
Daml SDK Documentation

Digital Asset

Version : 2.7.3

Copyright (c) 2023 Digital Asset (Switzerland) GmbH and/or its affiliates. All rights reserved. Any unauthorized use,

duplication or distribution is strictly prohibited.

Table of contents

Table of contents i

1 Canton References 1

1.1 An Introduction To Multi-Party Applications and Daml . 1

1.1.1 Multi-Party Applications . 1

1.1.2 Why Do Multi-Party Applications Matter? . 1

1.1.3 What Is a Multi-Party Application? . 3

1.1.4 Important Concepts in Multi-Party Applications . 3

1.1.5 Key Architectural Concepts in Daml . 4

1.1.6 Transfer Example Using Daml . 7

1.1.7 Next Steps . 7

1.2 System Requirements . 7

1.2.1 Feature/Component System Requirements . 8

1.3 Installing the SDK . 8

1.3.1 Install the Dependencies . 8

1.3.2 Choose Daml Enterprise or Daml Open Source . 8

1.3.3 Install Daml Open Source SDK . 8

1.3.4 Install Daml Enterprise . 9

1.3.5 Download Manually . 9

1.3.6 Next Steps . 9

1.4 Setting JAVA_HOME and PATH Variables . 9

1.4.1 Windows . 9

1.4.2 Mac OS . 10

1.4.3 Linux . 11

1.5 Manually Installing the SDK . 12

1.6 Getting Started with Daml . 15

1.6.1 Prerequisites . 15

1.6.2 Run the App . 15

1.7 App Architecture . 19

1.7.1 The Daml Model . 20

1.7.2 TypeScript Code Generation . 22

1.7.3 The UI . 22

1.8 Your First Feature . 25

1.8.1 Daml Changes . 25

1.8.2 Messaging UI . 26

1.8.3 Run the Updated UI . 30

1.8.4 Next Steps . 32

1.9 Testing Your Web App . 32

1.9.1 Set Up the Tests . 32

1.9.2 Example: Log In and Out . 33

i

1.9.3 Accessing UI Elements . 34

1.9.4 Writing CSS Selectors . 35

1.9.5 The Full Test Suite . 36

1.10 Overview: Important Considerations When Building Applications With Daml 44

1.10.1 Overall Considerations . 44

1.10.2 Developer Considerations . 44

1.10.3 Operational Considerations . 45

1.10.4 Next Steps . 46

1.11 Write Smart Contracts with Daml . 46

1.11.1 An Introduction to Daml . 46

1.11.2 Basic Contracts . 47

1.11.3 Test Templates Using Daml Script . 49

1.11.4 Data Types . 55

1.11.5 Transform Data Using Choices . 70

1.11.6 Add Constraints to a Contract . 76

1.11.7 Parties and Authority . 85

1.11.8 Composing Choices . 94

1.11.9 Daml Interfaces . 102

1.11.10 Exception Handling . 108

1.11.11 Work with Dependencies . 112

1.11.12 Functional Programming 101 . 115

1.11.13 Introduction to the Daml Standard Library . 127

1.11.14 Good Design Patterns . 133

1.11.15 Test Daml Contracts . 152

1.11.16 Next Steps . 169

1.12 Integrate Daml with Off-Ledger Services . 169

1.12.1 Building Applications . 169

1.12.2 Daml Application Architecture . 169

1.12.3 Parties and Users On a Daml Ledger . 175

1.12.4 JSON API . 178

1.12.5 The Ledger API . 244

1.12.6 Daml Off-Ledger Automation . 390

1.12.7 Errors . 426

1.12.8 Authorization . 433

1.12.9 Explicit Contract Disclosure (Alpha) . 439

1.13 Resource Management in Daml Application Design . 447

1.13.1 Managing Latency and Throughput . 447

1.13.2 Avoid Contention Issues . 452

1.13.3 Managing Active Contract Set (ACS) Size . 463

1.14 Upgrading and Extending Daml Applications . 465

1.14.1 Extending Daml Applications . 465

1.14.2 Upgrading Daml Applications . 466

1.14.3 Automating the Upgrade Process . 472

1.15 Developer Tools . 475

1.15.1 Daml Assistant (daml) . 475

1.15.2 Canton Console . 480

1.15.3 Deploy to a Generic Daml Ledger . 481

1.15.4 Daml REPL . 482

1.15.5 Daml Studio . 485

1.15.6 Daml Sandbox . 495

1.15.7 Navigator . 507

1.15.8 Daml Profiler . 518

1.15.9 Daml Codegen . 520

1.16 Daml Finance Documentation . 522

1.16.1 Content . 522

1.16.2 Starting Points . 522

1.16.3 Releases . 523

1.17 Overview . 527

1.17.1 Introduction . 527

1.17.2 Architecture . 529

1.17.3 Building Applications . 531

1.17.4 Extending Daml Finance . 533

1.18 Concepts . 535

1.18.1 Asset Model . 535

1.18.2 Settlement . 542

1.18.3 Lifecycling . 548

1.19 Instruments . 554

1.19.1 Bonds . 554

1.19.2 Equites . 554

1.19.3 Options . 555

1.19.4 Swaps . 555

1.19.5 Other Instruments . 555

1.19.6 How to use the Token Instrument packages . 555

1.19.7 How to use the Bond Instrument packages . 556

1.19.8 How to use the Equity Instrument packages . 564

1.19.9 How To Use the Option Extension Package . 571

1.19.10 How To Use the Swap Instrument Packages . 576

1.19.11 How to use the Generic Instrument packages . 586

1.20 Packages . 596

1.20.1 Interface Packages . 596

1.20.2 Implementation Packages . 608

1.21 Tutorials . 620

1.21.1 Getting Started tutorials . 620

1.21.2 Settlement tutorials . 636

1.21.3 Lifecycling tutorials . 650

1.21.4 Payoff Modeling tutorials . 662

1.21.5 Advanced Topics . 668

1.22 Reference . 680

1.22.1 Glossary . 680

1.22.2 Patterns . 682

1.22.3 Daml Finance . 684

1.23 Intro . 897

1.23.1 Introduction to Canton . 897

1.23.2 Overview and Assumptions . 897

1.23.3 Canton Demo . 913

1.23.4 Getting Started . 914

1.23.5 Daml SDK and Canton . 934

1.23.6 Composability . 937

1.23.7 Versioning . 954

1.24 Obtaining Canton . 957

1.24.1 Choosing Open-Source or Enterprise Edition . 957

1.24.2 Downloading the Open Source Edition . 957

1.24.3 Downloading the Enterprise Edition . 958

1.24.4 Installing Canton . 958

1.24.5 Running in Docker . 964

1.24.6 Static Configuration . 966

1.24.7 Enterprise Drivers . 971

1.25 High Availability (HA) . 983

1.25.1 Intro to HA in Canton . 983

1.25.2 HA for Production Systems . 991

1.25.3 High Availability Usage . 1026

1.26 Disaster Recovery (DR) . 1033

1.27 Persistence . 1034

1.27.1 Postgres . 1035

1.27.2 Oracle . 1036

1.27.3 General Settings . 1043

1.27.4 Backup and Restore . 1044

1.27.5 Database Replication for Disaster Recovery . 1046

1.28 Canton Administration Quickstart . 1046

1.28.1 Command-line Arguments . 1046

1.28.2 Canton Console . 1049

1.28.3 Console Commands . 1053

1.29 Monitoring . 1161

1.29.1 Introduction . 1161

1.29.2 Golden Signals and Key Metrics Quick Start . 1163

1.29.3 Set Up Metrics Scraping . 1164

1.29.4 Metrics . 1165

1.29.5 Logging . 1210

1.29.6 Tracing . 1212

1.29.7 Node Health Status . 1216

1.29.8 Health Checks . 1217

1.29.9 Health Dumps . 1218

1.29.10 Example Monitoring Setup . 1218

1.29.11 Glossary . 1240

1.30 Identity Management . 1243

1.30.1 Introduction . 1243

1.30.2 User Identity Management . 1249

1.30.3 Cookbook . 1250

1.31 Common Operational Tasks . 1261

1.31.1 Manage Dars and Packages . 1261

1.31.2 Upgrading . 1272

1.31.3 Auth0 Example Configuration . 1283

1.31.4 Security . 1288

1.32 Scaling and Performance . 1302

1.32.1 Network Scaling . 1302

1.32.2 Node Scaling . 1304

1.32.3 Performance and Sizing . 1304

1.32.4 Batching . 1304

1.32.5 Asynchronous Submissions . 1305

1.32.6 Storage Estimation . 1305

1.32.7 Set Up Canton to Get the Best Performance . 1306

1.33 Advanced Ledger Operations . 1311

1.33.1 Manage Domains . 1311

1.33.2 Manage Domain Entities . 1317

1.33.3 Ledger Pruning . 1323

1.33.4 Participant Pruning . 1325

1.33.5 Participant Metering . 1328

1.33.6 API Configuration . 1329

1.33.7 Sequencer Connections . 1338

1.33.8 Repairing Nodes . 1346

1.34 Troubleshooting Guide . 1361

1.34.1 Introduction . 1361

1.34.2 Enable Information Gathering . 1361

1.34.3 Key Knowledge . 1363

1.34.4 Log Files . 1364

1.34.5 Using LNAV to View Log Files . 1365

1.34.6 Setup Issues . 1366

1.34.7 Timeout Errors . 1366

1.34.8 Auth Errors . 1367

1.34.9 Performance Issues . 1368

1.34.10 Contention . 1371

1.34.11 Use Bisection to Narrow Down the Root Cause . 1372

1.35 Error Codes . 1374

1.35.1 Overview . 1374

1.35.2 Glossary . 1374

1.35.3 Anatomy of an Error . 1375

1.35.4 Error Codes In Canton Operations . 1377

1.35.5 Error Categories . 1378

1.35.6 Machine Readable Information . 1378

1.35.7 Example . 1379

1.35.8 Error Categories Inventory . 1380

1.35.9 Error Codes Inventory - Daml . 1384

1.35.10 Error Codes Inventory - Canton . 1411

1.36 Troubleshooting . 1486

1.36.1 Error: “<X> is not authorized to commit an update” 1486

1.36.2 Error: “Argument is not of serializable type” . 1486

1.36.3 Modeling Questions . 1486

1.36.4 Testing Questions . 1489

1.37 Getting Help . 1489

1.37.1 Support Expectations . 1490

1.38 Portability, Compatibility, and Support Durations . 1490

1.38.1 Ledger API Compatibility: Application Portability . 1491

1.38.2 Driver and Participant Compatibility: Network Upgradeability 1494

1.38.3 SDK, Runtime Component, and Library Compatibility: Daml Upgradeability . . . 1494

1.38.4 Ledger API Support Duration . 1494

1.39 Daml Ecosystem Overview . 1495

1.39.1 Architecture . 1495

1.39.2 Daml Networks . 1496

1.39.3 Participant Nodes . 1496

1.39.4 Ledger API . 1496

1.39.5 Daml Components . 1497

1.39.6 Status Definitions . 1497

1.39.7 Feature and Component Statuses . 1500

1.40 Releases and Versioning . 1503

1.40.1 Versioning . 1503

1.40.2 Cadence . 1503

1.40.3 Support Duration . 1504

1.40.4 Release Notes . 1504

1.40.5 Process . 1504

1.41 Glossary of concepts . 1505

1.41.1 Key Concepts . 1505

1.41.2 Daml Language Concepts . 1506

1.41.3 Developer Tools . 1511

1.41.4 Building Applications . 1512

1.41.5 Canton Concepts . 1515

1.42 Daml Example Applications . 1516

1.43 Daml Language References . 1516

1.43.1 Daml Language Cheat Sheet . 1516

1.43.2 Language Reference . 1516

1.43.3 The standard library . 1574

1.43.4 Daml Script Library . 1650

1.43.5 Daml Trigger Library . 1658

1.44 Daml Ledger References . 1672

1.44.1 Daml Ledger Model . 1672

1.44.2 Canton Advanced Architecture . 1726

1.44.3 Frequently Asked Questions . 1800

1.45 Test Evidence . 1805

1.46 Participant Query Store User Guide . 1805

1.46.1 Introduction . 1805

1.46.2 Early Access Purpose and Limitations . 1805

1.46.3 Overview . 1806

1.46.4 Installing and Starting PQS . 1809

1.46.5 PQS Development . 1814

1.46.6 Operating PQS . 1822

1.46.7 Optimizing PQS . 1824

1.46.8 Troubleshooting . 1827

1.47 Daml Ledger Interoperability . 1829

1.47.1 Interoperability Examples . 1830

1.47.2 Multi-ledger Causality Graphs . 1832

1.47.3 Ledger-aware Projection . 1836

1.47.4 Ledger API Ordering Guarantees . 1840

1.48 Non-repudiation . 1841

1.48.1 Architecture . 1841

1.48.2 Run the Server-side Components . 1841

1.48.3 Use the Client . 1842

1.48.4 Non-repudiation Over the HTTP JSON API . 1842

1.48.5 TLS Support . 1842

Bibliography 1843

Bibliography 1843

Chapter 1

Canton References

1.1 An Introduction To Multi-Party Applications and Daml

1.1.1 Multi-Party Applications

Multi-party applications, and multi-party application platforms like Daml, solve problems that were nearly impossible to solve with the technologies and architectures that came before. Successfully building multi-party applications requires learning a few new concepts, including architectural principles and patterns. This document explains:

• why multi-party applications matter

• what a multi-party application is

• important concepts in multi-party applications

• key architectural concepts in Daml

• a transfer example using Daml

1.1.2 Why Do Multi-Party Applications Matter?

Have you ever wondered why bank transfers, stock purchases or healthcare claims take days to pro-

cess? Given our technological advances, including the speed of networks, you might expect these

transactions to take less than a second to complete. An inefficient protocol like email takes only a

few seconds to send and receive, while these important business workflows take days or weeks.

What delays these transactions? The processes in question all involve multiple organizations that

each keep their own records, resulting in data silos. The processes to ensure consistency between

those data silos are complex and slow. When inconsistencies arise, the correction processes (some-

times referred to as reconciliation) are expensive, time-consuming and often require human inter-

vention to determine why two parties have differing views of the result of a business interaction.

There are a myriad of reasons for these discrepancies, including differences in data models and

error handling logic, inconsistent business process implementations and system faults.

Here’s a deeper look at the problem via the example of a transfer of $100 fromAlice’s account in Bank

A toBob’s account inBankB. (Money is an easily understood example of an asset transferredbetween

parties. The same problems occur in other industries with other assets, for example, healthcare

claims, invoices or orders.) Money cannot simply appear or disappear during a transfer. The banks

need to ensure that at some point in time, T_0, $100 are in Alice’s account, and at the next point in

time, T_1, those $100 are gone from Alice’s account and present in Bob’s account – but at no point

are the $100 present in both accounts or in neither account.

1

Daml SDK Documentation, 2.7.3

In legacy systems, each bank keeps track of cash holdings independently of the other banks. Each

bank stores data in its own private database. Each bank performs its own processes to validate,

secure, modify and regulate the workflows that transfer money. The coordination between multiple

banks is highly complex. The banks have an obligation to limit their counterparty risk - the proba-

bility that the other party in the transaction may not fulfill its part of the deal and may default on

the contractual obligations.

Today’s common, albeit highly inefficient and costly, solution for a bank account transfer involves

the following steps:

1. Bank A sends a message to Bank B via a messaging standard and provider like SWIFT or SEPA.

2. Bank A and Bank B determine a settlement plan, possibly including several intermediaries.

Gaining an agreement on the settlement plan is time-consuming and often includes additional

fees.

3. The settlement process entails (i) debiting$100 fromAlice’s account at BankA, (ii) crediting the

commercial account at Bank B, and (iii) once Bank B has the money, crediting Bob’s account

at Bank B.

In order to make this process atomic (that is, to make it take place between a point T_0 and a point

T_1) banks discretize time into business days. On day T_0 the instruction is made and a settle-

ment plan is created. Outside of business hours between day T_0 and day T_1, the plan is executed

through end of day netting and settlement processes. In a sense, banks agree to stop time outside

of business hours.

If intermediaries are involved, the process is more complex. Cross-border payments or currency

conversion add yet more complexity. The resulting process is costly and takes days. During this

multi-day process the $100 is locked within the system where it is useless to both Alice and Bob.

Delays are common, and if there are problems reconciliation is hugely expensive. Consolidating

through centralized intermediaries introduces systemic risk, including the risk of unauthorized dis-

closure and privacy breaches - and with that risk comes increased latency. Banks insist on this ap-

proach, despite the downsides, to reduce counterparty risk and to comply with regulations. At every

point in time, ownership of the money is completely clear. (To learn more about cash transfers in

traditional banking systems, read this accessible writeup on international money transfers.)

Services like PayPal, Klarna and credit cards, which provide an experience of instant payments in-

ternationally, do this by accepting the counterparty risk or acting as banks themselves. If a shop

accepts credit cards and you pay with a credit card, both you and the shop have an account with the

credit card company. When you purchase, the credit card company can instantly debit $100 from

your account and credit $100 to the shop’s account because it is as if both Alice and Bob are using

accounts at the same bank – the bank is certain that Alice has $100 in her account and can execute

a simple transaction that deducts $100 from Alice’s account and adds $100 to Bob’s.

Wouldn’t it be great if a system existed that allowedmultiple parties to transact with each other with

the same immediacy and consistency guarantees a single organization can achieve on a database

while each kept sovereignty and privacy of their data? That’s Daml!

Daml is a platform and framework for building real-time multi-party systems, enabling organiza-

tions to deliver the experiences modern users expect without assuming counterparty risk or the

expense of reconciliation. The sections below describe how Daml achieves this, including the archi-

tectural concepts and considerations necessary to build and deploy a solution with Daml effectively.

2 Chapter 1. Canton References

https://web.archive.org/web/20220731223958/https://medium.com/@yudapramad/how-international-money-transfers-actually-work-bac65f075bb5

Daml SDK Documentation, 2.7.3

1.1.3 What Is a Multi-Party Application?

Amulti-party application is one in which data, and the rules and workflows that govern the data, are

shared between two or more parties without any party having to give up sovereignty or any single

party (including the application provider) being able to control or override the agreed rules of the

system. A party could be a company, a department within a company, an organization, an individual

or a person. The specific definition of a party will be unique to the application and the domain of that

application.

A well-designed multi-party application provides several benefits:

• a clean, consistent view of all data managed by the application across all parties

• consistent, connected, and efficient processes between all parties involved in the appli-

cation

• privacy controls over portions of the shared data, such that each party sees only the data

that it is explicitly entitled to view and/or modify

• individual party ownership of and responsibility for sensitive data

In most cases, no single party can view all of the data within a multi-party application.

Multi-party applications solve complex operational processes while keeping data clean and consis-

tent, thereby eliminating isolated, disconnected and inefficient processes that often require expen-

sive reconciliation. Multi-party applications manage the relationships, agreements and transac-

tions between parties, providing consistent real-time views of all data.

Multi-party solutions utilize distributed ledger (blockchain) technology to ensure each party has an

immutable, consistent view of the shared data and business processes that govern the data. By

providing a consistent view of data with all counterparties, a multi-party application removes fric-

tion, cost, and risk within a joint business process. A distributed ledger protects against amalicious

participant in the network, attempting to write or overwrite data to the detriment of other parties.

1.1.4 Important Concepts in Multi-Party Applications

For a multi-party application to fully deliver its value, the following conditions must be met:

Multiple involved parties have data sovereignty – that is, they keep their data within their own sys-

tems and require strong guarantees that no external party can access or modify that data outside

of pre-agreed rules. Shared state and rules are codified into an executable schema that determines

what data canmove between parties, who can read that data, and how that data ismanipulated. Pro-

cesses happen in real time as there is no additional reconciliation or manual processing required

between organizations.

For each individual party to gain the full benefits of a multi-party system, it should:

• Integrate the application - Bank Amust treat the multi-party infrastructure as the golden

source of truth for payment information and integrate it as such with the rest of their

infrastructure. Otherwise they are merely trading inter-bank reconciliation for intra-bank

reconciliation.

• Utilize composability by building advanced systems that rely on the base-levelmulti-party

agreements. For example, a healthcare claim application should be built using the pay-

ment solution. Integrating one multi-party application with another preserves all the

properties of each across both applications. In this example, the patient privacy require-

ments of a health claims application are retained, as are the financial guarantees of the

payment application. Without composability, multi-party applications become bigger si-

1.1. An Introduction To Multi-Party Applications and Daml 3

Daml SDK Documentation, 2.7.3

los and you end up reconciling the healthcare claimsmulti-party applicationwith the pay-

ments multi-party application.

Smart contracts, distributed ledgers, and blockchains are commonly used to build and deliver

multi-party applications. A smart contract codifies the terms of the agreement between parties,

including the rights and obligations of each party, directly written into lines of code. The code con-

trols the execution, and transactions are trackable and irreversible. In amulti-party application, the

smart contract defines the data workflow through actions taken by the parties involved.

Distributed ledgers and blockchains provide consensus between the parties, with a cryptographic

audit trail maintained and validated by the system. Within multi-party solutions, the dis-

tributed ledger ensures no one party can unilaterally change the system’s state and protects data

sovereignty, while the distributed ledger synchronizes the nodes securely in real time.

1.1.5 Key Architectural Concepts in Daml

Daml comprises two layers necessary for buildingmulti-party applications: theDaml smart contract

language and the Canton blockchain and protocol.

The Daml language is a smart contract language for multi-party applications. Conceptually, Daml

is similar to the Structured Query Language (SQL) used in traditional database systems, describing

the data schema and rules for manipulating the data.

The Daml language:

• defines the shared state between the parties, including process permissions and data

ownership

• defines workflows, execution policies, and read/write permissions

• enables developers to build rich transactions that codify strict business rules

• defines the APIs through which multi-party applications can talk to each other and com-

pose

The Daml code that collectively makes up the data schema and rules for an application is called a

Daml model. Increasingly sophisticated and valuable solutions are composed from existing Daml

models, enabling a rich ecosystem that accelerates application development.

Using the Daml language, developers define the schema for a virtual shared systemof record (VSSR).

A VSSR is the combineddata fromall parties involved in the application. TheCantonprotocol ensures

that each party gets a unique view into the VSSR, which is their projection of the full system.

In the execution model for Canton, each party of the application is hosted on a Participant Node

(Diagram 1). The Participant Node stores the party’s unique projection and history of the shared

system of record. Participant Nodes synchronize by running a consensus protocol (the Canton Pro-

tocol) between them. The protocol is executed by sending encrypted messages through Domains,

which route messages and offer guaranteed delivery and order consistency. Domains are also units

of access control and availability, meaning an application can be additionally protected from inter-

ference by other applications or malicious actors by synchronizing it only through a given domain,

and restricting which participants can connect to it.

Diagram 1:

In a composed solution, each domain is a sub-network. A Participant Node connects to one or more

Domains, enabling transactions that span Domains (Diagram 2).

Diagram 2:

4 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.1. An Introduction To Multi-Party Applications and Daml 5

Daml SDK Documentation, 2.7.3

6 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.1.6 Transfer Example Using Daml

Consider the transfer example described above with Alice and Bob. Using Daml, the process looks

like this:

1. Alice logs into her online banking at Bank A and enters a transfer to Bob at Bank B.

2. The online banking backend creates a transaction that deducts $100 from Alice’s account and

creates a transfer to Bob at Bank B.

3. When Bank B accepts the transfer, Bank A credits $100 to Bank B’s account at Bank A and Bank

B simultaneously credits Bob’s account by $100.

4. Bob’s online banking interfaces with the Daml Ledger and can see the incoming funds in real

time.

At every point, ownership of the $100 is completely clear and all systems are fully consistent.

1.1.7 Next Steps

The suggested next steps are:

• Learn about the Daml language and the Daml Ledger Model. Writing Daml will introduce you

to the basics of a Daml contract, the Daml Ledger model, and the core features of the Daml

language. You’ll notice that testing your contracts, including testing for failures, is presented

very early in this introduction. We strongly recommend that youwrite tests as part of the initial

development of every Daml project.

• Learn about operating a Daml application with the Ledger Administration Introduction.

1.2 System Requirements

Unless otherwise stated, all Daml runtime components require the following dependencies:

1. For development, an x86-compatible system running a modern Linux, Windows, or MacOS op-

erating system. For a production deployment, an x86-compatible system running a modern

Linux operating system.

2. Java 11 or greater.

3. An RDBMS system,

1. Either PostgreSQL 11.17 or greater.

2. Or Oracle Database 19.11 or greater.

4. JDBC drivers compatible with the chosen RDBMS.

Daml is tested using the following specific dependencies in default installations.

1. Operating Systems:

1. Ubuntu 20.04 for development. Ubuntu 20.04 and Debian 11 is also tested for production use.

2. Windows Server 2016

3. MacOS 10.15 Catalina

2. Eclipse Adoptium version 11 for Java.

3. PostgreSQL 11.17

4. Oracle Database 19.11

In terms of hardware requirements, minimal deployments running simple Daml applications are

regularly tested with as little as 2 GB of memory and access to a single, shared vCPU.

1.2. System Requirements 7

https://adoptium.net

Daml SDK Documentation, 2.7.3

1.2.1 Feature/Component System Requirements

1. The JavaScript Client Libraries are tested on Node 14.18.3. with typescript compiler 4.5.4. Ver-

sions greater or equal to these are recommended.

1.3 Installing the SDK

1.3.1 Install the Dependencies

The Daml SDK currently runs on Windows, macOS and Linux.

You need to install:

1. Visual Studio Code.

2. JDK 11 or greater. If you don’t already have a JDK installed, try Eclipse Adoptium.

As part of the installation process you may need to set up the JAVA_HOME variable. You can

find instructions for this process on Windows,macOS, and Linux here.

1.3.2 Choose Daml Enterprise or Daml Open Source

Daml comes in two variants: Daml Enterprise or Daml Open Source. Both include the best in class

SDK, Canton and all of the components that you need to write and deploy multi-party applications

in production, but they differ in terms of enterprise and non-functional capabilities:

Capability Enterprise Open Source

Sub-Transaction Privacy Yes Yes

Transaction Processing Parallel (fast) Sequential (slow)

High Availability Yes No

Horizontal scalability Yes No

Ledger Pruning Yes No

Local contract store in PostgreSQL Yes Yes

Local contract store in Oracle Yes No

PostgreSQL driver Yes Yes

Oracle driver Yes No

Besu driver Yes No

Fabric driver Yes No

Profiler Yes No

Non-repudiation Middleware Yes (early access) No

1.3.3 Install Daml Open Source SDK

1.3.3.1 Windows 10

Download and run the installer, which will install Daml and set up the PATH variable for you.

8 Chapter 1. Canton References

../app-dev/bindings-ts/index.html
https://code.visualstudio.com/download
https://adoptium.net
https://docs.daml.com/concepts/ledger-model/ledger-privacy.html
https://docs.daml.com/canton/architecture/overview.html#node-scaling
https://docs.daml.com/canton/usermanual/ha.html
https://docs.daml.com/canton/usermanual/ha.html#sequencer
https://docs.daml.com/canton/usermanual/pruning.html
https://docs.daml.com/tools/non-repudiation.html
https://github.com/digital-asset/daml/releases/download/v2.7.3/daml-sdk-2.7.3-windows.exe

Daml SDK Documentation, 2.7.3

1.3.3.2 Mac and Linux

Open a terminal and run:

curl ­sSL https://get.daml.com/ | sh

The installer will setup the PATH variable for you. In order for it to take effect, you will have to log out

and log in again.

If the daml command is not available in your terminal after logging out and logging in again, you

need to set the PATH environment variable manually. You can find instructions on how to do this

here.

1.3.4 Install Daml Enterprise

If you have a license for Daml Enterprise, you can install it as follows:

• On Windows, download the installer from Artifactory instead of Github releases.

• On Linux and MacOS, download the corresponding tarball, extract it and run ./install.sh.

Afterwards, modify the global daml-config.yaml and add an entry with your Artifactory API key.

The API key can be found in your Artifactory user profile.

artifactory­api­key: YOUR_API_KEY

This will be used by the assistant to download other versions automatically from artifactory.

If you already have an existing installation, you only need to add this entry to daml­config.yaml.

To overwrite a previously installed versionwith the corresponding Daml Enterprise version, use daml

install ­­force VERSION.

1.3.5 Download Manually

If you want to verify the SDK download for security purposes before installing, you can look at our

detailed instructions for manual download and installation.

1.3.6 Next Steps

• Follow the getting started guide.

• Use daml ­­help to see all the commands that the Daml assistant (daml) provides.

• If you run into any other problems, you can use the support page to get in touch with us.

1.4 Setting JAVA_HOME and PATH Variables

1.4.1 Windows

To set up JAVA_HOME and PATH variables on Windows:

1.4. Setting JAVA_HOME and PATH Variables 9

https://digitalasset.jfrog.io/ui/repos/tree/General/sdk-ee

Daml SDK Documentation, 2.7.3

1.4.1.1 Set the JAVA_HOME Variable

1. Search for Advanced System Settings (open Search, type “advanced system settings” and hit

Enter).

2. Find the Advanced tab and click Environment Variables.

3. Click New in the System variables section (if you want to set JAVA_HOME systemwide) or in

the User variables section (if you want to set JAVA_HOME for a single user). This will open

a modal window for Variable name.

4. In the Variable namewindow type JAVA_HOME, and for the Variable value set the path to

the JDK installation.

5. Click OK in the Variable name window.

6. Click OK in the tab and click Apply to apply the changes.

1.4.1.2 Set the PATH Variable

The PATH variable is automatically set by the Windows installer .

1.4.2 Mac OS

First, determine whether you are running Bash or zsh. Open a Terminal and run:

echo $SHELL

This should return either /bin/bash, in which case you are running Bash, or /bin/zsh, in which

case you are running zsh.

If you get any other output, you have a non-standard setup. If you’re not sure how to set up environ-

ment variables in your setup, ask on the Daml forum and we will be happy to help.

Open a terminal and run the following commands. Copy/paste one line at a time if possible. None of

these should produce any output on success.

To set the variables in bash:

echo 'export JAVA_HOME="$(/usr/libexec/java_home)"' >> ~/.bash_profile

echo 'export PATH="$HOME/.daml/bin:$PATH"' >> ~/.bash_profile

To set the variables in zsh:

echo 'export JAVA_HOME="$(/usr/libexec/java_home)"' >> ~/.zprofile

echo 'export PATH="$HOME/.daml/bin:$PATH"' >> ~/.zprofile

For both shells, the above will update the configuration for future, newly opened terminals, but will

not affect any existing one.

To test the configuration of JAVA_HOME (on either shell), open a new terminal and run:

echo $JAVA_HOME

You should see the path to the JDK installation, which is something like /Library/Java/

JavaVirtualMachines/jdk_version_number/Contents/Home.

Next, please verify the PATH variable by running (again, on either shell):

10 Chapter 1. Canton References

https://github.com/digital-asset/daml/releases/latest
https://discuss.daml.com

Daml SDK Documentation, 2.7.3

daml version

You should see the header SDK versions: followed by a list of installed (or available) SDK versions

(possibly a list of just one if you just installed).

If you do not see the expected outputs, contact us on the Daml forum and we will be happy to help.

1.4.3 Linux

To set up JAVA_HOME and PATH variables on Linux for bash:

1.4.3.1 Set the JAVA_HOME Variable

Java is typically installed in a folder like /usr/lib/jvm/java­version. Before running the follow-

ing command make sure to change the java­version with the actual folder found on your com-

puter:

echo "export JAVA_HOME=/usr/lib/jvm/java­version" >> ~/.bash_profile

1.4.3.2 Set the PATH Variable

The installer will ask to set the PATH variable for you. If you want to set the PATH variable manually

instead, run the following command:

echo 'export PATH="$HOME/.daml/bin:$PATH"' >> ~/.bash_profile

1.4.3.3 Verify the Changes

In order for the changes to take effect you will need to restart your computer. After the restart, verify

that everything was set up correctly using the following steps:

Verify the JAVA_HOME variable by running:

echo $JAVA_HOME

You should see the path you gave for the JDK installation, which is something like /usr/lib/jvm/

java­version.

Then verify the PATH variable by running:

echo $PATH

You should see a series of paths which includes the path to the SDK, which is something like /home/

your_username/.daml/bin.

1.4. Setting JAVA_HOME and PATH Variables 11

https://discuss.daml.com

Daml SDK Documentation, 2.7.3

1.5 Manually Installing the SDK

If you require a higher level of security, you can instead install the Daml SDK bymanually download-

ing the compressed tarball, verifying its signature, extracting it and manually running the install

script.

Note that the Windows installer is already signed (within the binary itself), and that signature is

checked byWindows before starting it. Nevertheless, you can still follow the steps below to check its

external signature file.

To do that:

1. Go to https://github.com/digital-asset/daml/releases. Confirm your browser sees a valid cer-

tificate for the github.com domain.

2. Download the artifact (Assets section, after the release notes) for your platform as well as the

corresponding signature file. For example, if you are on macOS and want to install the latest

release (2.0.0 at the time of writing), you would download the files daml­sdk­2.0.0­macos.

tar.gz and daml­sdk­2.0.0­macos.tar.gz.asc. Note that for Windows you can choose

between the tarball (ends in .tar.gz), which follows the same instructions as the Linux and

macOS ones (but assumes you have a number of typical Unix tools installed), or the installer,

which ends with .exe. Regardless, the steps to verify the signature are the same.

3. To verify the signature, you need to have gpg installed (see https://gnupg.org for more infor-

mation on that) and the Digital Asset Security Public Key imported into your keychain. Once

you have gpg installed, you can import the key by running:

gpg ­­keyserver hkp://pgp.mit.edu ­­search␣

↪→F26D8A0AADF666CCB28F2AB1650EC3253B6A8FF5

This should come back with a key belonging to Digital Asset Holdings, LLC

<security@digitalasset.com>, created on 2023-01-10 and expiring on 2025-01-09. If

any of those details are different, something is wrong. In that case please contact Digital Asset

immediately.

Alternatively, if keyservers do not work for you (we are having a bit of trouble getting them to

work reliably for us), you can find the full public key at the bottom of this page.

4. Once the key is imported, you canaskgpg to verify that the file youhavedownloadedhas indeed

been signed by that key. Continuing with our example of 2.0.0 onmacOS, you should have both

files in the current directory and run:

gpg ­­verify daml­sdk­2.0.0­macos.tar.gz.asc

and that should give you a result that looks like:

gpg: assuming signed data in 'daml­sdk­2.0.0­macos.tar.gz'

gpg: Signature made Wed Aug 12 13:30:49 2020 CEST

gpg: using RSA key CADC3D1E3B5C4C5F94A65D78A7BF65AAADBBC494

gpg: Good signature from "Digital Asset Holdings, LLC <security@digitalasset.

↪→com>" [unknown]

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to the owner.

Primary key fingerprint: F26D 8A0A ADF6 66CC B28F 2AB1 650E C325 3B6A 8FF5

Subkey fingerprint: CADC 3D1E 3B5C 4C5F 94A6 5D78 A7BF 65AA ADBB C494

Note: This warning means you have not told gnupg that you trust this key actually belongs to

Digital Asset. The [unknown] tag next to the key has the same meaning: gpg relies on a web

of trust, and you have not told it how far you trust this key. Nevertheless, at this point you have

verified that this is indeed the key that has been used to sign the archive.

12 Chapter 1. Canton References

https://github.com/digital-asset/daml/releases
https://gnupg.org

Daml SDK Documentation, 2.7.3

5. The next step is to extract the tarball and run the install script (unless you chose the Windows

installer, in which case the next step is to double-click it):

tar xzf daml­sdk­2.0.0­macos.tar.gz

cd sdk­2.0.0

./install.sh

6. Just like for themore automated install procedure, youmay want to add ~/.daml/bin to your

$PATH.

