 defined

4 (57.1%) exercised

internal template choices never exercised: 3
Token Coverage Partl:T2:C T2 2
Token Coverage Partl:T3:C T3 1
Token Coverage Partl:T3:C T3 2

Example: Excluding Choices from a Specific Module

To exclude a specific module (for example MyModule) from coverage, match for the mod-
ule portion of the fully qualified name. Do this by specifying --coverage-ignore-choice
(M :)MyModule: [*:]1*: [":]1*$'. This matches for any template and any choice, matches for
your module name, and ignores any leading package identifier.

Excluding Choices from Serialized Reports

To ensure that serialized data always reflects full coverage information, the flag does not elimi-
nate the choices from serialization using the --save-coverage flag. Serialized reports saved to a
file always contain all information collected. The ~-coverage-ignore-choice flag only excludes
choices from the printed report. For any text report generated from serialized data, you must specify
--coverage-ignore-choice every time it is generated.

168 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.11.15.7 Next Up

There’s little more to learn about writing Daml at this point that isn’t best learned by practice and
consulting reference material for both Daml and Haskell. In section 13, Interfaces we will cover the
use of interfaces, a feature which aids code reuse across your Daml programs.

1.11.16 Next Steps

Now that you have completed this introduction to the Daml smart contract language, where do you
go next? It depends on what you would like to do with Daml:

What you have learned so far should be enough to enable to you become a certified Daml mod-
eler. You can test your skills at Dam| certifications.

If you want to improve your understanding of proven design patterns, you can learn more at the
Patterns page.

If you’re interested in building off-ledger services that interact and integrate with your
on-ledger Daml models, read the Building Applications section.

If you’re interested in understanding how to install, operate and maintain a production-grade
Daml ledger, you can have a look at the Canton user manual.

If you want to build Daml applications in a fully-managed environment that handles the
day-to-day operation of your Daml ledger for you, you can start right away on Dam| Hub.

If you want want to see more examples of Daml applications to understand what is possible
with Daml, we have a a library full of examples for you to study.

112 Integrate Daml with Off-Ledger Services

1.12.1 Building Applications

The Building Applications section covers the elements that are used to create, extend, and test your
Daml full-stack application (including APIs and JavaScript client libraries) and the architectural best
practices for bringing those elements together.

As with the Writing Daml section, you can find the Daml code for the example application and fea-
tures here or download it using the Daml assistant. For example, to load the sources for section 1
into a folder called introl, run daml new introl -template daml-intro-1.

To run the examples, you will first need to install the Daml| SDK.

1.12.2 Daml Application Architecture

This section describes our recommended design of a full-stack Daml application.

112. Integrate Daml with Off-Ledger Services 169

https://www.digitalasset.com/developers/certifications
https://hub.daml.com
https://www.digitalasset.com/developers/examples
https://github.com/digital-asset/daml/tree/main/docs/source/daml/intro/daml
https://docs.daml.com/getting-started/installation.html

Daml SDK Documentation, 2.7.3

User Code

Daml Application Frontend Identity & Access Management System

Daml Component User Code

(e.g. React Web Frontend) Token Issuer
Daml Generated Code Daml| Madel -
Integration Libraries 1
Gmnnrrm ey DAR Files i

|
I

External Component (e.g. React Libraries)

Generated Code

(e.g. TypeSecript)
Utilized by
Communication HTTP
—_— H Integration / Automation

External Applications
Daml Application Backend - -

User Code

External Web Services

Participant Node

HTTP JSON Service Ledger API

&
£
=]
=
@
3
o
5

External Databases

l] Daml Triggers
(e/) Synchronization BlIE S

Domain

The above image shows the recommended Daml solution architecture. Here there are four types of
building blocks that go into our application: user code, generated code from Daml, Daml compo-
nents, and external components.

In the recommended architecture, the Daml model determines the DAR files that underpin both the
frontend and backend. The frontend includes user code such as a React Web Frontend, Daml React
libraries or other integration libraries, and generated code from the DAR files (TypeScript). A client
service can access the Daml application backend instead of a GUI frontend with no change to the
rest of the architecture.

From the client point of view, the Daml application backend consists of the JSON APl and a par-
ticipant node. The backend uses a Canton synchronization domain (not shown) to distribute
changes to the ledger made by the application, as well as changes made by other applications, to all
domain-connected participants.

Integrations with a Daml application are done via Java bindings, while automation can be done with
Daml Script and/or Daml Triggers. Daml Scripts allows you to write automations that can be trig-
gered by any off-ledger condition, such as the availability of a file in a folder or a message coming
from a broker or a user interacting with the system directly. Daml Triggers allow a similar approach
but are triggered by on-ledger events, such as the creation of a contract.

Daml application uses JWT tokens for access authorization, checking if the party submitting the
request has the necessary rights for it. How an application acquires access tokens depends on the
participant node it talks to and is ultimately set up by the participant node operator.

There are many ways that the architecture and technology stack can be changed to fit your needs,
which we’ll mention in the corresponding sections.

To get started quickly with the recommended application architecture, generate a new project using
the create-daml-app template:

daml new --template=create-daml-app my-project-name

create-daml-app is a small, but fully functional demo application implementing the recom-
mended architecture, providing you with an excellent starting point for your own application. It

170 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

showcases

using Daml React libraries

quick iteration against the Dam/ Sandbox.

authorization

deploying your application in the cloud as a Docker container

1.12.2.1 Backend

The backend for your application can be any Daml ledger implementation running your DAR (Dam|
Archive) file.

We recommend using the Dam/JSON APl as an interface to your frontend. It is served by the HTTP JSON
API server connected to the ledger API server. It provides simple HTTP endpoints to interact with the
ledger via GET/POST requests. However, if you prefer, you can also use the gRPC Ledger API directly.

When you use the create-daml-app template application, you can start a Daml Sandbox together
with a JSON API server by running the following command in the root of the project.

daml start --start-navigator=no

Daml Sandbox exposes the same Daml Ledger APl a Participant Node would expose without requiring
a fully-fledged Daml network to back the application. Once your application matures and becomes
ready for production,the daml deploycommand helps you deployyourfrontend and Daml artifacts
of your project to a production Daml network.

1.12.2.2 Frontend

We recommended building your frontend with the React framework. However, you can choose virtu-
ally any language for your frontend and interact with the ledger via HTTP JSON endpoints. In addition,
we provide support libraries for Java and you can also interact with the gRPC Ledger API directly.

We provide two libraries to build your React frontend for a Daml application.

Name Summary
@daml/react | React hooks to query/create/exercise Daml contracts
@daml/ledger | Daml ledger object to connect and directly submit commands to the ledger

You can install any of these libraries by running npm install <library> in the ui directory of
your project, eg. npm install @daml/react. Please explore the create-daml-app example
project to see the usage of these libraries.

To make your life easy when interacting with the ledger, the Daml assistant can generate JavaScript
libraries with TypeScript typings from the data types declared in the deployed DAR.

daml codegen js .daml/dist/<your-project-name.dar> -o ui/daml.js

This command will generate a JavaScript library for each DALF in your DAR, containing meta-
data about types and templates in the DALF and TypeScript typings them. In create-daml-app,
uil/package.json refers to these libraries via the "create-daml-app": "file:../daml.js/
create-daml-app-0.1.0" entry in the dependencies field.

112. Integrate Daml with Off-Ledger Services 171

https://reactjs.org
https://www.npmjs.com/package/@daml/react
https://www.npmjs.com/package/@daml/ledger

Daml SDK Documentation, 2.7.3

If you choose a different JavaScript based frontend framework, the packages @daml/ledger,
@daml/types and the generated daml. js libraries provide you with the necessary code to connect
and issue commands against your ledger.

1.12.2.3 Authorization

When you deploy your application to a production ledger, you need to authenticate the identities of
your users.

Daml ledgers support a unified interface for authorization of commands. Some Daml ledgers, like
for example https://hub.daml.com, offer integrated authentication and authorization, but you can
also use an external service provider like https://authO.com. The Daml react libraries support inter-
facing with a Daml ledger that validates authorization of incoming requests. Simply initialize your
DamlLedger object with the token obtained by the respective token issuer. How authorization works
and the form of the required tokens is described in the Authorization section.

1.12.2.4 Developer Workflow

The SDK enables a local development environment with fast iteration cycles:

1. The integrated VSCode IDE (daml studio) runs your Scripts on any change to your Daml mod-
els. See Daml Script.

2. daml start will build all of your Daml code, generate the JavaScript bindings, and start the
required backend processes (sandbox and HTTP JSON API). It will also allow you to press r
(followed by Enter on Windows) to rebuild your code, regenerate the JavaScript bindings and
upload the new code to the running ledger.

3. npm startwillwatch yourJavaScriptsource files forchange and recompile them immediately
when they are saved.

Together, these features can provide you with very tight feedback loops while developing your Daml
application, all the way from your Daml contracts up to yourweb Ul. Atypical Daml developer workflow
isto

Make a small change to your Daml data model

Optionally test your Daml code with Dam/ Script

Edit your React components to be aligned with changes made in Daml code

Extend the Ul to make use of the newly introduced feature

Make further changes either to your Daml and/or React code until you’re happy with what you’ve
developed

a s wn -

lterate on the O lterate on
Daml model the LI

See Your First Feature for a more detailed walkthrough of these steps.

172 Chapter 1. Canton References

https://hub.daml.com
https://auth0.com

Daml SDK Documentation, 2.7.3

Command Deduplication

The interaction of a Daml application with the ledger is inherently asynchronous: applications send
commands to the ledger, and some time later they see the effect of that command on the ledger.

Several things can fail during this time window: the application can crash, the participant node can
crash, messages can be lost on the network, or the ledger may be just slow to respond due to a high
load.

If you want to make sure that a command is not executed twice, your application needs to robustly
handle all failure scenarios. Daml ledgers provide a mechanism for command deduplication to help
deal with this problem.

Foreach command the application provides acommand ID and an optional parameter that specifies
the deduplication period. If the latter parameter is not specified in the command submission itself,
the ledger will use the configured maximum deduplication duration. The ledger will then guarantee
that commands with the same change ID will generate a rejection within the effective deduplication
period.

For details on how to use command deduplication, see the Command Deduplication Guide.

Deal With Failures
Crash Recovery

In order to restart your application from a previously known ledger state, your application must keep
track of the last ledger offset received from the transaction service or the command completion service.

By persisting this offset alongside the relevant state as part of a single, atomic operation, your ap-
plication can resume from where it left off.

Fail Over Between Ledger APl Endpoints

Some Daml Ledgers support exposing multiple eventually consistent Ledger APl endpoints where
command deduplication works across these Ledger APl endpoints. For example, these endpoints
might be hosted by separate Ledger APl servers that replicate the same data and host the same
parties. Contact your ledger operator to find out whether this applies to your ledger.

Below we describe how you can build your application such that it can switch between such eventu-
ally consistent Ledger API endpoints to tolerate server failures. You can do this using the following
two steps.

First, your application must keep track of the ledger offset as described in the paragraph about crash
recovery. When switching to a new Ledger APl endpoint, it must resume consumption of the transac-
tion (tree) and/or the command completion streams starting from this last received offset.

Second, your application mustretryon OUT OF RANGE errors (see gRPC status codes) received from
a stream subscription - using an appropriate backoff strategy to avoid overloading the server. Such
errors can be raised because of eventual consistency. The Ledger APl endpoint that the application
is newly subscribing to might be behind the endpoint that it subscribed to before the switch, and
needs time to catch up. Thanks to eventual consistency this is guaranteed to happen at some point
in the future.

112. Integrate Daml with Off-Ledger Services 173

https://grpc.github.io/grpc/core/md_doc_statuscodes.html

Daml SDK Documentation, 2.7.3

Once the application successfully subscribes to its required streams on the new endpoint, it will
resume normal operation.

Deal With Time

The Daml language contains a function getTime which returns a rough estimate of current time
called Ledger Time. The notion of time comes with a lot of problems in a distributed setting: differ-
ent participants might run different clocks, there may be latencies due to calculation and network,
clocks may drift against each other over time, etc.

In order to provide a useful notion of time in Daml without incurring severe performance or liveness
penalties, Daml has two notions of time: Ledger Time and Record Time:

As part of command interpretation, each transaction is automatically assigned a Ledger Time
by the participant server.

All calls to getTime within a transaction return the Ledger Time assigned to that transaction.
Ledger Time is chosen (and validated) to respect Causal Monotonicity: The Create action on a
contract ¢ always precedes all other actions on cin Ledger Time.

As part of the commit/synchronization protocol of the underlying infrastructure, every trans-
action is assigned a Record Time, which can be thought of as the infrastructures systemtime .
It’s the best available notion of real time , but the only guarantees on it are the guarantees
the underlying infrastructure can give. It is also not known at interpretation time.

Ledger Time is kept close to real time by bounding it against Record Time. Transactions where
Ledger and Record Time are too far apart are rejected.

Some commands might take a long time to process, and by the time the resulting transaction is
about to be committed to the ledger, it might violate the condition that Ledger Time should be rea-
sonably close to Record Time (even when considering the ledger’s tolerance interval). To avoid such
problems, applications can setthe optional parameters min_ledger_time_absor min_ledger_time_rel
that specify (in absolute or relative terms) the minimal Ledger Time for the transaction. The ledger
will then process the command, but wait with committing the resulting transaction until Ledger Time
fits within the ledger’s tolerance interval.

How is this used in practice?

Be aware that getTime is only reasonably close to real time, and not completely monotonic.
Avoid Daml workflows that rely on very accurate time measurements or high frequency time
changes.

Setmin ledger time absormin ledger time rel ifthe duration of command interpre-
tation and transmission is likely to take a long time relative to the tolerance interval set by the
ledger.

In some corner cases, the participant node may be unable to determine a suitable Ledger Time
by itself. If you get an error that no Ledger Time could be found, check whether you have con-
tention on any contract referenced by your command or whether the referenced contracts are
sensitive to small changes of getTime.

For more details, see Background concepts - time.

174 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.12.3 Parties and Users On a Daml Ledger

Identifying parties and users is an important part of building a workable Daml application. Recall
these definitions from the Getting Started Guide:

Parties are unique across the entire Daml network. These must be allocated before you can
use them to log in, and allocation results in a random-looking (but not actually random) string
that identifies the party and is used in your Daml code. Parties are a builtin concept.

On each participant node you can create users with human-readable user ids. Each user can
be associated with one or more parties allocated on that participant node, and refers to that
party only on that node. Users are a purely local concept, meaning you can never address a
user on another node by user id, and you never work with users in your Daml code; party ids are
always used for these purposes. Users are also a builtin concept.

This represents a change from earlier versions of Daml, and the implications of these changes are
discussed in more depth here.

1.12.3.1 Parties in SDK 2.0 and Subsequent

In Daml 2.0 and later versions, when you allocate a party with a given hint Alice ei-
ther in the sandbox or on a production ledger you will get back a party id like Al-
ice::1220£f2fe29866£d6a0009%ecc8ab64ccdc09£1958bd0£801166baaece469d1251b2eb72.
The prefix before the double colon corresponds to the hint specified on party allocation. If the hint
is not specified, it defaults to party-${randomUUID}. The suffix is the fingerprint of the public key
that can authorize topology transactions for this party. Keys are generated randomly, so the suffix
will look different locally and every time you restart Sandbox, you will get a different party id. This
has a few new implications:

You can no longer allocate a party with a fixed party id. While you have some control over the
prefix, we do not recommend that you rely on that to identify parties.

Party ids are no longer easily understandable by humans. You may want to display something
else in your user interfaces.

Discovering the party ID of other users might get tricky. For example, to follow the user Bob,
you cannot assume that their party ID is Bob .

112.3.2 Party ID Hints and Display Names

Party id hints and display names which existed in SDK 1.18.0 are still available in SDK 2.0.0. We recom-
mend against relying on display names for new applications, but if you are migrating your existing
application, they function exactly as before.

Party id hints still serve a purpose. While we recommend against parsing party ids and extracting the
hint, for debugging and during developmentit can be helpful to see the party id hint at the beginning.
Bear in mind that different parties can be allocated to different participants with the same party id
hint. The full party ids will be different due to the suffix, but the party id hint would be the same.

The second remaining use for party id hints is to avoid duplicate party allocation. Consider sending
a party allocation request that fails due to a network error. The client has no way of knowing whether
the party has been allocated. Because a party allocation will be rejected if a party with the given
hint already exists, the client can safely send the same request with the same hint, which will either
allocate a party if the previous request failed or fail itself. (Note that while this works for Canton,

112. Integrate Daml with Off-Ledger Services 175

Daml SDK Documentation, 2.7.3

including Sandbox as well as the VMWare blockchain, it is not part of the ledger API specifications,
so other ledgers might behave differently.)

112.3.3 Authorization and User Management

Daml 2.0 also introduced user management. User management allows you to create users on a par-
ticipant that are associated with a primary party and a dynamic set of actAs and readAs claims.
Crucially, the user id can be fully controlled when creating a user - unlike party ids - and are unique
on a single participant. You can also use the user id in authorization tokens instead of party tokens
that have specific parties in actAs and readAs fields. This means your IAM, which can sometimes be
limited in configurability, only has to work with fixed user ids.

However, users are purely local to a given participant. You cannot refer to users or parties associated
with a given user on another participant via their userid. You also need admin claims to interact with
the user management endpoint for users other than your own. This means that while you can have
a user id in place of the primary party of your own user, you cannot generally replace party ids with
user ids.

1.12.3.4 Working with Parties

So how do you handle these unwieldy party ids? The primary rule is to treat them as opaque identifiers.
In particular, don’t parse them, don’t make assumptions about their format, and don’t try to turn
arbitrary strings into party ids. The only way to get a new party id is as the result of a party allocation.
Applications should never hardcode specific parties. Instead either accept them as inputs or read
them from contract or choice arguments.

To illustrate this, we’ll go over the tools in the SDK and how this affects them:

Daml Script

In Daml script, allocateParty returns the party id that has been allocated. This party can then be
used later, for example, in command submissions. When your script should refer to parties that
have been allocated outside of the current script, accept those parties as arguments and pass them
in via -input-file. Similarly, if your script allocates parties and you want to refer to them outside of
the script, either in a later script or somewhere else, you can store them via -output-file. You can
also query the party management and user management endpoints and get access to parties that
way. Keep in mind though, this requires admin rights on a participant and there are no uniqueness
guarantees for display names. That usually makes querying party and user management endpoints
usually only an option for development, and we recommend passing parties as arguments where
possible instead.

176 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Daml Triggers

To start a trigger via the trigger service, you still have to supply the party ids for the actAs and readAs
claims for your trigger. This could, e.g., come from a party allocation in a Daml script that you wrote to
a file via Daml Script’s —~output-file. Within your trigger, you get access to those parties via getActAs
and getReadAs. To refer to other parties, for example when creating a contract, reference them from
an existing contract. If there is no contract, consider creating a special configuration template that
lists the parties your trigger should interact with outside of your trigger, and query for that template
in your trigger to get access to the parties.

Navigator

Navigator presents you with a list of user ids on the participant as login options. Once logged in, you
will interact with the ledger as the primary party of that user. Any field that expects a party provides
autocompletion, so if you know the prefix (by having chosen the hint), you don’t have to remember
the suffix. In addition, party ids have been shortened in the Navigator Ul so that not all of the id is
shown. Clicking on a party identifier will copy the full identifier to the system clipboard, making it
easier to use elsewhere.

Java Bindings

When writing an application using the Java bindings, we recommend that you pass parties as ar-
guments. They can either be CLI arguments or JVM properties as used in the :doc: quickstart-java
example <bindings-java/quickstart.htm/>.

Create-daml-app and Uls

Create-daml-app and Uls in general are a bit more complex. First, they often need to interact with
an IAM during the login. Second, it is often important to have human-readable names in a Ul — to go
back to an earlier example, a user wants to follow Bob without typing a very long party id.

Logging in is going to depend on your specific 1AM, but there are a few common patterns. In
create-daml-app, you log in by typing your user id directly and then interacting with the primary
party of that user. In an authorized setup, users might use their email address and a password, and
as a result, the IAM will provide them with a token for their user id. The approach to discovering
party ids corresponding to human-readable uses can also vary depending on privacy requirements
and other constraints. Create-daml-app addresses this by writing alias contracts on the ledger with
associate human-readable names with the party id. These alias contracts are shared with everyone
via a public party.

112. Integrate Daml with Off-Ledger Services 177

Daml SDK Documentation, 2.7.3

112.4 JSON API
1.12.4.1 HTTP JSON API Service

The JSON API provides a significantly simpler way to interact with a ledger than the Ledger APl by
providing basic active contract set functionality:

creating contracts,

exercising choices on contracts,

querying the current active contract set, and
retrieving all known parties.

The goal of this APl is to get your distributed ledger application up and running quickly, so we have
deliberately excluded complicating concerns including, but not limited to:

inspecting transactions,
asynchronous submit/completion workflows,
temporal queries (e.g. active contracts as of a certain time), and

For these and other features, use the Ledger APl instead. The HTTP JSON API service isa proxy , after
a fashion, for that API; there is literally nothing that HTTP JSON API service can do that your own application
cannot do via gRPC.

If you are using this API from JavaScript or TypeScript, we strongly recommend using the JavaScript
bindings and code generator rather than invoking these endpoints directly. This will both simplify
access to the endpoints described here and (with TypeScript) help to provide the correct JavaScript
value format for each of your contracts, choice arguments, and choice results.

As suggested by those bindings, the primary target application for the HTTP JSON API service is a
web application, where user actions translate to one or a few ledger operations. It is not intended for
high-throughput, high-performance ledger automation; the Ledger API is better suited to such use
cases.

We welcome feedback about the JSON APl on our issue tracker, or on our forum.

Run the JSON API
Start a Daml Ledger

You can run the JSON API alongside any ledger exposing the gRPC Ledger APl you want. If you don’t
have an existing ledger, you can start an in-memory sandbox:

daml new my-project --template quickstart-java

cd my-project

daml build

daml sandbox --wall-clock-time --dar ./.daml/dist/quickstart-0.0.1.dar

178 Chapter 1. Canton References

/app-dev/bindings-ts/index.html
/app-dev/bindings-ts/index.html
https://github.com/digital-asset/daml/issues/new/choose
https://discuss.daml.com

Daml SDK Documentation, 2.7.3

Start the HTTP JSON API Service

Basic

The most basic way to start the JSON APl is with the command:

daml json-api --config json-api-app.conf

where a corresponding minimal config file is

{

server {
address = "localhost"
port = 7575

}

ledger-api {
address = "localhost"
port = 6865

}

This will start the JSON APl on port 7575 and connect it to a ledger running on localhost:6865.

Note: Your JSON API service should never be exposed to the internet. When running in production
the JSON API should be behind a reverse proxy, such as via NGINX.

The full set of configurable options that can be specified via config file is listed below

{

server {
//IP address that HTTP JSON API service listens on. Defaults to 127.0.0.1.
address = "127.0.0.1"

//HTTP JSON API service port number. A port number of 0 will let the systeml|
—pick an ephemeral port.
port = 7575

}
ledger-api {

address = "127.0.0.1"

port = 6865

tls |
enabled = "true"
// the certificate to be used by the server
cert-chain-file = "cert-chain.crt"
// private key of the server
private-key-file = "pvt-key.pem"

// trust collection, which means that all client certificates will bel]

—verified using the trusted
// certificates in this store. if omitted, the JVM default trust store is

—used.
trust-collection-file = "root-ca.crt"

query-store {

(continues on next page)

112. Integrate Daml with Off-Ledger Services 179

https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/

Daml SDK Documentation, 2.7.3

(continued from previous page)

base-config {
user = "postgres"
password = "password"
driver = "org.postgresqgl.Driver"
url = "Jjdbc:postgresqgl://localhost:5432/test?&ssl=true"

// prefix for table names to avoid collisions, empty by default
table-prefix = "foo"

// max pool size for the database connection pool

pool-size = 12

//specifies the min idle connections for database connection pool.
min-idle = 4

//specifies the idle timeout for the database connection pool.
idle-timeout = 12s

//specifies the connection timeout for database connection pool.
connection-timeout = 90s

}

// option setting how the schema should be handled.

// Valid options are start-only, create-only, create-if-needed-and-start and]
—create—-and-start

start-mode = "start-only"

// Optional interval to poll for package updates. Examples: 500ms, 5s, 10min,![]
—~1h, 1d. Defaults to 5 seconds

package-reload-interval = 5s
//Optional max inbound message size in bytes. Defaults to 4194304.
max-inbound-message-size = 4194304

//Optional max inbound message size in bytes used for uploading and downloading
—package updates. Defaults to the "max-inbound-message-size setting.

package-max-inbound-message-size = 4194304

//Optional max cache size in entries for storing surrogate template id mappings.
— Defaults to None

max-template-id-cache-entries = 1000
//health check timeout in seconds
health-timeout-seconds = 5

//Optional websocket configuration parameters
websocket-config {
//Maximum websocket session duration
max-duration = 120m
//Server-side heartbeat interval duration
heartbeat-period = 5s
//akka stream throttle-mode one of either “shaping’ or ‘enforcing’
mode = "shaping"

metrics {
//Start a metrics reporter. Must be one of "console", "csv:///PATH",
—"graphite://HOST[:PORT] [/METRIC PREFIX]", or "prometheus://HOST[:PORT]".

reporter = "console"
//Set metric reporting interval , examples : 1ls, 30s, 1m, 1h
reporting-interval = 30s

(continues on next page)

180 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

}

// DEV MODE ONLY (not recommended for production)
// Allow connections without a reverse proxy providing HTTPS.
allow-insecure-tokens = false
// Optional static content configuration string. Contains comma-separated key-
—value pairs, where:
// prefix -- URL prefix,
// directory -- local directory that will be mapped to the URL prefix.
// Example: "prefix=static,directory=./static-content"
static-content {
prefix = "static"
directory = "static-content-dir"

}

Note: You can also start JSON APl using CLI args (example below) however this is now deprecated

daml json-api --ledger-host localhost --ledger-port 6865 —--http-port 7575

Standalone JAR

The daml Jjson-api command is great during development since it is included with the SDK and
integrates with daml start and other commands. Once you are ready to deploy your application,
you can download the standalone JAR from Github releases. It is much smaller than the whole SDK
and easier to deploy since it only requires a JVM but no other dependencies and no installation pro-
cess. The JAR accepts exactly the same command line parameters as daml json-api, so to start
the standalone JAR, you can use the following command:

java -jar http-json-2.0.0.jar --config json-api-app.conf

Replace the version number 2. 0.0 by the version of the SDK you are using.

With Query Store

In production setups, you should configure the HTTP JSON APl service to use a PostgreSQL backend as
a Query Store. The in-memory backend will call the ledger to fetch the entire active contract set for the
templates in your query every time so it is generally not recommended to rely on this in production.
Note that the query store is a redundant copy of on-ledger data. It is safe to reinitialize the database
at any time.

To enable the PostgreSQL backend you can add the query-store config block as described.

112. Integrate Daml with Off-Ledger Services 181

https://github.com/digital-asset/daml/releases

Daml SDK Documentation, 2.7.3

Access Tokens

Each request to the HTTP JSON API Service must come with an access token, regardless of whether
the underlying ledger requires it or not. This also includes development setups using an unsecured
sandbox. The HTTP JSON API Service does not hold on to the access token, which will be only used to
fulfill the request it came along with. The same token will be used to issue the request to the Ledger
API.

The HTTP JSON API Service does not validate the token but may need to decode it to extract informa-
tion that can be used to fill in request fields for party-specific request. How this happens depends
partially on the token format you are using.

Party-specific Requests

Party-specific requests, i.e, command submissions and queries, are subject to additional restric-
tions. For command submissions the token must provide a proof that the bearer can act on behalf
of at least one party (and possibly read on behalf of any number of parties). For queries the token
must provide a proof that the bearer can either act and/or read of at least one party. This happens
regardless of the used access token format. The following paragraphs provide guidance as to how
different token formats are used by the HTTP JSON API in this regard.

Using User Tokens

If the underlying ledger supports user management (this includes Canton and the sandbox), you are
recommended to use user tokens. For command submissions, the user of the bearer should have
actAs rights for at least one party and readAs rights for any number of parties. Queries require the
bearer’s user to have at least one actAs or readAs user right. The application id of the Ledger API
request will be the user id.

Using Claim Tokens

These tokens can be used if the underlying ledger does not support user management. For command
submissions, actAs must contain at leastone party and readAs can contain any number of parties.
Queries require at least one party in either actAs or readAs. The application id is mandatory.

Note: While the JSON API receives the token it doesn’t validate it itself. Upon receiving a token it
will pass it, and all data contained within the request, on to the Ledger API’s AuthService which will
then determine if the token is valid and authorized. However, the JSON API does decode the token
to extract the ledger id, application id and party so it requires that you use a valid Dam/| ledger access
token format.

For a ledger without authorization, e.g., the default configuration of Daml Sandbox, you can use
https://jwt.io (or the JWT library of your choice) to generate your token. You can use an arbitrary
secret here. The default header is fine. Under Payload |, fill in:

{
"https://daml.com/ledger-api": {

(continues on next page)

182 Chapter 1. Canton References

https://jwt.io/#debugger-io?token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJodHRwczovL2RhbWwuY29tL2xlZGdlci1hcGkiOnsibGVkZ2VySWQiOiJzYW5kYm94IiwiYXBwbGljYXRpb25JZCI6ImZvb2JhciIsImFjdEFzIjpbIkFsaWNlIl19fQ.1Y9BBFH5uVz1Nhfmx12G_ECJVcMncwm-XLaWM40EHbY

Daml SDK Documentation, 2.7.3

(continued from previous page)

"ledgerId": "sandbox'",
"applicationId": "foobar",
"actAs": ["Alice"]

The value of the 1edgerId field has to match the 1ledgerId of yourunderlying Daml Ledger. For the
Sandbox this corresponds to the participant id which by default is just sandbox.

Note: The value of applicationId will be used for commands submitted using that token.

The value for actAs is specified as a list and you provide it with the party that you want to use, such
as in the example above which uses Alice for a party. actAs may include more than just one party
as the JSON API supports multi-party submissions.

The party should reference an already allocated party.

Note: As mentioned above the JSON APl does not validate tokens so if your ledger runs without
authorization you can use an arbitrary secret.

Then the Encoded box should have your token, ready for passing to the service as described in the
following sections.

Alternatively, here are two tokens you can use for testing:

{"https://daml.com/ledger-api™: {"ledgerId": "sandbox", "applicationId":
"HTTP-JSON-API-Gateway", "actAs": ["Alice"]}}:

eyJhbGci0iJIUzIINiIsInR5cCI6IkpXVCJII9.
—eyJodHRwczovL2RhbWwuY29tL2x12Gd1lcilhcGkiOnsibGVkZ2VySWQi01JzYW5kYm94TiwiYXBwbG1ljY
—~FIjS4a09yulXY¥nvl1ZL3t700PNIyQYAHY3pmzej4EMCM

XRpb25J7

{"https://daml.com/ledger-api": {"ledgerId": "sandbox", "applicationId":
"HTTP-JSON-API-Gateway", "actAs": ["Bob"]}}:

eyJhbGci0iJIUzIINiIsInR5cCI6IkpXVCJII9.
—eyJodHRwczovL2RhbWwuY29tL2x12Gd1lcilhcGkiOnsibGVkZ2VySWQi01iJzYW5kYm94TIiwiYXBwbGljY
—y6iwpnYt-ObtNo FyLVXMtNTwpJF8uxzNfPELQUVKVg

XRpb25J7

Auth via HTTP

Set HTTP header Authorization: Bearer paste-jwt-here

Example:

Authorization: Bearer eyJhbGciOiJIUzIINiIsInR5cCI6IkpXVCJ9.
—eyJodHRwczovL2RhbWwuY29tL2x1Z2Gd1lcilhcGkiOnsibGVkZ2VySWQi01iJNeUx1Z2GdlciIsImFwcGxpY
—34zzF fbWv7p60r5slkKzwndvGdsIDX-W4Xhm4oVdpk

PFO0aw9us

112. Integrate Daml with Off-Ledger Services 183

Daml SDK Documentation, 2.7.3

Auth via WebSockets

WebSocket clients supporta subprotocols argument (sometimes simply called protocols); this
is usually in a list form but occasionally in comma-separated form. Check documentation for your
WebSocket library of choice for details.

For HTTP JSON requests, you must pass two subprotocols:

daml.ws.auth
jwt.token.paste-jwt-here

Example:

jwt.token.eyJhbGciOiJIUzIINiIsInR5cCI6IkpXVCJI9.
—eyJodHRwczovL2RhbWwuY29tL2x1Z2GdlcilhcGkiOnsibGVkZ2VySWQi1i01INeUx1ZGdlciIsImFwcGxpY
—34zzF fbWv7p60r5slkKzwndvGdsJIDX-W4Xhm4oVdpk

PF0aWous

HTTP Status Codes

The JSON API reports errors using standard HTTP status codes. It divides HTTP status codes into 3
groups indicating:

1. success (200)
2. failure due to a client-side problem (400, 401, 403, 404, 409, 429)
3. failure due to a server-side problem (500, 503)

The JSON API can return one of the following HTTP status codes:

200-0K

400 - Bad Request (Client Error)

401 - Unauthorized, authentication required

403 - Forbidden, insufficient permissions

404 - Not Found

409 - Conflict, contract ID or key missing or duplicated

500 - Internal Server Error

503 - Service Unavailable, ledger server is not running yet or has been shut down

504 - Gateway Timeout, transaction failed to receive its completion within the predefined time-
out

When the Ledger APl returns an error code, the JSON APl maps it to one of the above codes according
to the official gRPC to HTTP code mapping.

If a client’s HTTP GET or POST request reaches an APl endpoint, the corresponding response will al-
ways contain a JSON object with a status field, and either an errors or result field. It may also
contain an optional warnings and/or an optional ledgerApiError:

{
"status": <400 | 401 | 403 | 404 | 409 | 500 | 503 | 504>,
"errors": <JSON array of strings>, | "result": <JSON object or array>,
["warnings": <JSON object> 1],
["ledgerApiError": <JSON object>]

Where:

184 Chapter 1. Canton References

https://cloud.google.com/apis/design/errors#generating_errors

Daml SDK Documentation, 2.7.3

status - a JSON number which matches the HTTP response status code returned in the HTTP
header,

errors - aJSON array of strings, each string represents one error,

result - a JSON object or JSON array, representing one or many results,

warnings - an optional field with a JSON object, representing one or many warnings.
ledgerApiError - anoptional field with a JSON object, representing detail of an error if it was
originated from Ledger API.

See the following blog post for more details about error handling best practices: REST API Error Codes
101.

See The Ledger APl error codes for more details about error codes from Ledger API.

Successful Response, HTTP Status: 200 OK

Content-Type: application/json
Content:

"status": 200,
"result": <JSON object>

Successful Response with a Warning, HTTP Status: 200 OK

Content-Type: application/json
Content:

"status": 200,
"result": <JSON object>,
"warnings": <JSON object>

Failure, HTTP Status: 400 | 401 | 404 | 500

Content-Type: application/json
Content:

"status": <400 | 401 | 404 | 500>,
"errors": <JSON array of strings>,
["ledgerApiError": <JSON object>]

112. Integrate Daml with Off-Ledger Services 185

https://blog.restcase.com/rest-api-error-codes-101/
https://blog.restcase.com/rest-api-error-codes-101/

Daml SDK Documentation, 2.7.3

Examples

Result with JSON Object without Warnings:

{"status": 200, "result": {...}}

Result with JSON Array and Warnings:

{"status": 200, "result": [...], "warnings": {"unknownTemplateIds": [
—"UnknownModule:UnknownEntity"]}}

Bad Request Error:

{"status": 400, "errors": ["JSON parser error: Unexpected character 'f' at inputl]
—index 27 (line 1, position 28)"]}

Bad Request Error with Warnings:

{"status":400, "errors":["Cannot resolve any template ID from request"], "warnings
—": {"unknownTemplateIds": ["XXX:YYY","AAA:BBB"]}}

Authentication Error:

{"status": 401, "errors": ["Authentication Required"]}

Not Found Error:

{"status": 404, "errors": ["HttpMethod (POST), uri: http://localhost:7575/v1l/queryl

(_}H] }

Internal Server Error:

{"status": 500, "errors": ["Cannot initialize Ledger API"]}

Create a New Contract

To create an Iou contract from the Quickstart guide:

template Iou
with
issuer : Party
owner : Party
currency : Text
amount : Decimal
observers : [Party]

186 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

HTTP Request

URL: /v1/create
Method: POST
Content-Type: application/json

Content:
{

"templateId":
—"a3b788b4dcl18dc060bfb82366ae6dc055ble361d646d5cfdblb729607e344336:Iou:IouTransfer
=" ’

"payload": {
"issuer": "Alice",
"owner": "Alice",
"currency": "USD",
"amount": "999.99",
"observers": []

}

}
Where:

templateId is the contract template identifier, which is formatted as "<package
ID>:<module>:<entity>". As a convenience for interactive API exploration (such as with
curl and similar tools), you can also omit the package ID (i.e. specifying the templateId as
"<module>:<entity>") if there is only one template with that name across all loaded
packages. Code should always specify the package ID, since it’s common to have more ver-
sions of a template sharing the same module and entity name but with different package IDs.
If the package identifieris not specified and the template cannot be uniquely identified without
it, the HTTP JSON API service will report that the specified template cannot be found. Omitting
the package ID is not supported for production use.

payload field contains contract fields as defined in the Daml template and formatted accord-
ing to Daml-LF JSON Encoding.

HTTP Response

Content-Type: application/json
Content:

"status": 200,

"result": {

"observers": [],

"agreementText": "",

"payload": {
"observers": [],
"issuer": "Alice",
"amount": "999.99",
"currency": "USD",
"owner": "Alice"

}I

"signatories": [
"Alice"

(continues on next page)

1.12.

Integrate Daml with Off-Ledger Services 187

Daml SDK Documentation, 2.7.3

(continued from previous page)

]I

"contractId": "#124:0",

"templateId":
—"11c8f3ace75868d28136adcbcfclde265a9%9ee5ad73fe8£f2db97510e3631096a2:Iou:Iou",

"completionOffset":"0000000000000084"

Where:

status field matches the HTTP response status code returned in the HTTP header,
result field contains created contract details. Keep in mind that templateId in the JSON
APl response is always fully qualified (always contains package ID).

Create a Contract with a Command ID

When creating a new contract or exercising a choice you may specify an optional meta field. This
allows you to control various extra settings used when submitting a command to the ledger. Each
of these meta fields is optional.

Note: You cannot currently use commandIds anywhere else in the JSON API, but you can use it for
observing the results of its commands outside the JSON APl in logs or via the Ledger API’'s Command
Services

"templateId":
—"a3b788b4dcl18dc060bfb82366ae6dc055ble361d646d5cfdblb729607e344336:Iou:IouTransfer
‘—>”I

"payload": {

"observers": [],
"issuer": "Alice",
"amount": "999.99",
"currency": "USD",
"owner": "Alice"

}I

"meta": {

"commandId": "a unique ID",
"actAs": ["Alice"],
"readAs": ["PublicParty"],

"deduplicationPeriod": ({
"durationInMillis": 10000,
"type": "Duration"

by
"submissionId": "d2f941bl-ee5c-4634-9a51-1335ce6902fa"

Where:

commandId - optional field, a unique string identifying the command.
actAs - a non-empty list of parties, overriding the set from the JWT user; must be a subset of
the JWT user’s set.

188 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

readAs - a list of parties, overriding the set from the JWT user; must be a subset of the JWT
user’s set.

submissionId - a string, used for deduplicating retried requests. If you do not set it, a random
one will be chosen, effectively treating the request as unique and disabling deduplication.
deduplicationPeriod - either a Duration as above, which is how far back in time prior
commands will be searched for this submission,oran Offset as follows, which is the earliest
ledger offset after which to search for the submission.

"deduplicationPeriod": {
"offset": "0000000000000083",
"type": "Offset"

}

Exercise by Contract ID

The JSON command below, demonstrates how to exercise an Tou Transfer choice on an Ioucon-
tract:

choice Iou Transfer : ContractId IouTransfer
with
newOwner : Party
controller owner
do create IouTransfer with iou = this; newOwner

HTTP Request

URL: /vl/exercise

Method: POST

Content-Type: application/json
Content:

"templateId":
—"a3b788b4dc18dc060bfb82366ae6dc055ble361d646d5¢cfdblb729607e344336:Iou:IouTransfer
:_>",

"choiceInterfaceId":
—"a3b788b4dc18dc060bfb82366ac6dc055b1e361d646d5cfdblb729607e344336:Iou:IouTransfer

"
— ',

Interfac

"contractId": "#124:0",
"choice": "Iou Transfer",
"argument": {
"newOwner": "Alice"
}
}
Where:

templateId - contract template or interface identifier, same as in create request,
choiceInterfacelId - optional template or interface that defines the choice, same format as
templateld,

contractId - contract identifier, the value from the create response,

choice - Daml contract choice, that is being exercised,

112. Integrate Daml with Off-Ledger Services 189

Daml SDK Documentation, 2.7.3

argument - contract choice argument(s).

templateId and choiceInterfaceld are treated as with exercise by key. However, because con-
tractIdis always unambiguous, you may alternatively simply specify the interface ID as the tem-
plateId argument, and ignore choiceInterfaceId entirely. This isn’t true of exercise-by-key or
create-and-exercise, so we suggest treating this request as if this alternative isn’t available.

HTTP Response

Content-Type: application/json
Content:

"status": 200,
"result": {
"exerciseResult": "#201:1",
"events": |
{
"archived": {
"contractId": "#124:0",
"templateId":
—"11c8f3ace75868d28136adcbcfclde265a9%9ee5ad73fe8f2db97510e3631096a2:Iou:Iou"
}
}I

"created": {

"observers": [],
"agreementText": "",
"payload": {
"iou": {
"observers": [],
"issuer": "Alice",
"amount": "999.99",
"currency": "USD",
"owner": "Alice"
}I
"newOwner": "Alice"
}I
"signatories": |
"Alice"

1y

"contractId": "#201:1",

"templateId":
—"11c8f3ace75868d28136adcbcfclde265a9%9ee5ad73fe8f2db97510e3631096a2:Iou:IouTransfer

"
—

1,
"completionOffset":"0000000000000083"

Where:

status field matches the HTTP response status code returned in the HTTP header,
result field contains contract choice execution details:

190 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

- exerciseResult field contains the return value of the exercised contract choice.
- eventscontains an array of contracts that were archived and created as part of the choice

execution. The array may contain: zero or many {"archived": {...}} and zero or
many {"created": {...}} elements. The order of the contracts is the same as on the
ledger.

- completionOffset is the ledger offset of the transaction containing the exercise’s
ledger changes.

Exercise by Contract Key

The JSON command below, demonstrates how to exercise the Archive choice on the Account con-
tractwitha (Party, Text) contract key defined like this:

template Account with
owner : Party
number : Text
status : AccountStatus

where

signatory owner
key (owner, number) : (Party, Text)
maintainer key. 1

HTTP Request

URL: /vl/exercise

Method: POST

Content-Type: application/json
Content:

"templateId":
—"11c8f3ace75868d28136adcbcfclde265a9ee5ad73fe8f2db97510e3631096a2:Account:Account
N " ,

"key" : {

" 1": "Alice",
" 2": "abcl23"

|

"choiceInterfaceId":
—"11c8f3ace75868d28136adcbcfclde265a9%9ee5ad73£fe8£2db97510e3631096a2:Account:Account

"
-,

Interfac

"choice": "Archive",
"argument": {}

}

Where:

templatelId - contract template identifier, same as in create request,

key - contract key, formatted according to the Daml-LF JSON Encoding,

choiceInterfacelId - optional template or interface that defines the choice, same format as
templateId,

choice - Daml contract choice, that is being exercised,

argument - contract choice argument(s), empty, because Archive does not take any.

112. Integrate Daml with Off-Ledger Services 191

Daml SDK Documentation, 2.7.3

key is always searched in relation to the templateId. The choice, on the other hand, is searched
accordingto choicelInterfaceld;if choiceInterfacelIdis notspecified, templatelIdisitsde-
fault. We recommend always specifying choiceInterfaceId when invoking an interface choice;
however, if the set of Daml-LF packages on the participant only contains one choice with a given
name associated with templateId, that choice will be exercised, regardless of where it is defined.
If a template and one or more of the interfaces it implements declares a choice, and choiceInter-
faceId is not used, the one directly defined on the choice will be exercised. If choice selection is
still ambiguous given these rules, the endpoint will fail as if the choice isn’t defined.

HTTP Response

Formatted similar to Exercise by Contract ID response.

Create and Exercise in the Same Transaction

This command allows creating a contract and exercising a choice on the newly created contract in
the same transaction.

HTTP Request

URL: /vl/create-and-exercise
Method: POST
Content-Type: application/json

Content:
{
"templateId":
—"11c8f3ace75868d28136adc5cfclde265a9%9ee5ad73£e8£f2db97510e3631096a2:Iou:Iou",
"payload": {
"observers": [],
"issuer": "Alice",
"amount": "999.99",
"currency": "USD",
"owner": "Alice"

by
"choicelInterfaceId":
—"11c8f3ace’75868d28136adcbcfclde265a9ee5ad73fe8f2db97510e3631096a2:Iou:Ioulnterfac

"
— .,

4%

"choice": "Iou Transfer",
"argument": {
"newOwner": "Bob"
}
}
Where:

templateId - the initial contract template identifier, in the same format as in the create re-
quest,

payload -theinitial contract fields as defined in the Daml template and formatted according
to DamlI-LF JSON Encoding,

192 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

choiceInterfacelId - optional template or interface that defines the choice, same format as
templateId,

choice - Daml contract choice, that is being exercised,

argument - contract choice argument(s).

templateIdand choiceInterfaceld are treated as with exercise by key, with the exception that it
is payload, not key, strictly interpreted according to templateId.

HTTP Response

Please note that the response below is for a consuming choice, so it contains:

createdand archived events for the initial contract ("contractId": "#1:0"),whichwas
created and archived right away when a consuming choice was exercised on it,

a created event for the contract that is the result of exercising the choice ("contractId":
"$#1:2M).

Content-Type: application/json

Content:

"result": {
"exerciseResult": "#1:2",
"events": [

{

"created": {
"observers": [],
"agreementText": "",
"payload": ({

"observers": [],
"issuer": "Alice",
"amount": "999.99",
"currency": "USD",
"owner": "Alice"
}I
"signatories": |
"Alice"
]I
"contractId": "#1:0",
"templateId":
—"a3b788b4dc18dc060bfb82366ae6dc055ble361d646d5¢cfdblb729607e344336:Tou:Iou”
}
}I
{

"archived": {
"contractId": "#1:0",
"templateId":

—"a3b788b4dc18dc060bfb82366ae6dc055ble361d646d5cfdblb729607e344336:Tou:Iou”

}

}l
{
"created": {
"observers": |
"Bob"
]I
"agreementText": "",

(continues on next page)

112. Integrate Daml with Off-Ledger Services 193

Daml SDK Documentation, 2.7.3

(continued from previous page)

"payload": {

"iou": {
"observers": [],
"issuer": "Alice",
"amount": "999.99",
"currency": "USD",
"owner": "Alice"

}I

"newOwner": "Bob"

1y
"signatories": |
"Alice"

1,

"contractId": "#1:2",

"templateId":
—"a3b788b4dc18dc060bfb82366ae6dc055ble361d646d5¢cfdblb729607e344336:Iou:IouTransfer

—

]

by
"status": 200

Fetch Contract by Contract ID
HTTP Request

URL: /vl/fetch

Method: POST

Content-Type: application/json
Content:

application/json body:

{
"contractId": "#201:1",

"templateId":
—"a3b788b4dcl18dc060bfb82366ae6dc055ble361d646d5¢cfdblb729607e344336:Iou:IouTransfer

"
—

}

readers may be passed as with Query. templateId is optional, but you are strongly advised to
always pass it explicitly to minimize the data read from the Ledger APl to answer the query. It can be

either a template ID or an interface ID.

194 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Contract Not Found HTTP Response

Content-Type: application/json

Content:

"status": 200,
"result": null

Contract Found HTTP Response

Content-Type: application/json

Content:

"status": 200,
"result": {

"observers": [],
"agreementText": "",
"payload": {
"iou": {
"observers": [],
"issuer": "Alice",
"amount": "999.99",
"currency": "USD",
"owner": "Alice"
}I
"newOwner": "Alice"
}I
"signatories": |
"Alice"

1y
"contractId": "#201:1",
"templateId":

—"11c8f3ace’75868d28136adcbcfclde265a9%9ee5ad73£fe8f2db97510e3631096a2:Iou:IouTransfer

"

Fetch Contract by Key

Show the currently active contract that matches a given key.

The websocket endpoint /vi/stream/fetch can be used to search multiple keys in the same request, or
in place of iteratively invoking this endpoint to respond to changes on the ledger.

112. Integrate Daml with Off-Ledger Services

195

Daml SDK Documentation, 2.7.3

HTTP Request

URL: /v1/fetch

Method: POST

Content-Type: application/json
Content:

"templateId":
—"11c8f3ace75868d28136adcbcfclde265a9%9ee5ad73£fe8f2db97510e3631096a2:Account:Account

(_)vv,
"key": {

"_1" . "Alice" ,

"_2" : "abcl23"

readers may be passed as with Query.

Contract Not Found HTTP Response

Content-Type: application/json
Content:

"status": 200,
"result": null

Contract Found HTTP Response

Content-Type: application/json
Content:

"status": 200,
"result": {

"observers": [],
"agreementText": "",
"payload": {
"owner": "Alice",
"number": "abcl23",
"status": {
"tag": "Enabled",
"value": "2020-01-01T00:00:012"
}
}I
"signatories": [
"Alice"
1,
"key": {
" 1": "Alice",

(continues on next page)

196 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

" 2": "abcl23"
}I
"contractId": "#697:0",
"templateId":
—"11c8f3ace75868d28136adcbcfclde?265a9ee5ad73£fe8£2db97510e3631096a2:Account:Account

"

Get All Active Contracts

List all currently active contracts for all known templates.

Note: Retrieved contracts do not get persisted into a query store database. Query store is a search
index and can be used to optimize search latency. See Start HTTP service for information on how to
start JSON API service with a query store enabled.

Note: You canonly query active contracts with the /v1/query endpoint. Archived contracts (those
that were archived or consumed during an exercise operation) will not be shown in the results.

HTTP Request

URL: /v1/query
Method: GET
Content: <EMPTY>

HTTP Response

The response is the same as for the POST method below.

Get All Active Contracts Matching a Given Query

List currently active contracts that match a given query.

The websocket endpoint /vi/stream/query can be used in place of iteratively invoking this endpoint
to respond to changes on the ledger.

112. Integrate Daml with Off-Ledger Services 197

Daml SDK Documentation, 2.7.3

HTTP Request

URL: /v1l/query

Method: POST

Content-Type: application/json
Content:

"templateIds": [
—"11c8f3ace75868d28136adcbcfclde?265a9%9ee5ad73fe8f2db97510e3631096a2:Iou:Iou"],

"query": {"amount": 999.99},

"readers": ["Alice"]

Where:

templateIds - either an array of contract template identifiers or an array containing a single
interface identifier to search through. Mixing of template ID’s and interface ID’s, or specifying
more than one interface ID is not allowed.

query - search criteria to apply to the specified templateIds, formatted according to the
Query Language.

readers - optional non-empty list of parties to query as; must be a subset of the actAs/readAs
parties in the JWT

Empty HTTP Response

Content-Type: application/json
Content:

"status": 200,
"result": []

Nonempty HTTP Response

Content-Type: application/json

Content:
{
"result": |
{
"observers": [],
"agreementText": "",
"payload": {
"observers": [],
"issuer": "Alice",
"amount": "999.99",
"currency": "USD",
"owner": "Alice"
} 4
"signatories": |

(continues on next page)

198 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

"Alice"

]I

"contractId": "#52:0",

"templateId":

—"b10d22d6c2f2faed1b353315cf893ed66996echblabed424ea6a81576918f658a:Iou:Iou”
}

]I
"status": 200

Where

result contains an array of contracts, each contract formatted according to DamI-LF JSON En-
coding,
status matches the HTTP status code returned in the HTTP header.

Nonempty HTTP Response With Unknown Template IDs Warning

Content-Type: application/json

Content:
{
"warnings": {
"unknownTemplateIds": ["UnknownModule:UnknownEntity"]
}I
"result": [
{
"observers": [],
"agreementText": "",
"payload": {
"observers": [],
"issuer": "Alice",
"amount": "999.99",
"currency": "USD",
"owner": "Alice"
}I
"signatories": |
"Alice"
1,
"contractId": "#52:0",
"templateId":

—"b10d22d6c2f2faedl1b353315cf893ed66996ecblabed424ea6a81576918f658a:Iou:Iou"
}

1,
"status": 200

112. Integrate Daml with Off-Ledger Services 199

Daml SDK Documentation, 2.7.3

Fetch Parties by Identifiers

URL: /v1l/parties

Method: POST

Content-Type: application/json
Content:

["Alice", "Bob", "Dave"J

If an empty JSON array is passed: [], this endpoint returns BadRequest(400) error:

{

"status": 400,
"errors": |
"JsonReaderError. Cannot read JSON: <[]>. Cause: spray.json.

—DeserializationException:

must be a list with at least 1 element"

]
}

HTTP Response

Content-Type: application/json

Content:
{
"status": 200,
"result": |
{
"identifier": "Alice",
"displayName": "Alice & Co. LLC",
"isLocal": true
} 14
{
"identifier": "Bob",
"displayName": "Bob & Co. LLC",
"isLocal": true
} 14
{
"identifier": "Dave",
"isLocal": true

Please note that the order of the party objects in the response is not guaranteed to match the order
of the passed party identifiers.

Where

identifier - a stable unique identifier of a Daml party,
displayName -optional human readable name associated with the party. Might not be unique,

isLocal - true if party is hosted by the backing participant.

200 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Response With Unknown Parties Warning

Content-Type: application/json

Content:
{
"result": [
{
"identifier": "Alice",
"displayName": "Alice & Co. LLC",

"isLocal": true
}
]I
"warnings": {
"unknownParties": ["Erin'"]
}I
"status": 200

The result might be an empty JSON array if none of the requested parties is known.

Fetch All Known Parties

URL: /vl/parties
Method: GET
Content: <EMPTY>

HTTP Response

The response is the same as for the POST method above.

Allocate a New Party

This endpointis a JSON API proxy for the Ledger API’s AllocatePartyRequest. For more information about

party management, please refer to Provisioning Identifiers part of the Ledger APl documentation.

HTTP Request

URL: /vl /parties/allocate
Method: POST
Content-Type: application/json

Content:
{
"identifierHint": "Carol",
"displayName": "Carol & Co. LLC"

}

112. Integrate Daml with Off-Ledger Services

201

Daml SDK Documentation, 2.7.3

Please refer to AllocateParty documentation for information about the meaning of the fields.

All fields in the request are optional, this means that an empty JSON object is a valid request to

allocate a new party:

{}

HTTP Response

"result": {

"identifier": "Carol",
"displayName": "Carol & Co.
"isLocal": true

b
"status": 200

LLC",

Create a New User

This endpoint exposes the Ledger API's CreateUser RPC.

HTTP Request

URL: /vl/user/create
Method: POST

Content-Type: application/json

Content:
{
"userId": '"carol",
"primaryParty": "Carol",
"rights": [
{
"type": "CanActAs",
"party": "Carol"
} 14
{
"type": "CanReadAs",
"party": "Alice"
} 14
{
"type": "CanReadAs",

"Party" . "Bob"

"type": "ParticipantAdmin"

202

Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Please refer to CreateUser RPC documentation for information about the meaning of the fields.

Only the userld fields in the request is required, this means that an JSON object containing only it is
avalid request to create a new user.

HTTP Response

{
"result": {},
"status": 200

Get Authenticated User Information

This endpoint exposes the Ledger API’s GetUser RPC.

The user ID will always be filled out with the user specified via the currently used user token.

HTTP Request

URL: /v1/user
Method: GET

HTTP Response

{

"result": {
"userId": '"carol",
"primaryParty": "Carol"

by
"status": 200

Get Specific User Information

This endpoint exposes the Ledger API’s GetUser RPC.

HTTP Request

URL: /v1/user

Method: POST

Content-Type: application/json
Content:

"userId": "carol"

112. Integrate Daml with Off-Ledger Services 203

Daml SDK Documentation, 2.7.3

Please refer to GetUser RPC documentation for information about the meaning of the fields.

HTTP Response

"result": {
"userId": '"carol",
"primaryParty": "Carol"
}I
"status": 200

Delete Specific User

This endpoint exposes the Ledger API’s DeleteUser RPC.

HTTP Request

URL: /v1l/user/delete

Method: POST

Content-Type: application/json
Content:

"userId": "carol"

Please refer to DeleteUser RPC documentation for information about the meaning of the fields.

HTTP Response

"result": {},
"status": 200

List Users

This endpoint exposes the Ledger API’s ListUsers RPC.

204

Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

HTTP Request

URL: /v1l/users
Method: GET

HTTP Response

"result": |
{
"userId": "carol",
"primaryParty": "Carol"
}I
{
"userId": "bob",
"primaryParty": "Bob"
}
]I
"status": 200

Grant User Rights

This endpoint exposes the Ledger API’s GrantUserRights RPC.

HTTP Request

URL: /v1l/user/rights/grant
Method: POST
Content-Type: application/json

Content:
{
"userId": "carol",
"rights": [
{
"type": "CanActAs",
"party": "Carol"
by
{
"type": "CanReadAs",
"party": "Alice"
} 4
{
"type": "CanReadAs",

"party" : "Bob”

"type": "ParticipantAdmin"

(continues on next page)

112. Integrate Daml with Off-Ledger Services

205

Daml SDK Documentation, 2.7.3

(continued from previous page)

Please refer to GrantUserRights RPC documentation for information about the meaning of the fields.

HTTP Response

"result": [

{
"type": "CanActAs",
"party": "Carol"

by

{
"type": "CanReadAs",
"party": "Alice"

}I

{
"type": "CanReadAs",

"Party" . "Bob”

"type": "ParticipantAdmin"
}

1,
"status": 200

Returns the rights that were newly granted.

Revoke User Rights

This endpoint exposes the Ledger API’s RevokeUserRights RPC.

HTTP Request

URL: /vl/user/rights/revoke
Method: POST
Content-Type: application/json

Content:
{
"userId": "carol",
"rights": [
{
"type": "CanActAs",
"party": "Carol"
by
{
"type": "CanReadAs",

(continues on next page)

206 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

"party": "Alice"

}I

{
"type": "CanReadAs",
"party": "Bob"

}I

{
"type": "ParticipantAdmin"

Please refer to RevokeUserRights RPC documentation for information about the meaning of the fields.

HTTP Response

"result": [

{
"type": "CanActAs",
"party": "Carol"

}I

{
"type": "CanReadAs",
"party": "Alice"

}I

{
"type": "CanReadAs",

"Party" . "Bobll

"type": "ParticipantAdmin"
}

1,
"status": 200

Returns the rights that were actually granted.

112. Integrate Daml with Off-Ledger Services 207

Daml SDK Documentation, 2.7.3

List Authenticated User Rights

This endpoint exposes the Ledger API's ListUserRights RPC.

The user ID will always be filled out with the user specified via the currently used user token.

HTTP Request

URL: /v1/user/rights
Method: GET

HTTP Response

"result": |

{
"type": "CanActAs",
"party": "Carol"

}I

{
"type": "CanReadAs",
"party": "Alice"

}I

{
"type": "CanReadAs",

"Party" . HBObH

"type": "ParticipantAdmin"
}

1,
"status": 200

List Specific User Rights

This endpoint exposes the Ledger API's ListUserRights RPC.

HTTP Request

URL: /v1/user/rights

Method: POST

Content-Type: application/json
Content:

"userId": "carol"

Please refer to ListUserRights RPC documentation for information about the meaning of the fields.

208 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

HTTP Response

"result": [

{
"type": "CanActAs",
"party": "Carol"

}I

{
"type": "CanReadAs",
"party": "Alice"

by

{
"type": "CanReadAs",

"party" . "Bob"

"type": "ParticipantAdmin"
}

1,
"status": 200

List All DALF Packages
HTTP Request

URL: /v1/packages
Method: GET
Content: <REMPTY>

HTTP Response

"result": [
"clf1£00558799%9eecl139fbd4f4c76£95fb52fal837a5dd29600baalc8edlbdccfd",
"733e38d36a2759688a4b2cd4cec69d48e7b55ecc8dedc80670815926¢c917a182a",
"bfcd37bd6b84768e86e432f5f6c33e25d9%9e7724a9d42e33875f£74f6348e733f",
"40f452260bef3f29dedel36108fc08a88d5a5250310281067087da6f0baddff7",
"8a7806365bbd98d88b4c13832ebfal305f6abacafl32cfal2b7dd25¢c4fa489p79fb"

1y
"status": 200

Where result is the JSON array containing the package IDs of all loaded DALFs.

112. Integrate Daml with Off-Ledger Services 209

Daml SDK Documentation, 2.7.3

Download a DALF Package

HTTP Request

URL: /vl/packages/<package ID>
Method: GET
Content: <EMPTY>

Note that the desired package ID is specified in the URL.

HTTP Response, status: 200 OK

Transfer-Encoding: chunked
Content-Type: application/octet-stream
Content: <DALF bytes>

The content (body) of the HTTP response contains raw DALF package bytes, without any encoding.
Note that the package ID specified in the URL is actually the SHA-256 hash of the downloaded DALF
package and can be used to validate the integrity of the downloaded content.

HTTP Response With Error, Any Status Different from 200 OK

Any status different from 200 OK will be in the format specified below.

Content-Type: application/json
Content:

"errors": [

"io.grpc.StatusRuntimeException: NOT FOUND"

I
"status": 500

Upload a DAR File

HTTP Request

URL: /v1/packages

Method: POST

Content-Type: application/octet-stream
Content: <DAR bytes>

The content (body) of the HTTP request contains raw DAR file bytes, without any encoding.

210

Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

HTTP Response, Status: 200 OK

Content-Type: application/json
Content:

"result": 1,
"status": 200

HTTP Response With Error

Content-Type: application/json
Content:

"errors": |

"io.grpc.StatusRuntimeException: INVALID ARGUMENT:

—Invalid DAR: package-upload, content: [}]"

I
"status": 500

Invalid argument:[]

Metering Report

For a description of participant metering, the parameters, and the report format see the Participant

Metering.

URL: /vl/metering-report
Method: POST

Content-Type: application/json
Content:

"from": "2022-01-01",
"to": "2022-02-01",
"application": "some-application"

}

HTTP Response

Content-Type: application/json
Content:

"status": 200,
"result": {
"participant": "some-participant",
"request": {
"from": "2022-01-01T00:00:002",

(continues on next page)

112. Integrate Daml with Off-Ledger Services

2N

Daml SDK Documentation, 2.7.3

(continued from previous page)

"to": "2022-02-01T00:00:00z"
}I
"final": true,
"applications": [
{
"application": "some-application",
"events": 42

Streaming API

Two subprotocols must be passed with every request, as described in Auth via WebSockets.

JavaScript/Node.js example demonstrating how to establish Streaming API connection:

const wsProtocol = "daml.ws.auth";
const tokenPrefix = "Jjwt.token.";
const jwt =

"eyJhbGciOiJIUzIINiIsInR5cCI6IkpXVCJI9.
—eyJodHRwczovL2RhbWwuY29tL2x12Gd1lcilhcGkiOnsibGVkZ2VySWQi0iJINeUx1Z2GdlciIsImFweGxpY
%34zzF_bev7p60r5slszwnddesJDX—W4Xhm4onp";
const subprotocols = [S{tokenPrefix jwt)}, wsProtocol];

const ws = new WebSocket ("ws://localhost:7575/v1/stream/query", subprotocols);

ws.addEventListener ("open", function open () {

ws.send (JSON.stringify ({templatelIds: [
—"11c8f3ace75868d28136adcbcfclde265a9%eeb5ad73fe8f2db97510e3631096a2:Iou:Iou"]}));
|

ws.addEventListener ("message", function incoming(data) {
console.log(data) ;

}):

PFO0aWous

Please note that Streaming APl does not allow multiple requests over the same WebSocket connec-
tion. The server returns an error and disconnects if second request received over the same Web-
Socket connection.

Error and Warning Reporting

Errors and warnings reported as part of the regular on-message flow: WS .
addEventListener ("message", ...).

Streaming APl error messages formatted the same way as synchronous APl errors.