To import the public key directly without relying on a keyserver, you can copy-paste the following

Bash command:

gpg ­­import < <(cat <<EOF

­­­­­BEGIN PGP PUBLIC KEY BLOCK­­­­­

mQINBGO9khIBEAC/D5WTgMJQGQso1JfN5RTq6YiCBwJ+L84YfKCPUo1yW7/RQHNZ

+5rYUQpGf1K5KCIhHtJeQyANzPy9KWnhDX6lIaoau6Dg9JK3SwNv20jDyCzZOjNW

Gfajy7xVTWXmYM/us8/A5kJN4pwEGIUL73n2uOtOzhpJ6TGLujNKB5EfGUO1L2Jr

v9BGx2ghv+dbdR3kPX6SYuj7U+tDvoaqJB8729kL14grpBqYy2YhF5eoLyvBaE9x

brDydUCu5t2Xpr7yI7xGOhUSn2ygoP3e9YSjOhowj5U5oFtTGxvqSf7xd9gkFaZY

uA58X3su0nxZ/9nbvb2RJPKtlUeOJS8pggXVSSGrHfWw3Bnu2G1pQNO+MYCS0Cu/

gMxQTnJ4itUNoFb3c9dSnB/VXWxsvlK3F+EdFg9HLNiStJVxPhPwgTo138ohTI1H

4eGdXpRPZSKNXGRRtWdbEseYBSDBzR0ulAn5TDXFDFjjJ5u7KJfdN7p9YaXWkXpB

+hvsiWJuvUDxTGlQE02PQjyN5vzj1NaU7CRRLvOYSstsOyTmuYg/xxvqA9XbPdti

g9AtaeYSjRzq7OBq79FhcmKDOfh7Zc07RRXHy2xTdvw+Iy5HEjk0fYFz+1Gtp78U

0iTv8tdqyh8dPvmuF7UbGWMJEMMD5d2goEw2ZnkqmLPFK5jq8qAshaQw9wARAQAB

tDdEaWdpdGFsIEFzc2V0IEhvbGRpbmdzLCBMTEMgPHNlY3VyaXR5QGRpZ2l0YWxh

c3NldC5jb20+iQJOBBMBCAA4FiEE8m2KCq32ZsyyjyqxZQ7DJTtqj/UFAmO9khIC

GwMFCwkIBwIGFQoJCAsCBBYCAwECHgECF4AACgkQZQ7DJTtqj/WMbg/+K0Mte9y+

fCaWxFctfUbtd/JZBzpSCVMLN7PjZYZ50SwN/CqILUTFzzVLIx7uj/CyH/e1IV2O

RR7mWFTSADmkdrM45RBCvDs2UEIl3Rpsg/4iRpCZo01YQL9Y1XyUid8F3cQYmwPk

4YMY+tqqEhObAq0ngrGWiEWMUixbbRVqlPvRZDMeUNGdvmSOCs9LZLEnE9m4g2Kn

lNKddfLZ+sHaq2bfOiB+mZECX6wTusjqQWeJPRdflVWwMxZ7IkG9YoQHGlg8fTMd

3NqPE9OHOQiZhN4MbY6QZ70WexUNab8Pzf1Co4sSGhywVI3JibcqCNIbHW21+1py

OItJvdMxeSscOde2Fm5Dqmhf8UE+xgvPXa5xA5Yf40AqwuKt7boGsMf09Lf7zitX

5Zzl81saIPVC4OcM51t+sNDP6uJIynP5Dp1fxaIlb8gcQDqyWB/REr0vY1pRf/61

M8+jfUP3RJMbX/tUiCxEG+1uDSGTqj2Ac4TqiXfFKpg+TdEzNFj9VtrzTJT/tIgj

QlrKM9P9iB/JrNtqgeYrhaBZSpVKx4J7LNeIGdVJvRVzlW3tvCsTIT/lp/iJ1YjI

FCdb76leR/PgQNdk4wyU4JLXOYueEPAbyiBqQwgmOoT8GpY1PP4dsFfu7MoV0Cq7

//q+uwegRr5lLV6LwSBuFd1hqQ9ZdjAmmRi5Ag0EY72SEgEQAKP+D3bVJPC6sxSj

q/3UH9hixNhcmG61w6X1uW0x5jMMYN72ilnDLbgsgA3qEyZ8G/i34nUU4K/WZkWg

nJ59lOPIVf05yzEnesS6hbHXUzd6ayeWhPUzwxLBPy3yJUw7IRkFF9P9AMBaraAp

27ZuWy40Ta8bVKc9DgEeWuesyFAqs74W7cRfGm0SCAp8R3I+Syoj66+jpXYJ7sFt

eW4ITqrQcj64jBtGB8kQOe8JvC4COudXJ1BpKjExxIQlSK729tz0vsi+hzQfac/1

m3j082sH89ZU8y4GQpjWo6YyEzIxKBgoEogD0CvYOeJ9nK1Uv3pVFKyC1KdysQ+h

v+9V3zQoOaGF6115cIwQU1ewISUkiCOHzMYkrEXsbBOJlCmomuLnjMhsXht5tV4e

c8axn6QM7qRfSR/3R0RZwdAca0oZBN4ZOokUuZnR7/FxyiOhKilGW5iX+0m1VvKH

BImFM/VmCXw4hzcWZUZa5K6Ebpeg7zWN3a1kXZ+Kb2glqWYT5Pq3d1m+RtJOiuyn

uyr1BnX6OvjTNWTmKPqO8x223dZpNGdK6sfUUeZ67OokI/l2dALOuZRcuCLK32LB

uJmk/dLt4Bjem9ITFt2ECb1+RTa1aWOm8uS7BKUiDGedW6239h3HebdVenip1voY

3EdwpiQxgsCD3g2Sbzj9M5UGOsWzABEBAAGJAjwEGAEIACYCGwwWIQTybYoKrfZm

zLKPKrFlDsMlO2qP9QUCY72SxAUJA8JnsgAKCRBlDsMlO2qP9dfyD/9O76RZYI6w

8xIEOoK/cw//4IA0bbN/vC2tn5l1zUba6TrXhCYKr96//YJS9Fd239Gf4kC7AEbS

yf4ARLbezjtOVG33GlfrEFHfghMKhpjMQgb68NFw5U2eLMFc7BB/Fu4vSHqCMZ3I

ajM/465kq+jLxTNiuI14MFs1OLGD5WbAo9VEzBUbi3mK/CB4xv2UEd2y6ZAZuCXO

P2+Pr2P7W94ECu/N0dhnitkAirgXrS3nZSduLpjK/SkUzvdY642GHwy0i3M20Ztr

p7o1Uu7ztlD9yDUbksMyhskG7I+k2NGLAwz/CG91GRrYdUpoWsPlU5XLyxjHCmSC

(continues on next page)

1.5. Manually Installing the SDK 13

Daml SDK Documentation, 2.7.3

(continued from previous page)

q97qiRSKlGO3LbIiTRatrv+4fcdntN0EM/nJefdtKS8+qZqkPMGqURlDJcPnIpHk

jGccrEJz4aGB0/4Kr9UDBnWDPsH92E6lRa5QlzDOolEqgFHyyRP1JYJH3RGKVlYK

rcLlluADiRYXCadwtXvnkJGxfg2DGICn5bEInPtM+bEhO3IfqrjipvT/Qx3/N6T+

hiHyl2Yyi0loUhbWsTuuSz+D07wj/4X1evuaaAc56RSwv0x6rLSjkYj1I7V3nMvc

e2fwNFiJvLdGfMcIYyxrOwO24cFwzYMYoTDFmf8MkN/H/khKZiksdnIxfcBFfyWu

PA8s5O3Zs90Ack3IvK7uAhRDz1PpR6Y+1bkCDQRjvZKEARAAuTgK6INJWBEzfrDM

vM157ZGAM/7pyevj0WCDhqiCFdpH3MVt7+wq0tmR8Oo5Lt4AXqVtzn1bw1sMAkWK

U6yxLtS7cMiXOAPOtemTzWQkvk9o1FFygRQ8oyp4RUP4wj+W4lYaDhY+tJRDr/sR

6grYt/lZbfvEPuxL4jGW/dLSKHTLs8kh367Xm1qxqaG1C1tSLusTPb/8uNpOCANh

A2HAJRCGMox7f295+mEWXujif8yIfYtSQldqh+2bA6vaV3WKtHTPdLa1zzB20rf9

Mguz4ff3XDJCHPWOKeBOfqVS9CL67TZeOx0nJ6u2JnNDlwlzX7R63v1D/tSTYzPL

mJeosIjpRQg4ELyyLSkj0lANvY/AwlKeTPkvoc76UwsQRFgxx6ZZjKObjAok6TQK

HjszRNkeBWbbi8J+zvfS6U3+1qYtvf9Enpp1v1CWfEKZmC68MgspNCzLSOpkoAfe

k2iQ/XsjKXSsaUXY5A1DljQTVbSs9G3OkQA0Eyv4JPj2KEXPoF/0sIt2QRrayyqk

1lqN4k9a3zEZ2WpkQLIRK5DgCE/ORHXkperEWrDiAfSvuVl999jxr+Jqi8qvlPrm

aQd0X5Wc5gpb7X72FMsb2UHaWsUEs6nwoAWnXgA3PGd0r9LihZMJXfMc+LSF/dRK

fx+PizkTXQbfML8fi7Il9JA1p4UAEQEAAYkEcgQYAQgAJhYhBPJtigqt9mbMso8q

sWUOwyU7ao/1BQJjvZKEAhsCBQkDwmcAAkAJEGUOwyU7ao/1wXQgBBkBCAAdFiEE

ytw9HjtcTF+Upl14p79lqq27xJQFAmO9koQACgkQp79lqq27xJQG2hAAp4813NAu

AOg4C/Yvq8aqnDRDHw/ISs5XsQTfVwbIssSiSTqdJb4jX0rbKW1qzM6l15EmEsPV

5MCGfN8xfP5+UeeVIJaXLq3BMYJf1An8sun9f8Bp2Wdw6IDlr9VwFZ170JQ2xYvq

VJ+s/rxbCJ8K9neDPelzN/KXMyUV/uA5D1G92IlItinw4ZqD9e/CjPfIBwfNEMnZ

nYaku4VGJfzaMHezaUTB8UVyFVN6Zv2PGYEUBCwISM61IdnGKnJza0NMnEvGstXN

vtnWk7H/12Q4/rDpApy68Qbuo8gbZIifjNY00u2iyx4BEvji418NfTdF5HuPHR4m

g10cz+FcWxo13PGTXHKprNC9Y4M5nMAZW8z05/2geD8jzmY9Yz3m0GSVF/0cD3pB

rQ/LXirxgJ2prCuE7Ax8XTTBg7+cjgqk0InKh2pF0sK+2UCbnN4hR+SQvR256hWI

F+TP/rDryaqdubqCOh7kytPnPqZtL8VqK7yDRhfmgxv3+bpvm+B2qm1okUCkH3bb

AkvowTBOcyTqLw7hYsREHkYVROYg57GGhMStkzaD+lep9kEUgcaXZF41W02WJeS3

VYXwooxFBKMhzm+cluLV+ujC+FnRslh7q/u90+3N2VljEjxA4Oj3RNAARzpOs0V2

BtuUsiPCTvhRLBmdG3RH25jm2hUPexP2+pMyEw//V211M6+MT5a8kCybK5e93I3+

eT2bfAfd1k0kcQcfbocymxW5DJUqHgBj+G9ZC5PIAeFk+Jfld0y3M186NAvP8I4+

ZNsJExdQyp1CN53mSWtxAadgHNNhDKX0KwyCarCk04xbf0qjlsrWNbsUI04sM1zt

C46N/0JsCuG4uAztAfU9hjbLmSxpjf04Qqpc5NDlGLgZ2xQTVmXPlFg1DgrF6fIq

WZwPa7z1eihkrEERPjnisjuwMd4uO5BIkqh8F7HdOnARYXpftg9LReV973z7i8n9

4rhpBedAHwVRqWo8owM8DOVTaHAQzMnnzB+6nCoOcZc7PzhWtKKhZupW2DYaLdIh

nlVCrmMSozkFn3shtOJ76XF2DMDpk0353w6i6rKghWC7TdpXPnWkHkExw4Pjnlse

1NP2vdz183NKqEKros463i+hOszQj7jb5DiFxxOnKUfxBNEMJXTqYzXdEzw7Sncw

NwTv4pFxnk3XFJD3IIXMdaCDYmHIJYK5Fwgc0Cop3dRAMJIB+0Q1/p+urDXqZphq

AGroZ22Z1DXzv7rm1x2drZyOBohc+dqn3zjEx+lwZ6CY8XPiQgbWEzSzY8YT4oUA

xRcs9cJ+0SK/HhW/EG51YNbr5IMDb3HvycHEreszEvwq2HdnsMIYdM8GC7fl7Zpp

0r+S1089BYMqKmhepps=

=srz3

­­­­­END PGP PUBLIC KEY BLOCK­­­­­

EOF

)

14 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.6 Getting Started with Daml

The goal of this tutorial is to get you up and running with full-stack Daml development. Through the

example of a simple social networking application, you will learn:

1. How to build and run the application

2. The design of its different components (App Architecture)

3. How to write a new feature for the app (Your First Feature)

The goal is that by the end of this tutorial, you’ll have a good idea of the following:

• What Daml contracts and ledgers are

• How a user interface (UI) interacts with a Daml ledger

• How Daml helps you build a real-life application fast.

This is not a comprehensive guide to all Daml concepts and tools or all deployment options; these

are covered in-depth in the User Guide. For a quick overview of themost important Daml concepts

used in this tutorial you can refer to the Daml cheat-sheet .

With that, let’s get started!

1.6.1 Prerequisites

Make sure that you have the Daml SDK, Java 11 or higher, and Visual Studio Code (the only supported

IDE) installed as per the instructions in Installing the SDK.

You will also need some common software tools to build and interact with the template project:

• Node and the associated packagemanager npm. Use the Active LTS Node version, currently v18

(check with node ­­version).

• A terminal application for command line interaction.

1.6.2 Run the App

To get the app up and running:

1. Open a terminal, select a folder in which to create your first application, and instantiate the tem-

plate project.

daml new create­daml­app ­­template create­daml­app

This creates a new folder with contents from our template. To see a list of all available templates run

daml new ­­list.

2. Change to the new folder:

cd create­daml­app

3. Open two terminal windows.

4. In one terminal, at the root of the create­daml­app directory, run the command:

daml start

1.6. Getting Started with Daml 15

https://docs.daml.com/cheat-sheet/
https://nodejs.org/en/
https://nodejs.org/en/about/releases/

Daml SDK Documentation, 2.7.3

Any commands starting with daml are using the Daml Assistant, a command line tool in the SDK for

building and running Daml apps.

The command has started successfully when you see the INFO com.daml.http.Main$ ­

Started server: ServerBinding(/127.0.0.1:7575) message in the terminal. The com-

mand does a few things:

1. Compiles the Daml code to a DAR (Daml Archive) file

2. Generates a JavaScript library in ui/daml.js to connect the UI with your Daml code

3. Starts an instance of the Sandbox, an in-memory ledger useful for development, loadedwith our

DAR

4. Starts a server for the HTTP JSON API, a simple way to run commands against a Daml ledger (in

this case the running Sandbox)

We’ll leave these processes running to serve requests from our UI.

5. In the second terminal, navigate to the create­daml­app/ui folder and use npm to install

the project dependencies:

cd create­daml­app/ui

npm install

This stepmay take a couple ofmoments. You should seesuccess Saved lockfile. in the output

if everything worked as expected.

6. Start the UI with:

npm start

This starts the web UI connected to the running Sandbox and JSON API server. The command should

automatically open a window in your default browser at http://localhost:3000.

Once the web UI has been compiled and started, you should see Compiled successfully! in your

terminal. If you don’t, open http://localhost:3000 in a web browser. Depending on your firewall set-

tings, youmay be asked whether to allow the app to receive network connections. It is safe to accept.

You should now see the login page for the social network. For simplicity, in this app there is no

password or sign-up required.

1. Enter a user name. Valid user names are bob, alice, or charlie (note that these are all lower-case,

although they are displayed in the social network UI by their alias instead of their user id, with

the usual capitalization).

2. Click Log in.

16 Chapter 1. Canton References

http://localhost:3000
http://localhost:3000

Daml SDK Documentation, 2.7.3

You should see themain screen with two panels. The top panel displays the social network users you

are following; the bottom displays the aliases of the users who follow you. Initially these are both

empty as you are not following anyone and you don’t have any followers. To start following a user,

select their name in the drop-down list and click the Follow button in the top panel. At the moment,

you will notice that the drop-down shows only your own user because no other user has registered

yet.

Next, open a new browser window/tab at http://localhost:3000 and log in as a different user. (Having

separate windows/tabs allows you to see both your own screen and the screen of the user you are

following at the same time.)

Now that the other user (Alice in this example) has logged in, go back to the previous window/tab,

select them drop-down list and click the Follow button in the top panel.

The user you just started following appears in the Following panel. However, they do not yet appear

in the Network panel. This is because they have not yet started following you. This social network is

similar to Twitter and Instagram, where by following someone, say Alice, you make yourself visible

to her but not vice versa. We will see how we encode this in Daml in the next section.

1.6. Getting Started with Daml 17

http://localhost:3000

Daml SDK Documentation, 2.7.3

To make this relationship reciprocal, go back to the other window/tab where you logged in as the

second user (Alice in this example). You should now see your name in her network. In fact, Alice can

see the entire list of users you are following in the Network panel. This is because this list is part of

the user data that became visible when you started following her.

When Alice starts following you, you can see her in your network as well. Switch to the window where

you are logged in as yourself - the network should update automatically.

Play around more with the app at your leisure: create new users and start following more users.

Observe when a user becomes visible to others - this will be important to understanding Daml’s

privacy model later. When you’re ready, let’s move on to the architecture of our app.

Tip: Congratulations on completing the first part of the Getting Started Guide! Join our forum and

share a screenshot of your accomplishment to get your first of 3 getting started badges! You can get

the next one by implementing your first feature.

18 Chapter 1. Canton References

https://discuss.daml.com
https://discuss.daml.com/badges/125/it-works

Daml SDK Documentation, 2.7.3

1.7 App Architecture

In this sectionwe’ll look at the different components of the social network appwe created in Building

Your App. The goal is to familiarize yourself with the basics of Daml architecture enough to feel com-

fortable extending the code with a new feature in the next section. There are two main components:

• the Daml model

• the React/TypeScript frontend

We generate TypeScript code to bridge the two.

Overall, the social networking app follows the recommended architecture of a fullstack Daml application.

Below is a simplified version of the architecture represented in the app.

There are four types of building blocks that go into our application: user code, generated code from

Daml, Daml components, and external components. The Daml model determines the DAR files that

underpin both the frontend and backend. The frontend includes React application code, Daml React

libraries, and Typescript generated code. From the client point of view, the backend consists of the

JSON API and a participant node.

Let’s start by looking at the Daml model, which defines the core logic of the application. Have the

Daml cheat-sheet open in a separate tab for a quick overview of the most common Daml concepts.

1.7. App Architecture 19

https://docs.daml.com/getting-started/index.html
https://docs.daml.com/getting-started/index.html
https://docs.daml.com/cheat-sheet/
https://docs.daml.com/cheat-sheet/

Daml SDK Documentation, 2.7.3

1.7.1 The Daml Model

In your terminal, navigate to the root create­daml­app directory and run:

daml studio

This should open the Visual Studio Code editor at the root of the project. (Youmay get a new tab pop

up with release notes for the latest version of Daml - close this.) Using the file Explorer on the left

sidebar, navigate to the daml folder and double-click on the User.daml file.

The Daml code defines the data and workflow of the application. Both are described in the User con-

tract template. Let’s look at the data portion first:

template User with

username: Party

following: [Party]

where

signatory username

observer following

There are two important aspects here:

1. The data definition (a schema in database terms), describing the data stored with each user con-

tract. In this case it is an identifier for the user and the list of users they are following. Both fields

use the built-in Party type which lets us use them in the following clauses.

2. The signatories and observers of the contract. The signatories are the parties whose authorization

is required to create or archive contracts, in this case the user herself. The observers are the parties

whoare able to view the contract on the ledger. In this case all users that a particular user is following

are able to see the user contract.

It’s also important to distinguish between parties, users, and aliases in terms of naming:

• Parties are unique across the entire Daml network. Thesemust be allocated before you can

use them to log in, and allocation results in a random-looking (but not actually random)

string that identifies the party and is used in your Daml code. Parties are a builtin concept.

• On each participant node you can create users with human-readable user ids. Each user

can be associated with one or more parties allocated on that participant node, and refers

to that party only on that node. Users are a purely local concept, meaning you can never

address a user on another node by user id, and you never work with users in your Daml

code; party ids are always used for these purposes. Users are also a builtin concept.

• Lastly we have user aliases. These are not a builtin concept, they are defined by an Alias

template (discussed below) within the specific model used in this guide. Aliases serve as

a way to address parties on all nodes via a human readable name.

The social network users discussed in this guide are really a combination of all three of these con-

cepts. Alice, Bob, and Charlie are all aliases that correspond to a single test user and a single party

id each. As part of running daml start, the init-script specified in daml.yaml is executed. This points

at the Setup:setup function which defines a Daml Script which creates 3 users alice, bob and charlie as

well as a corresponding party for each they can act as. In addition to that, we also create a separate

public party and allow the three users to read contracts for that party. This allows us to share the

alias contracts with that public party and have them be visible to all 3 users.

Now let’s see what the signatory and observer clauses mean in our app in more concrete terms.

The userwith the alias Alice can see another user, alias Bob, in the network onlywhenBob is following

Alice (only if Alice is in the following list in his user contract). For this to be true, Bob must have

20 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

previously started to follow Alice, as he is the sole signatory on his user contract. If not, Bob will be

invisible to Alice.

This illustrates two concepts that are central to Daml: authorization and privacy. Authorization is

about who can do what, and privacy is about who can see what. In Daml you must answer these

questions upfront, as they are fundamental to the design of the application.

The next part of the Daml model is the operation to follow users, called a choice in Daml:

nonconsuming choice Follow: ContractId User with

userToFollow: Party

controller username

do

assertMsg "You cannot follow yourself" (userToFollow /= username)

assertMsg "You cannot follow the same user twice" (notElem userToFollow␣

↪→following)

archive self

create this with following = userToFollow :: following

Daml contracts are immutable (can not be changed in place), so the only way to update one is to

archive it and create a new instance. That is what the Follow choice does: after checking some

preconditions, it archives the current user contract and creates a new onewith the newuser to follow

added to the list. Here is a quick explanation of the code:

• The choice starts with the nonconsuming choice keyword followed by the choice name Fol­

low.

• The return type of a choice is defined next. In this case it is ContractId User.

• After that we declare choice parameters with the with keyword. Here this is the user we want

to start following.

• The keyword controller defines the Party that is allowed to execute the choice. In this case,

it is the username party associated with the User contract.

• The do keyword marks the start of the choice body where its functionality will be written.

• After passing some checks, the current contract is archived with archive self.

• A new User contract with the new user we have started following is created (the new user is

added to the following list).

More detailed information on choices can be found in our docs.

Finally, the User.daml file contains the Alias template that manages the link between user ids and

their aliases. The alias template sets the public party we created in the setup script as the observer

of the contract. Because we allow all users to read contracts visible to the public party, this allows

e.g., Alice to see Bob’s Alias contract.

template Alias with

username: Party

alias: Text

public: Party

where

signatory username

observer public

key (username, public) : (Party, Party)

maintainer key._1

nonconsuming choice Change: ContractId Alias with

newAlias: Text

(continues on next page)

1.7. App Architecture 21

Daml SDK Documentation, 2.7.3

(continued from previous page)

controller username

do

archive self

create this with alias = newAlias

Let’s move on to how our Daml model is reflected and used on the UI side.

1.7.2 TypeScript Code Generation

The user interface for our app is written in TypeScript. TypeScript is a variant of JavaScript that

provides more support during development through its type system.

To build an application on top of Daml, we need a way to refer to our Daml templates and choices in

TypeScript. We do this using a Daml to TypeScript code generation tool in the SDK.

To run code generation, we first need to compile the Daml model to an archive format (a .dar file).

The daml codegen js command then takes this file as argument to produce a number of Type-

Script packages in the output folder.

daml build

daml codegen js .daml/dist/create­daml­app­0.1.0.dar ­o daml.js

Now we have a TypeScript interface (types and companion objects) to our Daml model, which we’ll

use in our UI code next.

1.7.3 The UI

On top of TypeScript, we use the UI framework React. React helps us write modular UI components

usinga functional style - a component is rerenderedwhenever oneof its inputs changes -with careful

use of global state.

Let’s see an example of a React component. All components are in the ui/src/components folder.

You can navigate there within Visual Studio Code using the file explorer on the left sidebar. We’ll first

look at App.tsx, which is the entry point to our application.

const App: React.FC = () => {

const [credentials, setCredentials] = React.useState<

Credentials | undefined

>();

if (credentials) {

const PublicPartyLedger: React.FC = ({ children }) => {

const publicToken = usePublicToken();

const publicParty = usePublicParty();

if (publicToken && publicParty) {

return (

<publicContext.DamlLedger

token={publicToken.token}

party={publicParty}>

{children}

</publicContext.DamlLedger>

);

} else {

(continues on next page)

22 Chapter 1. Canton References

https://www.typescriptlang.org/
https://reactjs.org/

Daml SDK Documentation, 2.7.3

(continued from previous page)

return <h1>Loading ...</h1>;

}

};

const Wrap: React.FC = ({ children }) =>

isRunningOnHub() ? (

<DamlHub token={credentials.token}>

<PublicPartyLedger>{children}</PublicPartyLedger>

</DamlHub>

) : (

<div>{children}</div>

);

return (

<Wrap>

<userContext.DamlLedger

token={credentials.token}

party={credentials.party}

user={credentials.user}>

<MainScreen

getPublicParty={credentials.getPublicParty}

onLogout={() => {

if (authConfig.provider === "daml­hub") {

damlHubLogout();

}

setCredentials(undefined);

}}

/>

</userContext.DamlLedger>

</Wrap>

);

} else {

return <LoginScreen onLogin={setCredentials} />;

}

};

An important tool in the design of our components is a React feature called Hooks. Hooks allow you

to share and update state across components, avoiding the need to thread it through manually. We

take advantage of hooks to share ledger state across components. Custom Daml React hooks query

the ledger for contracts, create new contracts, and exercise choices. This is the library you will use

most often when interacting with the ledger1 .

The useState hook (not specific to Daml) here keeps track of the user’s credentials. If they are not

set, we render the LoginScreen with a callback to setCredentials. If they are set, we render the

MainScreen of the app. This is wrapped in the DamlLedger component, a React context with a

handle to the ledger.

Let’s move on to more advanced uses of our Daml React library. The MainScreen is a simple frame

around the MainView component, which houses the main functionality of our app. It uses Daml

React hooks to query and update ledger state.

const MainView: React.FC = () => {

const username = userContext.useParty();

const myUserResult = userContext.useStreamFetchByKeys(User.User, () =>␣

↪→[username], [username]);
(continues on next page)

1 Behind the scenes the Daml React hooks library uses the Daml Ledger TypeScript library to communicate with a ledger

implementation via the HTTP JSON API.

1.7. App Architecture 23

https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/context.html

Daml SDK Documentation, 2.7.3

(continued from previous page)

const aliases = publicContext.useStreamQueries(User.Alias, () => [], []);

const myUser = myUserResult.contracts[0]?.payload;

const allUsers = userContext.useStreamQueries(User.User).contracts;

The useParty hook returns the current user as stored in the DamlLedger context. A more interest-

ing example is the allUsers line. This uses the useStreamQueries hook to get all User contracts

on the ledger. (User.User here is an object generated by daml codegen js - it stores metadata

of the User template defined in User.daml.) Note however that this query preserves privacy: only

users that follow the current user have their contracts revealed. This behaviour is due to the ob-

servers on the User contract being exactly in the list of users that the current user is following.

A final point on this is the streaming aspect of the query. Results are updated as they come in - there

is no need for periodic or manual reloading to see updates.

Another example, showing how to update ledger state, is how we exercise the Follow choice of the

User template.

const ledger = userContext.useLedger();

const follow = async (userToFollow: Party): Promise<boolean> => {

try {

await ledger.exerciseByKey(User.User.Follow, username, {userToFollow});

return true;

} catch (error) {

alert(`Unknown error:\n${JSON.stringify(error)}`);

return false;

}

}

The useLedger hook returns an object withmethods for exercising choices. The core of the follow

function here is the call to ledger.exerciseByKey. The key in this case is the username of the

current user, used to look up the corresponding User contract. The wrapper function follow is

then passed to the subcomponents of MainView. For example, follow is passed to the UserList

component as an argument (a prop in React terms). This is triggered when you click the icon next to

a user’s name in the Network panel.

<UserList

users={followers}

partyToAlias={partyToAlias}

onFollow={follow}

/>

This should give you a taste of how the UI works alongside a Daml ledger. You’ll see this more as you

develop your first feature for our social network.

24 Chapter 1. Canton References

https://reactjs.org/docs/components-and-props.html

Daml SDK Documentation, 2.7.3

1.8 Your First Feature

To get a better idea of how to develop Daml applications, let’s try implementing a new feature for our

social network app.

At themoment, our app lets us follow users in the network, but we have no way to communicate with

them. Let’s fix that by adding a direct messaging feature. This should let users that follow each other

send messages to each other, respecting authorization and privacy. This means:

• You cannot send a message to someone unless they have given you the authority by following

you back.

• You cannot see a message unless you sent it or it was sent to you.

Daml lets us implement these guarantees in a direct and intuitive way.

Creating a feature involves three steps:

1. Adding the necessary changes to the Daml model

2. Making the corresponding changes in the UI

3. Running the app with the new feature

As usual, we must start with the Daml model and base our UI changes on top of that.

1.8.1 Daml Changes

The Daml code defines the data andworkflow of the application; you can read about this inmore detail

in the architecture section. The workflow refers to the interactions between parties that are permitted

by the system. In the context of a messaging feature, these are essentially the authorization and

privacy concerns listed above.

For the authorization part, we take the following approach: a user Bob canmessage another user Al-

ice when Alice starts following Bob back. When Alice starts following Bob back, she gives permission

or authority to Bob to send her a message.

To implement this workflow, let’s start by adding the new data for messages. Navigate to the daml/

User.daml file and copy the following Message template to the bottom. Indentation is important:

it should be at the top level like the original User template.

template Message with

sender: Party

receiver: Party

content: Text

where

signatory sender, receiver

This template is very simple: it contains the data for amessage and no choices. The interesting part

is the signatory clause: both the sender and receiver are signatories on the template. This

enforces that creation and archival of Message contracts must be authorized by both parties.

Nowwe can addmessaging into the workflow by adding a new choice to the User template. Copy the

following choice to theUser template after theFollow choice. The indentation for theSendMessage

choice must match the one of Follow . Make sure you save the file after copying the code.

nonconsuming choice SendMessage: ContractId Message with

sender: Party

(continues on next page)

1.8. Your First Feature 25

Daml SDK Documentation, 2.7.3

(continued from previous page)

content: Text

controller sender

do

assertMsg "Designated user must follow you back to send a message" (elem␣

↪→sender following)

create Message with sender, receiver = username, content

As with the Follow choice, there are a few aspects to note here.

• By convention, the choice returns the ContractId of the resulting Message contract.

• The parameters to the choice are the sender and content of this message; the receiver is the

party named on this User contract.

• The controller clause states that it is the sender who can exercise the choice.

• The body of the choice first ensures that the sender is a user that the receiver is following and

thencreates theMessage contractwith thereceiverbeing the signatory of theUser contract.

This completes the workflow for messaging in our app.

Navigate to the terminal window where the daml start process is running and press ‘r’. This will

• Compile our Daml code into a DAR file containing the new feature

• Update the JavaScript library under ui/daml.js to connect the UI with your Daml code

• Upload the new DAR file to the sandbox

As mentioned previously, Daml Sandbox uses an in-memory store, which means it loses its state –

which here includes all user data and follower relationships – when stopped or restarted.

Now let’s integrate the new functionality into the UI.

1.8.2 Messaging UI

The UI for messaging consists of a new Messages panel in addition to the Follow and Network panel.

This new panel has two parts:

1. A list of messages you’ve received with their senders.

2. A formwith a dropdownmenu for follower selection and a text field for composing themessage.

We implement each part as a React component, named MessageList and MessageEdit respec-

tively. Let’s start with the simpler MessageList.

1.8.2.1 MessageList Component

The goal of the MessageList component is to query all Message contracts where the receiver is

the current user, and display their contents and senders in a list. The entire component is shown

below. Copy this into a new MessageList.tsx file in ui/src/components and save it.

import React from 'react'

import { List, ListItem } from 'semantic­ui­react';

import { User } from '@daml.js/create­daml­app';

import { userContext } from './App';

type Props = {

partyToAlias: Map<string, string>

(continues on next page)

26 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

}

/**

* React component displaying the list of messages for the current user.

*/

const MessageList: React.FC<Props> = ({partyToAlias}) => {

const messagesResult = userContext.useStreamQueries(User.Message);

return (

<List relaxed>

{messagesResult.contracts.map(message => {

const {sender, receiver, content} = message.payload;

return (

<ListItem

className='test­select­message­item'

key={message.contractId}>

{partyToAlias.get(sender) ?? sender} &rarr; {partyToAlias.

↪→get(receiver) ?? receiver}: {content}

</ListItem>

);

})}

</List>

);

};

export default MessageList;

In the component body, messagesResult gets the stream of all Message contracts visible to the

current user. The streaming aspect means that we don’t need to reload the page when new mes-

sages come in. For each contract in the stream, we destructure the payload (the data as opposed to

metadata like the contract ID) into the {sender, receiver, content} object pattern. Then we

construct a ListItem UI element with the details of the message.

An important point about privacy: no matter how we write our Message query in the UI code, it is

impossible to break the privacy rules given by the Damlmodel. That is, it is impossible to see a Mes­

sage contract of which you are not the sender or the receiver (the only parties that can observe

the contract). This is a major benefit of writing apps on Daml: the burden of ensuring privacy and

authorization is confined to the Daml model.

1.8.2.2 MessageEdit Component

Next we need the MessageEdit component to compose and send messages to our followers. Again

we show the entire component here; copy this into a new MessageEdit.tsx file in ui/src/

components and save it.

import React from 'react'

import { Form, Button } from 'semantic­ui­react';

import { Party } from '@daml/types';

import { User } from '@daml.js/create­daml­app';

import { userContext } from './App';

type Props = {

followers: Party[];

partyToAlias: Map<string, string>;

(continues on next page)

1.8. Your First Feature 27

Daml SDK Documentation, 2.7.3

(continued from previous page)

}

/**

* React component to edit a message to send to a follower.

*/

const MessageEdit: React.FC<Props> = ({followers, partyToAlias}) => {

const sender = userContext.useParty();

const [receiver, setReceiver] = React.useState<string | undefined>();

const [content, setContent] = React.useState("");

const [isSubmitting, setIsSubmitting] = React.useState(false);

const ledger = userContext.useLedger();

const submitMessage = async (event: React.FormEvent) => {

try {

event.preventDefault();

if (receiver === undefined) {

return;

}

setIsSubmitting(true);

await ledger.exerciseByKey(User.User.SendMessage, receiver, {sender,␣

↪→content});

setContent("");

} catch (error) {

alert(`Error sending message:\n${JSON.stringify(error)}`);

} finally {

setIsSubmitting(false);

}

};

return (

<Form onSubmit={submitMessage}>

<Form.Select

fluid

search

className='test­select­message­receiver'

placeholder={receiver ? partyToAlias.get(receiver) ?? receiver : "Select␣

↪→a follower"}

value={receiver}

options={followers.map(follower => ({ key: follower, text: partyToAlias.

↪→get(follower) ?? follower, value: follower }))}

onChange={(event, data) => setReceiver(data.value?.toString())}

/>

<Form.Input

className='test­select­message­content'

placeholder="Write a message"

value={content}

onChange={event => setContent(event.currentTarget.value)}

/>

<Button

fluid

className='test­select­message­send­button'

type="submit"

disabled={isSubmitting || receiver === undefined || content === ""}

loading={isSubmitting}

content="Send"

/>

(continues on next page)

28 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

</Form>

);

};

export default MessageEdit;

Youwill first notice a Props type near the top of the file with a single followers field. A prop in React

is an input to a component; in this case a list of users from which to select the message receiver.

The prop will be passed down from the MainView component, reusing the work required to query

users from the ledger. You can see this followers field bound at the start of the MessageEdit

component.

We use the React useState hook to get and set the current choices of message receiver and

content. The Daml-specific useLedger hook gives us an object we can use to perform ledger op-

erations. The call to ledger.exerciseByKey in submitMessage looks up the User contract with

the receiver’s username and exercises the SendMessage choice with the appropriate arguments.

If the choice fails, the catch block reports the error in a dialog box. Additionally, submitMessage

sets the isSubmitting state so that the Send button is disabled while the request is processed. The

result of a successful call to submitMessage is a new Message contract created on the ledger.

The return value of this component is the React Form element. This contains a dropdown menu to

select a receiver from the followers, a text field for the message content, and a Send button which

triggers submitMessage.

Note how authorization is enforced here. Due to the logic of the SendMessage choice, it is impossible

to send a message to a user who is not following us (even if you could somehow access their User

contract). The assertion that elem sender following in SendMessage ensures this: nomistake

or malice by the UI programmer could breach this.

1.8.2.3 MainView Component

Finally we can see these components come together in the MainView component. We want to add a

newpanel to house ourmessaging UI. Open the ui/src/components/MainView.tsx file and start

by adding imports for the two new components.

import MessageEdit from './MessageEdit';

import MessageList from './MessageList';

Next, find where the Network Segment closes, towards the end of the component. This is where we’ll

add a new Segment for Messages. Make sure you save the file after copying over the code.

<Segment>

<Header as='h2'>

<Icon name='pencil square' />

<Header.Content>

Messages

<Header.Subheader>Send a message to a follower</Header.

↪→Subheader>

</Header.Content>

</Header>

<MessageEdit

followers={followers.map(follower => follower.username)}

partyToAlias={partyToAlias}

(continues on next page)

1.8. Your First Feature 29

Daml SDK Documentation, 2.7.3

(continued from previous page)

/>

<Divider />

<MessageList partyToAlias={partyToAlias}/>

</Segment>

Following the formatting of the previous panels, we include the new messaging components: Mes­

sageEdit supplied with the usernames of all visible parties as props, and MessageList to display

all messages.

That is all for the implementation! Let’s give the new functionality a spin.

1.8.3 Run the Updated UI

If you have the frontend UI up and running you’re all set. If you don’t have the UI running, open a

new terminal window and navigate to the create­daml­app/ui folder, then run the npm start

command to start the UI.

You should see the same login page as before at http://localhost:3000.

Once you’ve logged in, you’ll see a familiar UI but with our new Messages panel at the bottom!

Go ahead and follow more users, and log in as some of those users in separate browser windows

to follow yourself back. Then click on the dropdown menu in the Messages panel to see a choice of

followers to message!

Send somemessages between users andmake sure you can see each one from the other side. Notice

that each new message appears in the UI as soon as it is sent (due to the streaming React hooks).

Tip: You completed the second part of the Getting Started Guide! Join our forumand share a screen-

shot of your accomplishment to get your second of 3 badges! Get the third badge by deploying to

Daml Hub.

30 Chapter 1. Canton References

http://localhost:3000
https://discuss.daml.com
https://discuss.daml.com/badges/126/hey-look-what-i-can-do
https://hub.daml.com/docs/quickstart/#deploy-your-own-daml-hub-sample-app
https://hub.daml.com/docs/quickstart/#deploy-your-own-daml-hub-sample-app

Daml SDK Documentation, 2.7.3

1.8. Your First Feature 31

Daml SDK Documentation, 2.7.3

1.8.4 Next Steps

We’ve gone through the process of setting up a full-stack Daml app and implementing a useful fea-

ture end to end. As the next step we encourage you to really dig into the fundamentals of Daml and

understand its core concepts such as parties, signatories, observers, and controllers. You can do

that either by going through our docs or by taking an online course.

After you’ve got a good grip on these concepts learn how to conduct end-to-end testing of your app.

1.9 Testing Your Web App

When developing a UI for your Daml application, you will want to test that user flows work from end

to end. This means that actions performed in the web UI trigger updates to the ledger and give the

desired results on the page. In this section we show how you can do such testing automatically

in TypeScript (equally JavaScript). This will allow you to iterate on your app faster and with more

confidence!

There are two tools that we chose to write end to end tests for our app. Of course there are more to

choose from, but this is one combination that works.

• Jest is ageneral-purpose testing framework for JavaScript that’swell integratedwithboth Type-

Script and React. Jest helps you structure your tests and express expectations of the app’s

behaviour.