Streaming API reports only one type of warnings - unknown template IDs, which is formatted as:

{"warnings": {"unknownTemplateIds":<JSON Array of template ID strings>>}}

212 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Error and Warning Examples

{"warnings": {"unknownTemplateIds": ["UnknownModule:UnknownEntity"]}}

{

"errors": ["JsonReaderError. Cannot read JSON: <{\"templateIds\":[]}>. Cause:l]
—spray.json.DeserializationException: search requires at least one item in
—'templateIds'"],

"status":400

"errors":["Multiple requests over the same WebSocket connection are not allowed.
:_>":| ,

"status":400

"errors":["Could not resolve any template ID from request."],
"status":400

Contracts Query Stream

URL: /v1l/stream/query
Scheme: ws
Protocol: WebSocket

List currently active contracts that match a given query, with continuous updates.

Simpler use-cases that do not require continuous updates should use the simpler /vi/query endpoint
instead.

application/json body must be sent first, formatted according to the Query Language:

{"templateIds": [
—"11c8f3ace75868d28136adcbcfclde265a9%ee5ad73fe8f2db97510e3631096a2:Iou:Iou"]}

Multiple queries may be specified in an array, for overlapping or different sets of template IDs.:

[

{"templateIds": [
—"11c8f3ace75868d28136adcbcfclde265a9%9ee5ad73fe8f2db97510e3631096a2:Iou:Iou"],
—"query": {"amount": {"%1lte": 50}}1},

{"templateIds": [
—"11c8f3ace75868d28136adcbcfclde265a9ee5ad73fe8f2db97510e3631096a2:0therIou:0OtherI
<"1, "query": {"amount": {"2Zgt": 50}}1},

{"templateIds": [
—"11c8f3ace75868d28136adcbcfclde?265a9%9eeb5ad73fe8f2db97510e3631096a2:Iou:Iou"]}

]

pu

Only one interface ID can be provided in templateIds. Aninterface ID can be used in all queries:

112. Integrate Daml with Off-Ledger Services 213

Daml SDK Documentation, 2.7.3

{"templateIds": [
—"11c8f3ace75868d28136adc5cfclde265a9ee5ad73£fe8£2db97510e3631096a2:Ifc:Ifc"],
—"query": {"amount": {"%lte": 50}}},

{"templateIds": [
—"11c8f3ace75868d28136adcbcfclde265a9%9ee5ad73fe8f2db97510e3631096a2:I1fc:I1fc"],
—"query": {"amount": {"2gt": 50}1}},

{"templateIds": [
—"11c8f3ace75868d28136adcbcfclde265a9%ee5ad73fe8f2db97510e3631096a2:Ifc:Ifc"]}
]

Mixing of template ID’s and interface ID’s or specifying more than one interface ID across queries is
not allowed. BadRequest(400) error will be returned.:

[

{"templateIds": [
—"11c8f3ace’75868d28136adcbcfclde265a9%9ee5ad73£fe8£2db97510e3631096a2:Iou:Iou"],
—"query": {"amount": {"%1lte": 50}}1},

{"templateIds": [
—"11c8f3ace75868d28136adcbcfclde265a9%eeb5ad73fe8f2db97510e3631096a2:Ifc:Ifc"],
—"query": {"amount": {"Sgt": 50}}},

{"templateIds": [
—"11c8f3ace75868d28136adcbcfclde?265a9eebad73fe8f2db97510e363109%96a2:Ifc:Ifc"]}
]

Queries have two ways to specify an offset.

Anoffset,astring supplied by an earlier query output message, may optionally be specified along-
side each query itself:

[

{"templateIds": [
—"11c8f3ace75868d28136adcbcfclde265a9ee5ad73£e8£2db97510e3631096a2:Iou:Iou"],
—"query": {"amount": {"%1lte": 50}}},

{"templateIds": [
—"11c8f3ace75868d28136adcbcfclde?265a9%9ee5ad73fe8f2db97510e3631096a2:Iou:Iou"],
—"query": {"amount": {"Sgt": 50}}},

{"templateIds": [
—"11c8f3ace75868d28136adcbcfclde265a9%9ee5ad73£fe8£2db97510e3631096a2:Iou:Iou"],
—"offset": "5609"}

]

If specified, the stream will include only contract creations and archivals after the response body
thatincluded that offset. Queries with no offset will begin with all active contracts for that query, as
usual.

If an offset is specified before the queries, as a separate body, it will be used as a default offset for all
queries that do not include an offset themselves:

{"offset": "4307"}

Forexample, if this message preceded the above 3-query example, it would be asif "4307" had been
specified for the first two queries, while "5609" would be used for the third query.

If any offset has been pruned, the websocket will immediately fail with code 1011 and message in-
ternal error.

214 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

The output is a series of JSON documents, each payload formatted according to Daml-LF JSON En-
coding:

{

"events": [{
"created": {

"observers": [],

"agreementText": "",

"payload": {
"observers": [1],
"issuer": "Alice",
"amount": "999.99",
"currency": "USD",
"owner": "Alice"

}I

"signatories": ["Alice"],

"contractId": "#1:0",

"templateId":

—"eb3b150383a979d6765b8570al7dd24ae8d8b63418ee5£d20df20ad2alcl3976:Iou:Iou"
s

"matchedQueries": [1, 2]

H

where matchedQueries indicates the O-based indices into the request list of queries that matched
this contract.

Every events block following the end of contracts that existed when the request started includes

an offset. The stream is guaranteed to send an offset immediately at the beginning of this live

data, which may or may not contain any events; if it does not contain events and no events were

emitted before, it may be null if there was no transaction on the ledger or a string representing the

current ledger end; otherwise, it will be a string. For example, you might use it to turn off an initial
loading indicator:

"events": [],
"offset": "2"

Note: Eventsinthe following live datamayinclude events that precede this offset if anearlier
per-query offset was specified.

This has been done with the intent of allowing to use per-query offset s to efficiently use a single
connection to multiplex various requests. To give an example of how this would work, let’s say that
there are two contract templates, A and B. Your application first queries for A s without specifying
an offset. Then some client-side interaction requires the application to do the same for B s. The
application can save the latest observed offset for the previous query, which let’s say is 42, and
issue a new request that queries for all B s without specifying an offset and all A s from 42. While
this happens on the client, a few more A s and B s are created and the new request is issued once
the latest offset is 47. The response to this will contain a message with all active B s, followed by the
message reporting the offset 47, followed by a stream of live updates that contains new A s starting
from 42 and new B s starting from 47 .

To keep the stream alive, you’ll occasionally see messages like this, which can be safely ignored if

112. Integrate Daml with Off-Ledger Services 215

Daml SDK Documentation, 2.7.3

you do not need to capture the last seen ledger offset:

{"events":[],"offset":"5609"}

where offset is the last seen ledger offset.

After submitting an ITou Split exercise, which creates two contracts and archives the one above,
the same stream will eventually produce:

{

"events": [{
"archived": {
"contractId": "#1:0",
"templateId":

—"eb3b150383a979d6765b8570al7dd24ae8d8b63418ee5£d20df20ad2alcl3976:Iou:Iou"

}
oo A

"created": {

"observers": [],

"agreementText": "",

"payload": {
"observers": [],
"issuer": "Alice",
"amount": "42.42",
"currency": "USD",
"owner": "Alice"

}I

"signatories": ["Alice"],

"contractId": "#2:1",

"templateId":

—"eb3b150383a979d6765b8570al7dd24ae8d8b63418ee5£d20df20ad2alcl3976:Iou:Iou"
}y

"matchedQueries": [0, 2]
boo A
"created": {
"observers": [],
"agreementText": "",
"payload": {
"observers": [1],
"issuer": "Alice",
"amount": "957.57",
"currency": "USD",
"owner": "Alice"
}I
"signatories": ["Alice"],
"contractId": "#2:2",
"templateId":

—"eb3b150383a979d6765b8570al17dd24ae8d8b63418ee5fd20df20ad2alcl3976:Iou:Iou"
b
"matchedQueries": [1, 2]

1y
"offset": "3"

If any template IDs are found not to resolve, the first element of the stream will report them:

{"warnings": {"unknownTemplateIds": ["UnknownModule:UnknownEntity"]}}

216 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

and the stream will continue, provided that at least one template ID resolved properly.

Aside from "created" and "archived" elements, "error" elements may appear, which contain
a string describing the error. The stream will continue in these cases, rather than terminating.

Some notes on behavior:

1. Each result array means this is what would have changed if you just polled /v1/query itera-
tively. In particular, just as polling search can miss contracts (as a create and archive can
be paired between polls), such contracts may or may not appear in any result object.

2. No archived ever contains a contract ID occurring within a created in the same array. So,
for example, supposing you are keeping an internal map of active contracts keyed by contract
ID, you can apply the created first or the archived first, forwards, backwards, or in random
order, and be guaranteed to get the same results.

3. Within a given array, if an archived and created refer to contracts with the same template
ID and contract key, the archived is guaranteed to occur before the created.

4. Except in cases of #3, within a single response array, the order of created and archived is
undefined and does not imply that any element occurred before or after any otherone.

5. You will almost certainly receive contract IDs in archived that you never received a created
for. These are contracts that query filtered out, but for which the server no longer is aware
of that. You can safely ignore these. However, such phantom archives are guaranteed to
represent an actual archival on the ledger, so if you are keeping a more global dataset outside
the context of this specific search, you can use that archival information as you wish.

Fetch by Key Contracts Stream

URL: /vl/stream/fetch
Scheme: ws
Protocol: WebSocket

List currently active contracts that match one of the given {templateId, key} pairs, with contin-
uous updates.

Simpler use-cases that search for only a single key and do not require continuous updates should
use the simpler /vi/fetch endpoint instead.

application/json body must be sent first, formatted according to the following rule:

[

{"templateId": "<template ID 1>", "key": <key 1>},
{"templateId": "<template ID 2>", "key": <key 2>},
{"templateId": "<template ID N>", "key": <key N>}
]
Where:

templateId - contract template identifier, same as in create request,
key - contract key, formatted according to the Daml-LF JSON Encoding,

Example:

[
{"templateId":
—"11c8f3ace75868d28136adcbcfclde265a9%9ee5ad73fe8f2db97510e3631096a2:Account:Account

" " " . (M _qU. UATL AT noonw. o) LAY
g = T+ 7 = = 77

7 B L— = (continues on next page)

112. Integrate Daml with Off-Ledger Services 217

Daml SDK Documentation, 2.7.3

(continued from previous page)

{"templateId":
—"11c8f3ace75868d28136adcbcfclde265a9%9ee5ad73£e8£2db97510e3631096a2:Account:Account
(_}H, "key": {"_1": HAlice", "_2": l'def345"}}

]

The output stream has the same format as the output from the Contracts Query Stream. We further
guarantee that for every archived event appearing on the stream there has been a matching cre-
ated event earlier in the stream, except in the case of missing contractIdAtOffset fieldsin the
case described below.

You may supply optional offset s for the stream, exactly as with query streams. However, you
should supply with each {templateId, key} pairacontractIdAtOffset,which isthe contract
ID currently associated with that pair at the point of the given offset, or null if no contract ID was
associated with the pair at that offset. For example, with the above keys, if you had one "abc123"
contract but no "def345" contract, you might specify:

[

{"templateId":
—"11c8f3ace75868d28136adcbcfclde265a9ee5ad73£fe8f2db97510e3631096a2:Account:Account
<", "key": {"_1": "Alice", "_2": "abcl23"},

"contractIdAtOffset": "#1:0"},

{"templateId":
—"11c8f3ace75868d28136adc5cfclde?265a9%ee5ad73£e8£f2db97510e3631096a2:Account:Account
<", "key": {"_1": "Alice", "_2": "def345"},

"contractIdAtOffset": null}

If every contractIdAtOffset is specified, as is so in the example above, you will not receive any
archived events for contracts created before the offset unless those contracts are identified in a
contractIdAtOffset. By contrast, if any contractIdAtOffset is missing, archived event fil-
tering will be disabled, and you will receive phantom archives as with query streams.

Healthcheck Endpoints

The HTTP JSON API provides two healthcheck endpoints for integration with schedulers like Kuber-
netes.

Liveness Check

URL: /1livez
Method: GET

A status code of 200 indicates a successful liveness check.

This is an unauthenticated endpoint intended to be used as a liveness probe.

218 Chapter 1. Canton References

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

Daml SDK Documentation, 2.7.3

Readiness Check

URL: /readyz
Method: GET

A status code of 200 indicates a successful readiness check.

This is an unauthenticated endpoint intended to be used as a readiness probe. It validates both the
ledger connection as well as the database connection.

1.12.4.2 Daml-LF JSON Encoding
We describe how to decode and encode Daml-LF values as JSON. For each Daml-LF type we explain
what JSON inputs we accept (decoding), and what JSON output we produce (encoding).

If you use the JavaScript code generator with TypeScript, the generated types for templates and choices
will incorporate the following automatically. You can use this to observe how these rules apply to
your templates, or ignore this document and rely on the TypeScript type checker to tell you how to
encode data for JSON API correctly.

Codec Library

At the library level, the output format is parameterized by two flags:

encodeDecimalAsString: boolean
encodeInt64AsString: boolean

The suggested defaults for both of these flags is false. If the intended recipient is written in
JavaScript, however, note that the JavaScript data model will decode these as numbers, discard-
ing data in some cases; encode-as-String avoids this, as mentioned with respect to JSON.parse
below. For that reason, the HTTP JSON API Service uses true for both flags.

Type-directed Parsing

Note that throughout the document the decoding is type-directed. In other words, the same JSON
value can correspond to many Daml-LF values, and a single Daml-LF value can correspond to multiple
JSON encodings. This means it is crucial to know the expected type of a JSON-encoded LF value to
make sense of it.

For that reason, you should parse the data into appropriate data types (including parsing numbers
into appropriate representations) before doing any meaningful manipulations (e.g. comparison for
equality).

112. Integrate Daml with Off-Ledger Services 219

Daml SDK Documentation, 2.7.3

Contractld

Contract ids are expressed as their string representation:

Hl23"
HXYZ"
"foo:bar#baz"

Decimal
Input

Decimals can be expressed as JSON numbers or as JSON strings. JSON strings are accepted using
the same format that JSON accepts, and treated them as the equivalent JSON number:

=2(2:01[1-97\d*) (?:\.\d+) 2 (?: [eE] [+-]2\d+) ?

Note that JSON numbers would be enough to represent all Decimals. However, we also accept strings
because in many languages (most notably JavaScript) use IEEE Doubles to express JSON numbers,
and |IEEE Doubles cannot express Daml-LF Decimals correctly. Therefore, we also accept strings so
that JavaScript users can use them to specify Decimals that do not fit in IEEE Doubles.

Numbers must be within the bounds of Decimal, [-(10 -1) 10 , (10 -1) 10]. Numbers outside
those bounds will be rejected. Numbers inside the bounds will always be accepted, using banker’s
rounding to fit them within the precision supported by Decimal.

A few valid examples:

42 --> 42
42.0 --> 42
"42" --> 42

9999999999999999999999999999.9999999999 -->
9999999999999999999999999999.9999999999

-42 -=-> =42

"—42" —=> -42

0 -->0

-0 --> 0

0.30000000000000004 --> 0.3

2e3 --> 2000

A few invalid examples:

" 4 2 "

"blah"
99999999999999999999999999990
+42

220 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Output

If encodeDecimalAsString is set, decimals are encoded as strings, using the format -2 [0-9]1 {1,
28} (\.[0-91{1,10}) 2. If encodeDecimalAsString is not set, they are encoded as JSON numbers,
also using the format -2 [0-91{1,28} (\.[0-9]{1,10}) ~.

Note that the flag encodeDecimalAsString is useful because it lets JavaScript consumers consume
Decimals safely with the standard JSON.parse.

Int64
Input

Inté4, much like Decimal, can be represented as JSON numbers and as strings, with the string
representation being [+-1?[0-9]1+. The numbers must fall within [-9223372036854775808,
9223372036854775807]. Moreover, if represented as JSON numbers, they must have no fractional
part.

A few valid examples:

42

"+42"

-42

0

-0

9223372036854775807
"9223372036854775807"
-9223372036854775808
"-9223372036854775808"

A few invalid examples:

42.3

+42
9223372036854775808
-9223372036854775809
"garbage"

" 4 2 "

Output

If encodelnt64AsString is set, Int64s are encoded as strings, using the format -2 [0-9]+. If en-
codelnt64AsString is not set, they are encoded as JSON numbers, also using the format -2 [0-9] +.

Note that the flag encodelnt64AsString is useful because it lets JavaScript consumers consume
Int64s safely with the standard JSON.parse.

112. Integrate Daml with Off-Ledger Services 221

Daml SDK Documentation, 2.7.3

Timestamp
Input

Timestamps are represented as [ISO 8601 strings, rendered using the format
yyyy-mm-ddThh:mm:ss.ssssssZ:

1990-11-09T04:30:23.1234562
9999-12-31T23:59:59.999999%Z

Parsing is a little bit more flexible and uses the format yyyy-mm-ddThh:mm:ss (\.s+) ?Z, i.e. it’s
OK to omit the microsecond part partially or entirely, or have more than 6 decimals. Sub-second
data beyond microseconds will be dropped. The UTC timezone designator must be included. The
rationale behind the inclusion of the timezone designator is minimizing the risk that users pass in
local times. Valid examples:

1990-11-09T04:30:23.1234569Z
1990-11-09T04:30:23%
1990-11-09T04:30:23.123%
0001-01-01T00:00:00%Z
9999-12-31T23:59:59.99999972

The timestamp must be between the bounds specified by Daml-LF and I1SO 8601,
[0001-01-01T00:00:00Z, 9999-12-31T23:59:59.9999997].

JavaScript

> new Date () .toISOString()
'2019-06-18T08:59:34.1912"

Python

>>> datetime.datetime.utcnow () .isoformat() + 'Z'
'2019-06-18T08:59:08.3927647"'

Java

import java.time.Instant;
class Main {
public static void main(String[] args) {
Instant instant = Instant.now();
// prints 2019-06-18T09:02:16.6527
System.out.println(instant.toString());

222 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Output

Timestamps are encoded as ISO 8601 strings, rendered using the format yyyy-mm-ddThh:mm:ss[.
ssssss]Z.

The sub-second part will be formatted as follows:

If no sub-second part is present in the timestamp (i.e. the timestamp represents whole sec-
onds), the sub-second part will be omitted entirely;

If the sub-second part does not go beyond milliseconds, the sub-second part will be up to mil-
liseconds, padding with trailing Os if necessary;

Otherwise, the sub-second part will be up to microseconds, padding with trailing Os if neces-
sary.

In other words, the encoded timestamp will either have no sub-second part, a sub-second part of
length 3, or a sub-second part of length 6.

Party

Represented using their string representation, without any additional quotes:

"Alice"
IIBObH

Unit

Represented as empty object { }. Note that in JavaScript {} !== {}; however, null would be am-
biguous; for the type Optional Unit,null decodes to None, but {} decodes to Some ().

Additionally, we think that this is the least confusing encoding for Unit since unit is conceptually
an empty record. We do not want to imply that Unit is used similarly to null in JavaScript or None in
Python.

Date

Represented as an ISO 8601 date rendered using the format yyyy-mm-dd:

2019-06-18
9999-12-31
0001-01-01

The dates must be between the bounds specified by Daml-LF and ISO 8601, [0001-01-01, 9999-12-31].

112. Integrate Daml with Off-Ledger Services 223

Daml SDK Documentation, 2.7.3

Text

Represented as strings.

Bool

Represented as booleans.

Record
Input

Records can be represented in two ways. As objects:

{ £l v, ..., fl: vl }

And as arrays:

[v, ..., vl]

Note that Daml-LF record fields are ordered. So if we have

record Foo = {fl: Int64, f2: Bool}

when representing the record as an array the user must specify the fields in order:

[42, true]

The motivation for the array format for records is to allow specifying tuple types closer to what it
looks like in Daml. Note that a Daml tuple, i.e. (42, True), will be compiled to a Daml-LF record Tuple2
{ 1 =142, 2 = True }.

Output

Records are always encoded as objects.

List

Lists are represented as

(v, ..., vU]

224 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

TextMap

TextMaps are represented as objects:

{ kU: v, ., kU: vl }

GenMap

GenMaps are represented as lists of pairs:

[[kd, vUl, [k&, vO]]

Order does not matter. However, any duplicate keys will cause the map to be treated as invalid.

Optional
Input

Optionals are encoded using null if the value is None, and with the value itself if it's Some. However,
this alone does not let us encode nested optionals unambiguously. Therefore, nested Optionals are
encoded using an empty list for None, and a list with one element for Some. Note that after the
top-level Optional, all the nested ones must be represented using the list notation.

A few examples, using the form

JSON --> Daml-LF Expected Daml-LF type

to make clear what the target Daml-LF type is:

null --> None Optional Int64

null --> None Optional (Optional Inté64)

42 --> Some 42 Optional Int64

[] --> Some None Optional (Optional Int64)

[42] --> Some (Some 42) Optional (Optional Int64)

[[1] --> Some (Some None) Optional (Optional (Optional Int64))
[[42]1] --> Some (Some (Some 42)) Optional (Optional (Optional Inté64))

Finally, if Optional values appear in records, they can be omitted to represent None. Given Daml-LF
types

record Depthl = { foo: Optional Int64 }

record Depth2 = { foo: Optional (Optional Int64) }

We have

{} —--=> Depthl { foo: None } Depthl
{1} --> Depth2 { foo: None } Depth?
{ foo: 42 } --> Depthl { foo: Some 42 } Depthl
{ foo: [42] } --> Depth2 { foo: Some (Some 42) } Depth?2
{ foo: null } --> Depthl { foo: None } Depthl

112. Integrate Daml with Off-Ledger Services

(continues on next page)

Daml SDK Documentation, 2.7.3

(continued from previous page)

-—>
-—>

Depth?
Depth?2

{ foo:
{ foo:

null }
(1}

Depth2 { foo: None }
Depth2 { foo: Some None }

Note that the shortcut for records and Optional fields does not apply to Map (which are also repre-
sented as objects), since Map relies on absence of key to determine what keys are present in the
Map to begin with. Nor does it apply to the [£[], ..., £f[] record form;Depthl None inthe array
notation must be written as [null].

Type variables may appear in the Daml-LF language, but are always resolved before deciding on a
JSON encoding. So, for example, even though Oa doesn’t appear to contain a nested Optional, it
may contain a nested Optional by virtue of substituting the type variable a:

record Oa a = { foo: Optional a }

{ foo: 42 } --> Q0QOa { foo: Some 42 } Oa Int

{1} --> Oa { foo: None } Oa Int

{ foo: T[] } --> 0Oa { foo: Some None } Oa (Optional Int)
{ foo: [42] } --> Oa { foo: Some (Some 42) } Oa (Optional Int)

In otherwords, the correct JSON encoding for any LF value is the one you get when you have eliminated
all type variables.

Output

Encoded as described above, never applying the shortcut for None record fields; e.g. { foo: None

} will always encode as { foo: null }.

Variant

Variants are expressed as

{ tag: constructor, value: argument }

For example, if we have

variant Foo Bar Int64 | Baz Unit | Quux (Optional Int64)

These are all valid JSON encodings for values of type Foo:

{"tag": "Bar", "value": 42}
{"tag": "Baz", "value": {}}
{"tag": "Quux", "value": null}
{"tag": "Quux", "value": 42}

Note that Daml data types with named fields are compiled by factoring out the record. So forexample
if we have

data Foo Bar {fl: Int64, f2: Bool} | Baz

we’ll get in Daml-LF

226 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

record Foo.Bar = {fl: Int64, f2: Bool}
variant Foo = Bar Foo.Bar | Baz Unit

and then, from JSON

{"tag": "Bar", "value": {"fl1": 42, "f2": true}}
{"tag": "Baz", "value": {}}

This can be encoded and used in TypeScript, including exhaustiveness checking; see a type refine-
ment example.

Enum

Enums are represented as strings. So if we have

enum Foo = Bar | Baz

There are exactly two valid JSON values for Foo, Bar and Baz .

112.4.3 Query Language

The body of POST /v1/query looks like so:

{
"templateIds": [...template IDs...],
"query": {...query elements...}

The elements of that query are defined here.

Fallback Rule

Unless otherwise required by one of the other rules below or to follow, values are interpreted accord-
ing to Daml-LF JSON Encoding, and compared for equality.

All types are supported by this simple equality comparison except:

lists
textmaps
genmaps

Simple Equality

Match records having at least all the (potentially nested) keys expressed in the query. The result
record may contain additional properties.

Example: { person: { name: "Bob"™ }, city: "London" }
Match: { person: { name: "Bob", dob: "1956-06-21" }, city: "London",
createdAt: "2019-04-30T12:34:122" }
No match: { person: { name: "Bob"™ }, city: "Zurich" }

112. Integrate Daml with Off-Ledger Services 227

https://www.typescriptlang.org/play/#code/C4TwDgpgBAYg9nKBeAsAKCpqBvKwCGA5gFxQBEAQvgE5kA0UAbvgDYCuEpuAZgIykA7NgFsARhGoNuAJlKiELCPgFQAvmvSYAPjjxFSlfAC96TVhy5q1AbnTpubAQGNgASzgrgEAM7AAFIyk8HAAlDiaUN4A7q7ATgAWUAEAdASEYdgRmE743tCGtMRZWE4e3nCKySxwhCnM7BDJfAyMyfUcTdIhthhYmNQQwGzUAj19OXnkVCZFveNlFY3Vta3tEN3F-YPDo8UAJhDc+GwswLN92WXAUAD6ghCMEshMYxpoqkA
https://www.typescriptlang.org/play/#code/C4TwDgpgBAYg9nKBeAsAKCpqBvKwCGA5gFxQBEAQvgE5kA0UAbvgDYCuEpuAZgIykA7NgFsARhGoNuAJlKiELCPgFQAvmvSYAPjjxFSlfAC96TVhy5q1AbnTpubAQGNgASzgrgEAM7AAFIyk8HAAlDiaUN4A7q7ATgAWUAEAdASEYdgRmE743tCGtMRZWE4e3nCKySxwhCnM7BDJfAyMyfUcTdIhthhYmNQQwGzUAj19OXnkVCZFveNlFY3Vta3tEN3F-YPDo8UAJhDc+GwswLN92WXAUAD6ghCMEshMYxpoqkA

Daml SDK Documentation, 2.7.3

Typecheck failure: { person: { name: ["Bob", "Sue"] }, city: "London" }

A JSON object, when considered with a record type, is always interpreted as a field equality query. Its
type context is thus mutually exclusive with comparison queries.

Comparison Query

Match values on comparison operators for int64, numeric, text, date, and time values. Instead of a
value, a key can be an object with one or more operators: { <op>: value } where <op> can be:

"$1t" forless than

"$gt" for greater than

"%1te" for less than or equal to
"$gte" for greater than or equal to

"$1t" and "$1lte" may not be used at the same time, and likewise with "$gt" and "%gte", but all
other combinations are allowed.

Example: { "person" { "dob": { "$lt": "2000-01-01", "%gte": "1980-01-01" } }
}

Match: { person: { dob: "1986-06-21" } }
No match: { person: { dob: "1976-06-21" } }
No match: { person: { dob: "2006-06-21" } }

These operators cannot occur in objects interpreted in a record context, nor may other keys than
these four operators occur where they are legal, so there is no ambiguity with field equality.

Appendix: Type-aware Queries

This section is non-normative.

Thisis not a JSON query language, itis a Daml-LF query language. So, while we could theoretically treat
queries (where not otherwise interpreted by the may contain additional properties rule above)
without concern for what LF type (i.e. template) we’re considering, we will not do so.

Consider the subquery {"foo": "bar"}. This query conforms to types, among an unbounded
number of others:

record A [J { foo : Text }
record B [I { foo : Optional Text }
variant C [J foo : Party | bar : Unit

// NB: LF does not require any particular case for VariantCon or Field;
// these are perfectly legal types in Daml-LF packages

In the cases of A and B, "foo" is part of the query language, and only "baxr" is treated as an LF
value; in the case of C, the whole query is treated as an LF value. The wide variety of ambiguous
interpretations about what elements are interpreted, and what elements treated as literal, and how
those elements are interpreted or compared, would preclude many techniques for efficient query
compilation and LF value representation that we might otherwise consider.

Additionally, it would be extremely easy to overlook unintended meanings of queries when writing
them, and impossible in many cases to suppress those unintended meanings within the query lan-
guage. For example, there is no way that the above query could be written to match A but never C.

228 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

For thesereasons, as with LF value input via JSON, queries written in JSON are also always interpreted
with respect to some specified LF types (e.g. template IDs). For example:

{
"templatelIds": ["Foo:A", "Foo:B", "Foo:C"],
"query": {"foo": ”bar”}

will treat "foo" as a field equality query for A and B, and (supposing templates’ associated data
types were permitted to be variants, which they are not, but for the sake of argument) as a whole
value equality query for C.

The above Typecheck failure happens because there is no LF type to which both "Bob" and
["Bob", "Sue"] conform; this would be caught when interpreting the query, before considering
any contracts.

Appendix: Known Issues
When Using Oracle, Queries Fail if a Token Is Too Large

This limitation is exclusive to users of the HTTP JSON APl using Daml| Enterprise support for Ora-
cle. Due to a known limitation in Oracle, the full-test JSON search index on the contract payloads
rejects query tokens larger than 256 bytes. This limitations shouldn’t impact most workloads, but
if this needs to be worked around, the HTTP JSON API server can be started passing the additional
disableContractPayloadIndexing=true (after wiping an existing query store database, if nec-
essary).

Issue on GitHub

112.4.4 Using JavaScript Client Libraries with Daml

The JavaScript client libraries allow you to easily build frontend applications that interact with the
HTTP JSON API service.

These libraries can dramatically reduce the time necessary to develop a full-stack application by
abstracting away implementation details, particularly when building a prototype or an application
with relatively simple requirements.

The @daml/types library contains the TypeScript data types corresponding to primitive Daml| data
types, such as Party or Text. Apart from its usefulness for TypeScript developers, the library can
also be pulled in as a development-type dependency for JavaScript projects to take advantage of
tooling integration with the TypeScript ecosystem, such as the availability of autocompletion on
Visual Studio Code.

The @daml/ledger library contains functions used to interact with the endpoints exposed by HTTP
JSON API service and forms the basic layer of functionality. At this layer, you can easily query for
active contracts from the ledger, create new ones or exercise choices. This layer is agnostic with
regards to any specific framework required to build the frontend.

Finally, if you are a React.js user, you can take advantage of the @daml/react library, which builds on
top of @daml/ledger with extensions specific to React,js. This bridges the gap between the basic
functionality and the infrastructure required to build a React.js-based frontend application. If you

112. Integrate Daml with Off-Ledger Services 229

https://github.com/digital-asset/daml/issues/10780
https://docs.daml.com/2.7.3/app-dev/bindings-ts/daml-types
https://docs.daml.com/2.7.3/app-dev/bindings-ts/daml-ledger
https://reactjs.org
https://docs.daml.com/2.7.3/app-dev/bindings-ts/daml-react

Daml SDK Documentation, 2.7.3

want to start from a ready-made application that uses this library you can start running from the
following template:

daml new --template create-daml-app <name-of-your-project>

To use these libraries, you need to use the JavaScript Code Generator to automatically generate Type-
Script containing metadata about Daml packages.

Use the JavaScript Code Generator

The command daml codegen js generates JavaScript (and TypeScript) that can be used in con-
junction with the JavaScript Client Libraries for interacting with a Daml ledger via the HTTP JSON
API.

Inputs to the command are DAR files. Outputs are JavaScript packages with TypeScript typings con-
taining metadata and types for all Daml packages included in the DAR files.

The generated packages use the library @daml/types.

Generate and Use Code

In outline, the command to generate JavaScript and TypeScript typings from Damlis daml codegen
js -o OUTDIR DAR where DAR is the path to a DAR file (generated via daml build) and OUTDIR
is a directory where you want the artifacts to be written.

Here’s a complete example on a project built from the standard skeleton template.

daml new my-proj --template skeleton # Create a new project based off the
—skeleton template

cd my-proj # Enter the newly created project directory

daml build # Compile the project's Daml files into a DAR

daml codegen js -o daml.js .daml/dist/my-proj-0.0.1.dar # Generate JavaScript!]
—packages in the daml.js directory

On execution of these commands:

- The directory my-proj/daml.js contains generated JavaScript packages with Type-
Script typings;

- The files are arranged into directories;

- One of those directories will be named my-proj-0.0.1 and will contain the definitions cor-
responding to the Daml files in the project;

- For example, daml.js/my-proj-0.0.1/1ib/index.js provides access to the defini-
tions for daml/Main.daml;

- The remaining directories correspond to modules of the Daml standard library;

- Those directories have numeric names (the names are hashes of the DamlI-LF package
they are derived from).

To getaquickstartidea of how to use what has been generated, you may wish to jump to the Templates
and choices section and return to the reference material that follows as needed.

230 Chapter 1. Canton References

/app-dev/bindings-ts/index.html
/json-api/index.html
/json-api/index.html
https://docs.daml.com/2.7.3/app-dev/bindings-ts/daml-types

Daml SDK Documentation, 2.7.3

Primitive Daml Types: @daml/types

To understand the TypeScript typings produced by the code generator, it is helpful to keep in mind
this quick review of the TypeScript equivalents of the primitive Daml types provided by @daml/types.

Interfaces:
Template<T extends object, K = unknown>
Choice<T extends object, C, R, K = unknown>

Types:

Daml TypeScript TypeScript definition

() Unit {}

Bool Bool boolean

Int Int string

Decimal Decimal string

Numeric v Numeric string

Text Text string

Time Time string

Party Party string

[t] List<t> T[]

Date Date string

ContractId | Contrac- string

T tId<t>

Optional =t Optional<t> null | (null extends 1T ? [1 | [Exclude<rt,

null>] T)
TextMap T TextMap<t> { [key: string]: 1 }
(T, =Tb) Tuplell<tl], { 1: ==h; 2: =0}
>

Note: The types given in the TypeScript column are defined in @daml/types.

Note:
table).

For n-tuples where n

3, representation is analogous with the pair case (the last line of the

Note: The TypeScript types Time, Decimal, Numeric and Int all alias to string. These choices
relate to the avoidance of precision loss under serialization over the json-api.

Note: The TypeScript definition of type Optional<t> in the above table might look complicated. It
accounts for differences in the encoding of optional values when nested versus when they are not (i.e.

top-level). For example, null and "foo" are two possible values of Optional<Text> whereas,
[] and ["foo"] are two possible values of type Optional<Optional<Text>> (null is another
possible value, [null] is not).

112. Integrate Daml with Off-Ledger Services 231

../json-api/index.html

Daml SDK Documentation, 2.7.3

Daml to TypeScript Mappings

The mappings from Daml to TypeScript are best explained by example.

Records

In Daml, we might model a person like this.

a A W o

data Person =
Person with
name: Text
party: Party
age: Int

Given the above definition, the generated TypeScript code will be as follows.

a A W o

type Person = {
name: string;
party: daml.Party;
age: daml.Int;

}

Variants

This is a Daml type for a language of additive expressions.

AWM o

data Expr a =
Lit a
| Var Text
| Add (Expr a, Expr a)

In TypeScript, itis represented as a discriminated union.

B

type Expr<a> =
\ { tag: 'Lit'; wvalue: a }
| { tag: 'Var'; value: string }
\ { tag: 'Add'; value: {_1: Expr<a>, 2: Expr<a>} }

Sum-of-products

Let’s slightly modify the Expr a type of the last section into the following.

A W MM o

data Expr a =
Lit a
| Var Text
| Add {lhs: Expr a, rhs: Expr a}

Compared to the earlier definition, the Add case is now in terms of a record with fields 1hs and rhs.
This renders in TypeScript like so.

232 Chapter 1. Canton References

https://www.typescriptlang.org/docs/handbook/advanced-types.html#discriminated-unions

AN

«

Daml SDK Documentation, 2.7.3

type Expr<a> =
\ { tag: 'Lit2'; wvalue: a }
| { tag: 'Var2'; value: string }
\ { tag: 'Add'; value: Expr.Add<a> }

namespace Expr {
type Add<a> = {
lhs: Expr<a>;
rhs: Expr<a>;

The thing to note is how the definition of the Add case has given rise to a record type definition
Expr.Add.

Enums

Given a Daml enumeration like this,

data Color = Red | Blue | Yellow

the generated TypeScript will consist of a type declaration and the definition of an associated com-
panion object.

type Color = 'Red' | 'Blue' | 'Yellow'
const Color = {
Red: 'Red',

Blue: 'Blue',

Yellow: 'Yellow',

keys: ['Red',6 'Blue', 'Yellow'],
} as const;

Templates and Choices

Here is a Daml template of a basic ‘IOU’ contract.

template Iou
with
issuer: Party
owner: Party
currency: Text
amount: Decimal
where
signatory issuer
choice Transfer: ContractId Iou
with
newOwner: Party
controller owner
do
create this with owner = newOwner

112. Integrate Daml with Off-Ledger Services 233

A W N

A W N

o

Daml SDK Documentation, 2.7.3

The daml codegen Js command generates types for each of the choices defined on the template
as well as the template itself.

type Transfer = {
newOwner: daml.Party;

type Iou = {
issuer: daml.Party;
owner: daml.Party;
currency: string;
amount: daml.Numeric;

Each template results in the generation of a companion object. Here, is a schematic of the one gen-
erated from the Tou template®.

const Iou: daml.Template<Iou, undefined> & {
Archive: daml.Choice<Iou, DA Internal Template.Archive, {}, undefined>;
Transfer: daml.Choice<Iou, Transfer, daml.ContractId<Iou>, undefined>;

VA 4

The exact details of these companion objects are not important - think of them as representing
metadata .

What is important is the use of the companion objects when creating contracts and exercising
choices using the @daml/ledger package. The following code snippet demonstrates their usage.

import Ledger from '@daml/ledger';
import {Iou, Transfer} from /* ... */;

const ledger = new Ledger (/* ... */);

// Contract creation,; Bank issues Alice a USD SIMM IOU.

const iouDetails: Iou = {
issuer: 'Chase',
owner: 'Alice',

currency: 'USD',

amount: 1000000.0,
bi
const aliceIouCreateEvent = await ledger.create(Iou, iouDetails);
const aliceIouContractId = alicelouCreateEvent.contractId;

// Choice execution; Alice transfers ownership of the IOU to Bob.

const transferDetails: Transfer = {
newOwner: 'Bob',
}
const [bobIouContractlId,] = await ledger.exercise (Transfer, aliceIouContractId,!]

—~transferDetails) ;

Observe online 14, the first argument to create is the Iou companion object and on line 22, the first
argument to exercise is the Transfer companion object.

2 The undefined type parameter captures the fact that Tou has no contract key.

234 Chapter 1. Canton References

https://github.com/digital-asset/daml/tree/main/language-support/ts/daml-ledger

Daml SDK Documentation, 2.7.3

@daml/react

@daml/react documentation

@daml/ledger

@daml/ledger documentation

@daml/types

@daml/types documentation

1.12.4.5 JSON API Production Setup

Production Setup

The vast majority of prior documentation focused on ease of testing and on setting up the service
to run in a dev environment. From a production perspective, given the wide variety of use-cases,
there is far less of an established framework for the deployment of an HTTP JSON API server. In this
document we will make some recommendations for production deployments.

Query Store

Note: Daml Open Source only supports PostgreSQL backends for the HTTP JSON APl server, but Daml
Enterprise also supports Oracle backends.

The HTTP JSON API server is a JVM application that uses an in-memory backend by default. This
in-memory backend setup is inefficient for larger datasets as every query fetches the entire active
contract set for all the templates the query references. For production setups we therefore recom-
mend, at a minimum, that one use a database as a query store. This allows for more efficient data
caching and improves query performance. Details for enabling a query store are given below.

The query store is a cached search index and is useful in cases where the application needs to query
large active contract sets (ACS). The HTTP JSON APl server can be configured with PostgreSQL/Oracle
(Daml Enterprise only) as the query store backend.

The query store is built by saving the state of the ACS up to the current ledger offset. This allows the
HTTPJSON APl to only request the delta on subsequent queries, making it much faster than requesting
the entire ACS every time.

112. Integrate Daml with Off-Ledger Services 235

https://docs.daml.com/2.7.3/app-dev/bindings-ts/daml-react
https://docs.daml.com/2.7.3/app-dev/bindings-ts/daml-ledger
https://docs.daml.com/2.7.3/app-dev/bindings-ts/daml-types

Daml SDK Documentation, 2.7.3

Configuring

For example, to enable the PostgreSQL backend you can add the query-store config block in your
application config file:

query-store {
base-config {
user = "postgres"
password = "password"
driver = "org.postgresqgl.Driver"
url = "Jjdbc:postgresqgl://localhost:5432/test?&ssl=true"

// prefix for table names to avoid collisions, empty by default
table-prefix = "foo"

// max pool size for the database connection pool

pool-size = 12

//specifies the min idle connections for database connection pool.
min-idle = 4

//specifies the idle timeout for the database connection pool.
idle-timeout = 12s

//specifies the connection timeout for database connection pool.
connection-timeout = 90s

}

// option setting how the schema should be handled.

// Valid options are start-only, create-only, create-if-needed-and-start and'l
—create-and-start

start-mode = "start-only"

Consultyour database vendor's JDBC driver documentation to learn how to specify a JDBC connection
URL that suits your needs.

You can also use the -—-query-store-jdbc-config CLI flag (deprecated), as shown below.

daml json-api --ledger-host localhost --ledger-port 6865 —--http-port 7575 \
--query-store-jdbc-config "driver=org.postgresqgl.Driver,url=jdbc:postgresqgl://
—localhost:5432/test?&ssl=true,user=postgres, password=password, start-mode=start-
—only"

Managing DB permissions with start-mode

The start-mode is a custom parameter to specify the initialization and usage of the database back-
ing the query store.

Depending on how you prefer to operate it, you can

run with start-mode=create-only with a user that has exclusive table-creating rights
that are required for the query store to operate, and then start it once more with
start-mode=start-only with a user that can use the aforementioned tables, but that can-
not apply schema changes

run with a user that can both create and use the query store tables by passing
start-mode=create-and-start

run with a user that can drop, create and use the query store tables by passing
start-mode=create-if-needed-and-start

236 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

When restarting the HTTP JSON APl server after a schema has already been created, it's safe practice
to always use start-mode=start-only.

Data Continuity

The query store is a cache. This means that it is perfectly fine to drop it, as the data it contains is a
subset of what can safely be recovered from the ledger.

As such, the query store does not provide data continuity guarantees across versions and further-
more doesn’t guarantee that a query store initialized with a previous version of the HTTP JSON API will
work with a newer version. However, the query store keeps track of the schema version under which
it was initialized and HTTP JSON API service refuses to start if an old schema is detected when it’s
run with a newer version.

To evolve, the operator of the HTTP JSON APl query store needs to drop the database used to hold the
HTTP JSON API query store, create a new one (consult your database vendor’s documentation for in-
structions), and then (depending on the operator’s preferred production setup) should proceed to
create and start the server using either start-mode=create-only & start-mode=start-only
oronly with start-mode=create-and-start as described above.

Behavior Under High Load

As stated in the overview, the HTTP JSON API service is optimized for rapid application development
and ease of developer onboarding. It is not intended to support every high-performance use case.
To understand how a high-load application may reach the limits of its design, you need to consider
how the query store works.

First, always keep in mind that the HTTP JSON API service can only do whatever an ordinary ledger API client
application could do, including your own. That’s because it is an ordinary client of The Ledger API. So, if
your application’s queries are a poor match for the way HTTP JSON API service’s query store works,
it’s time to consider cutting out the middleman.

Running a Query

Here is what happens every time you run a query with a configured query store:

1. The query store uses the transaction stream from the gRPC API to update its contract table
with an up-to-date view of all active contracts that match the template IDs, interface IDs,
and user party set in the request. The payload query is not considered at all; every matching
contract is added to the table. This will use the active contract service to skip past most of
the transaction stream, if the contract table is empty at that set.

2. A database query is run on the contract table, filtering on template ID/interface ID, party set,
and the payload.

3. If contention with concurrent requests is detected, the query store will assume itis behind
and catchup byreturningto #1. Thisuses an iterative livelocking strategy, where progress
is guaranteed and more concurrency is permitted, rather than exclusive locking.

4. Results are returned to the user.

A websocket query does the same, but any contract that didn’t exist at the start of the websocket
won’t receive the above treatment; the live data described for the websocket query stream is al-
ways filtered directly from the gRPC API, just as if no query store was configured.

112. Integrate Daml with Off-Ledger Services 237

Daml SDK Documentation, 2.7.3

Storage Overview

Without going into too much detail, here’s more or less what is stored under step #1 above, for each
contract:

full contract ID

an integer for the template or interface ID

for a template ID, the create arguments, as full JSON
for an interface ID, the interface view, as full JSON

a list of signatories and observers, i.e. parties

abhwn -~

Every query store backend indexes on #2, as we have found this index to be universally beneficial. In
addition, the Oracle backend has an index on #3 and #4.

With thisindexing arrangement, our testing has indicated reasonable performance for well-matched
use cases as explained below for contract tables of up to 100000 contracts.

Well-Matched Use Cases

The query store is, generally speaking, best matched to CRUD-like use cases with relatively stable
active contract sets. Here are some more specific characteristics likely to be shared by Daml designs
that will perform well with the query store.

1. Workflows properly separated into separate templates. The template ID index is the most effi-
cient part of query store filtering. In addition, contract table updates on separate template IDs
do not contend (i.e. cause the reset to step #1 above), so changes to the ledger on other parts
of the workflow do not affect queries on the template in question.

2. Queries that return <10% of all active contracts for a given contract type ID and party set. This
maximizes the value of storing redundant copies in SQL-queryable form at all, namely, that the
HTTP JSON API service does not even need to consider already-stored, unmatched contracts.

3. Queries against a slow participant. If the transaction stream from your ledger API participant
server is particularly slow, it may be faster to retrieve most contracts from its local database,
even if HTTP JSON API service gets no benefit from #2.

4. Templates with low churn, i.e. most active contracts from the previous query are likely to still
be active for the next query. If the query store is likelier to have already stored most of the
contracts for that template, the update part of the process will be significantly fasterand much
less likely to contend.

IlI-Matched Use Cases

By contrast, many Daml applications can yield patterns in the ACS and transactions that hurt the
performance of applications built on the HTTP JSON API service. Below are some gotchas that
might indicate that your application calls for a custom view, perhaps even stored locally in SQL and
managed by your application, beyond what HTTP JSON API service’s query store can provide.

1. Workflows that use the state field antipattern. This adds a filter on the relatively inefficient
payload query that ought to instead be placed on the template ID. In addition, updates to the
state field will needlessly contend with updates to contracts with the state you’re interested in.

2. Queries that return a large percentage of active contracts against a given contract type ID and
party set. If the query store cannot yield any benefit from letting HTTP JSON API service ignore
most contracts on each query it will spend more time updating its contract table than it would

238 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

have spent simply reading from the gRPC API and filtering directly, so you might as well turn
off the query store.

3. Templates with high churn, i.e. the active contracts during the last query are very unlikely to still
be active. In such cases HTTP JSON API service may spend so much time updating its contract
table that it washes out any performance advantage from being able to SQL query it afterwards.

4. Contracts with highly-overlapping signatories and observers. When signatories and observers
do not intersect, their updates never contend; the more this happens, the more likely updates
for queries with different party-sets will contend.

Security and Privacy

For an HTTP JSON API server, all data is maintained by the operator of the deployment. It is the opera-
tor’s responsibility to ensure that the data abides by the necessary regulations and confidentiality
expectations.

We recommend using the tools documented by PostgreSQL to protect data at rest, and using a secure
communication channel between the HTTP JSON API server and the PostgreSQL server.

The HTTP JSON API server provides TLS support to protect data in transit and over untrusted net-
works. To enable TLS you must specify both the private key for your server and the certificate
chain via the below config block that specifies the cert-chain-file, private-key-file. You
can also set a custom root CA certificate that will be used to validate client certificates via the
trust-collection-file parameter:

ledger-api {

address = "127.0.0.1"

port = 6400

tls {
enabled = "true"
// the certificate to be used by the server
cert-chain-file = "cert-chain.crt"
// private key of the server
private-key-file = "pvt-key.pem"

// trust collection, which means that all client certificates will bell
—verified using the trusted

// certificates in this store. if omitted, the JVM default trust store isl]
—used.

trust-collection-file = "root-ca.crt"

}

Using the cli options (deprecated), you can specify tls options using daml json-api -pem server.pem
-crt server.crt . Custom root CA certificate can be set via -~-cacrt ca.crt

For more details on secure Daml infrastructure setup please see this reference implementation

112. Integrate Daml with Off-Ledger Services 239

https://github.com/digital-asset/ex-secure-daml-infra

Daml SDK Documentation, 2.7.3

Architecture
Components

A production setup of the HTTP JSON APl involves the following components:

the HTTP JSON API server
the query store backend database server
the ledger

The HTTP JSON API server exposes an APl to interact with the Ledger. It uses JDBC to interact with its
underlying query store in order to cache and serve data efficiently.

The HTTP JSON API server releases are regularly tested with the tools described under System Require-
ments.

In production, we recommend running on a x86_64 architecture in a Linux environment. This envi-
ronment should have aJava SE Runtime Environment with minimum version as mentioned at System
Requirements. We recommend using PostgreSQL server as query-store, again with minimum version
as mentioned at System Requirements.

Scaling and Redundancy

Note: This section of the document only talks about scaling and redundancy setup for the HTTP
JSON APl server. In all recommendations suggested below we assume that the JSON API is always
interacting with a single participant on the ledger.

We recommend dedicating computation and memory resources to the HTTPJSON APl server and query
store components. This can be achieved via containerization or by setting these components up on
independent physical servers. Make sure that the two components are physically co-located to
reduce network latency for communication. Scaling and availability heavily rely on the interactions
between the core components listed above.

The general principles of scaling apply here: Try to understand the bottlenecks and see if adding
additional processing power/memory helps.

Scaling creates and exercises

The HTTP JSON API service provides simple, synchronous endpoints for carrying out creates and ex-
ercises on the ledger. It does not support the complex multi-command asynchronous submission
protocols supported by the ledger API.

For performing large numbers of creates and exercises at once, while you can perform many HTTP
requests at once to carry out this task, it may be simpler and more concurrent-safe to shift more of
this logic into a Daml choice that can be exercised.

The pattern looks like this:

1. Have a contract with a key and one or more choices on the ledger.
2. Such a choice can carry out as many creates and exercises as desired; all of these will take
place in a single transaction.

240 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

3. Use the HTTP JSON API service to exercise this choice by key.

It’s possible to go too far in the other direction: any error will usually cause the whole transaction to
roll back, so an excessively large amount of work done by a single choice can also cause needless
retrying. You can solve this by batching requests, or using Exception Handling to collect and return
failed cases to the HTTP JSON API service client for retrying, allowing successful parts of the batch to
proceed.

Scaling Queries

The Query Store is a key factor of efficient queries. However, it behaves very differently depending on
the characteristics of the underlying ledger, Daml application, and client query patterns. Understand-
ing how it works is a major prerequisite to understanding how the HTTP JSON API service will interact
with your application’s performance profile.

Additionally, the HTTPJSON APl can be scaled independently of its query store. You can have any num-
ber of HTTP JSON APl instances talking to the same query store (if, for example, your monitoring indi-
cates that the HTTP JSON API processing time is the bottleneck), or have each HTTP JSON APl instance
talk to its own independent query store (if the database response times are the bottleneck).

In the latter case, the Daml privacy model ensures that the HTTP JSON APl requests are made using
the user-provided token, thus the data stored in a given query store will be specific to the set of
parties that have made queries through that specific query store instance (for a given template).
Therefore, if you do run with separate query stores, it may be useful to route queries (using a reverse
proxy server) based on requesting party (and possibly queried template), which would minimize the
amount of data in each query store as well as the overall redundancy of said data.

Users may consider running PostgreSQL backend in a high availability configuration. The benefits
of this are use-case dependent as this may be more expensive for smaller active contract datasets,
where re-initializing the cache is cheap and fast.

Finally, we recommend using orchestration systems or load balancers which monitor the health of
the service and perform subsequent operations to ensure availability. These systems can use the
healthcheck endpoints provided by the HTTP JSON API server. This can also be tied into supporting an
arbitrary autoscaling implementation in order to ensure a minimum number of HTTPJSON APl servers
on failures.

Hitting a Scaling Bottleneck

As HTTP JSON API service and its query store are optimized for rapid application development and
ease of developer onboarding, you may reach a point where your application’s performance demands
exceed what the HTTP JSON API service can offer. The more demanding your application is, the less
likely it is to be well-matched with the simplifications and generalizations that the HTTP JSON API
service makes for developer simplicity.

In this case, it’s important to remember that the HTTP JSON API service can only do whatever an ordinary
ledger API client application could do, including your own.

For example, for a JVM application, interacting with JSON is probably simpler than grRPC directly, but
using Java Bindings codegen are much simpler than either.

There is no way to make Query Store more suited to high-performance queries for your Daml applica-
tion than a custom data store implemented as your own server on gRPC would be. So an application

112. Integrate Daml with Off-Ledger Services 241

https://www.postgresql.org/docs/current/high-availability.html
https://docs.daml.com/json-api/index.html#healthcheck-endpoints

Daml SDK Documentation, 2.7.3

that mustinteract over JSON, but requires very high-performance or very high-load query throughput,
would usually be better served by a custom server.

Set Up the HTTP JSON API Service To Work With Highly Available Participants

If the participant node itself is configured to be highly available, depending on the setup you may
want to choose different approaches to connect to the passive participant node(s). In most setups,
including those based on Canton, you’ll likely have an active participant node whose role can be taken
over by a passive node in case the currently active one drops. Just as for the HTTP JSON API itself, you
can use orchestration systems or load balancers to monitor the status of the participant nodes and
have those point your (possibly highly-available) HTTP JSON API nodes to the active participant node.

To learn how to run and monitor Canton with high availability, refer to the Canton documentation.

Logging
The HTTP JSON APl server uses the industry-standard logback for logging. You can read more about it
in the Logback documentation.

The logging infrastructure leverages structured logging as implemented by the Logstash Logbhack
Encoder.

Logged events should carry information about the request being served by the HTTP JSON API server.
This includes the details of the commands being submitted, the endpoints being hit, and the re-
sponse received - highlighting details of failures if any. When using a traditional logging target (e.g.
standard output or rotating files) this information will be part of the log description. Using a logging
target compatible with the Logstash Logback Encoder allows one to have rich logs that come with
structured information about the event being logged.

The default log encoder used is the plaintext one for traditional logging targets.

Metrics
Enable and Configure Reporting

To enable metrics and configure reporting, you can use the below config block in application config:

metrics {
// Start a metrics reporter. Must be one of "console", "csv:///PATH",
—"graphite://HOST[:PORT] [/METRIC PREFIX]", or "prometheus://HOST[:PORT]".
reporter = "prometheus://localhost:9000"
// Set metric reporting interval , examples : 1s, 30s, 1m, 1h
reporting-interval = 30s

}

or the two following CLI options (deprecated):

--metrics-reporter: passing alegal value will enable reporting; the accepted values are as
follows:
- console: prints captured metrics on the standard output
- csv://</path/to/metrics.csv>: saves the captured metrics in CSV format at the
specified location

242 Chapter 1. Canton References

http://logback.qos.ch/
https://github.com/logstash/logstash-logback-encoder/blob/logstash-logback-encoder-6.3/README.md
https://github.com/logstash/logstash-logback-encoder/blob/logstash-logback-encoder-6.3/README.md

Daml SDK Documentation, 2.7.3

- graphite://<server host>[:<server port>]: sends captured metrics to a
Graphite server. If the port is omitted, the default value 2003 will be used.

- prometheus://<server host>[:<server port>]: renders captured metrics on a
HTTP endpoint in accordance with the Prometheus protocol. If the port is omitted, the
default value 55001 will be used. The metrics will be available under the address http:/
/<server host>:<server port>/metrics.

--metrics-reporting-interval: allows the user to set the interval at which metrics are
pre-aggregated on the HTTP JSON APl and sent to the reporter. The formats accepted are based
on the ISO 8601 duration format PnDTnHnMn .nS with days considered to be exactly 24 hours.
The default interval is 10 seconds.

Types of Metrics

This is a list of type of metrics with all data points recorded for each. Use this as a reference when
reading the list of metrics.

Counter

Number of occurrences of some event.

Meter

A meter tracks the number of times a given event occurred (throughput). The following data points
are kept and reported by any meter.

<metric.qualified.name>.count: number of registered data points overall
<metric.qualified.name>.ml rate: number of registered data points per minute
<metric.qualified.name>.m5 rate: number of registered data points every 5 minutes
<metric.qualified.name>.ml5 rate: number of registered data points every 15 minutes
<metric.qualified.name>.mean rate: mean number of registered data points

Timers

A timer records the time necessary to execute a given operation (in fractional milliseconds).

Metrics Reference

The HTTP JSON API Service supports common HTTP metrics. In addition, see the following list of impor-
tant metrics:

112. Integrate Daml with Off-Ledger Services 243

Daml SDK Documentation, 2.7.3

daml.http json api.incoming json parsing and validation timing

A timer. Measures latency (in milliseconds) for parsing and decoding of an incoming json payload

daml.http json api.response creation timing

A timer. Measures latency (in milliseconds) for construction of the response json payload.

daml.http json api.db find by contract key timing

A timer. Measures latency (in milliseconds) of the find by contract key database operation.

daml.http json api.db find by contract id timing

A timer. Measures latency (in milliseconds) of the find by contract id database operation.

daml.http json api.command submission ledger timing

A timer. Measures latency (in milliseconds) for processing the command submission requests on
the ledger.

daml.http json api.websocket request count

A Counter. Counts active websocket connections.

1.12.5 The Ledger API

To write an application around a Daml ledger, you will need to interact with the Ledger API.

Every ledger that Daml can run on exposes this same API.

112,51 What's in the Ledger API

The Ledger API exposes the following services:

Submitting commands to the ledger
- Use the command submission service to submit commands (create a contract or exercise a
choice) to the ledger.
- Use the command completion service to track the status of submitted commands.
- Usethe command service for a convenient service that combines the command submission
and completion services.
Reading from the ledger
- Use the transaction service to stream committed transactions and the resulting events
(choices exercised, and contracts created or archived), and to look up transactions.

244 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

- Use the active contracts service to quickly bootstrap an application with the currently active
contracts. It saves you the work to process the ledger from the beginning to obtain its
current state.

Utility services

- Use the party management service to allocate and find information about parties on the
Daml ledger.

- Use the package service to query the Daml packages deployed to the ledger.

- Use the ledger identity service to retrieve the Ledger ID of the ledger the application is con-
nected to.

- Use the ledger configuration service to retrieve some dynamic properties of the ledger, like
maximum deduplication duration for commands.

- Use the version service to retrieve information about the Ledger API version.

- Use the user management service to manage users and their rights.

- Use the metering report service to retrieve a participant metering report.

Testing services (on Sandbox only, not for production ledgers)
- Use the time service to obtain the time as known by the ledger.

For full information on the services see The Ledger API Services.

You may also want to read the protobuf documentation, which explains how each service is defined as
protobuf messages.

1.12.5.2 How to Access the Ledger API

You can access the Ledger APl via the Java Bindings or the Python Bindings (formerly known as DAZL).

If you don’t use a language that targets the JVM or Python, you can use gRPC to generate the code to
access the Ledger APl in several supported programming languages. Further documentation provides
a few pointers on how you may want to approach this.

You can also use the HTTP JSON AP| Service to tap into the Ledger API.

At its core, this service provides a simplified view of the active contract set and additional primi-
tives to query it and exposing it using a well-defined JSON-based encoding over a conventional HTTP
connection.

A subset of the services mentioned above is also available as part of the HTTP JSON API.

1.12.5.3 Daml-LF

When you compile Daml source into a .dar file, the underlying format is Daml-LF. Daml-LF is similar to
Daml, but is stripped down to a core set of features. The relationship between the surface Daml
syntax and Daml-LF is loosely similar to that between Java and JVM bytecode.

As a user, you don’t need to interact with Daml-LF directly. But internally, it’s used for:

Executing Daml code on the Sandbox or on another platform
Sending and receiving values via the Ledger API (using a protocol such as grRPC)
Generating code in other languages for interacting with Daml models (often called codegen)

112. Integrate Daml with Off-Ledger Services 245

Daml SDK Documentation, 2.7.3

When You Need to Know About Daml-LF

Daml-LF is only really relevant when you’re dealing with the objects you send to or receive from the
ledger. If you use any of the provided language bindings for the Ledger API, you don’t need to know
about Daml-LF at all, because this generates idiomatic representations of Daml for you.

Otherwise, it can be helpful to know what the types in your Daml code look like at the Daml-LF level,
so you know what to expect from the Ledger API.

For example, if you are writing an application that creates some Daml contracts, you need to con-
struct values to pass as parameters to the contract. These values are determined by the Daml-LF
types in that contract template. This means you need an idea of how the Daml-LF types correspond
to the types in the original Daml model.

For the most part the translation of types from Daml to Daml-LF should not be surprising. This page
goes through all the cases in detail.

For the bindings to your specific programming language, you should refer to the language-specific
documentation.

1.12.5.4 The Ledger API Services

The Ledger API is structured as a set of services. The core services are implemented using gRPC and
Protobuf, but most applications access this APl through the mediation of the language bindings.

This page gives more detail about each of the services in the API, and will be relevant whichever way
you’re accessing it.

If you want to read low-level detail about each service, see the protobuf documentation of the API.

Overview

The APl is structured as two separate data streams:

A stream of commands TO the ledger that allow an application to submit transactions and
change state.

A stream of transactions and corresponding events FROM the ledger that indicate all state
changes that have taken place on the ledger.

Commands are the only way an application can cause the state of the ledger to change, and events
are the only mechanism to read those changes.

Foran application,the mostimportant consequence of these architectural decisions and implemen-
tation is that the Ledger API is asynchronous. This means:

The outcome of commands is only known some time after they are submitted.

The application must deal with successful and erroneous command completions separately
from command submission.

Ledger state changes are indicated by events received asynchronously from the command sub-
missions that cause them.

The need to handle these issues is a major determinant of application architecture. Understanding
the consequences of the APl characteristics is important for a successful application design.

246 Chapter 1. Canton References

https://grpc.io/
https://developers.google.com/protocol-buffers/

Daml SDK Documentation, 2.7.3

For more help understanding these issues so you can build correct, performant and maintainable
applications, read the application architecture guide.

Glossary

The ledgeris a list of transactions. The transaction service returns these.
Atransactionisatreeofactions,alsocalled events,which are of type create, exercise
or archive. The transaction service can return the whole tree, or a flattened list.

A submission is a proposed transaction, consisting of a list of commands, which correspond
to the top-level actions in that transaction.

A completion indicates the success or failure of a submission.

Submit Commands to the Ledger
Command Submission Service

Use the command submission service to submit commands to the ledger. Commands either create
a new contract, or exercise a choice on an existing contract.

A call to the command submission service will return as soon as the ledger server has parsed the
command, and has either accepted or rejected it. This does not mean the command has been exe-
cuted, only that the server has looked at the command and decided that its format is acceptable, or
has rejected it for syntactic or content reasons.

The on-ledger effect of the command execution will be reported via the transaction service, described
below. The completion status of the command is reported via the command completion service. Your
application should receive completions, correlate them with command submission, and handle er-
rors and failed commands. Alternatively, you can use the command service, which conveniently wraps
the command submission and completion services.

Change ID

Each intended ledger change is identified by its change ID, consisting of the following three compo-
nents:

The submitting parties, i.e., the union of party and act_as
the application ID
The command ID

Application-specific IDs

The following application-specific IDs, all of which are included in completion events, can be set in
commands:

A submission ID, returned to the submitting application only. It may be used to correlate specific
submissions to specific completions.

A command ID, returned to the submitting application only; it can be used to correlate com-
mands to completions.

112. Integrate Daml with Off-Ledger Services 247

Daml SDK Documentation, 2.7.3

A workflow ID, returned as part of the resulting transaction to all applications receiving it. It can
be used to track workflows between parties, consisting of several transactions.

For full details, see the proto documentation for the service.

Command Deduplication

The command submission service deduplicates submitted commands based on their change ID.

Applications can provide a deduplication period for each command. If this parameter is not
set, the default maximum deduplication duration is used.

A command submission is considered a duplicate submission if the Ledger APl server is aware
of another command within the deduplication period and with the same change ID.

A command resubmission will generate a rejection until the original submission was rejected
(i.e. the command failed and resulted in a rejected transaction) or until the effective dedu-
plication period has elapsed since the completion of the original command, whichever comes
first.

Command deduplication is only guaranteed to work if all commands are submitted to the same
participant. Ledgers are free to perform additional command deduplication across partici-
pants. Consult the respective ledger's manual for more details.

For details on how to use command deduplication, see the Command Deduplication Guide.

Explicit contract disclosure (experimental)

Starting with Canton 2.7, Ledger APl clients can use explicit contract disclosure to submitcommands
with attached disclosed contracts received from third parties. For more details, see Explicit contract
disclosure.

Command Completion Service

Use the command completion service to find out the completion status of commands you have
submitted.

Completions contain the command ID of the completed command, and the completion status of the
command. This status indicates failure or success, and your application should use it to update
what it knows about commands in flight, and implement any application-specific error recovery.

For full details, see the proto documentation for the service.

Command Service

Use the command service when you want to submit a command and wait for it to be executed. This
service is similar to the command submission service, but also receives completions and waits until
it knows whether or not the submitted command has completed. It returns the completion status
of the command execution.

You can use either the command or command submission services to submit commands to effect
a ledger change. The command service is useful for simple applications, as it handles a basic form

248 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

of coordination between command submission and completion, correlating submissions with com-
pletions, and returning a success or failure status. This allow simple applications to be completely
stateless, and alleviates the need for them to track command submissions.

For full details, see the proto documentation for the service.

Read From the Ledger
Transaction Service

Use the transaction service to listen to changes in the ledger state, reported via a stream of trans-
actions.

Transactions detail the changes on the ledger, and contains all the events (create, exercise, archive
of contracts) that had an effect in that transaction.

Transactions contain a transaction ID (assigned by the server), the workflow ID, the command 1D, and
the events in the transaction.

Subscribe to the transaction service to read events from an arbitrary point on the ledger. This arbi-
trary point is specified by the ledger offset. This is important when starting or restarting and appli-
cation, and to work in conjunction with the active contracts service.

For full details, see the proto documentation for the service.

Transaction and transaction Trees

TransactionService offers several different subscriptions. The most commonly used is Get-
Transactions. If you need more details, you can use GetTransactionTrees instead, which re-
turns transactions as flattened trees, represented as a map of event IDs to events and a list of root
event IDs.

Verbosity

The service works in a non-verbose mode by default, which means that some identifiers are omitted:

Record IDs
Record field labels
Variant IDs

You can get these included in requests related to Transactions by setting the verbose field in mes-
sage GetTransactionsRequest or GetActiveContractsRequest to true.

112. Integrate Daml with Off-Ledger Services 249

Daml SDK Documentation, 2.7.3

Transaction Filter

TransactionService offers transaction subscriptions filtered by templates and interfaces using
GetTransactions calls. A transaction filter in GetTransactionsRequest. allows:

filtering by a party, when the inclusive field is left empty

filtering by a party and a template ID

filtering by a party and an interface ID

exposing an interface view, when the include_interface_view is set to true

Active Contracts Service

Use the active contracts service to obtain a party-specific view of all contracts that are active on
the ledger at the time of the request.

The active contracts service returns its response as a stream of batches of the created events that
would re-create the state being reported (the size of these batches is left to the ledger implementa-
tion). As part of the last message, the offset at which the reported active contract set was valid is
included. This offset can be used to subscribe to the flattransactions stream to keep a consistent
view of the active contract set without querying the active contract service further.

This is most important at application start, if the application needs to synchronize its initial state
with a known view of the ledger. Without this service, the only way to do this would be to read the
Transaction Stream from the beginning of the ledger, which can be prohibitively expensive with a
large ledger.

For full details, see the proto documentation for the service.

Verbosity

See Verbosity above.

Transaction Filter

See Transaction Filter above.

Note: The RPCs exposed as part of the transaction and active contracts services make use of offsets.

An offset is an opaque string of bytes assigned by the participant to each transaction as they are
received from the ledger. Two offsets returned by the same participant are guaranteed to be lexico-
graphically ordered: while interacting with a single participant, the offset of two transactions can be
compared to tell which was committed earlier. The state of a ledger (i.e. the set of active contracts)
as exposed by the Ledger APl is valid at a specific offset, which is why the last message your applica-
tion receives when calling the ActiveContractsService is precisely that offset. In this way, the
client can keep track of the relevant state without needing to invoke the ActiveContractsSer-
vice again, by starting to read transactions from the given offset.

Offsets are also useful to perform crash recovery and failover as documented more in depth in the
application architecture page.

250 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

You can read more about offsets in the protobuf documentation of the API.

Event Query Service (EXPERIMENTAL)

Use the event query service to obtain a party-specific view of contract events.

Contract events can be queried by contract id or contract key. If the events being queried are not visi-
ble to the requesting parties, the service returns an empty structure. This service returns consumed
contracts up until they are pruned.

In the case of contract keys, a number of contracts may have used the contract key over time. The
latest contract is returned first, with earlier contracts being returned in subsequent calls with a
populated continuation token.

Note: When querying by contract key, the key value must be structured in the same way as the key
returned in the create event.

For full details, see the proto documentation for the service.

Utility Services
Party Management Service

Use the party management service to allocate parties on the ledger, update party properties local
to the participant and retrieve information about allocated parties.

Parties govern on-ledger access control as per Daml’s privacy model and authorization rules. Applica-
tions and theiroperators are expected to allocate and use parties to manage on-ledger access control
as per their business requirements.

For more information, refer to the pages on Identity Management and the API reference documentation.

User Management Service

Use the user management service to manage the set of users on a participant node and their ac-
cess rights to that node’s Ledger APl services and as the integration point for your organization’s IAM
(Identity and Access Management) framework.

Daml 2.0 introduced the concept of the user in Daml. While a party represents a single individual
with a single set of rights and is universal across participant nodes, a user is local to a specific
participant node. Each user is typically associated with a primary party and is given the right to act
as orread as other parties. Every participant node will maintain its own mapping from its user ids to
the parties that they can act and/or read as. Also, when used, the user’s ids will serve as application
ids. Thus, participant users can be used to manage the permissions of Daml applications (i.e. to
authorize applications to read as or act as certain parties). Unlike a JWT token-based system, the
user management system does not limit the number of parties that the user can act or read as.

The relation between a participant node’s users and Daml parties is best understood by analogy to
classical databases: a participant node’s users are analogous to database users while Daml parties

112. Integrate Daml with Off-Ledger Services 251

../app-dev/grpc/proto-docs.html#ledgeroffset

Daml SDK Documentation, 2.7.3

are analogous to database roles. Further, the rights granted to a user are analogous to the user’s
assigned database roles.

For more information, consult the the API reference documentation for how to list, create, update, and
delete users and their rights. See the UserManagementFeature descriptor to learn about the limits of
the user management service, e.g., the maximum number of rights per user. The feature descriptor
can be retrieved using the Version service.

With user management enabled you can use both new user-based and old custom Daml authoriza-
tion tokens. Consult the Authorization documentation to understand how Ledger APl requests are au-
thorized, and how to use user management to dynamically change an application’s rights.

User management is available in Canton-enabled drivers and not yet available in the Daml for
VMware Blockchain driver.

Identity Provider Config Service

Use identity provider config service to define and manage the parameters of an external IDP sys-
tems configured to issue tokens for a participant node.

The identity provider config service makes it possible for participant node administrators to set up
and manage additional identity providers at runtime. This allows using access tokens from identity
providers unknown at deployment time. When an identity provider is configured, independent IDP
administrators can manage their own set of parties and users.

Such parties and users have a matching identity_provider_id defined and are inaccessible to ad-
ministrators from otheridentity providers. A user will only be authenticated if the corresponding JWT
token is issued by the appropriate identity provider. Users and parties without identity_provider_.id
defined are assumed to be using the default identity provider, which is configured statically when
the participant node is deployed.

For full details, see the proto documentation for the service.

Package Service

Use the package service to obtain information about Daml packages available on the ledger.

This is useful for obtaining type and metadata information that allow you to interpret event data in
a more useful way.

For full details, see the proto documentation for the service.

Ledger Identity Service (DEPRECATED)

Use the ledger identity service to get the identity string of the ledger that your application is con-
nected to.

Including identity string is optional for all Ledger APl requests. If you include it, commands with an
incorrect identity string will be rejected.

For full details, see the proto documentation for the service.

252 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Ledger Configuration Service

Use the ledger configuration service to subscribe to changes in ledger configuration.

This configuration includes the maximum command deduplication period (see Command Deduplica-
tion for details).

For full details, see the proto documentation for the service.

Version Service

Use the version service to retrieve information about the Ledger APl version and what optional fea-
tures are supported by the ledger server.

For full details, see the proto documentation for the service.

Pruning Service

Use the pruning service to prune archived contracts and transactions before or at a given offset.

For full details, see the proto documentation for the service.

Metering Report Service

Use the metering report service to retrieve a participant metering report.

For full details, see the proto documentation for the service.

Testing Services

These are only for use for testing with the Sandbox, not for on production ledgers.

Time Service

Use the time service to obtain the time as known by the ledger server.

For full details, see the proto documentation for the service.

1.12.5.5 Java Bindings

The Java bindings is a client implementation of the Ledger APl based on RxJava, a library for compos-
ing asynchronous and event-based programs using observable sequences for the Java VM. It pro-
vides an idiomatic way to write Daml Ledger applications.

See also:

This documentation for the Java bindings APl includes the JavaDoc reference documentation.

112. Integrate Daml with Off-Ledger Services 253

https://github.com/ReactiveX/RxJava
javadocs/index.html

Daml SDK Documentation, 2.7.3

Overview

The Java bindings library is composed of:

The Data Layer A Java-idiomatic layer based on the Ledger APl generated classes. This layer
simplifies the code required to work with the Ledger API.
Can be found in the java package com.daml.ledger.javaapi.data.

The Reactive Layer A thin layer built on top of the Ledger API services generated classes.
For each Ledger API service, there is a reactive counterpart with a matching name. For
instance, the reactive counterpart of ActiveContractsServiceGrpc is ActiveCon-
tractsClient.
The Reactive Layer also exposes the main interface representing a client connecting via
the Ledger APL. This interfaceis called LedgerClient and the main implementation work-
ing against a Daml Ledger is the DamlLedgerClient.
Can be found in the java package com.daml .ledger.rxjava.

Generate Code

When writing applications for the ledger in Java, you want to work with a representation of Daml
templates and data types in Java that closely resemble the original Daml code while still being as
true to the native types in Java as possible.

To achieve this, you can use Daml to Java code generator (Java codegen) to generate Java types
based on a Daml model. You can then use these types in your Java code when reading information
from and sending data to the ledger.

For more information on Java code generation, see Generate Java Code from Daml.

Connect to the Ledger: LedgerClient

Connections to the ledger are made by creating instance of classes that implement the interface
LedgerClient. The class DamlLedgerClient implements this interface, and is used to connect
to a Daml ledger.

This class provides access to the ledgerld, and all clients that give access to the various ledger ser-
vices, such as the active contract set, the transaction service, the time service, etc. This is described
below. Consult the JavaDoc for DamlLedgerClient for full details.

Reference Documentation

Click here for the JavaDoc reference documentation.

254 Chapter 1. Canton References

javadocs/com/daml/ledger/rxjava/DamlLedgerClient.html
javadocs/index.html

Daml SDK Documentation, 2.7.3

Get Started

The Java bindings library can be added to a Maven project.

Set Up a Maven Project

To use the Java bindings library, add the following dependencies to your project’s pom. xm1:

<dependencies>
<dependency>
<groupId>com.daml</groupId>
<artifactId>bindings-rxjava</artifactId>
<version>x.y.z</version>
</dependency>
</dependencies>

Replace x.y.z for both dependencies with the version that you want to use. You can find the avail-
able versions by checking the Maven Central Repository.

You can also take a look at the pom.xml file from the quickstart project.

Connect to the Ledger

Before any ledger services can be accessed, you must establish a connection to the ledger by cre-
ating an instance of a DamlLedgerClient. To create an instance of a ledger client, use the static
newBuilder (..) methodtocreateaDamlLedgerClient.Builder. Then usethe builderinstance
to create the DamlLedgerClient. Finally, call the connect () method on the client.

// Create a client object to access services on the ledger.
DamlLedgerClient client = DamlLedgerClient.newBuilder (ledgerhost, ledgerport).
—build();

// Connects to the ledger and runs initial validation.
client.connect ();

Perform Authorization

Some ledgers will require you to send an access token along with each request.
To learn more about authorization, read the Authorization overview.

To use the same token for all Ledger APl requests, the DamlLedgerClient builders expose awith-
AccessToken method. This will allow you to not pass a token explicitly for every call.

If your application is long-lived and your tokens are bound to expire, you can reload the necessary
token when needed and pass it explicitly for every call. Every client method has an overload that
allows a token to be passed, as in the following example:

transactionClient.getLedgerEnd(); // Uses the token specified when constructingl]
—~the client

transactionClient.getLedgerEnd (accessToken); // Override the token for this callll
—exclusively

112. Integrate Daml with Off-Ledger Services 255

https://maven.apache.org/
https://search.maven.org/artifact/com.daml/bindings-java

Daml SDK Documentation, 2.7.3

If you’re communicating with a ledger that verifies authorization it’s very important to secure the
communication channel to prevent your tokens to be exposed to man-in-the-middle attacks. The
next chapter describes how to enable TLS.

Connect Securely

The Java bindings library lets you connect to a Daml Ledger via a secure connection. The builders
created by DamlLedgerClient.newBuilder default to a plaintext connection, but you can invoke
withSslContext to pass an SslContext. Using the default plaintext connection is useful only
when connecting to a locally running Sandbox for development purposes.

Secure connections to a Daml Ledger must be configured to use client authentication certificates,
which can be provided by a Ledger Operator.

Forinformation on howtosetup an Ss1Context with the provided certificates for client authentica-
tion, please consult the gRPC documentation on TLS with OpenSSL as well as the HelloworldClientTls
example of the grpc-java project.

Advanced Connection Settings

Sometimes the default settings for gRPC connections/channels are not suitable for a given situation.
These use cases are supported by creating a custom NettyChannelBuilder object and passing the it
to the newBuilder static method defined over DamlLedgerClient.

Example Projects

Example projects using the Java bindings are available on GitHub. Read more about them here.

Generate Java Code from Daml
Introduction

When writing applications for the ledger in Java, you want to work with a representation of Daml
templates and data types in Java that closely resemble the original Daml code while still being as
true to the native types in Java as possible. To achieve this, you can use Daml to Java code generator
(Java codegen) to generate Java types based on a Daml model. You can then use these types in
your Java code when reading information from and sending data to the ledger.

The Daml assistant documentation describes how to run and configure the code generator for all sup-
ported bindings, including Java.

The rest of this page describes Java-specific topics.

256 Chapter 1. Canton References

https://github.com/grpc/grpc-java/blob/master/SECURITY.md#tls-with-openssl
https://github.com/grpc/grpc-java/blob/70b1b1696a258ffe042c7124217e3a7894821444/examples/src/main/java/io/grpc/examples/helloworldtls/HelloWorldClientTls.java#L46-L57
https://grpc.github.io/grpc-java/javadoc/io/grpc/netty/NettyChannelBuilder.html
javadocs/com/daml/ledger/rxjava/DamlLedgerClient.html
https://github.com/digital-asset/ex-java-bindings

Daml SDK Documentation, 2.7.3

Understand the Generated Java Model

The Java codegen generates source files in a directory tree under the output directory specified on
the command line.

Map Daml Primitives to Java Types

Daml built-in types are translated to the following equivalent types in Java:

Daml type | Java type Java Bind-
ings Value
Type

Int java.lang.Long Intc4

Numeric java.math.BigDecimal Numeric

Text java.lang.String Text

Bool java.util.Boolean Bool

Party java.lang.String Party

Date java.time.LocalDate Date

Time java.time.Instant Timestamp

Listor [] java.util.List DamlList

TextMap java.util.Map Restricted to using String keys. Daml-
TextMap

Optional java.util.Optional DamlOp-
tional

() (Unit) None since the Java language doesn’t have a direct equivalent of | Unit

Daml’s Unit type (), the generated code uses the Java Bindings
value type.
Contrac- Fields of type ContractId X refer to the generated ContractId | Contractld
tId class of the respective template X.

Understand Escaping Rules

To avoid clashes with Java keywords, the Java codegen applies escaping rules to the following Daml
identifiers:

Type names (except the already mapped built-in types)
Constructor names

Type parameters

Module names

Field names

If any of these identifiers match one of the Java reserved keywords, the Java codegen appends a
dollar sign $ to the name. For example, a field with the name import will be generated as a Java
field with the name imports$.

112. Integrate Daml with Off-Ledger Services 257

/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Int64.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Numeric.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Text.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Bool.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Party.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Date.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Timestamp.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/DamlList.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/DamlTextMap.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/DamlTextMap.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/DamlOptional.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/DamlOptional.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Unit.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/ContractId.html
https://docs.oracle.com/javase/specs/jls/se12/html/jls-3.html#jls-3.9

Daml SDK Documentation, 2.7.3

Understand the Generated Classes

Every user-defined data type in Daml (template, record, and variant) is represented by one or more
Java classes as described in this section.

The Java package for the generated classes is the equivalent of the lowercase Daml module name.

Listing 2: Daml

module Foo.Bar.Baz where

Listing 3: Java

package foo.bar.baz;

Records (a.k.a Product Types)

A Daml record is represented by a Java class with fields that have the same name as the Daml record
fields. A Daml field having the type of another record is represented as a field having the type of the
generated class for that record.

Listing 4: Com/Acme/ProductTypes.daml

module Com.Acme.ProductTypes where

data Person = Person with name : Name; age : Decimal
data Name = Name with firstName : Text; lastName : Text

A Java file is generated that defines the class for the type Person:

Listing 5: com/acme/producttypes/Person.java

package com.acme.producttypes;

public class Person extends DamlRecord<Person> {
public final Name name;
public final BigDecimal age;

public static Person fromValue (Value value$) { /* ... */}
public Person (Name name, BigDecimal age) { /* ... */}
public DamlRecord toValue() { /* ... */ }

A Java file is generated that defines the class for the type Name:

Listing 6: com/acme/producttypes/Name.java

package com.acme.producttypes;

public class Name extends DamlRecord<Name> {
public final String firstName;
public final String lastName;

(continues on next page)

258 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

public static Person fromValue (Value value$) { /* ... */}

public Name (String firstName, String lastName) { /* ... */ }
public DamlRecord toValue() { /* ... */}
}

Templates

The Java codegen generates three classes for a Daml template:

TemplateName Represents the contract data or the template fields.

TemplateName.Contractld Used whenever a contract ID of the corresponding template
is used in another template or record, for example: data Foo = Foo (Contrac-
tId Bar). This class also provides methods to generate an ExerciseCommand for
each choice that can be sent to the ledger with the Java Bindings.

TemplateName.Contract Represents an actual contract on the ledger. It contains a
field for the contract ID (of type TemplateName.ContractId) and a field for the
template data (of type TemplateName). With the static method TemplateName.
Contract.fromCreatedEvent, you can deserialize a CreatedEvent to an instance
of TemplateName.Contract.

Listing 7: Com/Acme/Templates.daml

module Com.Acme.Templates where

data BarKey =

BarKey
with

p : Party

t : Text

template Bar
with
owner: Party
name: Text
where
signatory owner

key BarKey owner name : BarKey
maintainer key.p

choice Bar_ SomeChoice: Bool
with
aName: Text
controller owner
do return True

Afile is generated that defines five Java classes and an interface:

1. Bar

2. Bar.ContractId
3. Bar.Contract
4. Bar.CreateAnd

112. Integrate Daml with Off-Ledger Services 259

https://docs.daml.com/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/CreatedEvent.html

Daml SDK Documentation, 2.7.3

5. Bar.ByKey
6. Bar.Exercises

Listing 8: com/acme/templates/Bar.java

package com.acme.templates;

public class Bar extends Template {

public static final Identifier TEMPLATE ID = new Identifier ("some-package-id",

—"Com.Acme.Templates", "Bar");

public static final Choice<Bar, Archive, Unit> CHOICE Archive
Choice.create(/* ... */);

public static final ContractCompanion.WithKey<Contract, ContractId, Bar, BarKey>

— COMPANION =
new ContractCompanion.WithKey<>("com.acme.templates.Bar",

TEMPLATE ID, ContractId::new, Bar::fromValue, Contract::new,
—~fromValue (e), List.of (CHOICE Archive));

e —-> BarKey.

public final String owner;
public final String name;

public CreateAnd createAnd() { /* ... */}
public static ByKey byKey (BarKey key) { /* ... */ }

public static class ContractId extends com.daml.ledger.javaapi.data.codegen.

—~ContractId<Bar>
implements Exercises<ExerciseCommand> {

// inherited:
public final String contractId;

}

public interface Exercises<Cmd> extends com.daml.ledger.javaapi.data.codegen.

—Exercises<Cmd> {

default Cmd exerciseArchive (Unit arg) { /* ... */ }
default Cmd exerciseBar SomeChoice (Bar SomeChoice arg) { /% ... */}
default Cmd exerciseBar SomeChoice (String aName) { /* ... */}

}

public static class Contract extends ContractWithKey<ContractId, Bar, BarKey> {
// inherited:
public final ContractId id;
public final Bar data;
public static Contract fromCreatedEvent (CreatedEvent event) { /* ... */ 1}

public static final class CreateAnd
extends com.daml.ledger.javaapi.data.codegen.CreateAnd
implements Exercises<CreateAndExerciseCommand> { /* ... */ }

public static final class ByKey

(continues on next page)

260 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

extends com.daml.ledger.javaapi.data.codegen.ByKey
implements Exercises<ExerciseByKeyCommand> { /* ... */ }

Note that byKey and ByKey will only be generated for templates that define a key.

Variants (a.k.a Sum Types)

A variant or sum type is a type with multiple constructors, where each constructor wraps a value of
another type. The generated code is comprised of an abstract class for the variant type itself and
a subclass thereof for each constructor. Classes for variant constructors are similar to classes for
records.

Listing 9: Com/Acme/Variants.daml

module Com.Acme.Variants where

Authors [Text]
Title Text

data BookAttribute = Pages Int
\
\
| Published with year: Int; publisher: Text

The Java code generated for this variant is:

Listing 10: com/acme/variants/BookAttribute.java

package com.acme.variants;

public class BookAttribute extends Variant<BookAttribute> {
public static BookAttribute fromValue (Value value) { /% ... %/}

public static BookAttribute fromvValue (Value value) { /% ... */ }
public abstract Variant toValue();
}

Listing 11: com/acme/variants/bookattribute/Pages.java

package com.acme.variants.bookattribute;

public class Pages extends BookAttribute {
public final Long longValue;

public static Pages fromValue (Value value) { /* ... */ }
public Pages (Long longValue) { /* ... */ }
public Variant toValue() { /* ... */ 1}
}
Listing 12: com/acme/variants/bookattribute/Au-
thors.java

package com.acme.variants.bookattribute;

(continues on next page)

112. Integrate Daml with Off-Ledger Services 261

Daml SDK Documentation, 2.7.3

(continued from previous page)

public class Authors extends BookAttribute {
public final List<String> listValue;

public static Authors fromvValue (Value value) { /* ... */ }
public Author (List<String> listValue) { /* ... */ }
public Variant toValue() { /* ... */ }

Listing 13: com/acme/variants/bookattribute/Title,java

package com.acme.variants.bookattribute;

public class Title extends BookAttribute {
public final String stringValue;

public static Title fromValue (Value value) { /* ... */ }
public Title(String stringValue) { /* ... */ }
public Variant toValue() { /* ... */ }
}
Listing 14: com/acme/variants/bookattribute/Pub-
lished.java

package com.acme.variants.bookattribute;

public class Published extends BookAttribute {
public final Long year;
public final String publisher;

public static Published fromValue (Value value) { /* ... */}
public Published(Long year, String publisher) { /* ... */}
public Variant toValue() { /* ... */ 1}

}

Enums

An enum type is a simplified sum type with multiple constructors but without argument nor type pa-
rameters. The generated code is standard java Enum whose constants map enum type constructors.

Listing 15: Com/Acme/Enum.daml

module Com.Acme.Enum where

data Color = Red | Blue | Green

The Java code generated for this variant is:

262 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Listing 16: com/acme/enum/Color.java

package com.acme.enum;

public enum Color implements DamlEnum<Color> {
RED,
GREEN,
BLUE;

V2
public static final Color fromValue (Value value$) { /* ... */ }
public final DamlEnum toValue() { /* ... */ }

Parameterized Types

Note: This sectionisonlyincluded forcompleteness. The fromvValue and tovValue methods would
typically come from a template that doesn’t have any unbound type parameters.

The Java codegen uses Java Generic types to represent Dam| parameterized types.

This Daml fragment defines the parameterized type Attribute, used by the BookAttribute type
for modeling the characteristics of the book:

Listing 17: Com/Acme/ParameterizedTypes.daml

module Com.Acme.ParameterizedTypes where

data Attribute a = Attribute
with v : a

data BookAttributes = BookAttributes with

pages : (Attribute Int)
authors : (Attribute [Text])
title : (Attribute Text)

The Java codegen generates a Java file with a generic class for the Attribute a data type:

Listing 18: com/acme/parameterizedtypes/Attribute.java

package com.acme.parameterizedtypes;

public class Attribute<a> {
public final a value;

public Attribute(a value) { /* ... */ }
public DamlRecord toValue (Function<a, Value> toValuea) { /* ... */ }

public static <a> Attribute<a> fromValue (Value value$, Function<Value, a>[|
—fromvValuea) { /* ... */ 1}

}

112. Integrate Daml with Off-Ledger Services 263

Daml SDK Documentation, 2.7.3

Convert a Value of a Generated Type to a Java Bindings Value

To convert an instance of the generic type Attribute<a>to aJava Bindings Value, call the tovalue
method and pass a function as the tovValuea argument for converting the field of type a to the
respective Java Bindings Value. The name of the parameter consists of tovalue and the name of
the type parameter, in this case a, to form the name tovaluea.

Below is a Java fragment that converts an attribute with a java.lang.Long value to the Java Bind-
ings representation using the method reference Int64: :new.

Attribute<Long> pagesAttribute = new Attributes<> (42L);

Value serializedPages = pagesAttribute.toValue (Int64: :new);

See Daml To Java Type Mapping for an overview of the Java Bindings Value types.

Note: If the Daml type is a record or variant with more than one type parameter, you need to pass a
conversion function to the tovalue method for each type parameter.

Create a Value of a Generated Type from a Java Bindings Value

Analogous to the tovalue method, to create a value of a generated type, call the method fromvalue
and pass conversion functions from a Java Bindings Value type to the expected Java type.

Attribute<Long> pagesAttribute = Attribute.<Long>fromValue (serializedPages,
f -> f.asInt64().getOrElseThrow(() -> throw new IllegalArgumentException (
—"Expected Int field") .getValue()):;

SeeJava Bindings Value class for the methods to transform the Java Bindings types into correspond-
ing Java types.

Non-exposed Parameterized Types

If the parameterized type is contained in a type where the actual type is specified (as in the BookAt-
tributes type above), then the conversion methods of the enclosing type provides the required
conversion function parameters automatically.

Convert Optional Values

The conversion of the Java Optional requires two steps. The Optional must be mapped in order
to convert its contains before to be passed to Dam1Optional: :of function.

Attribute<Optional<Long>> idAttribute = new Attribute<List<Long>> (Optional.
—o0f (42));

val serializedId = DamlOptional.of (idAttribute.map (Int64::new));

To convert back Daml|Optional toJava Optional, one must use the containers method toOptional.
This method expects a function to convert back the value possibly contains in the container.

264 Chapter 1. Canton References

/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Value.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Value.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Value.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Value.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Value.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/DamlOptional.html

Daml SDK Documentation, 2.7.3

Attribute<Optional<Long>> idAttribute2 =
serializedId.toOptional (v -> v.asInt64().orElseThrow(() —-> new
—IllegalArgumentException ("Expected Int64d element")));

Convert Collection Values

DamlCollectors provides collectors to converted Java collection containers such as List and Map to
DamlValues in one pass. The builders for those collectors require functions to convert the element
of the container.

Attribute<List<String>> authorsAttribute =
new Attribute<List<String>>(Arrays.aslList ("Homer", "Ovid", "Vergil"));

Value serializedAuthors =
authorsAttribute.toValue (f -> f.stream() .collect (DamlCollector.
—toList (Text::new)) ;

To convert back Daml containers to Java ones, one must use the containers methods toList or
toMap. Those methods expect functions to convert back the container’s entries.

Attribute<List<String>> authorsAttribute2 =
Attribute.<List<String>>fromValue (
serializedAuthors,

f0 -> fO0.asList().orElseThrow(() -> new IllegalArgumentException (
—"Expected DamlList field"))
.toList (
fl -> fl.asText () .orElseThrow(() -> new IllegalArgumentException (
—"Expected Text element"))
.getValue ()

) ;

Daml Interfaces

From this daml definition:

Listing 19: Interfaces.daml

module Interfaces where
data TIfView = TIfView { name : Text }

interface TIf where
viewtype TIfView
getOwner: Party
dup: Update (ContractId TIf)
choice Ham: ContractId TIf with
controller getOwner this
do dup this
choice Useless: ContractId TIf with
interfacely: ContractId TIf
controller getOwner this

(continues on next page)

112. Integrate Daml with Off-Ledger Services 265

/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/DamlCollectors.html

Daml SDK Documentation, 2.7.3

(continued from previous page)

do
dup this

template Child
with
party: Party
where

signatory party

choice Bar: () with
controller party
do

return ()

interface instance TIf for Child where
view = TIfView "Child"
getOwner = party
dup = toInterfaceContractId <$> create this

The generated file for the interface definition can be seen below. Effectively it is a class that contains
only the inner type Contractld because one will always only be able to deal with Interfaces via their
Contractld.

Listing 20: interfaces/TIf,java

package interfaces
/* imports */

public final class TIf {

public static final Identifier TEMPLATE ID = new Identifier(
—"94fbdfad8ceflec7dd74f£3d6883a00b2f337666c302ec5e2b87e986dabc27a3", "Interfaces
(_)ll, l'TIfH);

public static final Choice<TIf, Transfer, ContractId> CHOICE Transfer =
Choice.create(/* ... */);

public static final Choice<TIf, Archive, Unit> CHOICE Archive =
Choice.create (/* ... */);

public static final INTERFACE INTERFACE = new INTERFACE();

public static final class ContractId extends com.daml.ledger.javaapi.data.
—codegen.ContractId<TIf>
implements Exercises<ExerciseCommand> {
public ContractId(String contractId) { /* ... */}
}

public interface Exercises<Cmd> extends com.daml.ledger.javaapi.data.codegen.
—Exercises<Cmd> {
default Cmd exerciseUseless (Useless arg) { /% ... */}

default Cmd exerciseHam(Ham arg) { /* ... */ }

public static final class CreateAnd

(continues on next page)

266 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

extends com.daml.ledger.javaapi.data.codegen.CreateAnd.ToInterface
implements Exercises<CreateAndExerciseCommand> { /* ... */ }

public static final class ByKey
extends com.daml.ledger.javaapi.data.codegen.ByKey.ToInterface

implements Exercises<ExerciseByKeyCommand> { /* ... */ }

public static final class INTERFACE extends InterfaceCompanion<TIf> { /* ... */}

For templates the code generation will be slightly different if a template implements interfaces. To
allow converting the Contractld of a template to an interface Contractld, an additional conversion
method called tointerface is generated. An unsafeFromInterface is also generated to make the

[unchecked] conversion in the other direction.

Listing 21: interfaces/Child.java

package interfaces

VA V4

public final class Child extends Template {
VA 4

public static final class ContractId extends com.daml.ledger.javaapi.data.

—codegen.ContractId<Child>
implements Exercises<ExerciseCommand> {

VR V4
public TIf.ContractId tolInterface(TIf.INTERFACE interfaceCompanion) { /* 0
—*/)
public static ContractId unsafeFromInterface(TIf.ContractId
<sinterfaceContractId) { /* ... */ }
}
public interface Exercises<Cmd> extends com.daml.ledger.javaapi.data.codegen.
—Exercises<Cmd> {
default Cmd exerciseBar (Bar arg) { /* ... */ }
default Cmd exerciseBar() { /* ... */}
}
JE L. *r/
}
267

112. Integrate Daml with Off-Ledger Services

Daml SDK Documentation, 2.7.3

Java Bindings Example Project

To try out the Java bindings library, use the examples on GitHub: PingPongReactive.
The example implements the PingPong application, which consists of:

a Daml model with two contract templates, Ping and Pong
two parties,Alice and Bob

The logic of the application goes like this:

1. The application injects a contract of type Ping for Alice.

2. Alice sees this contract and exercises the consuming choice RespondPong to create a con-
tract of type Pong for Bob.

3. Bob sees this contract and exercises the consuming choice RespondPing to create a contract
of type Ping for Alice.

4. Points 2 and 3 are repeated until the maximum number of contracts defined in the Daml is
reached.

Set Up the Example Projects

To set up the example projects, clone the public GitHub repository at
github.com/digital-asset/ex-java-bindings and follow the setup instruction in the README file.

This project contains two examples of the PingPong application, built directly with gRPC and using
the RxJava2-based Java bindings.

Example Project
PingPongMain.java

The entry point for the Java code is the main class src/main/java/examples/pingpong/grpc/
PingPongMain. java. Look at this class to see:

how to connect to and interact with a Daml Ledger via the Java bindings
how to use the Reactive layer to build an automation for both parties.

At high level, the code does the following steps:

creates an instance of DamlLedgerClient connecting to an existing Ledger

connect this instance to the Ledger with DamlLedgerClient.connect ()

create two instances of PingPongProcessor, which contain the logic of the automation
(This is where the application reacts to the new Ping or Pong contracts.)

run the PingPongProcessor forever by connecting them to the incoming transactions
inject some contracts for each party of both templates

wait until the application is done

268 Chapter 1. Canton References

https://github.com/digital-asset/ex-java-bindings
https://github.com/digital-asset/ex-java-bindings
https://github.com/digital-asset/ex-java-bindings/blob/master/README.rst#setting-up-the-example-projects

Daml SDK Documentation, 2.7.3

PingPongProcessor.runindefinitely()

The core of the application is the PingPongProcessor.runIndefinitely ().

The PingPongProcessor queries the transactions first via the TransactionsClient of the
DamlLedgerClient. Then, for each transaction, it produces Commands that will be sent to the
Ledger via the CommandSubmissionClient of the DamlLedgerClient.

Output

The application prints statements similar to these:

Bob is exercising RespondPong on #1:0 in workflow Ping-Alice-1 at count 0
Alice is exercising RespondPing on #344:1 in workflow Ping-Alice-7 at count 9

The first line shows that:

Bob is exercising the RespondPong choice on the contract with ID #1:0 for the workflow
Ping-Alice-1.

Count 0 means that this is the first choice after the initial Ping contract.

The workflow ID Ping-Alice-1 conveys thatthis is the workflow triggered by the second initial
Ping contract that was created by Alice.

The second line is analogous to the first one.

Daml IOU Quickstart Tutorial

In this guide, you will learn about developer tools and Daml applications by:

developing a simple ledger application for issuing, managing, transferring and trading 10Us (|

Owe You!)
developing an integration layer that exposes some of the functionality via custom REST ser-
vices

Prerequisites:

You understand what an IOU is. If you are not sure, read the |OU tutorial overview.
You have installed the SDK. See installation.

Download the Quickstart Application

You can get the quickstart application using the Daml assistant (daml):

1. Rundaml new quickstart --template quickstart-java
This creates the quickstart-java application into a new folder called quickstart.
2. Run cd quickstart to change into the new directory.

112. Integrate Daml with Off-Ledger Services 269

Daml SDK Documentation, 2.7.3

Folder Structure

The project contains the following files:

— daml
|— Iou.daml
|— IouTrade.daml
I— Main.daml
L Tests
|— Iou.daml
L — Trade.daml
— daml.yaml
— frontend-config.js
—— pom.xml

L — quickstart
L— iou
L— IouMain.java

— resources
— logback.xml

daml.yaml is a Daml project config file used by the SDK to find out how to build the Daml
project and how to run it.

daml contains the Daml code specifying the contract model for the ledger.

daml/Tests contains test scripts for the Daml model.

frontend-config.js is aconfiguration file for the Navigator frontend.

pom.xml and src/main/java constitute a Java application that provides REST services to in-
teract with the ledger.

You will explore these in more detail through the rest of this guide.

Understand IOUs

To run through this guide, you will need to understand what an IOU is. This section describes the
properties of an I0U like a bank bill that make it useful as a representation and transfer of value.

A bank bill represents a contract between the owner of the bill and its issuer, the central bank. His-
torically, it is a bearer instrument - it gives anyone who holds it the right to demand a fixed amount
of material value, often gold, from the issuer in exchange for the note.

To do this, the note must have certain properties. In particular, the British pound note shown below
illustrates the key elements that are needed to describe money in Daml:

1) The Legal Agreement

For a long time, money was backed by physical gold or silver stored in a central bank. The British
pound note, for example, represented a promise by the central bank to provide a certain amount of
gold or silver in exchange for the note. This historical artifact is still represented by the following
statement:

270 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

I promise to pay the bearer on demand the sum of five pounds.

The true value of the note comes from the fact that it physically represents a bearer right that is
matched by an obligation on the issuer.

2) The Signature of the Counterparty

The value of a right described in a legal agreement is based on a matching obligation for a counter-
party. The British pound note would be worthless if the central bank, as the issuer, did not recognize
its obligation to provide a certain amount of gold or silver in exchange for the note. The chief cashier
confirms this obligation by signing the note as a delegate for the Bank of England. In general, deter-
mining the parties that are involved in a contract is key to understanding its true value.

3) The Security Token

Another feature of the pound note is the security token embedded within the physical paper. It allows
the note to be authenticated with limited effort by holding it against a light source. Even a third party
can verify the note without requiring explicit confirmation from the issuer that it still acknowledges
the associated obligations.

4) The Unique Identifier

Every note has a unique registration number that allows the issuer to track their obligations and
detect duplicate bills. Once the issuer has fulfilled the obligations associated with a particular note,
duplicates with the same identifier automatically become invalid.

5) The Distribution Mechanism

The note itself is printed on paper, and its legal owner is the person holding it. The physical form of
the note allows the rights associated with it to be transferred to other parties that are not explicitly
mentioned in the contract.

112. Integrate Daml with Off-Ledger Services 271

Daml SDK Documentation, 2.7.3

Run the Application Using Prototyping Tools

In this section, you will run the quickstart application and get introduced to the main tools for pro-
totyping Daml:

1.

To compile the Daml model, run daml build
This creates a DAR file (DAR is just the format that Daml compiles to) called .daml/dist/
quickstart-0.0.1.dar. The output should look like this:

2022-09-08 14:33:41.65 [INFO] [build]
Compiling quickstart to a DAR.

2022-09-08 14:33:42.90 [INFO] [build]
Created .daml/dist/quickstart-0.0.1.dar

. Torun the sandbox (a lightweight local version of the ledger), run:

daml sandbox —--port 6865

In a separate terminal run the following:

Upload the DAR file:

daml ledger upload-dar --host localhost --port 6865 .daml/dist/quickstart-0.0.
—1.dar

Run the init script:

daml script --ledger-host localhost --ledger-port 6865 --dar .daml/dist/
—quickstart-0.0.1.dar --script-name Main:initialize --output-file output.json

Start the Navigator, a browser-based ledger front-end, by running:

daml navigator server localhost 6865 --port 7500

The Navigator automatically connects to the sandbox. You can access it on port 7500.

Try the Application

Now everything is running, you can try out the quickstart application:

1.

Go to http://localhost:7500/. This is the Navigator, which you launched earlier.

2. On the login screen, select alice from the dropdown. This logs you in as alice.
This takes you to the contracts view:
This is showing you what contracts are currently active on the sandbox ledger and visible to
alice. Youcan see thatthereis a single such contract, in our case with1d 002eb5. . ., created
from a template called Tou:Iou@8£f199da. ...
Your contract ID will vary. The actual value doesn’t matter. We’ll refer to this contractas 002eb5
in the rest of this document, and you’ll need to substitute your own value mentally.
3. On the left-hand side, you can see what the pages the Navigator contains:
Contracts
Templates
Issued lous
Owned lous
lou Transfers
Trades
272 Chapter 1. Canton References

http://localhost:7500/

Daml SDK Documentation, 2.7.3

l\ dcml 2 alice B @ 2022-09-0814:50

Contracts Contracts @ Include archived @ Frozen Q

Templates

SSLERlOUS 002ebs... lou:lou@8f199da9d8edd02deas31f05759296d76c36d61c6e5113a3a43lectbade54br2 2022-09-08T14:39: o

Owned lous

lou Transfers

Trades

Contracts and Templates are standard views, available in any application. The others are cre-
ated just for this application, specified in the frontend-config.js file.
For information on creating custom Navigator views, see Customizable table views.

4. Click Templates to open the Templates page.
This displays all available contract templates. Instances of contracts (or just contracts) are
created from these templates. The names of the templates are of the format module:tem-
plate@hash. Including the hash disambiguates templates, even when identical module and
template names are used between packages.
On the far right, you see the number of contracts that you can see for each template, if any, or -
for nocontract .

5. Try creating a contract from a template. Issue an lou to yourself by clicking on the
Iou:Iou@8£199... row, filling it out as shown below (use the provided auto-complete fea-
ture for the Party values in issuer and owner) and clicking Submit.

l\ ddml 2 elies 2 @ 2022-08-0815:00

Contracts Template lou:lou@8f199da9d86dd02dea531f05759296d76c36d61c6e5113a3a43leclb4dc54bf2

Templates

Issued lous Alice:12204b8a74e8af3c81e36b93812067¢f429ab7a2fbf888785584292a07110102b491

Owned lous
lou Transfers

AliceCoin
Trades

Add new element

112. Integrate Daml with Off-Ledger Services 273

Daml SDK Documentation, 2.7.3

10.

1.

. On the left-hand side, click Issued lous to go to that page. You can see the lou you just issued

yourself.
Now, try transferring this lou to someone else. Click on your lou, select Tou Transfer, select
Bob::... asthe new owner and hit Submit.

. Go to the Owned lous page.

The screen shows the same contract 002eb5 that you already saw on the Contracts page. It is

Go to the lou Transfers page. It shows the transfer of your recently issued lou to Bob, but Bob
has not accepted the transfer, so it is not settled.

This is an important part of Daml: nobody can be forced into owning an lou, or indeed agreeing
to any other contract. They must explicitly consent.

You could cancel the transfer by using the TouTransfer Cancel choice within it, but for this
walk-through, leave it alone for the time being.

Try asking Bob to exchange your 100 for $110. To do so, you first have to show your lou to Bob so
that he can verify the settlement transaction, should he accept the proposal.

Go back to Owned lous, open the lou for 100 and click on the button Tou AddObserver. Select
Bob::... asthe newObserver.

Contracts in Daml are immutable, meaning they cannot be changed, only created and archived.
If you head back to the Owned lous screen, you can see that the lou now has a new Contract ID.
In our case, it’'s 00018fe. . ..

To propose the trade, go to the Templates screen. Click on the TouTrade:IouTrade@. .. tem-
plate, fill in the form as shown below and submit the transaction. Remember to use the drop-
down for the values of buyer, seller,baseIouCid, baseIssuer, and quotelssuer.

l\ dd ml 2 alice B @ 2022-09-0815:10

Contracts Template louTrade:louTrade@8f199da9d86dd02deas531f05759296d76¢c36d61c6e5113a3a43lec1b4dc54bf2

Templates

Issued

Owned

lous Alice:12204b8a74e8af3c81e36b938120e7cf429ab7a9fbf8818785584292a07110102b491

lous
Bob:12204b8a74e8af3c81e36b93812067cf429ab7a8fbf88f878558429a07110102b491

lou Transfers

Trades

12.
13.

14.

15.

0d7bca001220b593d dbel2c61fbid9a6b524e4a86ccbe7d1adad8524210913b4943edffaa39

EUR_Bank:12204b8a74e8af3¢81e36b938120e7¢f429ab729fhf88f878558429207110102b491

USD_Bank::12204b8a74e8af3c81e36b938120e7cf429ab7a0fbf88f878558429a07110102b491

Go to the Trades page. It shows the just-proposed trade.

You are now going to switch user to Bob, so you can accept the trades you have just proposed.
Start by clicking on the logout button next to the username, at the top of the screen. On the
login page, select bob from the dropdown.

First, accept the transfer of the AliceCoin. Go to the lou Transfers page, click on the row of the
transfer, and click TouTransfer Accept, then Submit.

Go to the Owned lous page. It now shows the AliceCoin.

It also shows an lou for $110 issued by USD Bank::.... This matches the trade proposal

274

Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

you made earlier as Alice. Remember the first few characters of its Contract ID (in our case
0086c84).

l\ d 0 ml 2 @ 2022-09-0815:21

Contracts Q

Templates

Issued lous 002afc65d4881e5d959380d77... Alice:12204b8a74e8af3cB1e36... AliceCoin

Owned lous 0086c84c76dfc68b469b52275... USD_Bank:12204b8a74e8af3 usb
lou Transfers

Trades

16. Settle the trade. Go to the Trades page, and click on the row of the proposal. Accept the trade
by clicking TouTrade Accept. In the popup, select the Contract ID you just noted from the
dropdown as the quoteIouCid, then click Submit.

The two legs of the transfer are now settled atomically in a single transaction. The trade either
fails or succeeds as a whole.

17. Privacy is an important feature of Daml. You can check that Alice and Bob’s privacy relative to
the Banks was preserved.

On the Contracts page, select Include archived. The page now shows all the contracts that
USD Bank::... hasever known about.
There are just five contracts:
Three contracts created on startup:
1. A self-issued lou for $110.
2. The louTransfer to transfer that lou to Bob
3. The resulting lou owned by Bob.
The transfer of Bob’s lou to Alice that happened as part of the trade. Note that this is a
transient contract that got archived in the same transaction it got created in.
The new $110 lou owned by Alice. This is the only active contract.
Importantly, USD_Bank::... does not know anything about the trade or the EUR-leg. It has no
idea what was exchanged for those $110, or indeed if anything was exchanged at all. For more
information on privacy, refer to the Dam| Ledger Model.

Note: USD Bank::... does know aboutanintermediate louTransfer contract that was created
and consumed as part of the atomic settlement in the previous step. Since that contract was
never active on the ledger, it is not shown in Navigator. You will see how to view a complete
transaction graph, including who knows what, in Test Using Daml Script below.

112. Integrate Daml with Off-Ledger Services 275

Daml SDK Documentation, 2.7.3

Get Started with Daml

The contract model specifies the possible contracts, as well as the allowed transactions on the ledger,
and is written in Daml.

The core concept in Daml is a contract template - you used them earlier to create contracts. Contract
templates specify:

a type of contract that may exist on the ledger, including a corresponding data type
the signatories, who need to agree to the creation of a contract of that type

the rights or choices given to parties by a contract of that type

constraints or conditions on the data on a contract

additional parties, called observers, who can see the contract

For more information about Daml Ledgers, consult Dam| Ledger Model for an in-depth technical de-
scription.

Develop with Daml Studio

Take a look at the Daml that specifies the contract model in the quickstart application. The core
template is Iou.

1. Open Daml Studio, a Daml IDE based on VS Code, by running daml studio from the root of your
project.
2. Using the explorer on the left, open daml/Iou.daml.

The first (uncommented, non-empty) line specifies the module name:

module Iou where

Next, a template called lou is declared together with its datatype. This template has five fields:

template Iou
with
issuer : Party
owner : Party
currency : Text
amount : Decimal
observers : [Party]

Conditions for the creation of a contract are specified using the ensure and signatory keywords:

ensure amount > 0.0

signatory issuer, owner

In this case, there are two conditions:

An Iou can only be created if it is authorized by both issuer and owner.
The amount needs to be positive.

Earlier, as Alice, you authorized the creation of an ITou. The amount was 1.0, and Alice was both
issuer andowner, soboth conditions were satisfied, and you could successfully create the contract.

To see this in action, go back to the Navigator and try to create the same Iou again, but with Bob as
owner (with Alice as issuer). It will not work. Note that the Navigator shows success an failures as a

276 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

small icon in the top right, as highlighted here (it would be a small v for success):

l\ dd m I @ 2022-09-08 15:44

Gontracts ® Include archived m Frozen Q

Templates Template ID Time Choice

Issued lous 002afc... lou:lou@8&f 102dea531f05759296d76: | 113a3a431ecib4dc54bf2 2022-09-08T15:15:4... o

Owned lous 007af0... lou:lou@8f 02dea531f05759296d76c: 113a3a43leclb4dc54bf2 2022-09-08T15:23:...

lou Transfers

Trades

Observers are specified using the observer keyword:

observer observers

Here, observer is the keyword and observers refers to the field of the template.

Next, the rights or choices are defined, in this case with owner as the controller:

choice Iou_Split : (IouCid, IouCid)
with
splitAmount: Decimal
controller owner

do
let restAmount = amount - splitAmount
splitCid <- create this with amount = splitAmount
restCid <- create this with amount = restAmount

return (splitCid, restCid)

choice Iou Merge : IouCid
with
otherCid: IouCid
controller owner
do
otherIou <- fetch otherCid
-— Check the two IOU's are compatible

assert (
currency == otherIou.currency &&
owner == otherIou.owner &&
issuer == otherIou.issuer

)
-— Retire the old Iou
archive otherCid
-— Return the merged Iou
create this with amount = amount + otherIou.amount

choice Iou Transfer : ContractId IouTransfer
with

(continues on next page)

112. Integrate Daml with Off-Ledger Services 277

Daml SDK Documentation, 2.7.3

(continued from previous page)

newOwner : Party
controller owner
do create IouTransfer with iou = this; newOwner

choice Iou_AddObserver : IouCid
with
newObserver : Party
controller owner
do create this with observers = newObserver :: observers

choice Iou_RemoveObserver : IouCid
with
0ldObserver : Party
controller owner
do create this with observers = filter (/= oldObserver) observers

Thus, owner has the right to:

Split the lou.

Merge it with another one differing only on amount.
Initiate a transfer.

Add and remove observers.

The Iou Transfer choice above takes a parameter called newOwner and creates a new IouTrans-
fer contract and returns its ContractId. Itis important to know that, by default, choices consume
the contract on which they are exercised. Consuming, or archiving, makes the contract no longer
active. So the TouTransfer replaces the Iou.

A more interesting choice is TouTrade Accept. To look at it, open TouTrade.daml.

choice IouTrade Accept : (IouCid, IouCid)

with
quoteIouCid : IouCid

controller seller

do
baseIou <- fetch baselIouCid
baselssuer === baselou.issuer
baseCurrency === baselou.currency
baseAmount === baselou.amount
buyer === baselIou.owner
quoteIou <- fetch quoteIouCid
quoteIssuer === quotelou.issuer
quoteCurrency === quotelou.currency
quoteAmount === quotelIou.amount
seller === gquotelou.owner
quotelouTransferCid <- exercise quotelIouCid Iou_Transfer with

newOwner = buyer
transferredQuotelouCid <- exercise quotelouTransferCid IouTransfer Accept
baseIouTransferCid <- exercise baselouCid Iou_Transfer with
newOwner = seller

transferredBaselIouCid <- exercise baselouTransferCid IouTransfer Accept
return (transferredQuotelIouCid, transferredBaseIouCid)

This choice uses the === operator from the Dam| Standard Library to check pre-conditions. The stan-
dard library is imported using import DA.Assert at the top of the module.

278 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Then, it composes the Tou Transfer and IouTransfer Accept choices to build one big transac-
tion. In this transaction, buyer and seller exchange their lous atomically, without disclosing the
entire transaction to all parties involved.

The Issuers of the two lous, which are involved in the transaction because they are signatories on the
TIouand IouTransfer contracts, only get to see the sub-transactions that concern them, as we saw
earlier.

For a deeper introduction to Daml, consult the Daml Reference.

Test Using Daml Script

You can check the correct authorization and privacy of a contract model using scripts: tests that are
written in Daml.

Scripts are a linear sequence of transactions that is evaluated using the same consistency, confor-
mance and authorization rules as it would be on the full ledger server or the sandbox ledger. They
are integrated into Daml Studio, which can show you the resulting transaction graph, making them
a powerful tool to test and troubleshoot the contract model.

To take a look at the scripts in the quickstart application, open daml/Tests/Trade.daml in Daml
Studio.

A script test is defined with trade test = script do. The submit function takes a submitting
party and a transaction, which is specified the same way as in contract choices.

The following block, for example, issues an Iou and transfers it to Alice:

—-— Banks issue IOU transfers.
iouTransferAliceCid <- submit eurBank do
createAndExerciseCmd
Tou with
issuer = eurBank
owner = eurBank
currency = "EUR"
amount = 100.0
observers = []
Iou Transfer with
newOwner = alice

Compare the script with the initialize scriptin daml/Main.daml. You will see that the script
you used to initialize the sandbox is an initial segment of the trade test script. The latter adds
transactions to perform the trade you performed through Navigator, and a couple of transactions in
which expectations are verified.

After a short time, the text Script results should appear above the test. Click on it (in daml/Tests/
Trade.daml) to open the visualization of the resulting ledger state.

Each row shows a contract on the ledger. The last four columns show which parties know of which
contracts. The remaining columns show the data on the contracts. You can see past contracts by
checking the Show archived box at the top. Click the adjacent Show transaction view button to
switch to a view of the entire transaction tree.

In the transaction view, transaction 6 is of particular interest, as it shows how the lous are exchanged
atomically in one transaction. The lines starting disclosed to (since) show thatthe Banks do
indeed not know anything they should not:

112. Integrate Daml with Off-Ledger Services 279

Daml SDK Documentation, 2.7.3

lou:lou

o | 2
=)
0
2
observers m E >

#6:6 |active ['USD_Bank'|'Alice’ ["USD" _[110.0000000000]01 [X|X[- |X]
#6:10[active ['EUR_Bank'|'Bob’ ["EUR" _[100.0000000000]] [X|X[X]-]

TX 6 1970-01-01T00:00:00Z (Tests.Trade:70:14)

#6:0
| disclosed to (since): 'Alice' (6), 'Bob' (6)
L> 'Bob' exercises IouTrade Accept on #5:0 (IouTrade:IouTrade)
with
quoteIouCid = #3:1
children:
#6:1
| disclosed to (since): 'Alice' (6), 'Bob' (6), 'EUR Bank' (6)
L> 'aAlice' and '"EUR_Bank' fetch #4:1 (Iou:Iou)
#6:2
| disclosed to (since): 'Alice' (6), 'Bob' (6), 'USD Bank' (6)
L> 'Bob' and 'USD Bank' fetch #3:1 (Iou:Iou)
#6:3
| disclosed to (since): 'Alice' (6), 'Bob' (6), 'USD Bank' (6)
L> 'Bob' exercises Iou Transfer on #3:1 (Iou:Iou)
with
newOwner = 'Alice'
children:
#6:4
| consumed by: #6:5
| referenced by #6:5
| disclosed to (since): 'Alice' (6), 'Bob' (6), 'USD Bank' (6)
L> 'Bob' and 'USD_Bank' create Iou:IouTransfer
with
iou =
(Iou:Iou with
issuer = 'USD Bank';
owner = 'Bob';
currency = "USD";
amount = 110.0000000000;
observers = []);
newOwner = 'Alice'
#6:5
| disclosed to (since): 'Alice' (6), 'Bob' (6), 'USD Bank' (6)
L> 'Alice' exercises IouTransfer Accept on #6:4 (Iou:IouTransfer)
children:
#6:6
| disclosed to (since): 'Alice' (6), 'Bob' (6), 'USD Bank' (6)
L> 'Alice' and 'USD Bank' create Iou:Iou
with
issuer = 'USD Bank';
(continues on next page)
280

Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

owner = 'Alice';
currency = "USD";
amount = 110.0000000000;
observers = []
#6:7
| disclosed to (since): 'Alice' (6), 'Bob' (6), 'EUR Bank' (6)
L> 'Alice' exercises Iou Transfer on #4:1 (Iou:Iou)
with
newOwner = 'Bob'
children:
#6:8

| consumed by: #6:9
| referenced by #6:9
| disclosed to (since): 'Alice' (6), 'Bob' (6), 'EUR Bank' (6)
L> 'Alice' and 'EUR Bank' create Iou:IouTransfer
with
iou =
(Iou:Iou with
issuer = 'EUR Bank';
owner = 'Alice';
currency = "EUR";
amount = 100.0000000000;
observers = ['Bob']);
newOwner = 'Bob'

#6:9
| disclosed to (since): 'Alice' (6), 'Bob' (6), 'EUR Bank' (6)
L> 'Bob' exercises IouTransfer Accept on #6:8 (Iou:IouTransfer)
children:
#6:10
| disclosed to (since): 'Alice' (6), 'Bob' (6), 'EUR Bank' (6)
L> 'Bob' and 'EUR Bank' create Iou:Iou
with
issuer = 'EUR Bank';
owner = 'Bob';
currency = "EUR";
amount = 100.0000000000;
observers = []

The submit function used in this script tries to perform a transaction and fails if any of the ledger
integrity rules are violated. There is also a submitMustFail function, which checks that certain

transactions are not possible. This is used in daml/Tests/Iou.daml, for example, to confirm that
the ledger model prevents double spends.

112. Integrate Daml with Off-Ledger Services 281

Daml SDK Documentation, 2.7.3

Integrate With the Ledger

A distributed ledger only forms the core of a full Daml application.

To build automations and integrations around the ledger, Daml has language bindings for the Ledger
APl in several programming languages.

To compile the Java integration for the quickstart application, we first need to run the Java codegen
on the DAR we built before:

daml codegen java

Once the code has been generated (into target/generated-sources per the instructions in
daml.yaml), we can compile it using:

mvn compile

Now, start the Java integration with:

mvn exec:java@run-quickstart -Dparty=$(cat output.json | sed 's/\[\"//' | sed 's/

(_}ll.*//l)

Note that this step requires that the sandbox started earlier is still running, If it is not, you’ll have to
run the daml sandbox and daml script commands again to get an output.json in sync with
the new state of the sandbox (party names can change with each sandbox restart).

The application provides REST services on port 8080 to perform basic operations on behalfonAlice.
For example, check that:

curl http://localhost:8080/1iou

returns, for a newly-created sandbox (where you have just run the init script to get the output. json
file), something like:

{"0":{"issuer":"EUR Bank::NAMESPACE", "owner":"Alice: :NAMESPACE", "currency":"EUR",
—"amount":100.0000000000, "observers":[]1}}

If you still have the same sandbox running against which you have run the Navigator steps above,
the output might look more like:

{"O0":{"issuer":"Alice: :NAMESPACE", "owner" :"Bob: :NAMESPACE", "currency":"AliceCoin",
—~"amount":1.0000000000, "observers":[]1},"1":{"issuer":"USD Bank::NAMESPACE", "owner
—":"Alice: :NAMESPACE", "currency" :"USD", "amount":110.0000000000, "observers":[]}}

To startthe same application on another port, use the command-line parameter -Drestport=PORT.
To start it for another party, use -Dparty=PARTY. For example, to start the application for Bob on
8081, run:

mvn exec:java@run-quickstart -Drestport=8081 -Dparty=Bob$ (cat output.json | sed

<'s/\N[\"//" | sed 's/".*//")

The following REST services are included:

GET on http://localhost:8080/1iou lists all active lous, and their Ids.
Note that the Ids exposed by the REST APl are not the ledger contract Ids, but integers. You can
open the address in your browser or run curl -X GET http://localhost:8080/1iou.

282 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

GETon http://localhost:8080/iou/ID returns the lou with Id ID.
For example, to get the content of the lou with Id O, run:

curl -X GET http://localhost:8080/iou/0
PUTonhttp://localhost:8080/iou creates a new lou on the ledger.
To create another AliceCoin, run:

curl -X PUT -d '{"issuer":"Alice::NAMESPACE", "owner":"Alice: :NAMESPACE",
—~"currency":"AliceCoin", "amount":1.0, "observers":[]}"' http://localhost:8080/
—iou

Note that you have to replace NAMESPACE with the real namespace assigned by the sandbox;
you can find it in output. json:

ns=$ (cat output.json | sed 's/\[\"Alice:://' | sed 's/".*//'); curl -X PUT -d
<"S(printf '{"issuer":"Alice::%s","owner":"Alice::%s","currency":"AliceCoin",
—"amount":1.0,"observers":[]1}' S$ns $ns)" http://localhost:8080/iou

POSTon http://localhost:8080/iou/ID/transfer transfers the lou with Id ID.

Check the index of your new AliceCoin by listing all active lous. If you have just run the init script,
it will be 0; if you have run the Navigator section, it will likely be 2. Once you have the index, you
canrun:

ns=$ (cat output.json | sed 's/\[\"Alice:://' | sed 's/".*//'); curl -X POST -
—d "{\"newOwner\":\"Bob::5{ns}\"}" http://localhost:8080/iou/0/transfer

to transfer it to Bob. If it’s not 0, just replace the 0 in iou/0 in the above command.

The automation is based on the Java bindings and the output of the Java code generator, which are
included as a Maven dependency and Maven plugin respectively in the pom. xml file created by the
template:

<dependency>
<groupId>com.daml</groupId>
<artifactId>bindings-rxjava</artifactId>
<version> VERSION </version>
<exclusions>
<exclusion>
<groupId>com.google.protobuf</groupIld>
<artifactId>protobuf-lite</artifactId>
</exclusion>
</exclusions>
</dependency>

It consists of the application in file ITouMain.java. It uses the class Iou from Iou. java, which is
generated from the Daml model with the Java code generator. The Tou class provides better serializa-
tion and de-serialization to JSON via gson. Looking at src/main/java/com/daml/quickstart/
iou/IouMain.java:

1. A connection to the ledger is established using a DamlLedgerClient object.

DamlLedgerClient client = DamlLedgerClient.newBuilder (ledgerhost, ledgerport).
—build() ;

// Connects to the ledger and runs initial validation.
client.connect () ;

2. An in-memory contract store is initialized. This is intended to provide a live view of all active
contracts, with mappings between ledger and external Ids.

112. Integrate Daml with Off-Ledger Services 283

https://github.com/google/gson

Daml SDK Documentation, 2.7.3

ConcurrentHashMap<Long, Iou> contracts = new ConcurrentHashMap<>();
BiMap<Long, Iou.ContractId> idMap = Maps.synchronizedBiMap (HashBiMap.
—create());
AtomicReference<LedgerOffset> acsOffset =

new AtomicReference<> (LedgerOffset.LedgerBegin.getInstance());

3. The Active Contracts Service (ACS) is used to quickly build up the contract store to a recent
state.

client
.getActiveContractSetClient ()
.getActiveContracts (Iou.contractFilter (), Collections.singleton (party),l!
—true)
.blockingForEach (
response -> {
response.offset.ifPresent (offset -> acsOffset.set (new LedgerOffset.
—Absolute (offset)));
response.activeContracts.forEach (
contract -> {
long id = idCounter.getAndIncrement ();
contracts.put (id, contract.data);
idMap.put (id, contract.id);
}):
1)

blockingForEach is used toensure that the contract store is consistent with the ledger state
at the latest offset observed by the client.

4. The Transaction Service is wired up to update the contract store on occurrences of
ArchiveEvent and CreateEvent for lous. Since getTransactions is called without end
offset, it will stream transactions indefinitely, until the application is terminated.

client
.getTransactionsClient ()
.getTransactions (
Iou.contractFilter (), acsOffset.get(), Collections.
—singleton (party), true)
.forEach (
t =>
for (Event event : t.getEvents()) {
if (event instanceof CreatedEvent) {
CreatedEvent createdEvent = (CreatedEvent) event;
long id = idCounter.getAndIncrement () ;
Iou.Contract contract = Iou.Contract.
—fromCreatedEvent (createdEvent) ;
contracts.put (id, contract.data);
idMap.put (id, contract.id);
} else if (event instanceof ArchivedEvent) {

ArchivedEvent archivedEvent = (ArchivedEvent) event;
long id =
idMap.inverse () .get (new Iou.ContractId(archivedEvent.
—getContractId()));

contracts.remove (id) ;
idMap.remove (id) ;

}
});

5. Commands are submitted via the Command Submission Service.

284 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

var params =

CommandsSubmission.create (APP_ID, randomUUID().toString(), update.
—commands ())

.withActAs (party);

return client.getCommandClient () .submitAndWaitForResult (params, update).
—blockingGet () ;

You can find examples of Update instantiations for creating contract and exercising a choice
in the bodies of the transfer and iou endpoints, respectively.

Listing 22: Exercise a choice

Map m = g.fromJson (reqg.body (), Map.class);
Iou.ContractId contractId = idMap.get (Long.parselong (req.params ("id")));

var update = contractId.exerciselou Transfer (m.get ("newOwner") .toString());

Listing 23: Create a contract

Tou iou = g.fromJson (reqg.body (), Iou.class);
var iouCreate = iou.create();

var createdContractId = submit (client, party, iouCreate);

The rest of the application sets up the REST services using Spark Java, and does dynamic package
Id detection using the Package Service. The latter is useful during development when package lds
change frequently.