• Puppeteer is a library for controlling a Chrome browser from JavaScript/TypeScript. Puppeteer

allows you to simulate interactions with the app in place of a real user.

To install Puppeteer and some other testing utilities we are going to use, run the following command

in the ui directory:

npm i ­­save­dev puppeteer@~10.0.0 wait­on@~6.0.1 @types/jest@~29.2.3 @types/

↪→node@~18.11.9 @types/puppeteer@~7.0.4 @types/wait­on@~5.3.1

You may need to run npm install again afterwards.

Because these things are easier to describewith concrete examples, this sectionwill showhow to set

up end-to-end tests for the application you would end with at the end of the Your First Feature section.

1.9.1 Set Up the Tests

Let’s see how to use these tools to write some tests for our social network app. You can see the full

suite in section The Full Test Suite at the bottomof this page. To run this test suite, create a new fileui/

src/index.test.ts, copy the code in this section into that file and run the following command in

the ui folder:

npm test

The actual tests are the clauses beginning with test. You can scroll down to the important ones

with the following descriptions (the first argument to each test):

• ‘log in as a new user, log out and log back in’

• ‘log in as three different users and start following each other’

• ‘error when following self’

• ‘error when adding a user that you are already following’

32 Chapter 1. Canton References

https://digitalasset.com/developers/interactive-tutorials/fundamental-concepts
https://jestjs.io/
https://pptr.dev/

Daml SDK Documentation, 2.7.3

Before this, we need to set up the environment in which the tests run. At the top of the file we have

some global state that we use throughout. Specifically, we have child processes for the daml start

and npm start commands, which run for the duration of our tests. We also have a single Puppeteer

browser that we share among tests, opening new browser pages for each one.

The beforeAll() section is a function run once before any of the tests run. We use it to spawn the

daml startandnpm startprocessesand launch thebrowser. On the other hand theafterAll()

section is used to shut down theseprocessesandclose thebrowser. This step is important to prevent

child processes persisting in the background after our program has finished.

1.9.2 Example: Log In and Out

Now let’s get to a test! The idea is to control the browser in the same way we would expect a user to

in each scenario we want to test. This means we use Puppeteer to type text into input forms, click

buttons and search for particular elements on the page. In order to find those elements, we do need

to make some adjustments in our React components, which we’ll show later. Let’s start at a higher

level with a test.

test("log in as a new user, log out and log back in", async () => {

const [user, party] = await getParty();

// Log in as a new user.

const page = await newUiPage();

await login(page, user);

// Check that the ledger contains the new User contract.

const token = insecure.makeToken(user);

const ledger = new Ledger({ token });

const users = await ledger.query(User.User);

expect(users).toHaveLength(1);

expect(users[0].payload.username).toEqual(party);

// Log out and in again as the same user.

await logout(page);

await login(page, user);

// Check we have the same one user.

const usersFinal = await ledger.query(User.User);

expect(usersFinal).toHaveLength(1);

expect(usersFinal[0].payload.username).toEqual(party);

await page.close();

}, 40_000);

We’ll walk though this step by step.

• The test syntax is provided by Jest to indicate a new test running the function given as an

argument (along with a description and time limit).

• getParty() gives us a new party name. Right now it is just a string unique to this set of tests,

but in the future we will use the Party Management Service to allocate parties.

• newUiPage() is a helper function that uses the Puppeteer browser to open a new page (we use

one page per party in these tests), navigate to the app URL and return a Page object.

• Next we login() using the new page and party name. This should take the user to the main

screen. We’ll show how the login() function does this shortly.

1.9. Testing Your Web App 33

Daml SDK Documentation, 2.7.3

• We use the @daml/ledger library to check the ledger state. In this case, we want to ensure

there is a single User contract created for the new party. Hence we create a new connection to

the Ledger, query() it and state what we expect of the result. When we run the tests, Jest

will check these expectations and report any failures for us to fix.

• The test also simulates the new user logging out and then logging back in. We again check the

state of the ledger and see that it’s the same as before.

• Finally we must close() the browser page, which was opened in newUiPage(), to avoid run-

away Puppeteer processes after the tests finish.

You will likely use test, getParty(), newUiPage() and Browser.close() for all your tests. In

this case we use the @daml/ledger library to inspect the state of the ledger, but usually we just

check the contents of the web page match our expectations.

1.9.3 Accessing UI Elements

We showed how to write a simple test at a high level, but haven’t shown how to make individual

actions in the app using Puppeteer. This was hidden in the login() and logout() functions. Let’s

see how login() is implemented.

// Log in using a party name and wait for the main screen to load.

const login = async (page: Page, partyName: string) => {

const usernameInput = await page.waitForSelector(

".test­select­username­field",

);

if (usernameInput) {

await usernameInput.click();

await usernameInput.type(partyName);

await page.click(".test­select­login­button");

await page.waitForSelector(".test­select­main­menu");

}

};

We first wait to receive a handle to the username input element. This is important to ensure the page

and relevant elements are loaded by the time we try to act on them. We then use the element handle

to click into the input and type the party name. Next we click the login button (this time assuming

the button has loaded along with the rest of the page). Finally, we wait until we find we’ve reached

the menu on the main page.

The strings used to find UI elements, e.g. '.test­select­username­field' and '.

test­select­login­button', are CSS Selectors. You may have seen them before in CSS styling

of web pages. In this case we use class selectors, which look for CSS classes we’ve given to elements

in our React components.

This means we must manually add classes to the components we want to test. For example, here is

a snippet of the LoginScreen React component with classes added to the Form elements.

<Form.Input

fluid

placeholder="Username"

value={username}

className="test­select­username­field"

onChange={(e, { value }) => setUsername(value?.toString() ?? "")}

/>

<Button

(continues on next page)

34 Chapter 1. Canton References

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors

Daml SDK Documentation, 2.7.3

(continued from previous page)

primary

fluid

className="test­select­login­button"

onClick={handleLogin}>

Log in

</Button>

You can see the className attributes in the Input and Button, which we select in the login()

function. Note that you can use other features of an element in your selector, such as its type and

attributes. We’ve only used class selectors in these tests.

1.9.4 Writing CSS Selectors

When writing CSS selectors for your tests, you will likely need to check the structure of the rendered

HTML in your app by running it manually and inspecting elements using your browser’s developer

tools. For example, the image below is from inspecting the username field using the developer tools

in Google Chrome.

There is a subtlety to explain here due to the Semantic UI framework we use for our app. Semantic

UI provides a convenient set of UI elements which get translated to HTML. In the example of the

username field above, the original Semantic UI Input is translated to nested div nodes with the

input inside. You can see this highlighted on the right side of the screenshot. While harmless in

this case, in general youmay need to inspect the HTML translation of UI elements and write your CSS

selectors accordingly.

1.9. Testing Your Web App 35

https://semantic-ui.com/

Daml SDK Documentation, 2.7.3

1.9.5 The Full Test Suite

// Copyright ﴾c﴿ 2022 Digital Asset ﴾Switzerland﴿ GmbH and/or its affiliates. All␣

↪→rights reserved.

// SPDX­License­Identifier: Apache­2.0

// Keep in sync with compatibility/bazel_tools/create­daml­app/index.test.ts

import { ChildProcess, spawn, spawnSync, SpawnOptions } from "child_process";

import { promises as fs } from "fs";

import puppeteer, { Browser, Page } from "puppeteer";

import waitOn from "wait­on";

import Ledger, { UserRightHelper, UserRight } from "@daml/ledger";

import { User } from "@daml.js/create­daml­app";

import { insecure } from "./config";

const JSON_API_PORT_FILE_NAME = "json­api.port";

const UI_PORT = 3000;

// `daml start` process

let startProc: ChildProcess | undefined = undefined;

// `npm start` process

let uiProc: ChildProcess | undefined = undefined;

// Chrome browser that we run in headless mode

let browser: Browser | undefined = undefined;

let publicUser: string | undefined;

let publicParty: string | undefined;

const adminLedger = new Ledger({

token: insecure.makeToken("participant_admin"),

httpBaseUrl: "http://127.0.0.1:7575/",

});

const toAlias = (userId: string): string =>

userId.charAt(0).toUpperCase() + userId.slice(1);

// Function to generate unique party names for us.

let nextPartyId = 1;

const getParty = async (): Promise<[string, string]> => {

const allocResult = await adminLedger.allocateParty({});

const user = `u${nextPartyId}`;

const party = allocResult.identifier;

const rights: UserRight[] = [UserRightHelper.canActAs(party)].concat(

publicParty !== undefined ? [UserRightHelper.canReadAs(publicParty)] : [],

);

await adminLedger.createUser(user, rights, party);

nextPartyId++;

return [user, party];

};

test("Party names are unique", async () => {

let r: string[] = [];

(continues on next page)

36 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

for (let i = 0; i < 10; ++i) {

r = r.concat((await getParty())[1]);

}

const parties = new Set(r);

expect(parties.size).toEqual(10);

}, 20_000);

const removeFile = async (path: string) => {

try {

await fs.stat(path);

await fs.unlink(path);

} catch (_e) {

// Do nothing if the file does not exist.

}

};

// Start the Daml and UI processes before the tests begin.

// To reduce test times, we reuse the same processes between all the tests.

// This means we need to use a different set of parties and a new browser page␣

↪→for each test.

beforeAll(async () => {

// Run `daml start` from the project root ﴾where the `daml.yaml` is located﴿.

// The path should include '.daml/bin' in the environment where this is run,

// which contains the `daml` assistant executable.

const startOpts: SpawnOptions = { cwd: "..", stdio: "inherit" };

console.debug("Starting daml start");

startProc = spawn("daml", ["start"], startOpts);

await waitOn({ resources: [`tcp:127.0.0.1:6865`] });

console.debug("daml sandbox is running");

await waitOn({ resources: [`tcp:127.0.0.1:7575`] });

console.debug("JSON API is running");

[publicUser, publicParty] = await getParty();

// Run `npm start` in another shell.

// Disable automatically opening a browser using the env var described here:

// https://github.com/facebook/create­react­app/issues/873#issuecomment­

↪→266318338

const env = { ...process.env, BROWSER: "none" };

console.debug("Starting npm start");

uiProc = spawn("npm", ["start"], {

env,

stdio: "inherit",

detached: true,

});

// Note﴾kill­npm­start﴿: The `detached` flag starts the process in a new␣

↪→process group.

// This allows us to kill the process with all its descendents after the tests␣

↪→finish,

// following https://azimi.me/2014/12/31/kill­child_process­node­js.html.

// Ensure the UI server is ready by checking that the port is available.

await waitOn({ resources: [`tcp:127.0.0.1:${UI_PORT}`] });

(continues on next page)

1.9. Testing Your Web App 37

Daml SDK Documentation, 2.7.3

(continued from previous page)

console.debug("npm start is running");

// Launch a single browser for all tests.

console.debug("Starting puppeteer");

browser = await puppeteer.launch();

console.debug("Puppeteer is running");

}, 60_000);

afterAll(async () => {

// Kill the `daml start` process, allowing the sandbox and JSON API server to

// shut down gracefully.

// The latter process should also remove the JSON API port file.

// TODO: Test this on Windows.

if (startProc) {

startProc.kill("SIGTERM");

}

// Kill the `npm start` process including all its descendents.

// The `­` indicates to kill all processes in the process group.

// See Note﴾kill­npm­start﴿.

// TODO: Test this on Windows.

if (uiProc && uiProc.pid) {

process.kill(­uiProc.pid);

}

if (browser) {

browser.close();

}

});

test("create and look up user using ledger library", async () => {

const [user, party] = await getParty();

const token = insecure.makeToken(user);

const ledger = new Ledger({ token });

const users0 = await ledger.query(User.User);

expect(users0).toEqual([]);

const userPayload = { username: party, following: [], public: publicParty };

const userContract1 = await ledger.create(User.User, userPayload);

const userContract2 = await ledger.fetchByKey(User.User, party);

expect(userContract1).toEqual(userContract2);

const users = await ledger.query(User.User);

expect(users[0]).toEqual(userContract1);

}, 20_000);

// The tests following use the headless browser to interact with the app.

// We select the relevant DOM elements using CSS class names that we embedded

// specifically for testing.

// See https://developer.mozilla.org/en­US/docs/Web/CSS/CSS_Selectors.

const newUiPage = async (): Promise<Page> => {

if (!browser) {

throw Error("Puppeteer browser has not been launched");

}

const page = await browser.newPage();

await page.setViewport({ width: 1366, height: 1080 });

page.on("console", message =>

(continues on next page)

38 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

console.log(

`${message.type().substr(0, 3).toUpperCase()} ${message.text()}`,

),

);

await page.goto(`http://127.0.0.1:${UI_PORT}`); // ignore the Response

return page;

};

// Note that Follow is a consuming choice on a contract

// with a contract key so it is crucial to wait between follows.

// Otherwise, you get errors due to contention.

// Those can manifest in puppeteer throwing `Target closed`

// but that is not the underlying error ﴾the JSON API will

// output the contention errors as well so look through the log﴿.

const waitForFollowers = async (page: Page, n: number) => {

await page.waitForFunction(

(n: number) =>

document.querySelectorAll(".test­select­following").length == n,

{},

n,

);

};

// LOGIN_FUNCTION_BEGIN

// Log in using a party name and wait for the main screen to load.

const login = async (page: Page, partyName: string) => {

const usernameInput = await page.waitForSelector(

".test­select­username­field",

);

if (usernameInput) {

await usernameInput.click();

await usernameInput.type(partyName);

await page.click(".test­select­login­button");

await page.waitForSelector(".test­select­main­menu");

}

};

// LOGIN_FUNCTION_END

// Log out and wait to get back to the login screen.

const logout = async (page: Page) => {

await page.click(".test­select­log­out");

await page.waitForSelector(".test­select­login­screen");

};

// Follow a user using the text input in the follow panel.

const follow = async (page: Page, userToFollow: string) => {

const followInput = await page.waitForSelector(".test­select­follow­input");

if (followInput) {

await followInput.click();

await followInput.type(userToFollow);

await followInput.press("Enter");

await page.click(".test­select­follow­button");

// Wait for the request to complete, either successfully or after the error

// dialog has been handled.

// We check this by the absence of the `loading` class.

(continues on next page)

1.9. Testing Your Web App 39

Daml SDK Documentation, 2.7.3

(continued from previous page)

// ﴾Both the `test­...` and `loading` classes appear in `div`s surrounding

// the `input`, due to the translation of Semantic UI's `Input` element.﴿

await page.waitForSelector(".test­select­follow­input > :not(.loading)", {

timeout: 40_000,

});

}

};

// LOGIN_TEST_BEGIN

test("log in as a new user, log out and log back in", async () => {

const [user, party] = await getParty();

// Log in as a new user.

const page = await newUiPage();

await login(page, user);

// Check that the ledger contains the new User contract.

const token = insecure.makeToken(user);

const ledger = new Ledger({ token });

const users = await ledger.query(User.User);

expect(users).toHaveLength(1);

expect(users[0].payload.username).toEqual(party);

// Log out and in again as the same user.

await logout(page);

await login(page, user);

// Check we have the same one user.

const usersFinal = await ledger.query(User.User);

expect(usersFinal).toHaveLength(1);

expect(usersFinal[0].payload.username).toEqual(party);

await page.close();

}, 40_000);

// LOGIN_TEST_END

// This tests following users in a few different ways:

// ­ using the text box in the Follow panel

// ­ using the icon in the Network panel

// ­ while the user that is followed is logged in

// ­ while the user that is followed is logged out

// These are all successful cases.

test("log in as three different users and start following each other", async () =>

↪→ {

const [user1, party1] = await getParty();

const [user2, party2] = await getParty();

const [user3, party3] = await getParty();

// Log in as Party 1.

const page1 = await newUiPage();

await login(page1, user1);

// Log in as Party 2.

const page2 = await newUiPage();

await login(page2, user2);

(continues on next page)

40 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

// Log in as Party 3.

const page3 = await newUiPage();

await login(page3, user3);

// Party 1 should initially follow no one.

const noFollowing1 = await page1.$$(".test­select­following");

expect(noFollowing1).toEqual([]);

// Follow Party 2 using the text input.

// This should work even though Party 2 has not logged in yet.

// Check Party 1 follows exactly Party 2.

await follow(page1, party2);

await waitForFollowers(page1, 1);

const followingList1 = await page1.$$eval(

".test­select­following",

following => following.map(e => e.innerHTML),

);

expect(followingList1).toEqual([toAlias(user2)]);

// Add Party 3 as well and check both are in the list.

await follow(page1, party3);

await waitForFollowers(page1, 2);

const followingList11 = await page1.$$eval(

".test­select­following",

following => following.map(e => e.innerHTML),

);

expect(followingList11).toHaveLength(2);

expect(followingList11).toContain(toAlias(user2));

expect(followingList11).toContain(toAlias(user3));

// Party 2 should initially follow no one.

const noFollowing2 = await page2.$$(".test­select­following");

expect(noFollowing2).toEqual([]);

// However, Party 2 should see Party 1 in the network.

await page2.waitForSelector(".test­select­user­in­network");

const network2 = await page2.$$eval(".test­select­user­in­network", users =>

users.map(e => e.innerHTML),

);

expect(network2).toEqual([toAlias(user1)]);

// Follow Party 1 using the 'add user' icon on the right.

await page2.waitForSelector(".test­select­add­user­icon");

const userIcons = await page2.$$(".test­select­add­user­icon");

expect(userIcons).toHaveLength(1);

await userIcons[0].click();

await waitForFollowers(page2, 1);

// Also follow Party 3 using the text input.

// Note that we can also use the icon to follow Party 3 as they appear in the

// Party 1's Network panel, but that's harder to test at the

// moment because there is no loading indicator to tell when it's done.

await follow(page2, party3);

// Check the following list is updated correctly.

(continues on next page)

1.9. Testing Your Web App 41

Daml SDK Documentation, 2.7.3

(continued from previous page)

await waitForFollowers(page2, 2);

const followingList2 = await page2.$$eval(

".test­select­following",

following => following.map(e => e.innerHTML),

);

expect(followingList2).toHaveLength(2);

expect(followingList2).toContain(toAlias(user1));

expect(followingList2).toContain(toAlias(user3));

// Party 1 should now also see Party 2 in the network ﴾but not Party 3 as they

// didn't yet started following Party 1﴿.

await page1.waitForSelector(".test­select­user­in­network");

const network1 = await page1.$$eval(

".test­select­user­in­network",

following => following.map(e => e.innerHTML),

);

expect(network1).toEqual([toAlias(user2)]);

// Party 3 should follow no one.

const noFollowing3 = await page3.$$(".test­select­following");

expect(noFollowing3).toEqual([]);

// However, Party 3 should see both Party 1 and Party 2 in the network.

await page3.waitForSelector(".test­select­user­in­network");

const network3 = await page3.$$eval(

".test­select­user­in­network",

following => following.map(e => e.innerHTML),

);

expect(network3).toHaveLength(2);

expect(network3).toContain(toAlias(user1));

expect(network3).toContain(toAlias(user2));

await page1.close();

await page2.close();

await page3.close();

}, 60_000);

test("error when following self", async () => {

const [user, party] = await getParty();

const page = await newUiPage();

const dismissError = jest.fn(dialog => dialog.dismiss());

page.on("dialog", dismissError);

await login(page, user);

await follow(page, party);

expect(dismissError).toHaveBeenCalled();

await page.close();

});

test("error when adding a user that you are already following", async () => {

const [user1, party1] = await getParty();

const [user2, party2] = await getParty();

const page = await newUiPage();

(continues on next page)

42 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

const dismissError = jest.fn(dialog => dialog.dismiss());

page.on("dialog", dismissError);

await login(page, user1);

// First attempt should succeed

await follow(page, party2);

// Second attempt should result in an error

await follow(page, party2);

expect(dismissError).toHaveBeenCalled();

await page.close();

}, 10000);

const failedLogin = async (page: Page, partyName: string) => {

let error: string | undefined = undefined;

await page.exposeFunction("getError", () => error);

const dismissError = jest.fn(async dialog => {

error = dialog.message();

await dialog.dismiss();

});

page.on("dialog", dismissError);

const usernameInput = await page.waitForSelector(

".test­select­username­field",

);

if (usernameInput) {

await usernameInput.click();

await usernameInput.type(partyName);

await page.click(".test­select­login­button");

await page.waitForFunction(

// Casting window as any so the TS compiler doesn't flag this as an

// error.

// The window object normally doesn't have a .getError method, but

// we're adding one above with exposeFunction.

async () => (await (window as any).getError()) !== undefined,

);

expect(dismissError).toHaveBeenCalled();

return error;

}

};

test("error on user id with invalid format", async () => {

// user ids should not contains `%`

const invalidUser = "Alice%";

const page = await newUiPage();

const error = await failedLogin(page, invalidUser);

expect(error).toMatch(/User ID \\"Alice%\\" does not match regex/);

await page.close();

}, 40_000);

test("error on non­existent user id", async () => {

const invalidUser = "nonexistent";

const page = await newUiPage();

const error = await failedLogin(page, invalidUser);

expect(error).toMatch(

(continues on next page)

1.9. Testing Your Web App 43

Daml SDK Documentation, 2.7.3

(continued from previous page)

/getting user failed for unknown user \\"nonexistent\\"/,

);

await page.close();

}, 40_000);

test("error on user with no primary party", async () => {

const invalidUser = "noprimary";

await adminLedger.createUser(invalidUser, []);

const page = await newUiPage();

const error = await failedLogin(page, invalidUser);

expect(error).toMatch(/User 'noprimary' has no primary party/);

await page.close();

}, 40_000);

1.10 Overview: Important Considerations When Building Applica-

tions With Daml

1.10.1 Overall Considerations

Because Daml provides a unique and innovative solution to the problem ofmulti-party applications,

some of the commonarchitectural approaches used in existing solutions do not apply whenworking

withDaml. YoumustunderstandDaml’s architecture andprinciples anddesign your applicationand

deployment approaches accordingly.

Canton is fast andhighly scalable, but it performsdifferently than traditional databases, particularly

those that follow a monolithic architecture. Transactions are processed in fractions of a second –

quite fast for a distributed ledger (the blockchains used in cryptocurrencies like Bitcoin or Ethereum

takemanyminutes to complete transactions) but slower thanmost traditional databases due to its

distributed nature. Application design must take this into account.

Each component of Daml can be scaled, including running multiple domains and domain nodes,

multiple participant nodes, andmultiple parties. Integration components, e.g. HTTP JSONAPI Service

and Trigger Service, also scale. Some components require that data is sharded in order to scale.

1.10.2 Developer Considerations

When programming within a distributed system like Daml, the developer must view every action of

the system as an asynchronous operation; contention is natural and expected. This contention can

stifle the performance of applications if not handled properly. The aim is to reduce contention and

handle it gracefully, not to eliminate it at all costs. If contention only occurs rarely, it may be cheaper

in terms of both performance and complexity to let the occasional allocation fail and retry it than to

implement sharding or other complex processes.

Application designmust understand the sources of contention; this allows you to use different tech-

niques to manage it and improve performance by increasing throughput and decreasing latency.

These techniques include:

• Bundling or batching business logic to increase business transaction throughput - the

marginal cost of extra business logic within a transaction is often small, so bundling or batch-

ing business logic cleverly can allow for throughput an order of magnitude higher.

44 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

• Maximizingparallelismwith techniques like sharding, ensuring there is no contentionbetween

shards.

When designing Daml applications:

• Understand where contention occurs

• Split contracts across natural lines to reduce single high contention contracts (e.g., don’t rep-

resent asset holdings for all owners and types as a dictionary on a single contract, but as indi-

vidual contracts)

• Partition contracts along natural lines and touch as few partitions as possible in each transac-

tion (e.g., partition all asset positions into total asset positions, and then only touch one total

asset position per transaction)

• Use contention-free representations where possible

For more information, see the section on Avoiding Contention.

TheDaml language follows functional programmingprinciples. To build safe, secure smart contracts

with Daml, we recommend that the developers embrace functional programming.

TheDamlSDKcontains tools and libraries that simplifymulti-party applicationdevelopment, includ-

ing defining the application’s schema and implementing off-ledger code that leverages the Canton

APIs.

1.10.3 Operational Considerations

Most components of Daml store state, so deployment techniques that follow stateless practices can

be problematic within Daml. Achieving high availability and scalability requires clear understanding

of the purpose of each component within the Daml solution. While all components in Daml scale

horizontally, stateful components (e.g. participant nodes) scale horizontally via sharding.

The diagram below shows the components often used in a Daml deployment. High availability is

achieved via either active-active (HTTP JSON API Service, sequencer) or active-passive (participant

node, mediator) clustering. Node scaling is achieved via horizontal scaling with participant nodes

requiring sharding across participants.

1.10. Overview: Important Considerations When Building Applications With Daml 45

resource-management/contention-avoiding.html

Daml SDK Documentation, 2.7.3

1.10.4 Next Steps

Go to An Introduction to Daml to begin learning how to write smart contracts with Daml.

1.11 Write Smart Contracts with Daml

1.11.1 An Introduction to Daml

Daml is a smart contract language designed to build composable applications on an abstract Daml

Ledger Model.

In this introduction, you will learn about the structure of a Daml Ledger, and how to write Daml ap-

plications that run on any Daml Ledger implementation, by building an asset-holding and -trading

46 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

application. You will gain an overview over most important language features, how they relate to the

Daml Ledger Model and how to use Daml’s developer tools to write, test, compile, package and ship

your application.

This introduction is structured such that each section presents a new self-contained application

with more functionality than that from the previous section. You can find the Daml code for each

sectionhere or download themusing theDaml assistant. For example, to load the sources for section

1 into a folder called intro1, run daml new intro1 ­­template daml­intro­1.

Prerequisites:

• You have installed the Daml SDK

Next: Basic Contracts.

1.11.2 Basic Contracts

To begin with, you’re going to write a very small Daml template, which represents a self-issued,

non-transferable token. Because it’s a minimal template, it isn’t actually useful on its own - you’ll

make it more useful later - but it’s enough that it can show you the most basic concepts:

• Transactions

• Daml Modules and Files

• Templates

• Contracts

• Signatories

Hint: Remember that you can load all the code for this section into a folder intro1 by running daml

new intro1 ­­template daml­intro­1

1.11.2.1 Daml Ledger Basics

Like most structures called ledgers, a Daml Ledger is just a list of commits. When we say commit, we

mean the final result of when a party successfully submits a transaction to the ledger.

Transaction is a conceptwe’ll cover inmore detail through this introduction. Themost basic examples

are the creation and archival of a contract.

A contract is active from the point where there is a committed transaction that creates it, up to the

point where there is a committed transaction that archives it.

Individual contracts are immutable in the sense that an active contract can not be changed. You can

only change the active contract set by creating a new contract, or archiving an old one.

Daml specifies what transactions are legal on a Daml Ledger. The rules the Daml code specifies are

collectively called a Daml model or contract model.

1.11. Write Smart Contracts with Daml 47

https://github.com/digital-asset/daml/tree/main/docs/source/daml/intro/daml

Daml SDK Documentation, 2.7.3

1.11.2.2 Daml Files and Modules

Each .daml file defines a Daml Module at the top:

module Token where

Code comments in Daml are introduced with ­­:

­­ A Daml file defines a module.

module Token where

1.11.2.3 Templates

A template defines a type of contract that can be created, and who has the right to do so. Contracts

are instances of templates.

Listing 1: A simple template

template Token

with

owner : Party

where

signatory owner

You declare a template starting with the template keyword, which takes a name as an argument.

Daml is whitespace-aware and uses layout to structure blocks. Everything that’s below the first line

is indented, and thus part of the template’s body.

Contracts containdata, referred to as the create argumentsor simply arguments. Thewithblockdefines

the data type of the create arguments by listing field names and their types. The single colon :

means “of type”, so you can read this as “template Token with a field owner of type Party”.

Token contracts have a single field owner of type Party. The fields declared in a template’s with

block are in scope in the rest of the template body, which is contained in a where block.

1.11.2.4 Signatories

The signatory keyword specifies the signatories of a contract. These are the parties whose authority

is required to create the contract or archive it – just like a real contract. Every contract must have at

least one signatory.

Furthermore, Daml ledgers guarantee that parties see all transactions where their authority is used.

This means that signatories of a contract are guaranteed to see the creation and archival of that

contract.

48 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.11.2.5 Next Up

In Test Templates Using Daml Script, you’ll learn about how to try out the Token contract template in

Daml’s inbuilt Daml Script testing language.

1.11.3 Test Templates Using Daml Script

In this section we test the Tokenmodel from Basic Contracts using the Daml Script integration in Daml

Studio. This includes:

• Script basics

• Running scripts

• Creating contracts

• Testing for failure

• Archiving contracts

• Viewing the ledger and ledger history

Hint: Remember that you can load all the code for this section into a folder calledintro2by running

daml new intro2 ­­template daml­intro­2

1.11.3.1 Script Basics

A Script is like a recipe for a test, letting you create a scenario where different parties submit a

series of transactions to check that your templates behave as you expect. You can also script some

external information like party identities and ledger time.

Below is a basic script that creates a Token for a party called “Alice”:

token_test_1 = script do

alice <­ allocateParty "Alice"

submit alice do

createCmd Token with owner = alice

You declare a Script as a top-level variable and introduce it using script do. do always starts a

block, so the rest of the script is indented.

Before you can create any Token contracts, you need some parties on the test ledger. The above

script uses the function allocateParty to put a party called “Alice” in a variable alice. There are

two things of note there:

• Use of <­ instead of =.

The reason for this is that allocateParty is an Action that can only be performed once the

Script is run in the context of a ledger. <­means “run the action and bind the result”. It can

only be run in that context because, depending on the ledger state, allocateParty gives you

back a party with the name you specified or appends a suffix to that name if such a party has

already been allocated. You can readmore about Actions and do blocks in Add Constraints to a

Contract.

If that doesn’t quitemake sense yet, for the time being you can think of this arrow as extracting

the right-hand-side value from the ledger and storing it into the variable on the left.

• The argument "Alice" to allocateParty does not have to be enclosed in brackets. Func-

tions in Daml are called using the syntax fn arg1 arg2 arg3.

1.11. Write Smart Contracts with Daml 49

Daml SDK Documentation, 2.7.3

With a variablealice of typeParty in hand, you can submit your first transaction using thesubmit

function. submit takes two arguments: the Party and the Commands.

Just like Script is a recipe for a test, Commands is a recipe for a transaction. createCmd Token

with owner = alice is a Commands, which translates to a list of commands to be submitted to

the ledger. These commands create a transaction which in turns creates a Token with owner Alice.

You’ll learn all about the syntax Token with owner = alice in Data Types.

You could write this as submit alice (createCmd Token with owner = alice), but as with

scripts, you can assemble commands using do blocks. A do block always takes the value of the last

statement within it so the syntax shown in the commands above gives the same result, whilst being

easier to read. Note, however, that the commands submitted as part of a transaction are not allowed

to depend on each other.

1.11.3.2 Run the Scripts

There are a few ways to run Daml Scripts:

• In Daml Studio against a test ledger, providing visualizations of the resulting ledger.

• Using the command line daml test also against a test ledger, useful for continuous integra-

tion.

• Against a real ledger. See the documentation for Daml Script for more information.

• Interactively using Daml REPL.

In Daml Studio, you should see the text “Script results” just above the line token_test_1 = do.

Click on that text to display the outcome of the script.

This opens the script view in a separate column in VS Code. The default view is a tabular represen-

tation of the final state of the ledger:

What this display means:

• The big title reading Token_Test:Token identifies the type of contract that’s listed below.

Token_Test is the module name, Token is the template name.

• The first column shows the ID of the contract. This will be explained later.

• The second column shows the status of the contract, either active or archived.

• The next section of columns show the contract arguments, with one column per field. As ex-

pected, here there is one field and thus one column: the field owner is 'Alice'. The single

quotation marks indicate that Alice is a party.

• The remaining columns, labelled vertically, showwhich parties know about which contracts. In

this simple script, the sole party “Alice” knows about the contract she created.

50 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

To run the same test from the command line, save your module in a file Token_Test.daml and run

daml test ­­files Token_Test.daml. If your file contains more than one script, this runs all

of them.

1.11.3.3 Test for Failure

In Basic Contracts you learned that creating a Token requires the authority of its owner. In other

words, it should not be possible for Alice to create a token for another party, e.g. Bob, or vice versa. A

reasonable attempt to test that would be:

failing_test_1 = do

alice <­ allocateParty "Alice"

bob <­ allocateParty "Bob"

submit alice do

createCmd Token with owner = bob

submit bob do

createCmd Token with owner = alice

However, if you open the script view for that script, you see the following message:

The script failed, as expected, but scripts abort at the first failure. Thismeans that it only tested that

Alice cannot create a token for Bob; the second submit statement was never reached.

1.11. Write Smart Contracts with Daml 51

Daml SDK Documentation, 2.7.3

To test for failing submits and keep the script running thereafter, or fail if the submission succeeds,

you can use the submitMustFail function:

token_test_2 = do

alice <­ allocateParty "Alice"

bob <­ allocateParty "Bob"

submitMustFail alice do

createCmd Token with owner = bob

submitMustFail bob do

createCmd Token with owner = alice

submit alice do

createCmd Token with owner = alice

submit bob do

createCmd Token with owner = bob

submitMustFail never has an impact on the ledger, so the resulting tabular script view only shows

the two tokens resulting from the successful submit statements. Note the new column for Bob as

well as the visibilities. Alice and Bob cannot see each others’ tokens.

1.11.3.4 Archive Contracts

Archiving contracts is the counterpart to creating contracts. Contracts are immutable, so whenever

you want to update one (loosely: change its state) youmust archive the current contract residing on

the ledger and create a new one.

To archive a contract, use archiveCmd instead of createCmd. Whereas createCmd takes an in-

stance of a template, archiveCmd takes a reference to a created contract. Archiving requires au-

thorization from controllers.

Contracts are also archived whenever a consuming choice is exercised.

52 Chapter 1. Canton References

/daml/intro/4_Transformations.html#choices-in-the-ledger-model

Daml SDK Documentation, 2.7.3

Important: Archive choices are present on all templates and cannot be removed.

References to contracts have the type ContractId a, where a is a type parameter representing the

template type of the contract that the id refers to. For example, a reference to a Token would be a

ContractId Token.

To archiveCmd the token Alice has created, you need the contract id. Retrieve the contract id from

the ledger with the <­ notation. How this works is discussed in Add Constraints to a Contract.

This script first checks that Bob cannot archive Alice’s token. Then Alice successfully archives it:

token_test_3 = do

alice <­ allocateParty "Alice"

bob <­ allocateParty "Bob"

alice_token <­ submit alice do

createCmd Token with owner = alice

submitMustFail bob do

archiveCmd alice_token

submit alice do

archiveCmd alice_token

1.11.3.5 View the Ledger and Ledger History

Once you archive the contract the resulting script view is empty; there are no contracts left on the

ledger. If you want to see the history of the ledger, e.g. to see how you got to that state, tick the “Show

archived” box at the top of the ledger view:

You can see that therewas aToken contract, which is nowarchived, indicated both by the “archived”

value in the status column as well as by a strikethrough.

Click on the adjacent “Show transaction view” button to see the entire transaction graph:

In the Daml Studio script runner, committed transactions are numbered sequentially. In the image

above, the lines starting with TX indicate that there are three committed transactions, with ids #0,

1.11. Write Smart Contracts with Daml 53

Daml SDK Documentation, 2.7.3

54 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

#1, and #2. These correspond to the three submit and submitMustFail statements in the script.

Transaction #0 has one sub-transaction #0:0, which the arrow indicates is a create of a Token.

Identifiers #X:Ymean commit X, sub­transaction Y. All transactions have this format in the

script runner. However, this format is a testing feature. In general, you should consider Transaction

and Contract IDs to be opaque.

The lines above and below create Token_Test:Token give additional information:

• consumed by: #2:0 tells you that the contract is archived in sub-transaction 0 of commit

2.

• referenced by #2:0 tells you that the contract was used in other transactions, and lists

their IDs.

• disclosed to (since): 'Alice' (#0) tells you who knows about the contract. The fact

that 'Alice' appears in the list is equivalent to an x in the tabular view. The (#0) gives you

the additional information that Alice learned about the contract in commit #0.

• Everything following with shows the create arguments.

1.11.3.6 Exercises

To get a better understanding of script, try the following exercises:

1. Write a template for a second type of token.

2. Write a script with two parties and two types of tokens, creating one token of each type for each

party and archiving one token for each party, leaving one token of each type in the final ledger

view.

3. In Archive Contracts you tested that Bob cannot archive Alice’s token. Can you guess why the

submit fails? How can you find out why the submit fails?

Hint: Remember that in Test for Failurewe saw a proper errormessage for a failing submit.

1.11.3.7 Next Up

In Data Types you will learn about Daml’s type system, and how you can think of templates as tables

and contracts as database rows.

1.11.4 Data Types

In Basic Contracts, you learnt about contract templates, which specify the types of contracts that can

be created on the ledger, and what data those contracts hold in their arguments.

In Test Templates Using Daml Script, you learnt about the script view in Daml Studio, which displays the

current ledger state. It shows one table per template, with one row per contract of that type and one

column per field in the arguments.

This actually provides a useful way of thinking about templates: like tables in databases. Templates

specify a data schema for the ledger:

• each template corresponds to a table

• each field in the with block of a template corresponds to a column in that table

• each contract of that type corresponds to a table row

1.11. Write Smart Contracts with Daml 55

Daml SDK Documentation, 2.7.3

In this section, you’ll learn how to create rich data schemas for your ledger. Specifically you’ll learn

about:

• Daml’s built-in and native data types

• Record types

• Derivation of standard properties

• Variants

• Manipulating immutable data

• Contract keys

After this section, you should be able to use a Daml ledger as a simple database where individual

parties can write, read and delete complex data.

Hint: Remember that you can load all the code for this section into a folder calledintro3by running

daml new intro3 ­­template daml­intro­3

1.11.4.1 Native Types

You have already encountered a few native Daml types: Party in Basic Contracts, and Text and Con­

tractId in Test Templates Using Daml Script. Here are those native types and more:

• Party Stores the identity of an entity that is able to act on the ledger, in the sense that they

can sign contracts and submit transactions. In general, Party is opaque.

• Text Stores a unicode character string like "Alice".

• ContractId a Stores a reference to a contract of type a.

• Int Stores signed 64-bit integers. For example, ­123.

• Decimal Stores fixed-point number with 28 digits before and 10 digits after the decimal point.

For example, 0.0000000001 or ­9999999999999999999999999999.9999999999.

• Bool Stores True or False.

• Date Stores a date.

• Time Stores absolute UTC time.

• RelTime Stores a difference in time.

The below script instantiates each one of these types, manipulates it where appropriate, and tests

the result:

import Daml.Script

import DA.Time

import DA.Date

native_test = script do

alice <­ allocateParty "Alice"

bob <­ allocateParty "Bob"

let

my_int = ­123

my_dec = 0.001 : Decimal

my_text = "Alice"

my_bool = False

my_date = date 2020 Jan 01

my_time = time my_date 00 00 00

my_rel_time = hours 24

(continues on next page)

56 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

assert (alice /= bob)

assert (­my_int == 123)

assert (1000.0 * my_dec == 1.0)

assert (my_text == "Alice")

assert (not my_bool)

assert (addDays my_date 1 == date 2020 Jan 02)

assert (addRelTime my_time my_rel_time == time (addDays my_date 1) 00 00 00)

Despite its simplicity, there are quite a few things to note in this script:

• The import statements at the top import two packages from the Daml Standard Library, which

contain all the date and time related functions we use here as well as the functions used in

Daml Scripts. More on packages, imports and the standard library later.

• Most of the variables are declared inside a let block.

That’s because the script do block expects script actions like submit or allocateParty.

An integer like 123 is not an action, it’s a pure expression, something we can evaluate without

any ledger. You can think of the let as turning variable declaration into an action.

• Most variables do not have annotations to say what type they are.

That’s because Daml is very good at inferring types. The compiler knows that 123 is an Int, so

if you declare my_int = 123, it can infer that my_int is also an Int. This means you don’t

have to write the type annotation my_int : Int = 123.

However, if the type is ambiguous so that the compiler can’t infer it, you do have to add a type

annotation. This is the case for 0.001 which could be any Numeric n. Here we specify 0.

001 : Decimal which is a synonym for Numeric 10. You can always choose to add type

annotations to aid readability.

• The assert function is an action that takes a boolean value and succeeds with True and fails

with False.

Try putting assert False somewhere in a script and see what happens to the script result.

With templates and these native types, it’s already possible to write a schema akin to a table in a

relational database. Below, Token is extended into a simple CashBalance, administered by a party

in the role of an accountant:

template CashBalance

with

accountant : Party

currency : Text

amount : Decimal

owner : Party

account_number : Text

bank : Party

bank_address : Text

bank_telephone : Text

where

signatory accountant

cash_balance_test = script do

accountant <­ allocateParty "Bob"

alice <­ allocateParty "Alice"

bob <­ allocateParty "Bank of Bob"

submit accountant do

createCmd CashBalance with

accountant

(continues on next page)

1.11. Write Smart Contracts with Daml 57

Daml SDK Documentation, 2.7.3

(continued from previous page)

currency = "USD"

amount = 100.0

owner = alice

account_number = "ABC123"

bank = bob

bank_address = "High Street"

bank_telephone = "012 3456 789"

1.11.4.2 Assemble Types

There’s quite a lot of information on the CashBalance above and it would be nice to be able to give

that data more structure. Fortunately, Daml’s type system has a number of ways to assemble these

native types into much more expressive structures.

Tuples

A common task is to group values in a generic way. Take, for example, a key-value pair with a Text

key and an Int value. In Daml, you could use a two-tuple of type (Text, Int) to do so. If you

wanted to express a coordinate in three dimensions, you could group three Decimal values using a

three-tuple (Decimal, Decimal, Decimal):

import DA.Tuple

import Daml.Script

tuple_test = script do

let

my_key_value = ("Key", 1)

my_coordinate = (1.0 : Decimal, 2.0 : Decimal, 3.0 : Decimal)

assert (fst my_key_value == "Key")

assert (snd my_key_value == 1)

assert (my_key_value._1 == "Key")

assert (my_key_value._2 == 1)

assert (my_coordinate == (fst3 my_coordinate, snd3 my_coordinate, thd3 my_

↪→coordinate))

assert (my_coordinate == (my_coordinate._1, my_coordinate._2, my_coordinate._3))

You can access the data in the tuples using:

• functions fst, snd, fst3, snd3, thd3

• a dot-syntax with field names _1, _2, _3, etc.

Daml supports tuples with up to 20 elements, but accessor functions like fst are only included for

2- and 3-tuples.

58 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Lists

Lists in Daml take a single type parameter defining the type of thing in the list. So you can have a

list of integers [Int] or a list of strings [Text], but not a list mixing integers and strings.

That’s because Daml is statically and strongly typed. When you get an element out of a list, the

compiler needs to know what type that element has.

The below script instantiates a few lists of integers and demonstrates the most important list func-

tions.

import DA.List

import Daml.Script

list_test = script do

let

empty : [Int] = []

one = [1]

two = [2]

many = [3, 4, 5]

­­ `head` gets the first element of a list

assert (head one == 1)

assert (head many == 3)

­­ `tail` gets the remainder after head

assert (tail one == empty)

assert (tail many == [4, 5])

­­ `++` concatenates lists

assert (one ++ two ++ many == [1, 2, 3, 4, 5])

assert (empty ++ many ++ empty == many)

­­ `::` adds an element to the beginning of a list.

assert (1 :: 2 :: 3 :: 4 :: 5 :: empty == 1 :: 2 :: many)

Note the type annotation on empty : [Int] = []. It’s necessary because [] is ambiguous. It

could be a list of integers or of strings, but the compiler needs to know which it is.

Records

You can think of records as named tuples with named fields. Declare them using the data keyword:

data T = C with, where T is the type name and C is the data constructor. In practice, it’s a good

idea to always use the same name for type and data constructor:

data MyRecord = MyRecord with

my_txt : Text

my_int : Int

my_dec : Decimal

my_list : [Text]

­­ Fields of same type can be declared in one line

data Coordinate = Coordinate with

x, y, z : Decimal

(continues on next page)

1.11. Write Smart Contracts with Daml 59

Daml SDK Documentation, 2.7.3

(continued from previous page)

­­ Custom data types can also have variables

data KeyValue k v = KeyValue with

my_key : k

my_val : v

data Nested = Nested with

my_coord : Coordinate

my_record : MyRecord

my_kv : KeyValue Text Int

record_test = script do

let

my_record = MyRecord with

my_txt = "Text"

my_int = 2

my_dec = 2.5

my_list = ["One", "Two", "Three"]

my_coord = Coordinate with

x = 1.0

y = 2.0

z = 3.0

­­ `my_text_int` has type `KeyValue Text Int`

my_text_int = KeyValue with

my_key = "Key"

my_val = 1

­­ `my_int_decimal` has type `KeyValue Int Decimal`

my_int_decimal = KeyValue with

my_key = 2

my_val = 2.0 : Decimal

­­ If variables are in scope that match field names, we can pick them up

­­ implicitly, writing just `my_coord` instead of `my_coord = my_coord`.

my_nested = Nested with

my_coord

my_record

my_kv = my_text_int

­­ Fields can be accessed with dot syntax

assert (my_coord.x == 1.0)

assert (my_text_int.my_key == "Key")

assert (my_nested.my_record.my_dec == 2.5)

You’ll notice that the syntax to declare records is very similar to the syntax used to declare templates.

That’s no accident because a template is really just a special record. When you write template

Token with, one of the things that happens in the background is that this becomes a data Token

= Token with.

In the assert statements above, we always compared values of in-built types. If you wrote as­

sert (my_record == my_record) in the script, youmay be surprised to get an errormessage No

instance for (Eq MyRecord) arising from a use of ‘==’. Equality in Daml is always

value equality and we haven’t written a function to check value equality for MyRecord values. But

don’t worry, you don’t have to implement this rather obvious function yourself. The compiler is smart

enough to do it for you, if you use deriving (Eq):

60 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

data EqRecord = EqRecord with

my_txt : Text

my_int : Int

my_dec : Decimal

my_list : [Text]

deriving (Eq)

data MyContainer a = MyContainer with

contents : a

deriving (Eq)

eq_test = script do

let

eq_record = EqRecord with

my_txt = "Text"

my_int = 2

my_dec = 2.5

my_list = ["One", "Two", "Three"]

my_container = MyContainer with

contents = eq_record

other_container = MyContainer with

contents = eq_record

assert(my_container.contents == eq_record)

assert(my_container == other_container)

Eq is what is called a typeclass. You can think of a typeclass as being like an interface in other lan-

guages: it is the mechanism by which you can define a set of functions (for example, == and /=

in the case of Eq) to work on multiple types, with a specific implementation for each type they can

apply to.

There are some other typeclasses that the compiler can derive automatically. Most prominently,

Show to get access to the functionshow (equivalent totoString inmany languages) andOrd, which

gives access to comparison operators <, >, <=, >=.

It’s a good idea to always derive Eq and Show using deriving (Eq, Show). The record types cre-

ated using template T with do this automatically, and the native types have appropriate type-

class instances. Eg Int derives Eq, Show and Ord, and ContractId a derives Eq and Show.

Records can give the data on CashBalance a bit more structure:

data Bank = Bank with

party : Party

address: Text

telephone : Text

deriving (Eq, Show)

data Account = Account with

owner : Party

number : Text

bank : Bank

deriving (Eq, Show)

data Cash = Cash with

currency : Text

(continues on next page)

1.11. Write Smart Contracts with Daml 61

Daml SDK Documentation, 2.7.3

(continued from previous page)

amount : Decimal

deriving (Eq, Show)

template CashBalance

with

accountant : Party

cash : Cash

account : Account

where

signatory accountant

cash_balance_test = script do

accountant <­ allocateParty "Bob"

owner <­ allocateParty "Alice"

bank_party <­ allocateParty "Bank"

let

bank = Bank with

party = bank_party

address = "High Street"

telephone = "012 3456 789"

account = Account with

owner

bank

number = "ABC123"

cash = Cash with

currency = "USD"

amount = 100.0

submit accountant do

createCmd CashBalance with

accountant

cash

account

pure ()

If you look at the resulting script view, you’ll see that this still gives rise to one table. The records are

expanded out into columns using dot notation.

Variants and Pattern Matching

Suppose now that you also wanted to keep track of cash in hand. Cash in hand doesn’t have a bank,

but you can’t just leave bank empty. Daml doesn’t have an equivalent to null. Variants can express

that cash can either be in hand or at a bank:

data Bank = Bank with

party : Party

address: Text

telephone : Text

deriving (Eq, Show)

data Account = Account with

number : Text

bank : Bank

deriving (Eq, Show)

(continues on next page)

62 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

data Cash = Cash with

currency : Text

amount : Decimal

deriving (Eq, Show)

data Location

= InHand

| InAccount Account

deriving (Eq, Show)

template CashBalance

with

accountant : Party

owner : Party

cash : Cash

location : Location

where

signatory accountant

cash_balance_test = do

accountant <­ allocateParty "Bob"

owner <­ allocateParty "Alice"

bank_party <­ allocateParty "Bank"

let

bank = Bank with

party = bank_party

address = "High Street"

telephone = "012 3456 789"

account = Account with

bank

number = "ABC123"

cash = Cash with

currency = "USD"

amount = 100.0

submit accountant do

createCmd CashBalance with

accountant

owner

cash

location = InHand

submit accountant do

createCmd CashBalance with

accountant

owner

cash

location = InAccount account

The way to read the declaration of Location is “A Location either has value InHand OR has a value

InAccount a where a is of type Account”. This is quite an explicit way to say that there may or may

not be an Account associated with a CashBalance and gives both cases suggestive names.

Another option is to use the built-in Optional type. The None value of type Optional a is the

closest Daml has to a null value:

1.11. Write Smart Contracts with Daml 63

Daml SDK Documentation, 2.7.3

data Optional a

= None

| Some a

deriving (Eq, Show)

Variant types where none of the data constructors take a parameter are called enums:

data DayOfWeek

= Monday

| Tuesday

| Wednesday

| Thursday

| Friday

| Saturday

| Sunday

deriving (Eq, Show)

To access the data in variants, you need to distinguish the different possible cases. For example, you

can no longer access the account number of a Location directly, because if it is InHand, theremay

be no account number.

To do this, you can use pattern matching and either throw errors or return compatible types for all

cases:

{­

­­ Commented out as `Either` is defined in the standard library.

data Either a b

= Left a

| Right b

­}

variant_access_test = script do

let

l : Either Int Text = Left 1

r : Either Int Text = Right "r"

­­ If we know that `l` is a `Left`, we can error on the `Right` case.

l_value = case l of

Left i ­> i

Right i ­> error "Expecting Left"

­­ Comment out at your own peril

{­

r_value = case r of

Left i ­> i

Right i ­> error "Expecting Left"

­}

­­ If we are unsure, we can return an `Optional` in both cases

ol_value = case l of

Left i ­> Some i

Right i ­> None

or_value = case r of

Left i ­> Some i

Right i ­> None

­­ If we don't care about values or even constructors, we can use wildcards

(continues on next page)

64 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

l_value2 = case l of

Left i ­> i

Right _ ­> error "Expecting Left"

l_value3 = case l of

Left i ­> i

_ ­> error "Expecting Left"

day = Sunday

weekend = case day of

Saturday ­> True

Sunday ­> True

_ ­> False

assert (l_value == 1)

assert (l_value2 == 1)

assert (l_value3 == 1)

assert (ol_value == Some 1)

assert (or_value == None)

assert weekend

1.11.4.3 Manipulate Data

You’ve got all the ingredients to build rich types expressing the data you want to be able to write to

the ledger, and you have seen how to create new values and read fields from values. But how do you

manipulate values once created?

All data in Daml is immutable, meaning once a value is created, it will never change. Rather than

changing values, you create new values based on old ones with some changes applied:

manipulation_demo = script do

let

eq_record = EqRecord with

my_txt = "Text"

my_int = 2

my_dec = 2.5

my_list = ["One", "Two", "Three"]

­­ A verbose way to change `eq_record`

changed_record = EqRecord with

my_txt = eq_record.my_txt

my_int = 3

my_dec = eq_record.my_dec

my_list = eq_record.my_list

­­ A better way

better_changed_record = eq_record with

my_int = 3

record_with_changed_list = eq_record with

my_list = "Zero" :: eq_record.my_list

assert (eq_record.my_int == 2)

assert (changed_record == better_changed_record)

(continues on next page)

1.11. Write Smart Contracts with Daml 65

Daml SDK Documentation, 2.7.3

(continued from previous page)

­­ The list on `eq_record` can't be changed.

assert (eq_record.my_list == ["One", "Two", "Three"])

­­ The list on `record_with_changed_list` is a new one.

assert (record_with_changed_list.my_list == ["Zero", "One", "Two", "Three"])

changed_record and better_changed_record are each a copy of eq_record with the field

my_int changed. better_changed_record shows the recommended way to change fields on a

record. The syntax is almost the same as for a new record, but the record name is replaced with the

old value: eq_record with instead of EqRecord with. The with block no longer needs to give

values to all fields of EqRecord. Any missing fields are taken from eq_record.

Throughout the script, eq_record never changes. The expression "Zero" :: eq_record.

my_list doesn’t change the list in-place, but creates a new list, which is eq_record.my_list

with an extra element in the beginning.

1.11.4.4 Contract Keys

Daml’s type system lets you store richly structured data on Daml templates, but just like most

database schemas have more than one table, Daml contract models often have multiple templates

that reference each other. For example, youmaynotwant to store your bankandaccount information

on each individual cash balance contract, but instead store those on separate contracts.

You have already met the type ContractId a, which references a contract of type a. The below

shows a contractmodel where Account is split out into a separate template and referenced by Con­

tractId, but it also highlights a big problem with that kind of reference: just like data, contracts

are immutable. They can only be created and archived, so if you want to change the data on a con-

tract, you end up archiving the original contract and creating a new one with the changed data. That

makes contract IDs very unstable, and can cause stale references.

data Bank = Bank with

party : Party

address: Text

telephone : Text

deriving (Eq, Show)

template Account

with

accountant : Party

owner : Party

number : Text

bank : Bank

where

signatory accountant

data Cash = Cash with

currency : Text

amount : Decimal

deriving (Eq, Show)

template CashBalance

with

accountant : Party

cash : Cash

(continues on next page)

66 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

account : ContractId Account

where

signatory accountant

id_ref_test = do

accountant <­ allocateParty "Bob"

owner <­ allocateParty "Alice"

bank_party <­ allocateParty "Bank"

let

bank = Bank with

party = bank_party

address = "High Street"

telephone = "012 3456 789"

cash = Cash with

currency = "USD"

amount = 100.0

accountCid <­ submit accountant do

createCmd Account with

accountant

owner

bank

number = "ABC123"

balanceCid <­ submit accountant do

createCmd CashBalance with

accountant

cash

account = accountCid

­­ Now the accountant updates the telephone number for the bank on the account

Some account <­ queryContractId accountant accountCid

new_accountCid <­ submit accountant do

archiveCmd accountCid

cid <­ createCmd account with

bank = account.bank with

telephone = "098 7654 321"

pure cid

­­ The `account` field on the balance now refers to the archived

­­ contract, so this will fail.

Some balance <­ queryContractId accountant balanceCid

optAccount <­ queryContractId accountant balance.account

optAccount === None

The script above uses the queryContractId function, which retrieves the arguments of an active

contract using its contract ID. If there is noactive contractwith thegiven identifier visible to the given

party, queryContractId returns None. Here, we use a pattern match on Some which will abort the

script if queryContractId returns None.

Note that, for the first time, the party submitting a transaction is doing more than one thing as part

of that transaction. To create new_account, the accountant archives the old account and creates a

new account, all in one transaction. More on building transactions in Composing Choices.

You can define stable keys for contracts using the key and maintainer keywords. key defines the

primary key of a template, with the ability to look up contracts by key, and a uniqueness constraint

1.11. Write Smart Contracts with Daml 67

Daml SDK Documentation, 2.7.3

in the sense that only one contract of a given template and with a given key value can be active at a

time:

data Bank = Bank with

party : Party

address: Text

telephone : Text

deriving (Eq, Show)

data AccountKey = AccountKey with

accountant : Party

number : Text

bank_party : Party

deriving (Eq, Show)

template Account

with

accountant : Party

owner : Party

number : Text

bank : Bank

where

signatory accountant

key AccountKey with

accountant

number

bank_party = bank.party

: AccountKey

maintainer key.accountant

data Cash = Cash with

currency : Text

amount : Decimal

deriving (Eq, Show)

template CashBalance

with

accountant : Party

cash : Cash

account : AccountKey

where

signatory accountant

id_ref_test = do

accountant <­ allocateParty "Bob"

owner <­ allocateParty "Alice"

bank_party <­ allocateParty "Bank"

let

bank = Bank with

party = bank_party

address = "High Street"

telephone = "012 3456 789"

cash = Cash with

currency = "USD"

amount = 100.0

(continues on next page)

68 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

accountCid <­ submit accountant do

createCmd Account with

accountant

owner

bank

number = "ABC123"

Some account <­ queryContractId accountant accountCid

balanceCid <­ submit accountant do

createCmd CashBalance with

accountant

cash

account = key account

­­ Now the accountant updates the telephone number for the bank on the account

Some account <­ queryContractId accountant accountCid

new_accountCid <­ submit accountant do

archiveCmd accountCid

cid <­ createCmd account with

bank = account.bank with

telephone = "098 7654 321"

pure cid

­­ Thanks to contract keys, the current account contract is fetched

Some balance <­ queryContractId accountant balanceCid

Some (new_cid, new_account : Account) <­ queryContractKey accountant balance.

↪→account

new_cid === new_accountCid

new_account =/= account

Since Daml is designed to run on distributed systems, you have to assume that there is no global

entity that can guarantee uniqueness, which is why each key expression must come with a main­

tainer expression. maintainer takes one or several parties, all of which have to be signatories of

the contract and be part of the key. That way the index can be partitioned amongst sets of main-

tainers, and each set of maintainers can independently ensure the uniqueness constraint on their

piece of the index. The constraint that maintainers are part of the key is ensured by only having the

variable key in each maintainer expression.

Instead of calling queryContractId to get the contract arguments associated with a given con-

tract identifier, use queryContractKey. queryContractKey takes a value of type AccountKey

and returns an optional tuple. In this case, that optional tuple is of type Optional (ContractId

Account, Account). After archiving the old account (to change the phone number), you can still

fetch the account using the existing, unmodified balance. Where the ContractId Account is

different for the new account, the AccountKey is the same.

When calling queryContractKey a single key type could be used as the key for multiple templates.

Consequently, you need to tell the compiler what type of contract the key is referencing. You can do

that with a type annotation on the returned value.

1.11. Write Smart Contracts with Daml 69

Daml SDK Documentation, 2.7.3

1.11.4.5 Next Up

You can now define data schemas for the ledger, read, write and delete data from the ledger, and use

keys to reference and look up data in a stable fashion.

In Transform Data Using Choices you’ll learn how to define data transformations and give other parties

the right to manipulate data in restricted ways.

1.11.5 Transform Data Using Choices

In the example in Contract Keys the accountant party wanted to change some data on a contract. They

did so by archiving the contract and re-creating it with the updated data. That works because the

accountant is the sole signatory on the Account contract defined there.

But what if the accountant wanted to allow the bank to change their own telephone number? Or what

if the owner of a CashBalance should be able to transfer ownership to someone else?

In this section you will learn about how to define simple data transformations using choices and how

to delegate the right to exercise these choices to other parties.

Hint: Remember that you can load all the code for this section into a folder calledintro4by running

daml new intro4 ­­template daml­intro­4

1.11.5.1 Choices as Methods

If you think of templates as classes and contracts as objects, where are the methods?

Take as an example a Contact contract on which the contact owner wants to be able to change the

telephone number, just like on the Account in Contract Keys. Rather than requiring them tomanually

look up the contract, archive the old one and create a new one, you can provide them a convenience

method on Contact:

template Contact

with

owner : Party

party : Party

address : Text

telephone : Text

where

signatory owner

observer party

choice UpdateTelephone

: ContractId Contact

with

newTelephone : Text

controller owner

do

create this with

telephone = newTelephone

70 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

The abovedefines a choice calledUpdateTelephone. Choices are part of a contract template. They’re

permissioned functions that result in an Update. Using choices, authority can be passed around,

allowing the construction of complex transactions.

Let’s unpack the code snippet above:

• The first line, choice UpdateTelephone indicates a choice definition, UpdateTelephone is

the name of the choice. It starts a new block in which that choice is defined.

• : ContractId Contact is the return type of the choice.

This particular choice archives the current Contact, and creates a new one. What it returns is

a reference to the new contract, in the form of a ContractId Contact

• The following with block is that of a record. Just like with templates, in the background, a new

record type is declared: data UpdateTelephone = UpdateTelephone with

• The line controller owner says that this choice is controlled by owner, meaning owner is

the only party that is allowed to exercise them.

• The do starts a block defining the action the choice should perform when exercised. In this

case a new Contact is created.

• The new Contact is created using this with. this is a special value available within the

where block of templates and takes the value of the current contract’s arguments.

There is nothing here explicitly saying that the current Contact should be archived. That’s because

choices are consuming by default. Thatmeans when the above choice is exercised on a contract, that

contract is archived.

As mentioned in Data Types, within a choice we use create instead of createCmd. Whereas cre­

ateCmd builds up a list of commands to be sent to the ledger, create builds up a more flexible

Update that is executed directly by the ledger. You might have noticed that create returns an Up­

date (ContractId Contact), not a ContractId Contact. As a do block always returns the

value of the last statement within it, the whole do block returns an Update, but the return type on

the choice is just a ContractId Contact. This is a convenience. Choices always return an Update

so for readability it’s omitted on the type declaration of a choice.

Now to exercise the new choice in a script:

choice_test = do

owner <­ allocateParty "Alice"

party <­ allocateParty "Bob"

contactCid <­ submit owner do

createCmd Contact with

owner

party

address = "1 Bobstreet"

telephone = "012 345 6789"

­­ Bob can't change his own telephone number as Alice controls

­­ that choice.

submitMustFail party do

exerciseCmd contactCid UpdateTelephone with

newTelephone = "098 7654 321"

newContactCid <­ submit owner do

exerciseCmd contactCid UpdateTelephone with

newTelephone = "098 7654 321"

Some newContact <­ queryContractId owner newContactCid

(continues on next page)

1.11. Write Smart Contracts with Daml 71

Daml SDK Documentation, 2.7.3

(continued from previous page)

assert (newContact.telephone == "098 7654 321")

You exercise choices using the exercise function, which takes a ContractId a, and a value of

type c, where c is a choice on template a. Since c is just a record, you can also just fill in the choice

parameters using the with syntax you are already familiar with.

exerciseCmd returns a Commands rwhere r is the return type specified on the choice, allowing the

new ContractId Contact to be stored in the variable newContactCid. Just like for createCmd

and create, there is also exerciseCmd and exercise. The versions with the cmd suffix is always

used on the client side to build up the list of commands on the ledger. The versions without the

suffix are used within choices and are executed directly on the server.

There is also createAndExerciseCmd and createAndExercise which we have seen in the pre-

vious section. This allows you to create a new contract with the given arguments and immediately

exercise a choice on it. For a consuming choice, this archives the contract so the contract is created

and archived within the same transaction.

1.11.5.2 Choices as Delegation

Up to this point all the contracts only involved one party. party may have been stored as Party

field in the above, which suggests they are actors on the ledger, but they couldn’t see the contracts,

nor change them in any way. It would be reasonable for the party for which a Contact is stored to

be able to update their own address and telephone number. In other words, the owner of a Contact

should be able to delegate the right to perform a certain kind of data transformation to party.

The below demonstrates this using an UpdateAddress choice and corresponding extension of the

script:

choice UpdateAddress

: ContractId Contact

with

newAddress : Text

controller party

do

create this with

address = newAddress

newContactCid <­ submit party do

exerciseCmd newContactCid UpdateAddress with

newAddress = "1­10 Bobstreet"

Some newContact <­ queryContractId owner newContactCid

assert (newContact.address == "1­10 Bobstreet")

If you open the script view in the IDE, you will notice that Bob sees the Contact. This is because

party is specified as an observer in the template, and in this case Bob is the party. More on

observers later, but in short, they get to see any changes to the contract.

72 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.11.5.3 Choices In the Ledger Model

In Basic Contracts you learned about the high-level structure of a Daml ledger. With choices and the

exercise function, you have the next important ingredient to understand the structure of the ledger

and transactions.

A transaction is a list of actions, and there are just four kinds of action: create, exercise, fetch

and key assertion.

• A create action creates a new contract with the given arguments and sets its status to active.

• A fetch action checks the existence and activeness of a contract.

• An exercise action exercises a choice on a contract resulting in a transaction (list of

sub-actions) called the consequences. Exercises come in two kinds called consuming and non­

consuming. consuming is the default kind and changes the contract’s status from active to

archived.

• A key assertion records the assertion that the given contract key (see Contract Keys) is not

assigned to any active contract on the ledger.

Each action can be visualized as a tree, where the action is the root node, and its children are its

consequences. Every consequence may have further consequences. As fetch, create and key

assertion actions have no consequences, they are always leaf nodes. You can see the actions and

their consequences in the transaction view of the above script:

Transactions:

TX 0 1970­01­01T00:00:00Z (Contact:46:17)

#0:0

│ consumed by: #2:0

│ referenced by #2:0

│ disclosed to (since): 'Alice' (0), 'Bob' (0)

└─> 'Alice' creates Contact:Contact

with

owner = 'Alice'; party = 'Bob'; address = "1 Bobstreet";␣

↪→telephone = "012 345 6789"

TX 1 1970­01­01T00:00:00Z

mustFailAt actAs: {'Bob'} readAs: {} (Contact:55:3)

TX 2 1970­01­01T00:00:00Z (Contact:59:20)

#2:0

│ disclosed to (since): 'Alice' (2), 'Bob' (2)

└─> 'Alice' exercises UpdateTelephone on #0:0 (Contact:Contact)

with

newTelephone = "098 7654 321"

children:

#2:1

│ consumed by: #3:0

│ referenced by #3:0

│ disclosed to (since): 'Alice' (2), 'Bob' (2)

└─> 'Alice' creates Contact:Contact

with

owner = 'Alice'; party = 'Bob'; address = "1 Bobstreet";␣

↪→telephone = "098 7654 321"

TX 3 1970­01­01T00:00:00Z (Contact:69:20)

#3:0

│ disclosed to (since): 'Alice' (3), 'Bob' (3)

(continues on next page)

1.11. Write Smart Contracts with Daml 73

Daml SDK Documentation, 2.7.3

(continued from previous page)

└─> 'Bob' exercises UpdateAddress on #2:1 (Contact:Contact)

with

newAddress = "1­10 Bobstreet"

children:

#3:1

│ disclosed to (since): 'Alice' (3), 'Bob' (3)

└─> 'Alice' creates Contact:Contact

with

owner = 'Alice';

party = 'Bob';

address = "1­10 Bobstreet";

telephone = "098 7654 321"

Active contracts: #3:1

Return value: {}

There are four commits corresponding to the foursubmit statements in the script. Within each com-

mit, we see that it’s actually actions that have IDs of the form #commit_number:action_number.

Contract IDs are just the ID of their create action.

So commits #2 and #3 contain exercise actions with IDs #2:0 and #3:0. The create actions

of the updated Contact contracts, #2:1 and #3:1, are indented and found below a line reading

children:, making the tree structure apparent.

The Archive Choice

Youmayhave noticed that there is no archive action. That’s becausearchive cid is just shorthand

forexercise cid Archive, whereArchive is a choice implicitly added to every template, with the

signatories as controllers.

1.11.5.4 A Simple Cash Model

With the power of choices, you can build your first interesting model: issuance of cash IOUs (I owe

you). The model presented here is simpler than the one in Data Types as it’s not concerned with the

location of the physical cash, but merely with liabilities:

­­ Copyright ﴾c﴿ 2023 Digital Asset ﴾Switzerland﴿ GmbH and/or its affiliates. All␣

↪→rights reserved.

­­ SPDX­License­Identifier: Apache­2.0

module SimpleIou where

import Daml.Script

data Cash = Cash with

currency : Text

amount : Decimal

deriving (Eq, Show)

template SimpleIou

(continues on next page)

74 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

with

issuer : Party

owner : Party

cash : Cash

where

signatory issuer

observer owner

choice Transfer

: ContractId SimpleIou

with

newOwner : Party

controller owner

do

create this with owner = newOwner

test_iou = script do

alice <­ allocateParty "Alice"

bob <­ allocateParty "Bob"

charlie <­ allocateParty "Charlie"

dora <­ allocateParty "Dora"

­­ Dora issues an Iou for $100 to Alice.

iou <­ submit dora do

createCmd SimpleIou with

issuer = dora

owner = alice

cash = Cash with

amount = 100.0

currency = "USD"

­­ Alice transfers it to Bob.

iou2 <­ submit alice do

exerciseCmd iou Transfer with

newOwner = bob

­­ Bob transfers it to Charlie.

submit bob do

exerciseCmd iou2 Transfer with

newOwner = charlie

The abovemodel is fine as long as everyone trusts Dora. Dora could revoke the SimpleIou at any point

by archiving it. However, the provenance of all transactions would be on the ledger so the owner

could prove that Dora was dishonest and cancelled her debt.

1.11. Write Smart Contracts with Daml 75

Daml SDK Documentation, 2.7.3

1.11.5.5 Next Up

You can now store and transform data on the ledger, even giving other parties specific write access

through choices.

In Add Constraints to a Contract, you will learn how to restrict data and transformations further. In that

context, you will also learn about time on Daml ledgers, do blocks and <­ notation within those.

1.11.6 Add Constraints to a Contract

You will often want to constrain the data stored or the allowed data transformations in your contract

models. In this section, you will learn about the two main mechanisms provided in Daml:

• The ensure keyword.

• The assert, abort and error keywords.

To make sense of the latter, you’ll also learn more about the Update and Script types and do

blocks, which will be good preparation for Composing Choices, where you will use do blocks to com-

pose choices into complex transactions.

Lastly, you will learn about time on the ledger and in Daml Script.

Hint: Remember that you can load all the code for this section into a folder calledintro5by running

daml new intro5 ­­template daml­intro­5

1.11.6.1 Template Preconditions

The first kind of restriction you may want to put on the contract model are called template

pre-conditions. These are simply restrictions on the data that can be stored on a contract from that

template.

Suppose, for example, that the SimpleIou contract from A Simple Cash Model should only be able to

store positive amounts. You can enforce this using the ensure keyword:

template SimpleIou

with

issuer : Party

owner : Party

cash : Cash

where

signatory issuer

observer owner

ensure cash.amount > 0.0

Theensure keyword takes a single expression of type Bool. If youwant to addmore restrictions, use

logical operators &&, || and not to build up expressions. The below shows the additional restriction

that currencies are three capital letters:

&& T.length cash.currency == 3

&& T.isUpper cash.currency

76 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Hint: The T here stands for the DA.Text standard library which has been imported using import

DA.Text as T:

test_restrictions = do

alice <­ allocateParty "Alice"

bob <­ allocateParty "Bob"

dora <­ allocateParty "Dora"

­­ Dora can't issue negative Ious.

submitMustFail dora do

createCmd SimpleIou with

issuer = dora

owner = alice

cash = Cash with

amount = ­100.0

currency = "USD"

­­ Or even zero Ious.

submitMustFail dora do

createCmd SimpleIou with

issuer = dora

owner = alice

cash = Cash with

amount = 0.0

currency = "USD"

­­ Nor positive Ious with invalid currencies.

submitMustFail dora do

createCmd SimpleIou with

issuer = dora

owner = alice

cash = Cash with

amount = 100.0

currency = "Swiss Francs"

­­ But positive Ious still work, of course.

iou <­ submit dora do

createCmd SimpleIou with

issuer = dora

owner = alice

cash = Cash with

amount = 100.0

currency = "USD"

1.11. Write Smart Contracts with Daml 77

Daml SDK Documentation, 2.7.3

1.11.6.2 Assertions

A second common kind of restriction is one on data transformations.

For example, the simple Iou in A Simple Cash Model allowed the no-op where the owner transfers to

themselves. You can prevent that using an assert statement, which you have already encountered

in the context of scripts.

assert does not return an informative error so often it’s better to use the function assertMsg,

which takes a custom error message:

choice Transfer

: ContractId SimpleIou

with

newOwner : Party

controller owner

do

assertMsg "newOwner cannot be equal to owner." (owner /= newOwner)

create this with owner = newOwner

­­ Alice can't transfer to herself...

submitMustFail alice do

exerciseCmd iou Transfer with

newOwner = alice

­­ ... but can transfer to Bob.

iou2 <­ submit alice do

exerciseCmd iou Transfer with

newOwner = bob

Similarly, you can write a Redeem choice, which allows the owner to redeem an Iou during business

hours on weekdays. The Redeem choice implementation below confirms that getTime returns a value

that is during business hours on weekdays. If all those checks pass, the choice does not do anything

other than archive the SimpleIou. (This assumes that actual cash changes hands off-ledger:)

choice Redeem

: ()

controller owner

do

now <­ getTime

let

today = toDateUTC now

dow = dayOfWeek today

timeofday = now `subTime` time today 0 0 0

hrs = convertRelTimeToMicroseconds timeofday / 3600000000

if (hrs < 8 || hrs > 18) then

abort $ "Cannot redeem outside business hours. Current time: " <> show␣

↪→timeofday

else case dow of

Saturday ­> abort "Cannot redeem on a Saturday."

Sunday ­> abort "Cannot redeem on a Sunday."

_ ­> return ()

In the above example, the time is taken apart into day of week and hour of day using standard library

functions from DA.Date and DA.Time. The hour of the day is checked to be in the range from 8 to

18. The day of week is checked to not be Saturday or Sunday.

78 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

The following example shows how the Redeem choice is exercised in a script:

­­ June 1st 2019 is a Saturday.

setTime (time (date 2019 Jun 1) 0 0 0)

­­ Bob cannot redeem on a Saturday.

submitMustFail bob do

exerciseCmd iou2 Redeem

­­ Not even at mid­day.

passTime (hours 12)

­­ Bob cannot redeem on a Saturday.

submitMustFail bob do

exerciseCmd iou2 Redeem

­­ Bob also cannot redeem at 6am on a Monday.

passTime (hours 42)

submitMustFail bob do

exerciseCmd iou2 Redeem

­­ Bob can redeem at 8am on Monday.

passTime (hours 2)

submit bob do

exerciseCmd iou2 Redeem

For the purposes of testing the Redeem choice, the above code sets and advances the ledger time

with the setTime and passTime functions respectively. Exercising the choice should fail or should

not fail depending on the day of week and the time of day. While that is straightforward, the issue of

time on a Daml ledger is worthy of more discussion.

1.11.6.3 Time on Daml Ledgers

Each transaction on a Daml ledger has two timestamps: the ledger time (LT) and the record time (RT).

Ledger time (LT) is the time associated with a transaction in the ledgermodel, as determined by the

participant. It is the time of a transaction from a business and application perspective. When you

call getTime, it is the LT that is returned. The LT is used when reasoning about related transactions

and commits. The LT can be compared with other LTs to guarantee model consistency. For example,

LTs are used to enforce that no transaction depends on a contract that does not exist. This is the

requirement known as “causal monotonicity.”

Record time (RT) is the time assigned by the persistence layer. It represents the time that the trans-

action is “physically” recorded. For example, “The backing database ledger has assigned the times-

tamp of such-and-such time to this transaction.” The only purpose of the RT is to ensure that trans-

actions are being recorded in a timely manner.

Each Daml ledger has a policy on the allowed difference between LT and RT called the skew. A consis-

tent zero-skew is not feasible because this is a distributed system. If it is too far off, the transaction

will be rejected. This is the requirement known as “bounded skew.” The RT is not relevant beyond

this determination of skew.

Returning to the theme of business hours, consider the following example: Suppose that the ledger

had a skew of 10 seconds. At 17:59:55, just before the end of business hours, Alice submits a transac-

tion to redeem an Iou. One second later, the transaction is assigned an LT of 17:59:56. However, there

still may be a few seconds before the transaction is persisted to the underlying storage. For exam-

ple, the transactionmight be written in the underlying backing store at 18:00:06, after business hours.

1.11. Write Smart Contracts with Daml 79

Daml SDK Documentation, 2.7.3

Because LT is within business hours and LT - RT <= 10 seconds, the transaction will not be rejected.