For a discussion of ledger application design and architecture, take a look at Application Architecture
Guide.

Next Steps

Great - you’ve completed the quickstart guide!
Some steps you could take next include:

Explore examples for guidance and inspiration.
Learn Daml.

Language reference.

Learn more about application development.

Learn about the conceptual models behind Daml.

1.12.5.6 Python Bindings
The Python bindings (formerly known as DAZL) are a client implementation of the Ledger API for the
Python language and are supported under the Daml Enterprise license.

The Python bindings are supported for use with Daml and with Daml| Hub. Documentation for the
bindings can be found here.

112. Integrate Daml with Off-Ledger Services 285

http://sparkjava.com/
https://daml.com/examples
https://hub.daml.com/
https://digital-asset.github.io/dazl-client/

Daml SDK Documentation, 2.7.3

112.5.7 Use the Ledger APl With gRPC

If you want to write an application for the ledger APl in other languages, you’ll need to use gRPC
directly.

If you’re not familiar with gRPC and protobuf, we strongly recommend following the gRPC quickstart
and gRPC tutorials. This documentation is written assuming you already have an understanding of
gRPC.

Get Started

You can get the protobufs from a GitHub release, or from the daml repository here.

Protobuf Reference Documentation

For full details of all of the Ledger API services and their RPC methods, see Ledger API Reference.

Example Project

We have an example project demonstrating the use of the Ledger APl with gRPC. To get the example
project, PingPongGrpc:

1. Configure your machine to use the example by following the instructions at Set Up a Maven
Project.

2. Clone the repository from GitHub.

3. Follow the setup instructions in the README. Use examples.pingpong.grpc.
PingPongGrpcMain as the main class.

About the Example Project

The example shows very simply how two parties can interact via a ledger, using two Daml contract
templates, Ping and Pong.

The logic of the application goes like this:

1. The application injects a contract of type Ping for Alice.

2. Alice sees this contract and exercises the consuming choice RespondPong to create a con-
tract of type Pong for Bob.

3. Bob sees this contract and exercises the consuming choice RespondPing to create a contract
of type Ping for Alice.

4. Points 2 and 3 are repeated until the maximum number of contracts defined in the Daml is
reached.

The entry point for the Java code is the main class src/main/java/examples/pingpong/grpc/
PingPongGrpcMain. java. Look at it to see how connect to and interact with a ledger using gRPC.

The application prints output like this:

Bob is exercising RespondPong on #1:0 in workflow Ping-Alice-1 at count 0
Alice is exercising RespondPing on #344:1 in workflow Ping-Alice-7 at count 9

286 Chapter 1. Canton References

https://grpc.io
https://grpc.io/docs/quickstart/
https://grpc.io/docs/tutorials/
https://github.com/digital-asset/daml/releases/download/v2.7.3/protobufs-2.7.3.zip
https://github.com/digital-asset/daml/tree/main/ledger-api/grpc-definitions
https://github.com/digital-asset/ex-java-bindings
https://github.com/digital-asset/ex-java-bindings/blob/master/README.rst#setting-up-the-example-projects

Daml SDK Documentation, 2.7.3

The first line shows:

Bob is exercising the RespondPong choice on the contract with ID #1:0 for the workflow
Ping-Alice-1.

Count 0 means that this is the first choice after the initial Ping contract.

The workflow ID Ping-Alice-1 conveys thatthisisthe workflow triggered by the second initial
Ping contract that was created by Alice.

This example subscribes to transactions for a single party, as different parties typically live on dif-
ferent participant nodes. However, if you have multiple parties registered on the same node, or are
running an application against the Sandbox, you can subscribe to transactions for multiple parties
in a single subscription by putting multiple entries intothe filters by partyfield of the Trans-
actionFilter message. Subscribing to transactions for an unknown party will result in an error.

Daml Types and Protobuf

For information on how Daml types and contracts are represented by the Ledger APl as protobuf
messages, see How Daml Types are Translated to Protobuf.

Error Handling

The Ledger APl generally uses the gRPC standard status codes for signaling response failures toclient
applications.

For more details on the gRPC standard status codes, see the gRPC documentation.
Generically, on submitted commands the Ledger APl responds with the following gRPC status codes:

ABORTED The platform failed to record the result of the command due to a transient server-side
error (e.g. backpressure due to high load) or a time constraint violation. You can retry the
submission. In case of a time constraint violation, please refer to the section Dealing with time
on how to handle commands with long processing times.

DEADLINE_EXCEEDED (when returned by the Command Service) The request might not have
been processed, as its deadline expired before its completion was signalled.

ALREADY_EXISTS The command was rejected because the resource (e.g. contract key) already ex-
ists or because it was sent within the deduplication period of a previous command with the
same change ID.

NOT_FOUND The command was rejected due to a missing resources (e.g. contract key not found).

INVALID_ARGUMENT The submission failed because of a client error. The platform will definitely
reject resubmissions of the same command.

FAILED_PRECONDITION The command was rejected due to an interpretation error or due to a con-
sistency error due to races.

OK (when returned by the Command Submission Service) Assume that the command was ac-
cepted and wait for the resulting completion or a timeout from the Command Completion Ser-
vice.

OK (when returned by the Command Service) You can be sure that the command was successful.

INTERNAL, UNKNOWN (when returned by the Command Service) An internal system fault oc-
curred. Contact the participant operator for the resolution.

Aside from the standard gRPC status codes, the failures returned by the Ledger APl are enriched with
details meant to help the application or the application developer to handle the error autonomously
(e.g. by retrying on a retryable error). For more details on the rich error details see the Error Codes

112. Integrate Daml with Off-Ledger Services 287

https://github.com/grpc/grpc/blob/600272c826b48420084c2ff76dfb0d34324ec296/doc/statuscodes.md

Daml SDK Documentation, 2.7.3

1.12.5.8 Ledger API Reference

com/daml/ledger/api/vi/active_contracts_service.proto

GetActiveContractsRequest

Field Type Label | Description
. string Must correspond to the ledger ID reported by the Ledger
ledger_id Identification Service. Must be a valid LedgerString (as de-
scribed in value.proto). Optional
. Transaction- Templates to include in the served snapshot, per party. Re-
filter Filter quired
bool Ifenabled, values served over the APl will contain more infor-
verbose mation than strictly necessary to interpret the data. In par-
ticular, setting the verbose flag to true triggers the ledger to
include labels for record fields. Optional
ac- string The offset at which the snapshot of the active contracts will
tive at off- be computed. Must be no greater than the current ledger
set - end offset. Must be greater than or equal to the last pruning
offset. If not set the current ledger end offset will be used.
Optional

GetActiveContractsResponse

Field Type Label Description
string Included only in the last message. The client should start
offset consuming the transactions endpoint with this offset.
The format of this field is described in ledger offset.
proto.
string The workflow that created the contracts. Must be a valid
\;\I/cc;\:vliid LedgerString (as described in value.proto).
ac- CreatedE- repeated | Thelistof contracts that were introduced by the workflow
tive con- vent with workflow id atthe offset. Must be a valid Ledger-
tracts String (as described in value.proto).

ActiveContractsService

Allows clients to initialize themselves according to a fairly recent state of the ledger without read-
ing through all transactions that were committed since the ledger’s creation. In V2 Ledger API this

service is not available anymore. Use v2.StateService instead.

288

Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Method Request Response | Description

name type type

GetActive- GetActive- GetActive- Returns a stream of the snapshot of the active con-

Contracts ContractsRe- | ContractsRe- | tracts at a ledger offset. If there are no active con-
quest sponse tracts, the stream returns a single response mes-

sage with the offset at which the snapshot has been
taken. Clients SHOULD use the offsetin the last GetAc-
tiveContractsResponse message to continue stream-
ing transactions with the transaction service. Clients
SHOULD NOT assume that the set of active contracts
they receive reflects the state at the ledger end.

com/daml/ledger/api/vi/admin/config_management_service.proto
GetTimeModelRequest

GetTimeModelResponse

Field Type Label | Description

. int64 The current configuration generation. The generation is a
configura- . . . S
‘i monotonically increasing integer that is incremented on each
al:;g;gener change. Used when setting the time model.

. TimeModel The current ledger time model.
time__model

SetTimeModelRequest

Field Type Label | Description
bmi string Submission identifier used for tracking the request and to
submis reject duplicate submissions. Required.
sion_id
. google.pro- Deadline for the configuration change after which the
max q ttQ— change is rejected.
mum_record_time
tamp
fi int64 The current configuration generation which we’re sub-
con 'gura mitting the change against. This is used to perform
tion_gener- . .
. a compare-and-swap of the configuration to safeguard
ation . e L .
against concurrent modifications. Required.
) TimeModel The new time model that replaces the current one. Required.
new_time_model

112. Integrate Daml with Off-Ledger Services 289

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

Daml SDK Documentation, 2.7.3

SetTimeModelResponse

Field Type | Label | Description
. . int64 The configuration generation of the committed time
configuration_genera-
. model.
tion
TimeModel
Field Type Label | Description
avg_trans- google.pro- The e?<pected averagg Igtency of a transgction, ie, thg aver-
action la- tgbuf.Dura— age time from submﬁ"cmg the tran;actlon to a [[\/\(nteSer-
tency - tion vice]l and the transaction being assigned a record time. Re-
quired.
) google.pro- The minimimum skew between ledger time and record time:
min_skew tobuf.Dura- [t_TX >= rt_TX - minSkew Required.
tion
google.pro- The maximum skew between ledger time and record time:
max_skew tobuf.Dura- [t_TX <= rt_TX + maxSkew Required.
tion

ConfigManagementService

Status: experimental interface, will change before it is deemed production ready

The ledger configuration management service provides methods for the ledger administrator to
change the current ledger configuration. The services provides methods to modify different aspects
of the configuration. In V2 Ledger API this service is not available anymore.

Method Request Response Description

name type type

GetTimeM- | GetTimeMod- | GetTimeModel- | Return the currently active time model and the cur-
odel elRequest Response rent configuration generation.

SetTimeM- | SetTimeMod- | SetTimeModel- | Set the ledger time model.

odel elRequest Response

com/daml/ledger/api/vV1/admin/identity_provider_config_service.proto

CreateldentityProviderConfigRequest

Field

Type

Label | Description

identity_provider_config

IdentityProviderConfig

Required

290

Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration

Daml SDK Documentation, 2.7.3

CreateldentityProviderConfigResponse

Field Type Label | Description
IdentityProviderConfig

identity_provider_config

DeleteldentityProviderConfigRequest

Field Type | Label | Description
string The identity provider config to delete. Required

identity__provider_id

DeleteldentityProviderConfigResponse

Does not (yet) contain any data.

GetldentityProviderConfigRequest

Field Type | Label | Description
string Required

identity__provider_id

GetldentityProviderConfigResponse

Field Type Label | Description
IdentityProviderConfig

identity__provider_config

112. Integrate Daml with Off-Ledger Services 291

Daml SDK Documentation,

273

IdentityProviderConfig

Field

Type

Label

Description

iden-

string

tity_provider_id

The identity provider identifier Must be a valid LedgerString (as de-
scribe in value.proto). Required

is__deacti-

vated

bool

When set, the callers using JWT tokens issued by this identity
provider are denied all access to the Ledger API. Optional, Modifi-
able

issuer

string

Specifies the issuer of the JWT token. The issuer value is a case
sensitive URL using the https scheme that contains scheme, host,
and optionally, port number and path components and no query or
fragment components. Required Modifiable

jwks_url

string

The JWKS (JSON Web Key Set) URL. The Ledger APl uses JWKs
(JSON Web Keys) from the provided URL to verify that the JWT has
been signed with the loaded JWK. Only RS256 (RSA Signature with
SHA-256) signing algorithm is supported. Required Modifiable

audience

string

Specifies the audience of the JWT token. When set, the callers us-
ing JWT tokens issued by this identity provider are allowed to get
anaccessonlyifthe aud claimincludesthe string specified here
Optional, Modifiable

ListldentityProviderConfigsRequest

Pagination is not required as the resulting data set is small enough to be returned in a single call

ListldentityProviderConfigsResponse

Field

Type Label Description

identity_provider_configs

IdentityProviderConfig | repeated

292

Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

UpdateldentityProviderConfigRequest

Field Type Label | Description

iden- Identi- The identity provider config to update. Required, Modifiable

tity provider_ggggwder_

fig onfig

up- google.pro- An update mask specifies how and which properties of the

date mask tobuf.Field- IdentityProviderConfig message are to be updated.
- Mask An update mask consists of a set of update paths. A

valid update path points to a field or a subfield relative to
the IdentityProviderConfig message. A valid update
mask must: (1) contain at least one update path, (2) con-
tain only valid update paths. Fields that can be updated
are marked as Modifiable. For additional information
see the documentation for standard protobuf3’s google.
protobuf.FieldMask. Required

UpdateldentityProviderConfigResponse

Field Type Label | Description
IdentityProviderConfig Updated identity provider config

identity__provider_config

IdentityProviderConfigService

Identity Provider Config Service makes it possible for participant node administrators to setup and
manage additional identity providers at runtime.

This allows using access tokens from identity providers unknown at deployment time. When an
identity provider is configured, independent IDP administrators can manage their own set of parties
and users. Such parties and users have a matching identity_provider_id defined and are inaccessi-
ble to administrators from other identity providers. A user will only be authenticated if the corre-
sponding JWT token is issued by the appropriate identity provider. Users and parties without iden-
tity_provider_id defined are assumed to be using the default identity provider, which is configured
statically at the participant node’s deployment time.

The Ledger APl uses the iss claim of a JWT token to match the token to a specific IDP. If there is no
match, the default IDP is assumed.

The fields of request messages (and sub-messages) are marked either as Optional or Required:
(1) Optional denoting the client may leave the field unset when sending a request. (2) Required
denoting the client must set the field to a non-default value when sending a request.

An identity provider config resource is described by the IdentityProviderConfig message, An
identity provider config resource, once it has been created, can be modified. In order to update
the properties represented by the IdentityProviderConfig message use the UpdateIdenti-
tyProviderConfig RPC.The only fields that can be modified are those marked as Modifiable.

112. Integrate Daml with Off-Ledger Services 293

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.FieldMask
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.FieldMask
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.FieldMask

Daml SDK Documentation, 2.7.3

Method Request Response Description
name type type
Createl- Createlden- Createldenti- | Create a new identity provider configuration. The re-
denti- tityProvider- tyProviderCon- | quest will fail if the maximum allowed number of
tyProvider- | ConfigRe- figResponse separate configurations is reached.
Config quest
Getldenti- Getldenti- Getldenti- Get the identity provider configuration data by id.
tyProvider- | tyProvider- tyProviderCon-
Config ConfigRe- figResponse

quest
Updatel- Updatelden- Updateldenti- | Update selected modifiable attribute of an identity
denti- tityProvider- tyProviderCon- | provider config resource described by the Identi-
tyProvider- | ConfigRe- figResponse tyProviderConfig message.
Config quest
Listldenti- Listldenti- Listldenti- List all existing identity provider configurations.
tyProvider- | tyProvider- tyProviderCon-
Configs ConfigsRe- figsResponse

quest
Deletel- Deletelden- Deleteldenti- Delete an existing identity provider configuration.
denti- tityProvider- tyProviderCon-
tyProvider- | ConfigRe- figResponse
Config quest

com/daml/ledger/api/Vi/admin/metering_report_service.proto

GetMeteringReportRequest

Authorized if and only if the authenticated user is a participant admin.

Field Type Label | Description
google.proto- The from timestamp (inclusive). Required.

from .
buf.Timestamp

to google.proto- The to timestamp (exclusive). If not provided, the server
buf.Timestamp will default to its current time.

) string If set to a non-empty value, then the report will only be
applica- generated for that application. Optional.
tion_id
294 Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

Daml SDK Documentation, 2.7.3

GetMeteringReportResponse

Field Type Label | Description
request QetMeter— The actual request that was executed.
iIngReportRe-
quest
re- google.pro- The time at which the report was computed.
to-
Eg:[_gen buf.Times-
tion_time tamp
meter- google.pro- The metering report json. For a JSON Sch_er_na defini-
ing_re- to- tion of the JSpn see: ht.tps://g|thl.Jb..c.om/dlgltal—asset/
port__json buf.Struct daml/blob/main/ledger-api/grpc-definitions/
metering-report-schema.json

MeteringReportService

Experimental API to retrieve metering reports.

Metering reports aim to provide the information necessary for billing participant and application

operators.

Method name

Request type

Response type

Description

port

GetMeteringRe-

quest

GetMeteringReportRe-

GetMeteringReportRe-
sponse

Retrieve a metering re-

port.

com/daml/ledger/api/vi/admin/object_meta.proto

ObjectMeta

Represents metadata corresponding to a participant resource (e.g. a participant user or participant
local information about a party).

Based on ObjectMeta meta used in Kubernetes APl See https://github.com/kubernetes/

apimachinery/blob/master/pkg/apis/meta/vil/generated.proto#L640

112. Integrate Daml with Off-Ledger Services

295

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Struct
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Struct
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Struct
https://github.com/digital-asset/daml/blob/main/ledger-api/grpc-definitions/metering-report-schema.json
https://github.com/digital-asset/daml/blob/main/ledger-api/grpc-definitions/metering-report-schema.json
https://github.com/digital-asset/daml/blob/main/ledger-api/grpc-definitions/metering-report-schema.json
https://github.com/kubernetes/apimachinery/blob/master/pkg/apis/meta/v1/generated.proto#L640
https://github.com/kubernetes/apimachinery/blob/master/pkg/apis/meta/v1/generated.proto#L640

Daml SDK Documentation, 2.7.3

Field

Type

Label

Description

re-
source_ver-
sion

string

An opaque, non-empty value, populated by a participant
server which represents the internal version of the re-
source this ObjectMeta message is attached to. The
participant server will change it to a unique value each
time the corresponding resource is updated. You must
notrelyonthe formatofresource version. The participant
server might change it without notice. You can obtain the
newest resource version value by issuing a read request.
You may use it for concurrent change detection by pass-
ing it back unmodified in an update request. The partici-
pant server will then compare the passed value with the
value maintained by the system to determine if any other
updates took place since you had read the resource ver-
sion. Upon a successful update you are guaranteed that
no other update took place during your read-modify-write
sequence. However, if another update took place during
your read-modify-write sequence then your update will
fail with an appropriate error. Concurrent change con-
trol is optional. It will be applied only if you include a
resource version in an update request. When creating a
new instance of a resource you must leave the resource
version empty. Its value will be populated by the partici-
pant server upon successful resource creation. Optional

annota-
tions

Object-
Meta.Annota-
tionsEntry

repeated

A set of modifiable key-value pairs that can be used
to represent arbitrary, client-specific metadata. Con-
straints: 1. The total size over all keys and values can-
not exceed 256kb in UTF-8 encoding. 2. Keys are com-
posed of an optional prefix segment and a required
name segment such that: - key prefix, when present,
must be a valid DNS subdomain with at most 253 char-
acters, followed by a ‘/* (forward slash) character, -
name segment must have at most 63 characters that
are either alphanumeric ([a-z0-9A-Z]), or a *’ (dot), -’
(dash) or ‘_’ (underscore); and it must start and end
with an alphanumeric character. 2. Values can be any
non-empty strings. Keys with empty prefix are reserved
for end-users. Properties set by external tools or inter-
nally by the participant server must use non-empty key
prefixes. Duplicate keys are disallowed by the seman-
tics of the protobuf3 maps. See: https://developers.
google.com/protocol-buffers/docs/proto3#maps Anno-
tations may be a part of a modifiable resource. Use the
resource’s update RPC to update its annotations. In order
to add a new annotation or update an existing one using
an update RPC, provide the desired annotation in the up-
date request. In order to remove an annotation using an
update RPC, provide the target annotation’s key but set
its value to the empty string in the update request. Op-
tional Modifiable

296

Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/proto3#maps
https://developers.google.com/protocol-buffers/docs/proto3#maps

Daml SDK Documentation, 2.7.3

ObjectMeta.AnnotationsEntry

Field | Type | Label | Description
key string
value string

com/daml/ledger/api/vVl/admin/package_management_service.proto
ListKknownPackagesRequest

ListKknownPackagesResponse

Field Type Label Description

K PackageDe- repeated | The details of all Daml-LF packages known to backing
pac . tails participant. Required
age_details

PackageDetails

Field Type Label | Description
K string The identity of the Daml-LF package. Must be a valid Pack-
zgz ” ageldString (as describe in value.proto). Required
K uint64 Size of the package in bytes. The size of the package is given
pacie by the size of the daml 1f ArchivePayload. See further de-
age_size tailsindaml 1f.proto. Required
le.pro- Indicat i hen th k is k to the backi
known._since google.pro ndicates since when the package is known to the backing
to- participant. Required
buf.Times-
tamp
string Description provided by the backing participant describing
source_de- . ;
. where it got the package from. Optional
scription

UploadDarFileRequest

Field Type | Label | Description

bytes Contains a Daml archive DAR file, which in turnis a jar like zipped
container for daml 1f archives. See further details in daml 1f.
proto. Required

string Unique submission identifier. Optional, defaults to arandom iden-
tifier.

dar_file

submis-
sion_id

112. Integrate Daml with Off-Ledger Services 297

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

Daml SDK Documentation, 2.7.3

UploadDarFileResponse

An empty message that is received when the upload operation succeeded.

PackageManagementService

Status: experimental interface, will change before it is deemed production ready

Query the Daml-LF packages supported by the ledger participant and upload DAR files. We use ‘back-
ing participant’ to refer to this specific participant in the methods of this API.

Method Request Response | Description
name type type
Listknown- | ListKnown- Listknown- Returns the details of all Daml-LF packages known to
Packages PackagesRe- | PackagesRe- | the backing participant.
quest sponse
Upload- Upload- Upload- Upload a DAR file to the backing participant. De-
DarFile DarFil- DarFileRe- pending on the ledgerimplementation this mightalso
eRequest sponse make the package available on the whole ledger. This

call might not be supported by some ledger imple-
mentations. Canton could be an example, where up-
loading a DAR is not sufficient to render it usable, it
must be activated first. This call may: - Succeed, if
the package was successfully uploaded, or if the same
package was already uploaded before. - Respond with
a gRPC error

com/daml/ledger/api/vi/admin/participant_pruning_service.proto

PruneRequest

Field Type | Label | Description

string Inclusive offset up to which the ledger is to be pruned. By default
the following data is pruned: 1. All normal and divulged contracts
that have been archived before prune_up_to. 2. All transaction
events and completions before prune_up_to

string Unique submission identifier. Optional, defaults to arandom iden-
tifier, used for logging.

prune_up_tdg

submis-
sion_id

bool Prune allimmediately and retroactively divulged contracts created
before prune_up_toindependent of whether they were archived be-
fore prune_up_to. Useful to avoid leaking storage on participant
nodes that can see a divulged contract but not its archival.

prune_all_d
vulged_con-
tracts

Application developers SHOULD write their Daml applications such that they do not rely on divulged
contracts; i.e, no warnings from using divulged contracts as inputs to transactions are emitted.

Participant node operators SHOULD set the prune_all_divulged_contracts flag to avoid leaking storage
due to accumulating unarchived divulged contracts PROVIDED that: 1. no application using this

298 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

participant node relies on divulgence OR 2. divulged contracts on which applications rely have been
re-divulged after the prune_up_to offset.

PruneResponse

Empty for now, but may contain fields in the future

ParticipantPruningService

Prunes/truncates the oldest transactions from the participant (the participant Ledger Api Server
plus any other participant-local state) by removing a portion of the ledger in such a way that the set
of future, allowed commands are not affected.

This enables: 1. keeping the inactive portion of the ledger to a manageable size and 2. removing
inactive state to honor the right to be forgotten.

Method Request Response | Description
name type type
Prune PruneRequest| PruneRe- Prune the ledger specifying the offset before and at
sponse which ledger transactions should be removed. Only
returns when the potentially long-running prune re-
quest ends successfully or with an error.

com/daml/ledger/api/vi/admin/party_management_service.proto
AllocatePartyRequest

Required authorization: HasRight (ParticipantAdmin) OR IsAuthenticatedIdenti-
tyProviderAdmin (identity provider id)

Field Type Label | Description

string Ahinttothe participantwhich party ID to allocate. Itcan be ig-
nored. Must be a valid PartyldString (as described in value.
proto). Optional

string Human-readable name of the party to be added to the partici-

~+

party_id_hin

dis- pant. It doesn’t have to be unique. Use of this field is discour-
play_name aged. Use local metadata instead. Optional

o ObjectMeta Participant-local metadatato be stored inthe PartyDetails
cal_meta- of this newly allocated party. Optional

data

iden string The id of the Identity Provider Optional, if not set, as-

sume the party is managed by the default identity provider

tity_provider_id or party is not hosted by the participant.

112. Integrate Daml with Off-Ledger Services 299

Daml SDK Documentation, 2.7.3

AllocatePartyResponse

Field Type Label | Description
PartyDetails

party_details

GetParticipantldRequest

Required authorization: HasRight (ParticipantAdmin)

GetParticipantldResponse

Field Type | Label | Description
tici- string Identifier of the participant, which SHOULD be globally unique.
EZ;;C'id Must be a valid LedgerString (as describe in value.proto).

GetPartiesRequest

Required authorization: HasRight (ParticipantAdmin) OR IsAuthenticatedIdenti-
tyProviderAdmin (identity provider id)

Field Type | Label Description

string | repeated | The stable, unique identifier of the Daml parties. Must be valid
PartyldStrings (as described in value.proto). Required

string Theid of the Identity Provider whose parties should be re-
trieved. Optional, if not set, assume the party is managed by
the default identity provider or party is not hosted by the par-

parties

iden-
tity_providern_id

ticipant.
GetPartiesResponse
Field Type Label Description
PartyDetails | repeated | The details of the requested Daml parties by the partici-
party_de- if k Th detail be in th
tails pant, if known. The party details may not be in the same

order as requested. Required

300 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

ListKknownPartiesRequest

Required authorization: HasRight (ParticipantAdmin) OR IsAuthenticatedIdenti-
tyProviderAdmin (identity provider id)

Field Type | Label | Description

string The id of the Identity Provider whose parties should be re-
trieved. Optional, if not set, assume the party is managed by the
default identity provider or party is not hosted by the participant.

iden-
tity_providen_id

ListKknownPartiesResponse

Field Type Label Description

PartyDetails | repeated | The details of all Daml parties known by the participant.
party_de- red
tails Require

PartyDetails

Field Type Label | Description
string The stable unique identifier of a Daml party. Must be a valid
party
PartyldString (as described in value.proto). Required
dis- string Human readable name associated with the party at allocation

time. Caution, it might not be unique. Use of this field is dis-

play_name couraged. Use the local_metadata field instead. Optional

) bool true if party is hosted by the participant and the party shares

Is_local the same identity provider as the user issuing the request.
Optional

lo- ObjectMeta Participant-local metadata of this party. Optional, Modifiable

cal_meta-

data

iden string The id of the Identity Provider Optional, if not set, there

could be 3 options: 1) the party is managed by the default
identity provider. 2) party is not hosted by the participant. 3)
party is hosted by the participant, but is outside of the user’s
identity provider.

tity_providen_id

112. Integrate Daml with Off-Ledger Services 301

Daml SDK Documentation, 2.7.3

UpdatePartyDetailsRequest

Required authorization: HasRight (ParticipantAdmin) OR IsAuthenticatedIdentityProviderAdmi
identity provider id)

Field Type Label | Description

party_de- PartyDetails Party to be updated Required, Modifiable

tails

up- google.pro- An update mask specifies how and which properties of the

date mask tobuf.Field- PartyDetails message are to be updated. An update
- Mask mask consists of a set of update paths. A valid update

path points to a field or a subfield relative to the PartyDe-
tails message. A valid update mask must: (1) contain at
least one update path, (2) contain only valid update paths.
Fields that can be updated are marked as Modifiable.
An update path can also point to non-Modifiable fields
such as ‘party’ and ‘local_metadata.resource_version’ be-
cause they are used: (1) to identify the party details resource
subject to the update, (2) for concurrent change control.
An update path can also point to non-Modifiable fields
such as ‘is_local’ and ‘display_name’ as long as the val-
ues provided in the update request match the server values.
Examples of update paths: ‘local_metadata.annotations’,
‘local_metadata’. For additional information see the doc-
umentation for standard protobuf3’s google.protobuf.
FieldMask. ForsimilarLedger APl see com.daml. ledger.
api.vl.admin.UpdateUserRequest. Required

UpdatePartyDetailsResponse

Field Type Label | Description
PartyDetails Updated party details

party_details

UpdatePartyldentityProviderRequest

Required authorization: HasRight (ParticipantAdmin)

Field Type | Label | Description
party string Party to update
string Current identity provider id of the party

source_identity_provider_id

string Target identity provider id of the party

target_identity_provider_.id

302 Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.FieldMask
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.FieldMask
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.FieldMask

Daml SDK Documentation, 2.7.3

UpdatePartyldentityProviderResponse
PartyManagementService

This service allows inspecting the party management state of the ledger known to the participant
and managing the participant-local party metadata.

The authorization rules for its RPCs are specified on the <RpcName>Request messages as boolean
expressions over these facts: (1) HasRight (r) denoting whether the authenticated user has right
r and (2) IsAuthenticatedIdentityProviderAdmin (idp) denoting whether idp is equal to
the identity provider id ofthe authenticated userand the user has an IdentityProviderAdmin
right. If identity_provider_id is set to an empty string, then it’s effectively set to the value of access to-
ken’s ‘iss’ field if that is provided. If identity_provider_id remains an empty string, the default identity
provider will be assumed.

The fields of request messages (and sub-messages) are marked either as Optional or Required:
(1) Optional denoting the client may leave the field unset when sending a request. (2) Required
denoting the client must set the field to a non-default value when sending a request.

A party details resource is described by the PartyDetails message, A party details resource, once
it has been created, can be modified using the UpdatePartyDetails RPC.The only fields that can
be modified are those marked as Modifiable.

112. Integrate Daml with Off-Ledger Services 303

Daml SDK Documentation, 2.7.3

Method Request Response | Description
name type type
GetPartici- GetPar- GetPar- Return the identifier of the participant. All hori-
pantid ticipan- ticipan- zontally scaled replicas should return the same id.
tIdRequest tldResponse | daml-on-kv-ledger: returns an identifier supplied on
command line at launch time canton: returns glob-
ally unique identifier of the participant
GetParties GetParties- GetParties- Get the party details of the given parties. Only known
Request Response parties will be returned in the list.
Listknown- | ListKnown- Listknown- List the parties known by the participant. The list
Parties PartiesRe- PartiesRe- returned contains parties whose ledger access is fa-
quest sponse cilitated by the participant and the ones maintained
elsewhere.
Allo- AllocatePar- | AllocatePar- | Allocates a new party on a ledger and adds it to the
cateParty tyRequest tyResponse set managed by the participant. Caller specifies a
party identifier suggestion, the actual identifier al-
located might be different and is implementation
specific. Caller can specify party metadata that is
stored locally on the participant. This call may: -
Succeed, in which case the actual allocated identi-
fier is visible in the response. - Respond with a grRPC
error daml-on-kv-ledger: suggestion’s uniqueness is
checked by the validators in the consensus layer and
call rejected if the identifier is already present. can-
ton: completely different globally unique identifier
is allocated. Behind the scenes calls to an inter-
nal protocol are made. As that protocol is richer
than the surface protocol, the arguments take im-
plicit values The party identifier suggestion must be
a valid party name. Party names are required to be
non-empty US-ASCII strings built from letters, digits,
space, colon, minus and underscore limited to 255
chars
UpdatePar- | UpdatePar- UpdatePar- Update selected modifiable participant-local at-
tyDetails tyDetailsRe- | tyDetailsRe- | tributes of a party details resource. Can update the
quest sponse participant’s local information for local parties.
UpdatePar- | UpdatePar- UpdatePar- Update the assignment of a party from one IDP to an-
tyldenti- tyldenti- tyldenti- other.
tyProviderld | tyProvider- tyProvider-
Request Response

304

Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

com/daml/ledger/api/vi/admin/user_management_service.proto

CreateUserRequest

Required authorization: HasRight (ParticipantAdmin) OR IsAuthenticatedIdentityProviderAdmi
identity provider id)

Field | Type | Label Description
user User The user to create. Required
. Right | repeated | The rights to be assigned to the user upon creation, which SHOULD
rights . . - , .
include appropriate rights for the user.primary party. Optional
CreateUserResponse

DeleteUserRequest

Required

Field | Type | Label | Description
User Created user.

user

authorization: HasRight (ParticipantAdmin) OR IsAuthenticatedIdenti-
tyProviderAdmin (identity provider id)

Field Type | Label | Description
strin The user to delete. Required
user_id ne 4
. string Theidofthe Identity Provider Optional,if notset,assumethe
iden-
) . . user is managed by the default identity provider.
tity_provider|_id

DeleteUserResponse

Does not (yet) contain any data.

GetUserRequest

Required

authorization: HasRight (ParticipantAdmin) OR IsAuthenticatedIdenti-
tyProviderAdmin (identity provider id) OR IsAuthenticatedUser (user id)

Field Type | Label | Description
i string The user whose data to retrieve. If set to empty string (the default),
user_t then the data for the authenticated user will be retrieved. Optional
. string Theid of the Identity Provider Optional,if not set,assume the
iden-
) , . user is managed by the default identity provider.
tity_provider_id

112. Integrate Daml with Off-Ledger Services 305

Daml SDK Documentation, 2.7.3

GetUserResponse

Field | Type | Label | Description
User Retrieved user.

user

GrantUserRightsRequest

Add the rights to the set of rights granted to the user.

Required authorization: HasRight (ParticipantAdmin) OR IsAuthenticatedIdenti-
tyProviderAdmin (identity provider id)

Field Type | Label Description
strin The user to whom to grant rights. Required
user_id g g g d
Right | repeated | The rights to grant. Optional
rights g P g g P
iden string The id of the Identity Provider Optional, if not set, assume
, -

the user is managed by the default identity provider.

tity_provider_id

GrantUserRightsResponse

Field Type | Label Description
Right | repeated | Therights that were newly granted by the request.

newly_granted_rights

ListUserRightsRequest

Required authorization: HasRight (ParticipantAdmin) OR IsAuthenticatedIdenti-
tyProviderAdmin (identity provider id) OR IsAuthenticatedUser (user id)

Field Type | Label | Description

i string The user for which to list the rights. If set to empty string (the de-
user_| fault), then the rights for the authenticated user will be listed. Re-

quired
. string Theid of the Identity Provider Optional,if not set,assume the
iden- : . . .
) . . user is managed by the default identity provider.

tity_provider_id

306 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

ListUserRightsResponse

Field | Type | Label Description
. Right | repeated | All rights of the user.
rights £ P &
ListUsersRequest
Required authorization: HasRight (ParticipantAdmin) OR IsAuthenticatedIdenti-

tyProviderAdmin (identity provider id)

Field Type | Label | Description
age to- string Pagination token to determine the specific page to fetch. Leave
Eef - empty to fetch the first page. Optional
. int32 Maximum number of results to be returned by the server. The
page_size server will return no more than that many results, but it might re-
turn fewer. If O, the server will decide the number of results to be
returned. Optional
. string Theid of the Identity Provider Optional,if not set,assume the
iden-
) . . user is managed by the default identity provider.
tity_provider_id

ListUsersResponse

Field Type | Label Description

Users User | repeated | A subset of users of the participant node that fit into this
page.

next_page_to- string Pagination token to retrieve the next page. Empty, if there are

ken no further results.

RevokeUserRightsRequest

Remove the rights from the set of rights granted to the user.

Required authorization: HasRight (ParticipantAdmin) OR IsAuthenticatedIdenti-
tyProviderAdmin (identity provider id)

Field Type | Label Description
user id string The user from whom to revoke rights. Required
. Right | repeated | The rights to revoke. Optional
rights & P & P
iden string The id of the Identity Provider Optional, if not set, assume

the user is managed by the default identity provider.

tity_provider_id

112. Integrate Daml with Off-Ledger Services 307

Daml SDK Documentation, 2.7.3

RevokeUserRightsResponse

Field Type | Label Description
Right | repeated | Therights that were actually revoked by the request.

newly_revoked_rights

Right

Aright granted to a user.

Field Type Label | Description
) . . | Right.Partici- The user can administer the participant node.
oneof kind.partici- .
. pantAdmin
pant_admin
Right.CanAc- The user can act as a specific party.
oneof & P party
. tAs
kind.can_act_as
oneof Right.Can- The user can read ledger data visible to a specific
ReadAs arty.
kind.can_read_as party
L Right.Identi- The user can administer users and parties assigned
oneof kind.iden-
:) tyProviderAd- to the same identity provider as the one of the user.
tity_provider_ad- min
min

Right.CanActAs

Field | Type | Label | Description
string The right to authorize commands for this party.

party

Right.CanReadAs

Field | Type | Label | Description
string The right to read ledger data visible to this party.

party

Right.ldentityProviderAdmin

The right to administer the identity provider that the user is assigned to. It means, being able to
manage users and parties that are also assigned to the same identity provider.

308 Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof

Daml SDK Documentation, 2.7.3

Right.ParticipantAdmin

The right to administer the participant node.

UpdateUserldentityProviderRequest

Required authorization: HasRight (ParticipantAdmin)

Field Type | Label | Description
tri User to update
user_id string up
strin Current identity provider id of the user
source_identity_provider_id ng yP
string Target identity provider id of the user

target_identity_provider_.id

UpdateUserldentityProviderResponse
UpdateUserRequest

Required authorization: HasRight (ParticipantAdmin) OR IsAuthenticatedIdentityProviderAdmi
identity provider id)

Field Type Label | Description

user User The user to update. Required, Modifiable

up- google.pro- An update mask specifies how and which properties of

date mask tobuf.Field- the User message are to be updated. An update mask
- Mask consists of a set of update paths. A valid update path

points to a field or a subfield relative to the User mes-
sage. A valid update mask must: (1) contain at least one
update path, (2) contain only valid update paths. Fields
that can be updated are marked as Modifiable. An up-
date path can also point to a non-Modifiable fields such
as ‘id’ and ‘metadata.resource_version’ because they are
used: (1) to identify the user resource subject to the up-
date, (2) for concurrent change control. Examples of valid
update paths: ‘primary_party’, ‘metadata’, ‘metadata.anno-
tations’. For additional information see the documentation
for standard protobuf3’s google.protobuf.FieldMask.
For similar Ledger APl see com.daml.ledger.api.vl.
admin.UpdatePartyDetailsRequest. Required

112. Integrate Daml with Off-Ledger Services 309

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.FieldMask
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.FieldMask
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.FieldMask

Daml SDK Documentation, 2.7.3

UpdateUserResponse

Field | Type | Label | Description
User Updated user

user

User

Users are used to dynamically manage the rights given to Daml applications. They are stored and
managed per participant node.

Read the Authorization documentation to learn more.

Field Type Label | Description
) string The user identifier, which must be a non-empty string of at
id most 128 characters that are either alphanumeric ASCII char-
acters or one of the symbols @4$.I'-#+~_|: . Required
. string The primary party as which this user reads and acts by de-
pri- fault on the ledger provided it has the corresponding Can-
mary_party

ReadAs (primary party) or CanActAs (primary party)
rights. Ledger API clients SHOULD set this field to a non-empty
value for all users to enable the users to act on the ledger us-
ing their own Daml party. Users for participant administra-
tors MAY have an associated primary party. Optional, Modifi-
able

bool When set, then the user is denied all access to the Ledger API.
Otherwise, the user has access to the Ledger APl as per the
user’s rights. Optional, Modifiable

ObjectMeta The metadata of this user. Note that the metadata.
resource version tracks changes to the properties de-
scribed by the User message and not the user’s rights. Op-
tional, Modifiable

string The id of the identity provider configured by Identity
Provider Config Optional, if not set, assume the user is
managed by the default identity provider.

is__deacti-
vated

metadata

iden-
tity_provider_id

UserManagementService

Service to manage users and their rights for interacting with the Ledger APl served by a participant
node.

The authorization rules for its RPCs are specified on the <RpcName>Request messages as boolean
expressions over these facts: (1) HasRight (r) denoting whether the authenticated user has right r
and (2) IsAuthenticatedUser (uid) denoting whetheruidis the empty string orequal to the id of
the authenticated user. (3) IsAuthenticatedIdentityProviderAdmin (idp) denoting whether
idpisequal tothe identity provider id of the authenticated user and the user has an Identi-
tyProviderAdmin right. If user_id is set to the empty string (the default), then the data for the authen-
ticated user will be retrieved. If identity_provider_id is set to an empty string, then it’s effectively set

310 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

to the value of access token’s ‘iss’ field if that is provided. If identity_provider_id remains an empty
string, the default identity provider will be assumed.

The fields of request messages (and sub-messages) are marked either as Optional or Required:
(1) optional denoting the client may leave the field unset when sending a request. (2) Required
denoting the client must set the field to a non-default value when sending a request.

A user resource consists of: (1) a set of properties represented by the User message, (2) a set of user
rights, where each right is represented by the Right message.

A user resource, once it has been created, can be modified. In order to update the properties repre-
sented by the User message use the UpdateUser RPC.The only fields that can be modified are those
marked asModifiable. Inorderto grantorrevoke userrights use GrantRights' and ° "Revok-

eRights RPCs.

Method Request Response Description
name type type
CreateUser CreateUserRe- CreateUserRe- Create a new user.
quest sponse
GetUser GetUserRe- GetUserRe- Get the user data of a specific user or the au-
quest sponse thenticated user.
UpdateUser UpdateUserRe- | UpdateUserRe- | Update selected modifiable attribute of a user
quest sponse resource described by the User message.
DeleteUser DeleteUserRe- DeleteUserRe- Delete an existing user and all its rights.
quest sponse
ListUsers ListUsersRe- ListUsersRe- List all existing users.
quest sponse
GrantUser- GrantUser- GrantUserRight- | Grantrights to a user. Granting rights does not
Rights RightsRequest | sResponse affect the resource version of the correspond-
ing user.
RevokeUser- | RevokeUser- RevokeUser- Revoke rights from a user. Revoking rights does
Rights RightsRequest | RightsResponse | not affect the resource version of the corre-
sponding user.
ListUser- ListUserRight- | ListUserRight- List the set of all rights granted to a user.
Rights SRequest SResponse
Upda- Upda- UpdateUserl- Update the assignment of a user from one IDP
teUserldenti- | teUserlden- dentityProvider- | to another.
tyProviderld | tityProviderRe- | Response
quest

com/daml/ledger/api/vl/command_completion_service.proto

Checkpoint

Checkpoints may be used to:

detect time out of commands.
provide an offset which can be used to restart consumption.

112. Integrate Daml with Off-Ledger Services

3N

Daml SDK Documentation, 2.7.3

Field Type Label | Description
. google.pro- All commands with a maximum record time below this
record_time to- value MUST be considered lost if their completion has not
buf.Times- arrived before this checkpoint. Required
tamp
LedgerOffset May be used in a subsequent CompletionStreamRequest to
offset . . .
resume the consumption of this stream at a later time. Re-
quired

CompletionEndRequest

Field Type | Label | Description

string Must correspond to the ledger ID reported by the Ledger Identifica-
tion Service. Must be a valid LedgerString (as described in value.
proto). Optional

ledger_id

CompletionEndResponse

Field | Type Label | Description
offset LedgerOffset This offset can be used in a CompletionStreamRequest message.
Required

312 Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

Daml SDK Documentation, 2.7.3

CompletionStreamRequest

Field

Type

Label

Description

ledger_id

string

Must correspond to the ledger id reported by the Ledger
Identification Service. Must be a valid LedgerString (as
described in value.proto). Optional

applica-
tion_id

string

Only completions of commands submitted with the same
application_id will be visible in the stream. Must be a
valid ApplicationldString (as described in value.proto).
Required unless authentication is used with a user token
or a custom token specifying an application-id. In that
case, the token’s user-id, respectively application-id, will
be used for the request’s application_.id.

parties

string

repeated

Non-empty list of parties whose data should be included.
Only completions of commands for which at least one of
the act as parties is in the given set of parties will be
visible in the stream. Must be a valid PartyldString (as
described in value.proto). Required

offset

LedgerOffset

This field indicates the minimum offset for completions.
This can be used to resume an earlier completion stream.
This offset is exclusive: the response will only contain
commands whose offset is strictly greater than this. Op-
tional, if not set the ledger uses the current ledger end off-
set instead.

CompletionStreamResponse

Field Type Label Description
. Checkpoint This checkpoint may be used to restart consumption. The

checkpoint oo . . .
checkpoint is after any completions in this response. Op-
tional

Completion | repeated | If set, one or more completions.
comple-
tions

CommandCompletionService

Allows clients to observe the status of their submissions. Commands may be submitted via the Com-
mand Submission Service. The on-ledger effects of their submissions are disclosed by the Transac-

tion Service.

Commands may fail in 2 distinct manners:

1. Failure communicated synchronously in the gRPC error of the submission.
2. Failure communicated asynchronously in a Completion, see completion.proto.

Note that not only successfully submitted commands MAY produce a completion event. For example,
the participant MAY choose to produce a completion event for a rejection of a duplicate command.

112. Integrate Daml with Off-Ledger Services 313

Daml SDK Documentation, 2.7.3

Clients that do not receive a successful completion about their submission MUST NOT assume that
it was successful. Clients SHOULD subscribe to the CompletionStream before starting to submit
commands to prevent race conditions.

Method Request type Response type Description

name

Completion- CompletionStream- | CompletionStreamRe- | Subscribe to command completion
Stream Request sponse events.

Completio- CompletionEn- CompletionEn- Returns the offset after the latest
nEnd dRequest dResponse completion.

com/daml/ledger/api/vl/command_service.proto

SubmitAndWaitForTransactionldResponse

Field Type | Label | Description
string The id of the transaction that resulted from the submitted com-
transac-
tion id mand. Must be a valid LedgerString (as described in value.
- proto). Required

o string The format of this field is described in ledger offset.proto.
compie Optional
tion_offset

SubmitAndWaitForTransactionResponse

Field

Type

Label

Description

transaction

Transaction

The flat transaction that resulted from the submitted
command. Required

comple-
tion_offset

string

The format of this field is described in ledger offset.
proto. Optional

SubmitAndWaitForTransactionTreeResponse

Field

Type

Label

Description

transaction

Transaction-
Tree

The transaction tree that resulted from the submitted
command. Required

comple-
tion_offset

string

The format of this field is described in ledger offset.
proto. Optional

314

Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

SubmitAndWaitRequest

These commands are atomic, and will become transactions.

Field Label | Description

The commands to be submitted. Required

Type
Commands

commands

CommandService

Command Service is able to correlate submitted commands with completion data, identify timeouts,
and return contextual information with each tracking result. This supports the implementation of
stateless clients.

Note that submitted commands generally produce completion events as well, even in case a com-
mand gets rejected. For example, the participant MAY choose to produce a completion event for a

rejection of a duplicate command.

Method Request Response | Description
name type type
Submi- SubmitAnd- | .google.pro- | Submits a single composite command and waits for
tAndWait WaitRequest | to- its result. Propagates the gRPC error of failed submis-
buf.Empty sions including Daml interpretation errors.
Submi- SubmitAnd- | SubmitAnd- | Submits a single composite command, waits for its
tAndWait- WaitRequest | WaitFor- result, and returns the transaction id. Propagates the
ForTransac- Transaction- | gRPC error of failed submissions including Daml in-
tionld IdResponse terpretation errors.
Submi- SubmitAnd- | SubmitAnd- | Submits a single composite command, waits for its
tAndWait- WaitRequest | WaitFor- result, and returns the transaction. Propagates the
ForTransac- Transaction- | gRPC error of failed submissions including Daml in-
tion Response terpretation errors.
Submi- SubmitAnd- | SubmitAnd- | Submits a single composite command, waits for its
tAndWait- WaitRequest | WaitFor- result, and returns the transaction tree. Propagates
ForTransac- Transac- the gRPC error of failed submissions including Daml
tionTree tionTreeRe- interpretation errors.
sponse

com/daml/ledger/api/vl/command_submission_service.proto

SubmitRequest

The submitted commands will be processed atomically in a single transaction. Moreover, each Com-
mand in commands will be executed in the order specified by the request.

Field Type Label | Description
Commands The commands to be submitted in a single transaction. Re-
commands quired

112. Integrate Daml with Off-Ledger Services

315

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty

Daml SDK Documentation, 2.7.3

CommandSubmissionService

Allows clients to attempt advancing the ledger’s state by submitting commands. The final states of
their submissions are disclosed by the Command Completion Service. The on-ledger effects of their
submissions are disclosed by the Transaction Service.

Commands may fail in 2 distinct manners:

1. Failure communicated synchronously in the grRPC error of the submission.
2. Failure communicated asynchronously in a Completion, see completion.proto.

Note that not only successfully submitted commands MAY produce a completion event. Forexample,
the participant MAY choose to produce a completion event for a rejection of a duplicate command.

Clients that do not receive a successful completion about their submission MUST NOT assume that
it was successful. Clients SHOULD subscribe to the CompletionStream before starting to submit
commands to prevent race conditions.

Method Request Response type Description

name type

Submit SubmitRequest | .google.proto- Submit a single composite com-
buf.Empty mand.

com/daml/ledger/api/vl/commands.proto
Command

A command can either create a new contract or exercise a choice on an existing contract.

Field Type Label | Description
CreateCommand

oneof command.create

. ExerciseCommand
oneof command.exercise

. ExerciseByKeyCommand
oneof command.exerciseByKey

CreateAndExerciseCommand

oneof command.createAndExercise

Commands

A composite command that groups multiple commands together.

316 Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof

Daml SDK Documentation, 2.7.3

Field Type Label Description
led i string Must correspond to the ledger ID reported by the Ledger
eager_! Identification Service. Must be a valid LedgerString (as
described in value.proto). Optional
K string Identifier of the on-ledger workflow that this command
work=. is a part of. Must be a valid LedgerString (as described in
flow_id :
value.proto). Optional
i string Uniquely identifies the application or participant user
?pp '93 that issued the command. Must be a valid Applicationld-
on_t String (as described in value.proto). Required unless
authentication is used with a user token or a custom to-
ken specifying an application-id. In that case, the token’s
user-id, respectively application-id, will be used for the
request’s application_id.
com- string Uniquely identifies the command. The triple (applica-
mand id tion_id, party + act_as, command_id) constitutes the
- change ID for the intended ledger change, where party +
act_asisinterpreted as a set of party names. The change
ID can be used for matching the intended ledger changes
with all their completions. Must be a valid LedgerString
(as described in value.proto). Required
art string Party on whose behalf the command should be executed.
party If ledger APl authorization is enabled, then the authoriza-
tion metadata must authorize the sender of the request
to act on behalf of the given party. Must be a valid Par-
tyldString (as described in value.proto). Deprecated
infavorofthe act asfield. If both are set, then the effec-
tive list of parties on whose behalf the command should
be executed is the union of all parties listed inpartyand
act_as. Optional
Command repeated | Individual elements of this atomic command. Must be
commands .
non-empty. Required
google.pro- Specifies the length of the deduplication period. Same
oneof . L ;
. tobuf.Dura- semantics apply as for deduplication_duration. Must be
deduplica- : . . .
. tion non-negative. Must not exceed the maximum dedupli-
tion_pe-
. cation time (see ledger configuration service.
riod.dedu- - -
. proto).
plica-
tion_time
google.pro- Specifies the length of the deduplication period. Itis in-
oneof . .
. tobuf.Dura- terpreted relative to the local clock at some point dur-
deduplica- . . S, . .
. tion ing the submission’s processing. Must be non-negative.
tion_pe- . S .
) Must not exceed the maximum deduplication time (see
riod.dedu- . . .
plica ledger configuration service.proto).
tion_dura-
tion
string Specifies the start of the deduplication period by a com-
oneof . . .
dedupli pletion stream offset (exclusive). Must be a valid Ledger-
edaupiica String (as described in ledger offset.proto).
tion_pe- -
riod.dedu-
plica-
LienREsfhte Daml with Off-Ledger Services 317

min_ledger_|

t

oogle,pro-
e%a S

bufTimes-

Lower bound for the ledger time assigned to the resulting
transaction. Note: The ledger time of a transaction is as-
signed as partof command interpretation. Use this prop-

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration

Daml SDK Documentation, 2.7.3

If omitted, the participant or the committer may set a value of their choice. Optional
- disclosed_contracts
- DisclosedContract
- repeated
- Additional contracts used to resolve contract & contract key lookups. Optional

CreateAndExerciseCommand

Create a contract and exercise a choice on it in the same transaction.

Field Type Label | Description
termn- Identifier The template of the contract the client wants to create. Required
plate_id
create ar- Record The arguments required for creating a contract from this tem-
" plate. Required
guments
_ string The name of the choice the client wants to exercise. Must be a
choice valid NameString (as described in value.proto). Required
_ Value The argument for this choice. Required
choice_ar-
gument
CreateCommand

Create a new contract instance based on a template.

Field Type Label | Description
_ Identifier The template of contract the client wants to create. Required
template_.id
Record The arguments required for creating a contract from this
create_argu- .
template. Required
ments
318 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

DisclosedContract

An additional contract that is used to resolve contract & contract key lookups.

Field Type Label | Description
) Identifier The template id of the contract. Required
template_.id
. string The contract id Required
contract_.id
Record The contract arguments as typed Record
oneof argu-
ments.cre-
ate_argu-
ments
¢ google.pro- The contract arguments specified using an opaque blob
oneo argu tobuf.Any extracted from the create arguments blob field of a
ments.cre- . -
com.daml.ledger.api.vl.CreatedEvent.
ate_argu-
ments_blob
Contract- The contract metadata from the create event. Required
metadata
Metadata

ExerciseByKeyCommand

Exercise a choice on an existing contract specified by its key.

Field Type Label | Description
term- Identifier The template of contract the client wants to exercise. Required
plate_id
con- Value The key of the contract the client wants to exercise upon. Re-
tract_key quired

) string The name of the choice the client wants to exercise. Must be a
choice valid NameString (as described in value.proto) Required

_ Value The argument for this choice. Required
choice_ar-
gument

112. Integrate Daml with Off-Ledger Services

319

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Any
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Any

Daml SDK Documentation, 2.7.3

ExerciseCommand

Exercise a choice on an existing contract.

Field Type Label | Description
termn- Identifier The template of contract the client wants to exercise. Required
plate_id
con- string The ID of the contract the client wants to exercise upon. Must be
tract id a valid LedgerString (as described in value.proto). Required
, string The name of the choice the client wants to exercise. Must be a
choice valid NameString (as described in value.proto) Required
_ Value The argument for this choice. Required
choice_ar-
gument

com/daml/ledger/api/vi/completion.proto
Completion

A completion represents the status of a submitted command on the ledger: it can be successful or
failed.

320 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Field Type Label Description
com- string The ID of the succeeded or failed command. Must be a
mand id valid LedgerString (as described in value.proto). Re-

o quired
status google.rpc.Sta- Identifies the exact type of the error. It uses the same

tus format of conveying error details as it is used for the RPC
responses of the APIs. Optional
transac- string The transaction_.id of the transgction that resulted from
tion id the command with command_id. Only set for success-
- fully executed commands. Must be a valid LedgerString
(as described in value.proto). Optional
. string The application-id or user-id that was used for the
a.ppl|c.a- submission, as described in commands.proto. Must
tion_id be a valid ApplicationldString (as described in value.
proto). Optional for historic completions where this
data is not available.
act as string repeated | The set of parties on whose behalf the commands were
- executed. Contains the unionof partyandact as from
commands .proto. The order of the parties need not be
the same as in the submission. Each element must be a
valid PartyldString (as described in value.proto). Op-
tional for historic completions where this data is not
available.

) string The submission ID this completion refers to, as described
sgbm!s— in commands.proto. Must be a valid LedgerString (as
sion_id described in value.proto). Optional

string Specifies the start of the deduplication period by a com-
ngzfplica pletion stream offset (exclusive).
tion_pe-
riod.dedu-
plica-
tion_offset

Must be a valid LedgerString (as described in value.proto).
oneof deduplication_period.deduplication_duration

google.protobuf.Duration

Specifies the length of the deduplication period. It is measured in record time of com-

pletions.

Must be non-negative.

112. Integrate Daml with Off-Ledger Services

321

https://cloud.google.com/tasks/docs/reference/rpc/google.rpc#google.rpc.Status
https://cloud.google.com/tasks/docs/reference/rpc/google.rpc#google.rpc.Status
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration

Daml SDK Documentation, 2.7.3

com/daml/ledger/api/vi/contract_metadata.proto

ContractMetadata

Contract-related metadata used in DisclosedContract (that can be included in command submis-
sion) or forwarded as part of the CreateEvent in Active Contract Set or Transaction streams.

tract_key_hash

Field Type Label | Description

google.proto- Ledger effective time of the transaction that cre-
created_at buf.Timestamp ated the contract. Required
con- bytes Hash of the contract key if defined. Optional

driver__meta-
data

bytes

Driver-specific metadata. This is opaque and can-
not be decoded. Optional

com/daml/ledger/api/vi/event.proto

ArchivedEvent

Records that a contract has been archived, and choices may no longer be exercised on it.

Field Type Label Description
. string The ID of this particular event. Must be a valid LedgerString

event_.id . . .
(as described in value.proto). Required

con- string The ID of the archived contract. Must be a valid LedgerString

tract_id (as described in value.proto). Required

term- Identifier The template of the archived contract. Required

plate_id

wit- string repeated | The parties that are notified of this event For an
ArchivedEvent, these are the intersection of the stake-

ness_par holders of the contract in question and the parties specified

ties inthe TransactionFilter. The stakeholders are the union
of the signatories and the observers of the contract. Each one
of its elements must be a valid PartyldString (as described in
value.proto). Required

CreatedEvent

Records that a contract has been created, and choices may now be exercised on it.

322

Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

Daml SDK Documentation, 2.7.3

Field

Type

Label

Description

event_id

string

The ID of this particular event. Must be a valid Ledger-
String (as described in value.proto). Required

con-
tract_id

string

The ID of the created contract. Must be a valid Ledger-
String (as described in value.proto). Required

tem-
plate_id

Identifier

The template of the created contract. Required

con-
tract_key

Value

The key of the created contract. This will be set if and only
if create _arguments is set and template id defines
a contract key. Optional

create_ar-
guments

Record

The arguments that have been used to create the con-
tract. Set either: - if there was a party, which is in
the witness parties of this event, and for which
an InclusiveFilters exists with the template id
of this event among the template ids, - or if there
was a party, which is in the witness parties of this
event, and for which a wildcard filter exists (Filters
without InclusiveFilters, or with an Inclusive-
Filters withempty template idsandemptyinter-
face filters). Optional

cre-
ate_argu-
ments__blob

google.pro-
tobuf.Any

Opaque representation of contract payload intended for
forwarding to an API server as a contract disclosed as
part of a command submission. Optional

inter-
face_views

Interface-
View

repeated

Interface views specified in the transaction filter. In-
cludes an InterfaceView for each interface for which
there is a InterfaceFilter with - its party in the
witness parties of this event, - and which is imple-
mented by the template of this event, - and which has
include interface view set. Optional

wit-
ness_par-
ties

string

repeated

The parties that are notified of this event. When a Cre-
atedEvent is returned as part of a transaction tree, this
will include all the parties specified in the Transac-
tionFilter that are informees of the event. If served
as part of a flat transaction those will be limited to all
parties specified in the TransactionFilter that are
stakeholders of the contract (i.e. either signatories or ob-
servers). In case of v2 API: If the CreatedEvent is re-
turned as part of an AssignedEvent, ActiveContract or In-
completeUnassigned (so the event is related to an as-
signment or unassignment): this will include all parties
of the TransactionFilter that are stakeholders of the
contract. Required

signatories

string

repeated

The signatories for this contract as specified by the tem-
plate. Required

observers

string

repeated

The observers for this contract as specified explicitly by
the template or implicitly as choice controllers. This field
never contains parties that are signatories. Required

agree-
ment_text

google.pro-
to-
buf.String-

The agreement text of the contract. We use StringValue
to properly reflect optionality on the wire for backwards
compatibility. This is necessary since the empty string

1.12. Integrat

Vatue
< Dauml with Off-Ledger

iS an acceptable (and in factthe default) agreement teét 3
%%rt\/'acigé the default string in protobuf. This means g
newer client works with an older sandbox seamlessly.

Optional

'Y D R T T o T P T T = T B ol

P Y I

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Any
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Any
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.StringValue
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.StringValue
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.StringValue
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.StringValue

Daml SDK Documentation, 2.7.3

Event

An event in the flat transaction stream can either be the creation or the archiving of a contract.

In the transaction service the events are restricted to the events visible for the parties specified in
the transaction filter. Each event message type below contains awitness parties field which in-
dicates the subset of the requested parties that can see the event in question. In the flat transaction
stream you’ll only receive events that have witnesses.

ExercisedEvent

Field

Type

Label

Description

oneof event.created

CreatedEvent

oneof event.archived

ArchivedEvent

Records that a choice has been exercised on a target contract.

324

Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof

Daml SDK Documentation, 2.7.3

Field Type Label Description
. string The ID of this particular event. Must be a valid LedgerString
event_id . . .
(as described in value.proto). Required
con- string The ID of the target contract. Must be a valid LedgerString (as
tract_id described in value.proto). Required
tem- Identifier The template of the target contract. Required
plate_id
inter Identifier The interface where the choice is defined, if inherited. Op-
face._id tional
_ string The choice that was exercised on the target contract. Must
choice be a valid NameString (as described in value.proto). Re-
quired
_ Value The argument of the exercised choice. Required
choice_ar-
gument
act- string repeated | The parties that exercised the choice. Each element must
. . be a valid PartyldString (as described in value.proto). Re-
Ing__parties .
quired
. bool If true, the target contract may no longer be exercised. Re-
consuming .
quired
) string repeated | The parties thatare notified of this event. The witnesses of an
wit- exercise node will depend on whether the exercise was con-
ness_par suming or not. If consuming, the witnesses are the union of
ties the stakeholders and the actors. If not consuming, the wit-
nesses are the union of the signatories and the actors. Note
that the actors might not necessarily be observers and thus
signatories. This is the case when the controllers of a choice
are specified using flexible controllers , using the choice
controller syntax, and said controllers are not ex-
plicitly marked as observers. Each element must be a valid
PartyldString (as described in value.proto). Required
, .string repeated | References to further events in the same transaction that
child_event_lids .) .
appeared as a result of this ExercisedEvent. It contains
only the immediate children of this event, not all members
of the subtree rooted at this node. The order of the children
is the same as the event order in the transaction. Each ele-
ment must be a valid LedgerString (as described in value.
proto). Optional
exer- Value The result of exercising the choice. Required
cise_result

112. Integrate Daml with Off-Ledger Services

325

Daml SDK Documentation, 2.7.3

InterfaceView

View of a create event matched by an interface filter.

Field Type Label | Description

inter Identifier The interface implemented by the matched event. Required
I -

face_id

view sta- google.rpc.Sta- Whether the view was successfully computed, and if not, the

tus reason for the error. The error is reported using the same
rules for error codes and messages as the errors returned
for APl requests. Required

Record The value of the interface’s view method on this event. Set if
it was requested in the InterfaceFilter and it could be
sucessfully computed. Optional

tus

view_value

com/daml/ledger/api/vi/event_query_service.proto

GetEventsByContractldRequest

Field Type | Label Description
con- string The contract id being queried. Required
tract_id

string | repeated | The parties whose events the client expects to see. The
request-
. . events associated with the contract id will only be returned
Ing__parties

if the requesting parties includes at least one party that
is a stakeholder of the event. For a definition of stake-
holders see https://docs.daml.com/concepts/ledger-model/
ledger-privacy.html#contract-observers-and-stakeholders
Required

GetEventsByContractldResponse

Field Type Label | Description
cre- CreatedE- The create event for the contract with the contract id
ate_event vent givenin the.request provided it exists and has not yet been
pruned. Optional
. ArchivedE- The archive event for the contract with the contract id
archive_event -
vent given in the request provided such an archive event exists

and it has not yet been pruned. Optional

326 Chapter 1. Canton References

https://cloud.google.com/tasks/docs/reference/rpc/google.rpc#google.rpc.Status
https://cloud.google.com/tasks/docs/reference/rpc/google.rpc#google.rpc.Status
https://docs.daml.com/concepts/ledger-model/ledger-privacy.html#contract-observers-and-stakeholders
https://docs.daml.com/concepts/ledger-model/ledger-privacy.html#contract-observers-and-stakeholders

Daml SDK Documentation, 2.7.3

GetEventsByContractKeyRequest

Field Type Label Description
con- Value The contract key to search for. Required
tract_key
tem- Identifier The template id associated with the contract key Required
plate_id
request- string repeated | The parties Yvhose favents the client expects to see. The
ing_parties events associated with the contract key will only be returned
- if the requesting parties includes at least one party that is
a stakeholder of the event. For a definition of stakehold-
ers see https://docs.daml.com/concepts/ledger-model/
ledger-privacy.html#contract-observers-and-stakeholders
To gain visibility of all contract key bindings and to ensure
consistent performance use a key maintainer as a request-
ing party. Required
, string A continuation token associated with a previous re-
c.ontlnua— sponse. Optional B
tion_token

GetEventsByContractKeyResponse

archive_event

Field Type Label | Description
cre- CreatedE- The most recent create event for a contract with the key
ate event vent given in the request, if no continuation token is pro-
- vided. If a continuation token is provided, then this
is the most recent create event preceding the create event
whose continuation token was provided. Optional
ArchivedE- The archive event for the create event provided the created

vent contract is archived. Optional
. string If the continuation token is populated then there may
continua- .. - . .
. be additional events available. To retrieve these events use
tion_token

the continuation token in a subsequent request. Op-
tional

112. Integrate Daml with Off-Ledger Services 327

https://docs.daml.com/concepts/ledger-model/ledger-privacy.html#contract-observers-and-stakeholders
https://docs.daml.com/concepts/ledger-model/ledger-privacy.html#contract-observers-and-stakeholders

Daml SDK Documentation, 2.7.3

EventQueryService

Query events by contract id or key.