For details, see Background concepts - time.

Time in Test Scripts

For tests, you can set time using the following functions:

• setTime, which sets the ledger time to the given time.

• passTime, which takes a RelTime (a relative time) and moves the ledger by that much.

On a distributed Daml ledger, there are no guarantees that LT or RT are strictly increasing. The only

guarantee is that ledger time is increasing with causality. That is, if a transaction TX2 depends on a

transaction TX1, then the ledger enforces that the LT of TX2 is greater than or equal to that of TX1.

The following script illustrates that idea by moving the logical time back by three days and then

trying to exercise a choice on a contract that hasn’t been created yet. That fails, as you would hope.

iou3 <­ submit dora do

createCmd SimpleIou with

issuer = dora

owner = alice

cash = Cash with

amount = 100.0

currency = "USD"

passTime (days (­3))

submitMustFail alice do

exerciseCmd iou3 Redeem

1.11.6.4 Actions and do Blocks

You have come across do blocks and <­ notations in two contexts by now: Script and Update.

Both of these are examples of an Action, also called a Monad in functional programming. You can

construct Actions conveniently using do notation.

UnderstandingActionsanddoblocks is therefore crucial to beingable to construct correct contract

models and test them, so this section will explain them in some detail.

Pure Expressions Compared to Actions

Expressions inDamlarepure in the sense that theyhavenoside-effects: theyneither readnormodify

any external state. If you know the value of all variables in scope and write an expression, you can

work out the value of that expression on pen and paper.

However, the expressions you’ve seen that used the <­ notation are not like that. For example, take

getTime, which is an Action. Here’s the example we used earlier:

now <­ getTime

You cannot work out the value of now based on any variable in scope. To put it another way, there is

no expression expr that you could put on the right hand side of now = expr. To get the ledger time,

you must be in the context of a submitted transaction, and then look at that context.

80 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Similarly, you’ve come across fetch. If you have cid : ContractId Account in scope and you

come across the expression fetch cid, you can’t evaluate that to an Account so you can’t write

account = fetch cid. To do so, you’d have to have a ledger you can look that contract ID up on.

Actions and Impurity

Actions are a way to handle such “impure” expressions. Action a is a type class with a single

parameter a, and Update and Script are instances of Action. A value of such a type m a where m

is an instance ofAction canbe interpreted as “a recipe for anaction of typem, which, when executed,

returns a value a”.

You can always write a recipe using just pen and paper, but you can’t cook it up unless you are in

the context of a kitchen with the right ingredients and utensils. When cooking the recipe you have

an effect – you change the state of the kitchen – and a return value – the thing you leave the kitchen

with.

• An Update a is “a recipe to update a Daml ledger, which, when committed, has the effect of

changing the ledger, and returns a value of type a”. An update to a Daml ledger is a transaction

so equivalently, an Update a is “a recipe to construct a transaction, which, when executed in

the context of a ledger, returns a value of type a”.

• A Script a is “a recipe for a test, which, when performed against a ledger, has the effect of

changing the ledger in ways analogous to those available via the API, and returns a value of

type a”.

Expressions like getTime, allocateParty party, passTime time, submit party commands,

create contract and exercise choice should make more sense in that light. For example:

• getTime : Update Time is the recipe for an empty transaction that also happens to return

a value of type Time.

• passTime (days 10) : Script () is a recipe for a transaction that doesn’t submit any

transactions, but has the side-effect of changing the LT of the test ledger. It returns (), also

called Unit and can be thought of as a zero-tuple.

• create iou : Update (ContractId Iou), where iou : Iou is a recipe for a transac-

tion consisting of a single create action, and returns the contract id of the created contract

if successful.

• submit alice (createCmd iou) : Script (ContractId Iou) is a recipe for a script

in which Alice sends the command createCmd iou to the ledger which produces a transac-

tion and a return value of type ContractId Iou and returns that back to Alice.

Commands is a bit more restricted than Script and Update as it represents a list of independent

commands sent to the ledger. You can still use do blocks but if you have more than one command

in a single do block you need to enable the ApplicativeDo extension at the beginning of your file.

In addition to that, the last statement in such a do blockmust be of the form return expr or pure

expr. Applicative is a more restricted version of Action that enforces that there are no depen-

dencies between commands. If you do have dependencies between commands, you can always wrap

it in a choice in a helper template and call that via createAndExerciseCmd just like we did to call

fetchByKey. Alternatively, if you do not need them to be part of the same transaction, you canmake

multiple calls to submit:

{­# LANGUAGE ApplicativeDo #­}

module Restrictions where

1.11. Write Smart Contracts with Daml 81

Daml SDK Documentation, 2.7.3

Chain Actions With do Blocks

An action followed by another action, possibly depending on the result of the first action, is just

another action. Specifically:

• A transaction is a list of actions. So a transaction followed by another transaction is again a

transaction.

• A script is a list of interactions with the ledger (submit, allocateParty, passTime, etc). So

a script followed by another script is again a script.

This is where do blocks come in. do blocks allow you to build complex actions from simple ones,

using the results of earlier actions in later ones:

sub_script1 (alice, dora) = do

submit dora do

createCmd SimpleIou with

issuer = dora

owner = alice

cash = Cash with

amount = 100.0

currency = "USD"

sub_script2 = do

passTime (days 1)

passTime (days (­1))

return 42

sub_script3 (bob, dora) = do

submit dora do

createCmd SimpleIou with

issuer = dora

owner = bob

cash = Cash with

amount = 100.0

currency = "USD"

main_: Script () = do

dora <­ allocateParty "Dora"

alice <­ allocateParty "Alice"

bob <­ allocateParty "Bob"

iou1 <­ sub_script1 (alice, dora)

sub_script2

iou2 <­ sub_script3 (bob, dora)

submit dora do

archiveCmd iou1

archiveCmd iou2

pure ()

Above, we see do blocks in action for both Script and Update.

82 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Wrap Values in Actions

You may already have noticed the use of return in the redeem choice. return x is a no-op action

which returns value x so return 42 : Update Int. Since do blocks always return the value of

their last action, sub_script2 : Script Int.

1.11.6.5 Failing Actions

Not only are Update and Script examples of Action, they are both examples of actions that can

fail, e.g. because a transaction is illegal or the party retrieved via allocateParty doesn’t exist on

the ledger.

Each has a special action abort txt that represents failure, and that takes on type Update () or

Script () depending on context .

Transactions succeed or fail atomically as a whole. Scripts on the other hand do not fail atomically:

while each submit is atomic, if a submit succeeded and the script fails later, the effects of that

submit will still be applied to the ledger.

The last expression in the do block of the Redeem choice is a pattern matching expression on dow.

It has type Update () and is either an abort or return depending on the day of week. So during

the week, it’s a no-op and on weekends, it’s the special failure action. Thanks to the atomicity of

transactions, no transaction can ever make use of the Redeem choice on weekends, because it fails

the entire transaction.

1.11.6.6 A Sample Action

If the above didn’t make complete sense, here’s another example to explain what actions are more

generally, by creating a new type that is also an action. CoinGame a is an Action a in which a Coin

is flipped. The Coin is a pseudo-random number generator and each flip has the effect of changing

the random number generator’s state. Based on the Heads and Tails results, a return value of type

a is calculated:

data Face = Heads | Tails

deriving (Eq, Show, Enum)

data CoinGame a = CoinGame with

play : Coin ­> (Coin, a)

flipCoin : CoinGame Face

getCoin : Script Coin

A CoinGame a exposes a function play which takes a Coin and returns a new Coin and a result a.

More on the ­> syntax for functions later.

Coin and play are deliberately left obscure in the above. All you have is an action getCoin to get

your hands on a Coin in a Script context and an action flipCoin which represents the simplest

possible game: a single coin flip resulting in a Face.

You can’t play any CoinGame game on pen and paper as you don’t have a coin, but you can write

down a script or recipe for a game:

1.11. Write Smart Contracts with Daml 83

Daml SDK Documentation, 2.7.3

coin_test = do

­­ The coin is pseudo­random on LT so change the parameter to change the game.

setTime (time (date 2019 Jun 1) 0 0 0)

passTime (seconds 2)

coin <­ getCoin

let

game = do

f1r <­ flipCoin

f2r <­ flipCoin

f3r <­ flipCoin

if all (== Heads) [f1r, f2r, f3r]

then return "Win"

else return "Loss"

(newCoin, result) = game.play coin

assert (result == "Win")

The game expression is a CoinGame in which a coin is flipped three times. If all three tosses return

Heads, the result is "Win", or else "Loss".

In a Script context you can get a Coin using the getCoin action, which uses the LT to calculate a

seed, and play the game.

Somehow the Coin is threaded through the various actions. If you want to look through the look-

ing glass and understand in-depth what’s going on, you can look at the source file to see how the

CoinGame action is implemented, though be warned that the implementation uses a lot of Daml

features we haven’t introduced yet in this introduction.

More generally, if you want to learn more about Actions (aka Monads), we recommend a general

course on functional programming, and Haskell in particular. See The Haskell Connection for some

suggestions.

1.11.6.7 Errors

Above, you’ve learnt about assertMsg and abort, which represent (potentially) failing actions. Ac-

tions only have an effectwhen they are performed, so the following script succeeds or fails depending

on the value of abortScript:

nonPerformedAbort = do

let abortScript = False

let failingAction : Script () = abort "Foo"

let successfulAction : Script () = return ()

if abortScript then failingAction else successfulAction

However, what about errors in contexts other than actions? Suppose we wanted to implement a

function pow that takes an integer to the power of another positive integer. How do we handle that

the second parameter has to be positive?

One option is to make the function explicitly partial by returning an Optional:

optPow : Int ­> Int ­> Optional Int

optPow base exponent

| exponent == 0 = Some 1

| exponent > 0 =

(continues on next page)

84 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

let Some result = optPow base (exponent ­ 1)

in Some (base * result)

| otherwise = None

This is a useful pattern if we need to be able to handle the error case, but it also forces us to always

handle it as we need to extract the result from an Optional. We can see the impact on convenience

in the definition of the above function. In cases, like division by zero or the above function, it can

therefore be preferable to fail catastrophically instead:

errPow : Int ­> Int ­> Int

errPow base exponent

| exponent == 0 = 1

| exponent > 0 = base * errPow base (exponent ­ 1)

| otherwise = error "Negative exponent not supported"

The big downside to this is that even unused errors cause failures. The following script will fail,

because failingComputation is evaluated:

nonPerformedError = script do

let causeError = False

let failingComputation = errPow 1 (­1)

let successfulComputation = errPow 1 1

return if causeError then failingComputation else successfulComputation

error should therefore only be used in cases where the error case is unlikely to be encountered, and

where explicit partiality would unduly impact usability of the function.

1.11.6.8 Next Up

You can now specify a precise data and data-transformation model for Daml ledgers. In Parties and

Authority, you will learn how to properly involve multiple parties in contracts, how authority works in

Daml, and how to build contract models with strong guarantees in contexts with mutually distrust-

ing entities.

1.11.7 Parties and Authority

Daml is designed for distributed applications involving mutually distrusting parties. In a

well-constructed contract model, all parties have strong guarantees that nobody cheats or circum-

vents the rules laid out by templates and choices.

In this section you will learn about Daml’s authorization rules and how to develop contract models

that give all parties the required guarantees. In particular, you’ll learn how to:

• Pass authority from one contract to another

• Write advanced choices

• Reason through Daml’s Authorization model

Hint: Remember that you can load all the code for this section into a folder calledintro6by running

daml new intro6 ­­template daml­intro­6

1.11. Write Smart Contracts with Daml 85

Daml SDK Documentation, 2.7.3

1.11.7.1 Preventing IOU Revocation

The SimpleIou contract from Transform Data Using Choices and Add Constraints to a Contract has one

major problem: The contract is only signed by the issuer. The signatories are the parties with the

power to create and archive contracts. If Alice gave Bob a SimpleIou for $100 in exchange for some

goods, she could just archive it after receiving the goods. Bob would have a record of such actions,

but would have to resort to off-ledger means to get his money back:

template SimpleIou

with

issuer : Party

owner : Party

cash : Cash

where

signatory issuer

simple_iou_test = do

alice <­ allocateParty "Alice"

bob <­ allocateParty "Bob"

­­ Alice and Bob enter into a trade.

­­ Alice transfers the payment as a SimpleIou.

iou <­ submit alice do

createCmd SimpleIou with

issuer = alice

owner = bob

cash = Cash with

amount = 100.0

currency = "USD"

passTime (days 1)

­­ Bob delivers the goods.

passTime (minutes 10)

­­ Alice just deletes the payment.

submit alice do

archiveCmd iou

For a party to have any guarantees that only those transformations specified in the choices are ac-

tually followed, they either need to be a signatory themselves, or trust one of the signatories to not

agree to transactions that archive and re-create contracts in unexpected ways. To make the Sim­

pleIou safe for Bob, you need to add him as a signatory:

template Iou

with

issuer : Party

owner : Party

cash : Cash

where

signatory issuer, owner

choice Transfer

: ContractId Iou

with

newOwner : Party

(continues on next page)

86 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

controller owner

do

assertMsg "newOwner cannot be equal to owner." (owner /= newOwner)

create this with

owner = newOwner

There’s a new problem here: There is no way for Alice to issue or transfer this Iou to Bob. To get an

Iou with Bob’s signature as owner onto the ledger, his authority is needed:

iou_test = do

alice <­ allocateParty "Alice"

bob <­ allocateParty "Bob"

­­ Alice and Bob enter into a trade.

­­ Alice wants to give Bob an Iou, but she can't without Bob's authority.

submitMustFail alice do

createCmd Iou with

issuer = alice

owner = bob

cash = Cash with

amount = 100.0

currency = "USD"

­­ She can issue herself an Iou.

iou <­ submit alice do

createCmd Iou with

issuer = alice

owner = alice

cash = Cash with

amount = 100.0

currency = "USD"

­­ However, she can't transfer it to Bob.

submitMustFail alice do

exerciseCmd iou Transfer with

newOwner = bob

This may seem awkward, but notice that the ensure clause is gone from the Iou again. The above

Iou can contain negative values so Bob should be glad that Alice cannot put his signature on any

Iou.

You’ll now learn a couple of common ways of building issuance and transfer workflows for the above

Iou, before diving into the authorization model in full.

1.11.7.2 Use Propose-Accept Workflows for One-Off Authorization

If there is no standing relationship between Alice and Bob, Alice can propose the issuance of an Iou to

Bob, givinghim the choice to accept. You candosoby introducingaproposal contractIouProposal:

template IouProposal

with

iou : Iou

where

signatory iou.issuer

(continues on next page)

1.11. Write Smart Contracts with Daml 87

Daml SDK Documentation, 2.7.3

(continued from previous page)

observer iou.owner

choice IouProposal_Accept

: ContractId Iou

controller iou.owner

do

create iou

Note how we have used the fact that templates are records here to store the Iou in a single field:

iouProposal <­ submit alice do

createCmd IouProposal with

iou = Iou with

issuer = alice

owner = bob

cash = Cash with

amount = 100.0

currency = "USD"

submit bob do

exerciseCmd iouProposal IouProposal_Accept

The IouProposal contract carries the authority of iou.issuer by virtue of thembeing a signatory.

By exercising the IouProposal_Accept choice, Bob adds his authority to that of Alice, which is why

an Iou with both signatories can be created in the context of that choice.

The choice is called IouProposal_Accept, not Accept, because propose-accept patterns are very

common. In fact, you’ll see another one just below. As each choice defines a record type, you cannot

have two choices of the same name in scope. It’s a good idea to qualify choice names to ensure

uniqueness.

The above solves issuance, but not transfers. You can solve transfers exactly the same way, though,

by creating a TransferProposal:

template IouTransferProposal

with

iou : Iou

newOwner : Party

where

signatory (signatory iou)

observer (observer iou), newOwner

choice IouTransferProposal_Cancel

: ContractId Iou

controller iou.owner

do

create iou

choice IouTransferProposal_Reject

: ContractId Iou

controller newOwner

do

create iou

choice IouTransferProposal_Accept

(continues on next page)

88 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

: ContractId Iou

controller newOwner

do

create iou with

owner = newOwner

In addition to defining the signatories of a contract, signatory can also be used to extract the

signatories from another contract. Instead of writing signatory (signatory iou), you could

write signatory iou.issuer, iou.owner.

The IouProposal had a single signatory so it could be cancelled easily by archiving it. Without a

Cancel choice, thenewOwner could abuse an open TransferProposal as an option. The tripleAccept,

Reject, Cancel is common to most proposal templates.

To allow an iou.owner to create such a proposal, you need to give them the choice to propose a

transfer on the Iou contract. The choice looks just like the above Transfer choice, except that a

IouTransferProposal is created instead of an Iou:

choice ProposeTransfer

: ContractId IouTransferProposal

with

newOwner : Party

controller owner

do

assertMsg "newOwner cannot be equal to owner." (owner /= newOwner)

create IouTransferProposal with

iou = this

newOwner

Bob can now transfer his Iou. The transfer workflow can even be used for issuance:

charlie <­ allocateParty "Charlie"

­­ Alice issues an Iou using a transfer proposal.

tpab <­ submit alice do

createCmd IouTransferProposal with

newOwner = bob

iou = Iou with

issuer = alice

owner = alice

cash = Cash with

amount = 100.0

currency = "USD"

­­ Bob accepts the transfer from Alice.

iou2 <­ submit bob do

exerciseCmd tpab IouTransferProposal_Accept

­­ Bob offers Charlie a transfer.

tpbc <­ submit bob do

exerciseCmd iou2 ProposeTransfer with

newOwner = charlie

­­ Charlie accepts the transfer from Bob.

submit charlie do

exerciseCmd tpbc IouTransferProposal_Accept

1.11. Write Smart Contracts with Daml 89

Daml SDK Documentation, 2.7.3

1.11.7.3 Use Role Contracts for Ongoing Authorization

Many actions, like the issuance of assets or their transfer, can be pre-agreed. You can represent this

succinctly in Daml through relationship or role contracts.

Jointly, an owner and newOwner can transfer an asset, as demonstrated in the script above. In

Composing Choices, you will see how to compose the ProposeTransfer and IouTransferPro­

posal_Accept choices into a single new choice, but for now, here is a different way. You can give

them the joint right to transfer an IOU:

choice Mutual_Transfer

: ContractId Iou

with

newOwner : Party

controller owner, newOwner

do

create this with

owner = newOwner

Up to now, the controllers of choices were known from the current contract. Here, the newOwner

variable is part of the choice arguments, not the Iou.

This is also the first time we have shown a choice with more than one controller. If multiple con-

trollers are specified, the authority of all the controllers is needed. Here, neitherowner, nornewOwner

can execute a transfer unilaterally, hence the name Mutual_Transfer.

template IouSender

with

sender : Party

receiver : Party

where

signatory receiver

observer sender

nonconsuming choice Send_Iou

: ContractId Iou

with

iouCid : ContractId Iou

controller sender

do

iou <­ fetch iouCid

assert (iou.cash.amount > 0.0)

assert (sender == iou.owner)

exercise iouCid Mutual_Transfer with

newOwner = receiver

The above IouSender contract now gives one party, the sender the right to send Iou contracts with

positive amounts to a receiver. The nonconsuming keyword on the choice Send_Iou changes the

behaviour of the choice so that the contract it’s exercised on does not get archived when the choice

is exercised. That way the sender can use the contract to send multiple Ious.

Here it is in action:

­­ Bob allows Alice to send him Ious.

sab <­ submit bob do

createCmd IouSender with

(continues on next page)

90 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

sender = alice

receiver = bob

­­ Charlie allows Bob to send him Ious.

sbc <­ submit charlie do

createCmd IouSender with

sender = bob

receiver = charlie

­­ Alice can now send the Iou she issued herself earlier.

iou4 <­ submit alice do

exerciseCmd sab Send_Iou with

iouCid = iou

­­ Bob sends it on to Charlie.

submit bob do

exerciseCmd sbc Send_Iou with

iouCid = iou4

1.11.7.4 Daml’s Authorization Model

Hopefully, the above will have given you a good intuition for how authority is passed around in Daml.

In this section you’ll learn about the formal authorizationmodel to allow you to reason through your

contract models. This will allow you to construct them in such a way that you don’t run into autho-

rization errors at runtime, or, worse still, allow malicious transactions.

In Choices In the LedgerModel you learned that a transaction is, equivalently, a tree of transactions, or a

forest of actions, where each transaction is a list of actions, and each action has a child-transaction

called its consequences.

Each action has a set of required authorizers – the parties that must authorize that action – and each

transaction has a set of authorizers – the parties that did actually authorize the transaction.

The authorization rule is that the required authorizers of every action are a subset of the authorizers

of the parent transaction.

The required authorizers of actions are:

• The required authorizers of an exercise action are the controllers on the corresponding choice.

Remember that Archive and archive are just an implicit choice with the signatories as con-

trollers.

• The required authorizers of a create action are the signatories of the contract.

• The required authorizers of a fetch action (which also includes fetchByKey) are somewhat

dynamic and covered later.

The authorizers of transactions are:

• The root transaction of a commit is authorized by the submitting party.

• The consequences of an exercise action are authorized by the actors of that action plus the

signatories of the contract on which the action was taken.

1.11. Write Smart Contracts with Daml 91

Daml SDK Documentation, 2.7.3

An Authorization Example

Consider the transaction from the script abovewhere Bob sends an Iou to Charlie using a Send_Iou

contract. It is authorized as follows, ignoring fetches:

• Bob submits the transaction so he’s the authorizer on the root transaction.

• The root transaction has a single action, which is to exercise Send_Iou on a IouSender con-

tract with Bob as sender and Charlie as receiver. Since the controller of that choice is the

sender, Bob is the required authorizer.

• The consequences of the Send_Iou action are authorized by its actors, Bob, as well as signa-

tories of the contract on which the action was taken. That’s Charlie in this case, so the conse-

quences are authorized by both Bob and Charlie.

• The consequences contain a single action, which is a Mutual_Transfer with Charlie as

newOwner on an Iou with issuer Alice and owner Bob. The required authorizers of the ac-

tion are the owner, Bob, and the newOwner, Charlie, which matches the parent’s authorizers.

• The consequences ofMutual_Transfer are authorized by the actors (Bob andCharlie), aswell

as the signatories on the Iou (Alice and Bob).

• The single action on the consequences, the creation of an Iou with issuer Alice and owner

Charlie has required authorizers Alice and Charlie, which is a proper subset of the parent’s

authorizers.

You can see the graph of this transaction in the transaction view of the IDE:

TX 12 1970­01­01T00:00:00Z (Parties:276:3)

#12:0

│ disclosed to (since): 'Bob' (12), 'Charlie' (12)

└─> 'Bob' exercises Send_Iou on #10:0 (Parties:IouSender)

with

iouCid = #11:3

children:

#12:1

│ disclosed to (since): 'Bob' (12), 'Charlie' (12), 'Alice' (12)

└─> 'Alice' and 'Bob' fetch #11:3 (Parties:Iou)

#12:2

│ disclosed to (since): 'Bob' (12), 'Charlie' (12), 'Alice' (12)

└─> 'Bob' and 'Charlie' exercise Mutual_Transfer on #11:3 (Parties:Iou)

with

newOwner = 'Charlie'

children:

#12:3

│ disclosed to (since): 'Bob' (12), 'Charlie' (12), 'Alice' (12)

└─> 'Alice' and 'Charlie' create Parties:Iou

with

issuer = 'Alice';

owner = 'Charlie';

cash =

(Parties:Cash with

currency = "USD"; amount = 100.0000000000)

Note that authority is not automatically transferred transitively.

template NonTransitive

with

partyA : Party

(continues on next page)

92 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

partyB : Party

where

signatory partyA

observer partyB

choice TryA

: ContractId NonTransitive

controller partyA

do

create NonTransitive with

partyA = partyB

partyB = partyA

choice TryB

: ContractId NonTransitive

with

other : ContractId NonTransitive

controller partyB

do

exercise other TryA

nt1 <­ submit alice do

createCmd NonTransitive with

partyA = alice

partyB = bob

nt2 <­ submit alice do

createCmd NonTransitive with

partyA = alice

partyB = bob

submitMustFail bob do

exerciseCmd nt1 TryB with

other = nt2

The consequences of TryB are authorized by both Alice and Bob, but the action TryA only has Alice

as an actor and Alice is the only signatory on the contract.

Therefore, the consequences of TryA are only authorized by Alice. Bob’s authority is now missing to

create the flipped NonTransitive so the transaction fails.

1.11.7.5 Next Up

In ComposingChoices youwill put everything youhave learned together to build a simple asset holding

and tradingmodel akin to that in the Daml IOUQuickstart Tutorial. In that context you’ll learn a bitmore

about theUpdate action andhow touse it to compose transactions, aswell as about privacy onDaml

ledgers.

1.11. Write Smart Contracts with Daml 93

Daml SDK Documentation, 2.7.3

1.11.8 Composing Choices

It’s time to put everything you’ve learned so far together into a complete and secure Daml model for

asset issuance, management, transfer, and trading. This application will have capabilities similar

to the one in Daml IOU Quickstart Tutorial. In the process you will learn about a few more concepts:

• Daml projects, packages and modules

• Composition of transactions

• Observers and stakeholders

• Daml’s execution model

• Privacy

The model in this section is not a single Daml file, but a Daml project consisting of several files that

depend on each other.

Hint: Remember that you can load all the code for this section into a folder calledintro7by running

daml new intro7 ­­template daml­intro­7

1.11.8.1 Daml Projects

Daml is organized in projects, packages and modules. A Daml project is specified using a single

daml.yaml file, and compiles into a package in Daml’s intermediate language, or bytecode equiva-

lent, Daml-LF. Each Daml file within a project becomes a Daml module, which is a bit like a names-

pace. Each Daml project has a source root specified in the source parameter in the project’s daml.

yaml file. The package will include all modules specified in *.daml files beneath that source direc-

tory.

You can start a new project with a skeleton structure using daml new project­name in the termi-

nal. A minimal project would contain just a daml.yaml file and an empty directory of source files.

Take a look at the daml.yaml for the this chapter’s project:

sdk­version: __VERSION__

name: __PROJECT_NAME__

source: daml

version: 1.0.0

dependencies:

­ daml­prim

­ daml­stdlib

­ daml­script

You can generally set name and version freely to describe your project. dependencies does

what the name suggests: It includes dependencies. You should always include daml­prim and

daml­stdlib. The former contains internals of compiler and Daml Runtime, the latter gives ac-

cess to the Daml Standard Library. daml­script contains the types and standard library for Daml

Script.

You compile a Daml project by running daml build from the project root directory. This creates

a dar file in .daml/dist/dist/${project_name}­${project_version}.dar. A dar file is

Daml’s equivalent of a JAR file in Java: it’s the artifact that gets deployed to a ledger to load the

package and its dependencies. dar files are fully self-contained in that they contain all dependen-

cies of the main package. More on all of this in Work with Dependencies.

94 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.11.8.2 Project Structure

This project contains an asset holding model for transferable, fungible assets and a separate trade

workflow. The templates are structured in three modules: Intro.Asset, Intro.Asset.Role, and

Intro.Asset.Trade.

In addition, there are tests inmodules Test.Intro.Asset, Test.Intro.Asset.Role, and Test.

Intro.Asset.Trade.

All but the last .-separated segment in module names correspond to paths relative to the project

source directory, and the last one to a file name. The folder structure therefore looks like this:

.

├── daml

│ ├── Intro

│ │ ├── Asset

│ │ │ ├── Role.daml

│ │ │ └── Trade.daml

│ │ └── Asset.daml

│ └── Test

│ └── Intro

│ ├── Asset

│ │ ├── Role.daml

│ │ └── Trade.daml

│ └── Asset.daml

└── daml.yaml

Each file contains a module header. For example, daml/Intro/Asset/Role.daml:

module Intro.Asset.Role where

You can import one module into another using the import keyword. The LibraryModulesmodule

imports all six modules:

import Intro.Asset

Imports always have to appear just below the module declaration. You can optionally add a list of

names after the import to import only the selected names:

import DA.List (sortOn, groupOn)

If your module contains any Daml Scripts, you need to import the corresponding functionality:

import Daml.Script

1.11.8.3 Project Overview

The project both changes and adds to the Ioumodel presented in Parties and Authority:

• Assets are fungible in the sense that they have Merge and Split choices that allow the owner

to manage their holdings.

• Transfer proposals now need the authorities of both issuer and newOwner to accept. This

makes Asset safer than Iou from the issuer’s point of view.

1.11. Write Smart Contracts with Daml 95

Daml SDK Documentation, 2.7.3

With the Iou model, an issuer could end up owing cash to anyone as transfers were autho-

rized by just owner and newOwner. In this project, only parties having an AssetHolder con-

tract can end up owning assets. This allows the issuer to determine which parties may own

their assets.

• The Trade template adds a swap of two assets to the model.

1.11.8.4 Composed Choices and Scripts

This project showcases how you can put the Update and Script actions you learned about in Parties

and Authority to good use. For example, the Merge and Split choices each perform several actions

in their consequences.

• Two create actions in case of Split

• One create and one archive action in case of Merge

choice Split

: SplitResult

with

splitQuantity : Decimal

controller owner

do

splitAsset <­ create this with

quantity = splitQuantity

remainder <­ create this with

quantity = quantity ­ splitQuantity

return SplitResult with

splitAsset

remainder

choice Merge

: ContractId Asset

with

otherCid : ContractId Asset

controller owner

do

other <­ fetch otherCid

assertMsg

"Merge failed: issuer does not match"

(issuer == other.issuer)

assertMsg

"Merge failed: owner does not match"

(owner == other.owner)

assertMsg

"Merge failed: symbol does not match"

(symbol == other.symbol)

archive otherCid

create this with

quantity = quantity + other.quantity

The return function used in Split is available in any Action context. The result of return x is a

no-op containing the value x. It has an alias pure, indicating that it’s a pure value, as opposed to a

value with side-effects. The return namemakes sense when it’s used as the last statement in a do

block as its argument is indeed the “return”-value of the do block in that case.

Taking transaction composition a step further, the Trade_Settle choice on Trade composes two

exercise actions:

96 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

choice Trade_Settle

: (ContractId Asset, ContractId Asset)

with

quoteAssetCid : ContractId Asset

baseApprovalCid : ContractId TransferApproval

controller quoteAsset.owner

do

fetchedBaseAsset <­ fetch baseAssetCid

assertMsg

"Base asset mismatch"

(baseAsset == fetchedBaseAsset with

observers = baseAsset.observers)

fetchedQuoteAsset <­ fetch quoteAssetCid

assertMsg

"Quote asset mismatch"

(quoteAsset == fetchedQuoteAsset with

observers = quoteAsset.observers)

transferredBaseCid <­ exercise

baseApprovalCid TransferApproval_Transfer with

assetCid = baseAssetCid

transferredQuoteCid <­ exercise

quoteApprovalCid TransferApproval_Transfer with

assetCid = quoteAssetCid

return (transferredBaseCid, transferredQuoteCid)

The resulting transaction, with its two nested levels of consequences, can be seen in the

test_trade script in Test.Intro.Asset.Trade:

TX 14 1970­01­01T00:00:00Z (Test.Intro.Asset.Trade:79:23)

#14:0

│ disclosed to (since): 'Alice' (14), 'Bob' (14)

└─> 'Bob' exercises Trade_Settle on #12:0 (Intro.Asset.Trade:Trade)

with

quoteAssetCid = #9:1; baseApprovalCid = #13:1

children:

#14:1

│ disclosed to (since): 'Alice' (14), 'Bob' (14), 'USD_Bank' (14)

└─> 'Alice' and 'USD_Bank' fetch #10:1 (Intro.Asset:Asset)

#14:2

│ disclosed to (since): 'Alice' (14), 'Bob' (14), 'EUR_Bank' (14)

└─> 'Bob' and 'EUR_Bank' fetch #9:1 (Intro.Asset:Asset)

#14:3

│ disclosed to (since): 'Alice' (14), 'Bob' (14), 'USD_Bank' (14)

└─> 'Alice' and 'Bob' exercise TransferApproval_Transfer on #13:1 (Intro.

↪→Asset:TransferApproval)

with

assetCid = #10:1

children:

#14:4

│ disclosed to (since): 'Alice' (14), 'Bob' (14), 'USD_Bank' (14)

(continues on next page)

1.11. Write Smart Contracts with Daml 97

Daml SDK Documentation, 2.7.3

(continued from previous page)

└─> 'Alice' and 'USD_Bank' fetch #10:1 (Intro.Asset:Asset)

#14:5

│ disclosed to (since): 'Alice' (14), 'Bob' (14), 'USD_Bank' (14)

└─> 'Alice' and 'USD_Bank' exercise Archive on #10:1 (Intro.Asset:Asset)

#14:6

│ disclosed to (since): 'Alice' (14), 'Bob' (14), 'USD_Bank' (14)

└─> 'Bob' and 'USD_Bank' create Intro.Asset:Asset

with

issuer = 'USD_Bank';

owner = 'Bob';

symbol = "USD";

quantity = 100.0000000000;

observers = []

#14:7

│ disclosed to (since): 'Alice' (14), 'Bob' (14), 'EUR_Bank' (14)

└─> 'Alice',

'Bob' exercises TransferApproval_Transfer on #11:1 (Intro.

↪→Asset:TransferApproval)

with

assetCid = #9:1

children:

#14:8

│ disclosed to (since): 'Alice' (14), 'Bob' (14), 'EUR_Bank' (14)

└─> 'Bob' and 'EUR_Bank' fetch #9:1 (Intro.Asset:Asset)

#14:9

│ disclosed to (since): 'Alice' (14), 'Bob' (14), 'EUR_Bank' (14)

└─> 'Bob' and 'EUR_Bank' exercise Archive on #9:1 (Intro.Asset:Asset)

#14:10

│ disclosed to (since): 'Alice' (14), 'Bob' (14), 'EUR_Bank' (14)

└─> 'Alice' and 'EUR_Bank' create Intro.Asset:Asset

with

issuer = 'EUR_Bank';

owner = 'Alice';

symbol = "EUR";

quantity = 90.0000000000;

observers = []

Similar to choices, you can see how the scripts in this project are built up from each other:

test_issuance = do

setupResult@(alice, bob, bank, aha, ahb) <­ setupRoles

assetCid <­ submit bank do

exerciseCmd aha Issue_Asset

with

symbol = "USD"

quantity = 100.0

Some asset <­ queryContractId bank assetCid

assert (asset == Asset with

issuer = bank

(continues on next page)

98 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

owner = alice

symbol = "USD"

quantity = 100.0

observers = []

)

return (setupResult, assetCid)

In the above, the test_issuance script in Test.Intro.Asset.Role uses the output of the se­

tupRoles script in the same module.

The same line shows a new kind of pattern matching. Rather than writing setupResult <­ se­

tupRoles and then accessing the components of setupResult using _1, _2, etc., you can give

them names. It’s equivalent to writing:

setupResult <­ setupRoles

case setupResult of

(alice, bob, bank, aha, ahb) ­> ...

Just writing (alice, bob, bank, aha, ahb) <­ setupRoles would also be legal, but se­

tupResult is used in the return value of test_issuance so it makes sense to give it a name, too.

The notation with @ allows you to give both the whole value as well as its constituents names in one

go.

1.11.8.5 Daml’s Execution Model

Daml’s execution model is fairly easy to understand, but has some important consequences. You

can imagine the life of a transaction as follows:

Command Submission A user submits a list of Commands via the Ledger API of a Participant Node,

acting as a Party hosted on that Node. That party is called the requester.

Interpretation Each Command corresponds to one or more Actions. During this step, the Update

corresponding to each Action is evaluated in the context of the ledger to calculate all conse-

quences, including transitive ones (consequences of consequences, etc.). The result of this is

a complete Transaction. Together with its requestor, this is also known as a Commit.

Blinding On ledgers with strong privacy, projections (see Privacy) for all involved parties are created.

This is also called projecting.

Transaction Submission The Transaction/Commit is submitted to the network.

Validation The Transaction/Commit is validated by the network. Who exactly validates can differ

from implementation to implementation. Validation also involves scheduling and collision

detection, ensuring that the transaction has a well-defined place in the (partial) ordering of

Commits, and no double spends occur.

Commitment The Commit is actually committed according to the commit or consensus protocol of

the Ledger.

Confirmation The network sends confirmations of the commitment back to all involved Participant

Nodes.

Completion The user gets back a confirmation through the Ledger API of the submitting Participant

Node.

The first important consequence of the above is that all transactions are committed atomically. Ei-

ther a transaction is committed as a whole and for all participants, or it fails.

1.11. Write Smart Contracts with Daml 99

Daml SDK Documentation, 2.7.3

That’s important in the context of the Trade_Settle choice shown above. The choice transfers a

baseAsset one way and a quoteAsset the other way. Thanks to transaction atomicity, there is no

chance that either party is left out of pocket.

The second consequence is that the requester of a transaction knows all consequences of their sub-

mitted transaction – there are no surprises in Daml. However, it alsomeans that the requester must

have all the information to interpret the transaction. We also refer to this as Principle 2 a bit later on

this page.

That’s also important in the context of Trade. In order to allow Bob to interpret a transaction that

transfers Alice’s cash to Bob, Bob needs to know both about Alice’s Asset contract, as well as about

some way for Alice to accept a transfer – remember, accepting a transfer needs the authority of

issuer in this example.

1.11.8.6 Observers

Observers are Daml’s mechanism to disclose contracts to other parties. They are declared just like

signatories, but using the observer keyword, as shown in the Asset template:

template Asset

with

issuer : Party

owner : Party

symbol : Text

quantity : Decimal

observers : [Party]

where

signatory issuer, owner

ensure quantity > 0.0

observer observers

The Asset template also gives the owner a choice to set the observers, and you can see how Alice

uses it to show her Asset to Bob just before proposing the trade. You can try out what happens if

she didn’t do that by removing that transaction:

usdCid <­ submit alice do

exerciseCmd usdCid SetObservers with

newObservers = [bob]

Observers have guarantees in Daml. In particular, they are guaranteed to see actions that create and

archive the contract on which they are an observer.

Since observers are calculated from the arguments of the contract, they always know about each

other. That’s why, rather than adding Bob as an observer on Alice’s AssetHolder contract, and

using that to authorize the transfer in Trade_Settle, Alice creates a one-time authorization in the

form of a TransferAuthorization. If Alice had lots of counterparties, she would otherwise end up

leaking them to each other.