Method Request Response | Description

name type type

GetEvents- | GetEvents- GetEvents- Get the create and the consuming exercise event for

ByContrac- | ByContrac- ByContrac- the contract with the provided ID. No events will be re-

tld tIdRequest tldResponse | turned for contracts that have been pruned because
they have already been archived before the latest
pruning offset.

GetEvents- | GetEvents- GetEvents- Get all create and consuming exercise events for the

ByContrac- | ByContrac- ByContrac- contracts with the provided contract key. Only events

tKey tKeyRequest | tKeyRe- for unpruned contracts will be returned. Matching

sponse events are delivered in reverse chronological order, i.e.,

the most recent events are delivered first.

com/daml/ledger/api/vi/experimental_features.proto
AcsActiveAtOffsetFeature

Whether the Ledger APl supports requesting ACS at an offset

Field Type | Label | Description

bool

supported

CommandDeduplicationFeatures

Feature descriptors for command deduplication intended to be used for adapting Ledger API tests.

Field Type Label | Description
. Com-
J(E:l‘edupllca- mandDedu-
!on_pe plicationPe-
riod_sup- .
riodSupport
port
. Com-
Sedup;llca— mandDedu-
'on_type plicationType
bool The ledger will reject any requests which specify a dedupli-
max_dedu-
lica- cation period which exceeds the specified max deduplica-
P tion duration. This is also enforced for ledgers that convert
tion_du- N . g -
. deduplication periods specified as offsets to durations.
ration_en-
forced
328 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

CommandDeduplicationPeriodSupport

Feature descriptor specifying how deduplication periods can be specified and how they are handled
by the participant node.

Field

Type

Label | Description

offset__support

CommandDeduplicationPeriodSupport.OffsetSupport

duration_support

CommandDeduplicationPeriodSupport.DurationSupport

ExperimentalCommitterEventLog

How the committer stores events.

Field

Type

Label | Description

event_log_type

ExperimentalCommitterEventLog.CommitterEventLogType

ExperimentalContractlds

See daml-If/spec/contract-id.rst for more information on contract ID formats.

Field

Type Label

Description

\a

ExperimentalContractlds.ContractldViSupport

ExperimentalExplicitDisclosure

Enables the use of explicitly disclosed contracts for command submission

Field Type | Label | Description
bool

supported

ExperimentalFeatures

See the feature message definitions for descriptions.

112. Integrate Daml with Off-Ledger Services

329

Daml SDK Documentation, 2.7.3

Field

Type

Label

Descrip-
tion

self_service_error_codes

ExperimentalSelfServiceErrorCodes

static_time

ExperimentalStaticTime

command_deduplication

CommandDeduplicationFeatures

optional_ledger_.id

ExperimentalOptionalLedgerld

contract_ids

ExperimentalContractlds

committer_event_log

ExperimentalCommitterEventLog

explicit_disclosure

ExperimentalExplicitDisclosure

user_and_party_local_meta-
data_extensions

ExperimentalUserAndPartyLocalMeta-
dataExtensions

acs_active_at_offset

AcsActiveAtOffsetFeature

ExperimentalOptionalLedgerld

Ledger API does not require ledgerld to be set in the requests.

ExperimentalSelfServiceErrorCodes

GRPC self-service error codes are returned by the Ledger API.

ExperimentalStaticTime

Ledger is in the static time mode and exposes a time service.

Field

Type | Label | Description

supported

bool

ExperimentalUserAndPartylLocalMetadataExtensions

Whether the Ledger APl supports: - is_deactivated user property, - metadata with annotations and
resource version for users and parties, - update calls for users and parties.

Field

Type | Label | Description

supported

bool

330

Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

CommandDeduplicationPeriodSupport.DurationSupport

How the participant node supports deduplication periods specified as durations.

Name Number | Description
0]

DURATION_NATIVE_SUPPORT

1

DURATION_CONVERT_TO_OFFSET

CommandDeduplicationPeriodSupport.OffsetSupport

How the participant node supports deduplication periods specified using offsets.

Name Number | Description
0

OFFSET_NOT_SUPPORTED

OFFSET_NATIVE_SUPPORT 1

2

OFFSET_CONVERT_TO_DURATION

CommandDeduplicationType

How the participant node reports duplicate command submissions.

Name Number | Description
ASYNC. ONLY 0 Dup'licate commands are exclusively reported asynchronously viacom-
pletions.
Commands that are duplicates of concurrently submitted commands
ASYNC_AND_| CON- prica y .
CUR- are reported synchronously via a gRPC error on the command submis-
RENT_SYNC sion, while qll other duplicate commands are reported asynchronously
via completions.

ExperimentalCommitterEventLog.CommitterEventLogType

Name Number | Description
CENTRAL- 0] Default. There is a single log.
IZED
1 There is more than one event log. Usually, when the committer itself
DIS- C e . .
is distributed. Or there are per-participant event logs. It may result in
TRIBUTED
transaction IDs being different for the same transaction across partic-
ipants, for example.

112. Integrate Daml with Off-Ledger Services 331

Daml SDK Documentation, 2.7.3

ExperimentalContractlds.ContractldViSupport

Name Number | Description
0] Contract IDs must be suffixed. Distributed ledger implementations
SUFFIXED . .
must reject non-suffixed contract IDs.
NON SUE- 1 Contract IDs do not need to be suffixed. This can be useful for shorter
- contract IDs in centralized committer implementations. Suffixed con-
FIXED
tract IDs must also be supported.

com/daml/ledger/api/vi/ledger_configuration_service.proto

GetLedgerConfigurationRequest

Field Type | Label | Description

string Must correspond to the ledger ID reported by the Ledger Identifica-
tion Service. Must be a valid LedgerString (as described in value.
proto). Optional

ledger_.id

GetLedgerConfigurationResponse

Field Type Label | Description
LedgerConfiguration The latest ledger configuration.

ledger_configuration

LedgerConfiguration

LedgerConfiguration contains parameters of the ledger instance that may be useful to clients.

Field Type Label | Description

google.pro- If a command submission specifies a deduplication period
m.ax_dedu— tobuf.Dura- of length up to max deduplication duration, the sub-
'Fc)ilcl);a_dura tion mission SHOULD not be rejected with _FAILED_PRECONDI—

TION because the deduplication period starts too early. The
deduplication period is measured on a local clock of the
participant or Daml ledger, and therefore subject to clock
skews and clock drifts. Command submissions with longer
periods MAY get accepted though.

tion

332 Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration

Daml SDK Documentation, 2.7.3

LedgerConfigurationService

LedgerConfigurationService allows clients to subscribe to changes of the ledger configuration. In V2
Ledger API this service is not available anymore.

Method Request Response Description

name type type

GetlLedger- | GetlLedger- GetLedgerCon- | Returns the latest configuration as the first re-
Configura- Configura- figurationRe- sponse, and publishes configuration updates in
tion tionRequest sponse the same stream.

com/daml/ledger/api/vl/ledger_identity_service.proto
GetlLedgerldentityRequest

GetLedgerldentityResponse

Field Type | Label | Description
led i string The ID of the ledger exposed by the server. Must be a valid Ledger-
edger_l String (as described in value.proto). Optional

LedgerldentityService

DEPRECATED: This service is now deprecated and ledger identity string is optional for all Ledger API
requests.

Allows clients to verify that the server they are communicating with exposes the ledger they wish to
operate on. In V2 Ledger API this service is not available anymore.

Method Request Response Description

name type type

GetlLedgerl- | Getledgerlden- | GetlLedgerlden- | Clients may call this RPC to return the identifier
dentity tityRequest tityResponse of the ledger they are connected to.

com/daml/ledger/api/vi/ledger_offset.proto
LedgerOffset

Describes a specific point on the ledger.

The Ledger APl endpoints that take offsets allow to specify portions of the ledger that are relevant for
the client to read.

Offsets returned by the Ledger APl can be used as-is (e.g. to keep track of processed transactions
and provide a restart point to use in case of need).

112. Integrate Daml with Off-Ledger Services 333

Daml SDK Documentation, 2.7.3

The format of absolute offsets is opaque to the client: no client-side transformation of an offset is
guaranteed to return a meaningful offset.

The server implementation ensures internally that offsets are lexicographically comparable.

Field Type Label | Description
string The format of this string is specific to the ledger
and opaque to the client.

oneofvalue.ab-

solute
¢ LedgerOff-
oneo
set.LedgerBoundar
value.bound- g y
ary

LedgerOffset.LedgerBoundary

Name Number | Description
0 Refers to the first transaction.

LEDGER_BEGIN

1 Refers to the currently last transaction, which is a moving target.

LEDGER_END

com/daml/ledger/api/vi/package_service.proto

GetPackageRequest
Field Type | Label | Description
ledger_id string Must correspond to the ledger ID reported by the Ledger Identifica-

tion Service. Must be a valid LedgerString (as described in value.
proto). Optional
string The ID of the requested package. Must be a valid PackageldString

pack—. (as described in value.proto). Required
age_id
GetPackageResponse
Field Type Label | Description
HashFunc- The hash function we use to calculate the hash. Required

hash_func- .
X tion
tion

. bytes Contains a daml 1f ArchivePayload. See further details in
archive_pay1 daml 1f proto_Required
load - '
hash string The hash of the archive payload, can also used as a pack-

age id. Must be a valid PackageldString (as described in
value.proto). Required

334 Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof

Daml SDK Documentation, 2.7.3

GetPackageStatusRequest

Field Type | Label | Description
led i string Must correspond to the ledger ID reported by the Ledger Identifica-
edger_l tion Service. Must be a valid LedgerString (as described in value.
proto). Optional
K string The ID of the requested package. Must be a valid PackageldString
pack (as described in value.proto). Required
age_.id

GetPackageStatusResponse

Field Type Label | Description
PackageStatus The status of the package.

package_status

ListPackagesRequest

Field Type | Label | Description
. string Must correspond to the ledger ID reported by the Ledger Identifica-
ledger_id tion Service. Must be a valid LedgerString (as described in value.
proto). Optional

ListPackagesResponse

Field Type | Label Description
string | repeated | The IDs of all Daml-LF packages supported by the server. Each
pack-
. element must be a valid PackageldString (as described in
age_.ids .
value.proto). Required

HashFunction

Name Number | Description
0]

SHA256

112. Integrate Daml with Off-Ledger Services 335

Daml SDK Documentation, 2.7.3

PackageStatus
Name Number | Description
UNKNOWN 0 The server is not aware of such a package.
REGISTERED 1 ;gz server is able to execute Daml commands operating on this pack-

PackageService

Allows clients to query the Daml-LF packages that are supported by the server.

Method Request type Response type Description

name

ListPackages | ListPackagesRe- ListPackagesRe- Returns the identifiers of all sup-

quest sponse ported packages.

GetPackage GetPackageRequest | GetPackageRe- Returns the contents of a single pack-
sponse age.

GetPackageS- | GetPackageStatus- | GetPackageStatus- Returns the status of a single pack-

tatus Request Response age.

com/daml/ledger/api/Vvli/testing/time_service.proto

GetTimeRequest

Field Type | Label | Description
led i string Must correspond to the ledger ID reported by the Ledger Identifica-
edger_| tion Service. Must be a valid LedgerString (as describe in value.

proto). Optional

GetTimeResponse

Field Type Label | Description
cur- google.protobuf.Times- The current time according to the ledger
rent_time tamp server.

336 Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

Daml SDK Documentation, 2.7.3

SetTimeRequest

Field Type Label | Description
. string Must correspond to the ledger ID reported by the Ledger
ledger_id Identification Service. Must be a valid LedgerString (as de-
scribe in value.proto). Optional
cur- google.pro- MUST precisely match the current time as it's known to the
rent_time to- ‘ ledger server.
buf.Times-
tamp
. google.pro- The time the client wants to set on the ledger. MUST be a
new_time to- point int time after current time.
buf.Times-
tamp

TimeService

Optional service, exposed for testing static time scenarios.

Method Request Response | Description
name type type
GetTime Get- GetTimeRe- Returns a stream of time updates. Always returns at
TimeRequest | sponse least one response, where the first one is the current
time. Subsequent responses are emitted whenever
the ledger server’s time is updated.
SetTime Set- google.pro- | Allows clients to change the ledgers clock in an
TimeRequest | to- atomic get-and-set operation.
buf.Empty

com/daml/ledger/api/vi/transaction.proto

Transaction

Filtered view of an on-ledger transaction’s create and archive events.

112. Integrate Daml with Off-Ledger Services

337

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty

Daml SDK Documentation, 2.7.3

Field Type Label Description
transac- string Assigned by the server. Useful for correlating logs. Must
tion id be a valid LedgerString (as described in value.proto).
- Required
com- string The ID of the command which resulted in this transac-
mand id tion. Missing for everyone except the submitting party.
- Must be a valid LedgerString (as described in value.
proto). Optional
K string The workflow ID used in command submission. Must be
work=. avalid LedgerString (as described in value.proto). Op-
flow_id .
tional
google.pro- Ledger effective time. Must be a valid LedgerString (as
effec- . . .
: to- described in value.proto). Required
tive_at .
buf.Times-
tamp
events Event repeated | The collection of events. Only contains CreatedEvent or
ArchivedEvent. Required
offset string The absolute offset. The format of this field is described

in ledger offset.proto. Required

TransactionTree

Complete view of an on-ledger transaction.

338

Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

Daml SDK Documentation, 2.7.3

Field Type Label Description
transac- string Assigne.d by the server. Useful for‘ corrglating logs. Must
tion id be a valid LedgerString (as described in value.proto).
- Required
com- string The ID of the command which resulted in this transac-
mand id tion. Missing for everyone except the submitting party.
o Must be a valid LedgerString (as described in value.
proto). Optional
string The workflow ID used in command submission. Only set
\;\I/cc;\:/k_id if thej workflow._id for the cgmm.and was set. Must be
- avalid LedgerString (as described in value.proto). Op-
tional
offoc google.pro- Ledger effective time. Required
. to-
tive_at buf.Times-
tamp
string The absolute offset. The format of this field is described
offset in ledger offset.proto. Required
.|, Transaction- | repeated | Changes to the ledger that were caused by this transac-
events_by_ig Tree.Events- tion. Nodes of the transaction tree. Each key be a valid
ByldEntry LedgerString (as describe in value.proto). Required
| string repeated | Roots of the transaction tree. Each element must be a
root_event_ids . . L
valid LedgerString (as describe in value.proto). The
elements are in the same order as the commands in
the corresponding Commands object that triggered this
transaction. Required

TransactionTree.EventsByldEntry

TreeEvent

Field | Type Label | Description
key string

TreeEvent
value

Each tree event message type below contains awitness parties field which indicates the subset
of the requested parties that can see the event in question.

Note that transaction trees might contain events with _no_ witness parties, which were included
simply because they were children of events which have witnesses.

Field

Type Label | Description

oneof kind.created

CreatedEvent

oneof kind.exercised

ExercisedEvent

112. Integrate Daml with Off-Ledger Services

339

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof

Daml SDK Documentation, 2.7.3

com/daml/ledger/api/vVi/transaction_filter.proto

Filters

The union of a set of contract filters, or a wildcard.

Field Type Label | Description
inclusi Inclusive- If set, then contracts matching any of the Inclusive-
INCIUSIVE 1 Filters Filters matchthisfilter. If notset,orif InclusiveFilters

has empty template ids and empty interface filters:

any contract matches this filter. Optional

InclusiveFilters

A filter that matches all contracts that are either an instance of one of the template ids or that
match one of the interface filters.

Field

Type

Label

Description

tem-
plate_ids

Identifier

repeated

A collection of templates for which the payload will be in-
cluded in the create arguments of a matching Cre-
atedEvent. SHOULD NOT contain duplicates. All tem-
plate ids needs to be valid: corresponding template
should be defined in one of the available packages at the
time of the query. Optional

inter-
face_filters

Interface-
Filter

repeated

In-
The

Include an InterfaceView for every
terfaceFilter matching a contract
InterfaceFilter "s MUST use unique
“'interface id''s. All " interface id needs
to be valid: corresponding interface should be defined
in one of the available packages at the time of the query.
Optional

InterfaceFilter

This filter matches contracts that implement a specific interface.

Field Type Label | Description
int Identifier The interface that a matching contract must implement. Re-
inter-)
. uired
face_.id 4
include i bool Whether to include the interface view on the contract in the re-
iheiude_in turned CreateEvent. Use this to access contract data in a uni-
ter- . : .
_ form manner in your API client. Optional
face_view
. bool Whether to include a create arguments blob in the re-
'T q turned CreateEvent. Use this to access the complete contract
clude_cre data in your API client for submitting it as a disclosed contract
ate_argu- . .
with future commands. Optional
ments_blob

340

Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

TransactionFilter

A filter both for filtering create and archive events as well as for filtering transaction trees.

Field Type Label Description

fil Transaction- | repeated | Each key must be a valid PartyldString (as described in

! Filter.Filters- value.proto). The interpretation of the filter depends

ters_by_party . .) .
ByPartyEntry on the stream being filtered: (1) For transaction tree

streams only party filters with wildcards are allowed,
and all subtrees whose root has one of the listed par-
ties as an informee are returned. (2) For transaction and
active-contract-set streams create and archive events
are returned for all contracts whose stakeholders include
at least one of the listed parties and match the per-party
filter. Required

TransactionFilter.FiltersByPartyEntry

Field | Type | Label | Description
key string

Filters
value

com/daml/ledger/api/vi/transaction_service.proto

GetFlatTransactionResponse

Field Type Label | Description
Transaction

transaction

GetlLatestPrunedOffsetsRequest

Empty for now, but may contain fields in the future.

112. Integrate Daml with Off-Ledger Services 341

Daml SDK Documentation, 2.7.3

GetLatestPrunedOffsetsResponse

Field Type Label | Description
. LedgerOffset The offset up to which the ledger has been pruned, disregard-
partici- . . .
. ing the state of all divulged contracts pruning.
pant_pruned_up_to_in-
clusive
. LedgerOffset The offset up to which all divulged events have been
all_di-
pruned on the ledger. It can be at or before the par-
vulged_con- L . .
. ticipant pruned up to inclusive offset. For
tracts_pruned_up_to_in- = -~ T .
lusi more details about all divulged events pruning, see
clusive PruneRequest.prune all divulged contracts in
participant pruning service.proto.
GetLedgerEndRequest
Field Type | Label | Description
led i string Must correspond to the ledger ID reported by the Ledger Identifica-
edger_l tion Service. Must be a valid LedgerString (as describe in value.
proto). Optional
GetLedgerEndResponse
Field | Type Label | Description
offset LedgerOffset The absolute offset of the current ledger end.

GetTransactionByEventldRequest

Field Type | Label Description
led i string Must correspond to the ledger ID reported by the Ledger Identi-
edger_t fication Service. Must be a valid LedgerString (as described in
value.proto). Optional
. string The ID of a particular event. Must be a valid LedgerString (as
event_id . . .
described in value.proto). Required
string | repeated | The parties whose events the client expects to see. Events
request- .. L . . .
. . that are not visible for the parties in this collection will not be
Ing__parties . .
present in the response. Each element must be a valid Partyld-
String (as described in value.proto). Required
342 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

GetTransactionByldRequest

Field Type | Label Description
. string Must correspond to the ledger ID reported by the Ledger lden-
ledger_id tification Service. Must be a valid LedgerString (as describe in
value.proto). Optional
transac- string The ID ofg pgrticular transaction. Mgst be a valid LedgerString
tion._id (as describe in value.proto). Required
request- string | repeated | The parties V\{hgse events the .clie.nt e?<pects tc? see. Events
ing_parties that are ‘not visible for the parties in this collegtlon will not‘be
- present in the response. Each element be a valid PartyldString
(as describe in value.proto). Required

GetTransactionResponse

Field

Type Label | Description

transaction

TransactionTree

GetTransactionTreesResponse

Field Type Label Description

transac- Transaction- | repeated | The list of transaction trees that matches the filter in

tions Tree GetTransactionsRequest for the GetTransaction-
Trees method.

112. Integrate Daml with Off-Ledger Services 343

Daml SDK Documentation, 2.7.3

GetTransactionsRequest

Field

Type

Label

Description

ledger_id

string

Must correspond to the ledger ID reported by the Ledger Iden-
tification Service. Must be a valid LedgerString (as described
in value.proto). Optional

begin

LedgerOffset

Beginning of the requested ledger section. This offset is ex-
clusive: the response will only contain transactions whose
offset is strictly greater than this. Required

end

LedgerOffset

End of the requested ledger section. This offset is inclusive:
the response will only contain transactions whose offset is
less than or equal to this. Optional, if not set, the stream will
not terminate.

filter

Transaction-
Filter

Requesting parties with template filters. Template filters
must be empty for GetTransactionTrees requests. Required

verbose

bool

If enabled, values served over the API will contain more infor-
mation than strictly necessary to interpret the data. In par-
ticular, setting the verbose flag to true triggers the ledger to
include labels for record fields. Optional

GetTransactionsResponse

Field Type Label Description
transac- Transaction | repeated | Thelist of transactions that matches the filterin GetTrans-
tions actionsRequest for the GetTransactions method.

TransactionService

Allows clients to read transactions from the ledger. In V2 Ledger API this service is not available
anymore. Use v2.UpdateService instead.

344

Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Method Request Response | Description
name type type
GetTransac- | GetTransac- | GetTrans- Read the ledger’s filtered transaction stream for a set
tions tionsRequest | actionsRe- of parties. Lists only creates and archives, but not
sponse other events. Omits all events on transient contracts,
i.e.,, contracts that were both created and archived in
the same transaction.
GetTransac- | GetTransac- | GetTransac- | Read the ledger's complete transaction tree stream
tionTrees tionsRequest | tionTreesRe- | for a set of parties. The stream can be filtered only
sponse by parties, but not templates (template filter must be
empty).
GetTransac- | GetTransac- | GetTrans- Lookup atransaction tree by the ID of an event that ap-
tionByEven- | tionByEven- | actionRe- pears within it. For looking up a transaction instead
tid tidRequest sponse of a transaction tree, please see GetFlatTransaction-
ByEventid
GetTransac- | GetTrans- GetTrans- Lookup a transaction tree by its ID. For looking up a
tionByld action- actionRe- transaction instead of a transaction tree, please see
ByldRequest | sponse GetFlatTransactionByld
GetFlat- GetTransac- | GetFlat- Lookup a transaction by the ID of an event that ap-
Transac- tionByEven- | Transaction- | pears within it.
tionByEven- | tldRequest Response
tid
GetFlat- GetTrans- GetFlat- Lookup a transaction by its ID.
Transac- action- Transaction-
tionByld ByldRequest | Response
Ge- GetlLedgerEn- | GetLedgerEn- | Getthe currentledger end. Subscriptions started with
tLedgerEnd | dRequest dResponse the returned offset will serve transactions created af-
ter this RPC was called.
GetlLatest- GetlLatest- Getlatest- Get the latest successfully pruned ledger offsets
PrunedOff- | PrunedOff- Pruned-
sets setsRequest | OffsetsRe-
sponse

com/daml/ledger/api/Vi/value.proto
Enum

A value with finite set of alternative representations.

Field Type Label | Description
) Identifier Omitted from the transaction stream when verbose streaming
enum_id . . -
is not enabled. Optional when submitting commands.
string Determines which of the Variant’s alternatives is encoded in
constructor
this message. Must be a valid NameString. Required

112. Integrate Daml with Off-Ledger Services

345

Daml SDK Documentation, 2.7.3

GenMap

Field Type Label Description
GenMap.Entry | repeated

entries

GenMap.Entry

Field | Type | Label | Description
Value
key
Value
value
Identifier
Unique identifier of an entity.
Field Type | Label | Description
K string The identifier of the Daml package that contains the entity. Must
packe be a valid PackageldString. Required
age_.id
mod- string The dot-separated module name of the identifier. Required
ule_name
en- string The dot-separated name of the entity (e.g. record, template,)
tity_name within the module. Required
List

A homogenous collection of values.

Field Type | Label Description
Value | repeated | The elements must all be of the same concrete value type. Op-
elements .
tional
Map
Field Type Label Description

Map.Entry | repeated

entries

346 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Map.Entry

Optional

Field | Type | Label | Description
key string

Value
value

Corresponds to Java’s Optional type, Scala’s Option, and Haskell’s Maybe. The reason why we need to
wrap this in an additional message is that we need to be able to encode the None case in the Value

oneof.
Field | Type | Label | Description
Value optional
value
Record
Contains nested values.
Field Type Label Description
. Identifier Omitted from the transaction stream when verbose stream-
record_id S . -
ing is not enabled. Optional when submitting commands.
fields RecordField | repeated | The nested values of the record. Required
RecordField

A named nested value within a record.

Field | Type | Label | Description
string When reading a transaction stream, it's omitted if verbose streaming
label is not enabled. When submitting a commmand, it’s optional: - if all
keys within a single record are present, the order in which fields appear
does not matter. however, each key must appear exactly once. - if any
of the keys within a single record are omitted, the order of fields MUST
match the order of declaration in the Daml template. Must be a valid
NameString
Value A nested value of a record. Required
value

112. Integrate Daml with Off-Ledger Services 347

Daml SDK Documentation, 2.7.3

Value

Encodes values that the ledger accepts as command arguments and emits as contract arguments.

The values encoding use different classes of non-empty strings as identifiers. Those classes are
defined as follows: - NameStrings are strings with length <=1000 that match the regexp [A-Za-z\
$ 1[A-Za-z0-9\$]*. - PackageldStrings are strings with length <= 64 that match the reg-
exp [A-Za-z0-9\-_]+. - PartyldStrings are strings with length <= 255 that match the reg-
exp [A-Za-z0-9:\-_]+. - LedgerStrings are strings with length <= 255 that match the regexp
[A-Za-z0-9%#:\-_/ 1+. - ApplicationldStrings are strings with length <= 255 that match the reg-
exp [A-Za-z0-9#:\- / @\ |]+.

348 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Field Type Label | Description

Record
oneof
Sum.record

Variant
oneof
Sum.vari-
ant

string Identifier of an on-ledger contract. Commands which ref-
oneof erence an unknown or already archived contract ID will fail.
Sum.con- Must be a valid LedgerString.
tract_id

List Represents a homogeneous list of values.
oneof
Sum.list

sint64
oneof
Sum.int64

string A Numeric, that is a decimal value with precision 38 (at
oneof most 38 significant digits) and a scale between 0 and 37
Sum.nu— (significant digits on the right of the decimal point). The
meric field has to match the regex [+]?d{1,38}(.d{0,37})? and

should be representable by a Numeric without loss of pre-
cision.

oneof string A string.
Sum.text

sfixed64 Microseconds since the UNIX epoch. Can go backwards.
oneof

, Fixed since the vast majority of values will be greater than
Sum.times- 2428, since currently the number of microseconds since the
tamp epoch is greater than that. Range: 0001-01-01T00:00:00Z

to 9999-12-31T23:59:59.9999997, so that we can convert
to/from https://www.ietf.org/rfc/rfc3339.txt
oneof string An 'agent operating on the ledger. Must be a valid Partyld-
String.
Sum.party
bool True or false.
oneof
Sum.bool
google.pro- This value is used for example for choices that don’t take
oneof . to- any arguments.
Sum.unit buf.Empty
int32 Days since the unix epoch. Can go backwards. Limited from
oneof 0001-01-01 to 9999-12-31, also to be compatible with https:
Sum.date /Iwww.ietf.org/rfc/rfc3339.txt
oneof Optional The Optional type, None or Some
Sum.op-
tional
oneof Map The Map type
Sum.map
oneof Enum The Enum type
Sum.enum
oneof GenMap The GenMap type
1.RumMgeegragpDaml with Off-Ledger Services 349

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://www.ietf.org/rfc/rfc3339.txt
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://www.ietf.org/rfc/rfc3339.txt
https://www.ietf.org/rfc/rfc3339.txt
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof

Daml SDK Documentation, 2.7.3

Variant

A value with alternative representations.

Field Type Label | Description
iant id Identifier Omitted from the transaction stream when verbose streaming
variant_ is not enabled. Optional when submitting commands.
string Determines which of the Variant’s alternatives is encoded in
constructor : . : .
this message. Must be a valid NameString. Required
value Value The value encoded within the Variant. Required

com/daml/ledger/api/Vi/version_service.proto

FeaturesDescriptor

Field Type Label | Description
user man- | UserManage- If set, then the Ledger API server supports user manage-
agement mentFeature ment. It is recommended that clients query this field to

gracefully adjust their behavior for ledgers that do not sup-
port user management.

Experimen- Features under development or features that are used for
talFeatures ledger implementation testing purposes only.

experimen-
tal

Daml applications SHOULD not depend on these in production.

GetLedgerApiVersionRequest

Field Type | Label | Description
led i string Must correspond to the ledger ID reported by the Ledger Identifica-
edger_l tion Service. Must be a valid LedgerString (as described in value.

proto). Optional

GetLedgerApiVersionResponse

Field Type Label | Description
. string The version of the ledger API.
version
FeaturesDescriptor The features supported by this Ledger APl endpoint.
features P PP y & P

Daml applications CAN use the feature descriptor on top of version constraints on the Ledger API
version to determine whether a given Ledger APl endpoint supports the features required to run the
application.

350 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

See the feature descriptions themselves for the relation between Ledger API versions and feature

presence.

UserManagementFeature

Field Type | Label | Description
bool Whether the Ledger APl server provides the user management ser-
supported .
vice.
. int32 The maximum number of rights that can be assigned to a single
max_rights_per_user user. Servers MUST support at least 100 rights per user. A value of
0 means that the server enforces no rights per user limit.
int32 The maximum number of users the server can return in a single
max_users_page_sjze response (page). Servers MUST support at least a 100 users per
page. Avalue of 0 means that the server enforces no page size limit.

VersionService

Allows clients to retrieve information about the ledger API version

Method name Request type Response type Description
GetlLedgerApiVer- | GetledgerApiVersionRe- GetLedgerApiVersionRe- Read the Ledger API ver-
sion quest sponse sion

com/daml/ledger/api/v2/command_completion_service.proto

CompletionStreamRequest

Field

Type

Label

Description

applica-
tion_id

string

Only completions of commands submitted with the
same application_id will be visible in the stream.
Must be a valid ApplicationldString (as described in
value.proto). Required unless authentication is used
with a user token or a custom token specifying an
application-id. In that case, the token’s user-id, respec-
tively application-id, will be used for the request’s appli-
cation_id.

parties

string

repeated

Non-empty list of parties whose data should be included.
Only completions of commands for which at least one of
the act as parties is in the given set of parties will be
visible in the stream. Must be a valid PartyldString (as
described in value.proto). Required

begin_ex-
clusive

Partici-

pantOffset

This field indicates the minimum offset for completions.
This can be used toresume an earlier completion stream.
Optional, if not set the ledger uses the current ledger end
offset instead.

112. Integrate Daml with Off-Ledger Services

351

Daml SDK Documentation, 2.7.3

CompletionStreamResponse

Field Type Label | Description
. com.daml.ledger.api.vi.Ch@tlis checkpoint may be used to restart consumption. The
checkpoint point checkpoint belongs to the completion in this response. Re-
quired
. Completion Required
completion
L string The sequencing domain. In case - successful/failed trans-
domain_id actions: identifies the sequencing domain of the transac-
tion - for successful/failed unassign commands: identi-
fies the source domain - for successful/failed assign com-
mands: identifies the target domain Required

CommandCompletionService

Allows clients to observe the status of their submissions. Commands may be submitted via the Com-
mand Submission Service. The on-ledger effects of their submissions are disclosed by the Update
Service.

Commands may fail in 2 distinct manners:

1. Failure communicated synchronously in the grRPC error of the submission.
2. Failure communicated asynchronously in a Completion, see completion.proto.

Note that not only successfully submitted commands MAY produce a completion event. Forexample,
the participant MAY choose to produce a completion event for a rejection of a duplicate command.

Clients that do not receive a successful completion about their submission MUST NOT assume that
it was successful. Clients SHOULD subscribe to the CompletionStream before starting to submit
commands to prevent race conditions.

Method Request type Response type Description

name

Completion- CompletionStream- CompletionStreamRe- | Subscribe to command comple-
Stream Request sponse tion events.

com/daml/ledger/api/v2/command_service.proto

SubmitAndWaitForTransactionResponse

Field Type Label | Description
. Transaction The flat transaction that resulted from the submitted com-
transaction .
mand. Required
comple string The format of this field is described in
.) articipant offset.proto. Optional
tion_offset P teip - P P

352 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

SubmitAndWaitForTransactionTreeResponse

Field

Type

Label

Description

transaction

Transaction-

The transaction tree that resulted from the submitted

Tree command. Required
comple string The format of this field is described in
:) articipant offset.proto. Optional
tion_offset P pant_ P P

SubmitAndWaitForUpdateldResponse

Field Type | Label | Description
. string The id of the transaction that resulted from the submitted com-
update_id mand. Must be a valid LedgerString (as described in value.
proto). Required
string The format of this field is described in participant offset.
comple- proto. Optional -
tion_offset

SubmitAndWaitRequest

These commands are atomic, and will become transactions.

Field

Type

Label | Description

commands

Commands

The commands to be submitted. Required

CommandService

Command Serviceis able to correlate submitted commands with completion data, identify timeouts,
and return contextual information with each tracking result. This supports the implementation of
stateless clients.

Note that submitted commands generally produce completion events as well, even in case a com-
mand gets rejected. For example, the participant SHOULD produce a completion event for a rejection
of a duplicate command.

112. Integrate Daml with Off-Ledger Services 353

Daml SDK Documentation, 2.7.3

Method Request Response | Description
name type type
Submi- SubmitAnd- | .google.pro- | Submits a single composite command and waits for
tAndWait WaitRequest | to- its result. Propagates the gRPC error of failed submis-
buf.Empty sions including Daml interpretation errors.
Submi- SubmitAnd- | Submi- Submits a single composite command, waits for its
tAndWait- WaitRequest | tAndWait- result, and returns the update id. Propagates the gRPC
ForUp- ForUpdatel- | error of failed submissions including Daml interpre-
dateld dResponse tation errors.
Submi- SubmitAnd- | SubmitAnd- | Submits a single composite command, waits for its
tAndWait- WaitRequest | WaitFor- result, and returns the transaction. Propagates the
ForTransac- Transaction- | gRPC error of failed submissions including Daml in-
tion Response terpretation errors.
Submi- SubmitAnd- | SubmitAnd- | Submits a single composite command, waits for its
tAndWait- WaitRequest | WaitFor- result, and returns the transaction tree. Propagates
ForTransac- Transac- the gRPC error of failed submissions including Daml
tionTree tionTreeRe- interpretation errors.
sponse

com/daml/ledger/api/v2/command_submission_service.proto

SubmitReassignmentRequest

Field

Type

Label | Description

reassignment_com-
mand

ReassignmentCom-
mand

The reassignment command to be submit-
ted. Required

SubmitReassignmentResponse

SubmitRequest

The submitted commands will be processed atomically in a single transaction. Moreover, each Com-
mand in commands will be executed in the order specified by the request.

Field Type Label | Description
Commands The commands to be submitted in a single transaction. Re-
commands)
quired
354 Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty

Daml SDK Documentation, 2.7.3

SubmitResponse
CommandSubmissionService

Allows clients to attempt advancing the ledger’s state by submitting commands. The final states of
their submissions are disclosed by the Command Completion Service. The on-ledger effects of their
submissions are disclosed by the Update Service.

Commands may fail in 2 distinct manners:

1. Failure communicated synchronously in the gRPC error of the submission.
2. Failure communicated asynchronously in a Completion, see completion.proto.

Note that not only successfully submitted commands MAY produce a completion event. For example,
the participant MAY choose to produce a completion event for a rejection of a duplicate command.

Clients that do not receive a successful completion about their submission MUST NOT assume that
it was successful. Clients SHOULD subscribe to the CompletionStream before starting to submit
commands to prevent race conditions.

Method name Request type Response type Description

Submit SubmitRequest SubmitResponse Submit a single composite
command.

SubmitReas- SubmitReassignmen- | SubmitReassignmen- Submit a single reassign-

signment tRequest tResponse ment.

com/daml/ledger/api/v2/commands.proto
Commands

A composite command that groups multiple commands together.

112. Integrate Daml with Off-Ledger Services 355

Daml SDK Documentation, 2.7.3

Field Type Label Description
K string Identifier of the on-ledger workflow that this command
work=. is a part of. Must be a valid LedgerString (as described in
flow_id :
value.proto). Optional
i string Uniquely identifies the application or participant user
?.pp '93 that issued the command. Must be a valid Applicationld-
on_t String (as described in value.proto). Required unless
authentication is used with a user token or a custom to-
ken specifying an application-id. In that case, the token’s
user-id, respectively application-id, will be used for the
request’s application_id.
com- string Uniquely identifies the command. The triple (applica-
mand id tion_id, party + act_as, command_id) constitutes the
- change ID for the intended ledger change, where party +
act_asisinterpreted as a set of party names. The change
ID can be used for matching the intended ledger changes
with all their completions. Must be a valid LedgerString
(as described in value.proto). Required
art string Party on whose behalf the command should be executed.
party If ledger APl authorization is enabled, then the authoriza-
tion metadata must authorize the sender of the request
to act on behalf of the given party. Must be a valid Par-
tyldString (as described in value.proto). Deprecated
infavorofthe act as field. If both are set, then the effec-
tive list of parties on whose behalf the command should
be executed is the union of all parties listed inpartyand
act_as. Optional
com.daml.ledgerepeatedn)- Individual elements of this atomic command. Must be
commands .
mand non-empty. Required
google.pro- Specifies the length of the deduplication period. It is in-
oneof . .
. tobuf.Dura- terpreted relative to the local clock at some point dur-
deduplica- :) L, . .
. tion ing the submission’s processing. Must be non-negative.
tion_pe- . S :
. Must not exceed the maximum deduplication time (see
riod.dedu- . . .
olica ledger configuration service.proto).
tion_dura-
tion
string Specifies the start of the deduplication period by a com-
oneof . . .
deduplica- pletion stream offset (exclusive). Must be a valid Ledger-
. P String (as described in participant offset.proto).
tion_pe- -
riod.dedu-
plica-
tion_offset
. oogle pro- Lower bound for the ledger time assigned to the resultin
min_ledger_| tf%n g s . & . & L g
to- transaction. Note: The ledger time of a transaction is as-
buf.Times- signed as partof command interpretation. Use this prop-
tamp erty if you expect that command interpretation will take
a considerate amount of time, such that by the time the
resulting transaction is sequenced, its assigned ledger
time is not valid anymore. Must not be set at the same
time as min_ledger_time_rel. Optional
: “oog!e.?ro— Same-as-min_ledger_time_abs, but specified-as-adu-
35gn_ledger_time 16l .- ration, starting from theGnARtelelcfranteR Refesenees
tion by the server. Must not be set at the same time as
min_ledger_time_abs. Optional
ctring raneated | [et Af nartiee nn whonece hehalf the cormmand chniild he

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration

Daml SDK Documentation, 2.7.3

If omitted, the participant or the committer may set a value of their choice. Optional
- disclosed_contracts
- com.daml.ledger.api.vi.DisclosedContract

- repeated

- Additional contracts used to resolve contract & contract key lookups. Optional
- domain_id

- string

- Must be a valid domain ID Required

com/daml/ledger/api/v2/completion.proto
Completion

A completion represents the status of a submitted command on the ledger: it can be successful or
failed.

Field Type Label Description
com- string The ID of the succeeded or failed command. Must be a
mand id valid LedgerString (as described in value.proto). Re-

o quired

google.rpc.Sta- Identifies the exact type of the error. It uses the same
status . . o
tus format of conveying error details as it is used for the RPC
responses of the APIs. Optional
) string The update_id of the transaction or reassignment that
update_id resulted from the command with command_.id. Only set
for successfully executed commands. Must be a valid
LedgerString (as described in value.proto).

. string The application-id or user-id that was used for the
a‘ppllc.a— submission, as described in commands.proto. Must
tion_id be a valid ApplicationldString (as described in value.

proto). Optional for historic completions where this
data is not available.
act as string repeated | The set of parties on whose behalf the commands were
- executed. Contains the unionof partyandact as from
commands.proto. The order of the parties need not be
the same as in the submission. Each element must be a
valid PartyldString (as described in value.proto). Op-
tional for historic completions where this data is not
available.

. string The submission ID this completion refers to, as described
SPbm',S' in commands.proto. Must be a valid LedgerString (as
sion_id described in value.proto). Optional

string Specifies the start of the deduplication period by a com-
oneof . pletion stream offset (exclusive).
deduplica-
tion_pe-
riod.dedu-
plica-
tion_offset

112. Integrate Daml with Off-Ledger Services 357

https://cloud.google.com/tasks/docs/reference/rpc/google.rpc#google.rpc.Status
https://cloud.google.com/tasks/docs/reference/rpc/google.rpc#google.rpc.Status
https://developers.google.com/protocol-buffers/docs/proto3#oneof

Daml SDK Documentation, 2.7.3

Must be a valid LedgerString (as described in value.proto).
- oneof deduplication_period.deduplication_duration
- google.protobuf.Duration

- Specifies the length of the deduplication period. It is measured in record time of com-
pletions.

Must be non-negative.

com/daml/ledger/api/v2/event_query_service.proto

Archived
Field Type Label | Description
com.daml.ledger.api.vli.Arch|vedE- Required
archived_event ger.ap 4
vent
. string Required The domain which sequenced the
domain_.id .
archival of the contract
Created
Field Type Label | Description
cre- com.daml.ledger.api.vl.Cre- Required
ated_event atedEvent
. string The domain which sequenced the creation of the
domain_id .
contract Required

GetEventsByContractldResponse

Field Type Label | Description
Created The create event for the contract with the contract id given in
created the request provided it exists and has not yet been Bruned. Op-
tional
. Archived The archive event for the contract with the contract idgivenin
archived the request provided such an archive event exists and it has not
yet been pruned. Optional

358 Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration

Daml SDK Documentation, 2.7.3

EventQueryService

Query events by contract id.

Note that querying by contract key is not (yet) supported, as contract keys are not supported (yet) in
multi-domain scenarios.

Method Request Response | Description

name type type

GetEvents- | .com.daml.ledgeGapivéGiettventGet the create and the consuming exercise event for

ByContrac- | ByContrac- ByContrac- the contract with the provided ID. No events will be re-

tid tldRequest tldResponse | turned for contracts that have been pruned because
they have already been archived before the latest
pruning offset.

com/daml/ledger/api/v2/package_service.proto

GetPackageRequest
Field Type | Label | Description
K string The ID of the requested package. Must be a valid PackageldString
pack (as described in value.proto). Required
age_id

GetPackageStatusRequest

Field Type | Label | Description

K string The ID of the requested package. Must be a valid PackageldString
pack (as described in value.proto). Required
age_id

ListPackagesRequest

PackageService

Allows clients to query the Daml-LF packages that are supported by the server.

Method Request type | Response type Description

name

ListPack- ListPackagesRe- | .com.daml.ledger.api.vilistPack- | Returns the identifiers of all

ages quest agesResponse supported packages.

GetPackage | GetPack- .com.daml.ledger.api.vl.GetPack- | Returns the contents of a single
ageRequest ageResponse package.

GetPack- GetPackageSta- | .com.daml.ledger.apivi.GetPack- | Returns the status of a single

ageStatus tusRequest ageStatusResponse package.

112. Integrate Daml with Off-Ledger Services

359

Daml SDK Documentation, 2.7.3

com/daml/ledger/api/v2/participant_offset.proto
ParticipantOffset

Describes a specific point on the participant. This is a participant local value: a participant offset
is meaningful only in the context of its participant. Different participants may associate different
offsets to the same change synchronized over a domain, and conversely, the same literal participant
offset may refer to different changes on different participants.

This is also a unique index of the changes which happened on the virtual shared ledger. Participant
offset define an order, which is the same in which order the updates are visible as subscribing to
the UpdateService. This ordering is also a fully causal ordering for one specific domain: for two
updates synchronized by the same domain, the one with a bigger participant offset happened after
than the one with a smaller participant offset. Please note this is not true for updates synchronized
by a different domain. Accordingly, the participant offset order may deviate from the order of the
changes on the virtual shared ledger.

The Ledger APl endpoints that take offsets allow to specify portions of the participant that are rele-
vant for the client to read.

Offsets returned by the Ledger APl can be used as-is (e.g. to keep track of processed transactions
and provide a restart point to use in case of need).

The format of absolute offsets is opaque to the client: no client-side transformation of an offset is
guaranteed to return a meaningful offset.

The server implementation ensures internally that offsets are lexicographically comparable.

Field Type Label | Description
oneof string The format of this stringis.specific to the partic-
value.ab- ipant and opaque to the client.
solute
ParticipantOffset.Par-
oneof ticipantBoundary
value.bound-
ary

ParticipantOffset.ParticipantBoundary

Name Number | Description

PARTICIPANT _BE- 0 Refers to the first transaction.

GIN

PARTICIPANT_END 1 z:l‘ers to the currently last transaction, which is a moving tar-

360 Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof

Daml SDK Documentation, 2.7.3

com/daml/ledger/api/v2/reassignment.proto
AssignedEvent

Records that a contract has been assigned, and it can be used on the target domain.

Field Type Label | Description
source string The ID of the source domain. Must be a valid domain ID. Re-
quired
target string The ID of the target domain. Must be a valid domain ID. Re-
quired
unas- string The ID from the unassigned event. For correlation capabil-
sign_id ities. For one contract the (unassign_.id, source domain)
- pair is unique. Must be a valid LedgerString (as described
in value.proto). Required
. string Party on whose behalf the assign command was executed.
submitter Must be a valid PartyldString (as described in value.
proto). Required
. uint64 Each corresponding assigned and unassigned event has
reassign-

the same reassignment_counter. This strictly increases
with each unassign command for the same contract. Cre-
ation of the contract corresponds toreassignment_counter
equals zero. Required

com.daml.ledger.api.vl.CreRequired

atedEvent

ment__counter

cre-
ated_event

Reassignment

Complete view of an on-ledger reassignment.

112. Integrate Daml with Off-Ledger Services 361

Daml SDK Documentation, 2.7.3

Field Type Label | Description
. string Assigned by the server. Useful for correlating logs. Must be
update_id a valid LedgerString (as described in value.proto). Re-
quired
com- string The ID of the command which resulted in this reassignment.
mand id Missing for everyone except the submitting party on the
o submitting participant. Must be a valid LedgerString (as de-
scribed in value.proto). Optional
string The workflow ID used in reassignment command submis-
work- . . ,
. sion. Only set if the workflow id for the command was
flow_id set. Must be a valid LedgerStrin_g (as described in value.
proto). Optional
string The absolute offset. The format of this field is described in
offset participant offset.proto. Required
Unas-
oneof signedEvent
event.unas-

signed_even

t

oneof
event.as-
signed_even

AssignedE-
vent

UnassignedEvent

Records that a contract has been unassigned, and it becomes unusable on the source domain

362

Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof

Daml SDK Documentation, 2.7.3

Field Type Label Description
unas- string The ID of the unassignment. This needs to be used as an
: . input for a assign ReassignmentCommand. For one con-
sign_id R : L :
tract the (unassign_id, source domain) pair is unique.
Must be a valid LedgerString (as described in value.
proto). Required
con- string The ID of the reassigned contract. Must be a valid Ledger-
tract_id String (as described in value.proto). Required
term- com.daml.ledger.api.vildenr The template of the reassigned contract. Required
. tifier
plate_id
source string The ID of the source domain Must be a valid domain ID
Required
target string The ID of the target domain Must be a valid domain ID
g Required
bmitt string Party on whose behalf the unassign command was ex-
submitter ecuted. Must be a valid PartyldString (as described in
value.proto). Required
. uinte4 Each corresponding assigned and unassigned event
reassign-
has the same reassignment_counter. This strictly in-
ment_counter . .
creases with each unassign command for the same con-
tract. Creation of the contract corresponds to reassign-
ment_counter equals zero. Required
) google.pro- Assignment exclusivity Before this time (measured on
assufn to- the target domain), only the submitter of the unassign-
ment_ex buf.Times- ment can initiate the assignment Defined for reassign-
clusivity . . .
tamp ing participants. Optional
wit string repeated | The parties that are notified of this event. Required
ness_par-
ties

com/daml/ledger/api/v2/reassignment_command.proto

AssignCommand

Assign a contract

Field Type | Label | Description

unas- string The ID from the unassigned event to be completed by this as-

sign_id signment. Must be a valid LedgerString (as described in value.
- proto). Required

source string The ID of the source domain Must be a valid domain ID Required

target string The ID of the target domain Must be a valid domain ID Required

112. Integrate Daml with Off-Ledger Services

363

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

Daml SDK Documentation, 2.7.3

ReassignmentCommand

Field Type Label | Description
K string Identifier of the on-ledger workflow that this command is
work=. a part of. Must be a valid LedgerString (as described in
flow_id .
value.proto). Optional
i string Uniquely identifies the application or participant user that
?pp I‘?: issued the command. Must be a valid ApplicationldString
on_ (as described in value.proto). Required unless authenti-
cation is used with a user token or a custom token specify-
ing an application-id. In that case, the token’s user-id, re-
spectively application-id, will be used for the request’s ap-
plication_id.
com- string Uniquely identifies the command. The triple (applica-
mand id tion_id, submitter, command_id) constitutes the change
- ID for the intended ledger change. The change ID can be
used for matching the intended ledger changes with all their
completions. Must be a valid LedgerString (as described in
value.proto). Required
bmitt string Party on whose behalf the command should be executed. If
submitter ledger APl authorization is enabled, then the authorization
metadata must authorize the sender of the request to act
on behalf of the given party. Must be a valid PartyldString
(as described in value.proto). Required
Unassign-
oneof com-
Command
mand.unas-
sign_com-
mand
AssignCom-
oneof com-
mand
mand.as-
sign_com-
mand
. string A unique identifier to distinguish completions for different
submis- L . .
. iq submissions with the same change ID. Typically a random
ston_t UUID. Applications are expected to use a different UUID for
each retry of a submission with the same change ID. Must
be a valid LedgerString (as described in value.proto).

If omitted, the participant or the committer may set a value of their choice. Optional

364

Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof

Daml SDK Documentation, 2.7.3

UnassignCommand

Unassign a contract

Field Type | Label | Description

con- string The ID of the contract the client wants to unassign. Must be a valid
tract_id LedgerString (as described in value.proto). Required

source string The ID of the source domain Must be a valid domain ID Required
target string The ID of the target domain Must be a valid domain ID Required

com/daml/ledger/api/v2/state_service.proto

ActiveContract

Field Type Label | Description
cre- com.daml.ledger.api.vl.CreRequired
ated event atedEvent
domain__id string A valid domain ID Required
. uint64 Each corresponding assigned and unassigned event has
reassign-

the same reassignment_counter. This strictly increases
with each unassign command for the same contract. Cre-
ation of the contract corresponds to reassignment_counter
equals zero. This field will be the reassignment_counter of
the latest observable activation eventon this domain, which
is before the active_at_offset. Required

ment_counter

GetActiveContractsRequest

Field Type Label | Description
) Transaction- Templates to include in the served snapshot, per party. Re-
filter Filter quired

bool If enabled, values served over the APl will contain more infor-
verbose

mation than strictly necessary to interpret the data. In par-
ticular, setting the verbose flag to true triggers the ledger to
include labels for record fields. Optional

string The offset at which the snapshot of the active contracts will

ac-
tive at off- be computed. Must be no greater than the current ledger
set_ B end offset. Must be greater than or equal to the last pruning

offset. If not set the current ledger end offset will be used.
Optional

112. Integrate Daml with Off-Ledger Services 365

Daml SDK Documentation, 2.7.3

GetActiveContractsResponse

Field Type Label | Description
Hset string Included only in the last message. The client should start
ottse consuming the transactions endpoint with this offset. The
format of this field is described inparticipant offset.
proto.
K string The workflow ID used in command submission which corre-
\fAl/or i sponds to the contract_entry. Only set if the workflow id
owW— for the command was set. Must be a valid LedgerString (as
described in value.proto). Optional
ActiveCon- The contract is active on the given domain, meaning: there
oneof con- - . .
tract tract was an activation event on the given domain (created,
trac —en assigned), which is not followed by a deactivation event
ry-ac (archived, unassigned) on the same domain, until the ac-
tive_con-
tive_at_offset. Since activeness is defined as a per domain
tract o . . .
concept, it is possible, that a contract is active on one do-
main, but already archived on another. There will be one
such message for each domain the contract is active on.
¢ Incomplete- Included iff the unassigned event was before or at the ac-
oneot: con Unassigned tive_at_offset, but there was no corresponding assigned
tract_en- .
) event before or at the active_at_offset.
try.iIncom-
plete_unas-
signed
¢ Incomplete- Important: this message is not indicating that the contract
Snec; con Assigned is active on the target domain! Included iff the assigned
trac? —&n event was before or at the active__at_offset, but there was
ry.1ncom no corresponding unassigned event before or at the ac-
plete_as- .
. tive_at_offset.
signed

GetConnectedDomainsRequest

Field | Type | Label | Description
art string The party of interest Must be a valid PartyldString (as described in
party value.proto). Required

GetConnectedDomainsResponse

Field Type Label Descrip-
tion
. GetConnectedDomainsResponse.ConnectedDo- repeated
connected_domains main

366

Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof

Daml SDK Documentation, 2.7.3

GetConnectedDomainsResponse.ConnectedDomain

Field Type Label | Description
) . string The alias of the domain Required
domain_alias
strin The ID of the domain Required
domain_id g d
o ParticipantPermission The permission on the domain Required
permission

GetlLatestPrunedOffsetsRequest

Empty for now, but may contain fields in the future.

GetLatestPrunedOffsetsResponse

Field Type Label | Description
tici Partici- The offset up to which the ledger has been pruned, disre-
partici pantOffset garding the state of all divulged contracts pruning.
pant_pruned_up_to_in-
clusive
0 di Partici- The offset up to which all divulged events have been
all_dl pantOffset pruned on the ledger. It can be at or before the par-
vulged_con- o . .
. ticipant pruned up to inclusive offset. For
tracts_pruned_up_to_in- = T .
lusi more details about all divulged events pruning, see
clusive PruneRequest.prune all divulged contracts in
participant pruning service.proto.
GetLedgerEndRequest
GetLedgerEndResponse
Field | Type Label | Description
offset ParticipantOffset The absolute offset of the current ledger end.

IncompleteAssigned

Field

Label | Description

Type

assigned_event

AssignedEvent Required

112. Integrate Daml with Off-Ledger Services

367

Daml SDK Documentation, 2.7.3

IncompleteUnassigned

Field Type Label | Description
com.daml.ledger.api.vl.CreatedEvent Required
created_event
_ UnassignedEvent Required
unassigned_event

ParticipantPermission

Enum indicating the permission level that the participant has for the party whose connected do-
mains are being listed.

StateService

Name Number | Description
L 0
Submission
. . 1 participant can only confirm transactions
Confirmation
) 2 participant can only observe transactions
Observation

Allows clients to get state from the ledger.

Method Request Response | Description
name type type
GetActive- GetActive- GetActive- Returns a stream of the snapshot of the active con-
Contracts ContractsRe- | ContractsRe- | tracts and incomplete reassignments at a ledger off-
quest sponse set. If there are no active contracts, the stream re-
turns a single response message with the offset at
which the snapshot has been taken. Clients SHOULD
use the offset in the last GetActiveContractsResponse
message to continue streaming transactions with the
update service. Clients SHOULD NOT assume that the
set of active contracts they receive reflects the state
at the ledger end.
GetCon- GetCon- GetCon- Get the list of connected domains at the time of the
nectedDo- nectedDo- nectedDo- query.
mains mainsRe- mainsRe-
quest sponse
Ge- GetledgerEn- | GetledgerEn- | Getthe currentledger end. Subscriptions started with
tLedgerEnd | dRequest dResponse the returned offset will serve events after this RPC was
called.
GetlLatest- GetLatest- Getlatest- Get the latest successfully pruned ledger offsets
PrunedOff- | PrunedOff- Pruned-
sets setsRequest | OffsetsRe-
sponse
368 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

com/daml/ledger/api/v2/testing/time_service.proto

GetTimeRequest

GetTimeResponse

Field Type Label | Description
cur- google.protobuf.Times- The current time according to the ledger
rent_time tamp server.
SetTimeRequest

Field Type Label | Description
cur- google.proto- MUST precisely match the current time as it’s known to
rent_time bufTimestamp the ledger server.

_ google.proto- The time the client wants to set on the ledger. MUST be
new_time . I . ,

buf.Timestamp a pointint time after current time.

TimeService

Optional service, exposed for testing static time scenarios.

Method Request Response Description

name type type

GetTime Get- GetTimeRe- Returns the current time according to the ledger
TimeRequest | sponse server.

SetTime Set- .google.proto- | Allows clients to change the ledger’s clock in an
TimeRequest | buf.Empty atomic get-and-set operation.

com/daml/ledger/api/v2/transaction.proto

Transaction

Filtered view of an on-ledger transaction’s create and archive events.

112. Integrate Daml with Off-Ledger Services

369

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty

Daml SDK Documentation, 2.7.3

Field Type Label Description
date id string Assigned by the server. Useful for correlating logs. Must
update_| be a valid LedgerString (as described in value.proto).
Required
com- string The ID of the command which resulted in this transac-
mand id tion. Missing for everyone except the submitting party.
- Must be a valid LedgerString (as described in value.
proto). Optional
K string The workflow ID used in command submission. Must be
work=. avalid LedgerString (as described in value.proto). Op-
flow_id .
tional
google.pro- Ledger effective time. Must be a valid LedgerString (as
effec- . . .
: to- described in value.proto). Required
tive_at .
buf.Times-
tamp
events com.daml.ledgerepedtecdr|t The collection of events. Only contains CreatedEvent or
ArchivedEvent. Required
Hset string The absolute offset. The format of this field is described
ofise inparticipant offset.proto. Required
L string A valid domain ID. Identifies the domain that synchro-
domain_id . . .
nized the transaction. Required

TransactionTree

Complete view of an on-ledger transaction.

370 Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

Daml SDK Documentation, 2.7.3

Field Type Label Description
update_id string Assigned by the server. Useful for correlating logs. Must
- be a valid LedgerString (as described in value.proto).
Required
com- string The ID of the command which resulted in this transac-

tion. Missing for everyone except the submitting party.

mand_id .) . .
Must be a valid LedgerString (as described in value.
proto). Optional
string The workflow ID used in command submission. Only set
\;\I/cc;\:/k_id if the workflow id for the command was set. Must be
- avalid LedgerString (as described in value.proto). Op-
tional
offoc google.pro- Ledger effective time. Required
. to-
tive_at buf.Times-
tamp
offset string The absolute offset. The format of this field is described

inparticipant offset.proto. Required

Transaction- | repeated | Changes to the ledger that were caused by this transac-
Tree.Events- tion. Nodes of the transaction tree. Each key be a valid
ByldEntry LedgerString (as describe in value.proto). Required
string repeated | Roots of the transaction tree. Each element must be a
s valid LedgerString (as describe in value.proto). The
elements are in the same order as the commands in
the corresponding Commands object that triggered this
transaction. Required

string A valid domain ID. Identifies the domain that synchro-
nized the transaction. Required

events_by_id

root__event_id

domain_id

TransactionTree.EventsByldEntry

Field | Type Label | Description
string

key

com.daml.ledger.api.vi.TreeEvent

value

com/daml/ledger/api/v2/transaction_filter.proto
TransactionFilter

A filter both for filtering create and archive events as well as for filtering transaction trees.

112. Integrate Daml with Off-Ledger Services 371

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

Daml SDK Documentation, 2.7.3

Field Type Label Description

fil Transaction- | repeated | Each key must be a valid PartyldString (as described in

! Filter.Filters- value.proto). The interpretation of the filter depends

ters_by_party) . .) .
ByPartyEntry on the stream being filtered: (1) For transaction tree

streams all party keys used as wildcard filters, and all
subtrees whose root has one of the listed parties as an
informee are returned. If there are InclusiveFilters, those
will control returned CreateEvent fields were applica-
ble, but not used for template/interface filtering. (2)
For transaction and active-contract-set streams create
and archive events are returned for all contracts whose
stakeholdersinclude at least one of the listed parties and
match the per-party filter. Required

TransactionFilter.FiltersByPartyEntry

Field | Type Label | Description
string

key

com.daml.ledger.api.vl.Filters
value

com/daml/ledger/api/v2/update_service.proto

GetTransactionByEventldRequest

Field Type | Label Description

string The ID of a particular event. Must be a valid LedgerString (as
described in value.proto). Required

string | repeated | The parties whose events the client expects to see. Events
that are not visible for the parties in this collection will not be
present in the response. Each element must be a valid Partyld-
String (as described in value.proto). Required

event_id

request-
ing_parties

GetTransactionByldRequest

Field Type | Label Description

string The ID of a particular transaction. Must be a valid LedgerString
(as describe in value.proto). Required

string | repeated | The parties whose events the client expects to see. Events
that are not visible for the parties in this collection will not be
present in the response. Each element be a valid PartyldString
(as describe in value.proto). Required

update_id

request-
ing_parties

372 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

GetTransactionResponse

GetUpdateTreesResponse

Field Type Label | Description
. Transaction Required
transaction
GetTransactionTreeResponse
Field Type Label | Description
. TransactionTree Required
transaction
Field Type Label | Description

oneof update.transaction_tree

TransactionTree

oneof update.reassignment

Reassignment

GetUpdatesRequest

Field Type Label | Description

. Partici- Beginning of the requested ledger section. The response will
begin_ex-

. pantOffset only contain transactions whose offset is strictly greater
clusive .)

than this. Required
_ Partici- End of the requested ledger section. The response will only

end_inclu- . . .
sive pantOffset contain transactions whose offset is less than or equal to

this. Optional, if not set, the stream will not terminate.

filter

Transaction-
Filter

Requesting parties with template filters. Template filters
must be empty for GetUpdateTrees requests. Required

verbose

bool

Ifenabled, values served over the APl will contain more infor-
mation than strictly necessary to interpret the data. In par-
ticular, setting the verbose flag to true triggers the ledger to
include labels, record and variant type ids for record fields.
Optional

112. Integrate Daml with Off-Ledger Services 373

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof

Daml SDK Documentation, 2.7.3

GetUpdatesResponse

Field Label | Description

Type
Transaction

oneof update.transaction

Reassignment

oneof update.reassignment

UpdateService

Allows clients to read updates (transactions and reassignments) from the ledger.

GetUpdates and GetUpdateTrees provide a comprehensive stream of updates/changes which
happened on the virtual shared ledger. These streams are indexed with ledger offsets, which are
strictly increasing. The virtual shared ledger consist of changes happening on multiple domains
which are connected to the serving participant. Each update belongs to one domain, this is provided
in the result (the domain id field in Transaction and TransactionTree for transactions, the
source field in UnassignedEvent and the target field in AssignedEvent). Consumers can rely
on strong causal guarantees on the virtual shared ledger for a single domain: updates which have
greater offsets are happened after than updates with smaller offsets for the same domain. Across
different domains this is not guaranteed.

Method Request Response | Description
name type type
GetUpdates | GetUpdates- | GetUpdates- | Read the ledger’s filtered transaction stream and re-
Request Response lated reassignments for a set of parties. For transac-
tions it lists only creates and archives, but no other
events. Omits all events on transient contracts, i.e,
contracts that were both created and archived in the
same transaction.
GetUpdate- | GetUpdates- | GetUpdate- Read the ledger's complete transaction tree stream
Trees Request TreesRe- and related reassignments for a set of parties. The
sponse stream will be filtered only by the parties as wildcard
parties. The template/interface filters describe the re-
spective fields in the CreatedEvent results.
GetTrans- GetTransac- | GetTransac- Lookup a transaction tree by the ID of an event that ap-
actionTree- | tionByEven- | tionTreeRe- pears within it. For looking up a transaction instead of
ByEventld tIdRequest sponse a transaction tree, please see GetTransactionByEven-
tid
GetTrans- GetTrans- GetTransac- | Lookup a transaction tree by its ID. For looking up a
actionTree- | action- tionTreeRe- transaction instead of a transaction tree, please see
Byld ByldRequest | sponse GetTransactionByld
GetTransac- | GetTransac- | GetTrans- Lookup a transaction by the ID of an event that ap-
tionByEven- | tionByEven- | actionRe- pears within it.
tid tidRequest sponse
GetTransac- | GetTrans- GetTrans- Lookup a transaction by its ID.
tionByld action- actionRe-
ByldRequest | sponse
374 Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof

Daml SDK Documentation, 2.7.3

com/daml/ledger/api/v2/version_service.proto

GetLedgerApiVersionRequest

VersionService

Allows clients to retrieve information about the ledger APl version

Method Request type Response type Description

Nname

GetlLedger- GetLedgerApiVer- .com.daml.ledger.api.vl.GetLedger- Read the Ledger API
ApiVersion sionRequest ApiVersionResponse version

112. Integrate Daml with Off-Ledger Services

375

Daml SDK Documentation, 2.7.3

Scalar Value Types

.proto type | Notes C++ type | Java type | Python
type
double double float
double
float float float
float
. Uses variable-length encoding. Inefficient | int32 int int
int32 . . .
for encoding negative numbers - if your
field is likely to have negative values, use
sint32 instead.
. Uses variable-length encoding. Inefficient | int64 long int/long
inté4 . . .
for encoding negative numbers - if your
field is likely to have negative values, use
sint64 instead.
. Uses variable-length encoding. uint32 int int/long
uint32
Uses variable-length encoding. uinte4 lon int/lon
uinte4 & & & flong
. Uses variable-length encoding. Signed int | int32 int int
sint32 . .
value. These more efficiently encode nega-
tive numbers than regular int32s.
. Uses variable-length encoding. Signed int | int64 long int/long
sint64 .
value. These more efficiently encode nega-
tive numbers than regular int64s.
fixed32 Always four bytes. More efficient than | uint32 int int
xe uint32 if values are often greater than
2/28.
fixed64 Always eight bytes. More efficient than | uint64 long int/long
xe uint64 ifvalues are often greater than 2/56.
Always four bytes. int32 int int
sfixed32 y y
Always eight bytes. inte4 lon int/lon
sfixed64 ys elght by & flong
bool boolean boolean
bool
i A string must always contain UTF-8 en- | string String str/unicode
string coded or 7-bit ASCII text.
May contain any arbitrary sequence of | string ByteString | str
bytes bytes

1.12.5.9 How Daml Types are Translated to Protobuf
This page gives an overview and reference on how Daml types and contracts are represented by the
Ledger API as protobuf messages, most notably:

in the stream of transactions from the TransactionService
as payload for CreateCommand and ExerciseCommand sent to CommandSubmissionService and
CommandService.

The Daml code in the examples below is written in Daml 1.1.

376 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Notation

The notation used on this page for the protobuf messages is the same as you get if you invoke protoc
--decode=Foo < some payload.bin. Toillustrate the notation, here is a simple definition of the
messages Foo and Bar:

message Foo {
string field with primitive type = 1;
Bar field with message type = 2;

}

message Bar {
repeated int64 repecated field inside bar = 1;
}

A particular value of Foo is then represented by the Ledger APl in this way:

{ // Foo
field with primitive type: "some string"
field with message type { // Bar
repeated field inside bar: 17
repeated field inside bar: 42
repeated field inside bar: 3

}

The name of messages is added as a comment after the opening curly brace.

Records and Primitive Types

Records or product types are translated to Record. Here’s an example Daml record type that contains
a field for each primitive type:

data MyProductType = MyProductType with
intField : Int
textField : Text
decimalField : Decimal
boolField : Bool
partyField : Party
timeField : Time
listField : [Int]
contractIdField : ContractId SomeTemplate

And here’s an example of creating a value of type MyProductType:

alice <- allocateParty "Alice"
bob <- allocateParty "Bob"
someCid <- submit alice do createCmd SomeTemplate with owner=alice

let myProduct = MyProductType with
intField = 17
textField = "some text"
decimalField = 17.42
boolField = False

(continues on next page)

112. Integrate Daml with Off-Ledger Services 377

Daml SDK Documentation, 2.7.3

(continued from previous page)

partyField = bob

timeField = datetime 2018 May 16 0 0 O
listField = [1,2,3]

contractIdField = someCid

For this data, the respective data on the Ledger APl is shown below. Note that this value would be
enclosed by a particular contract containing a field of type MyProductType. See Contract templates for
the translation of Daml contracts to the representation by the Ledger API.

{ // Record
record id { // Identifier
package id: "some-hash"
name: "Types.MyProductType"
}
fields { // RecordField
label: "intField"
value { // Value
inted: 17
}
}
fields { // RecordField
label: "textField"
value { // Value
text: "some text"
}
}
fields { // RecordField
label: "decimalField"
value { // Value
decimal: "17.42"
}
}
fields { // RecordField
label: "boolField"
value { // Value
bool: false
}
}
fields { // RecordField
label: "partyField"
value { // Value
party: "Bob"

}
fields { // RecordField
label: "timeField"
value { // Value
timestamp: 1526428800000000

}
fields { // RecordField
label: "listField"
value { // Value
list { // List
elements { // Value

(continues on next page)

378 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

int6d: 1

}

elements { // Value
inted: 2

}

elements { // Value
int64: 3

}
}
fields { // RecordField
label: "contractIdField"
value { // Value
contract id: "some-contract-id"

}

Variants

Variants or sum types are types with multiple constructors. This example defines a simple variant
type with two constructors:

data MySumType = MySumConstructorl Int
| MySumConstructor2 (Text, Bool)

The constructorMyConstructorl takes a single parameter of type Integer, whereas the construc-
tor MyConstructor?2 takes a tuple with two fields as parameter. The snippet below shows how you
can create values with either of the constructors.

let mySuml = MySumConstructorl 17
let mySum2 MySumConstructor2 ("it's a sum", True)

Similar to records, variants are also enclosed by a contract, a record, or another variant.

The snippets below shows the value of mySuml and mySum?2 respectively as they would be transmit-
ted on the Ledger APl within a contract.

Listing 24: mySumf

{ // Value
variant { // Variant
variant id { // Identifier
package id: "some-hash"
name: "Types.MySumType"
}

constructor: "MyConstructorl"
value { // Value
inted: 17

112. Integrate Daml with Off-Ledger Services 379

Daml SDK Documentation, 2.7.3

Listing 25: mySum2

{ // Value
variant { // Variant
variant id { // Identifier

package id: "some-hash"
name: "Types.MySumType"
}
constructor: "MyConstructor2"
value { // Value
record { // Record
fields { // RecordField
label: "sumTextField"
value { // Value
text: "it's a sum"
}

}
fields { // RecordField

label: "sumBoolField"
value { // Value
bool: true

Contract Templates

Contract templates are represented as records with the same identifier as the template.

This first example template below contains only the signatory party and a simple choice to exercise:

data MySimpleTemplateKey =
MySimpleTemplateKey
with
party: Party

template MySimpleTemplate
with
owner: Party

where
signatory owner

key MySimpleTemplateKey owner: MySimpleTemplateKey
maintainer key.party

380 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Create a Contract

Creating contracts is done by sending a CreateCommand to the CommandSubmissionService or the Com-
mandService. The message to create a MySimpleTemplate contract with Alice being the owner is shown
below:

{ // CreateCommand
template id { // Identifier
package id: "some-hash"
name: "Templates.MySimpleTemplate"
1
create arguments { // Record
fields { // RecordField
label: "owner"
value { // Value
party: "Alice"
}

Receive a Contract

Contracts are received from the TransactionService in the form of a CreatedEvent. The data contained
in the event corresponds to the data that was used to create the contract.

{ // CreatedEvent
event id: "some-event-id"
contract id: "some-contract-id"
template id { // Identifier
package id: "some-hash"
name: "Templates.MySimpleTemplate"
}
create arguments { // Record
fields { // RecordField
label: "owner"
value { // Value
party: "Alice"
}

}

witness parties: "Alice"

112. Integrate Daml with Off-Ledger Services 381

Daml SDK Documentation, 2.7.3

Exercise a Choice

A choice is exercised by sending an ExerciseCommand. Taking the same contract template again,
exercising the choice MyChoice would result in a command similar to the following:

{ // ExerciseCommand
template id { // Identifier
package id: "some-hash"
name: "Templates.MySimpleTemplate"
}
contract id: "some-contract-id"
choice: "MyChoice"
choice argument { // Value
record { // Record
fields { // RecordField
label: "parameter"
value { // Value
int64d: 42

If the template specifies a key, the ExerciseByKeyCommand can be used. It works in a similar way as
ExerciseCommand, but instead of specifying the contract identifier you have to provide its key. The
example above could be rewritten as follows:

{ // ExerciseByKeyCommand
template id { // Identifier
package id: "some-hash"

name: "Templates.MySimpleTemplate"
1
contract _key { // Value
record { // Record
fields { // RecordField
label: "party"
value { // Value
party: "Alice"

}

choice: "MyChoice"

choice argument { // Value

record { // Record
fields { // RecordField
label: "parameter"
value { // Value
inted: 42

382 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.12.510 How Daml Types are Translated to Daml-LF

This page shows how types in Daml are translated into Daml-LF. It should help you understand and
predict the generated client interfaces, which is useful when you’re building a Daml-based applica-
tion that uses the Ledger APl or client bindings in other languages.

For an introduction to Daml-LF, see Daml-LF.

Primitive Types

Built-in data types in Daml have straightforward mappings to Daml-LF.

This section only covers the serializable types, as these are what client applications can interact
with via the generated Daml-LF. (Serializable types are ones whose values can exist on the ledger.
Function types, Update and Scenario types and any types built up from these are excluded, and
there are several other restrictions.)

Most built-in types have the same name in Daml-LF as in Daml. These are the exact mappings:

Daml primitive type Daml-LF primitive type
Int Int64

Time Timestamp
() Unit

[List
Decimal Decimal
Text Text

Date Date

Party Party
Optional Optional
ContractId ContractId

Be aware that only the Daml primitive types exported by the Prelude module map to the Daml-LF
primitive types above. That means that, if you define your own type named Party, it will not translate
to the Daml-LF primitive Party.

Tuple Types

Daml tuple type constructors take types T1, T2, .., TNtothetype (T1, T2, .., TN).Theseare
exposed in the Daml surface language through the Prelude module.

The equivalent Daml-LF type constructors are daml-prim:DA.Types:TupleN, for each particular
N (where 2 <= N <= 20). This qualified name refers to the package name (ghc-prim) and the module
name (GHC . Tuple).

For example: the Daml pair type (Int, Text) is translated to daml-prim:DA.Types:Tuple2
Int64 Text.

112. Integrate Daml with Off-Ledger Services 383

Daml SDK Documentation, 2.7.3

Data Types

Daml-LF has three kinds of data declarations:

Record types, which define a collection of data

Variant or sum types, which define a number of alternatives

Enum, which defines simplified sum types without type parameters nor argument.

Data type declarations in Daml (starting with the data keyword) are translated to record, variant or
enum types. It's sometimes not obvious what they will be translated to, so this section lists many

examples of data types in Daml and their translations in Daml-LF.

Record Declarations

This section uses the syntax for Daml records with curly braces.

Daml declaration Daml-LF translation

data Foo = Foo { fool: Int; record Foo [{ fool: Into4d; foo2: Text }
foo2: Text }

data Foo = Bar { barl: Int; record Foo [{ barl: Int64; bar2: Text }
bar2: Text }

data Foo = Foo { foo: Int } record Foo J { foo: Into64d }

data Foo = Bar { foo: Int } record Foo J { foo: Into4d }

data Foo = Foo {} record Foo [{}

data Foo = Bar {} record Foo [{}

384 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Variant Declarations

Daml declaration Daml-LF translation

data Foo = Bar Int | Baz variant Foo [] Bar Int64 | Baz Text

Text

data Foo a = Bar a | Baz variant Foo a [l Bar a | Baz Text

Text

data Foo = Bar Unit | Baz variant Foo [] Bar Unit | Baz Text

Text

data Foo = Bar Unit | Baz variant Foo [l Bar Unit | Baz Unit

data Foo a = Bar | Baz variant Foo a [l Bar Unit | Baz Unit

data Foo = Foo Int variant Foo [] Foo Int64

data Foo = Bar Int variant Foo [] Bar Into64

data Foo = Foo () variant Foo [] Foo Unit

data Foo = Bar () variant Foo [l Bar Unit

data Foo = Bar { bar: Int } variant Foo [l Bar Foo.Bar | Baz Text, record
| Baz Text Foo.Bar [l { bar: Into64d }

data Foo = Foo { foo: Int } variant Foo [] Foo Foo.Foo | Baz Text, record
| Baz Text Foo.Foo U { foo: Int64d }

data Foo = Bar { barl: Int; variant Foo [l Bar Foo.Bar | Baz Text, record
bar2: Decimal } | Baz Text Foo.Bar [{ barl: Intoc4; bar2: Decimal }
data Foo = Bar { barl: 1Int; data Foo [] Bar Foo.Bar | Baz Foo.Baz, record
bar2: Decimal } | Baz { Foo.Bar [{ barl: Into64; bar2: Decimal },
bazl: Text; baz2: Date } record Foo.Baz [l { bazl: Text; baz2: Date

}

Enum Declarations

Daml declaration Daml-LF declaration

data Foo = Bar | Baz enum Foo [] Bar | Baz

data Color = Red | Green | enum Color [l Red | Green | Blue
Blue

Banned Declarations

There are two gotchas to be aware of: things you might expect to be able to do in Daml that you can’t
because of Daml-LF.

The first: a single constructor data type must be made unambiguous as to whether it is a record or
avariant type. Concretely, the data type declaration data Foo = Foo causes acompile-timeerror,
because it is unclear whether it is declaring a record or a variant type.

To fix this, you must make the distinction explicitly. Write data Foo = Foo {} todeclare arecord
type with no fields,or data Foo = Foo () foravariantwith a single constructor taking unit argu-
ment.

The second gotcha is that a constructor in a data type declaration can have at most one unlabelled
argument type. This restriction is so that we can provide a straight-forward encoding of Daml-LF

112. Integrate Daml with Off-Ledger Services 385

Daml SDK Documentation, 2.7.3

types in a variety of client languages.

Banned declaration Workaround

data Foo = Foo data Foo = Foo {} toproduce record Foo [] {}OR
data Foo = Foo () to produce variant Foo [Foo
Unit

data Foo = Bar data Foo = Bar {} to produce record Foo [J
{} OR data Foo = Bar () to produce variant
Foo [Bar Unit

data Foo = Foo Int Text Name constructor arguments using a record declaration,

for example data Foo = Foo { x: Int; y: Text
}

data Foo = Bar Int Text Name constructor arguments using a record declaration,
for example data Foo = Bar { x: Int; y: Text
}

data Foo = Bar | Baz Int Name arguments to the Baz constructor, for example

Text data Foo = Bar | Baz { x: Int; y: Text }

Type Synonyms

Type synonyms (starting with the type keyword) are eliminated during conversion to Daml-LF. The
body of the type synonym is inlined for all occurrences of the type synonym name.

For example, consider the following Daml type declarations.

type Username = Text
data User = User { name: Username }

The Username type is eliminated in the Daml-LF translation, as follows:

record User [J { name: Text }

Template Types

A template declaration in Daml results in one or more data type declarations behind the scenes. These
data types, detailed in this section, are not written explicitly in the Daml program but are created by
the compiler.

They are translated to Daml-LF using the same rules as for record declarations above.

These declarations are all at the top level of the module in which the template is defined.

386 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Template Data Types

Every contract template defines a record type for the parameters of the contract. For example, the
template declaration:

template Iou
with
issuer: Party
owner: Party
currency: Text
amount: Decimal
where

results in this record declaration:

data Iou = Tou { issuer: Party; owner: Party; currency: Text; amount: Decimal }

This translates to the Daml-LF record declaration:

record Iou [J { issuer: Party; owner: Party; currency: Text; amount: Decimal }

Choice Data Types

Every choice within a contract template results in a record type for the parameters of that choice.
For example, let’s suppose the earlier Tou template has the following choices:

nonconsuming choice DoNothing: ()
controller owner
do
return ()

choice Transfer: ContractId Iou
with newOwner: Party
controller owner
do
updateOwner newOwner

This results in these two record types:

data DoNothing = DoNothing ({}
data Transfer = Transfer { newOwner: Party }

Whether the choice is consuming or nonconsuming is irrelevant to the data type declaration. The
data type is a record even if there are no fields.

These translate to the Daml-LF record declarations:

record DoNothing [{}
record Transfer [J { newOwner: Party }

112. Integrate Daml with Off-Ledger Services 387

Daml SDK Documentation, 2.7.3

Names with Special Characters

Allnames in Daml—of types, templates, choices, fields, and variant data constructors—are translated
to the more restrictive rules of Daml-LF. ASCII letters, digits, and _ underscore are unchanged in
Daml-LF; all other characters must be mangled in some way, as follows:

$ changes to $3,

Unicode codepoints less than 65536 translate to $uABCD, where ABCD are exactly four
(zero-padded) hexadecimal digits of the codepoint in question, using only lowercase a-f£, and
Unicode codepoints greater translate to SUABCD1234, where ABCD1234 are exactly eight
(zero-padded) hexadecimal digits of the codepoint in question, with the same a-f rule.

Daml name Daml-LF identifier

Foo bar Foo bar

baz' baz$u0027

T+ Su003asu002bsul03a
naiveté naSul0Oefvetsu00e9

:0: $u003asU0001£6425u003a

112.5.11 Create Your Own Bindings

This page gets you started with creating custom bindings for a Daml Ledger.
Bindings for a language consist of two main components:

Ledger APl Client stubs forthe programminglanguage, - the remote APl that allows sending
ledgercommands and receiving ledger transactions. You have to generate Ledger APl from
the gRPC protobuf definitions in the daml repository on GitHub. Ledger APl is documented
on this page: Use the Ledger APl With gRPC. The gRPC tutorial explains how to generate client

stubs .

Codegen A code generator is a program that generates classes representing Daml contract
templatesinthelanguage. These classes incorporate all boilerplate code for constructing:
CreateCommand and ExerciseCommand corresponding for each Daml contract template.

Technically codegenis optional. You can constructthe commands manually from the auto-generated
Ledger API classes. However, it is very tedious and error-prone. If you are creating ad hoc bindings
for a project with a few contract templates, writing a proper codegen may be overkill. On the other
hand, if you have hundreds of contract templates in your project or are planning to build language
bindings that you will share across multiple projects, we recommend including a codegen in your
bindings. It will save you and your users time in the long run.

Note that for different reasons we chose codegen, but that is not the only option. There is really a
broad category of metaprogramming features that can solve this problem just as well or even better
than codegen; they are language-specific, but often much easier to maintain (i.e. no need to add a
build step). Some examples are:

F# Type Providers
Template Haskell

388 Chapter 1. Canton References

https://github.com/digital-asset/daml/tree/main/ledger-api/grpc-definitions
https://grpc.io/docs/
https://docs.microsoft.com/en-us/dotnet/fsharp/tutorials/type-providers/creating-a-type-provider#a-type-provider-that-is-backed-by-local-data
https://wiki.haskell.org/Template_Haskell

Daml SDK Documentation, 2.7.3

Build Ledger Commands

No matter what approach you take, either manually building commands or writing a codegen to do
this, you need to understand how ledger commands are structured. This section demonstrates how
to build create and exercise commands manually and how it can be done using contract classes.

Create Command

Let’s recall an 10U example from the Quickstart guide, where lou template is defined like this:

template Iou
with
issuer : Party
owner : Party
currency : Text
amount : Decimal
observers : [Party]

If you do not specify any of the above fields or type their names or values incorrectly, or do not or-
der them exactly as they are in the Daml template, the above code will compile but fail at run-time
because you did not structure your create command correctly.

Exercise Command

To build ExerciseCommand for lou_Transfer:

choice Iou Transfer : ContractId IouTransfer
with
newOwner : Party
controller owner
do create IouTransfer with iou = this; newOwner

Summary

When creating custom bindings for Daml Ledgers, you will need to:

generate Ledger API from the gRPC definitions
decide whether to write a codegen to generate ledger commands or manually build them for all
contracts defined in your Daml model.

The above examples should help you get started. If you are creating custom binding or have any
questions, see the Getting Help page for how to get in touch with us.

112. Integrate Daml with Off-Ledger Services 389

Daml SDK Documentation, 2.7.3

Links

gRPC documentation: https://grpc.io/docs/
Documentation for Protobuf well known types : https://developers.google.com/
protocol-buffers/docs/reference/google.protobuf
Daml Ledger API gRPC Protobuf definitions
- current main: https://github.com/digital-asset/daml/tree/main/ledger-api/
grpc-definitions
- for specific versions: https://github.com/digital-asset/daml/releases
Required gRPC Protobuf definitions:
- https://raw.githubusercontent.com/grpc/grpc/v1.18.0/src/proto/grpc/status/status.
proto
- https://raw.githubusercontent.com/grpc/grpc/v1.18.0/src/proto/grpc/health/v1/
health.proto

1.12.6 Daml Off-Ledger Automation
1.12.6.1 Write Off-Ledger Automation Using Daml

The Daml smart contract language is mostly meant to provide a way to define on-ledger logic, i.e.
code that defines how a transaction happens on ledger. Daml is not meant to be used as a general
purpose language that can interact with your file system or network; instead, the templates and
choices defined with Daml are available to be used by off-ledger logic that interacts with the ledger
API. Usually this off-ledger logic is written in a general-purpose language like Java or JavaScript and
the codegen allows to interact with models defined in Daml without boilerplate.

However, there are times when it would be nice to write your off-ledger logic in Daml. For relatively
simple automations that don’t require full access to your system’s capabilities, using Daml means
that you don’t have to map from your on-ledger Daml types and their representation on a separate
off-ledger general purpose language (either through the codegen or by manipulating the Protobuf
representation of Daml types directly).

There are two tools that allow you to use Daml as an off-ledger language:

Daml Script allows you to write automations that can be triggered by any off-ledger condition,
such as the availability of a filein a folder, a message coming from a broker or a user interacting
with the system directly.

Daml Triggers allow a similar approach but triggered by on-ledger events, such as the creation
of a contract.

In their interactions with a traditional database system Daml Scripts and Daml Triggers are analo-
gous to SQL scripts and SQL triggers.

390 Chapter 1. Canton References

https://grpc.io/docs/
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf
https://github.com/digital-asset/daml/tree/main/ledger-api/grpc-definitions
https://github.com/digital-asset/daml/tree/main/ledger-api/grpc-definitions
https://github.com/digital-asset/daml/releases
https://raw.githubusercontent.com/grpc/grpc/v1.18.0/src/proto/grpc/status/status.proto
https://raw.githubusercontent.com/grpc/grpc/v1.18.0/src/proto/grpc/status/status.proto
https://raw.githubusercontent.com/grpc/grpc/v1.18.0/src/proto/grpc/health/v1/health.proto
https://raw.githubusercontent.com/grpc/grpc/v1.18.0/src/proto/grpc/health/v1/health.proto

Daml SDK Documentation, 2.7.3

1.12.6.2 Daml Script

Daml Script provides a simple way of testing Dam| models and getting quick feedback in Daml stu-
dio. In addition to running it in a virtual ledger in Dam/ Studio, you can also point it against an actual
ledger. This means that you can use it for application scripting, to test automation logic and also
for ledger initialization.

You can also use Daml Script interactively using Dam! REPL.

Hint: Rememberthatyou can access all the examplecodebyrunningdaml new script-example
-—-template script-example

Usage

Our example for this tutorial consists of 2 templates.

First, we have a template called Coin:

template Coin

with
issuer : Party
owner : Party
where

signatory issuer, owner

This template represents a coin issued to owner by issuer. Coin has both the owner and the
issuer as signatories.

Second, we have a template called CoinProposal:

template CoinProposal
with
coin : Coin
where
signatory coin.issuer
observer coin.owner

choice Accept : ContractId Coin
controller coin.owner
do create coin

CoinProposal is only signed by the issuer and it provides a single Accept choice which, when
exercised by the controller will create the corresponding Coin.

Having defined the templates, we can now move on to write Daml scripts that operate on these tem-
plates. To get access to the APl used to implement Daml scripts, you need to add the daml-script
library to the dependencies field in daml. yaml.

dependencies:
- daml-prim
- daml-stdlib
- daml-script

We also enable the ApplicativeDo extension. We will see below why this is useful.

112. Integrate Daml with Off-Ledger Services 391

Daml SDK Documentation, 2.7.3

{-# LANGUAGE ApplicativeDo #-}
module ScriptExample where

import DA.Time
import Daml.Script

Since on an actual ledger parties cannot be arbitrary strings, we define a record containing all the
parties that we will use in our script so that we can easily swap them out.

data LedgerParties = LedgerParties with
bank : Party
alice : Party
bob : Party

Let us now write a function to initialize the ledger with 3 CoinProposal contracts and accept 2 of
them. This function takes the LedgerParties as an argument and returns a value of type Script
() which is Daml script’s equivalent of Scenario ().

initialize : LedgerParties -> Script ()
initialize parties = do

First we create the proposals. To do so, we use the submit function to submit a transaction. The
first argument is the party submitting the transaction. In our case, we want all proposals to be cre-
ated by the bank so we use parties.bank. The second argument must be of type Commands a
so in our case Commands (ContractId CoinProposal, ContractId CoinProposal, Con-
tractId CoinProposal) corresponding to the 3 proposals that we create. However, Commands
requires that the individual commands do not depend on each other. This matches the restriction
on the Ledger APl where a transaction consists of a list of commands. Using ApplicativeDo we
can still use do-notation as long as we respect this and the last statement in the do-block is of the
form return expr orpure expr.In Commands we use createCmd instead of create and exer-
ciseCmd instead of exercise.

(coinProposalAlice, coinProposalBob, coinProposalBank) <- submit parties.bank $']
—do
coinProposalAlice <- createCmd (CoinProposal (Coin parties.bank parties.
—alice))
coinProposalBob <- createCmd (CoinProposal (Coin parties.bank parties.bob))
coinProposalBank <- createCmd (CoinProposal (Coin parties.bank parties.bank))
pure (coinProposalAlice, coinProposalBob, coinProposalBank)

Now that we have created the CoinProposals,we wantAlice and Bob to accept the proposal while
the Bank will ignore the proposal that it has created for itself. To do so we use separate submit
statements for Alice and Bob and call exerciseCmd.

coinAlice <- submit parties.alice $ exerciseCmd coinProposalAlice Accept
coinBob <- submit parties.bob $ exerciseCmd coinProposalBob Accept

Finally, we call pure () onthe lastline of our script to match the type Script ().

pure ()

392 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Party Management

We have now defined awaytoinitialize the ledger sowe can write a test that checks that the contracts
that we expect exist afterwards.

First, we define the signature of our test. We will create the parties used here in the test, so it does
not take any arguments.

test : Script ()
test = do

Now, we create the parties using the allocateParty function. This uses the party management
service to create new parties with the given display name. Note that the display name does not
identify a party uniquely. If you call allocateParty twice with the same display name, it will create
2 different parties. This is very convenient for testing since a new party cannot see any old contracts
on the ledger so using new parties for each test removes the need to reset the ledger. We factor out
party allocation into a function so we can reuse it in later sections.

allocateParties : Script LedgerParties
allocateParties = do

alice <- allocateParty "alice"

bob <- allocateParty "bob"

bank <- allocateParty "Bank"

pure (LedgerParties bank alice bob)

We now call the initialize function that we defined before on the parties that we have just allo-
cated.

initialize parties

Queries

To verify the contracts on the ledger, we use the query function. We pass it the type of the template
and a party. It will then give us all active contracts of the given type visible to the party. In our
example, we expect to see one active CoinProposal for bank and one Coin contract for each of
Alice and Bob. We get back list of (ContractId t, t) pairsfrom query. In our tests, we do not
need the contract ids, so we throw them away using map snd.

proposals <- query (@CoinProposal bank
assertEq [CoinProposal (Coin bank bank)] (map snd proposals)

aliceCoins <- query @Coin alice
assertEg [Coin bank alice] (map snd aliceCoins)

bobCoins <- query (@Coin bob
assertEq [Coin bank bob] (map snd bobCoins)

112. Integrate Daml with Off-Ledger Services 393

Daml SDK Documentation, 2.7.3

Interfaces

To use interfaces within Daml code, the target language version must be at least 1.15.

build-options:
- ——target=1.15

Now we can define an Asset interface which can be implemented by the Coin template. We also
define AssetInfo for use as the viewtype.

data AssetInfo = AssetInfo { info : Text } deriving (Eq, Show)

interface Asset where
viewtype AssetInfo

interface instance Asset for Coin where
view = AssetInfo { info = "A Coin" }

Now we use the queryInterface function. We pass it the type of the interface and a party. It will
return a list of active contract views for the given interface type. As before we throw away the contract
ids using map snd.

aliceAssets <- querylInterface (@Asset alice
assertEg [Some $ AssetInfo "A Coin"] (map snd aliceAssets)

Run a Script

To run our script, we first build it with daml buildand then run it by pointing to the DAR, the name
of our script, and the host and port our ledger is running on.

daml script --dar .daml/dist/script-example-0.0.1.dar --script-name Scrip-
tExample:test --ledger-host localhost --ledger-port 6865

Up to now, we have worked with a script (test) thatis entirely self-contained. This is fine for running
unit-test type script in the IDE, but for more complex use-cases you may want to vary the inputs of a
script and inspect its outputs, ideally without having to recompile it. To that end, the daml script
command supports the flags --input-file and --output-file. Both flags take a filename, and
said file will be read/written as JSON, following the Daml-LF JSON Encoding.

The —-output-fileoptioninstructs daml scripttowritetheresultofthegiven--script-name
to the given filename (creating the file if it does not exist; overwriting it otherwise). This is most
useful if the given program has a type Script b, where b is a meaningful value. In our example, we
can use this to write out the party ids that have been allocated by allocateParties:

daml script --dar .daml/dist/script-example-0.0.1.dar --script-name
ScriptExample:allocateParties --ledger-host localhost --ledger-port 6865
--output-file ledger-parties.json

The resulting file will look similar to the following but the actual party IDs will be different each time
you run it:

{
"bank": "party-93affbfe-8717-4996-990c-
—~9f4c5a889663::12201d00faa0968d7ab8le63ad6ad4ee0d31b08a3581b1d8596e68al1356£27519¢cc

=7 (continues on next page)

394 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

"alice": "party-99595f45-75e3-4373-997c-
—fbdf899439£7::12201d00faa0968d7ab81le63adb6ad4ee0d31b08a3581b1d8596e68a1356£27519¢cc
(_}H,

"bob": "party-6e38eled-c070-4ded-ba20-
—~073e0dbdb13c::12201d00faa0968d7ab81le63ad6ad4ee0d31b08a3581b1d8596e68a1356£27519¢cc

"
—

}

Next, we want to call the initialize function with those parties using the --input-file flag.
If the ——input-file flag is specified, the -~-script-name flag must point to a function of one
argument returning a Script, and the function will be called with the result of parsing the input file
as its argument. For example, we can initialize our ledger using the initialize function defined
above.

Using the previously created ~ledger-parties.json file, we caninitialize our ledger as follows:

daml script --dar .daml/dist/script-example-0.0.1.dar —--script-name Scrip-
tExample:initialize --ledger-host localhost --ledger-port 6865 —--input-file
ledger-parties.json

Use Daml Script for Ledger Initialization

You canuse Daml scripttoinitialize aledgeron startup. Todo so, specifyaninit-script: Scrip-
tExample:initializeUser field inyourdaml.yaml. This will automatically be picked up by daml
start and used to initialize sandbox. During development not being able to control party ids can
often be inconvenient. Here, we rely on users which do put us in control of their id. User ids can be
used in Navigator, triggers & other tools instead of party ids.

initializeUser : Script ()
initializeUser = do
parties <- allocateParties
bank <- validateUserId "bank"
alice <- validateUserId "alice"
bob <- validateUserId "bob"
_ <- createUser (User bank (Some parties.bank)) [CanActAs parties.bank]
_ <- createUser (User alice (Some parties.alice)) [CanActAs parties.alice]
_ <- createUser (User bob (Some parties.bob)) [CanActAs parties.bob]
initialize parties

Migrate From Scenarios

Existing scenarios that you used for ledger initialization can be translated to Daml script but there
are a few things to keep in mind:

1. You need to add daml-script to the list of dependencies in your daml. yaml.

2. You need to import the Daml.Script module.

3. Calls to create, exercise, exerciseByKey and createAndExercise need to be suffixed
with Cmd, e.g., createCmd.

4. Instead of specifying a scenario field in your daml.yaml, you need to specify an
init-script field. The initialization script is specified via Module:identifier for both
fields.

112. Integrate Daml with Off-Ledger Services 395

Daml SDK Documentation, 2.7.3

5. In Daml script, submit and submitMustFail are limited to the functionality provided by the
ledger API: A list of independent commands consisting of createCmd, exerciseCmd, cre-
ateAndExerciseCmd and exerciseByKeyCmd. There are two issues you mightruninto when
migrating an existing scenario:

1. Your commands depend on each other, e.g., you use the result of a create within a follow-
ingcommand in the same submit. In this case, you have two options: Ifitis notimportant
that they are part of a single transaction, split them into multiple calls to submit. If you
do need them to be within the same transaction, you can move the logic to a choice and
call that using createAndExerciseCmd.

2. You use something that is not part of the 4 ledger APl command types, e.g., fetch. For
fetch and fetchByKey, you can instead use queryContractId and queryContrac-—
tKey with the caveat that they do not run within the same transaction. Other types of
Update statements can be moved to a choice that you call via createAndExerciseCmd.

6. Instead of Scenario’s getParty, Daml Script provides you with allocateParty and allo-
catePartyWithHint. There are a few important differences:

1. Allocating a party always gives you back a new party (or fails). If you have multiple calls to
getParty with the same string and expect to get back the same party, you should instead
allocate the party once at the beginning and pass it along to the rest of the code.

2. If you want to allocate a party with a specific party id, you can use allocatePartyWith-
Hint x (PartyIdHint x) as a replacement for getParty x. Note that while this is sup-
ported in Daml Studio, some ledgers can behave differently and ignore the party id hint or
interpret it another way. Try to not rely on any specific party id.

7. Instead of pass and passToDate, Daml Script provides passTime and setTime.

Use Daml Script with the IDE Ledger

Similarly to running daml test or when running a script in VSCode itself via the provided buttons,
you canuse daml script torun the scriptsin a given DAR file within the IDE Ledger. This is a fully
in-memory child process of daml script, allowing you to quickly invoke a script without having to
spin up a ledger in the background.

Torundaml script inthis mode, you should provide the --ide-ledger flag. This flag is not com-
patible with ——ledger-host, --ledger-port, ——participant-config (described more in the
next section), and --json-api. Note that since this uses an in-memory ledger, no state will be pre-
served once the script finishes. You will only receive a success flag and, optionally, the script result
if you use —-output-file.

Use Daml Script in Canton

So far, we have run Daml script against a single participant node. It is also possible to
run it in a setting where different parties are hosted on different participant nodes. To do
so, pass the --participant-config participant-config.json file to daml script in-
stead of --ledger-host and ledger-port. You can generate this file by calling utils.gener-
ate_daml_script_participants_conf(defaultParticipant = Some(one)) in the canton console or in the boot-
strap scripts.

The generated file will look similar to the one shown below:

{
"default participant": {"host": "localhost", "port": 6866},

(continues on next page)

396 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

"participants": {
"one": {"host": "localhost", "port": 6866},
"two": {"host": "localhost", "port": 6865}

by

"party participants": {"alice": "one", "bob": "two"}

This will define a participant called one, declare one as the default participant and it defines that
the party alice is hosted on participant one. Whenever you submit something as party, we will use
the participant for that party or if none is specified default participant.

If you use utils.generate daml script participants conf () without a default partici-
pant, the default_participant won’t be defined and therefore using a party with an unspecified par-
ticipantis an error.

allocateParty will alsouse the default participant. If you wantto allocate a party on a spe-
cific participant, you can use allocatePartyOn which accepts the participant name as an extra
argument.

Hints for synchronizing contracts on multiple-participant Canton

When you create a contract on participantl and try to use it on participant2, you can run
into synchronization issues where participant2 doesn’t see the contract yet. One option to
workaround this limitation is to poll until the contract is visible. In the example below, the bank
and alice parties are allocated on two different participants and to avoid synchronization issues,
we wait until the contract is visible on alice participant.

tries : Int
tries = 60

waitForCid : (Template t, HasAgreement t) => Int -> Party -> ContractId t ->[]
—Script ()
wailtForCid tries p cid
| tries <= 0 = abort $ "Cid " <> show cid <> " did not appear"
| otherwise = do
r <- queryContractId p cid
case r of
None -> do
sleep delay
waitForCid (tries - 1) p cid
Some _ -> pure ()
where delay = seconds 1

testWithSync: LedgerParties -> Script ()
testWithSync parties = do
coinProposalAlice <- submit parties.bank $ createCmd (CoinProposal (Coin']
—parties.bank parties.alice))
waitForCid tries parties.alice coinProposalAlice
coinAlice <- submit parties.alice $ exerciseCmd coinProposalAlice Accept
pure ()

112. Integrate Daml with Off-Ledger Services 397

https://github.com/digital-asset/daml/issues/10618

Daml SDK Documentation, 2.7.3

Run Daml Script Against Ledgers with Authorization

To run Daml Script against a ledger that verifies authorization, you need to specify an access token.
There are two ways of doing that:

1. Specify asingle access tokenvia -—access-token-file path/to/jwt. Thistoken will then
be used for all requests so it must provide claims for all parties that you use in your script.

2. If you need multiple tokens, e.g., because you only have single-party tokens you can define the
access_token field in the participant config specified via --participant-config. Note
that you can specify the same participant twice if you want different auth tokens. The file
should be of the format

{

"default participant": {"host": "localhost", "port": 6866, "access_token":
—"default jwt", "application_id": "myapp"},
"participants": {
"one": {"host": "localhost", "port": 6866, "access_token": "jwt for alice
—'", "application_id": "myapp"},
"two": {"host": "localhost", "port": 6865, "access_token": "jwt for bob",

—"application_id": "myapp"}
by

"party participants": {"alice": "one", "bob": "two"}

If you specify both —~access-token-file and --participant-config, the participant config
takes precedence and the token from the file will be used for any participant that does not have a
token specified in the config.

Run Daml Script Against the HTTP JSON API

In some cases, you only have access to the HTTP JSON APl but not to the gRPC of a ledger, e.g., on Dam|
Hub. For this use case, Daml script can be run against the JSON API. Note that if you do have access
to the gRPC Ledger API, running Daml script against the JSON APl does not have any advantages.

To run Daml script against the JSON APl you have to pass the --json-api parameter to daml
script. There are a few differences and limitations compared to running Daml Script against the
gRPC Ledger API:

1. When running against the JSON API, the —-host argument has to contain an http:/
/ or https:// prefix, eg, daml script --host http://localhost --port 7575
--json-api.

2. The JSON APl only supports single-command submissions. This means that within a single call
to submit you can only execute one ledger APl command, e.g., one createCmd or one exer-
ciseCmd

3. The JSON API requires authorization tokens even when it is run against a ledger that doesn’t
verify authorization. The section on authorization describes how to specify the tokens.

4. The parties used for command submissions and queries must match the parties specified in
the token exactly. For command submissions that means actAs and readAs must match
exactly what you specified whereas for queries the union of actAs and readAs must match
the parties specified in the query.

5. If you use multiple parties within your Daml Script, you need to specify one token per party or
every submission and query must specify all parties of the multi-party token.

398 Chapter 1. Canton References

https://hub.daml.com
https://hub.daml.com

Daml SDK Documentation, 2.7.3

6. getTime will always return the Unix epoch in static time mode since the time service is not
exposed via the JSON API.
7. setTime is not supported and will throw a runtime error.

1.12.6.3 Daml Triggers - Off-Ledger Automation in Daml

In addition to the actual Daml logic which is uploaded to the Ledger and the Ul, Daml applications
often need to automate certain interactions with the ledger. This is commonly done in the form of
a ledger client that listens to the transaction stream of the ledger and when certain conditions are
met, e.g., when a template of a given type has been created, the client sends commands to the ledger
to create a template of another type.

It is possible to write these clients in a language of your choice, such as JavaScript, using the HTTP
JSON API. However, that introduces an additional layer of friction: you now need to translate between
the template and choice types in Daml and a representation of those Daml types in the language you
are using for your client. Daml triggers address this problem by allowing you to write certain kinds
of automation directly in Daml, reusing all the Daml types and logic that you have already defined.
Note that, while the logic for Daml triggers is written in Daml, they act like any other ledger client:
they are executed separately from the ledger, they do not need to be uploaded to the ledger and they
do not allow you to do anything that any other ledger client could not do.

If you don’t want to follow along, but still want to get the final code for this section to play with, you
can get it by running:

daml new --template=gsg-trigger gsg-trigger

How To Think About Triggers

It is tempting to think of Daml Triggers as snippets of code that react to ledger events . However,
this is not the best way to think about them; while it will work in some cases, in many corner cases
that line of thought will lead to subtle errors.

Instead, you should think of, and write, your triggers from the perspective of correcting the current
ACS to match some predefined expectations. Trigger rules should be a combination of checking
those expectations on the current ACS and applying corrective actions to bring back the ACS in line
with its expected state.

The trigger partis best thought of as an optimization: rather than check the ACS constantly, we
only apply our rules when something happens that we believe may lead to the state of the ledger
diverging from our expectations.

Sample Trigger

Ourexample for this tutorial builds upon the Getting Started Guide, specifically picking up right after
the Your First Feature section.

We assume that our requirements are to build a chatbot that responds to every message with:
Please, tell me more about that.

That should fool anyone and pass the Turing test, easily.

112. Integrate Daml with Off-Ledger Services 399

Daml SDK Documentation, 2.7.3

As explained above, while the layman description may be responds toevery message ,our technical
descriptionis better phrased as ensurethat, at all times, the last message we can see has been sent
by us; if that is not the case, the corrective action is to send a response to the last message we can
see .

Daml Trigger Basics

A Daml trigger is a regular Daml project that you can build using daml build. To get access to the
APl used to build a trigger, you need to add the daml-trigger library to the dependencies field in
daml.yaml:

dependencies:

- daml-prim

- daml-stdlib

- daml-script

- daml-trigger

Note: In the specific case of the Getting Started Guide, this is already included as part of the
create-daml-app template.

In addition to that you also need to import the Daml.Trigger module in your own code.

Daml triggers automatically track the active contract set (ACS), i.e., the set of contracts that have
been created and have not been archived, and the commands in flight for you. In addition to that,
they allow you to have user-defined state that is updated based on new transactions and command
completions. For our chatbot trigger, the ACS is sufficient, so we will simply use () as the type of the
user defined state.

To create a trigger you need to define a value of type Trigger s where s is the type of your
user-defined state:

data Trigger s = Trigger
{ initialize : TriggerInitializeA s
, updateState : Message -> TriggerUpdateA s ()
, rule : Party -> TriggerA s ()
, registeredTemplates : RegisteredTemplates
, heartbeat : Optional RelTime

To clarify, this is the definition in the Daml.Trigger library, reproduced here for illustration pur-
poses. This is not something you need to add to your own code.

The initialize function is called on startup and allows you to initialize your user-defined state
based on querying the active contract set.

The updateState function is called on new transactions and command completions and can be
used to update your user-defined state based on the ACS and the transaction or completion. Since
our Daml trigger does not have any interesting user-defined state, we will not go into details here.

The rule function is the core of a Daml trigger. It defines which commands need to be sent to the
ledger based on the party the trigger is executed at, the current state of the ACS, and the user defined
state. The type TriggerA allows you to emit commands that are then sent to the ledger, query
the ACS with query, update the user-defined state, as well as retrieve the commands in flight with
getCommandsInFlight. Like Scenario or Update, you can use do notation and getTime with
TriggerA.

400 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

We can specify the templates and interfaces that our trigger will operate on. In our case, we will sim-
ply specify A11InDar which means that the trigger will receive events for all template and interface
types defined in the DAR.

It is also possible to specify an explicit list of templates and interfaces. For example, to only receive
events for the Message template, one would write:

registeredTemplates = RegisteredTemplates [registeredTemplate (@Message],

This is mainly useful for performance reasons if your DAR contains many templates and interfaces
that are not relevant for your trigger. Note that providing an explicit list of templates and interfaces
also filters the result of querying the ACS using the Trigger API: contracts of the excluded templates
and interfaces cannot be queried.

Note: In these examples we used templates. Note that interfaces can be passed as well wherever a
template is passed, using the same RegisteredTemplates type. You are free to pass multiple templates
and interfaces and possibly mix the two freely in a single request.

Finally, you can specify an optional heartbeat interval at which the trigger will be sentaMHeartbeat
message. This is useful if you want to ensure that the trigger is executed at a certain rate to issue
timed commands. We will not be using heartbeats in this example.

Run a No-Op Trigger

To implement a no-op trigger, one could write the following in a separate daml/ChatBot.daml file:

module NoOp where
import qualified Daml.Trigger as T

noOp : T.Trigger ()
noOp = T.Trigger with
initialize = pure ()
updateState = _ -> pure ()
rule = _ -> do
debug "triggered"
pure ()
registeredTemplates = T.AllInDar
heartbeat = None

In the context of the Getting Started app, if you write the above file, then run daml start and npm
start as usual, and then set up the trigger with:

daml trigger --dar .daml/dist/gsg-trigger-0.1.0.dar \
-—trigger-name NoOp:noOp \
--ledger-host localhost \
--ledger-port 6865 \
--ledger-user "bob"

and then play with the app as alice and bob just like you did for Your First Feature, you should see the
trigger command printing a line for each interaction, containing the message triggered as well as

112. Integrate Daml with Off-Ledger Services 401

Daml SDK Documentation, 2.7.3

other debug information.

Diversion: Updating Message

Before we can make our Trigger more useful, we need to think a bit more about what it is supposed
to do. For example, we don’t want to respond to bob’s own messages. We also do not want to send
messages when we have not received any.

In order to start with something reasonably simple, we’re going to set the rule as

if the last message we can see was not sent by bob, then we’ll send "Please, tell me
more about that." towhoever sent the last message we can see.

This raises the question of how we can determine which message is the last one, given the current
structure of a message. In order to solve that, we need to add a Time field to Message, which can be
done by editing the Message template in daml/User.daml to look like:

template Message with
sender: Party
receiver: Party
content: Text
receivedAt: Time
where
signatory sender, receiver

This should result in Daml Studio reporting an error in the SendMessage choice, as it now needs to
set the receivedAt field. Here is the updated code for SendMessage:

-- New definition for SendMessage
nonconsuming choice SendMessage: ContractId Message with
sender: Party
content: Text
controller sender
do
assertMsg "Designated user must follow you back to send a message" (elem]
—sender following)
now <- getTime
create Message with sender, receiver = username, content, receivedAt = now

The getTime action (doc) returns the time at which the command was received by the sandbox.
In more sensitive applications, this may not be sufficiently reliable, as transactions may be pro-
cessed in parallel (so received at timestamp order may not match actual transaction order), and
in distributed cases dishonest participants may fudge this value. It's good enough for this example,
though.

Now that we have a field to sort on, and thus a way to identify the latest message, we can turn our
attention back to our trigger code.

402 Chapter 1. Canton References

/daml/stdlib/Prelude.html#function-da-internal-lf-gettime-99334

Daml SDK Documentation, 2.7.3

AutoReply

Open up the trigger code again (daml/ChatBot.daml), and change it to:

module ChatBot where

import qualified Daml.Trigger as T
import qualified User

import qualified DA.List.Total as List
import DA.Action (when)

import DA.Optional (whenSome)

autoReply : T.Trigger ()
autoReply = T.Trigger
{ initialize = pure ()
, updateState = _ -> pure ()
, rule = \p -> do
message_contracts <- T.query (@User.Message
let messages = map snd message contracts

debug $ "Messages so far: " <> show (length messages)
let lastMessage = List.maximumOn (.receivedAt) messages
debug $ "Last message: " <> show lastMessage
whenSome lastMessage $ \m ->

when (m.receiver == p) $ do

users <- T.query (@User.User
debug users

let isSender = (\user -> user.username == m.sender)
let replyTo = List.head $ filter (\(_, user) -> isSender user) users
whenSome replyTo $ \(sender, _) ->

T.dedupExercise sender (User.SendMessage p '"Please, tell me morell
—~about that.")
, registeredTemplates = T.AllInDar
, heartbeat = None

Refresh daml start by pressing r (followed by Enter on Windows) in its terminal, then start the
trigger with:

daml trigger --dar .daml/dist/gsg-trigger-0.1.0.dar \
--trigger-name ChatBot:autoReply \
--ledger-host localhost \
--ledger-port 6865 \
--ledger-user "bob"

Play a bitwith alice and bob in your browser, to get a feel for how the trigger works. Watch both the
messages in-browser and the debug statements printed by the trigger runner.

Let’s walk through the rule code line-by-line:

We use the query function to get all of the Message templates visible to the current party (p;
in our case this will be bob). Per the documentation, this returns a list of tuples (contract id,
payload), which we store as message contracts.

We then map the snd function on the result to get only the payloads, i.e. the actual data of the
messages we can see.

We print, as a debug message, the number of messages we can see.

On the next line, get the message with the highest receivedAt field (maximumoOn).

112. Integrate Daml with Off-Ledger Services 403

/triggers/api/Daml-Trigger.html#function-daml-trigger-query-2759
/daml/stdlib/Prelude.html#function-ghc-base-map-40302
/daml/stdlib/Prelude.html#function-da-internal-prelude-snd-86578
/daml/stdlib/DA-List-Total.html#function-da-list-total-maximumon-67732

Daml SDK Documentation, 2.7.3

We then print another debug message, this time printing the message our code has identified
as thelast message visible to the current party . If you run this, you’ll see that lastMessage
is actually a Optional Message. This is because the maximumOn function will return the
element from a list for which the given functions produces the highest value if the list has at
least one element, but it needs to still do something sensible if the list is empty; in this case,
it would return None.

When lastMessage is Some m (whenSome), we execute the given function. Otherwise,
lastMessage is None and we implicitly do nothing.

Next, we need to check whether the message has been sent toor by the party running the trigger
(with the current Daml model, it has to be one or the other, as messages are only visible to the
sender and receiver). when the expressionm.receiver == pis True,our expectations of the
ledger state are wrong and we need to correct it. Otherwise, the state matches our rule and we
don’t need to do anything.

At this point we know the stateis wrong , per our expectations, and start engaging in correct-
ing actions. For this trigger, this means sending a message to the sender of the last message.
In order to do that, we need to find the User contract for the sender. We start by getting the
list of all User contracts we know about, which will be all users who follow the party running
the trigger (and that party’s own User contract). As for Message contracts earlier, the result
of query QUser is going to be a list of tuples with (contract id, payload). The big difference
is that this time we actually want to keep the contract ids, as that is what we’ll use to send a
message back.

We print the list of users we just fetched, as a debug message.

We create a function isSender to identify the user we are looking for.

We get the user contract by applying our isSender function as a filter on the list of users, and
then taking the head of that list, i.e. its first element.

Just like maximumOn, head will return an Optional a, sothe next step istocheck whetherwe
have actually found the relevant User contract. In most cases we should find it, but remember
that users can send us a message if we follow them, whereas we can only answer if they follow
us.

If we did find some User contract to reply to, we extract the corresponding contract id (first
element of the tuple, sender) and discard the payload (second element,), and we exercise
the SendMessage choice, passingin the current party p as the sender. See below for additional
information on what that dedup in the name of the command means.

Command Deduplication

Daml Triggers react to many things, and it’s usually important to make sure that the same command
is not sent multiple times.

For example, in our autoReply chatbot above, the rule will be triggered not only when we receive a
message, but also when we send one, as well as when we follow a user or get followed by a user, and
when we stop following a user or a user stops following us.

It’s easy to imagine a sequence of events that would make a naive trigger implementation send too
many messages. For example:

alice sends "hi", so the trigger runs and sends an exercise command.

Before the exercise command is fully processed, carol follows bob, which triggers the
rule again. The state of all the Message contracts bob can see has not changed, so the rule
might send the response to alice again.

We obviously don’t want that to happen, as it would likely prevent us from passing that Turing test

404 Chapter 1. Canton References

/daml/stdlib/DA-List-Total.html#function-da-list-total-maximumon-67732
/daml/stdlib/DA-Optional.html#function-da-optional-whensome-23804
/daml/stdlib/DA-Action.html#function-da-action-when-53144
/daml/stdlib/Prelude.html#function-da-internal-prelude-filter-41317
/daml/stdlib/DA-List-Total.html#function-da-list-total-head-26095
/triggers/api/Daml-Trigger.html#function-daml-trigger-dedupexercise-2238

Daml SDK Documentation, 2.7.3

we were after.

Triggers offer a few features to help users manage that. Possibly the simplest one is the dedup*
family of ledger operations. When using those, the trigger runner will keep track of the commands
currently sent and prevent sending the exact same command again. In the above example, the trig-
ger would see that, when carol follows bob and the rule runs dedupExercise, there is already an
Exercise command in flight with the exact same value, in this case same message, same sender and
same receiver.

Note that, if instead the in-between eventis alice following carol, this simple deduplication mech-
anism might not work as expected: because the User contract ID for alice would have changed,
the new command is not the same as the in-flight one and thus a second SendMessage exercise
would be sent to the ledger.

Similarly, if alice sends a second message quickly after the first one, this deduplication would
prevent it, because the response does not have any reference to which message it’s responding
to. This may or may not be what we want.

If this simple deduplication is not suited to your use-case, you have two other tools at your disposal.
The first one is the second argument to the emitCommands action (doc), which is a list of contract
IDs. These IDs will be filtered out of any ACS query made by this trigger until the commands sub-
mitted as part of the same emitCommands call have completed. If your trigger is based on seeing
certain contracts, this can be a simple, effective way to prevent triggering it multiple times.

The last tool you have at your disposal is the getCommandsInflight action (doc), which returns all
of the commands this instance of the trigger runner has sent and that have not yet been resolved
(i.e. either committed or failed). You can then build your own logic based on this list, the ACS, and
possibly your own trigger state.

Finally, do keep in mind that all of these mechanisms rely on internal state from the trigger runner,
which keeps track of which commands it has sent and for which it’s not seen a completion. They will
all fail to deduplicate if that internal state is lost, e.g. if the trigger runner is shut down and a new one
is started. As such, these deduplication mechanisms should be seen as an optimization rather than
arequirement for correctness. The Daml model should be designed such that duplicated commands
are either rejected (e.g. using keys or relying on changing contract IDs) or benign.

Authorization

When using Daml triggers against a Ledger with request authorization, you can pass
-—access-token-file token.jwt to daml trigger which will read the token from the
file token. jwt.

If you plan to run more than one trigger at a time, or triggers for more than one party at a time, you
may be interested in the Trigger Service.

112. Integrate Daml with Off-Ledger Services 405

https://docs.daml.com/triggers/api/Daml-Trigger.html#function-daml-trigger-emitcommands-10563
https://docs.daml.com/triggers/api/Daml-Trigger.html#function-daml-trigger-getcommandsinflight-32524

Daml SDK Documentation, 2.7.3

When Not to Use Daml Triggers

Daml triggers deliberately only allow you to express automation that listens for ledger events and
reacts to them by sending commands to the ledger.

Daml Triggers are not suited for automation that needs to interact with services or data outside
of the ledger. For those cases, you can write a ledger client using the JavaScript bindings running
against the HTTP JSON API or the Java bindings running against the gRPC Ledger API.

Trigger Service

The Run a No-Op Trigger section shows a simple method using the daml trigger command to ar-
range for the execution of a single trigger. Using this method, a dedicated process is launched to
host the trigger.

Complex workflows can require running many triggers for many parties and at a certain point, use of
daml trigger with its process-per-trigger model becomes unwieldy. The Trigger Service provides
the means to host multiple triggers for multiple parties running against acommon ledger in a single
process and provides a convenient interface for starting, stopping and monitoring them.

TheTrigger Service is a ledger clientthat acts as an end-user agent. The Trigger Service intermediates
between the ledger and end-users by running triggers on their behalf. The Trigger Service is an HTTP
service. All requests and responses use JSON to encode data.

Start the Trigger Service

In this example, it is assumed there is a Ledger API server running on port 6865 on localhost.

daml trigger-service --config trigger-service.conf

The following snippet provides an example of what a possible trigger-service.conf configuration file
could look like, alongside a few annotations with regards to the meaning of the configuration keys
and possibly their default values.

{
// Paths to the DAR files containing the code executed by the trigger.
dar-paths = [

"./my-app.dar"
]

// Host address that the Trigger Service listens on. Defaults to 127.0.0.1.
address = "127.0.0.1"

// Trigger Service port number. Defaults to 8088.

// A port number of 0 will let the system pick an ephemeral port.

port = 8088

// Optional. If using 0 as the port number, consider specifying the path to all
— port-file' where the chosen port will be saved in textual format.

//port-file = "/path/to/port-file"

// Mandatory. Ledger API server address and port.
ledger-api {

(continues on next page)

406 Chapter 1. Canton References

/app-dev/bindings-ts/index.html

Daml SDK Documentation, 2.7.3

(continued from previous page)

address = "localhost"
port = 6865

// Maximum inbound message size in bytes. Defaults to 4194304 (4 MB).
max—-inbound-message-size = 4194304

// Minimum and maximum time interval before restarting a failed trigger.[]
—Defaults to 5 and 60 seconds respectively.

min-restart-interval = 5s

max-restart-interval 60s

// Maximum HTTP entity upload size in bytes. Defaults to 4194304 (4 MB).
max-http-entity-upload-size = 4194304

// HTTP entity upload timeout. Defaults to 60 seconds.
http-entity-upload-timeout = 60s

// Use static or wall-clock time. Defaults to “wall-clock’.
time-provider-type = "wall-clock"

// Compiler configuration type to use between “default’ or ‘dev’ . Defaults toll
— default’.
compiler-config = "default"

// Time-to-live used for commands emitted by the trigger. Defaults to 300
—seconds.
ttl = 30s

// If true, initialize the database and terminate immediately. Defaults toll
—~false.
init-db = "false"

// Do not abort if there are existing tables in the database schema. EXPERT]
—ONLY. Defaults to false.
allow-existing-schema = "false"

// Configuration of trigger runners.
trigger-config {
// The number of ledger client command invocations each trigger will attempt[]
—to execute in parallel. Defaults to 8.
parallelism = 8

// Maximum number of retries for a failing ledger API command submission.[]
—Failed submission requests may be

// handled by trigger rules. Defaults to 6.

max-retries = 6

// Used to control maximum rate at which we perform ledger client submissionl]
—requests.

max-submission-requests = 100 // Defaults to 100.
5s // Defaults to 5s.

max-submission-duration

// Size of the queue holding ledger API command submission failures. Whenl]
—queue is filled, submission requests
// are dropped. Defaults to 264.

(continues on next page)

112. Integrate Daml with Off-Ledger Services 407

Daml SDK Documentation, 2.7.3

(continued from previous page)

submission-failure-queue-size = 264

// Configuration for the persistent store that will be used to keep track ofll
—running triggers across restarts.

// Mandatory if “init-db’ is true. Otherwise optional. If not provided, thel]
—trigger state will not be persisted

// and restored across restarts.

trigger-store {

// Mandatory. Database coordinates.

user = "postgres"

password = "password"

driver = "org.postgresgl.Driver"

url = "jdbc:postgresqgl://localhost:5432/test?&ssl=true"

// Prefix for table names to avoid collisions. EXPERT ONLY. By default, thisl]
—~1s empty and not used.
//table-prefix = "foo"

// Maximum size for the database connection pool. Defaults to 8.
pool-size = 8

// Minimum idle connections for the database connection pool. Defaults to 8.
min-idle = 8

// Idle timeout for the database connection pool. Defaults to 10 seconds.
idle-timeout = 10s

// Timeout for database connection pool. Defaults to 5 seconds.
connection-timeout = 5s

authorization {

// Auth client to redirect to login. Defaults to "no°
auth-redirect = "no"

// The following options configure the auth URIs.

// Either just “auth-common-uri® or both “auth-internal-uri’® and “auth-
—external-uri’® must be specified.

// If all are specified, “auth-internal-uri® and “auth-external-uri’~ takell
—precedence.

// Sets both the internal and external auth URIs.
//auth-common-uri = "https://ocauth2/common-uri"

// Internal auth URI used by the Trigger Service to connect directly to thel]
—Auth Middleware.
auth-internal-uri = "https://ocauth2/internal-uri"

// External auth URI (the one returned to the browser).
// This value takes precedence over the one specified for “auth-common'.

auth-external-uri = "https://oauth2/external-uri"

// Optional. URI to the auth login flow callback endpoint “/cb'. By defaultl]

—1it 1s constructed from the incoming login request. (continues on next page)

408 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

// auth-callback-uri = "https://ocauth2/callback-uri"

// Maximum number of pending authorization requests. Defaults to 250.
max-pending-authorizations = 250

// Authorization timeout. Defaults to 60 seconds.
authorization-timeout = 60s

// Optional. Trigger service ledger API client TLS configuration. By defaultl]
—TLS configuration is disabled.
//tls-config {

// enabled = "true"

//

// // the certificate to be used by the server

// cert-chain-file = "/path/to/participant.crt"

//

// // private key of the server

// private-key-file = "/path/to/participant.pem"

//

// // trust collection, which means that all client certificates that will be

—verified using the trusted

// // certificates in this store. If omitted, the JVM default trust store isl|
—used.

// trust-collection-file = "/path/to/root-ca.crt"

//}

The Trigger Service can also be started using command line arguments as shown below. The com-
mand daml trigger-service --help lists all available parameters.

Note: Using the configuration format shown above is the recommended way to configure Trigger
Service, running with command line arguments is now deprecated.

daml trigger-service --ledger-host localhost \
--ledger-port 6865 \
--wall-clock-time

Although, as we’ll see, the Trigger Service exposes an endpoint for end-users to upload DAR files to
the service it is sometimes convenient to start the service pre-configured with a specific DAR. To do
this, the --dar option is provided.

daml trigger-service --ledger-host localhost \
--ledger-port 6865 \
--wall-clock-time \
--dar .daml/dist/create-daml-app-0.1.0.dar

112. Integrate Daml with Off-Ledger Services 409

Daml SDK Documentation, 2.7.3

Endpoints

Start a Trigger

Start a trigger. In this example, alice starts the trigger called
trigger in a module called TestTrigger of a package with ID
312094804cl468e2l66bae3c9ba8b5cc0d285e31356304a2e9b0ac549d£59d14. The re-

sponse contains an identifier for the running trigger that alice can use in subsequent commands
involving the trigger.

HTTP Request

URL: /v1l/triggers

Method: POST

Content-Type: application/json
Content:

{
"triggerName":
—"312094804cl468e2166bae3c90al8b5cc0d285e31356304a2e9b0ac549df59d14:TestTrigger:tri

(_}H,
"party": "alice",
"applicationId": "my-app-id"

}

gger

where

triggerName contains the identifier for the trigger in the form ${packageId}:${modu-
leName}:${identifierName}. You can find the package ID using daml damlc inspect
path/to/trigger.dar | head -1.

party is the party on behalf of which the trigger is running.

applicationId is an optional field to specify the application ID the trigger will use for com-
mand submissions. If omitted, the trigger will default to using its random UUID identifier re-
turned in the start request as the application ID.

410 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

HTTP Response

"result":{"triggerId":"4d539e9c-b962-4762-be71-40a5c97a47a6"},
"status":200

Stop a Trigger

Stop a running trigger. In this example, the request asks to stop the trigger started above.

HTTP Request

URL: /v1l/triggers/:id

Method: DELETE

Content-Type: application/json
Content:

HTTP Response

Content-Type: application/json
Content:

{
"result": {"triggerId":"4d539e9c-b9%62-4762-be71-40a5c97ad7a6"},

"status":200

List Running Triggers

List the triggers running on behalf of a given party.