Controllers declared in the choice syntax are not automaticallymade observers, as they can only be

calculated at the point in time when the choice arguments are known. On the contrary, controllers

declared via the controller cs can syntax are automatically made observers, but this syntax is

deprecated and will be removed in a future version of Daml.

100 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.11.8.7 Privacy

Daml’s privacy model is based on two principles:

Principle 1. Parties see those actions that they have a stake in. Principle 2. Every party that sees an

action sees its (transitive) consequences.

Principle 2 is necessary to ensure that every party can independently verify the validity of every trans-

action they see.

A party has a stake in an action if

• they are a required authorizer of it

• they are a signatory of the contract on which the action is performed

• they are an observer on the contract, and the action creates or archives it

What does that mean for the exercise tradeCid Trade_Settle action from test_trade?

Alice is the signatory of tradeCid and Bob a required authorizer of the Trade_Settled action, so

both of them see it. According to principle 2 above, that means they get to see everything in the

transaction.

The consequences contain, next to somefetch actions, twoexercise actions of the choiceTrans­

ferApproval_Transfer.

Each of the two involved TransferApproval contracts is signed by a different issuer, which see

the action on “their” contract. So the EUR_Bank sees the TransferApproval_Transfer action

for the EUR Asset and the USD_Bank sees the TransferApproval_Transfer action for the USD

Asset.

Some Daml ledgers, like the script runner and the Sandbox, work on the principle of “dataminimiza-

tion”, meaning nothing more than the above information is distributed. That is, the “projection” of

the overall transaction that gets distributed to EUR_Bank in step 4 of Daml’s Execution Model would

consist only of the TransferApproval_Transfer and its consequences.

Other implementations, in particular those on public blockchains, may have weaker privacy con-

straints.

Divulgence

Note that principle 2 of the privacymodelmeans that sometimes parties see contracts that they are

not signatories or observers on. If you look at the final ledger state of the test_trade script, for

example, youmay notice that both Alice and Bob now see both assets, as indicated by the Xs in their

respective columns:

1.11. Write Smart Contracts with Daml 101

Daml SDK Documentation, 2.7.3

This is because the create action of these contracts are in the transitive consequences of the

Trade_Settle action both of them have a stake in. This kind of disclosure is often called “divul-

gence” and needs to be considered when designing Daml models for privacy sensitive applications.

1.11.8.8 Next Up

In Exception Handling, we will learn about how errors in your model can be handled in Daml.

1.11.9 Daml Interfaces

After defining a few templates in Daml, you’ve probably found yourself repeating some behaviors

between them. For instance, many templates have a notion of ownership where a party is designated

as the “owner” of the contract, and this party has the power to transfer ownership of the contract

to a different party (subject to that party agreeing to the transfer!). Daml Interfaces provide a way to

abstract those behaviors into a Daml type.

Hint: Remember that you can load all the code for this section into a folder called intro13 by

running daml new intro13 ­­template daml­intro­13

1.11.9.1 Context

First, define some templates:

template Cash

with

issuer : Party

owner : Party

currency : Text

amount : Decimal

where

signatory issuer, owner

ensure amount > 0.0

choice ProposeCashTransfer : ContractId CashTransferProposal

with newOwner : Party

controller owner

do

create CashTransferProposal with

cash = this

newOwner = newOwner

template CashTransferProposal

with

cash : Cash

newOwner : Party

where

signatory (signatory cash)

observer newOwner

choice AcceptCashTransferProposal : ContractId Cash

(continues on next page)

102 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

controller newOwner

do

create cash with

owner = newOwner

­­ Note that RejectCashTransferProposal and WithdrawCashTransferProposal are

­­ almost identical except for the controller ­ the "recipient" ﴾the new

­­ owner﴿ can reject the proposal, while the "sender" ﴾the old owner﴿ can

­­ withdraw the proposal if the recipient hasn't accepted it already. The

­­ effect in either case is the same: the CashTransferProposal contract is

­­ archived and a new Cash contract is created with the same contents as the

­­ original, but with a new ContractId on the ledger.

choice RejectCashTransferProposal : ContractId Cash

controller newOwner

do

create cash

choice WithdrawCashTransferProposal : ContractId Cash

controller cash.owner

do

create cash

These declarations from intro13/daml/Cash.daml define Cash as a simple template with an is-

suer, an owner, a currency, and an amount. A Cash contract grants its owner the choice Propose­

CashTransfer, which allows the owner to propose another party, the newOwner, to take over own-

ership of the asset.

This is mediated by the CashTransferProposal template, which grants two choices to the new

owner: AcceptCashTransferProposal and RejectCashTransferProposal, each of which

archives the CashTransferProposal and creates a new Cash contract; in the former case the

owner of the new Cash will be newOwner, in the latter, it will be the existing owner. Finally, the ex-

isting owner also has the choice WithdrawCashTransferProposal, which archives the proposal

and creates a new Cash contract with identical contents to the original one.

Overall, the effect is that a Cash contract can be transferred to another party, if they agree, in two

steps.

The declarations from intro13/daml/NFT.daml declare the templates NFT and NFTTransfer­

Proposal following the same pattern, with names changedwhere appropriate, with themain differ-

ence being that an NFT has a url : Text field whereas Cash has currency : Text and amount

: Decimal.

1.11.9.2 Interface Definition

To abstract this behavior, you will next introduce two interfaces: IAsset and IAssetTransfer­

Proposal.

Hint: It is not mandatory to prefix interface names with the letter I, but it can be convenient to tell

at a glance whether or not a type is an interface.

1.11. Write Smart Contracts with Daml 103

Daml SDK Documentation, 2.7.3

interface IAsset

where

viewtype VAsset

setOwner : Party ­> IAsset

toTransferProposal : Party ­> IAssetTransferProposal

choice ProposeIAssetTransfer : ContractId IAssetTransferProposal

with newOwner : Party

controller (view this).owner

do

create (toTransferProposal this newOwner)

interface IAssetTransferProposal

where

viewtype VAssetTransferProposal

asset : IAsset

choice AcceptIAssetTransferProposal : ContractId IAsset

controller (view this).newOwner

do

create $ setOwner (asset this) (view this).newOwner

choice RejectIAssetTransferProposal : ContractId IAsset

controller (view this).newOwner

do

create (asset this)

choice WithdrawIAssetTransferProposal : ContractId IAsset

controller (view (asset this)).owner

do

create (asset this)

There are a few things happening here:

1. For each interface, you have defined a viewtype. This is mandatory for all interfaces. All view-

typesmust be serializable records. The viewtype abstracts the read side by providing a uniform

way in which implementations of IAsset are represented on the Ledger API. This declaration

means that the special viewmethod, when applied to a value of this interface, will return the

specified type (in this case VAsset). This is the definition of VAsset:

data VAsset = VAsset with

issuer : Party

owner : Party

description : Text

deriving (Eq, Ord, Show)

Hint: See Serializable Types for more information on serializability requirements.

2. You have defined the methods setOwner and toTransferProposal as part of the IAsset

interface, andmethod asset as part of the IAssetTransferProposal interface. Later, when

you provide instances of these interfaces, you will see that it is mandatory to implement each

of these methods.

3. You have defined the choice ProposeIAssetTransfer as part of the IAsset interface, and

104 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

the choices AcceptIAssetTransferProposal, RejectIAssetTransferProposal and

WithdrawIAssetTransferProposal as part of the IAssetTransferProposal interface.

These correspond one-to-one with the choices of Cash / CashTransferProposal and NFT /

NFTTransferProposal.

Notice that the choice controller and the choice body are defined in terms of the methods that

youbundledwith the interfaces, including the specialviewmethod. For example, the controller

of choice ProposeIAssetTransfer is (view this).owner, that is, it’s the owner field

of the view for the implicit current contract this, in other words, the owner of the current

contract. The body of this choice is create (toTransferProposal this newOwner), so

it creates a new contract whose contents are the result of applying the toTransferProposal

method to the current contract and the newOwner field of the choice argument.

Hint: For a detailed explanation of the syntax used here, check out Reference: Interfaces

1.11.9.3 Interface Instances

On its own, an interface isn’t very useful, since all contracts on the ledger must belong to some

template type. In order to make the link between an interface and a template, you must define

an interface instance inside the body of either the template or the interface. In this example,

add: interface instance IAsset for Cash and interface instance IAssetTransfer­

Proposal for CashTransferProposal:

interface instance IAsset for Cash where

view = VAsset with

issuer

owner

description = show @Cash this

setOwner newOwner =

toInterface @IAsset $

this with

owner = newOwner

toTransferProposal newOwner =

toInterface @IAssetTransferProposal $

CashTransferProposal with

cash = this

newOwner

interface instance IAssetTransferProposal for CashTransferProposal where

view = VAssetTransferProposal with

assetView = view (toInterface @IAsset cash)

newOwner

asset = toInterface @IAsset cash

The corresponding interface instances for NFT and NFTTransferProposal are very similar so we

omit them here.

Inside the interface instances, you must implement every method defined for the corresponding in-

terface, including the special viewmethod. Within eachmethod implementation the variable this

is in scope, corresponding to the implict current contract, which will have the type of the template

1.11. Write Smart Contracts with Daml 105

Daml SDK Documentation, 2.7.3

(in this case Cash / CashTransferProposal), as well as each of the fields of the template type.

For example, the view definition in interface instance IAsset for Cashmentions issuer

and owner, which refer to the issuer and owner of the current Cash contract, as well as this, which

refers to the entire Cash contract payload.

The implementations given for each method must match the types given in the interface defini-

tion. Notice that the view definition discussed above returns a VAsset, corresponding to IAs­

set’s viewtype. Similarly, setOwner returns an IAsset, and toTransferProposal returns an

IAssetTransferProposal. In these last two, the function toInterface converts values from a

template type into an interface type. In setOwner, toInterface is applied to a Cash value (this

with owner = newOwner), producing an IAsset value; in toTransferProposal, it is applied

to a CashTransferProposal value (CashTransferProposal with {...}), producing an IAs­

setTransferProposal value.

1.11.9.4 Using an Interface

Now that you have some interfaces and templates with instances for them, you can reduce duplica-

tion in the code for different templates by instead going through the common interface.

For instance, both Cash and NFT are Assets, which means that contracts of either template have

an owner who can propose to transfer the contract to a third party. Thus, you can use Daml Script

(see Test Templates Using Daml Script) to test that the same contract can be created by Alice and

successively transferred to Bob and then Charlie, who then proposes to transfer to Dominic, who

rejects the proposal, and finally to Emily before withdrawing the proposal, so in the end the con-

tract remains in Charlie’s ownership. This procedure is tested on the Cash and NFT templates by

the Daml Script tests cashTest and nftTest, respectively, both defined in intro13/daml/Main.

daml.

But that’s a lot of duplication! cashTest and nftTest only differ in the line that creates the original

asset and in the names of the choices used. With the new interfaces IAsset and IAssetTrans­

ferProposal, you can write the body of this test a single time, with the name mkAssetTest,

mkAssetTest assetTxt Parties {..} mkAsset = do

You now have not the test itself, but rather a recipe for making the test given some inputs - in this

case, assetTxt (a label used for debugging), Parties {..} (a structure containing the Party

values for Alice and friends) and finally mkAsset (a function that returns a contract value of type

twhen given two Party arguments - the constraint Implements t IAssetmeans that tmust be

some template with an interface instance for IAsset).

Before looking at the body of mkAssetTest, notice how you use it to define the new tests cashAs­

setTest and nftAssetTest; these are almost identical except for the label and function given in

each case to mkAssetTest. In effect, you have abstracted those away, so you don’t need to include

those details in the body of mkAssetTest:

cashAssetTest : Script (ContractId IAsset)

cashAssetTest = do

parties <­ allocateParties

mkAssetTest "Cash" parties mkCash

mkCash : Party ­> Party ­> Cash

mkCash issuer owner = Cash with

issuer

(continues on next page)

106 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

owner

currency = "USD"

amount = 42.0

nftAssetTest : Script (ContractId IAsset)

nftAssetTest = do

parties <­ allocateParties

mkAssetTest "NFT" parties mkNft

mkNft : Party ­> Party ­> NFT

mkNft issuer owner = NFT with

issuer

owner

url = "https://nyan.feline/"

In turn, mkAssetTest isn’t very different from other Daml Scripts you might have written before:

it uses do notation as usual, including submit blocks constructed from Commands that define the

ordered transactions that take place in the test. The main difference is that when querying values

of interface types you cannot use the functions query and queryContractId; instead you must

use queryInterface (for obtaining the set of visible active contracts of a given interface type) and

queryInterfaceContractId (for obtaining a single contract given its ContractId). Importantly,

these functions return the view of the contract corresponding to the used interface, rather than the

contract record itself. This is because the ledger might contain contracts of template types that you

don’t know about but that do implement our interface, so the view is the only sensible thing that can

be returned by the ledger.

Also note that immediately after creating the asset with createCmd, you convert the resulting Con­

tractId t into a ContractId IAsset using toInterfaceContractId, which allows you to ex-

ercise IAsset choices on it.

mkAssetTest : forall t.

(Template t, Implements t IAsset, HasAgreement t) =>

Text ­> Parties ­> (Party ­> Party ­> t) ­> Script (ContractId IAsset)

mkAssetTest assetTxt Parties {..} mkAsset = do

aliceAsset <­

alice `submit` do

toInterfaceContractId @IAsset <$>

createCmd (mkAsset alice alice)

aliceAssetView <­

queryInterfaceContractId @IAsset alice aliceAsset

debugRaw $ unlines

["Alice's Asset (" <> assetTxt <> "):"

, "\tContractId: " <> show aliceAsset

, "\tValue: " <> show aliceAssetView

]

bobAssetTransferProposal <­

alice `submit` do

exerciseCmd aliceAsset ProposeIAssetTransfer with

newOwner = bob

bobAsset <­

(continues on next page)

1.11. Write Smart Contracts with Daml 107

Daml SDK Documentation, 2.7.3

(continued from previous page)

bob `submit` do

exerciseCmd bobAssetTransferProposal AcceptIAssetTransferProposal

charlieAssetTransferProposal <­

bob `submit` do

exerciseCmd bobAsset ProposeIAssetTransfer with

newOwner = charlie

charlieAsset <­

charlie `submit` do

exerciseCmd charlieAssetTransferProposal AcceptIAssetTransferProposal

dominicAssetTransferProposal <­

charlie `submit` do

exerciseCmd charlieAsset ProposeIAssetTransfer with

newOwner = dominic

charlieAsset' <­

dominic `submit` do

exerciseCmd dominicAssetTransferProposal RejectIAssetTransferProposal

emilyAssetTransferProposal <­

charlie `submit` do

exerciseCmd charlieAsset' ProposeIAssetTransfer with

newOwner = emily

charlieAsset'' <­

charlie `submit` do

exerciseCmd emilyAssetTransferProposal WithdrawIAssetTransferProposal

charlieAssetView <­

queryInterfaceContractId @IAsset charlie charlieAsset''

debugRaw $ unlines

["Charlie's Asset (" <> assetTxt <> "):"

, "\tContractId: " <> show charlieAsset''

, "\tView: " <> show charlieAssetView

]

charlieAssetView ===

Some (view (toInterface @IAsset (mkAsset alice charlie)))

pure charlieAsset''

1.11.10 Exception Handling

The default behavior in Daml is to abort the transaction on any error and roll back all changes that

have happened until then. However, this is not always appropriate. In some cases, it makes sense

to recover from an error and continue the transaction instead of aborting it.

One option for doing that is to represent errors explicitly via Either or Option as shown in Data

Types. This approach has the advantage that it is very explicit about which operations are allowed to

fail without aborting the entire transaction. However, it also has twomajor downsides. First, it can be

invasive for operations where aborting the transaction is often the desired behavior, e.g., changing

108 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

division to return Either or an Option to handle division by zero would be a very invasive change

andmany call sitesmight notwant to handle the error case explicitly. Second, andmore importantly,

this approach does not allow rolling back ledger actions that have happened before the point where

failure is detected; if a contract got created beforewe hit the error, there is noway to undo that except

for aborting the entire transaction (which is what we were trying to avoid in the first place).

By contrast, exceptions provide a way to handle certain types of errors in such a way that, on the one

hand, most of the code that is allowed to fail can be written just like normal code, and, on the other

hand, the programmer can clearly delimit which part of the current transaction should be rolled

back on failure. All of that still happens within the same transaction and is thereby atomic contrary

to handling the error outside of Daml.

Hint: Remember that you can load all the code for this section into a folder calledintro8by running

daml new intro8 ­­template daml­intro­8

Our example for the use of exceptions will be a simple shop template. Users can order items by

calling a choice and transfer money (in the form of an Iou issued by their bank) from their account

to the owner in return.

First, we need to setup a template to represent the account of a user:

template Account with

issuer : Party

owner : Party

amount : Decimal

where

signatory issuer, owner

ensure amount > 0.0

key (issuer, owner) : (Party, Party)

maintainer key._2

choice Transfer : () with

newOwner : Party

transferredAmount : Decimal

controller owner, newOwner

do create this with amount = amount ­ transferredAmount

create Iou with issuer = issuer, owner = newOwner, amount =␣

↪→transferredAmount

pure ()

Note that the template has an ensure clause that ensures that the amount is always positive so

Transfer cannot transfer more money than is available.

The shop is represented as a template signed by the owner. It has a field to represent the bank

accepted by the owner, a list of observers that can order items, and a fixed price for the items that

can be ordered:

template Shop

with

owner : Party

bank : Party

observers : [Party]

price : Decimal

where

(continues on next page)

1.11. Write Smart Contracts with Daml 109

Daml SDK Documentation, 2.7.3

(continued from previous page)

signatory owner

observer observers

Note: In a real setting the price of each item for sale might be defined in a separate contract.

The ordering process is then represented by a non-consuming choice on this template which calls

Transfer and creates an Order contract in return:

nonconsuming choice OrderItem : ContractId Order

with

shopper : Party

controller shopper

do exerciseByKey @Account (bank, shopper) (Transfer owner price)

create Order

with

shopOwner = owner

shopper = shopper

However, the shop owner has realized that often orders fail because the account of their users is not

topped up. They have a small trusted userbase they know well so they decide that if the account

is not topped up, the shoppers can instead issue an Iou to the owner and pay later. While it would

be possible to check the conditions under which Transfer will fail in OrderItem this can be quite

fragile: In this example, the condition is relatively simple but in larger projects replicating the con-

ditions outside the choice and keeping the two in sync can be challenging.

Exceptions allow us to handle this differently. Rather than replicating the checks in Transfer, we

can instead catch the exception thrown on failure. To do so we need to use a try-catch block. The

try block defines the scope within which we want to catch exceptions while the catch clauses

define which exceptions we want to catch and how we want to handle them. In this case, we want to

catch the exception thrown by a failed ensure clause. This exception is defined in daml­stdlib as

PreconditionFailed. Putting it together our order process for trusted users looks as follows:

nonconsuming choice OrderItemTrusted : ContractId Order

with

shopper : Party

controller shopper

do cid <­ create Order

with

shopOwner = owner

shopper = shopper

try do

exerciseByKey @Account (bank, shopper) (Transfer owner price)

catch

PreconditionFailed _ ­> do

create Iou with

issuer = shopper

owner = owner

amount = price

pure ()

pure cid

Let’s walk through this code. First, as mentioned, the shop owner is the trusting kind, so he wants

to start by creating the Order no matter what. Next, he tries to charge the customer for the order.

110 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

We could, at this point, check their balance against the cost of the order, but that would amount

to duplicating the logic already present in Account. This logic is pretty simple in this case, but

duplicating invariants is a bad habit to get into. So, instead, we just try to charge the account. If

that succeeds, we just merrily ignore the entire catch clause; if that fails, however, we do not want

to destroy the Order contract we had already created. Instead, we want to catch the error thrown by

the ensure clause of Account (in this case, it is of type PreconditionFailed) and try something

else: create an Iou contract to register the debt and move on.

Note that if the Iou creation still failed (unlikely with our definition of Iou here, but could happen

in more complex scenarios), because that one is not wrapped in a try block, we would revert to the

default Daml behaviour and the Order creation would be rolled back.

In addition to catching built-in exceptions like PreconditionFailed, you can also define your own

exception types which can be caught and thrown. As an example, let’s consider a variant of the

Transfer choice that only allows for transfers up to a given limit. If the amount is higher than the

limit, we throw an exception called TransferLimitExceeded.

We first have to define the exception and define a way to represent it as a string. In this case, our

exception should store the amount that someone tried to transfer as well as the limit.

exception TransferLimitExceeded

with

limit : Decimal

attempted : Decimal

where

message "Transfer of " <> show attempted <> " exceeds limit of " <> show limit

To throw our own exception, you can use throw in Update and Script or throwPure in other con-

texts.

choice TransferLimited : () with

newOwner : Party

transferredAmount : Decimal

controller owner, newOwner

do let limit = 50.0

when (transferredAmount > limit) $

throw TransferLimitExceeded with

limit = limit

attempted = transferredAmount

create this with amount = amount ­ transferredAmount

create Iou with issuer = issuer, owner = newOwner, amount =␣

↪→transferredAmount

pure ()

Finally, we can adapt our choice to catch this exception as well:

nonconsuming choice OrderItemTrustedLimited : ContractId Order

with

shopper : Party

controller shopper

do try do

exerciseByKey @Account (bank, shopper) (TransferLimited owner price)

pure ()

catch

PreconditionFailed _ ­> do

create Iou with

(continues on next page)

1.11. Write Smart Contracts with Daml 111

Daml SDK Documentation, 2.7.3

(continued from previous page)

issuer = shopper

owner = owner

amount = price

pure ()

TransferLimitExceeded _ _ ­> do

create Iou with

issuer = shopper

owner = owner

amount = price

pure ()

create Order

with

shopOwner = owner

shopper = shopper

For more information on exceptions, take a look at the language reference.

1.11.10.1 Next Up

We have now seen how to develop safe models and how we can handle errors in those models in a

robust and simple way. But the journey doesn’t stop there. In Work with Dependencies you will learn

how to extend an already running application to enhance it with new features. In that context you’ll

learn a bit more about the architecture of Daml, about dependencies, and about identifiers.

1.11.11 Work with Dependencies

The application from Composing Choices is a complete and secure model for atomic swaps of assets,

but there is plenty of room for improvement. However, one can’t implement all features before going

live with an application so it’s important to understand how to change already running code. There

are fundamentally two types of change one may want to make:

1. Upgrades, which change existing logic. For example, one might want the Asset template to

have multiple signatories.

2. Extensions, which merely add new functionality through additional templates.

Upgrades are covered in their own section outside this introduction to Daml: Upgrading and Extending

Daml Applications so in this section we will extend the Composing Choicesmodel with a simple second

workflow: a multi-leg trade. In doing so, you’ll learn about:

• The software architecture of the Daml Stack

• Dependencies and Data Dependencies

• Identifiers

Since we are extending Composing Choices, the setup for this chapter is slightly more complex:

1. In a base directory, load the Composing Choices project using daml new intro7 ­­template

daml­intro­7. The directory intro7 here is important as it’ll be referenced by the other

project we are creating.

2. In the same directory, load this chapter’s project using daml new intro9 ­­template

daml­intro­9.

Dependencies contains a newmodule Intro.Asset.MultiTrade and a corresponding testmod-

ule Test.Intro.Asset.MultiTrade.

112 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.11.11.1 DAR, DALF, Daml-LF, and the Engine

In Composing Choices you already learnt a little about projects, Daml-LF, DAR files, and dependencies.

In this chapter we will actually need to have dependencies from the current project to the Composing

Choices project so it’s time to learn a little more about all this.

Let’s have a look inside the DAR file of Composing Choices. DAR files, like Java JAR files, are just ZIP

archives, but the SDK also has a utility to inspect DARs out of the box:

1. Navigate into the intro7 directory.

2. Build using daml build ­o assets.dar

3. Run daml damlc inspect­dar assets.dar

You’ll get a whole lot of output. Under the header “DAR archive contains the following files:” you’ll

see that the DAR contains:

1. *.dalf files for the project and all its dependencies

2. The original Daml source code

3. *.hi and *.hie files for each *.daml file

4. Some meta-inf and config files

The first file is something likeintro7­1.0.0­887056cbb313b94ab9a6caf34f7fe4fbfe19cb0c861e50d1594c665567ab7625.

dalf which is the actual compiled package for the project. *.dalf files contain Daml-LF, which is

Daml’s intermediate language. The file contents are a binary encoded protobuf message from the

daml-lf schema. Daml-LF is evaluated on the Ledger by the Daml Engine, which is a JVM component

that is part of tools like the IDE’s Script runner, the Sandbox, or proper production ledgers. If Daml-LF

is to Daml what Java Bytecode is to Java, the Daml Engine is to Daml what the JVM is to Java.

1.11.11.2 Hashes and Identifiers

Under the heading “DAR archive contains the following packages:” you get a similar looking list

of package names, paired with only the long random string repeated. That hexadecimal string,

887056cbb313b94ab9a6caf34f7fe4fbfe19cb0c861e50d1594c665567ab7625 in this case, is

the package hash and the primary and only identifier for a package that’s guaranteed to be avail-

able and preserved. Meta information like name (“intro7”) and version (“1.0.0”) helpmake it human

readable but should not be relied upon. You may not always get DAR files from your compiler, but be

loading them from a running Ledger, or get them from an artifact repository.

We can see this in action. When a DAR file gets deployed to a ledger, not all meta information is

preserved.

1. Note down your main package hash from running inspect­dar above

2. Start the project using daml start

3. Open a second terminal and run daml ledger fetch­dar ­­host localhost ­­port

6865 ­­main­package­id "887056cbb313b94ab9a6caf34f7fe4fbfe19cb0c861e50d1594c665567ab7625"

­o assets_ledger.dar, making sure to replace the hash with the appropriate one.

4. Run daml damlc inspect­dar assets_ledger.dar

You’ll notice two things. Firstly, a lot of the dependencies have lost their names, they are now only

identifiable by hash. We could of course also create a second project intro7­1.0.0 with com-

pletely different contents so even when name and version are available, package hash is the only

safe identifier.

That’s why over the Ledger API, all types, like templates and records are identified by the triple (en­

tity name, module name, package hash). Your client application should know the package

1.11. Write Smart Contracts with Daml 113

https://github.com/digital-asset/daml/tree/main/daml-lf/archive

Daml SDK Documentation, 2.7.3

hashes it wants to interact with. To aid that, inspect­dar also provides a machine-readable for-

mat for the information it emits: daml damlc inspect­dar ­­json assets_ledger.dar. The

main_package_id field in the resulting JSON payload is the package hash of our project.

Secondly, you’ll notice that all the *.daml, *.hi and *.hie files are gone. This leads us to data

dependencies.

1.11.11.3 Dependencies and Data Dependencies

Dependencies under the daml.yaml dependencies group rely on the *.hi files. The information

in these files is crucial for dependencies like the Standard Library, which provide functions, types

and typeclasses.

However, as you can see above, this information isn’t preserved. Furthermore, preserving this infor-

mation may not even be desirable. Imagine we had built intro7 with SDK 1.100.0, and are building

intro9 with SDK 1.101.0. All the typeclasses and instances on the inbuilt types may have changed

and are now present twice – once from the current SDK and once from the dependency. This gets

messy fast, which is why the SDK does not support dependencies across SDK versions. For depen-

dencies on contractmodels thatwere fetched froma ledger, or come froman older SDK version, there

is a simpler kind of dependency called data­dependencies. The syntax for data­dependencies

is the same, but they only rely on the “binary” *.dalf files. The name tries to confer that the main

purpose of such dependencies is to handle data: Records, Choices, Templates. The stuff one needs

to use contract composability across projects.

For an extension model like this one,``data-dependencies`` are appropriate, so the current project

includes Composing Choices that way:

­ daml­script

data­dependencies:

­ ../intro7/assets.dar

You’ll notice amodule Test.Intro.Asset.TradeSetup, which is almost a carbon copy of the Com-

posing Choices trade setup Scripts. data­dependencies is designed to use existing contracts and

data types. Daml Script is not imported. In practice, we also shouldn’t expect that the DAR file we

download from the ledger usingdaml ledger fetch­dar contains test scripts. For larger projects

it’s good practice to keep them separate and only deploy templates to the ledger.

1.11.11.4 Structuring Projects

As you’ve seenhere, identifiers depend on the package as awhole andpackages always bring all their

dependencies with them. Thus changing anything in a complex dependency graph can have signif-

icant repercussions. It is therefore advisable to keep dependency graphs simple, and to separate

concerns which are likely to change at different rates into separate packages.

For example, in all our projects in this intro, including this chapter, our scripts are in the sameproject

as our templates. In practice, that means changing a test changes all identifiers, which is not de-

sirable. It’s better for maintainability to separate tests frommain templates. If we had done that in

Composing Choices, that would also have saved us from copying Composing Choices.

Similarly, we included Trade in the same project as Asset in Composing Choices, even though Trade

is a pure extension to the core Assetmodel. If we expect Trade to need more frequent changes, it

may be a good idea to split it out into a separate project from the start.

114 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.11.11.5 Next Up

The MultiTrademodel has more complex control flow and data handling than previous models. In

Functional Programming 101 you’ll learn how to write more advanced logic: control flow, folds, common

typeclasses, custom functions, and the Standard Library. We’ll be using the same projects so don’t

delete your folders just yet.

1.11.12 Functional Programming 101

In this chapter, you will learn more about expressing complex logic in a functional language like

Daml. Specifically, you’ll learn about

• Function signatures and functions

• Advanced control flow (if...else, folds, recursion, when)

If you no longer have your Composing Choices andWork with Dependencies projects set up, and want to

look back at the code, please follow the setup instructions in Work with Dependencies to get hold of

the code for this chapter.

Note: There is a project template daml­intro­10 for this chapter, but it only contains a single

source file with the code snippets embedded in this section.

1.11.12.1 The Haskell Connection

The previous chapters of this introduction to Daml have mostly covered the structure of templates,

and their connection to the Daml Ledger Model. The logic of what happens within the do blocks of

choices has been kept relatively simple. In this chapter, we will dive deeper into Daml’s expression

language, the part that allows you to write logic inside those do blocks. But we can only scratch

the surface here. Daml borrows a lot of its language from Haskell. If you want to dive deeper, or

learn about specific aspects of the language you can refer to standard literature on Haskell. Some

recommendations:

• Finding Success and Failure in Haskell (Julie Maronuki, Chris Martin)

• Haskell Programming from first principles (Christopher Allen, Julie Moronuki)

• Learn You a Haskell for Great Good! (Miran Lipovača)

• Programming in Haskell (Graham Hutton)

• Real World Haskell (Bryan O’Sullivan, Don Stewart, John Goerzen)

When comparing Daml to Haskell it’s worth noting:

• Haskell is a lazy language, which allows you to write things like head [1..], meaning “take

the first element of an infinite list”. Daml by contrast is strict. Expressions are fully evaluated,

which means it is not possible to work with infinite data structures.

• Daml has a with syntax for records and dot syntax for record field access, neither of which is

present in Haskell. However, Daml supports Haskell’s curly brace record notation.

• Daml has a number of Haskell compiler extensions active by default.

• Daml doesn’t support all features of Haskell’s type system. For example, there are no existential

types or GADTs.

• Actions are called Monads in Haskell.

1.11. Write Smart Contracts with Daml 115

https://www.haskell.org
https://joyofhaskell.com/
http://haskellbook.com/
http://learnyouahaskell.com/
http://www.cs.nott.ac.uk/~pszgmh/pih.html
http://book.realworldhaskell.org/

Daml SDK Documentation, 2.7.3

1.11.12.2 Functions

In Data Types you learnt about one half of Daml’s type system: Data types. It’s now time to learn about

the other, which are Function types. Function types in Daml can be spotted by looking for ­> which

can be read as “maps to”.

For example, the function signatureInt ­> Intmapsan integer to another integer. There aremany

such functions, but one would be:

increment : Int ­> Int

increment n = n + 1

You can see here that the function declaration and the function definitions are separate. The dec-

laration can be omitted in cases where the type can be inferred by the compiler, but for top-level

functions (ie ones at the same level as templates, directly under a module), it’s often a good idea to

include them for readability.

In the case of increment it could have been omitted. Similarly, we could define a function add

without a declaration:

add n m = n + m

If you do this, and wonder what type the compiler has inferred, you can hover over the function name

in the IDE:

What you see here is a slightly more complex signature:

add : Additive a => a ­> a ­> a

There are two interesting things going on here:

1. We have more than one ­>.

2. We have a type parameter a with a constraint Additive a.

Function Application

Let’s start by looking at the right hand part a ­> a ­> a. The ­> is right associative, meaning a ­>

a ­> a is equivalent to a ­> (a ­> a). Using the “maps to” way of reading ­>, we get “amaps

to a function that maps a to a”.

And this is indeedwhat happens. We can define a different version of increment by partially applying

add:

increment2 = add 1

116 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

If you try this out in your IDE, you’ll see that the compiler infers type Int ­> Int again. It can do so

because of the literal 1 : Int.

So if we have a function f : a ­> b ­> c ­> d and a value valA : a, we get f valA : b ­>

c ­> d, i.e. we can apply the function argument by argument. If we also had valB : b, we would

have f valA valB : c ­> d. What this tells you is that function application is left associative: f

valA valB == (f valA) valB.

Infix Functions

Now add is clearly just an alias for +, but what is +? + is just a function. It’s only special because it

starts with a symbol. Functions that start with a symbol are infix by default which means they can

be written between two arguments. That’s why we can write 1 + 2 rather than + 1 2. The rules for

converting between normal and infix functions are simple. Wrap an infix function in parentheses to

use it as a normal function, and wrap a normal function in backticks to make it infix:

three = 1 `add` 2

With that knowledge, we could have defined addmore succinctly as the alias that it is:

add2 : Additive a => a ­> a ­> a

add2 = (+)

If we want to partially apply an infix operation we can also do that as follows:

increment3 = (1 +)

double = (* 2)

Note: While function application is left associative by default, infix operators can be declared left

or right associative and given a precedence. Good examples are the boolean operations && and ||,

which are declared right associative with precedences 3 and 2, respectively. This allows you to write

True || True && False and get value True. See section 4.4.2 of the Haskell 98 report for more

on fixities.

Type Constraints

TheAdditive a =>part of the signature ofadd is a type constraint on the type parametera. Addi­

tive here is a typeclass. You already met typeclasses like Eq and Show in Data Types. The Additive

typeclass says that you can add a thing, i.e. there is a function (+) : a ­> a ­> a. Now the way

to read the full signature of add is “Given that a has an instance for the Additive typeclass, amaps

to a function which maps a to a”.

Typeclasses inDaml are abit like interfaces in other languages. To be able to add two thingsusing the

+ function, those things need to “expose” (have an instance for) the Additive interface (typeclass).

Unlike interfaces, typeclasses can have multiple type parameters. A good example, which also

demonstrates the use of multiple constraints at the same time, is the signature of the exercise

function:

1.11. Write Smart Contracts with Daml 117

https://www.haskell.org/onlinereport/decls.html

Daml SDK Documentation, 2.7.3

exercise : (Template t, Choice t c r) => ContractId t ­> c ­> Update r

Let’s turn this into prose: Given that t is the type of a template, and that t has a choice cwith return

type r, the exercise function maps a ContractId for a contract of type t to a function that takes

the choice arguments of type c and returns an Update resulting in type r.

That’s quite a mouthful, and does require one to know what meaning the typeclass Choice gives to

parameters t c and r, but in many cases, that’s obvious from the context or names of typeclasses

and variables.

Using single letters, while common, is not mandatory. The above may be made a little bit clearer by

expanding the type parameter names, at the cost of making the code a bit longer:

exercise : (Template template, Choice template choice result) =>

ContractId template ­> choice ­> Update result

Pattern Matching in Arguments

Youmet patternmatching in Data Types, using case expressions which is one way of pattern match-

ing. However, it can also be convenient to do the patternmatching at the level of function arguments.

Think about implementing the function uncurry:

uncurry : (a ­> b ­> c) ­> (a, b) ­> c

uncurry takes a function with two arguments (or more, since c could be a function), and turns it

into a function from a 2-tuple to c. Here are three ways of implementing it, using tuple accessors,

case pattern matching, and function pattern matching:

uncurry1 f t = f t._1 t._2

uncurry2 f t = case t of

(x, y) ­> f x y

uncurry f (x, y) = f x y

Any pattern matching you can do in case you can also do at the function level, and the compiler

helpfully warns you if you did not cover all cases, which is called “non-exhaustive”.

fromSome : Optional a ­> a

fromSome (Some x) = x

The above will give you a warning:

warning:

Pattern match(es) are non­exhaustive

In an equation for ‘fromSome’: Patterns not matched: None

A function that does not cover all its cases, likefromSomehere, is called a partial function. fromSome

None will cause a runtime error.

We can use function level pattern matching together with a feature called Record Wildcards to write

the function issueAsset in Work with Dependencies:

118 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

issueAsset : Asset ­> Script (ContractId Asset)

issueAsset asset@(Asset with ..) = do

assetHolders <­ queryFilter @AssetHolder issuer

(\ah ­> (ah.issuer == issuer) && (ah.owner == owner))

case assetHolders of

(ahCid, _)::_ ­> submit asset.issuer do

exerciseCmd ahCid Issue_Asset with ..

[] ­> abort ("No AssetHolder found for " <> show asset)

The .. in the pattern match here means bind all fields from the given record to local variables, so

we have local variables issuer, owner, etc.

The .. in the second to last line means fill all fields of the new record using local variables of the

matching names, in this case (per the definition of Issue_Asset), symbol and quantity, taken

from the asset argument to the function. In other words, this is equivalent to:

exerciseCmd ahCid Issue_Asset with symbol = asset.symbol, quantity = asset.

↪→quantity

because the notation asset@(Asset with ..) binds asset to the entire record, while also bind-

ing all of the fields of asset to local variables.