HTTP Request

URL: /vl/triggers?party=:party
Method: GET

1.12. Integrate Daml with Off-Ledger Services 411

Daml SDK Documentation, 2.7.3

HTTP Response

Content-Type: application/json
Content:

"result": {"triggerIds":["4d539e9c-b962-4762-be71-40a5c97a47a6"]},
"status":200

Status of a Trigger

This endpoint returns data about a trigger, including the party on behalf of which it is running, its
identifier, and its current state (querying the active contract set, running, or stopped).

HTTP Request

URL: /vl/triggers/:1id
Method: GET

HTTP Response

Content-Type: application/json
Content:

"result":
{
"party": "Alice",
"triggerId":
—"312094804cl468e2166bae3c9a8b5cc0d285e31356304a2e9p0ac549df59d14:TestTrigger:tri

"
-,

"status": "running"

b
"status":200

gger

Upload a New DAR

Upload a DAR containing one or more triggers. If successful, the DAR’s main package ID will be
in the response (the main package ID for a DAR can also be obtained using daml damlc inspect
path/to/dar | head -1).

412 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

HTTP Request

URL: /vl/packages

Method: POST

Content-Type: multipart/form-data
Content:

dar=$dar content

HTTP Response

Content-Type: application/json
Content:

{

"result": {"mainPackageId":

—"312094804c1468e2166bae3c9a8b5cc0d285e31356304a2e9b0ac549d£59d14"},

"status": 200
}

Liveness Check

This can be used as a liveness probe, e.g., in Kubernetes.

HTTP Request

URL: /1livez
Method: GET

HTTP Response

A status code of 200 indicates a successful liveness check.

Content-Type: application/json
Content:

{ "status": "pass" }

Readiness Check

This can be used as a readiness probe, e.g., in Kubernetes.

112. Integrate Daml with Off-Ledger Services

413

Daml SDK Documentation, 2.7.3

HTTP Request

URL: /readyz
Method: GET

HTTP Response

A status code of 200 indicates a successful readiness check.

Metrics

Enable and Configure Reporting

To enable metrics and configure reporting, you can use the below config block in application config:

metrics {
// Start a metrics reporter. Must be one of "console", "csv:///PATH",
—"graphite://HOST[:PORT] [/METRIC_ PREFIX]", or "prometheus://HOST[:PORT]".

reporter = "prometheus://localhost:9000"
// Set metric reporting interval, examples: 1ls, 30s, 1m, 1h
reporting-interval = 30s

}

Reported Metrics

If a Prometheus metrics reporter is configured, the Trigger Service exposes the common HTTP metrics
for all endpoints.

Authorization

The trigger service issues commands to the ledger that may require authorization through an access
token. See Ledger Authorization for a description of authentication and authorization on Daml ledgers.
How to obtain an access token is defined by the ledger operator. The trigger service interfaces with
an Auth Middleware to obtain an access token in order to decouple it from the specific authentica-
tion and authorization mechanism used for a given ledger. The documentation includes an Example
Configuration using AuthO.

Enable Authorization

You can use the following command-line flags to configure the trigger service to interface with a
given auth middleware.

--auth The URI to the auth middleware. The auth middleware should be reachable under this URI
from the client as well as the trigger service itself.

--auth-callback The login workflow may require redirection to the callback endpoint of the trig-
ger service. This flag configures the URI to the trigger service’s /cb endpoint, it should be reach-
able from the client.

414 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

For example, use the following flags if the trigger service and the auth middleware are both running
behind a reverse proxy.:

-—auth https://example.com/auth
-—auth-callback https://example.com/trigger/cb

Assuming that the auth middleware is available under https://example.com/auth and the trig-
ger service is available under https://example.com/trigger.

Note that the trigger service must be able to share cookies with the auth middleware as described
in the Deployment notes.

Obtain Authorization

The trigger service will respond with 401 Unauthorized if a request requires authentication and au-
thorization of the user. The trigger service can be configured to redirect to the /1ogin endpoint via
HTTP redirect (302 Found) using the command-line flag —auth-redirect. This can be useful for
testing if the IAM does not require user input.

The 401 Unauthorized response will include a WWWw-Authenticate header of the form:

WWW-Authenticate
DamlAuthMiddleware realm=":claims",login=":login",auth=":auth"

where

claims are the required Daml Ledger Claims.
loginis the URL to initiate the login flow on the auth middleware.
auth is the URL to check whether authorization has been granted.

The response will also include an entity with

Content-Type: application/json

Content:

{
"realm": ":claims",
"login": ":auth",
"auth": ":login",

An application can direct the user to the login URL, wait until authorization has been granted, and re-
peat the original request once authorization has been granted. The auth URL can be used to poll until
authorization has been granted. Alternatively, it can append a custom redirect url parameterto
the login URL and redirect to the resulting URL. Note that login with the IAM may require entering
credentials into a web-form, i.e. the login URL should be opened in a web browser.

112. Integrate Daml with Off-Ledger Services 415

https://tools.ietf.org/html/rfc7235#section-4.1

Daml SDK Documentation, 2.7.3

Example

This section describes how a web frontend can interact with the trigger service when authorization
isrequired. Note, to avoid cross-origin requests and to enable sharing of cookies the web application
and auth middleware should be exposed under the same domain, e.g. behind a shared reverse proxy.

Let’s start with a request to the list running triggers endpoint.

const resp = await fetch("/trigger/vl/triggers?party=Alice");
if (resp.status >= 200 && resp.status < 300) {

const result = await resp.json();

// process result

} else if (resp.status === 401) {
// handle Unauthorized ...
} else {

// handle other error ...

}

If the request succeeds it decodes the JSON response body and continues processing the result,
otherwise it checks if the request failed with 401 Unauthorized or another error. We will ignore the
general error case and focus only on handling the Unauthorized response.

Login via Redirect

Asimple solution is to redirect the browser to the login URL after adding a redirect url parameter
that points back to the current page.

const challenge = await resp.json();

var loginUrl = new URL(challenge.login);
loginUrl.searchParams.append ("redirect uri", window.location.href);
window.location.replace (loginUrl.href);

This code first decodes the JSON encoded authentication challenge included in the response body,
then it extends the login URLwith a redirect uri parameter that points back to the current page,
and redirects the browser to the login flow. The browser will be redirected to the original page after
the login flow completed at which point authorization should have been granted and the original
request should succeed.

Login via Popup

Another solution is to direct the user to the login page in a separate window, wait until authorization
has been granted, and then retry the original request.

const challenge = await resp.json();
await popupLogin(challenge.login, challenge.auth);
// retry original request

The function popupLogin opens the login URL in a popup window and polls on the auth URL until
authorization has been granted. It raises an error if the login window closes before authorization has
been granted.

416 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

function popuplogin(login, auth) {
return new Promise (function (resolve, reject) {
var popup = window.open (login);
var timer = setInterval (async function() {
const closed = popup.closed;
const resp = await fetch (auth);
if (resp.status >= 200 && resp.status < 300) {
// The user logged in
clearInterval (timer) ;
popup.close () ;
resolve () ;
} else if (closed) {
// The popup 1is closed but we are not logged 1in.
reject (new Error ("Login failed"))

Auth Middleware

Daml ledgers only validate authorization tokens. The issuance of those tokens however is some-
thing defined by the participant operator and can vary significantly across deployments. This poses
a challenge when developing applications that need to be able to acquire and refresh authorization
tokens but don’t want to tie themselves to any particular mechanism for token issuance. The Auth
Middleware aims to address this problem by providing an APl that decouples Daml applications from
these details. The participant operator can provide an Auth Middleware that is suitable for their au-
thentication and authorization mechanism. Daml includes an implementation of an Auth Middle-
ware that supports OAuth 2.0 Authorization Code Grant. If this implementation is not compatible
with your mechanism for token issuance, you can implement your own Auth Middleware provided it
conforms to the same APL.

Features

The Auth Middleware is designed to fulfill the following goals:

Be agnostic of the authentication and authorization protocol required by the identity and ac-
cess management (IAM) system used by the participant operator.

Allow fine grained access control via Daml ledger claims.

Support token refresh for long running clients that should not require user interaction.

112. Integrate Daml with Off-Ledger Services 417

https://oauth.net/2/grant-types/authorization-code/

Daml SDK Documentation, 2.7.3

Auth Middleware API

An implementation of the Auth Middleware must provide the following API.

Obtain Access Token

The application contacts this endpoint to determine if the issuer of the request is authenticated
and authorized to access the given claims. The application must forward any cookies that it itself
received in the original request. The response will contain an access token and optionally a refresh
token if the issuer of the request is authenticated and authorized. Otherwise, the response will be
401 Unauthorized.

HTTP Request

URL: /auth?claims=:claims
Method: GET
Headers: Cookie

where
claims are the requested Daml Ledger Claims.

For example:

/auth?claims=actAs:Alice+applicationId:MyApp

Note: When using user management, the participant operator may have configured their IAM to is-
sue user tokens. The Auth Middleware currently doesn’t accept an input parameter specific to user
IDs. As such, it is up to the IAM to map claims request to the required user token. Our recommenda-
tion to participant operatorsistomaptheapplicationIdclaimtotherequired userID.Application
developers should contact their ledger operator to understand how they are supposed to request for
a token.

HTTP Response

"access_token": "...",
"refresh token": "..."

where

access_token is the access token to use for Daml ledger commands.
refresh token (optional) can be used to refresh an expired access token on the /refresh
endpoint.

418 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Request Authorization

The application directs the user to this endpoint if the /auth endpoint returned 401 Unauthorized.
This will request authentication and authorization of the user from the IAM for the given claims. E.g.
in the OAuth 2.0 based implementation included in Daml, this will start an Authorization Code Grant
flow.

If authorization is granted this will store the access and optional refresh token in a cookie. The
request can define a callback URI, if specified this endpoint will redirect to the callback URI at the
end of the flow. Otherwise, it will respond with a status code that indicates whether authorization
was successful or not.

HTTP Request

URL: /login?claims=:claims&redirect uri=:redirect uri&state=:state
Method: GET

where

claims are the requested Daml Ledger Claims.

redirect uri (optional) redirect to this URI at the end of the flow. Passes error and option-
allyerror description parameters if authorization failed.

state (optional) forward this parameter to the redirect uri if specified.

For example:

/login?claims=actAs:Alicet+applicationId:MyApp&redirect uri=http://example.com/cbs&
—state=2b56cc2e-01ad-4e51-a%03-124d4bbe0all

Refresh Access Token

The application contacts this endpoint to refresh an expired access token without requiring user
input. Token refresh is available if the /auth endpoint return a refresh token along side the access

token. This endpoint will return a new access token and optionally a new refresh token to replace the
old.

HTTP Request

URL: /refresh

Method: POST

Content-Type: application/json
Content:

{

"refresh token": "..."
}

where

refresh tokenistherefresh token returned by /auth or a previous /refresh request.

112. Integrate Daml with Off-Ledger Services 419

Daml SDK Documentation, 2.7.3

HTTP Response

"access_token": "...",
"refresh token": "..."

where

access_token is the access token to use for Daml ledger commands.
refresh token (optional) can be used to refresh an expired access token on the /refresh
endpoint.

Daml Ledger Claims

A list of claims specifies the set of capabilities that are requested. These are passed as a
URL-encoded, space-separated list of individual claims of the following form:

admin Access to admin-level services.

readAs:<Party Name> Read access for the given party.

actAs:KParty Name> Issue commands on behalf of the given party.

applicationld:<Application Id> Restrict access to commands issued with the given application
ID.

See Access Tokens and Claims for further information on Daml ledger capabilities.

OAuth 2.0 Auth Middleware

Daml includes an implementation of an auth middleware that supports OAuth 2.0 Authorization
Code Grant. The implementation aims to be configurable to support different OAuth 2.0 providers
and to allow custom mappings from Daml ledger claims to OAuth 2.0 scopes.

OAuth 2.0 Configuration

RFC 6749 specifies that OAuth 2.0 providers offer two endpoints: The authorization endpoint and the
token endpoint. The URIs for these endpoints can be configured independently using the following
fields:

ocoauth-auth
ocauth-token

The OAuth 2.0 provider may require that the application identify itself using a client identifier and
client secret. These can be specified using the following environment variables:

DAML _CLIENT ID
DAML CLIENT SECRET

The auth middleware assumes that the OAuth 2.0 provider issues JWT access tokens. The /auth
endpoint will validate the token, if available, and ensure that it grants the requested claims. The
auth middleware accepts the same command-line flags as the Daml Sandbox to define the public key
for token validation.

420 Chapter 1. Canton References

https://oauth.net/2/grant-types/authorization-code/
https://oauth.net/2/grant-types/authorization-code/
https://tools.ietf.org/html/rfc6749#section-3
https://tools.ietf.org/html/rfc6749#section-3.1
https://tools.ietf.org/html/rfc6749#section-3.2

Daml SDK Documentation, 2.7.3

Request Templates

The exact format of OAuth 2.0 requests may vary between providers. Furthermore, the mapping from
Daml ledger claims to OAuth 2.0 scopes is defined by the IAM operator. For that reason OAuth 2.0
requests made by auth middleware can be configured using user defined Jsonnet templates. Tem-
plates are parameterized configurations expressed as top-level functions.

Authorization Request

This template defines the format of the Authorization request. Use the following config field to use
a custom template:

oauth-auth-template

Arguments

The template will be passed the following arguments:

config (object)
- clientId (string) the OAuth 2.0 client identifier
- clientSecret (string) the OAuth 2.0 client secret
request (object)
- claims (object) the requested claims
* admin (bool)
* applicationId (string or null)
* actAs (list of string)
* readAs (list of string)
- redirectUri (string)
- state (string)

Returns

The query parameters for the authorization endpoint encoded as an object with string values.

Example

local scope(claims) =

local admin = if claims.admin then "admin";

local applicationId = if claims.applicationId != null then "applicationId:" +[]
—claims.applicationId;

local actAs = std.map (function(p) "actAs:" + p, claims.actAs);

local readAs = std.map (function(p) "readAs:" + p, claims.readAs);

[admin, applicationId] + actAs + readAs;

function (config, request) {

"audience": "https://daml.com/ledger-api",
"client id": config.clientId,
"redirect uri": request.redirectUri,

(continues on next page)

112. Integrate Daml with Off-Ledger Services 421

https://jsonnet.org/
https://tools.ietf.org/html/rfc6749#section-4.1.1

Daml SDK Documentation, 2.7.3

(continued from previous page)

"response type": "code",
"scope": std.join(" ", ["offline access"] + scope(request.claims)),
"state": request.state,

Token Request

This template defines the format of the Token request. Use the following config field to use a custom
template:

oauth-token-template

Arguments

The template will be passed the following arguments:

config (object)

- clientId (string) the OAuth 2.0 client identifier

- clientSecret (string) the OAuth 2.0 client secret
request (object)

- code (string)

- redirectUri (string)

Returns

The request parameters for the token endpoint encoded as an object with string values.

Example

function (config, request) {
"client id": config.clientId,

"client secret": config.clientSecret,
"code": request.code,

"grant type": "authorization code",
"redirect uri": request.redirectUri,

Refresh Request

This template defines the format of the Refresh request. Use the following config field to use a cus-
tom template:

oauth-refresh-template

422 Chapter 1. Canton References

https://tools.ietf.org/html/rfc6749#section-4.1.3
https://tools.ietf.org/html/rfc6749#section-6

Daml SDK Documentation, 2.7.3

Arguments

The template will be passed the following arguments:

config (object)

- clientId (string) the OAuth 2.0 client identifier

- clientSecret (string) the OAuth 2.0 client secret
request (object)

- refreshToken (string)

Returns

The request parameters for the authorization endpoint encoded as an object with string values.

Example

function(config, request) {
"client id": config.clientId,

"client secret": config.clientSecret,
"grant type": "refresh code",
"refresh token": request.refreshToken,

Deployment Notes

The auth middleware APl relies on sharing cookies between the auth middleware and the Daml appli-
cation. One way to enable this is to expose the auth middleware and the Daml application under the
same domain, e.g. through a reverse proxy. Note that you will need to specify the external callback
URI in that case using the -—callback command-line flag,

For example, assuming the following nginx configuration snippet:

http {
server
server_ name example.com
location /auth/ {
proxy pass http://localhost:3000/;
}

You would invoke the OAuth 2.0 auth middleware with the following flags:

ocauth2-middleware \
--config oauth-middleware.conf

The required config would look like

{

// Environment variables:

(continues on next page)

112. Integrate Daml with Off-Ledger Services 423

Daml SDK Documentation, 2.7.3

(continued from previous page)

// DAML CLIENT_ ID The OAuth2 client-id - must not be empty

// DAML CLIENT SECRET The OAuth2 client-secret - must not be empty
client-id = ${ DAML CLIENT ID}

client-secret = ${DAML_CLIENT_SECRET}

//IP address that OAuth2 Middleware service listens on. Defaults to 127.0.0.1.
address = "127.0.0.1"
//OAuth?2 Middleware service port number. Defaults to 3000. A port number of O[]

—will let the system pick an ephemeral port. Consider specifying "--port-file’l|
—option with port number O.
port = 3000

//URI to the auth middleware's callback endpoint “/cb . By default constructed’]
—from the incoming login request.
callback-uri = "https://example.com/auth/cb"

//Maximum number of simultaneously pending login requests. Requests will bel]
—~denied when exceeded until earlier requests have been completed or timed out.
max-login-requests = 250

//Login request timeout. Requests will be evicted if the callback endpoint
—receives no corresponding request in time.
login-timeout = 60s

//Enable the Secure attribute on the cookie that stores the token. Defaults toll
—true. Only disable this for testing and development purposes.
cookie-secure = "true"

//URI of the OAuth2 authorization endpoint
oauth-auth="https://ocauth2-provider.com/auth uri"

//URI of the OAuth2 token endpoint
oauth-token="https://oauth2-provider.com/token uri"

//0OAuth2 authorization request Jsonnet template
oauth-auth-template="file://path/oauth/auth/template"

//0OAuth2 token request Jsonnet template
oauth-token-template = "file://path/ocauth/token/template"

//0OAuth2 refresh request Jsonnet template
ocauth-refresh-template = "file://path/ocauth/refresh/template"

// Enables JWT-based authorization, where the JWT is signed by one of the belowl]
—Jwt based token verifiers
token-verifier {
// type can be rs256-crt, es256-crt, esb5l2-crt or rs256-jwks

type = "rs256-jwks"
// X509 certificate file (.crt)/JWKS url from where the public key is loaded
uri = "https://example.com/.well-known/jwks.json"

The oauth2-middleware can also be started using cli-args.

Note: Configuration file is the recommended way to run oauth2-middleware, running via cli-args is

424 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

now deprecated

ocauth2-middleware \
-—callback https://example.com/auth/cb \
--address localhost \
--http-port 3000 \
--oauth-auth https://ocauth2-provider.com/auth uri \
--oauth-token https://ocauth2-provider.com/token uri \
-—auth-jwt-rs256-jwks https://example.com/.well-known/jwks.Jjson

Some browsers reject Secure cookies on unencrypted connections even on localhost. You can pass
the command-line flag --cookie-secure no for testing and development on localhost to avoid
this.

Metrics

You may configure the oauth2-middleware to expose the common HTTP metrics via a Prometheus re-
porter by adding the below section to the application config:

metrics {
// Start a metrics reporter. Must be one of "console", "csv:///PATH",
—"graphite://HOST[:PORT] [/METRIC_ PREFIX]", or "prometheus://HOST[:PORT]".
reporter = "prometheus://localhost:9000"
// Set metric reporting interval , examples : 1s, 30s, 1m, 1h
reporting-interval = 30s

Liveness and Readiness Endpoints

The following sections describe the endpoints that can be used to probe the liveness and readiness
of the auth middleware service.

Liveness Check

This can be used as a liveness probe, e.g., in Kubernetes.

HTTP Request

URL: /1livez
Method: GET

112. Integrate Daml with Off-Ledger Services 425

Daml SDK Documentation, 2.7.3

HTTP Response

A status code of 200 indicates a successful liveness check.

Content-Type: application/json
Content:

{ "status": "pass" }

Readiness Check

This can be used as a readiness probe, e.g., in Kubernetes.

HTTP Request

URL: /readyz
Method: GET

HTTP Response

A status code of 200 indicates a successful readiness check.

112.7 Errors
1.12.7.1 Command Deduplication

The interaction of a Daml application with the ledger is inherently asynchronous: applications send
commands to the ledger, and some time later they see the effect of that command on the ledger.
Many things can fail during this time window:

The application can crash.

The participant node can crash.

Messages can be lost on the network.

The ledger may be slow to respond due to a high load.

If you want to make sure that an intended ledger change is not executed twice, your application
needs to robustly handle all failure scenarios. This guide covers the following topics:

How command deduplication works.
How applications can effectively use the command deduplication.

426 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

How Command Deduplication Works

The following fields in a command submissions are relevant for command deduplication. The first
three form the change ID that identifies the intended ledger change.

The union of party and act_as define the submitting parties.

The application ID identifies the application that submits the command.

The command ID is chosen by the application to identify the intended ledger change.

The deduplication period specifies the period for which no earlier submissions with the same
change ID should have been accepted, as witnessed by a completion event on the command
completion service. If such a change has been accepted in that period, the current submission
shall be rejected. The period is specified either as a deduplication duration or as a deduplication
offset (inclusive).

The submission ID is chosen by the application to identify a specific submission. Itisincluded in
the corresponding completion event so that the application can correlate specific submissions
to specific completions. An application should never reuse a submission ID.

The ledger may arbitrarily extend the deduplication period specified in the submission, even beyond
the maximum deduplication duration specified in the ledger configuration.

Note: The maximum deduplication duration is the length of the deduplication period guaranteed
to be supported by the participant.

The deduplication period chosen by the ledger is the effective deduplication period. The ledger may
also convert a requested deduplication duration into an effective deduplication offset or vice versa.
The effective deduplication period is reported in the command completion event in the deduplication
duration or deduplication offset fields.

A command submission is considered a duplicate submission if at least one of the following holds:

The submitting participant’s completion service contains a successful completion event for
the same change ID within the effective deduplication period.
The participant or Daml ledger are aware of another command submission in-flight with the
same change ID when they perform command deduplication.

The outcome of command deduplication is communicated as follows:

Command submissions via the command service indicate the command deduplication outcome
as a synchronous gRPC response unless the gRPC deadline was exceeded.

Note: The outcome MAY additionally appear as a completion event on the command comple-
tion service, but applications using the command service typically need not process completion
events.

Command submissions via the command submission service can indicate the outcome as a syn-
chronous gRPC response, or asynchronously through the command completion service. In partic-
ular, the submission may be a duplicate even if the command submission service acknowl-
edges the submission with the gRPC status code OK.

Independently of how the outcome is communicated, command deduplication generates the follow-
ing outcomes of a command submission:

If there is no conflicting submission with the same change ID on the Daml ledger or in-flight,
the completion event and possibly the response convey the result of the submission (success

112. Integrate Daml with Off-Ledger Services 427

https://grpc.io/blog/deadlines/

Daml SDK Documentation, 2.7.3

or a gRPC error; Error Codes explains how errors are communicated).

The gRPC status code ALREADY EXISTS with error code ID DUPLICATE_COMMAND indicates that
there is an earlier command completion for the same change ID within the effective deduplica-
tion period.

The gRPC status code ABORTED with error code id SUBMISSION_ALREADY_IN_FLIGHT indicates
that another submission for the same change ID was in flight when this submission was pro-
cessed.

The gRPC status code FAILED PRECONDITION with error code id INVALID_DEDUPLICATION_PE-
RIOD indicates that the specified deduplication period is not supported. The fields
longest duration or earliest offset in the metadata specify the longest duration or
earliest offset that is currently supported on the Ledger APl endpoint. At least one of the two
fields is present.

Neither deduplication durations up to the maximum deduplication duration nor deduplication
offsets published within that duration SHOULD result in this error. Participants may accept
longer periods at their discretion.

The gRPC status code FAILED PRECONDITION with error code id PARTICI-
PANT_PRUNED_DATA_ACCESSED, when specifying a deduplication period represented by an
offset, indicates that the specified deduplication offset has been pruned. The field earli-
est offset in the metadata specifies the last pruned offset.

For deduplication to work as intended, all submissions for the same ledger change must be sub-
mitted via the same participant. Whether a submission is considered a duplicate is determined by
completion events, and by default a participant outputs only the completion events for submissions
that were requested via the very same participant.

How to Use Command Deduplication

To effectuate a ledger change exactly once, the application must resubmit a command if an ear-
lier submission was lost. However, the application typically cannot distinguish a lost submission
from slow submission processing by the ledger. Command deduplication allows the application to
resubmit the command until it is executed and reject all duplicate submissions thereafter.

Some ledger changes can be executed at most once, so no command deduplication is needed for
them. For example, if the submitted command exercises a consuming choice on a given contract ID,
this command can be accepted at most once because every contract can be archived at most once.
All duplicate submissions of such a change will be rejected with CONTRACT_NOT_ACTIVE.

In contrast, a Create command would create a fresh contract instance of the given template for each
submission that reaches the ledger (unless other constraints such as the template preconditions or
contract key uniqueness are violated). Similarly, an Exercise command on a non-consuming choice
or an Exercise-By-Key command may be executed multiple times if submitted multiple times. With
command deduplication, applications can ensure such intended ledger changes are executed only
once within the deduplication period, even if the application resubmits, say because it considers the
earlier submissions to be lost or forgot during a crash that it had already submitted the command.

428 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Known Processing Time Bounds

For this strategy, you must estimate a bound B on the processing time and forward clock drifts in the
Daml ledger with respect to the application’s clock. If processing measured across all retries takes
longer than your estimate B, the ledger change may take effect several times. Under this caveat, the
following strategy works for applications that use the Command Service or the Command Submission
and Command Completion Service.

Note: The bound B should be at most the configured maximum deduplication duration. Otherwise you
rely on the ledger accepting longer deduplication durations. Such reliance makes your application
harder to port to other Daml ledgers and fragile, as the ledger may stop accepting such extended
durations at its own discretion.

1. Choose a command ID for the ledger change, in a way that makes sure the same ledger change
is always assigned the same command ID. Either determine the command ID deterministically
(e.g., if your contract payload contains a globally unique identifier, you can use that as your
command ID), or choose the command ID randomly and persist it with the ledger change so
that the application can use the same command ID in resubmissions after a crash and restart.

Note: Make sure that you assign the same command ID to all command (re-)submissions
of the same ledger change. This is useful for the recovery procedure after an application
crash/restart. After a crash, the application in general cannot know whether it has submit-
ted a set of commands before the crash. If in doubt, resubmit the commands using the same
command ID. If the commands had been submitted before the crash, command deduplication
on the ledger will reject the resubmissions.

2. When you use the Command Completion Service, obtain a recent offset on the completion stream
OFF1, say the current ledger end.
3. Submit the command with the following parameters:
Set the command ID to the chosen command ID from Step 1.
Set the deduplication duration to the bound B.

Note: It is prudent to explicitly set the deduplication duration to the desired bound B,
to guard against the case where a ledger configuration update shortens the maximum
deduplication duration. With the bound B, you will be notified of such a problem via an IN-
VALID_DEDUPLICATION_PERIOD error if the ledger does not support deduplication durations
of length B any more.

If you omitted the deduplication period, the currently valid maximum deduplication dura-
tion would be used. In this case, a ledger configuration update could silently shorten the
deduplication period and thus invalidate your deduplication analysis.

Set the submission ID to a fresh value, e.g., a random UUID.

Set the timeout (gRPC deadline) to the expected submission processing time (Command
Service) or submission hand-off time (Command Submission Service).

The submission processing time is the time between when the application sends off a
submission to the Command Service and when it receives (synchronously, unless it times
out) the acceptance or rejection. The submission hand-off time is the time between when
the application sends off a submission to the Command Submission Service and when it
obtains a synchronous response for this gRPC call. After the RPC timeout, the application
considers the submission as lost and enters a retry loop. This timeout is typically much

112. Integrate Daml with Off-Ledger Services 429

Daml SDK Documentation, 2.7.3

shorter than the deduplication duration.

4. Wait until the RPC call returns a response.
Status codes other than OK should be handled according to error handling.
When you use the Command Service and the response carries the status code OK, the ledger
change took place. You can report success.
When you use the Command Submission Service, subscribe with the Command Completion
Service for completions for actAs from OFF1 (exclusive) until you see a completion event
for the change ID and the submission ID chosen in Step 3. If the completion’s status is OK,
the ledger change took place and you can report success. Other status codes should be
handled according to error handling.
This step needs no timeout as the Command Submission Service acknowledges a submis-
sion only if there will eventually be a completion event, unless relevant parts of the system
become permanently unavailable.

Error Handling

Error handling is needed when the status code of the command submission RPC call or in the com-
pletion event is not OK. The following table lists appropriate reactions by status code (written as STA-
TUS_CODE) and error code (written in capital letters with a link to the error code documentation).
Fields in the error metadata are written as field in lowercase letters.

430 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Table 1: Command deduplication error handling with

known processing time bound
Error condi- | Reaction
tion
DEAD- Consider the submission lost.
LINE EX- Retry from Step 2, obtaining the completion offset OFF1, and possibly increase
CEEDED the timeout.
Application Retry from Step 2, obtaining the completion offset OFF1.
crashed
AL- The change ID has already been accepted by the ledger within the reported dedu-
READY EX- plication period. The optional field completion offset contains the precise
ISTS /| DU- | offset. The optional field existing submission id contains the submission
PLICATE_COM- | ID of the successful submission. Report success for the ledger change.
MAND
FAILED PRE- | The specified deduplication period is longer than what the Daml ledger supports
CONDITION / | orthe ledger cannot handle the specified deduplication offset. earliest off-
INVALID_DEDU- | set contains the earliest deduplication offset or longest duration contains
PLICATION_PE- | the longest deduplication duration that can be used (at least one of the two must
RIOD be provided).

Options:
Negotiate support for longer deduplication periods with the ledger operator.
Set the deduplication offsetto earliest offset orthe deduplication du-
ration to longest duration and retry from Step 2, obtaining the comple-
tion offset OFF1. This may lead to accepting the change twice within the
originally intended deduplication period.

FATLED PRE-
CONDITION
/ PARTICI-

PANT_PRUNED_

The specified deduplication offset has been pruned by the participant. earli-
est offset contains the last pruned offset.

Use the Command Completion Service by asking for the completions,
PATA_AGtarting from the last pruned offset by setting offset to the value of

CESSED earliest offset, and use the first received offset as a deduplica-
tion offset.
ABORTED There is already another submission in flight, with the submission ID in exist-
/ SUBMIS- | ing submission id.
SION_AL- When you use the Command Service, wait a bit and retry from Step 3, submit-

READY_IN_FLIGHT ting the command.
This error Since the in-flight submission might still be rejected, (repeated) resubmis-
occurs only sion ensures that you (eventually) learn the outcome: If an earlier submis-
as an RPC sion was accepted, you will eventually receive a DUPLICATE_COMMAND rejec-
response, tion. Otherwise, you have a second chance to get the ledger change ac-
not inside a cepted on the ledger and learn the outcome.
completion When you use the Command Completion Service, look for a completion for ex-
event. isting submission id instead of the chosen submission ID in Step 4.
ABORTED /| Wait a bit and retry from Step 2, obtaining the completion offset OFF1.
other error
codes
other error | Use background knowledge about the business workflow and the current ledger
conditions state to decide whether earlier submissions might still get accepted.
If you conclude thatitcannot be accepted any more, stop retrying and report
thattheledgerchange faited:
112. Integrate Daml \M%@f&é‘%@whﬁﬁ{%ﬁ% obtaining a completion offset OFF1, or give >

without knowing for sure that the ledger change will not happen.

For example, if the ledger change only creates a contract instance of a template,
\ALl can navar he crire ace anv niitftetanding ciithmiceinn micdht c+ill hae arrantad

Daml SDK Documentation, 2.7.3

Failure Scenarios

The above strategy can fail in the following scenarios:

1. The bound B is too low: The command can be executed multiple times.
Possible causes:
You have retried for longer than the deduplication duration, but never got a meaningful an-
swer, e.g., because the timeout (gRPC deadline) is too short. For example, this can happen
due to long-running Daml interpretation when using the Command Service.
The application clock drifts significantly from the participant’s or ledger’s clock.
There are unexpected network delays.
Submissions are retried internally in the participant or Daml ledger and those retries do
not stop before B is over. Refer to the specific ledger's documentation for more informa-
tion.
2. Unacceptable changes cause infinite retries
You need business workflow knowledge to decide that retrying does not make sense any more.
Of course, you can always stop retrying and accept that you do not know the outcome for sure.

Unknown Processing Time Bounds

Finding a good bound B on the processing time is hard, and there may still be unforeseen circum-
stances that delay processing beyond the chosen bound B. You can avoid these problems by using
deduplication offsets instead of durations. An offset defines a pointin the history of the ledgerand is
thus not affected by clock skews and network delays. Offsets are arguably less intuitive and require
more effort by the application developer. We recommend the following strategy for using deduplica-
tion offsets:

1. Choose a fresh command ID for the ledger change and the actAs parties, which (together with
the application ID) determine the change ID. Remember the command ID across application
crashes. (Analogous to Step 1 above)

2. Obtain arecentoffset OFF0 on the completion event stream and remember across crashes that
you use OFFO0 with the chosen command ID. There are several ways to do so:

Use the Command Completion Service by asking for the current ledger end.

Note: Some ledger implementations reject deduplication offsets that do not iden-
tify a command completion visible to the submitting parties with the error code id IN-
VALID_DEDUPLICATION_PERIOD. In general, the ledger end need not identify acommand com-
pletion that is visible to the submitting parties. When running on such a ledger, use the
Command Service approach described next.

Use the Command Service to obtain a recent offset by repeatedly submitting a dummy
command, e.g., a Create-And-Exercise command of some single-signatory template with the
Archive choice, until you get a successful response. The response contains the completion
offset.

3. When you use the Command Completion Service:
If you execute this step the first time, set OFF1 = OFFO.
If you execute this step as part of error handling retrying from Step 3, obtaining the com-
pletion offset OFF1, obtain a recent offset on the completion stream OFF1, say its current
end. (Analogous to step 2 above)

4. Submit the command with the following parameters (analogous to Step 3 above except for the

deduplication period):

432 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Set the command ID to the chosen command ID from Step 1.
Set the deduplication offset to OFFO.
Set the submission ID to a fresh value, e.g., a random UUID.
Set the timeout (gRPC deadline) to the expected submission processing time (Command
Service) or submission hand-off time (Command Submission Service).

5. Wait until the RPC call returns a response.
Status codes other than OK should be handled according to error handling.
When you use the Command Service and the response carries the status code OK, the ledger
change took place. You can report success. The response contains a completion offset that
you can use in Step 2 of later submissions.
When you use the Command Submission Service, subscribe with the Command Completion
Service for completions for actAs from OFF1 (exclusive) until you see a completion event
for the change ID and the submission ID chosen in step 3. If the completion’s status is OK,
the ledger change took place and you can report success. Other status codes should be
handled according to error handling.

Error Handling

The same as for known bounds, except that the former retry from Step 2 becomes retry from Step 3.

Failure Scenarios

The above strategy can fail in the following scenarios:

1. No success within the supported deduplication period
When the application receives a INVALID_DEDUPLICATION_PERIOD error, it cannot achieve exactly
once execution any more within the originally intended deduplication period.

2. Unacceptable changes cause infinite retries
You need business workflow knowledge to decide that retrying does not make sense any more.
Of course, you can always stop retrying and accept that you do not know the outcome for sure.

1.12.8 Authorization

When developing Daml applications using SDK tools, your local setup will most likely not perform
any Ledger APl request authorization - by default, any valid Ledger API request will be accepted by
the sandbox.

This is not the case for participant nodes of deployed ledgers. For every Ledger API request, the par-
ticipant node checks whether the request contains an access token that is valid and sufficient to
authorize that request. You thus need to add support for authorization using access tokens to your
application to run it against a deployed ledger.

Note: In case of mutual (two-way) TLS authentication, the Ledger API client must present its cer-
tificate (in addition to an access token) to the Ledger API server as part of the authentication pro-
cess. The provided certificate must be signed by a certificate authority (CA) trusted by the Ledger
API server. Note that the identity of the application will not be proven by using this method, i.e. the
application_id field in the request is not necessarily correlated with the CN (Common Name) in the
certificate.

112. Integrate Daml with Off-Ledger Services 433

Daml SDK Documentation, 2.7.3

1.12.8.1 Introduction

Your Daml application sends requests to the Ledger APl exposed by a participant node to submit
changes to the ledger (e.g., exercise choice X on contract Y as party Alice), or to read data from the
ledger (e.g., read all active contracts visible to party Alice). Your application might send these requests
via a middleware like the JSON API.

Whether a participant node can serve such a request depends on whether the participant node hosts
the respective parties, and whether the request is valid according to the Daml Ledger Model. Whether
a participant node will serve such a request to a Daml application depends on whether the request
includes an access token that is valid and sufficient to authorize the request for this participant
node.

1.12.8.2 Acquire and Use Access Tokens

How an application acquires access tokens depends on the participant node it talks to and is ulti-
mately set up by the participant node operator. Many setups use a flow in the style of OAuth 2.0.

In this scenario, the Daml application first contacts a token issuer to get an access token. The token
issuer verifies the identity of the requesting application, looks up the privileges of the application,
and generates a signed access token describing those privileges.

Once the access token is issued, the Daml application sends it along with every Ledger APl request.
The Daml ledger verifies:

that the token was issued by one of its trusted token issuers
that the token has not been tampered with

that the token had not expired

that the privileges described in the token authorize the request

434 Chapter 1. Canton References

https://oauth.net/2/

Daml SDK Documentation, 2.7.3

1
1
Daml application ! Token issuer Daml ledger
1
I
Request [credentials] — Check
token authentication
1
| |
1
!
[o]
Access ledger Check

[API request + token |

AP authorization

|

[API result | Execute query

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Handle result :
|
|
|
|

How you attach tokens to requests depends on the tool or library you use to interact with the Ledger
API. See the tool’s or library’s documentation for more information. (E.g. relevant documentation for
the Java bindings and the JSON APL)

1.12.8.3 Access Tokens and Rights

Access tokens contain information about the rights granted to the bearer of the token. These rights
are specific to the APl being accessed.

The Daml Ledger APl uses the following rights to govern request authorization:

public: the right to retrieve publicly available information, such as the ledger identity
participant admin: the right to administer the participant node

idp_ admin: therighttoadministerthe users and parties belonging the same identity provider
configuration as the authenticated user

canReadAs (p): the right to read information off the ledger (like the active contracts) visible
to the party p

canActsAs (p): same as canReadAs (p),with the added right of issuing commands on behalf
of the party p

The following table summarizes the rights required to access each Ledger APl endpoint:

112. Integrate Daml with Off-Ledger Services 435

Daml SDK Documentation, 2.7.3

Ledger API ser-
vice

Endpoint

Required right

LedgerldentitySer-
vice

GetlLedgerldentity

public

ActiveCon-
tractsService

GetActiveContracts

for each requested party p: can-
ReadAs(p)

CommandComple-
tionService

CompletionEnd

public

CompletionStream

for each requested party p: can-
ReadAs(p)

CommandSubmis- | Submit for submitting party p: canAc-

sionService tAs(p)

CommandService All for submitting party p: canAc-
tAs(p)

EventQueryService | All for each requesting party p: can-
ReadAs(p)

Health All no access token required for
health checking

IdentityProvider- All participant_admin

ConfigService

LedgerConfigura-
tionService

GetlLedgerConfiguration

public

MeteringReport- All participant_admin
Service
PackageService All public
PackageManage- All participant_admin
mentService
PartyManage- All participant_admin
mentService

All (except GetParticipantld, Up- | idp_admin

datePartyldentityProviderid)

ParticipantPrun-
ingService

All

participant_admin

ServerReflection All no access token required for gRPC
service reflection
TimeService GetTime public
SetTime participant_admin
TransactionService | LedgerEnd public

All (except LedgerEnd)

for each requested party p: can-
ReadAs(p)

UserManage- All participant_admin
mentService
All (except UpdateUserldenti- | idp_admin
tyProviderld)
GetUser authenticated users can get their

own user

ListUserRights

authenticated users can list their
own rights

VersionService

All

public

436

Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

112.8.4 Access Token Formats
Applications should treat access tokens as opaque blobs. However, as an application developer it
can be helpful to understand the format of access tokens to debug problems.

All Daml ledgers represent access tokens as JSON Web Tokens (JWTs), and there are two formats of
the JSON payload used by Daml ledgers.

Note: To generate access tokens for testing purposes, you can use the jwt.io web site.

User Access Tokens

Daml ledgers that support participant user management also accept user access tokens. They are
useful for scenarios where an application’s rights change dynamically over the application’s lifetime.

User access tokens do not encode rights directly like the custom Daml claims tokens explained in
the following sections. Instead, user access tokens encode the participant user on whose behalf the
request is issued.

When handling such requests, participant nodes look up the participant user’s current rights before
checking request authorization per the table above. Thus the rights granted to an application can be
changed dynamically using the participant user management service without issuing new access
tokens, as would be required for the custom Daml claims tokens.

User access tokens are JWTs that follow the OAuth 2.0 standard. There are two different JSON encod-
ings: An audience-based token formatthatrelies on the audience field to specify thatitis designated
for a specific Daml participant and a scope-based audience token format which relies on the scope
field to designate the purpose. Both formats can be used interchangeably but if possible, use of the
audience-based token format is recommend as it is compatible with a wider range of IAMs, e.g., Ku-
bernetes does not support setting the scope field and makes the participant id mandatory which
prevents misuse of a token on a different participant.

Audience-Based Tokens

"aud": "https://daml.com/jwt/aud/participant/someParticipantId",
"sub": "someUserId",
"iss": "someIdpId",

"exp": 1300819380

To interpret the above notation:

aud is a required field which restricts the token to participant nodes with the given ID (e.g.
someParticipantId)

sub is a required field which specifies the participant user’s ID

issis afield which specifies the identity provider id

exp is an optional field which specifies the JWT expiration date (in seconds since EPOCH)

112. Integrate Daml with Off-Ledger Services 437

https://datatracker.ietf.org/doc/html/rfc7519
https://jwt.io/
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc6749

Daml SDK Documentation, 2.7.3

Scope-Based Tokens

"aud": "someParticipantId",
"sub": "someUserId",

"exp": 1300819380,

"iss": "someIdpId",
"scope": "daml ledger api'

To interpret the above notation:

aud is an optional field which restricts the token to participant nodes with the given ID

sub is a required field which specifies the participant user’s ID

iss is a field which specifies the identity provider id

exp is an optional field which specifies the JWT expiration date (in seconds since EPOCH)
scope Iis a space-separated list of OAuth 2.0 scopes that must contain the
"daml ledger api" scope

Requirements for User IDs

User IDs must be non-empty strings of at most 128 characters that are either alphanumeric ASCII
characters or one of the symbols @A$.I-#+~_|: .

Identity providers

An identity provider configuration can be thought of as a set of participant users which:
Have a defined way to verify their access tokens
Can be administered in isolation from the rest of the users on the same participant node
Have an identity provider id unique per participant node
Have a related set of parties that share the same identity provider id

A participant node always has a statically configured default identity provider configuration whose
id is the empty string "". Additionally, you can configure a small number of non-default identity
providers using IdentityProviderConfigService by supplying a non-empty identity provider
id and a JWK Set URL which the participant node will use to retrieve the cryptographic data needed
to verify the access tokens.

When authenticating as a user from a non-default identity provider configuration, your access to-
kens must contain the iss field whose value matches the identity provider id. In case of the default
identity provider configuration, the iss field can be empty or omitted from the access tokens.

438 Chapter 1. Canton References

https://datatracker.ietf.org/doc/html/rfc6749#section-3.3
https://datatracker.ietf.org/doc/html/rfc7517

Daml SDK Documentation, 2.7.3

Custom Daml Claims Access Tokens

This format represents the rights granted by the access token as custom claims in the JWT’s payload,
like so:

{
"https://daml.com/ledger-api": {
"ledgerId": null,
"participantId": "123e4567-e89b-12d3-a456-426614174000",
"applicationId": null,
"admin": true,
"actAs": ["Alice"],
"readAs": ["Bob"]
}I
"exp": 1300819380

where all of the fields are optional, and if present,

ledgerIdand participantId restrict the validity of the token to the given ledger or partici-
pant node

applicationId requires requests with this token to use that application id or not set an ap-
plication id at all, which should be used to distinguish requests from different applications
exp is the standard JWT expiration date (in seconds since EPOCH)

actAs, readAs and (participant) admin encode the rights granted by this access token

The public rightis implicitly granted to any request bearing a non-expired JWT issued by a trusted
issuer with matching ledgerId, participantId and applicationId values.

Note: All Daml ledgers also support a deprecated legacy format of custom Daml claims access
tokens whose format is equal to the above except that the custom claims are present at the same
level as exp in the token above, instead of being nested below "https://daml.com/ledger-api".

1.12.9 Explicit Contract Disclosure (Alpha)

In Daml, you must specify upfront who can view data using observer annotations on contracts. To
change who can see the data, you would typically need to rewrite the contract (eg an asset) with
a new annotation. Canton 2.7 introduces explicit contract disclosure as a feature that allows you
to seamlessly delegate contract read rights to a non-stakeholder using off-ledger data distribution.
This supports efficient, scalable data sharing on the ledger.

Here are some use cases that illustrate how you might benefit from explicit contract disclosure:

You want to provide proof of the price data for a stock transaction. Instead of subscribing to
price updates and potentially being inundated with thousands of price updates every minute,
you could serve the price data though a traditional Web 2.0 API. You can then use that API to feed
only the current price back into the ledger at the time of use. You still get the same validation
and security, but reduce the amount of data being transferred manyfold.

You want to run an open market on ledger. Rather than making all bids and asks explicitly
visible to all marketplace users, you serve market data though standard Web 2.0 APIs. At the
point of use, the available bids and asks are fed back into the transactions to get the same

112. Integrate Daml with Off-Ledger Services 439

Daml SDK Documentation, 2.7.3

activeness and correctness guarantees that would be provided had they been shared though
the observer mechanism.

Toggletheexplicit-disclosure-unsafe flaginthe participant configuration as shown below to
use disclosed contracts in command submission by means of explicit contract disclosure.

Note: This feature is experimental and must not be used in production environments.

participants {
participant {
ledger-api.explicit-disclosure-unsafe = true

112.9.1 Contract Read Delegation

Contract read delegation allows a party to acquire read rights during command submission over a
contract of which it is neither a stakeholder nor an informee.

As an example application where read delegation could be used, consider a simplified trade between
two parties. In this example, party Seller owns a unit of Digital Asset Stock issued by the StockEx-
change party. As the issuer of the stock, StockExchange also publishes the stock’s PriceQuota-
tion as public data, which can be used for settling trades at the correct market value. The Seller
announces an offer to sell its stock publicly by creating an Offer contract that can be exercised by
anyone who can pay the correct market value in terms of IOU units.

On the other side, party Buyer owns an IOU with 10 monetary units, which it wants to use to acquire
Seller’s stock.

The Daml templates used to model the above-mentioned trade are outlined below.

template IOU

with
issuer: Party
owner: Party
value: Int

where
signatory issuer
observer owner

choice IOU Transfer: ()
with
target: Party
amount: Int
controller owner

do

-- Check that the transferred amount is not higher than the current IOUL!
—value

assert (value >= amount)

create this with issuer = issuer, owner = target, value = amount

-—- No need to create a new IOU for owner if the full value is transferred

if value == amount then pure ()

else void $ create this with issuer = issuer, owner = owner, value =
—value - amount

(continues on next page)

440 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

pure ()

template Stock

with
issuer: Party
owner: Party
stockName: Text

where
signatory issuer
observer owner

choice Stock Transfer: ()
with
newOwner: Party
controller owner
do
create this with owner = newOwner
pure ()

-- Expresses the current market value of a stock issued by the issuer.
-— Not modelled in this example: the issuer ensures that only one “PriceQuotation’
-- is active at a time for a specific “stockName' .
template PriceQuotation
with
issuer: Party
stockName: Text
value: Int
where
signatory issuer

-—- Helper choice to allow the controller to fetch this contract without being!!
—a stakeholder.
-- By fetching this contract, the controller (i.e. "fetcher') proves
-- that this contract is active and represents the current market value forl]
—this stock.
nonconsuming choice PriceQuotation Fetch: PriceQuotation
with fetcher: Party
controller fetcher
do pure this

template Offer
with
seller: Party
quotationProducer: Party
offeredAssetCid: ContractId Stock
where
signatory seller

choice Offer Accept: ()

with
priceQuotationCid: ContractId PriceQuotation
buyer: Party
buyerIou: ContractId IOU

controller buyer

do
priceQuotation <- exercise

(continues on next page)

1.12. Integrate Daml with Off-Ledger Services 441

Daml SDK Documentation, 2.7.3

(continued from previous page)

priceQuotationCid PriceQuotation Fetch with
fetcher = buyer
asset <- fetch offeredAssetCid

-—- Assert the quotation issuer and asset name
priceQuotation.issuer === quotationProducer
priceQuotation.stockName === asset.stockName

<- exercise
offeredAssetCid Stock Transfer with
newOwner = buyer

-- Purchase the stock at the currently published fair price.
_ <- exercise
buyerIou IOU Transfer with target = seller, amount = priceQuotation.
—value
pure ()

The following snippet of Daml Script models the setup of the trade between the parties.

let stockName = "Daml"

stockCid <- submit stockExchange do
createCmd Stock with

issuer = stockExchange
owner = seller
stockName = stockName

offerCid <- submit seller do
createCmd Offer with
seller = seller
quotationProducer = stockExchange
offeredAssetCid = stockCid

priceQuotationCid <- submit stockExchange do
createCmd PriceQuotation with

issuer = stockExchange
stockName = stockName
value = 3

buyerIouCid <- submit bank do
createCmd IOU with
issuer = bank
owner = buyer
value = 10

Settling the trade on-ledger implies that Buyer exercises Of fer Accept onthe offerCidcontract.
But how can Buyer exercise a choice on a contract on which it is neither a stakeholder nor a prior
informee? The same question applies to Buyer’s visibility over the stockCid and priceQuota-
tionCid contracts.

If Buyer plainly exercises the choice as shown in the snippet below, the submission will fail with an
error citing missing visibility rights over the involved contracts.

-—- Command fails with missing visibility over the contracts for buyer

(continues on next page)

442 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

_ <- submit buyer do
exerciseCmd offerCid Offer Accept with priceQuotationCid = priceQuotationCid,!]
—buyer = buyer, buyerIou = buyerIouCid

Read delegation using explicit contract disclosure

With the introduction of explicit contract disclosure, Buyer can accept the offer from Seller without
having seen the involved contracts on the ledger. This is possible if the contracts’ stakeholders
decide to disclose their contracts to any party desiring to execute such a trade. Buyer can attach
the disclosed contracts to the command submission that is exercising Offer Accept on Seller’s
offerCid, thus bypassing the visibility restriction over the contracts.

Note: The Ledger APl uses the disclosed contracts attached to command submissions for resolv-
ing contract and key activeness lookups during command interpretation. This means that usage
of a disclosed contract effectively bypasses the visibility restriction of the submitting party over
the respective contract. However, the authorization restrictions of the Daml model still apply: the
submitted command still needs to be well authorized. The actors need to be properly authorized to
execute the action, as described in Privacy Through Authorization.

1.12.9.2 How do stakeholders disclose contracts to submitters?

The disclosed contract’s details can be fetched by the contract’s stakeholder from the contract’s
associated CreatedEvent, which can be read from the Ledger API via the active contracts and transac-
tions queries (see Reading from the ledger).

The stakeholder can then share the disclosed contract details to the submitter off-ledger (outside of
Daml) by conventional means, such as HTTPS, SFTP, or e-mail. A DisclosedContract can be constructed
from the fields of the same name from the original contract’s CreatedEvent.

Note: Only contracts created starting with Canton 2.6 can be shared as disclosed contracts. Prior
to this version, contracts’ CreatedEvent does not have ContractMetadata populated and cannot
be used as disclosed contracts.

112.9.3 Attaching a disclosed contract to a command submission

A disclosed contract can be attached as part of the Command’s disclosed_contracts and requires the
following fields (see DisclosedContract for content details) to be populated from the original CreatedE-
vent (see above):

template_id - The contract’s template id.

contract_id - The contract id.

arguments - The contract’s create arguments. This field is a protobufoneof anditallows either
passing the contract’s create arguments typed (as create arguments) or as a byte array (as
create arguments blob). Generally, clients should use the create arguments blob for
convenience since they can be received as such from the stakeholder off-ledger (see above).

112. Integrate Daml with Off-Ledger Services 443

Daml SDK Documentation, 2.7.3

metadata - The contract metadata. This field can be populated as received from the stake-
holder (see below).

1.12.9.4 Trading the stock with explicit disclosure

In the example above, Buyer does not have visibility over the stockCid, priceQuotationCid and
offerCid contracts, so Buyer must provide them as disclosed contracts in the command submis-
sion exercising Offer Accept. To do so, the contracts’ stakeholders must fetch them from the
ledger and make them available to the Buyer.

Note: Daml Script support for explicit disclosure is currently not implemented. The last steps of
the example are modeled using raw grRPC queries.

The contracts’ stakeholders issue fetch queries to the Ledger API for retrieving the associated con-
tract payloads. For simplicity in the example, all parties reside on participant participant with
the Ledger APl running on port 5031.

Needs to be extracted via package lookup
packageId="436c13beld424al16fb69a3dda4983b94£f1965acl2c66d8a6d879ad3027ead7824d"

Needs to be extracted via party lookup

buyerId=
—"Buyer::122001002fb09c06%a0f4e7badf9cbla6d7dd9097fbdb653e1278193aa5£36b9c6b3"
stockExchangeId=

—"StockExchange::122001002£fb09c069a0f4e7badf9cbla6d7dd9097£fbdb653e1278193aa5£36b9%¢c

"
—

sellerId=
—"Seller::122001002fb09c069%9a0fde7badf9cblacd7dd9097fbdb653e1278193aa5£f36b9%c6b3"

StockExchange fetches the Stock contract referenced by stockCid from the ledgerl]
—by querying the Ledger API

(here we are using the GetTransactions query)

grpcurl -plaintext -d '{"ledgerId":"participant","begin":{"absolute":
—~"0000000000000000™}, "end" : {"boundary" :"LEDGER END"},"filter":{"filters by party
%":{"‘"$stockExchangeId"'":{"inclusive":{"templateiids":[{"packageiid":"'"
%$package1d"'","module_name":"StockExchange","entity_name":"Stock"}J}}}},"verbose
—":true}' localhost:5031 com.daml.ledger.api.vl.TransactionService/
—GetTransactions

Result: {"transactions":[{"transaction id":
—"1220073a3db0e42b536791ed24689ec587276de2cad79887e466c380c26ffda’barl", "command
—1d":"elcbblb7-277c-4126-bde7-13b3cb158b36","effective at":"2023-04-05T09:11:29.
—~0629392","events": [{"created":{"event id":"
—#1220073a3db0e42b536791ed24689%9ec587276de2cad79887e466c380c26ffda7bafl:0",
—"contract id":
—"00406f5ctbe495a21d576fbc4971e5d12clecb5de972439calc054bbeb54883de2a9calll22064deba
<", "template id":{"package id":
—~"436cl3beld24alb6fb69a3dda4983b94f1965acl2c66d8a6d879ad3027ea4782d", "module name

—~":"StockExchange","entity name":"Stock"},"create arguments":{"record id":{
—"package 1d":"436cl3bel424al6rb69a3ddad4983b94r1965acl2c66d8a6d879ad3027ea4782d",
—"module name":"StockExchange","entity name":"Stock'"},"fields":[{"label":"issuer

<", "value": {"party":
—"StockExchange: :122001002fb09c069%a0f4e7badf9chbl1a6d7dd9097fbdb653e1278193aa51r36b9c
"}, {"label":"owner","value'": {"party":

"Seller::122001002fb09c069a0f4e7badf9chla6d7dd9097fbdb653e1278193aa5f36b9%c6b3"}}

b3

U54a83ce

6b 3

H,{"label":"stockName","value”:{"text":”Daml"}}]},”witnessﬁpartiégw?wuesonnmapag@
— "StockExchange: :122001002fb09c069a0f4e7badf9cblab6d7dd9097fbdb653e1278193aa51r36b9c

444 , "agreement text!: U, Nsignatories’:| Chapter 1. Canton References
—"StockExchange: :122001002£b09c069a0f4e 7badf9cbla6d7dd9097fbdb653e1278193aa5£36bIc

"] ,"observers": [
"Seller::122001002fb09c069%9a0f4e7badf9cbhbla6d’7dd9097fbdb653e1278193aa5rf36b9c6b3"],

M~ ANt e T o~ d~T =M ONDODO2 N NETNODeT T a0 NECOOD0O7H I Ao cram vt~ .

6b3

6b3

Daml SDK Documentation, 2.7.3

(continued from previous page)

As above, StockExchange fetches the PriceQuotation referenced byll
—priceQuotationCid

grpcurl -plaintext -d '{"ledgerId":"participant","begin":{"absolute":
—"0000000000000000"}, "end": {"boundary" :"LEDGER_END"},"filter":{"filters by party
" {"'"$stockExchangeId"'":{"inclusive":{"template ids":[{"package id":"'"
—SpackageId"'", "module name":"StockExchange","entity name":"PriceQuotation"}]}}}}
—,"verbose":true}' localhost:5031 com.daml.ledger.api.vl.TransactionService/
—GetTransactions

Result: {"transactions'": [{"transaction 1id":
—"1220ecf0113498dfle9a4fd9aeed82b877b71cbladdb7fdacal88294dfdeecadabeac"”, "command
—~1d":"433e9786-df09-4243-ad70-1d27fee05031","effective at":"2023-04-05T09:11:29.
—2578082","events": [{"created":{"event id":"
S#1220ecf0113498d1rf1e9a4fd9aeed82b877b71cbla8d57fdacal88294dfdeeadabeac:0",
—"contract id":
—"00e0be88a38c25bc0b3b35acd6f46de92584bectf99009chb512a71727fb928c90fdca01122080169%e
<", "template id":{'"package id":
—"436c13beld24al6fb69a3dda4983b941r1965acl2c66d8a6d879ad3027ea4782d", "module name
—":"StockExchange","entity name":"PriceQuotation"},"create arguments'":{"record id
—":{"package id":
—~"436cl3beld24al6fb69a3dda4983b941f1965acl2c66d8a6d879ad3027ead4782d", "module name
—":"StockExchange","entity name":"PriceQuotation"},"fields":[{"label":"issuer",
—"value": {"party":
—"StockExchange::122001002fb09c069a0f4e7badf9cbla6d’7dd9097fbdb653e1278193aa5£36b9c
<"pp,{"label":"stockName","value":{"text":"Daml1"}},{"label":"value","value":{

—"int64":"3"}}]},"witness parties": [
—"StockExchange::122001002fb09c069a0f4e7badf9cbla6d7dd9097fbdb653e1278193aa5r36b9c
"], "agreement text":"",6 "signatories':[

—""StockExchange::122001002fb09c069a0f4e7badf9cbla6d7dd9097fbdb653e1278193aa51r36b9c
"], "metadata": {"created at":"2023-04-05T709:11:29.2578082","driver metadata":
—"CiYKJAGBEiBsywnjtj+a0Px6A2LwSV2MrOxE9QyJDMOVpgPAEGamqg=="}}}],"offset":

< "00000000000000000£"}]}

As above, Seller fetches the Offer referenced by offerCid

grpcurl -plaintext -d '{"ledgerId":"participant","begin":{"absolute™:
—"0000000000000000"}, "end": {"boundary" :"LEDGER_END"},"filter":{"filters by party
=" {"'"SsellerId"'": {"inclusive": {"template ids":[{"package id":"'"SpackageId"'",
—"module name":"StockExchange","entity name":"Offer"}]}}}},"verbose":true} '[]
—localhost:5031 com.daml.ledger.api.vl.TransactionService/GetTransactions

Result: {"transactions":[{"transaction id":
—"1220af12e338e396943741f8e7fc992a9361dfbe942705bdcfb29e56£5c6668713bb3", "command
—1d":"aecbac54-5166-450c-868d-3ee912e7073c","effective at":"2023-04-05T09:11:29.
—1583052","events": [{"created": {"event id":"
—#1220af12e338e39694374f8e7fc992a9361dfbe942705bdcfb29e56f5¢c6668713bb3:0",
—'"contract id":
—"00b8355¢cf81045ad6212e6168380dd9ca4b7dbe9b7f0b53c595bdc0b9e60ec6789ca011220249¢c85
", "template id":{"package id":
—~"436cl3beld24alb6fb69a3dda4983b941f1965acl2c66d8a6d879ad3027ead782d", "module name

—":"StockExchange","entity name":"Offer"},"create arguments":{"record id":{
—"package 1d'":"436cl3bel424al6rb69a3ddad4983b94r1965acl2c66d8a6d879ad3027ea4782d",
—'"module name'":"StockExchange'","entity name'":"Offer"},"fields":[{"label":"seller

<", "value": {"party":
—"Seller::122001002fb09c069a0f4e7badf9chla6d7dd9097fbdb653e1278193aa5f36b9c6b3"}}
—,{"label":"quotationProducer", "value":{"party":

—"StockExchange: :122001002fb09c069%a0f4e7badf9chbla6d7dd9097fbdb653e1278193aab5f36b9c
—"}},{"label":"offeredAssetCid", "value":{"contract id":

053bd955

6b3

6b3

6b3

1caB8927e

6b3

—"00406t5ctbed95a21d576fbc4971eb5d12clec5de972439ca0c054bbeb4883ddeantinues bAnext/pager
<"}}]},"witness parties"~[

STSETTer: NI 20776 7hadrIchIa6d/ddU9 7 Fbabe53e 12781 932a5F36b9C663 "]
112. jgggggggej% th égtb g g{fg%r ervices 445

—"Seller: 122001002fb09c069a0f4e7badf9cbla6d7dd9097fbdb653el278193aa5f36b9c6b3"],
—'"metadata":{"created at":"2023-04-05T09:11:29.1583052","driver metadata":
< "C1YKJAGBEiBNiC/8U069Zpc790t3YGmmdk+TGWEZRsNukLYri+64Sg=="}}}],"offset":

454a83ce

Daml SDK Documentation, 2.7.3

(continued from previous page)

Buyer receives these contracts from the stakeholders and adapts them to disclosed contracts (as
described in the previous section) in a command submission that executes Offer Accept on the
offerCid. The resulting gRPC command submission, which succeeds, is shown below.