Functions Everywhere

You have probably already guessed it: Anywhere you can put a value in Daml you can also put a

function. Even inside data types:

data Predicate a = Predicate with

test : a ­> Bool

More often it makes sense to define functions locally, inside a let clause or similar. Good examples

of this are the validate and transfer functions defined locally in the Trade_Settle choice of

the model from Work with Dependencies:

let

validate (asset, assetCid) = do

fetchedAsset <­ fetch assetCid

assertMsg

"Asset mismatch"

(asset == fetchedAsset with

observers = asset.observers)

mapA_ validate (zip baseAssets baseAssetCids)

mapA_ validate (zip quoteAssets quoteAssetCids)

let

transfer (assetCid, approvalCid) = do

exercise approvalCid TransferApproval_Transfer with assetCid

transferredBaseCids <­ mapA transfer (zip baseAssetCids baseApprovalCids)

transferredQuoteCids <­ mapA transfer (zip quoteAssetCids␣

↪→quoteApprovalCids)

1.11. Write Smart Contracts with Daml 119

Daml SDK Documentation, 2.7.3

You can see that the function signature is inferred from the context here. If you look closely (or hover

over the function in the IDE), you’ll see that it has signature

validate : (HasFetch r, Eq r, HasField "observers" r a) => (r, ContractId r) ­>␣

↪→Update ()

Note: Bear in mind that functions are not serializable, so you can’t use them inside template ar-

guments, as choice inputs, or as choice outputs. They also don’t have instances of the Eq or Show

typeclasses which one would commonly want on data types.

ThemapAandmapA_ functions loop through the lists of assets andapprovals andapply the functions

validate and transfer to each element of those lists, performing the resulting Update action in

the process. We’ll look at that more closely under Looping below.

Lambdas

Daml supports inline functions, called “lambda”s. They are defined using the (\x y z ­> ...)

syntax. For example, a lambda version of increment would be (\n ­> n + 1).

1.11.12.3 Control Flow

In this section, we will cover branching and looping, and look at a few common patterns of how to

translate procedural code into functional code.

Branching

Until Composing Choices the only real kind of control flow introduced has been case, which is a pow-

erful tool for branching.

If … Else

Add Constraints to a Contract also showed a seemingly self-explanatory if ... else expression, but

didn’t explain it further. Let’s implement the functionboolToInt : Bool ­> Intwhich in typical

fashion maps True to 1 and False to 0. Here is an implementation using case:

boolToInt b = case b of

True ­> 1

False ­> 0

If you write this function in the IDE, you’ll get a warning from the linter:

Suggestion: Use if

Found:

case b of

True ­> 1

False ­> 0

Perhaps:

if b then 1 else 0

120 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

The linter knows the equivalence and suggests a better implementation:

boolToInt2 b = if b

then 1

else 0

In short: if ... else expressions are equivalent to case expressions, but can be easier to read.

Control Flow as Expressions

case and if ... else expressions really are control flow in the sense that they short-circuit:

doError t = case t of

"True" ­> True

"False" ­> False

_ ­> error ("Not a Bool: " <> t)

This function behaves as you would expect: the error only gets evaluated if an invalid text is passed

in.

This is different from functions, where all arguments are evaluated immediately:

ifelse b t e = if b then t else e

boom = ifelse True 1 (error "Boom")

In the above, boom is an error.

While providing proper control flow, case and if ... else expressions do result in a value when

evaluated. You can actually see that in the function definitions above. Since each of the functions is

defined just as a case or if ... else expression, the value of the evaluated function is just the

value of the case or if ... else expression. Values have a type: the if ... else expression

in boolToInt2 has type Int as that is what the function returns; similarly, the case expression

in doError has type Bool. To be able to give such expressions an unambiguous type, each branch

needs to have the same type. The below function does not compile as one branch tries to return an

Int and the other a Text:

typeError b = if b

then 1

else "a"

If we need functions that can return two (ormore) types of thingsweneed to encode that in the return

type. For two possibilities, it’s common to use the Either type:

intOrText : Bool ­> Either Int Text

intOrText b = if b

then Left 1

else Right "a"

When you have more than two possible types (and sometimes even just for two types), it can be

clearer to define your own variant type to wrap all possibilities.

1.11. Write Smart Contracts with Daml 121

Daml SDK Documentation, 2.7.3

Branching in Actions

The most common case where this becomes important is inside do blocks. Say we want to create a

contract of one type in one case, and of another type in another case. Let’s say we have two template

types and want to write a function that creates an S if a condition is met, and a T otherwise.

template T

with

p : Party

where

signatory p

template S

with

p : Party

where

signatory p

It would be tempting to write a simple if ... else, but it won’t typecheck if each branch returns

a different type:

typeError b p = if b

then create T with p

else create S with p

We have two options:

1. Use the Either trick from above.

2. Get rid of the return types.

ifThenSElseT1 b p = if b

then do

cid <­ create S with p

return (Left cid)

else do

cid <­ create T with p

return (Right cid)

ifThenSElseT2 b p = if b

then do

create S with p

return ()

else do

create T with p

return ()

The latter is so common that there is a utility function in DA.Action to get rid of the return type:

void : Functor f => f a ­> f ().

ifThenSElseT3 b p = if b

then void (create S with p)

else void (create T with p)

void also helps express control flow of the type “Create a T only if a condition is met.

122 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

conditionalS b p = if b

then void (create S with p)

else return ()

Note that we still need the else clause of the same type (). This pattern is so common, it’s encap-

sulated in the standard library function DA.Action.when : (Applicative f) => Bool ­> f

() ­> f ().

conditionalS2 b p = when b (void (create S with p))

Despite when looking like a simple function, the compiler does somemagic so that it short-circuits

evaluation just like if ... else and case. The following noop function is a no-op (i.e. “does noth-

ing”), not an error as one might otherwise expect:

noop : Update () = when False (error "Foo")

With case, if ... else, void and when, you can express all branching. However, one additional

feature youmay want to learn is guards. They are not covered here, but can help avoid deeply nested

if ... else blocks. Here’s just one example. The Haskell sources at the beginning of the chapter

cover this topic in more depth.

tellSize : Int ­> Text

tellSize d

| d < 0 = "Negative"

| d == 0 = "Zero"

| d == 1 = "Non­Zero"

| d < 10 = "Small"

| d < 100 = "Big"

| d < 1000 = "Huge"

| otherwise = "Enormous"

Looping

Other than branching, the most common form of control flow is looping. Looping is usually used to

iteratively modify some state. We’ll use JavaScript in this section to illustrate the procedural way of

doing things.

function sum(intArr) {

var result = 0;

intArr.forEach (i => {

result += i;

});

return result;

}

A more general loop looks like this:

function whileF(init, cont, step, finalize) {

var state = init();

while (cont(state)) {

state = step(state);

}

(continues on next page)

1.11. Write Smart Contracts with Daml 123

Daml SDK Documentation, 2.7.3

(continued from previous page)

return finalize(state);

}

In both cases, state is being mutated: result in the former, state in the latter. Values in Daml are

immutable, so it needs to work differently. In Daml we will do this with folds and recursion.

Folds

Folds correspond to looping with an explicit iterator: for and forEach loops in procedural lan-

guages. Themost common iterator is a list, as is the case in the sum function above. For such cases,

Daml has the foldl function. The l stands for “left” and means the list is processed from the left.

There is also a corresponding foldr which processes from the right.

foldl : (b ­> a ­> b) ­> b ­> [a] ­> b

Let’s give the type parameters semantic names. b is the state, a is an item. foldls first argument

is a function which takes a state and an item and returns a new state. That’s the equivalent of the

inner block of the forEach. It then takes a state, which is the initial state, and a list of items, which

is the iterator. The result is again a state. The sum function above can be translated to Daml almost

instantly with those correspondences in mind:

sum ints = foldl (+) 0 ints

If we wanted to be more verbose, we could replace (+) with a lambda (\result i ­> result +

i) which makes the correspondence to result += i from the JavaScript clearer.

Almost all loops with explicit iterators can be translated to folds, though we have to take a bit of care

with performance when it comes to translating for loops:

function sumArrs(arr1, arr2) {

var l = min (arr1.length, arr2.length);

var result = new int[l];

for(var i = 0; i < l; i++) {

result[i] = arr1[i] + arr2[i];

}

return result;

}

Translating the for into a forEach is easy if you can get your hands on an array containing values

[0..(l­1)]. And that’s how you do it in Daml, using ranges. [0..(l­1)] is shorthand for enum­

FromTo 0 (l­1), which returns the list you’d expect.

Daml also has an operator (!!) : [a] ­> Int ­> awhich returns an element in a list. Youmay

now be tempted to write sumArrs like this:

sumArrs : [Int] ­> [Int] ­> [Int]

sumArrs arr1 arr2 =

let l = min (length arr1) (length arr2)

sumAtI i = (arr1 !! i) + (arr2 !! i)

in foldl (\state i ­> (sumAtI i) :: state) [] [1..(l­1)]

Unfortunately, that’s not a very good approach. Lists in Daml are linked lists, which makes access

using (!!) too slow for this kind of iteration. A better approach in Daml is to get rid of the i alto-

124 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

gether and instead merge the lists first using the zip function, and then iterate over the “zipped”

up lists:

sumArrs2 arr1 arr2 = foldl (\state (x, y) ­> (x + y) :: state) [] (zip arr1 arr2)

zip : [a] ­> [b] ­> [(a, b)] takes two lists, and merges them into a single list where the

first element is the 2-tuple containing the first element of the two input lists, and so on. It drops any

left-over elements of the longer list, thus making the min logic unnecessary.

Maps

In effect, the lambda passed to foldl only “wants” to act on a single element of the (zipped-up)

input list, but still has to manage the concatenation of the whole state. Acting on each element

separately is a common-enough pattern that there is a specialized function for it: map : (a ­>

b) ­> [a] ­> [b]. Using it, we can rewrite sumArr to:

sumArrs3 arr1 arr2 = map (\(x, y) ­> (x + y)) (zip arr1 arr2)

As a rule, use map if the result has the same shape as the input and you don’t need to carry state

from one iteration to the next. Use folds if you need to accumulate state in any way.

Recursion

If there is no explicit iterator, you can use recursion. Let’s try to write a function that reverses a list,

for example. We want to avoid (!!) so there is no sensible iterator here. Instead, we use recursion:

reverseWorker rev rem = case rem of

[] ­> rev

x::xs ­> reverseWorker (x::rev) xs

reverse xs = reverseWorker [] xs

You may be tempted to make reverseWorker a local definition inside reverse, but Daml only

supports recursion for top-level functions so the recursive part recurseWorker has to be its own

top-level function.

Folds and Maps in Action Contexts

The folds and map function above are pure in the sense introduced in Add Constraints to a Contract:

The functions used to map or process items have no side effects. If you have looked at theWork with

Dependencies models, you’ll have noticed mapA, mapA_, and forA, which seem to serve a similar role

but within Actions . A good example is the mapA call in the testMultiTrade script:

let rels =

[Relationship chfbank alice

, Relationship chfbank bob

, Relationship gbpbank alice

, Relationship gbpbank bob

]

[chfha, chfhb, gbpha, gbphb] <­ mapA setupRelationship rels

1.11. Write Smart Contracts with Daml 125

Daml SDK Documentation, 2.7.3

Here we have a list of relationships (type [Relationship]) and a function setupRelationship

: Relationship ­> Script (ContractId AssetHolder). We want the AssetHolder con-

tracts for those relationships, i.e. something of type [ContractId AssetHolder]. Using the

map function almost gets us there, but map setupRelationship relswould have type [Update

(ContractId AssetHolder)]. This is a list of Update actions, each resulting in a ContractId

AssetHolder. Whatwe need is anUpdate action resulting in a[ContractId AssetHolder]. The

list and Update are nested the wrong way around for our purposes.

Intuitively, it’s clear how to fix this: we want the compound action consisting of performing each of

the actions in the list in turn. There’s a function for that: sequence : : Applicative m => [m

a] ­> m [a]. It implements that intuition and allows us to “take the Update out of the list”, so to

speak. So we could write sequence (map setupRelationship rels). This is so common that

it’s encapsulated in the mapA function, a possible implementation of which is

mapA f xs = sequence (map f xs)

The A in mapA stands for “Action”, and you’ll find that many functions that have something to do

with “looping” have an A equivalent. The most fundamental of all of these is foldlA : Action m

=> (b ­> a ­> m b) ­> b ­> [a] ­> m b, a left fold with side effects. Here the inner function

has a side-effect indicated by the m so the end result m b also has a side effect: the sum of all the

side effects of the inner function.

To improve your familiarity with these concepts, try implementing foldlA in terms of foldl, as well

as sequence and mapA in terms of foldlA. Here is one set of possible implementations:

foldlA2 fn init xs =

let

work accA x = do

acc <­ accA

fn acc x

in foldl work (pure init) xs

mapA2 fn xs =

let

work ys x = do

y <­ fn x

return (y :: ys)

in foldlA2 work [] xs

sequence2 actions =

let

work ys action = do

y <­ action

return (y :: ys)

in foldlA2 work [] actions

forA is just mapA with its arguments reversed. This is useful for readability if the list of items is

already in a variable, but the function is a lengthy lambda.

[usdCid, chfCid] <­ forA [usdCid, chfCid] (\cid ­> submit alice do

exerciseCmd cid SetObservers with

newObservers = [bob]

)

Lastly, you’ll have noticed that in some cases we used mapA_, not mapA. The underscore indicates

that the result is not used, so mapA_ fn xs fn == void (mapA fn xs). The Daml Linter will

126 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

alert you if you could use mapA_ instead of mapA, and similarly for forA_.

1.11.12.4 Next Up

You now know the basics of functions and control flow, both in pure and Action contexts. The Work

with Dependencies example shows just how much can be done with just the tools you have encoun-

tered here, but there are many more tools at your disposal in the Daml Standard Library. It provides

functions and typeclasses for many common circumstances and in Introduction to the Daml Standard

Library, you’ll get an overview of the library and learn how to search and browse it.

1.11.13 Introduction to the Daml Standard Library

In Data Types and Functional Programming 101 you learned how to define your own data types and func-

tions. However, you don’t have to implement everything from scratch. Daml comes with the Daml

Standard Library, which contains types, functions, and typeclasses that cover a large range of use

cases.

In this chapter, you’ll get an overview of the essentials and learn how to browse and search the li-

brary to find functions. Being proficient with the Standard Library will make you considerably more

efficient writing Daml code. Specifically, this chapter covers:

• The Prelude

• Important types from the Standard Library, and associated functions and typeclasses

• Typeclasses

• Important typeclasses like Functor, Foldable, and Traversable

• How to search the Standard Library

To go in depth on some of these topics, the literature referenced in The Haskell Connection cov-

ers them in much greater detail. The Standard Library typeclasses like Applicative, Foldable,

Traversable, Action (calledMonad inHaskell), andmanymore, are the bread andbutter of Haskell

programmers.

Note: There is a project template daml­intro­11 for this chapter, but it only contains a single

source file with the code snippets embedded in this section.

1.11.13.1 The Prelude

You’ve already used a lot of functions, types, and typeclasses without importing anything. Functions

like create, exercise, and (==), types like [], (,), Optional, and typeclasses like Eq, Show, and

Ord. These all come from the Prelude. The Prelude is module that gets implicitly imported into every

other Daml module and contains both Daml specific machinery as well as the essentials needed to

work with the inbuilt types and typeclasses.

1.11. Write Smart Contracts with Daml 127

Daml SDK Documentation, 2.7.3

1.11.13.2 Important Types From the Prelude

In addition to the Native Types, the Prelude defines a number of common types:

Lists

You’ve already met lists. Lists have two constructors [] and x :: xs, the latter of which is

“prepend” in the sense that 1 :: [2] == [1, 2]. In fact [1,2] is just syntactical sugar for 1

:: 2 :: [].

Tuples

In addition to the 2-tuple you have already seen, the Prelude contains definitions for tuples of size

up to 15. Tuples allow you to store mixed data in an ad-hoc fashion. Common use-cases are return

values from functions consisting of several pieces or passing around data in folds, as you saw in

Folds. An example of a relatively wide Tuple can be found in the testmodules of the Exception Handling

project. Test.Intro.Asset.TradeSetup.tradeSetup returns the allocated parties and active

contracts in a long tuple. Test.Intro.Asset.MultiTrade.testMultiTrade puts them back

into scope using pattern matching:

return (alice, bob, usdbank, eurbank, usdha, usdhb, eurha, eurhb, usdCid,␣

↪→eurCid)

(alice, bob, usdbank, eurbank, usdha, usdhb, eurha, eurhb, usdCid, eurCid) <­␣

↪→tradeSetup

Tuples, like lists have some syntacticmagic. Both the types as well as the constructors for tuples are

(,,,) where the number of commas determines the arity of the tuple. Type and data constructor

can be applied with values inside the brackets, or outside, and partial application is possible:

t1 : (Int, Text) = (1, "a")

t2 : (,) Int Text = (1, "a")

t3 : (Int, Text) = (1,) "a"

t4 : a ­> (a, Text) = (,"a")

Note: While tuples of great lengths are available, it is often advisable to define custom records

with named fields for complex structures or long-lived values. Overuse of tuples can harm code

readability.

128 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Optional

The Optional type represents a value thatmay bemissing. It’s the closest thing Daml has to a “nul-

lable” value. Optional has two constructors: Some, which takes a value, and None, which doesn’t

take a value. In many languages one would write code like this:

lookupResult = lookupByKey(k);

if(lookupResult == null) {

// Do something

} else {

// Do something else

}

In Daml the same thing would be expressed as:

lookupResult <­ lookupByKey @T k

case lookupResult of

None ­> do ­­ Do Something

return ()

Some cid ­> do ­­ Do Something

return ()

Either

Either is used in cases where a value should store one of two types. It has two constructors, Left

and Right, each of which take a value of one or the other of the two types. One typical use-case of

Either is as an extended Optional where Right takes the role of Some and Left the role of None,

but with the ability to store an error value. Either Text, for example behaves just like Optional,

except that values with constructor Left have a text associated to them.

Note: As with tuples, it’s easy to overuse Either and harm readability. Consider writing your own

more explicit type instead. For example if you were returning South a vs North b using your own

type over Either would make your code clearer.

1.11.13.3 Typeclasses

You’ve seen typeclasses in use all the way from Data Types. It’s now time to look under the hood.

Typeclasses are declared using the class keyword:

class HasQuantity a q where

getQuantity : a ­> q

setQuantity : q ­> a ­> a

This is akin to an interface declaration of an interface with a getter and setter for a quantity. To

implement this interface, you need to define instances of this typeclass:

data Foo = Foo with

amount : Decimal

(continues on next page)

1.11. Write Smart Contracts with Daml 129

Daml SDK Documentation, 2.7.3

(continued from previous page)

instance HasQuantity Foo Decimal where

getQuantity foo = foo.amount

setQuantity amount foo = foo with amount

Typeclasses can have constraints like functions. For example: class Eq a => Ord ameans “ev-

erything that is orderable can also be compared for equality”. And that’s almost all there’s to it.

1.11.13.4 Important Typeclasses From the Prelude

Eq

The Eq typeclass allows values of a type to be compared for (in)-equality. It makes available two

function: == and /=. Most data types from the Standard Library have an instance of Eq. As you

already learned in Data Types, you can let the compiler automatically derive instances of Eq for you

using the deriving keyword.

Templates always have an Eq instance, and all types stored on a template need to have one.

Ord

The Ord typeclass allows values of a type to be compared for order. It makes available functions: <,

>, <=, and >=. Most of the inbuilt data types have an instance of Ord. Furthermore, types like List

and Optional get an instance of Ord if the type they contain has one. You can let the compiler

automatically derive instances of Ord for you using the deriving keyword.

Show

Show indicates that a type can be serialized to Text, ie “shown” in a shell. Its key function is show,

which takes a value and converts it to Text. All inbuilt data types have an instance for Show and

types like List and Optional get an instance if the type they contain has one. It also supports the

deriving keyword.

Functor

Functors are the closest thing to “containers” that Daml has. Whenever you see a type with a single

type parameter, you are probably looking at a Functor: [a], Optional a, Either Text a, Up­

date a. Functors are things that can be mapped over and as such, the key function of Functor is

fmap, which does generically what the map function does for lists.

Other classic examples of Functors are Sets, Maps, Trees, etc.

130 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Applicative Functor

Applicative Functors are a bit like Actions, which you met in Add Constraints to a Contract, except that

you can’t use the result of one action as the input to another action. The only important Applicative

Functor that isn’t an action in Daml is the Commands type submitted in a submit block in Daml

Script. That’s why in order to use do notation in Daml Script, you have to enable the ApplicativeDo

language extension.

Actions

Actions were already covered in Add Constraints to a Contract. One way to think of them is as “recipes”

for a value, which need to be “executed to get at that value. Actions are always Functors (and Ap-

plicative Functors). The intuition for that is simply that fmap f x is the recipe in x with the extra

instruction to apply the pure function f to the result.

The really important Actions in Daml are Update and Script, but there are many others, like [],

Optional, and Either a.

Semigroups and Monoids

Semigroups and monoids are about binary operations, but in practice, their important use is for Text

and [], where they allow concatenation using the {<>} operator.

Additive and Multiplicative

Additive and Multiplicative abstract out arithmetic operations, so that (+), (­), (*), and some other

functions can be used uniformly between Decimal and Int.

1.11.13.5 Important Modules in the Standard Library

For almost all the types and typeclasses presented above, the Standard Library contains a module:

• DA.List for Lists

• DA.Optional for Optional

• DA.Tuple for Tuples

• DA.Either for Either

• DA.Functor for Functors

• DA.Action for Actions

• DA.Monoid and DA.Semigroup for Monoids and Semigroups

• DA.Text for working with Text

• DA.Time for working with Time

• DA.Date for working with Date

You get the idea, the names are fairly descriptive.

Other than the typeclassesdefined in Prelude, there are twomodules generalizing concepts you’ve al-

ready learned, which are worth knowing about: Foldable and Traversable. In Looping you learned

all about folds and their Action equivalents. All the examples there were based on lists, but there are

many other possible iterators. This is expressed in two additional typeclasses: DA.Traversable, and

1.11. Write Smart Contracts with Daml 131

Daml SDK Documentation, 2.7.3

DA.Foldable. For more detail on these concepts, please refer to the literature in The Haskell Connection,

or https://wiki.haskell.org/Foldable_and_Traversable.

1.11.13.6 Search the Standard Library

Being able to browse the Standard Library starting from The standard library is a start, and themodule

naming helps, but it’s not an efficient process for finding out what a function you’ve encountered

does, even less so for finding a function that does a thing you need to do.

Daml has its own version of the Hoogle search engine, which offers search both by name and by

signature. This function is fully integrated into the search bar on https://docs.daml.com/, but for

those wanting a pure Standard Library search, it’s also available on https://hoogle.daml.com.

Search for Functions by Name

Say you come across some functions you haven’t seen before, like the ones in the ensure clause of

the MultiTrade.

ensure (length baseAssetCids == length baseAssets) &&

(length quoteApprovalCids == length quoteAssets) &&

not (null baseAssets) &&

not (null quoteAssets)

Youmaybeable to guesswhatnotandnulldo, but try searching thosenames in thedocumentation

search. Search results from the Standard Library will show on top. not, for example, gives

not

: Bool ­> Bool

Boolean “not”

Signature (including type constraints) and description usually give a pretty clear picture of what a

function does.

Search for Functions by Signature

The other very common use case for the search is that you have some values that you want to do

something with, but don’t know the standard library function you need. On the MultiTrade tem-

plate we have a list baseAssets, and thanks to your ensure clause we know it’s non-empty. In the

original Trade we used baseAsset.owner as the signatory. How do you get the first element of

this list to extract the owner without going through the motions of a complete pattern match using

case?

The trick is to think about the signature of the function that’s needed, and then to search for that

signature. In this case, we want a single distinguished element from a list so the signature should

be [a] ­> a. If you search for that, you’ll get a whole range of results, but again, Standard Library

results are shown at the top.

Scanning the descriptions, head is the obvious choice, as used in the let of the MultiTrade tem-

plate.

132 Chapter 1. Canton References

https://wiki.haskell.org/Foldable_and_Traversable
https://hoogle.haskell.org/
https://docs.daml.com/
https://hoogle.daml.com

Daml SDK Documentation, 2.7.3

Youmay notice that in the search results you also get some hits that don’t mention [] explicitly. For

example:

The reason is that there is an instance for Foldable [a].

Let’s try another search. Suppose you didn’t want the first element, but the one at indexn. Remember

that (!!) operator from Functional Programming 101? There are now two possible signatures we could

search for: [a] ­> Int ­> a and Int ­> [a] ­> a. Try searching for both. You’ll see that the

search returns (!!) in both cases. You don’t have to worry about the order of arguments.

1.11.13.7 Next Up

In the following section, you’ll find options for testing and interacting with Daml code. We also talk

about the operational semantics of some keywords and their commonly associated failures, and a

little bit about how coverage reports work in Daml testing.

1.11.14 Good Design Patterns

Patterns have been useful in the programming world, as both a source of design inspiration, and a

document of good design practices. This document is a catalog of Daml patterns intended to provide

the same facility in the Daml application world.

You can checkout the examples locally via daml new daml­patterns ­­template

daml­patterns.

The Initiate and Accept Pattern The Initiate and Accept pattern demonstrates how to start a bilateral

workflow. One party initiates by creating a proposal or an invite contract. This gives another

party the chance to accept, reject or renegotiate.

The Multiple Party Agreement Pattern The Multiple Party Agreement pattern uses a Pending contract

as a wrapper for the Agreement contract. Any one of the signatory parties can kick off the

workflow by creating a Pending contract on the ledger, filling in themselves in all the signatory

fields. The Agreement contract is not created on the ledger until all parties have agreed to the

Pending contract, and replaced the initiator’s signature with their own.

The Delegation Pattern The Delegation pattern gives one party the right to exercise a choice on behalf

of another party. The agent can control a contract on the ledger without the principal explicitly

committing the action.

The Authorization Pattern The Authorization pattern demonstrates how to make sure a controlling

party is authorized before they take certain actions.

The Locking Pattern The Locking pattern exhibits how to achieve locking safely and efficiently in

Daml. Only the specified locking party can lock the asset through an active and authorized

action. When a contract is locked, some or all choices specified on that contract may not be

exercised.

1.11. Write Smart Contracts with Daml 133

Daml SDK Documentation, 2.7.3

1.11.14.1 The Initiate and Accept Pattern

The Initiate and Accept pattern demonstrates how to start a bilateral workflow. One party initiates

by creating a proposal or an invite contract. This gives another party the chance to accept, reject or

renegotiate.

Motivation

It takes two to tango, but one party has to initiate. It is no different in the business world. The

contractual relationship between two businesses often starts with an invite, a business proposal,

a bid offering, etc.

Invite When a market operator wants to set up a market, they need to go through an onboarding

process inwhich they invite participants to signmaster service agreements and fulfill different

roles in the market. Receiving participants need to evaluate the rights and responsibilities of

each role and respond accordingly.

Propose When issuing an asset, an issuer is making a business proposal to potential buyers. The

proposal lays out what is expected frombuyers, andwhat they can expect from the issuer. Buy-

ers need to evaluate all aspects of the offering, e.g. price, return, and tax implications, before

making a decision.

The Initiate and Accept pattern demonstrates how to write a Daml program to model the initiation

of an inter-company contractual relationship. Daml modelers often have to follow this pattern to

ensure that no participant is forced into an obligation.

Implementation

The Initiate and Accept pattern in general involves two contracts, the initiate contract and the result

contract:

Initiate Contract The initiate contract can be created from a role contract or any other point in the

workflow. In this example, the initiate contract is the proposal contract CoinIssueProposalwhich

the issuer created from the master contract CoinMaster.

template CoinMaster

with

issuer: Party

where

signatory issuer

nonconsuming choice Invite : ContractId CoinIssueProposal

with owner: Party

controller issuer

do create CoinIssueProposal

with coinAgreement = CoinIssueAgreement with issuer; owner

The CoinIssueProposal contract has Issuer as the signatory and Owner as the controller to the

Accept choice. In its complete form, the CoinIssueProposal contract should define all choices

available to the owner, i.e. Accept, Reject or Counter (re-negotiate terms).

template CoinIssueProposal

with

(continues on next page)

134 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

coinAgreement: CoinIssueAgreement

where

signatory coinAgreement.issuer

observer coinAgreement.owner

choice AcceptCoinProposal

: ContractId CoinIssueAgreement

controller coinAgreement.owner

do create coinAgreement

Result Contract Once the owner exercises the AcceptCoinProposal choice on the initiate contract to

express their consent, it returns a result contract representing the agreement between the two

parties. In this example, the result contract is of type CoinIssueAgreement. Note, it has both

issuer and owner as the signatories, implying they both need to consent to the creation of this

contract. Both parties could be controller(s) on the result contract, depending on the business

case.

template CoinIssueAgreement

with

issuer: Party

owner: Party

where

signatory issuer, owner

nonconsuming choice Issue : ContractId Coin

with amount: Decimal

controller issuer

do create Coin with issuer; owner; amount; delegates = []

Fig. 1: Initiate and Accept pattern diagram

1.11. Write Smart Contracts with Daml 135

Daml SDK Documentation, 2.7.3

Trade-offs

Initiate and Accept can be quite verbose if signatures from more than two parties are required to

progress the workflow.

1.11.14.2 The Multiple Party Agreement Pattern

The Multiple Party Agreement pattern uses a Pending contract as a wrapper for the Agreement con-

tract. Any one of the signatory parties can kick off the workflow by creating a Pending contract on

the ledger, filling in themselves in all the signatory fields. The Agreement contract is not created on

the ledger until all parties have agreed to the Pending contract, and replaced the initiator’s signature

with their own.

Motivation

The The Initiate and Accept Pattern shows how to create bilateral agreements in Daml. However, a

project or a workflow often requiresmore than two parties to reach a consensus and put their signa-

tures on a multi-party contract. For example, in a large construction project, there are at least three

major stakeholders: Owner, Architect and Builder. All three parties need to establish agreement on

key responsibilities and project success criteria before starting the construction.

If such an agreement were modeled as three separate bilateral agreements, no party could be sure

if there are conflicts between their two contracts and the third contract between their partners. If

the The Initiate and Accept Pattern were used to collect three signatures on a multi-party agreement,

unnecessary restrictionswouldbeput on theorder of consensusandanumber of additional contract

templates would be needed as the intermediate steps. Both solution are suboptimal.

Following the Multiple Party Agreement pattern, it is easy to write an agreement contract with mul-

tiple signatories and have each party accept explicitly.

Implementation

Agreement contract The Agreement contract represents the final agreement among a group of

stakeholders. Its content can vary per business case, but in this pattern, it always has mul-

tiple signatories.

template Agreement

with

signatories: [Party]

where

signatory signatories

ensure

unique signatories

­­ The rest of the template to be agreed to would follow here

Pending contract The Pending contract needs to contain the contents of the proposed Agreement

contract, as a parameter. This is so that parties know what they are agreeing to, and also so

that when all parties have signed, the Agreement contract can be created.

The Pending contract has a list of parties who have signed it, and a list of parties who have yet to

sign it. If you add these lists together, it has to be the same set of parties as the signatories

of the Agreement contract.

136 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

All of the toSign parties have the choice to Sign. This choice checks that the party is indeed a

member of toSign, then creates a new instance of the Pending contract where they have been

moved to the signed list.

template Pending

with

finalContract: Agreement

alreadySigned: [Party]

where

signatory alreadySigned

observer finalContract.signatories

ensure

­­ Can't have duplicate signatories

unique alreadySigned

­­ The parties who need to sign is the finalContract.signatories with␣

↪→alreadySigned filtered out

let toSign = filter (`notElem` alreadySigned) finalContract.signatories

choice Sign : ContractId Pending with

signer : Party

controller signer

do

­­ Check the controller is in the toSign list, and if they are,␣

↪→sign the Pending contract

assert (signer `elem` toSign)

create this with alreadySigned = signer :: alreadySigned

Once all of the parties have signed, any of them can create the final Agreement contract using

the Finalize choice. This checks that all of the signatories for the Agreement have signed the

Pending contract.

choice Finalize : ContractId Agreement with

signer : Party

controller signer

do

­­ Check that all the required signatories have signed Pending

assert (sort alreadySigned == sort finalContract.signatories)

create finalContract

Collecting the signatures in practice Since the final Pending contract has multiple signatories, it

cannot be created in that state by any one stakeholder.

However, a party can create a pending contract, with all of the other parties in the toSign list.

parties@[person1, person2, person3, person4] <­ makePartiesFrom ["Alice",

↪→"Bob", "Clare", "Dave"]

let finalContract = Agreement with signatories = parties

­­ Parties cannot create a contract already signed by someone else

initialFailTest <­ person1 `submitMustFail` do

createCmd Pending with finalContract; alreadySigned = [person1, person2]

­­ Any party can create a Pending contract provided they list themselves as␣

↪→the only signatory

pending <­ person1 `submit` do

createCmd Pending with finalContract; alreadySigned = [person1]

Once the Pending contract is created, the other parties can sign it. For simplicity, the example

code only has choices to express consensus (but you might want to add choices to Accept,

1.11. Write Smart Contracts with Daml 137

Daml SDK Documentation, 2.7.3

Reject, or Negotiate).

­­ Each signatory of the finalContract can Sign the Pending contract

pending <­ person2 `submit` do

exerciseCmd pending Sign with signer = person2

pending <­ person3 `submit` do

exerciseCmd pending Sign with signer = person3

pending <­ person4 `submit` do

exerciseCmd pending Sign with signer = person4

­­ A party can't sign the Pending contract twice

pendingFailTest <­ person3 `submitMustFail` do

exerciseCmd pending Sign with signer = person3

­­ A party can't sign on behalf of someone else

pendingFailTest <­ person3 `submitMustFail` do

exerciseCmd pending Sign with signer = person4

Once all of the parties have signed the Pending contract, any of them can then exercise the

Finalize choice. This creates the Agreement contract on the ledger.

person1 `submit` do

exerciseCmd pending Finalize with signer = person1

Fig. 2: Multiple Party Agreement Diagram

138 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.11.14.3 The Delegation Pattern

The Delegation pattern gives one party the right to exercise a choice on behalf of another party. The

agent can control a contract on the ledger without the principal explicitly committing the action.

Motivation

Delegation is prevalent in the business world. In fact, the entire custodian business is based on

delegation. When a company chooses a custodian bank, it is effectively giving the bank the rights to

hold their securities and settle transactions on their behalf. The securities are not legally possessed

by the custodian banks, but the banks should have full rights to performactions in the client’s name,

such as making payments or changing investments.

The Delegation pattern enables Daml modelers to model the real-world business contractual agree-

ments between custodian banks and their customers. Ownership and administration rights can be

segregated easily and clearly.

Implementation

Pre-condition: There exists a contract, on which controller Party A has a choice and intends to del-

egate execution of the choice to Party B. In this example, the owner of a Coin contract intends to

delegate the Transfer choice.

template Coin

with

owner: Party

issuer: Party

amount: Decimal

delegates : [Party]

where

signatory issuer, owner

observer delegates

choice Transfer : ContractId TransferProposal

with newOwner: Party

controller owner

do

create TransferProposal

with coin=this; newOwner

Delegation Contract

• Principal, the original coin owner, is the signatory of delegation contract CoinPoA. This sig-

natory is required to authorize the Transfer choice on coin.

template CoinPoA

with

attorney: Party

principal: Party

where

signatory principal

observer attorney

(continues on next page)

1.11. Write Smart Contracts with Daml 139

Daml SDK Documentation, 2.7.3

(continued from previous page)

choice WithdrawPoA

: ()

controller principal

do return ()

• Whether or not the Attorneyparty should be a signatory of CoinPoA is subject to the business

agreements between Principal and Attorney. For simplicity, in this example, Attorney is not

a signatory.

• Attorney is the controller of the Delegation choice on the contract. Within the choice, Prin-

cipal exercises the choice Transfer on the Coin contract.

nonconsuming choice TransferCoin

: ContractId TransferProposal

with

coinId: ContractId Coin

newOwner: Party

controller attorney

do

exercise coinId Transfer with newOwner

• Coin contracts need to be disclosed to Attorney before they can be used in an exercise of

Transfer. This can be done by adding Attorney to Coin as an Observer. This can be done

dynamically, for any specific Coin, by making the observers a List, and adding a choice to

add a party to that List:

choice Disclose : ContractId Coin

with p : Party

controller owner

do create this with delegates = p :: delegates

Note: The technique is likely to change in the future. Daml is actively researching future language

features for contract disclosure.

Fig. 3: Delegation pattern diagram

140 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.11.14.4 The Authorization Pattern

The Authorization pattern demonstrates how to make sure a controlling party is authorized before

they take certain actions.

Motivation

Authorization is an universal concept in the business world as access tomost business resources is

a privilege, and not given freely. For example, security tradingmay seem to be a plain bilateral agree-

ment between the two trading counterparties, but this could not be further from truth. To be able to

trade, the trading parties need go through a series of authorization processes and gain permission

from a list of service providers such as exchanges, market data streaming services, clearing houses

and security registrars etc.

The Authorization pattern shows how tomodel these authorization checks prior to a business trans-

action.

Authorization

Here is an implementation of a Coin transfer without any authorization:

template Coin

with

owner: Party

issuer: Party

amount: Decimal

delegates : [Party]

where

signatory issuer, owner

observer delegates

choice Transfer : ContractId TransferProposal

with newOwner: Party

controller owner

do

create TransferProposal

with coin=this; newOwner

This is may be insufficient since the issuer has no means to ensure the newOwner is an accredited

company. The following changes fix this deficiency.

Authorization contract The below shows an authorization contract CoinOwnerAuthorization. In this

example, the issuer is the only signatory so it can be easily created on the ledger. Owner is an

observer on the contract to ensure they can see and use the authorization.

template CoinOwnerAuthorization

with

owner: Party

issuer: Party

where

signatory issuer

observer owner

(continues on next page)

1.11. Write Smart Contracts with Daml 141

Daml SDK Documentation, 2.7.3

(continued from previous page)

choice WithdrawAuthorization

: ()

controller issuer

do return ()

Authorization contracts canhavemuchmoreadvancedbusiness logic, but in its simplest form,

CoinOwnerAuthorization serves itsmain purpose, which is to prove the owner is a warranted coin

owner.

TransferProposal contract In the TransferProposal contract, the Accept choice checks that

newOwner has proper authorization. A CoinOwnerAuthorization for the new owner has to be sup-

plied and is checkedby the twoassert statements in the choice before a coin canbe transferred.

choice AcceptTransfer

: ContractId Coin

with token: ContractId CoinOwnerAuthorization

controller newOwner

do

t <­ fetch token

assert (coin.issuer == t.issuer)

assert (newOwner == t.owner)

create coin with owner = newOwner

Fig. 4: Authorization Diagram

142 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.11.14.5 The Locking Pattern

The Locking pattern exhibits how to achieve locking safely and efficiently in Daml. Only the specified

locking party can lock the asset through an active and authorized action. When a contract is locked,

some or all choices specified on that contract may not be exercised.