Extracted from the transaction lookup query results from above

offerCid=
—"00pb8355c£81045ad6212e6168380dd9%cadb7dbeSb7£f0b53¢c595bdc0b9e60ec6789ca011220249¢c85
Rt

priceQuotationCid=
—"00e0be88a38c25bc0b3b35acd6f46de92584becf99009¢cb512a71727£fb928c90£fdca01122080169%¢e

A1
—

stockCid=
—"00406£5cfbed95a21d576fbcd971e5d12clec5de972439calc054bbe54883de2a9calll22064deba

n
—

The contract id of Buyer's IOU (for conciseness, not shown in this example butl]
—can be extracted by the Buyer from the getTransactions queries as above)
buyerIouCid=
—"00cd7d7b27£1b323bb55c2b0adf2aac76657079741adf6dc98a5d977338e3c92eecalll1220649£d7

"
—

stockContractCreatedAt="2023-04-05T709:11:29.0629392"
stockContractDriverMetadata="CiYKJAGBEIAShhYAZLWLGx4dr6oMOOrlxoD/AAU/
—XebH56hCOzDg01Q==""

offerContractCreatedAt="2023-04-05T09:11:29.1583052"
offerContractDriverMetadata="CiYKJAgBEiBNiC/
- 8U069%pc7g0t3YGmmdk+TGWEZRsNukLYri+64S5g=="

priceQuotationContractCreatedAt="2023-04-05T09:11:29.2578082z"
priceQuotationContractDriverMetadata=
—"CiYKJAgBEiBsywnjtj+a0Px6A2LwSV2MrOxE9QyJIDMOVpgPAEGamgg==""

Buyer exercises Offer Accept on offerCid with populating the Command.disclosed
—contracts field

with the data previously shared off-ledger for offerCid, stockCid and]
—priceQuotationCid contracts

grpcurl -plaintext -d '{"commands":{"ledger id":"participant","workflow id":
—"ExplicitDisclosureWorkflow","application id":"ExplicitDisclosure","command id":
—"ExplicitDisclosure-command", "party":"'"SbuyerId"'", "commands": [{"exercise":{
—"template id":{"package id":"'"SpackageId"'","module name":"StockExchange",
—"entity name":"Offer"},"contract id":"'"SofferCid"'","choice":"Offer Accept",
—"choice argument":{"record":{"record id":{"package id":"'"$SpackageId"'","module
—name" :"StockExchange", "entity name":"Offer Accept"},"fields":[{"label":
—"priceQuotationCid", "value": {"contract id":"'"SpriceQuotationCid"'"}}, {"label":
—"buyer","value": {"party":"'"SbuyerId"'"}}, {"label":"buyerIou", "value": {
—"contract id":"'"SbuyerIouCid"'"}}]1}}}}],"submission id":"ExplicitDisclosure-
—submission", "disclosed contracts":[{"template id":{"package id":"'"SpackageId"'
<", "module name":"StockExchange","entity name":"Stock"},"contract id":"'"
—SstockCid"'", "create arguments":{"record id":{"package id":"'"SpackageId"'",
—"module name":"StockExchange","entity name":"Stock"},"fields":[{"label":"issuer
<", "value": {"party":"'"SstockExchangeId"'"}}, {"label":"owner", "value": {"party":"'
—"SsellerId"'"}}, {"label":"stockName", "value": {"text":"Daml"}}]}, "metadata":{
—"created at":"'"S$stockContractCreatedAt"'","driver metadata":"'"

lcaB8927e

D53bd955

154a83ce

B0478bbl

—SstockContractDriverMetadata™ "} }, {"template 1d":{"package 1d":'(¢ontiruesonmext'gdge)
—"module name":"StockExchange","entity name":"Offer"},"contract id":"'""SofferCid"
"Create_arguments':{record id":{"package_ id" ckageld" "Module, name"
44‘%tockExchange" "entity name":"Offer"},"fields": { "la pt%rell&ant%ﬁ%fergnces
"party":"'"S$sellerId"'"}}, {"label":"quotationProducer", "value": {"party":""'"
%$stockExchangeId"‘"}},{"label":"offeredAssetCid","value":{"contractiid":"‘"
—SstockCid"'"}} 1}, "metadata": {"created at":"'"SofferContractCreatedAt"'", "driver

Daml SDK Documentation, 2.7.3

(continued from previous page)

|

113 Resource Management in Daml Application Design

This section discusses approaches to avoiding potential resource pitfalls by strengthening Daml
contract design.

Note: Inthis document, we focus on building resilience into the system by writing performant Daml
code at design time. We are not concerned with ledger optimization. Read more about Canton per-
formance and scaling.

1.13.1 Managing Latency and Throughput
113.1.1 Problem Definition

Latency is a measure of how long a business transaction takes to complete. Throughput measures,
on average, the number of business transactions possible per second while taking into account any
lower or upper bounds which may point to bottlenecks. Defense against latency and throughput
issues can be written into the Daml application during design.

First we need to identify the potential bottlenecks in a Daml application. We can do this by analyzing
the domain-specific transactions.

Each Daml business transaction kicks off when a Ledger API client sends the commands create or
exercise to a participant.

Important:

Ledger transactions are not synonymous with business transactions.

Often acomplete business transaction spans multiple workflow steps and thus multiple ledger
transactions.

Multiple business transactions can be processed in a single ledger transaction through batch-
ing.

Expected ledger transaction latencies are on the order of 0.5-1seconds on database sequencers,
and multiple seconds on blockchain sequencers.

Refer to the Daml execution model that describes a ledger transaction processed by the Canton
ledger. The table below highlights potential resource-intensive activities at each step.

113. Resource Management in Daml Application Design 447

../../canton/usermanual/performance.html
../../canton/usermanual/performance.html
../intro/7_Composing.html#daml-s-execution-model

Daml SDK Documentation, 2.7.3

Step Participant Resources used Possible bottleneck
drivers
Inter- o .
preta- §upm|tt|ng par- 1. CPU 1. Qalculatmn complex-
tion ticipant node 2. Memory ity
3. DB read access 2. Size and number of
variables
3. Number of contract
fetches
Blind- s ;
ing §upm|tt|ng par- CPU/memory N'umber and size of
ticipant node views
Sub- _ C .
mis- Submitting par- 1. CPU 1. Serialization/deseri-
sion ticipant node 2. Memory alization
Sequencer 2. Transaction
size/number of
views
Se- . .
Sequencer 1. Backend storage 1. Transaction size
quenc- . .
ing 2. Network bandwidth 2. Transactmn
size/number of
views
Valida-
tion Receiving partic- 1. Network bandwidth 1. Transaction size ->
ipant nodes 2. CPU download, deserial-
3. Memory ization, storage costs
4. DB read throughput 2. Computation com-
plexity
3. Number of contract
fetch reads
4. Number and size of
variables
Confir- I . .
mation Validating par- 1. Network bandwidth Number of confirm-
ticipant nodes 2. Sequencer network ing parties
Sequencer 3. Backend write throughput
Media-))
tion Mediator nodes 1. Network throughput Number of confirm-
2. CPU ing parties
3. Memory
Com- . .
mit Mediator nodes 1. CPU Number of confirm-
Sequencer 2. Memory ing parties
3. DB
4. Network bandwidth
448 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Possible Throughput Bottlenecks in Order of Likelihood

1. Transaction size causing high serialization/deserialization and encryption/decryption costs
on participant nodes.

2. Transaction size causing sequencer backend overload, especially on blockchains.

3. High interpretation and validation cost due to calculation complexity or memory use.

4. Large number of involved nodes and associated network bandwidth on sequencer.

Latency can also be affected by the above factors. However, baseline latency usually has more to do
with system set-up issues (DB or blockchain latency) rather than Daml modeling problems.

Solutions

1. Minimize transaction size.

Each of the following actions in Daml adds a node to the transaction containing the payload of the
contract being acted on. A large number of such operations, and/or operations of this kind on large
contracts, are the most common cause of performance bottlenecks.

create

fetch
fetchByKey
lookupByKey
exercise
exerciseByKey
archive

Use the above actions sparingly. For example, if contracts have intermediary states within a trans-
action, you can often skip them by writing only the end state. For example:

template Incrementor
with

p : Party

n : Int

where

signatory p

choice Increment : ContractId Incrementor
controller p
do create this with n = n+1

-— This adds all m-1 intermediary versions of
-— the contract to the transaction tree
choice BadIncrementMany : ContractId Incrementor
with m : Int
controller p
do foldlA (\self' _ -> exercise self' Increment) self [1..m]

-— This only adds the end result to the transaction
choice GoodIncrementMany : ContractId Incrementor
with m : Int
controller p
do create this with n = n+m

113. Resource Management in Daml Application Design 449

Daml SDK Documentation, 2.7.3

When you need to read a contract, or act on a single contract in multiple ways, you can often bundle
those operations into a single action. For example:

template Asset
with
issuer : Party
owner : Party
quantity : Decimal
where
signatory [issuer, owner]

-—- BadMerge acts on each of the otherCids three times:
-— Once for validation
-- Once to extract the quantities
-— Once to archive
choice BadMerge : ContractId Asset
with otherCids : [ContractId Asset]
controller owner
do
-- validate the cids.
forA otherCids (\cid -> do
other <- fetch cid
assert (other.issuer == issuer && other.owner == owner))

-- extract the quantities

quantities <- forA otherCids (\cid -> do
other <- fetch cid
return other.quantity)

-- archive the others
forA otherCids archive

create this with quantity = quantity + sum quantities

-- Allow us to do a fetch and an archive in one action
choice ConsumingFetch : Asset

controller owner

do return this

-— GoodMerge only acts on each of the other assets once.
choice GoodMerge : ContractlId Asset
with otherCids : [ContractId Asset]
controller owner
do
-—- Get and archive the others
others <- forA otherCids (exercise’ ConsumingFetch)

-— validate
forA others (\other -> do

assert (other.issuer == issuer && other.owner == owner))

-- extract the quantities
let quantities = map (.quantity) others

create this with quantity = quantity + sum quantities

Separate templates for large payloads that change rarely and require minimum access from those
for fields that change with almost every action. This optimizes resource consumption for multiple

450 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

business transactions.

This batching approach makes updates in one transaction submission rather than requiring sepa-
rate transactions for each update. Note: this option can cause a small increase in latency and may
increase the possibility of command failure but this can be avoided. For example:

template T
with

p : Party
where
signatory p

choice Foo : ()
controller p
do return ()

batching : Script ()
batching = do
p <- allocateParty "p"

-—- without batching we have 10 ledger
-—- transactions.

cidl <- submit
cid2 <- submit
cid3 <- submit
cid4 <- submit
cid5 <- submit

do createCmd T with
do createCmd T with
do createCmd T with
do createCmd T with
do createCmd T with

' ' '8 'O T

submit p do exerciseCmd cidl Foo
submit p do exerciseCmd cid2 Foo
submit p do exerciseCmd cid3 Foo
submit p do exerciseCmd cid4 Foo
submit p do exerciseCmd cid5 Foo

-— With batching, there are only two ledger transactions.
cids <- submit p do

replicateA 5 $ createCmd T with

submit p do

forA cids ("exerciseCmd’ Foo)

2. CPU and memory issues: Use the Daml profiler to analyze Daml code execution.
3. Once you feel interpretation is not the bottleneck, scale up your machine.

Tip: Profile the JVM and monitor your databases to see where the bottlenecks occur.

113. Resource Management in Daml Application Design 45]

Daml SDK Documentation, 2.7.3

1.13.2 Avoid Contention Issues

Measuring the performance of business applications involves more than considering the transac-
tions per second and transaction latency of the underlying blockchain and Distributed Ledger Tech-
nology (DLT). Blockchains are distributed systems; even the highest-performance blockchains have
considerably higher transaction latencies than traditional databases. These factors make the sys-
tems prone to contention, which can stifle the performance of applications when not handled ap-
propriately.

It is, unfortunately, easy to design low-performance applications even on a high-performance
blockchain system. Applications that initially perform well may fail under pressure. It is better to
plan around contention in your application design than to fix issues later. The marginal cost of in-
cluding extra business logic within a blockchain transaction is often small.

Contentionis expected in distributed systems. Theaim istoreduceittoacceptable levels and handle
it gracefully, not to eliminate it at all costs. If contention only occurs rarely, it may be cheaper for
both performance and complexity to simply let the occasional allocation fail and retry, rather than
implement an advanced technique to avoid it.

As an added benefittoreducing contention issues, carefully bundling or batching strategic business
logic can improve performance by yielding business transaction throughput that far exceeds the
blockchain transaction throughput.

113.2.1 Contention in Daml

Daml uses an unspent transaction output (UTXO) ledger model. UTXO models enable higher perfor-
mance by supporting parallel transactions. This means that you can send new transactions while
other transactions are still processing. The downside is that contention can occur if a second trans-
action arrives while a conflicting earlier transaction is still pending.

Daml guarantees that there can only be one consuming choice exercised per contract. If you try to
commit two transactions that would consume the same contract, you have write-write contention.

Contention can also result from incomplete or stale knowledge. For example, a contract may have
been archived, but a client hasn’t yet been notified due to latencies or a privacy model might prevent
the client from ever knowing. If you try to commit two transactions on the same contract where one
transaction reads and the other one consumes an input, you run the risk of a read-write contention.

A contract is considered pending when you do not know if the output has been consumed. It is best
to assume that your transactions will go through and to treat pending ones as probably consumed.
You must also assume that acting on a pending contract will fail.

You need to wait while the sequencer is processing a transaction in order to confirm that an input
was consumed from a consuming input request. If you do not get confirmation back from the first
transaction before submitting a second transaction on the same contract, the sequence is not guar-
anteed. The only way to avoid this conflict is to control the sequence of those two transactions.

Ledger state is read in the following places within the Dam| Execution Model :

1. Aclient submits a command based on the client’s latest view of the state of the shared ledger.
The command might include references to ContractIds that the client believes are active.

2. During interpretation, ledger state is used to look up active contracts.

3. During validation, ledger state is again used to look up contracts and to validate the transac-
tion by reinterpreting it.

452 Chapter 1. Canton References

../intro/7_Composing.html#daml-s-execution-model

Daml SDK Documentation, 2.7.3

Contention can occur both between #1 and #2 and between #2 and #3:

The client is constructing the command in #1 based on contracts it believes to be active. But by
the time the participant performs interpretation in #2, it has processed the commit of another
transaction that consumed those contracts. The participant node rejects the command due to
contention.

The participant successfully constructs a transaction in #2 based on contracts it believes to
be active. But by the time validation happens in #3, another transaction that consumes the
same contracts has already been sequenced. The validating participants reject the command
due to contention.

The complete and relevant ledger state at the time of the transaction is known only after sequencing,
which happens between #2 and #3. That ledger state takes precedence to ensure double spend
protection.

Contention slows performance significantly. While you cannot avoid contention completely, you can
design logic to minimize it. The same considerations apply to any UTXO ledger.

113.2.2 Reduce Contention

Contention is natural and expected when programming within a distributed system like Daml in
which every action is asynchronous. It isimportant to understand the different causes of contention,
be able to diagnose the root cause if errors of this type occur, and be able to avoid contention by
designing contracts appropriately.

You can use different techniques to manage contention and to improve performance by increasing
throughput and decreasing latency. These techniques include the following:

Add retry logic.
Run transactions that have causality in series.
Bundle or batch business logic to increase business transaction throughput.
Maximize parallelism with techniques such as sharding, while ensuring no contention between
shards.
Split contracts across natural lines to reduce single, high-contention contracts.
Avoid write-write and write-read contention on contracts. This type of contention occurs when
one requester submits a transaction with a consuming exercise on a contract while another
requester submits another exercise or a fetch on the same contract. This type of contention
cannot be eliminated entirely, since there will always be some latency between a client sub-
mitting a command to a participant and other clients learning of the committed transaction.
Here are a few scenarios and specific measures you can take to reduce this type of collision:
- Shard data. Imagine you want to store a user directory on the ledger. At the core, this is of
type [(Text, Party)],whereText isadisplaynameandPartyistheassociated Party.
If you store this entire list on a single contract, any two users wanting to update their
display name at the same time will cause a collision. If you instead keep each (Text,
Party) on a separate contract, these write operations become independent from each
other.
A helpful analogy when structuring your data is to envision that a template defines a table,
where a contract is a row in that table. Keeping large pieces of data on a contract is like
storing big blobs in a database row. If these blobs can change through different actions,
you have write conflicts.
- Use non-consuming choices, where possible, as they do not collide. Non-consuming
choices can be used to model events that have occurred, so instead of creating a

113. Resource Management in Daml Application Design 453

Daml SDK Documentation, 2.7.3

short-lived contract to hold some data that needs to be referenced, that data could be
recorded as a ledger event using a non-consuming choice.

- Avoid workflows that encourage multiple parties to simultaneously exercise a consuming
choice on the same contract. For example, imagine an auction contract containing a field
highestBid : (Party, Decimal). IfAlicetriesto bid $100 at the same time that Bob
tries to bid $90, it does not matter that Alice’s bid is higher. The sequencer rejects the
second because it has a write collision with the first transaction. It is better to record the
bids in separate Bid contracts, which can be updated independently. Think about how you
would structure this datain arelational database to avoid data loss due to race conditions.

- Think carefully about storing ContractIds. Imagine that you create a sharded user di-
rectory according to the first bullet in this list. Each user has a User contract that stores
their display name and party. Now assume that you write a chat application, where each
Message contract refers to the sender by ContractId User.

If a user changes the display name, that reference goes stale. You either have to modify
all messages that the user ever sent, or you cannot use the sender contract in Daml.
Contract keys can be used to make this link inside Daml. If the only place you need to link
Partyto Userisinthe userinterface, it might be best to not store contract references in
Daml at all.

113.2.3 Example Application with Techniques for Reducing Contention

The example application below illustrates the relationship between blockchain and business appli-
cation performance, as well as the impact of design choices. Trading, settlement, and related sys-
tems are core use cases of blockchain technology, so this example demonstrates different ways of
designing such a system within a UTXO ledger model and how the design choices affect application
performance.

The Example Minimal Settlement System

This section defines the requirements that the example application should fulfill, as well as how to
measure its performance and where contention might occur. Assume thatthere are initial processes
already in place to issue assets to parties. All of the concrete numbers in the example are realistic
order-of-magnitude figures that are for illustrative purposes only.

Basic functional requirements for the example application

Atrading system is a system that allows parties to swap assets. In this example, the parties are Alice
and Bob, and the assets are shares and dollars. The basic settlement workflow could be:

1. Proposal: Alice offers Bob to swap one share for $1.

2. Acceptance: Bob agrees to the swap.

3. Settlement: The swap is settled atomically, meaning that at the same time Alice transfers $1
to Bob, Bob transfers one share to Alice.

454 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Practical and security requirements for the example application

The following list adds some practical matters to complete the rough functional requirements of an
example minimal trading system.

Parties can hold asset positions of different asset types which they control.

- An asset position consists of the type, owner, and quantity of the asset.

- An asset type is usually the combination of an on-ledger issuer and a symbol (such as

currency, CUSIP, or ISIN).

Parties can transfer an asset position (or part of a position) to another party.
Parties can agree on a settlement consisting of a swap of one position for another.
Settlement happens atomically.
There are no double spends.
Itis possible to constrain the total asset position of an owner to be non-negative. In other words,
it is possible to ensure that settlements are funded. The total asset position is the sum of the
quantities of all assets of a given type by that owner.

Performance measurement in the example application

Performance in the example can be measured by latency and throughput; specifically, settlement la-
tency and settlement throughput. Another important factor in measuring performance is the ledger
transaction latency.

Settlement latency: the time it takes from one party wanting to settle (just before the proposal
step) to the time that party receives final confirmation that the settlement was committed
(after the settlement step). For this example, assume that the best possible path occurs and
that parties take zero time to make decisions.
Settlement throughput: the maximum number of settlements per second that the system as
a whole can process over a long period.
Transaction latency: the time it takes from when a client application submits a command or
transaction to the ledger to the time it receives the commit confirmation. The length of time
depends on the command. A transaction settling a batch of 100 settlements will take longer
than a transaction settling a single swap. For this example, assume that transaction latency
has a simple formula of a fixed cost fixed txand avariable processing costof var txtimes
the number of settlements, as shown here:
transaction latency = fixed tx + (var tx * #settlements)
Note that the example application does not assign any latency cost to settlement proposals
and acceptances.
For the example application, assume that:

- fixed tx = 250ms

- var_tx = 10ms

To set a baseline performance measure for the example application, consider the simplest possible
settlement workflow, consisting of one proposal transaction plus one settlement transaction done
back-to-back. The following formula approximates the settlement latency of the simple workflow:

(2 * fixed tx) + var tx
= (2 * 250ms) + 10ms

=510ms

113. Resource Management in Daml Application Design 455

Daml SDK Documentation, 2.7.3

To find out how many settlements per second are possible if you perform them in series, throughput
evaluates to the following formula (there are 1,000ms in one second):

1000ms / (fixed tx + var tx) settlements per second
=1000ms / (250ms + 10ms)
=1000 / 260
=3.85 or » 4 settlements per second
These calculations set the optimal baselines for a high performance system.

The next goal is to increase throughput without dramatically increasing latency. Assume that the
underlying DLT has limits on total throughput and on transaction size. Use a simple cost model in
aunitcalled d1t min txrepresenting the minimum throughput unitin the DLT system. An empty
transaction has a fixed cost d1t fixed tx whichis:

dlt fixed tx = 1 dlt min tx

Assume that the ratio of the marginal throughput cost of a settlement to the throughput cost of
a transaction is roughly the same as the ratio of marginal latency to transaction latency (shown
previously). A marginal settlement throughput cost d1t var tx can then be determined by this
calculation:

dlt var tx = ratio * dlt fixed tx

=dlt var tx

(var tx / fixed tx) * dlt fixed tx
=dlt var tx = 10sm/250ms * dlt fixed tx
=dlt var tx = 0.04 * dlt fixed tx
and, since from previously
dlt fixed tx = 1 dlt min tx
then
dlt var tx = 0.04 * dlt min tx

Even with good parallelism, ledgers have limitations. The limitations might involve CPUs, databases,
or networks. Calculate and design for whatever ceiling you hit first. Specifically, there is a maximum
throughput max throughput (measured in d1t min tx/second) and a maximum transaction
sizemax transaction(measuredindlt min_ tx). Forthisexample,assumethatmax through-
put is limited by being CPU-bound. Assume that there are 10 CPUs available and that an empty
transaction takes 10ms of CPU time. For each second:

max throughput = 10 * each CPU’s capacity

Eachdlt min txtakes10ms and there are 1,000 ms in a second. The capacity for each CPU is then
100d1lt min tx per second. The throughput calculation becomes:

max_throughput = 10 * 100 dlt min tx/second
=max throughput = 1,000 dlt min tx/second

Similarly,max transaction could be limited by message size limit. For this example, assume that
the message size limitis 3 MB and that an empty transaction dlt min txis1MB. So

max transaction = 3 * dlt min tx

456 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

One of the three transactions needs to hold an approval with no settlements. That leaves the equiv-
alent of (2 * dlt min tx) available to hold many settlements in the biggest possible trans-
action. Using the ratio described earlier, each marginal settlement d1t var tx takes 0.04 *
dlt min tx. Sothe maximum number of settlements per second is:

(2 * dlt min tx)/(0.04 * dlt min tx)
=50 settlements/second

Using the same assumptions, if you process settlements in parallel rather than in series (with only
one settlement per transaction), latency stays constant while settlement throughput increases. Ear-
lier, it was noted that a simple workflowcanbe (2 * fixed tx) + var tx.IntheDLTsystem,the
simple workflow calculation is:

(2 * dlt min tx) + dlt var tx
= (2 * dlt min tx) + (0.04 * dlt min tx)
=2.04 * dlt min tx

It was assumed earlier that max_throughputis 1,000 dlt min tx/second. So the maximum
number of settlements per second possible through parallel processing alone in the example DLT
system is:

1,000/2.04 settlements per second
=490.196 or ~490 settlements per second

These calculations provide a baseline when comparing various techniques that can improve perfor-
mance. The techniques are described in the following sections.

Prepare Transactions for Contention-Free Parallelism

This section examines which aspects of UTXO ledger models can be processed in parallel to improve
performance. In UTXO ledger models, the state of the system consists of a set of immutable con-
tracts, sometimes also called UTXOs.

Only two things can happento acontract: itis created and lateritis consumed (or spent). Each trans-
action is a set of input contracts and a set of output contracts, which may overlap. The transaction
creates any output contracts that are not also consumed in the same transaction. It also consumes
any input contracts, unless they are defined as non-consumed in the smart contract logic.

Other than smart contract logic, the execution model is the same for all UTXO ledger systems:

1. Interpretation: the submitting party precalculates the transaction, which consists of input

and output contracts.

Submission: the submitting party submits the transaction to the network.

3. Sequencing: the consensus algorithm for the network assigns the transaction a place in the
total order of all transactions.

4. Validation: the transaction is validated and considered valid if none of the inputs were already
spent by a previous transaction.

5. Commitment: the transaction is committed.

6. Response: the submitting party receives a response that the transaction was committed.

n

The only step in this process which has a sequential component is sequencing. All other stages of
transaction processing are parallelizable, which makes UTXO a good model for high-performance
systems. However, the submitting party has a challenge. The interpretation step relies on knowing

113. Resource Management in Daml Application Design 457

Daml SDK Documentation, 2.7.3

possible inputcontracts, which are by definition unspent outputs from a previous transaction. Those
outputs only become known in the response step, after a minimum delay of fixed tx.

For example, if a party has a single $1,000 contract and wants to perform 1,000 settlements of $1
each, sequencing in parallel for all 1,000 settlements leads to 1,000 transactions, each trying to con-
sume the same contract. Only one succeeds, and all the others fail due to contention. The system
could retry the remaining 999 settlements, then the remaining 998, and so on, but this does not lead
to a performant system. On the other hand, using the example latency of 260ms per settlement, pro-
cessing these in series would take 260s or four minutes 20s, instead of the theoretical optimum of
one second given by max throughput. The trading party needs a better strategy. Assume that:

max_ transaction > dlt fixed tx + 1,000 * dlt var tx = 41 dlt min tx
The trading party could perform all 1,000 settlements in a single transaction that takes:
fixed tx + 1,000 * var tx = 10.25s

If the latency limit is too small or this latency is unacceptable, the trading party could perform three
steps to split $1,000 into:

10 * $100
100 * $10
1,000 * $1

and perform the 1,000 settlements in parallel. Latency would then be theoretically around:
3 * fixed tx + (fixed tx + var tx) = 1.01ls

However, since the actual settlement starts after 750 ms, and the max throughput is 1,000
dlt min tx/s, it would actually be:

0.75s + (1,000 * (dlt fixed tx + dlt var tx)) / 1,000 dlt min tx/s
= 1.79%s

These strategies apply to one particular situation with a very static starting state. In a real-world
high performance system, your strategy needs to perform with these assumptions:

There are constant incoming settlement requests, which you have limited ability to predict.
Treat this as an infinite stream of random settlements from some distribution and maximize
settlement throughput with reasonable latency.

Not all settlements are successful, due to withdrawals, rejections, and business errors.

Tocompare between differenttechniques, assume that the settlement workflow consists of the steps
previously illustrated with Alice and Bob:

1. Proposal: proposal of the settlement
2. Acceptance: acceptance of the settlement
3. Settlement: actual settlement

These steps are usually split across two transactions by bundling the acceptance and settle-
ment steps into one transaction. Assume that the first two steps, proposal and acceptance, are
contention-free and that all contention is on settlement in the last step. Note that the cost model
allocates the entire latency and throughput costs var tx and dlt var tx to the settlement, so
rather than discussing performant trading systems, the concern is for performant settlement sys-
tems. The following sections describe some strategies for trading under these assumptions and
their tradeoffs.

458 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Non-UTXO Alternative Ledger Models

As an alternative to a UTXO ledger model, you could use a replicated state machine ledger model,
where the calculation of the transaction only happens after the sequencing.

The steps would be:

1. Submission: the submitting party submits a command to the network.

2. Sequencing: the consensus algorithm of the network assigns the command a place in the total
order of all commands.

3. Validation: the command is evaluated to a transaction and then validated.

4. Response: the submitting party receives a response about the effect of the command.

Pros

This technique has a major advantage for the submitting party: no contention. The party pipes the
stream of incoming transactions into a stream of commands to the ledger, and the ledger takes care
of the rest.

Cons

The disadvantage of this approach is that the submitting party cannot predict the effect of the com-
mand. This makes systems vulnerable to attacks such as frontrunning and reordering.

In addition, the validation step is difficult to optimize. Command evaluation may still depend on
the effects of previous commands, so it is usually done in a single-threaded manner. Transaction
evaluationis atleast as expensive as transaction validation. Simplifying and assuming thatvar tx
is mostly due to evaluation and validation cost, a single-threaded system would be limited to 1s /
var tx = 100 settlements per second. It could not be scaled further by adding more hardware.

Simple Strategies for UTXO Ledger Models

To attain high throughput and scalability, UTXO is the best option for a ledger model. However, you
need strategies to reduce contention so that you can parallelize settlement processing.

Batch transactions sequentially

Since (var tx << fixed tx), processing two settlements in one transaction is much cheaper
than processing them in two transactions. One strategy is to batch transactions and submit one
batch at a time in series.

Pros

This technique completely removes contention, just as the replicated state machine model does. It
is not susceptible to reordering or frontrunning attacks.

Cons

As in the replicated state machine technique, each batch is run in a single-threaded manner. How-
ever, on top of the evaluation time, there is transaction latency. Assuming a batch size of N <
max_ settlements,the latency is:

fixed tx + N * var tx

and transaction throughputis:

113. Resource Management in Daml Application Design 459

Daml SDK Documentation, 2.7.3

N / (fixed tx + N * var tx)

As N goes up, thistends toward 1 / var tx = 100, which is the same as the throughput of repli-
cated state machine ledgers.

In addition, there is the max settlements ceiling. Assuming max settlements = 50, you are
limited to a throughput of 50 / 0.75 = 67 settlement transactions per second, with a latency
of 750ms. Assuming that the proposal and acceptance steps add another transaction before set-
tlement, the settlement throughput is 67 settlements per second, with a settlement latency of one
second. This is better than the original four settlements per second, but far from the 490 settlements
per second that is achievable with full parallelism.

Additionally, the success or failure of a whole batch of transactions is tied together. If one transac-
tion fails in any way, all will fail, and the error handling is complex. This can be somewhat mitigated
by using features such as Daml exception handling, but contention errors cannot be handled. As
long as there is more than one party acting on the system and contention is possible between par-
ties (which is usually the case), batches may fail. The larger the batch is, the more likely it is to fail,
and the more costly the failure is.

Use sequential processing or batching per asset type and owner

In this technique, assume that all contention is within the asset allocation steps. Imagine that there
is a single contract on the ledger that takes care of all bookkeeping, as shown in this Daml code
snippet:

template AllAssets
with
-- A map from owner and type to quantity
holdings : Map Party (Map AssetType Decimal)
where
signatory (keys holdings)

This is a typical pattern in replicated state machine ledgers, where contention does not matter. On a
UTXO ledger, however, this pattern means that any two operations on assets experience contention.
With this representation of assets, you cannot do better than sequential batching. There are many
additional issues with this approach, including privacy and contract size.

Since you typically only need to touch one owner’s asset of one type at a time and constraints such
as non-negativity are also at that level, assets are usually represented by asset positions in UTXO
ledgers, as shown in this Daml code snippet:

template
with
assetType : AssetType
owner : Party
quantity : Decimal
where
signatory assetType.issuer, owner

An asset position is a contract containing a triple (owner, asset type, and quantity). The total asset
position of an asset type for an owner is the sum of the quantities for all asset positions with that
owner and asset type. If the settlement transaction touches two total asset positions for the buy-side
and two total asset positions for the sell-side, batching by asset type and owner does not help much.

460 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Imagine that Alice wants to settle USD for EUR with Bob, Bob wants to settle EUR for GBP with Carol,
and Carol wants to settle GBP for USD with Alice. The three settlement transactions all experience
contention, so you cannot do better than sequential batching.

However, if you could ensure that each transaction only touches one total asset position, you could
then apply sequential processing or batching per total asset position. This is always possible to do
by decomposing the settlement step into the following:

1. Buy-side allocation: the buy-side splits out an asset position from their total asset position
and allocates it to the settlement.

2. Sell-side allocation: the sell-side splits out an asset position from their total asset position
and allocates it to the settlement.

3. Settlement: the asset positions change ownership.

4. Buy-side merge: the buy-side merges their new position back into the total asset position.

5. Sell-side merge: the sell-side merges their new position back into the total asset position.

This does not need to result in five transactions.

Buy-side allocation is usually done as part of a settlement proposal.

Sell-side allocation is typically handled as part of the settlement.

Buy-side merge and sell-side merge technically do not need any action. By definition of total
asset positions, merging is an optional step. It is easy to keep things organized without extra
transactions. Every time a total asset position is touched as part of buy-side allocation or
sell-side allocation above, you merge all positions into a single one. As long as there is a similar
amount of inbound and outbound traffic on the total asset position, the number of individual
positions stays low.

Pros

Assuming that a settlement is considered complete after the settlement step and that you bundle
the allocation steps above into the proposal and settlement steps, the system performance will stay
at the optimum settlement latency of 510ms.

Also, if there are enough open settlements on distinct total asset positions, the total throughput may
reach up to the optimal 490 settlements per second.

With batch sizes of N=50 for both proposals and settlements and sufficient total asset positions
with open settlements, the maximum theoretical settlement throughput is:

50 stls * 1,000 dlt min tx/s / (2 * dlt fixed tx + 50 * dlt var tx) = 12,
500 stls/s

Cons

Without batching, you are limited to the original four outgoing settlements per second, per total
asset position. If there are high-traffic assets, such as the USD position of a central counterparty,
this can bottleneck the system as a whole.

Using higher batch sizes, you have the same tradeoffs as for sequential batching, except that it is
at a total asset position level rather than a global level. Latency also scales exactly as it does for
sequential batching.

Using a batch size of 50, you would get settlement latencies of around 1.5s and a maximum through-
put per total asset position of 67 settlements per second, per total asset position.

Another disadvantage is that allocating the buy-side asset in a transaction before the settlement
means that asset positions can be locked up for short periods.

113. Resource Management in Daml Application Design 461

Daml SDK Documentation, 2.7.3

Additionally, if the settlement fails, the already allocated asset needs to be merged back into the
total asset position.

Shard Asset Positions for UTXO Ledger Models

In systems where peak loads on a single total asset positionis in the tens or hundreds of settlements
per second, more sophisticated strategies are needed. The total asset positions in question cannot
be made up of a single asset position. They need to be sharded.

Shard total asset positions without global constraints

Consider a total asset position that represents a bookkeeping position without any on-ledger con-
straints. For example, the trading system may deal with fiat settlement off-ledger, and you simply
want to record a balance, whether it is positive or negative. In this situation, you can easily get rid
of contention altogether by assigning all allocations an arbitrary amount. To allocate $1to a settle-
ment, write two new asset positions of $1and -$1to the ledger, then use the $1to allocate. The total
asset position is unchanged.

Pros
This approach removes all contention on a total asset position.

Trading between two such total asset positions without global constraints can run at the theoreti-
cally optimal latency and throughput. Combining this with batching of batch size 50, it is possible
to achieve settlements per second up to the same 12,500 settlements per second per total asset
position that are possible globally.

Cons

Besides the inability to enforce any global constraints on the total asset position, this creates many
new contracts. At 500 settlements per second, two allocations per settlement, and two new assets
per allocation, that results in 2,000 new asset positions per second, which adds up quickly.

This effect has to be mitigated by a netting automation that nets them up into a single position once
a period (for example, every time it sees >= 100 asset positions for a total position). This automation
does not contend with the trading, but it adds up to 20 large transactions per second to the system
and slightly reduces total throughput.

Shard total asset positions with global constraints

As an example of a global constraint, assume that the total asset position has to stay positive. This
is usually done by ensuring that each individual asset position is positive. If that is the case, the
strategy is to define a sharding scheme where the total position is decomposed into N smaller shard
positions and then run sequential processing or batching per shard position.

Each asset position has to be clearly assignable to a single shard position so that there is no
contention between shards. The partitioning of the total asset position does not have to be done
on-ledger. If the automation for all shards can communicate off-ledger, itis possible to run a shard-
ing strategy where you simply set the total number of desired asset positions.

For example, assume that there should be 100 asset positions for a total asset position with some
minimal value.

462 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

The automation keeps track of a synchronized pending set of asset positions, which marks
asset positions that are in use.

Every time the automation triggers (which may happen concurrently), it looks at how many as-
set positions there are relative to the desired 100 and how much quantity is needed to allocate
the open settlements.

It then selects an appropriate set of non-pending asset positions so that it can allocate the
open settlements and return new asset positions to move the total number closer to 100.
Before sending the transaction, it adds those positions to the pending set to make sure that
another thread does not also use them.

Alternatively, if you have a sufficiently large total position compared to settlement values, you can
pick the 99th percentile p 99 of settlement values and maintain N-1 positions of value between
p_99and 2 * p 99 and one of the (still large) remainder. 99% of transactions will be processed in
the N-1 shard positions, and the remaining 1% will be processed against the remaining pool. When-
ever a shard moves out of the desired range, it is balanced against the pool.

Pros

Assuming that there is always enough liquidity in the total asset position, the performance can be
the same as without global constraints: up to 12,500 settlements per second on a single total asset
position.

Cons

If settlement values are large compared to total asset holdings, this technique helps little. In an
extreme case, if every settlement needs more than 50% of the total holding, it does not perform any
better than the sequential processing or batching per asset type and owner technique.

In realistic scenarios where settlement values are distributed on a broad range relative to total as-
set position and those relativities change as holdings go up and down, developing strategies that
perform optimally is complex. There are competing priorities that need to be balanced carefully:

Keeping the total number of asset positions limited so that the number of active contracts
does not impact system performance.

Having sufficient large asset positions so that frequent small settlements can be processed in
parallel.

Having a mechanism that ensures large settlements, possibly requiring as much as 100% of
the available total asset position, are not blocked.

1.13.3 Managing Active Contract Set (ACS) Size
1.13.3.1 Problem Definition

The Active Contract Set (ACS) size makes up the load related to the number of active contracts in
the system at any one time. It means the totality of all the contracts that have been created but not
yet archived. ACS size may come from a deliberate Daml workflow design, but the size may also be
unexpected when insufficient care is given to supporting and auxiliary contract lifetimes.

Tip: See the documentation on Daml contracts for more information.

In Daml systems, ACS size can reach orders of magnitude higher than synonymous loads in common
database or blockchain systems. When the ACS size is in the high 100s GBs or TBs, local database

113. Resource Management in Daml Application Design 463

../intro/1_Token.html#basic-contracts

Daml SDK Documentation, 2.7.3

access performance may deteriorate. We will look at potential issues around large ACS size and
possible solutions.

113.3.2 Relational Databases

Large ACS can have a negative impact on many aspects of system performance in relational
databases. The following points focus on PostgreSQL as the underlying database; the details dif-
fer in the case of Oracle but the results are similar.

Large ACS size directly affects the resource consumption and performance of a Ledger APl client
application dealing with a large data set that may not fit into the memory or the application
database.

ACS size directly affects the speed at which the ACS can be transmitted from the Ledger API
server using the ActiveContractService. In extreme cases, it could take hours to transfer the
complete set requested by the application due to the limits imposed by the gRPC channel ca-
pacity and the speed of storage queries.

Increased latency is a less direct impact which shows up wherever a query is issued to the
database index to make progress. Large ACS size means that the corresponding indices are
also large, and at a certain point they will no longer fit into the shared-buffer space. It then
takes increasingly longer for the database engine to produce query results. This affects activ-
ities such as contract lookups during the command submission, transaction tree streaming,
or pointwise transaction lookups.

Large ACS size may affect the speed at which the database underpinning the participant in-
gests new transactions. Normally, as new updates pour in the write-ahead log commits the
table and index changes immediately. Those updates come in two shapes; full-page writes or
differential writes. With large volumes, many are full-page writes.

Finally, many dirty pages also translate into prolonged and expensive flushes to the disk as
part of the checkpointing process.

Solutions

Pay attention to the lifetime of the contracts. Make sure that the supporting and auxiliary
contracts don’t clutter the ACS and archive them as soon as it is practical to do so.

Setup afrequent pruning schedule. Be aware that pruning is only effective if there are archived
contracts available for pruning. If all contracts are still active, pruning has limited success.
Refer to our pruning documentation for more information.

Implement an ODS in your ledger client application to limit reliance on read access to the ACS.
Do this whenever you notice that the time to initialize the application from the ACS exceeds
your pain level.

Monitor database performance.

- Monitor the disk read and write activity. Look for sudden changes in the operation
patterns. For instance, a sudden increase in the disk’s read activity may be a sign of
indices no longer fitting into the shared buffers.

- Observe the performance of the database queries. Check our monitoring docu-
mentation for query metrics that can assist. You may also consider setting up a
log_min_duration_statement parameter in the PostgreSQL configuration.

Set up autovacuum on the PostgreSQL database. Note that, after pruning, a lot of dead tuples
will need removing.

464

Chapter 1. Canton References

../../canton/usermanual/pruning.html
../../canton/usermanual/monitoring.html#daml-index-db-operation-query
https://www.postgresql.org/docs/current/runtime-config-logging.html
https://www.postgresql.org/docs/13/routine-vacuuming.html

Daml SDK Documentation, 2.7.3

1.13.3.3 HTTP JSON API Service

We recommend using a relational database and dedicated compute resources to manage large ACS
size when using the HTTP JSON API and refer the reader to the above considerations.

Tip: See the HTTP JSON API service documentation on managing high load in the query store and
server scaling and redundancy for more information.

114 Upgrading and Extending Daml Applications

Database schemas tend to evolve over time. A new feature in your application might need an ad-
ditional choice in one of your templates. Or a change in your data model will make you application
perform better. We distinguish two kinds of changes to a Dam| model:

A Daml model extension
A Daml model upgrade

An extension adds new templates and data structures to your model, while leaving all previously writ-
ten definitions unchanged.

An upgrade changes previously defined data structures and templates.

Whether extension or upgrade, your new code needs to be compatible with data that is already live
in a production system. The next two sections show how to extend and upgrade Daml models. The
last section shows how to automate the data migration process.

1.14.1 Extending Daml Applications

Consider the following simple Daml model for carbon certificates:

module CarbonV1l where

template CarbonCert
with
issuer : Party
owner : Party
carbon metric tons : Int
where
signatory issuer, owner

It contains two templates. The above template representing a carbon compensation certificate. And
a second template to create the CarbonCert via a Propose-Accept workflow.

Now we want to extend this model to add trust labels for certificates by third parties. We don’t want
to make any changes to the already deployed model. Changes to a Daml model will result in changed
package ID’s for the contained templates. This means that if a Daml model is already deployed, the
modified Daml code will not be able to reference contracts instantiated with the old package. To
avoid this problem, it’s best to put extensions in a new package.

In our example we call the new package carbon-label and implement the label template like

1.14. Upgrading and Extending Daml Applications 465

../../json-api/production-setup/query-store.html#behavior-under-high-load
../../json-api/production-setup/scaling-and-redundancy.html

Daml SDK Documentation, 2.7.3

module CarbonLabel where
import CarbonVl

template CarbonLabel
with
cert : ContractId CarbonCert
labelOwner : Party
where
signatory labelOwner

The CarbonLabel template references the CarbonCert contract of the carbon-1.0.0 packages by contract
ID. Hence, we need to import the CarbonV1 module and add the carbon-1.0.0 to the dependencies in
the daml.yaml file. Because we want to be independent of the Daml| SDK used for both packages, we
import the carbon-1.0.0 package as data dependency

name: carbon-label
version: 1.0.0
dependencies:
- daml-prim
- daml-stdlib
data-dependencies:
- path/to/carbon-1.0.0.dar

Deploying an extension is simple: just upload the new package to the ledger with the daml ledger
upload-dar command. In our example the ledger runs on the localhost:

daml ledger upload-dar --ledger-port 6865 —--ledger-host localhost ./daml/dist/
—carbon-label-1.0.0.dar

If instead of just extending a Daml model you want to modify an already deployed template of your
Daml model, you need to perform an upgrade of your Daml application. This is the content of the
next section.

1.14.2 Upgrading Daml Applications
In applications backed by a centralized database controlled by a single operator, it is possible to
upgrade an application in a single step that migrates all existing data to a new data model.

As arunning example, let’s imagine a centralized database containing carbon offset certificates. Its
operator created the database schema with

CREATE TABLE carbon certs (
carbon metric tons VARINT,
owner VARCHAR NOT NULL
issuer VARCHAR NOT NULL

The certificate has a field for the quantity of offset carbon in metric tons, an owner and an issuer.

In the next iteration of the application, the operator decides to also store and display the carbon
offset method. In the centralized case, the operator can upgrade the database by executing the single
SQL command

466 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

ALTER TABLE carbon certs ADD carbon offset method VARCHAR DEFAULT "unknown"

This adds a new column to the carbon certs table and inserts the value unknown for all existing
entries.

While upgrading this centralized database is simple and convenient, its data entries lack any kind
of signature and hence proof of authenticity. The data consumers need to trust the operator.

In contrast, Daml templates always have at least one signatory. The consequence is that the upgrade
process for a Daml application needs to be different.

114.2.1 Daml Upgrade Overview

In a Daml application running on a distributed ledger, the signatories of a contract have agreed
to one specific version of a template. Changing the definition of a template, e.g., by extending it
with a new data field or choice without agreement from its signatories would completely break the
authorization guarantees provided by Daml.

Therefore, Daml takes a different approach to upgrades and extensions. Rather than having a sep-
arate concept of data migration that sidesteps the fundamental guarantees provided by Daml, up-
grades are expressed as Daml contracts. This means that the same guarantees and rules that apply to
other Daml contracts also apply to upgrades.

In a Daml application, it thus makes sense to think of upgrades as an extension of an existing appli-
cation instead of an operation that replaces existing contracts with a newer version. The existing
templates stay on the ledger and can still be used. Contracts of existing templates are not automat-
ically replaced by newer versions. However, the application is extended with new templates. Then
if all signatories of a contract agree, a choice can archive the old version of a contract and create a
new contract instead.

1.14.2.2 Structure Upgrade Contracts

Upgrade contracts are specific to the templates that are being upgraded. But most of them share
common patterns. Here is the implementation of the above carbon certs schema in Daml. We
have some prescience that there will be future versions of CarbonCert, and so place the definition of
CarbonCert in a module named CarbonVl

module CarbonV1l where

template CarbonCert
with
issuer : Party
owner : Party
carbon metric tons : Int
where
signatory issuer, owner

A CarbonCert has an issuer and an owner. Both are signatories. Our goal is to extend this CarbonCert
template with a field that adds the method used to offset the carbon. We use a different name for the
new template here for clarity. This is not required as templates are identified by the triple (Packageld,
ModuleName, TemplateName).

1.14. Upgrading and Extending Daml Applications 467

Daml SDK Documentation, 2.7.3

module CarbonV2 where

template CarbonCertWithMethod

with
issuer : Party
owner : Party
carbon metric tons : Int
carbon offset method : Text
where

signatory issuer, owner

Next, we need to provide a way for the signatories to agree to a contract being upgraded. It would
be possible to structure this such that issuer and owner have to agree to an upgrade for each indi-
vidual CarbonCert contract separately. Since the template definition for all of them is the same, this
is usually not necessary for most applications. Instead, we collect agreement from the signatories
only once and use that to upgrade all carbon certificates.

Since there are multiple signatories involved here, we use a Propose-Accept workflow. First, we define
an UpgradeCarbonCertProposal template that will be created by the issuer. This template has an Accept
choice that the owner can exercise. Upon execution it will then create an UpgradeCarbonCertAgreement.

template UpgradeCarbonCertProposal
with
issuer : Party
owner : Party
where
signatory issuer
observer owner
key (issuer, owner) : (Party, Party)
maintainer key. 1
choice Accept : ContractId UpgradeCarbonCertAgreement
controller owner
do create UpgradeCarbonCertAgreement with

Now we can define the UpgradeCarbonCertAgreement template. This template has one nonconsuming
choice that takes the contract ID of a CarbonCert contract, archives this CarbonCert contract and cre-
ates a CarbonCertWithMethod contract with the same issuer and owner and the carbon_ offset_method
set to unknown.

template UpgradeCarbonCertAgreement
with
issuer : Party
owner : Party

where
signatory issuer, owner
key (issuer, owner) : (Party, Party)

maintainer key. 1
nonconsuming choice Upgrade : ContractId CarbonCertWithMethod
with
certId : ContractId CarbonCert
controller issuer
do cert <- fetch certlId
assert (cert.issuer == issuer)
assert (cert.owner == owner)
archive certId

(continues on next page)

468 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

create CarbonCertWithMethod with

issuer = cert.issuer

owner = cert.owner

carbon_metric_tons = cert.carbon_metric_tons
carbon _offset method = "unknown"

1.14.2.3 Build and Deploy carbon-1.0.0

Let’s see everything in action by first building and deploying carbon-1.0.0. After this we’ll see how
to deploy and upgrade to carbon-2.0.0 containing the CarbonCertWithMethod template.

First we’ll need a sandbox ledger to which we can deploy.

$ daml sandbox --port 6865

Now we’ll setup the project for the original version of our certificate. The project contains the Daml
for just the CarbonCert template, along with a CarbonCertProposal template which will allow
us to issue some coins in the example below.

Here is the project config.

name: carbon
version: 1.0.0
dependencies:

- daml-prim

- daml-stdlib

- daml-script
source:

Now we can build and deploy carbon-1.0.0.

$ cd example/carbon-1.0.0
$ daml build
$ daml ledger upload-dar --port 6865

114.2.4 Create carbon-1.0.0 Certificates

Let’s create some certificates!

First, we run a setup script to create 3 users alice, bob and charlie and corresponding parties.
We write out the actual party ids to a JSON file so we can later use them in Navigator.

$ cd example/carbon-1.0.0
$ daml script --dar .dar/dist/carbon-1.0.0.dar --script-name Setup:setup --ledger-
—host localhost --ledger-port 6865 --output-file parties.json

The resulting parties.json file will look similar to the following but the actual party ids will vary.

{
"alice": "party-19a21501-ba87-47be-90a6-
—692dfaefe6d4a::12203977cedf2d394073b4c58036e047£cc590£7£2d461d82503df431473c4277feT

"
— ',

(continues on next page)

1.14. Upgrading and Extending Daml Applications 469

Daml SDK Documentation, 2.7.3

(continued from previous page)

"bob": "party-7ecbld67-1d20-4612-be67-
—b5741c86204d::12203977cedf2d394073b4c58036e047£cc590£7£2d61d82503d£f431473c4277fe7

n
—

"charlie": "party-fae6a574-9860-422a-9fd4-
—7ca2f7295e41::12203977cedf2d394073b4c58036e047£cc590£7£2d461d82503df431473c4277fe7

"
—

}

We’ll use the navigator to connect to the ledger, and create two certificates issued by Alice, and owned
by Bob.

$ cd example/carbon-1.0.0
$ daml navigator server localhost 6865

We point a browser to http://localhost:4000, and follow the steps:

1. Login as alice:

1. Select Templates tab.

2. Create a CarbonCertProposal with Alice as issuer and Bob as owner and an arbitrary
value for the carbon metric tons field. Note that in place of Alice and Bob, you
need to use the party ids from the previously created parties.json.

3. Create a 2nd proposal in the same way.

2. Login as bob:
1. Exercise the CarbonCertProposal_Accept choice on both proposal contracts.

1.14.2.5 Build and Deploy carbon-2.0.0

Now we setup the project for the improved certificates containing the carbon_offset_method field.
This project contains only the CarbonCertWithMethod template. The upgrade templates are in a
third carbon-upgrade package. While it would be possible to include the upgrade templates in the
same package, this means that the package containing the new CarbonCertWithMethod template
depends on the previous version. With the approach taken here of keeping the upgrade templates
in a separate package, the carbon-1.0.0 package is no longer needed once we have upgraded all
certificates.

It’s worth stressing here that extensions always need to go into separate packages. We cannot just
add the new definitions to the original project, rebuild and re-deploy. This is because the crypto-
graphically computed package identifier would change. Consequently, it would not match the pack-
age identifier of theoriginal CarbonCert contracts from carbon-1.0.0which areliveontheledger.

Here is the new project config:

name: carbon
version: 2.0.0
dependencies:

- daml-prim

- daml-stdlib

Now we can build and deploy carbon-2.0.0.

$ cd example/carbon-2.0.0
$ daml build
$ daml ledger upload-dar --port 6865

470 Chapter 1. Canton References

http://localhost:4000

Daml SDK Documentation, 2.7.3

1.14.2.6 Build and Deploy carbon-upgrade

Having builtand deployed carbon-1.0.0and carbon-2.0.0 we are now ready to build the upgrade
package carbon-upgrade. The project config references both carbon-1.0.0 and carbon-2.0.0
via the data-dependencies field. This allows us to import modules from the respective packages.
With these imported modules we can reference templates from packages that we already uploaded
to the ledger.

When following this example, path/to/carbon-1.0.0.dar and path/to/carbon-2.0.0.dar
should be replaced by the relative or absolute path to the DAR file created by building the respective
projects. Commonly the carbon-1.0.0 and carbon-2.0.0 projects would be sibling directories
in the file systems, so this path would be: .. /carbon-1.0.0/.daml/dist/carbon-1.0.0.dar.

name: carbon-upgrade
version: 1.0.0
dependencies:
- daml-prim
- daml-stdlib
data-dependencies:
- path/to/carbon-1.0.0.dar
- path/to/carbon-2.0.0.dar

The Daml for the upgrade contracts imports the modules for both the new and old certificate ver-
sions.

module UpgradeFromCarbonCertV1l where
import CarbonVl
import CarbonV2

Now we can build and deploy carbon-upgrade. Note that uploading a DAR also uploads its depen-
dencies so if carbon-1.0.0 and carbon-2.0.0 had not already been deployed before, they would
be deployed as part of deploying carbon-upgrade.

$ cd example/carbon-upgrade
$ daml build
$ daml ledger upload-dar --port 6865

1.14.2.7 Upgrade Existing Certificates from carbon-1.0.0 to carbon-2.0.0

We start the navigator again.

$ cd example/carbon-upgrade
$ daml navigator server localhost 6865

Finally, we point a browser to http://localhost:4000 and can start the carbon certificates upgrades:

1. Login as alice
1. Select Templates tab.
2. Create an UpgradeCarbonCertProposal with Alice as issuer and Bob as owner. As
before, in place of Alice and Bob use the party ids from parties. json.
2. Login as bob
1. Exercise the Accept choice of the upgrade proposal, creating an UpgradeCarbon-
CertAgreement.
3. Login again as alice

1.14. Upgrading and Extending Daml Applications 471

http://localhost:4000

Daml SDK Documentation, 2.7.3

1. Use the UpgradeCarbonCertAgreement repeatedly to upgrade any certificate for
which Alice is issuer and Bob is owner.

1.14.2.8 Further Steps

For the upgrade of our carbon certificate model above, we performed all steps manually via Navigator.
However, if Alice had issued millions of carbon certificates, performing all upgrading steps manu-
ally becomes infeasible. It thus becomes necessary to automate these steps. We will go through a
potential implementation of an automated upgrade in the next section.

1.14.3 Automating the Upgrade Process

In this section, we are going to automate the upgrade of our carbon certificate process using Daml
Script and Daml Triggers. Note that automation for upgrades is specific to an individual application,
just like the upgrade models. Nevertheless, we have found that the pattern shown here occurs fre-
quently.

1.14.3.1 Structure the Upgrade

There are three kinds of actions performed during the upgrade:

1. Alice creates UpgradeCarbonCertProposal contracts. We assume here, that Alice wants to
upgrade all CarbonCert contracts she has issued. Since the UpgradeCarbonCertProposal
proposal is specific to each owner, Alice has to create one UpgradeCarbonCertProposal
per owner. There can be potentially many owners but this step only has to be performed once
assuming Alice will not issue more CarbonCert contracts after this point.

2. Bob and other owners accept the UpgradeCarbonCertProposal. To keep this example sim-
ple, we assume that there are only carbon certificates issued by Alice. Therefore, each owner
has to accept at most one proposal.

3. As owners accept upgrade proposals, Alice has to upgrade each certificate. This means that
she has to execute the upgrade choice once for each certificate. Owners will not all accept
the upgrade at the same time and some might never accept it. Therefore, this should be a
long-running process that upgrades all carbon certificates of a given owner as soon as they
accept the upgrade.

Given those constraints, we are going to use the following tools for the upgrade:

1. A Daml script that will be executed once by Alice and creates an UpgradeCarbonCertPro-
posal contract for each owner.

2. Navigator to accept the UpgradeCarbonCertProposal as Bob. While we could also use a
Daml script to accept the proposal, this step will often be exposed as part of a web Ul so doing
it interactively in Navigator resembles that workflow more closely.

3. Along-running Daml trigger that upgrades all CarbonCert contracts for which there is a cor-
responding UpgradeCarbonCertAgreement.

472 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

114.3.2 Implementation of the Daml Script

In our Daml Script, we are first going to query the ACS (Active Contract Set) to find all CarbonCert
contracts issued by us. Next, we are going to extract the owner of each of those contracts and remove
any duplicates coming from multiple certificates issued to the same owner. Finally, we iterate over
the owners and create an UpgradeCarbonCertAgreement contract for each owner.

initiateUpgrade : Setup.Parties -> Script ()

initiateUpgrade Setup.Parties{alice} = do
certs <- query (@CarbonCert alice
let myCerts = filter (\(_cid, c) -> c.issuer == alice) certs

let owners = dedup $ map (\(cid, c) -> c.owner) myCerts

forA owners $ \owner -> do
debugRaw ("Creating upgrade proposal for: " <> show owner)
submit alice $ createCmd (UpgradeCarbonCertProposal alice owner)

114.3.3 Implementation of the Daml Trigger

Our trigger does not need any custom user state and no heartbeat so the only interesting field in its
definition is the rule.

upgradeTrigger : Trigger ()
upgradeTrigger = Trigger with
initialize = pure ()
updateState = \ _msg -> pure ()
registeredTemplates = AllInDar
heartbeat = None
rule = triggerRule

In our rule, we first filter out all agreements and certificates issued by us. Next, we iterate over all
agreements. For each agreement we filter the certificates by the owner of the agreement and finally
upgrade the certificate by exercising the Upgrade choice. We mark the certificate as pending which
temporarily removes it from the ACS and therefore stops the trigger from trying to upgrade the same
certificate multiple times if the rule is triggered in quick succession.

triggerRule : Party -> TriggerA () ()
triggerRule issuer = do
agreements <-
filter (\(_cid, agreement) -> agreement.issuer == issuer) <$>
query (UpgradeCarbonCertAgreement
allCerts <-
filter (\(_cid, cert) -> cert.issuer == issuer) <S>
query (@CarbonCert
forA agreements $ \ (agreementCid, agreement) -> do

let certsForOwner = filter (\(cid, cert) -> cert.owner == agreement.owner)L!
—allCerts
forA certsForOwner $ \(certCid, _) ->
emitCommands

[exerciseCmd agreementCid (Upgrade certCid)]
[toAnyContractId certCid]

The trigger is a long-running process and the rule will be executed whenever the state of the ledger
changes. So whenever an owner accepts an upgrade proposal, the trigger will run the rule and up-
grade all certificates of that owner.

1.14. Upgrading and Extending Daml Applications 473

Daml SDK Documentation, 2.7.3

114.3.4 Deploy and Execute the Upgrade
Now that we defined our Daml script and our trigger, it is time to use them! If you still have Sandbox
running from the previous section, stop it to clear out all data before continuing.

First, we start sandbox passing in the carbon-upgrade DAR. Since a DAR includes all transitive
dependencies, this includes carbon-1.0.0 and carbon-2.0.0.

$ cd example/carbon-upgrade
$ daml sandbox —--dar .daml/dist/carbon-upgrade-1.0.0.dar

To simplify the setup here, we use a Daml script to create 3 parties Alice, Bob and Charlie and two
CarbonCert contracts issues by Alice, one owned by Bob and one owned by Charlie. This Daml script
reuses the Setup.setup Daml script from the previous section to create the parties & users.

setup : Script Setup.Parties
setup = do
parties@Setup.Parties{..} <- Setup.setup
bobProposal <- submit alice $ createCmd (CarbonCertProposal alice bob 10)
submit bob $ exerciseCmd bobProposal CarbonCertProposal Accept
charlieProposal <- submit alice $ createCmd (CarbonCertProposal alice charlie 5)
submit charlie $ exerciseCmd charlieProposal CarbonCertProposal Accept
pure parties

Run the script as follows:

$ cd example/carbon-initiate-upgrade

$ daml build

$ daml script --dar=.daml/dist/carbon-initiate-upgrade-1.0.0.dar --script-
—name=InitiateUpgrade:setup --ledger-host=localhost --ledger-port=6865 --output-
—~file parties.json

As before, parties.json contains the actual party ids we can use later.

If you now start Navigator from the carbon-initiate-upgrade directoryandloginas alice,you
can see the two CarbonCert contracts.

Next, we run the trigger for Alice. The trigger will keep running throughout the rest of this example.

$ cd example/carbon-upgrade-trigger

$ daml build

$ daml trigger --dar=.daml/dist/carbon-upgrade-trigger-1.0.0.dar --trigger-
—name=UpgradeTrigger:upgradeTrigger --ledger-host=localhost --ledger-port=6865 --
—ledger-user=alice

With the trigger running, we can now run the script to create the UpgradeCarbonCertProposal
contracts (we could also have done that before starting the trigger). The script takes an argument of
type Parties corresponding to the result of the previous setup script. We can pass this in via the
-—-input-file argument.

$ cd example/carbon-initiate-upgrade

$ daml build

$ daml script --dar=.daml/dist/carbon-initiate-upgrade-1.0.0.dar --script-
—name=InitiateUpgrade:initiateUpgrade --ledger-host=localhost --ledger-port=6865
———input-file=parties.json

474 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

At this point, our trigger is running and the UpgradeCarbonCertProposal contracts for Bob and
Charlie have been created. What is left to do is to accept the proposals. Our trigger will then auto-
matically pick them up and upgrade the CarbonCert contracts.

First, start Navigator and log in as bob. Click on the UpgradeCarbonCertProposal and accept
it. If you now go back to the contracts tab, you can see that the CarbonCert contract has been
archived and instead there is a new CarbonCertWithMethod upgrade. Our trigger has successfully
upgraded the CarbonCert!

Next, log in as charlie and accept the UpgradeCarbonCertProposal. Just like for Bob, you can
see thatthe CarbonCert contract has been archived and instead there is a new CarbonCertWith-
Method contract.

Sincewe upgraded all CarbonCert contracts issued by Alice, we can now stop the trigger and declare
the update successful.

1.15 Developer Tools

1.15.1 Daml Assistant (daml)

daml is acommand-line tool that does a lot of useful things related to the SDK. Using dam1, you can:

Create new Daml projects: daml new <path to create project in>
Create a new project based on the create-daml-app template: daml new
--template=create-daml-app <path to create project in>
Initialize a Daml project: daml init
Compile a Daml project: daml build
This builds the Daml project according to the project config file daml. yaml (see Configuration
files below).
In particular, it will download and install the specified version of the Daml SDK (the
sdk-version field in daml.yaml) if missing, and use that SDK version to resolve dependen-
cies and compile the Daml project.
Launch the tools in the SDK:
- Launch Daml Studio: daml studio
- Launch Sandbox, Navigator and the HTTP JSON API Service: daml start You can disable the
HTTPJSON APl by passing —-json-api-port nonetodaml start.Tospecifyadditional
options for sandbox/navigator/the HTTP JSON API you can use --sandbox-option=opt,
--navigator-option=opt and --json-api-option=opt.
- Launch Sandbox: daml sandbox
- Launch Navigator: daml navigator
- Launch the HTTP JSON API Service: daml json-api
- Run Daml codegen: daml codegen
Install new SDK versions manually: daml install <version>
Note that you need to update your project config file <#configuration-files> to use the new
version.

1.15. Developer Tools 475

Daml SDK Documentation, 2.7.3

1.15.1.1 Full Help for Commands

To see information about any command, run it with --help.

1.15.1.2 Configuration Files

The Daml assistant and the SDK are configured using two files:

The global config file, one per installation, which controls some options regarding SDK instal-
lation and updates

The project config file, one per Daml project, which controls how the SDK builds and interacts
with the project

Global Config File (daml-config.yaml)

The global config file daml-config.yaml is in the daml home directory (~/.daml on Linux and
Mac,C: /Users/<user>/AppData/Roaming/daml on Windows). It controls options related to SDK
version installation and upgrades.

By default it’s blank, and you usually won’t need to edit it. It recognizes the following options:

auto-install: whetherdaml automaticallyinstalls a missing SDKversionwhenitis required
(defaults to true)
update-check: how often daml will check for new versions of the SDK, in seconds (default to
86400, i.e. once a day)
This setting is only used to inform you when an update is available.
Set update-check: <number> to check for new versions every N seconds. Set
update-check: never to never check for new versions.
artifactory-api-key: If you have a license for Daml EE, you can use this to specify the
Artifactory APl key displayed in your user profile. The assistant will use this to download the EE
edition.

Here is an example daml-config.yaml:

auto-install: true
update-check: 86400

Project Config File (daml.yaml)

The project config file daml . yaml must be in the root of your Daml project directory. It controls how
the Daml project is built and how tools like Sandbox and Navigator interact with it.

The existence of a daml. yaml file is what tells daml that this directory contains a Daml project, and
lets you use project-aware commands like daml build and daml start.

daml init creates adaml.yaml in an existing folder, so daml knows it’s a project folder.

daml new creates a skeleton application in a new project folder, which includes a config file. For
example,daml new my project creates anew foldermy project with aprojectconfigfile daml.
yaml like this:

476 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

sdk-version: VERSION
name: _ PROJECT NAME
source: daml
init-script: Main:setup
parties:
- Alice
- Bob
version: 1.0.0
exposed-modules:
- Main
dependencies:
- daml-prim
- daml-stdlib
script-service:
grpc-max-message-size: 134217728
grpc-timeout: 60
jvm-options: []
build-options: ["--ghc-option", "-Werror",
"-—-ghc-option", "-v"]

Here is what each field means:

sdk-version: the SDK version that this project uses.
The assistant automatically downloads and installs this version if needed (see the
auto-install setting in the global config). We recommend keeping this up to date
with the latest stable release of the SDK. It is possible to override the version without
modifying the daml.yaml file by setting the DAML._ SDK VERSION environment vari-
able. This is mainly useful when you are working with an external project that you
want to build with a specific version.
The assistant will warn you when it is time to update this setting (see the
update-check setting in the global config to control how often it checks, or to dis-
able this check entirely).
name: th