Motivation

Locking is a common real-life requirement in business transactions. During the clearing and set-

tlement process, once a trade is registered and novated to a central Clearing House, the trade is

considered locked-in. This means the securities under the ownership of seller need to be locked so

they cannot be used for other purposes, and so should be the funds on the buyer’s account. The

locked state should remain throughout the settlement Payment versus Delivery process. Once the

ownership is exchanged, the lock is lifted for the new owner to have full access.

Implementation

There are three ways to achieve locking:

Lock by Archiving

Pre-condition: there exists a contract that needs to be locked and unlocked. In this section, Coin is

used as the original contract to demonstrate locking and unlocking.

template Coin

with

owner: Party

issuer: Party

amount: Decimal

delegates : [Party]

where

signatory issuer, owner

observer delegates

choice Transfer : ContractId TransferProposal

with newOwner: Party

controller owner

do

create TransferProposal

with coin=this; newOwner

­­a coin can only be archived by the issuer under the condition that the␣

↪→issuer is the owner of the coin. This ensures the issuer cannot archive coins␣

↪→at will.

choice Archives

: ()

controller issuer

do assert (issuer == owner)

1.11. Write Smart Contracts with Daml 143

Daml SDK Documentation, 2.7.3

Archiving is a straightforward choice for locking because once a contract is archived, all choices

on the contract become unavailable. Archiving can be done either through consuming choice or

archiving contract.

Consuming Choice

The steps below show how to use a consuming choice in the original contract to achieve locking:

• Add a consuming choice, Lock, to the Coin template that creates a LockedCoin.

• The controller party on the Lockmay vary depending on business context. In this example, owner

is a good choice.

• The parameters to this choice are also subject to business use case. Normally, it should have

at least locking terms (eg. lock expiry time) and a party authorized to unlock.

choice Lock : ContractId LockedCoin

with maturity: Time; locker: Party

controller owner

do create LockedCoin with coin=this; maturity; locker

• Create a LockedCoin to represent Coin in the locked state. LockedCoin has the following charac-

teristics, all in order to be able to recreate the original Coin:

– The signatories are the same as the original contract.

– It has all data of Coin, either through having a Coin as a field, or by replicating all data of

Coin.

– It has an Unlock choice to lift the lock.

template LockedCoin

with

coin: Coin

maturity: Time

locker: Party

where

signatory coin.issuer, coin.owner

observer locker

choice Unlock

: ContractId Coin

controller locker

do create coin

Fig. 5: Locking By Consuming Choice Diagram

144 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Archiving Contract

In the event that changing the original contract is not desirable and assuming the original contract

already has an Archive choice, you can introduce another contract, CoinCommitment, to archive Coin

and create LockedCoin.

• Examine the controller party and archiving logic in the Archives choice on the Coin contract. A

coin can only be archived by the issuer under the condition that the issuer is the owner of the

coin. This ensures the issuer cannot archive any coin at will.

­­a coin can only be archived by the issuer under the condition that the␣

↪→issuer is the owner of the coin. This ensures the issuer cannot archive coins␣

↪→at will.

choice Archives

: ()

controller issuer

do assert (issuer == owner)

• Since we need to call the Archives choice from CoinCommitment, its signatory has to be Issuer.

template CoinCommitment

with

owner: Party

issuer: Party

amount: Decimal

where

signatory issuer

observer owner

• The controller party and parameters on the Lock choice are the same as described in locking by

consuming choice. The additional logic required is to transfer the asset to the issuer, and then

explicitly call the Archive choice on the Coin contract.

• Once a Coin is archived, the Lock choice creates a LockedCoin that represents Coin in locked state.

nonconsuming choice LockCoin

: ContractId LockedCoin

with coinCid: ContractId Coin

maturity: Time

locker: Party

controller owner

do

inputCoin <­ fetch coinCid

assert (inputCoin.owner == owner && inputCoin.issuer == issuer &&␣

↪→inputCoin.amount == amount)

­­the original coin firstly transferred to issuer and then archived

prop <­ exercise coinCid Transfer with newOwner = issuer

do

id <­ exercise prop AcceptTransfer

exercise id Archives

­­create a lockedCoin to represent the coin in locked state

create LockedCoin with

coin=inputCoin with owner; issuer; amount

maturity; locker

1.11. Write Smart Contracts with Daml 145

Daml SDK Documentation, 2.7.3

Fig. 6: Locking By Archiving Contract Diagram

Trade-offs

This pattern achieves locking in a fairly straightforward way. However, there are some tradeoffs.

• Locking by archiving disables all choices on the original contract. Usually for consuming

choices this is exactly what is required. But if a party needs to selectively lock only some

choices, remaining active choices need to be replicated on the LockedCoin contract, which can

lead to code duplication.

• The choices on the original contract need to be altered for the lock choice to be added. If this

contract is shared across multiple participants, it will require agreement from all involved.

Lock by State

The original Coin template is shown below. This is the basis on which to implement locking by state

template Coin

with

owner: Party

issuer: Party

amount: Decimal

delegates : [Party]

where

signatory issuer, owner

observer delegates

choice Transfer : ContractId TransferProposal

with newOwner: Party

controller owner

do

create TransferProposal

with coin=this; newOwner

146 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

­­a coin can only be archived by the issuer under the condition that the␣

↪→issuer is the owner of the coin. This ensures the issuer cannot archive coins␣

↪→at will.

choice Archives

: ()

controller issuer

do assert (issuer == owner)

In its original form, all choices are actionable as long as the contract is active. Locking by State

requires introducing fields to track state. This allows for the creation of an active contract in two

possible states: locked or unlocked. A Damlmodeler can selectivelymake certain choices actionable

only if the contract is in unlocked state. This effectively makes the asset lockable.

The state can be stored in many ways. This example demonstrates how to create a LockableCoin

through a party. Alternatively, you can add a lock contract to the asset contract, use a boolean flag

or include lock activation and expiry terms as part of the template parameters.

Here are the changes we made to the original Coin contract to make it lockable.

• Add a locker party to the template parameters.

• Define the states.

– if owner == locker, the coin is unlocked

– if owner != locker, the coin is in a locked state

• The contract state is checked on choices.

– Transfer choice is only actionable if the coin is unlocked

– Lock choice is only actionable if the coin is unlocked and a 3rd party locker is supplied

– Unlock is available to the locker party only if the coin is locked

template LockableCoin

with

owner: Party

issuer: Party

amount: Decimal

locker: Party

where

signatory issuer

signatory owner

observer locker

ensure amount > 0.0

­­Transfer can happen only if it is not locked

choice Transfer : ContractId TransferProposal

with newOwner: Party

controller owner

do

assert (locker == owner)

create TransferProposal

with coin=this; newOwner

­­Lock can be done if owner decides to bring a locker on board

choice Lock : ContractId LockableCoin

with newLocker: Party

controller owner

do

assert (newLocker /= owner)

(continues on next page)

1.11. Write Smart Contracts with Daml 147

Daml SDK Documentation, 2.7.3

(continued from previous page)

create this with locker = newLocker

­­Unlock only makes sense if the coin is in locked state

choice Unlock

: ContractId LockableCoin

controller locker

do

assert (locker /= owner)

create this with locker = owner

Locking By State Diagram

Trade-offs

• It requires changes made to the original contract template. Furthermore you should need to

change all choices intended to be locked.

• If locking and unlocking terms (e.g. lock triggering event, expiry time, etc) need to be added to

the template parameters to track the state change, the template can get overloaded.

Lock by Safekeeping

Safekeeping is a realistic way tomodel locking as it is a commonpractice inmany industries. For ex-

ample, during a real estate transaction, purchase funds are transferred to the sellers lawyer’s escrow

account after the contract is signed and before closing. To understand its implementation, review

the original Coin template first.

template Coin

with

owner: Party

issuer: Party

amount: Decimal

delegates : [Party]

where

signatory issuer, owner

observer delegates

148 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

choice Transfer : ContractId TransferProposal

with newOwner: Party

controller owner

do

create TransferProposal

with coin=this; newOwner

­­a coin can only be archived by the issuer under the condition that the␣

↪→issuer is the owner of the coin. This ensures the issuer cannot archive coins␣

↪→at will.

choice Archives

: ()

controller issuer

do assert (issuer == owner)

There is no need to make a change to the original contract. With two additional contracts, we can

transfer the Coin ownership to a locker party.

• Introduce a separate contract template LockRequest with the following features:

– LockRequest has a locker party as the single signatory, allowing the locker party to unilat-

erally initiate the process and specify locking terms.

– Once owner exercises Accept on the lock request, the ownership of coin is transferred to

the locker.

– The Accept choice also creates a LockedCoinV2 that represents Coin in locked state.

template LockRequest

with

locker: Party

maturity: Time

coin: Coin

where

signatory locker

observer coin.owner

choice Accept : LockResult

with coinCid : ContractId Coin

controller coin.owner

do

inputCoin <­ fetch coinCid

assert (inputCoin == coin)

tpCid <­ exercise coinCid Transfer with newOwner = locker

coinCid <­ exercise tpCid AcceptTransfer

lockCid <­ create LockedCoinV2 with locker; maturity; coin

return LockResult {coinCid; lockCid}

• LockedCoinV2 represents Coin in the locked state. It is fairly similar to the LockedCoin described

in Consuming Choice. The additional logic is to transfer ownership from the locker back to the

owner when Unlock or Clawback is called.

template LockedCoinV2

with

coin: Coin

maturity: Time

locker: Party

where

(continues on next page)

1.11. Write Smart Contracts with Daml 149

Daml SDK Documentation, 2.7.3

(continued from previous page)

signatory locker, coin.owner

choice UnlockV2

: ContractId Coin

with coinCid : ContractId Coin

controller locker

do

inputCoin <­ fetch coinCid

assert (inputCoin.owner == locker)

tpCid <­ exercise coinCid Transfer with newOwner = coin.owner

exercise tpCid AcceptTransfer

choice ClawbackV2

: ContractId Coin

with coinCid : ContractId Coin

controller coin.owner

do

currTime <­ getTime

assert (currTime >= maturity)

inputCoin <­ fetch coinCid

assert (inputCoin == coin with owner=locker)

tpCid <­ exercise coinCid Transfer with newOwner = coin.owner

exercise tpCid AcceptTransfer

Fig. 7: Locking By Safekeeping Diagram

150 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Trade-offs

Ownership transfer may give the locking party too much access on the locked asset. A rogue lawyer

could run away with the funds. In a similar fashion, a malicious locker party could introduce code to

transfer assets away while they are under their ownership.

1.11.14.6 Diagram Legends

1.11. Write Smart Contracts with Daml 151

Daml SDK Documentation, 2.7.3

1.11.15 Test Daml Contracts

This chapter is all about testing and debugging the Daml contracts you’ve built using the tools from

earlier chapters. You’ve already met Daml Script as a way of testing your code inside the IDE. In this

chapter you’ll learn about more ways to test with Daml Script and its other uses, as well as other

tools you can use for testing and debugging. You’ll also learn about a few error cases that are most

likely to crop up only in actual distributed testing, and which need some care to avoid. Specifically

we will cover:

• Daml Test tooling - Script, REPL, and Navigator

• Checking choice coverage

• The trace and debug functions

• Contention

Note that this section only covers testing your Daml contracts. Formore holistic application testing,

please refer to Testing Your Web App.

If you no longer have your projects set up, load all the code for this parts 1 and 2 of this

section into two folders intro12­part1 and intro12­part2, by running daml new in­

tro12­part1 ­­template daml­intro­12­part1 and daml new intro12­part2

­­template daml­intro­12­part2.

1.11.15.1 Daml Test Tooling

There are three primary tools available in the SDK to test and interactwithDaml contracts. It is highly

recommended to explore the respective docs. The Work with Dependencies model lends itself well to

being tested using these tools.

Daml Script

Daml Script should be familiar by now. It’s a way to script commands and queries from

multiple parties against a Daml Ledger. Unless you’ve browsed other sections of the doc-

umentation already, you have probably used it mostly in the IDE. However, Daml Script

can do much more than that. It has four different modes of operation:

1. Run on a special Script Service in the IDE, providing the Script Views.

2. Run the Script Service via the CLI, which is useful for quick regression testing.

3. Start a Sandbox and run against that for regression testing against an actual Ledger

API.

4. Run against any other already running Ledger.

Daml Navigator

Daml Navigator is a UI that runs against a Ledger API and allows interaction with con-

tracts.

Daml REPL

If you want to do things interactively, Daml REPL is the tool to use. The best way to think

of Daml REPL is as an interactive version of Daml Script, but it doubles up as a language

REPL (Read-Evaluate-Print Loop), allowing you to evaluate pure expressions and inspect

the results.

152 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.11.15.2 Debug, Trace, and Stacktraces

The above demonstrates nicely how to test the happy path, but what if a function doesn’t behave as

you expected? Damlhas two functions that allow you to do fine-grainedprintf debugging: debugand

trace. Both allow you to print something to StdOut if the code is reached. The difference between

debug and trace is similar to the relationship between abort and error:

• debug : Text ­> m ()maps a text to an Action that has the side-effect of printing to Std-

Out.

• trace : Text ­> a ­> a prints to StdOut when the expression is evaluated.

daml> let a : Script () = debug "foo"

daml> let b : Script () = trace "bar" (debug "baz")

[Daml.Script:378]: "bar"

daml> a

[DA.Internal.Prelude:532]: "foo"

daml> b

[DA.Internal.Prelude:532]: "baz"

daml>

If in doubt, use debug. It’s the easier of the two to interpret the results of.

The thing in the square brackets is the last location. It’ll tell you the Daml file and line number that

triggered the printing, but often no more than that because full stacktraces could violate subtrans-

action privacy quite easily. If you want to enable stacktraces for some purely functional code in your

modules, you can use the machinery in DA.Stack to do so, but we won’t cover that any further here.

1.11.15.3 Diagnose Contention Errors

The above tools and functions allow you to diagnosemost problems with Daml code, but they are all

synchronous. The sequence of commands is determined by the sequence of inputs. Thatmeans one

of the main pitfalls of distributed applications doesn’t come into play: Contention.

Contention refers to conflicts over access to contracts. Daml guarantees that there can only be one

consuming choice exercised per contract so what if two parties simultaneously submit an exercise

commandon the samecontract? Only one can succeed. Contention canalso occur due to incomplete

or stale knowledge. Maybe a contract was archived a little while ago, but due to latencies, a client

hasn’t found out yet, or maybe due to the privacy model, they never will. What all these cases have

in common is that someone has incomplete knowledge of the state the ledger will be in at the time

a transaction will be processed and/or committed.

For in-depth information, see the section on Avoiding Contention.

If we look back at Daml’s Execution Model we’ll see there are three places where ledger state is read:

1. A command is submitted by someclient, probably looking at the state of the ledger to build that

command. Maybe the command includes references to ContractIds that the client believes are

active.

2. During interpretation, ledger state is used to look up active contracts.

3. During commit, ledger state is again used to look up contracts and validate the transaction by

reinterpreting it.

Collisions can occur both between 1 and 2 and between 2 and 3. Only during the commit phase is the

complete relevant ledger state at the time of the transaction known, which means the ledger state

at commit time is king. As a Daml contract developer, you need to understand the different causes

1.11. Write Smart Contracts with Daml 153

../resource-management/contention-avoiding.html

Daml SDK Documentation, 2.7.3

of contention, be able to diagnose the root cause if errors of this type occur, and be able to avoid

collisions by designing contracts appropriately.

Common Errors

The most common error messages you’ll see are listed below. All of them can be due to one of three

reasons.

1. Race Conditions - knowledge of a state change is not yet known during command submission

2. Stale References - the state change is known, but contracts have stale references to keys or

ContractIds

3. Ignorance - due to privacy or operational semantics, the requester doesn’t know the current

state

Following the possible error messages, we’ll discuss a few possible causes and remedies.

ContractId Not Found During Interpretation

Command interpretation error in LF­Damle: dependency error: couldn't find␣

↪→contract␣

↪→ContractId(004481eb78464f1ed3291b06504d5619db4f110df71cb5764717e1c4d3aa096b9f).

ContractId Not Found During Validation

Disputed: dependency error: couldn't find contract ContractId␣

↪→(00c06fa370f8858b20fd100423d928b1d200d8e3c9975600b9c038307ed6e25d6f).

fetchByKey Error During Interpretation

Command interpretation error in LF­Damle: dependency error: couldn't find key com.

↪→daml.lf.transaction.GlobalKey@11f4913d.

fetchByKey Dispute During Validation

Disputed: dependency error: couldn't find key com.daml.lf.transaction.

↪→GlobalKey@11f4913d

154 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

lookupByKey Dispute During Validation

Disputed: recreated and original transaction mismatch VersionedTransaction(...)␣

↪→expected, but VersionedTransaction(...) is recreated.

Avoid Race Conditions and Stale References

The first thing to avoid is write-write or write-read contention on contracts. In other words, one re-

quester submitting a transaction with a consuming exercise on a contract while another requester

submits another exercise or fetch on the same contract. This type of contention cannot be elimi-

nated entirely, for there will always be some latency between a client submitting a command to a

participant, and other clients learning of the committed transaction.

Here are a few scenarios and measures you can take to reduce this type of collision:

1. Shard data. Imagine you want to store a user directory on the Ledger. At the core, this is of

type [(Text, Party)], where Text is a display name and Party the associated Party. If you

store this entire list on a single contract, any two users wanting to update their display name

at the same timewill cause a collision. If you instead keep each (Text, Party) on a separate

contract, these write operations become independent from each other.

The Analogy to keep inmind when structuring your data is that a template defines a table, and

a contract is a row in that table. Keeping large pieces of data on a contract is like storing big

blobs in a database row. If these blobs can change through different actions, you get write

conflicts.

2. Use nonconsuming choices if you can. Nonconsuming exercises have the same contention

properties as fetches: they don’t collide with each other.

Contract keys can seem like a way out, but they are not. Contract keys are resolved to Contract

IDs during the interpretation phase on the participant node. So it reduces latencies slightly by

moving resolution from the client layer to the participant layer, but it doesn’t remove the issue.

Going back to the auction example above, if Alice sent a command exerciseByKey @Auc­

tion auctionKey Bid with amount = 100, this would be resolved to an exercise cid

Bid with amount = 100 during interpretation, where cid is the participant’s best guess

what ContractId the key refers to.

3. Avoid workflows that encourage multiple parties to simultaneously try to exercise a consum-

ing choice on the same contract. For example, imagine an Auction contract containing a field

highestBid : (Party, Decimal). If Alice tries to bid $100 at the same time that Bob tries

to bid $90, it doesn’t matter that Alice’s bid is higher. The second transaction to be sequenced

will be rejected as it has a write collision with the first. It’s better to record the bids in sepa-

rate Bid contracts, which can be written to independently. Again, think about how you would

structure this data in a relational database to avoid data loss due to race conditions.

4. Think carefully about storing ContractIds. Imagine you had created a sharded user directory

according to 1. Each user has a User contract that store their display name and party. Now you

write a chat application where each Message contract refers to the sender by ContractId

User. If the user changes their display name, that reference goes stale. You either have to

modify all messages that user ever sent, or become unable to use the sender contract in Daml.

If you need to be able to make this link inside Daml, Contract Keys help here. If the only place

you need to link Party to User is the UI, it might be best to not store contract references in

Daml at all.

1.11. Write Smart Contracts with Daml 155

Daml SDK Documentation, 2.7.3

Collisions Due to Ignorance

The Daml Ledger Model specifies authorization rules, and privacy rules. Ie it specifies what makes a

transaction conformant, and who gets to see which parts of a committed transaction. It does not

specify how a command is translated to a transaction. This may seem strange at first since the

commands - create, exercise, exerciseByKey, createAndExercise - correspond so closely to actions in

the ledger model. But the subtlety comes in on the read side. What happens when the participant,

during interpretation, encounters a fetch, fetchByKey, or lookupByKey?

To illustrate the problem, let’s assume there is a template T with a contract key, and Alice has wit-

nessed two Create nodes of a contract of type T with key k, but no corresponding archive nodes.

Alice may not be able to order these two nodes causally in the sense of “one create came before the

other”. See Causality and Local Daml Ledgers for an in-depth treatment of causality on Daml Ledgers.

So what should happen now if Alice’s participant encounters a fetchByKey @T k or lookupByKey

@T k during interpretation? What if it encounters a fetch node? These decisions are part of the

operational semantics, and the decision of what should happen is based on the consideration that

the chance of a participant submitting an invalid transaction should be minimized.

If a fetch or exercise is encountered, the participant resolves the contract as long as it has not

witnessed an archive node for that contract - ie as long as it can’t guarantee that the contract is no

longer active. The rationale behind this is that fetch and exercise use ContractIds, which need

to come from somewhere: Command arguments, Contract arguments, or key lookups. In all three

cases, someone believes the ContractId to be active still so it’s worth trying.

If a fetchByKey or lookupByKey node is encountered, the contract is only resolved if the requester

is a stakeholder on an active contract with the given key. If that’s not the case, there is no reason

to believe that the key still resolves to some contract that was witnessed earlier. Thus, when using

contract keys,make sure youmake the likely requesters of transactions observers on your contracts.

If you don’t, fetchByKey will always fail, and lookupByKey will always return None.

Let’s illustrate how collisions and operational semantics and interleave:

1. Bob creates T with key k. Alice is not a stakeholder.

2. Alice submits a command resulting in well-authorized lookupByKey @T k during interpre-

tation. Even if Alice witnessed 1, this will resolve to a None as Alice is not a stakeholder. This

transaction is invalid at the time of interpretation, but Alice doesn’t know that.

3. Bob submits an exerciseByKey @T k Archive.

4. Depending onwhich of the transactions from2 and 3 gets sequenced first, either just 3, or both

2 and 3 get committed. If 3 is committed before 2, 2 becomes valid while in transit.

As you cansee, thebehavior offetch,fetchByKeyandlookupByKeyat interpretation timedepend

on what information is available to the requester at that time. That’s something to keep in mind

whenwritingDaml contracts, and something to think aboutwhen encountering frequent “Disputed”

errors.

156 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.11.15.4 Checking Coverage

Whendaml test runs a set of tests, it analyzes the ledger record from those tests to report template

and choice coverage. It calculateswhat percentage of templates defined in the packagewere created

and what percentage of choices defined in the package were exercised.

You can also save the resulting coverage results for the test set to a file and then read them back

into a future report. In an invocation of daml test, you can both read results in and run tests simul-

taneously in order to generate a final report which aggregates them. More details on the workflows

that this enables are detailed in Serializing Results Workflows.

Flags Controlling Test Set

You can control the set of tests run by daml test using ­­test­pattern PATTERN, ­­files

FILE, and ­­all.

• Passing ­­test­pattern <PATTERN> runs only the local tests which match PATTERN.

• Passing ­­files <FILE> runs only the tests found in FILE.

• Enabling ­­all runs tests in dependency modules as well. Note: all external tests are run,

regardless of the setting in test­pattern; test­pattern only restricts local tests.

1.11. Write Smart Contracts with Daml 157

Daml SDK Documentation, 2.7.3

Flags Controlling Serialization

You can save the final coverage results of a daml test invocation using ­­save­coverage FILE.

This writes the list of templates and choices in scope, along with the list of templates created and

choices exercised.

You can read in previous coverage results using ­­load­coverage FILE. This flag can be set mul-

tiple times, in which case the results from each file will be read and aggregated into the final result.

There may be occasions where you only need to aggregate coverage results from files, without run-

ning any tests. To do that, use the ­­load­coverage­only flag, which ensures that no tests are

run.

Flags Controlling Report

Enabling ­­show­coverage tells the final printed report to include the names of any templates,

choices, and interfaces which are not covered. By default, the report only reports the percentage of

coverage.

You can remove choices from the rendered coverage report with ­­coverage­ignore­choice

PATTERN. This flag’s behavior is further documented in Excluding Choices from the Coverage Report.

Define templates, choices, and interfaces

To demonstrate how the coverage report works, we start by defining three dummy templates, T1, T2,

and T3. Each template has two dummy choices:

­­ Create three dummy tokens with two dummy choices each

template T1 with owner : Party where

signatory owner

nonconsuming choice C_T1_1 : ()

controller owner

do pure ()

nonconsuming choice C_T1_2 : ()

controller owner

do pure ()

template T2 with owner : Party where

signatory owner

nonconsuming choice C_T2_1 : ()

controller owner

do pure ()

nonconsuming choice C_T2_2 : ()

controller owner

do pure ()

template T3 with owner : Party where

signatory owner

(continues on next page)

158 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

nonconsuming choice C_T3_1 : ()

controller owner

do pure ()

nonconsuming choice C_T3_2 : ()

controller owner

do pure ()

We also define an interface I with instances for T1 and T2:

­­ Create dummy interface with two dummy choices, implement over T1 and T2, and␣

↪→an unused empty view

data IView = IView {}

interface I where

viewtype IView

getController : Party

nonconsuming choice C_I_1 : ()

controller (getController this)

do pure ()

nonconsuming choice C_I_2 : ()

controller (getController this)

do pure ()

interface instance I for T1 where

view = IView

getController = owner

interface instance I for T2 where

view = IView

getController = owner

Start testing

By writing a test which selectively creates and exercises only some of these templates and choices,

we will see how the coverage report shows us templates and choices we haven’t created and exer-

cised respectively.

To start, the test allocates a single party, alice, which we will use for the whole test:

main = do

­­ Allocate a party

alice <­ allocateParty "Alice"

1.11. Write Smart Contracts with Daml 159

Daml SDK Documentation, 2.7.3

Template creation coverage

The coverage report mentions which templates were defined but never created. For example, the

following test creates contracts out of only T1 and T2, never creating instances of template T3:

­­ Create contracts out of templates T1 and T2

t1 <­ submit alice (createCmd T1 with owner = alice)

t2 <­ submit alice (createCmd T2 with owner = alice)

Running daml test ­­show­coverage reports how many templates were defined (3), how many

were created (2, 66.7%), and the names of those that weren’t created (T3):

> daml test ­­show­coverage

...

Modules internal to this package:

­ Internal templates

3 defined

2 (66.7%) created

internal templates never created: 1

Token_Coverage_Part1:T3

...

Template choice exercise coverage

The coverage report also tracks which choices were exercised. For example, the following test exer-

cises the first and second choices of T1 and the second choice of T2. It also archives T1, but not

T2.

­­ Exercise all choices & archive t1

submit alice (exerciseCmd t1 C_T1_1)

submit alice (exerciseCmd t1 C_T1_2)

submit alice (archiveCmd t1)

­­ Exercise only first choice on t2, don't archive

submit alice (exerciseCmd t2 C_T2_1)

daml test ­­show­coverage reports that the test exercised 4 out of 9 choices, and lists the

choices that weren’t exercised, including the second choice of T2 and all the choices on T3.

Note that Token_Coverage_Part1:T2:Archive is included in the list of unexercised choices -

because t2 was not archived, its Archive choice was not run.

> daml test ­­show­coverage

...

­ Internal template choices

9 defined

4 (44.4%) exercised

internal template choices never exercised: 5

Token_Coverage_Part1:T2:Archive

Token_Coverage_Part1:T2:C_T2_2

Token_Coverage_Part1:T3:Archive

Token_Coverage_Part1:T3:C_T3_1

Token_Coverage_Part1:T3:C_T3_2

...

160 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Interface choice exercise coverage

The coverage report also tracks interfaces, with two differences: * Because interfaces are not cre-

ated directly but rather cast from templates which implement them, the coverage report cannot

not track their creation nor their archival. * Because interfaces can be cast from many possible

implementing templates, the report tracks interface choices by what interface they are exercised

on and which template they were cast from. In the report, these interface choices are format-

ted as <module>:<template>:<choice_name> - the <choice_name> tells us the interface, the

<template> tells us the template type an interface contract was cast from.

The following test creates t1 and t2 as before, but casts them immediately to I to get two contracts

of I: t1_i via T1, and t2_i via T2. It exercises both choices on the t1_i, but only the first choice on

t2_i.

­­ Exercise all choices on t1_i

submit alice (exerciseCmd t1_i C_I_1)

submit alice (exerciseCmd t1_i C_I_2)

­­ Exercise only first choice on t2_i

submit alice (exerciseCmd t2_i C_I_1)

In the coverage report, there are four detected choices, as expected: two choices for the imple-

mentation of I for T1, and two choices for the implementation of I for T2. Three were exercised,

so the only choice that wasn’t exercised was C_I_1 for T2, which is reported as Token_Cover­

age_Part1:T2:C_I_1.

> daml test ­­show­coverage

...

­ Internal interface choices

4 defined

3 (75.0%) exercised

internal interface choices never exercised: 1

Token_Coverage_Part1:T2:C_I_2

...

1.11.15.5 Checking Coverage of External Dependencies

The coverage report also describes coverage for external templates, interfaces, and choices. In the

intro12­part1 directory, run daml build ­­output intro12­part1.dar, and copy the re-

sulting ./intro12­part1.dar file into the intro12­part2 directory, where the remainder of our

commands will be run.

The daml.yaml configuration file in part2 specifies intro12­part1.dar as a dependency, letting

us import its module.

1.11. Write Smart Contracts with Daml 161

Daml SDK Documentation, 2.7.3

Definitions

We begin by defining importing the external dependency Token_Coverage_Part1 as External to

bring all of its external templates and interfaces into scope.

import qualified Token_Coverage_Part1 as External

We also define a dummy template T with no choices, but an implementation of external interface

External.I.

template T with owner: Party where

signatory owner

interface instance External.I for T where

view = External.IView

getController = owner

Finally, we define an interface Iwith one dummy choice, and implementations for our local template

T and the external template External.T1.

data IView = IView {}

interface I where

viewtype IView

getController : Party

nonconsuming choice I_C : ()

controller (getController this)

do pure ()

interface instance I for T where

view = IView

getController = owner

interface instance I for External.T1 where

view = IView

getController = owner

Local Definitions

Running daml test ­p '^$' to create a coverage report without running any tests: Because no

tests were run, coverage will be 0% in all cases. However, the report will still tally all discovered

templates, interfaces, and choices, both external and internal.

Modules internal to this package:

­ Internal templates

1 defined

0 (0.0%) created

­ Internal template choices

1 defined

0 (0.0%) exercised

­ Internal interface implementations

3 defined

2 internal interfaces

1 external interfaces

(continues on next page)

162 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

­ Internal interface choices

4 defined

0 (0.0%) exercised

Modules external to this package:

­ External templates

3 defined

0 (0.0%) created in any tests

0 (0.0%) created in internal tests

0 (0.0%) created in external tests

­ External template choices

9 defined

0 (0.0%) exercised in any tests

0 (0.0%) exercised in internal tests

0 (0.0%) exercised in external tests

­ External interface implementations

2 defined

­ External interface choices

4 defined

0 (0.0%) exercised in any tests

0 (0.0%) exercised in internal tests

0 (0.0%) exercised in external tests

We defined 1 template with 1 default choice (Archive), which get reported along with their coverage

in the first two sections:

­ Internal templates

1 defined

0 (0.0%) created

­ Internal template choices

1 defined

0 (0.0%) exercised

We also have 3 interface implementations that we have defined locally, External.I for T, I for

T, and I for External.T1. Note that while the interface implementations are local, the interfaces

that they are defined over can be non-local - in this case we have 2 for the local interface I, and 1

for the external interface External.I. The total number of locally defined implementations, and

the breakdown into local interfaces and external interfaces, is presented in the “Internal interface

implementations” section.

­ Internal interface implementations

3 defined

2 internal interfaces

1 external interfaces

These local interface implementations provide 4 choices, two from External.I for T, one from I

for T, and one from I for External.T1, reported in the next section along with coverage.

­ Internal interface choices

4 defined

0 (0.0%) exercised

1.11. Write Smart Contracts with Daml 163

Daml SDK Documentation, 2.7.3

External Definitions

By importing Token_Coverage_Part1 as External, we have brought 3 templates, 9 template

choices, 2 interface instances, and 4 interface choices into scope from there, which are listed in

the external modules section.

...

Modules external to this package:

­ External templates

3 defined

...

­ External template choices

9 defined

...

­ External interface implementations

2 defined

­ External interface choices

4 defined

...

External, Internal, and “Any” Coverage

Unlike internal types, externally defined types can be covered by both internal and external tests.

As a result, the report for external types distinguishes between coverage provided by internal tests,

external tests, and “any” tests (both internal and external tests).

Here we cover how to run internal and external tests simultaneously to get an aggregate report, and

how to interpret this report.

The ­­all flag runs tests in external modules as well. Run daml test ­­all ­­test­pattern

notests in the intro12­part2 directory - this instructs daml test to run all tests from external

modules, and to run local tests matching notests. We have no local tests named notests, so this

will only run the main test from part1. Because the main test from part1 does not use any of the

types defined in part2, the internal section of the resulting coverage report shows 0% everywhere.

However, the main test does exercise many types in part1which are external to part2 - as a result,

the report’s “external” section is similar to the “internal” section in the report for part1:

...

Modules external to this package:

­ External templates

3 defined

2 (66.7%) created in any tests

0 (0.0%) created in internal tests

2 (66.7%) created in external tests

­ External template choices

9 defined

4 (44.4%) exercised in any tests

0 (0.0%) exercised in internal tests

4 (44.4%) exercised in external tests

­ External interface implementations

2 defined

­ External interface choices

4 defined

3 (75.0%) exercised in any tests

(continues on next page)

164 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

0 (0.0%) exercised in internal tests

3 (75.0%) exercised in external tests

Note that unlike the internal section of the report in Part 1, the external section of the report in Part

2 has coverage for internal tests, external tests, and any tests. In this report, we only ran an external

test, External:main, so 0 is reported for all internal tests.

Let’s write a local test which will create External:T3, a template which the External:main test

does not create.

testT3 : Script ()

testT3 = do

alice <­ allocateParty "Alice"

external_t3 <­ submit alice (createCmd External.T3 with owner = alice)

pure ()

If we run this test on its own using daml test ­­test­pattern testT3, our external coverage

report will show that 1 out of 3 of the external templates in scope were created, 1 by internal tests and

0 by external tests.

...

modules external to this package:

­ external templates

3 defined

1 (33.3%) created in any tests

1 (33.3%) created in internal tests

0 (0.0%) created in external tests

...

We can run this test alongside the External:main test using daml test ­­all

­­test­pattern testT3, to get an aggregate coverage report. The report now shows that 2

out of 3 of the external templates in scope were created in External:main, and 1 out of 3 by

internal test testT3. Because External:main creates External:T1 and External:T2, and

testT3 creates External:T3, all types are created across our tests, and the overall coverage

across any tests is 3 out of 3 (100%).

...

Modules external to this package:

­ External templates

3 defined

3 (100.0%) created in any tests

1 (33.3%) created in internal tests

2 (66.7%) created in external tests

...

If we define a different local test, testT1AndT2, which creates T1 and T2, running it alongside Ex­

ternal:Main, our report shows 2 out of 3 for “internal tests”, 2 out of 3 for “external tests”, but 2

out of 3 for “any tests”! Because the templates created by each test overlap, T3 is never created and

never covered, so despite an abundance of testing for external templates, coverage is still less than

100%.

testT1AndT2 : Script ()

testT1AndT2 = do

alice <­ allocateParty "Alice"

(continues on next page)

1.11. Write Smart Contracts with Daml 165

Daml SDK Documentation, 2.7.3

(continued from previous page)

external_t1 <­ submit alice (createCmd External.T1 with owner = alice)

external_t2 <­ submit alice (createCmd External.T2 with owner = alice)

pure ()

...

Modules external to this package:

­ External templates

3 defined

2 (66.7%) created in any tests

2 (66.7%) created in internal tests

2 (66.7%) created in external tests

...

External template choices and interface instance choices are also reported with “any”, internal, and

external coverage - we will not cover them here.

Serializing Results Workflows

The ­­save­coverage and ­­load­coverage flags enable you to write coverage results to a file

and read them back out again. Multiple coverage results from different files can be aggregated,

along with new coverage results from tests, and then written back to a new file.

This enables three new kinds of coverage testing which should be especially useful to those with

large test suites.

Single Test Iteration

When iterating on a single test, you can see the overall coverage of the systemby loading in coverage

results from all unchanged tests and running the single test, producing an aggregate result.

> # Run tests 1 through 8, long running

> daml test ­­pattern Test[12345678] ­­save­coverage unchanged­test­results

...

> # Run test 9, aggregate with results from tests 1 through 8

> daml test ­­pattern Test9 ­­load­coverage unchanged­test­results

...

> # ... make some changes to test 9 ...

> # Only need to run test 9 to compare coverage report

> daml test ­­pattern Test9 ­­load­coverage unchanged­test­results

Multiple Test Aggregation

When running a large test suite, you can split the suite acrossmultiple machines and aggregate the

results.

> # On machine 1:

> daml test ­­pattern Machine1Test ­­save­coverage machine1­results

...

> # On machine 2:

(continues on next page)

166 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

> daml test ­­pattern Machine2Test ­­save­coverage machine2­results

...

> # On machine 3:

> daml test ­­pattern Machine3Test ­­save­coverage machine3­results

...

> # Aggregate results into a single report once all three are done

> daml test ­­load­coverage­only \

­­load­coverage machine1­results \

­­load­coverage machine2­results \

­­load­coverage machine3­results

Test Failure Recovery

If a test failure causes one daml test to fail, other coverage results from other tests can be used,

and only the failing test needs to be rerun.

> # First test run

> daml test ­­pattern Test1 ­­save­coverage test1­results

...

> # Second test run:

> daml test ­­pattern Test2 ­­save­coverage test2­results

...

> # Third test run ﴾failing﴿:

> daml test ­­pattern Test3 ­­save­coverage test3­results

...

FAILED

...

> # ... fix third test ...

> # Third test run ﴾succeeds﴿:

> daml test ­­pattern Test3 ­­save­coverage test3­results

...

> # Aggregate results into a single report once all three are done

> daml test ­­load­coverage­only \

­­load­coverage test1­results \

­­load­coverage test2­results \

­­load­coverage test3­results

1.11.15.6 Excluding Choices from the Coverage Report

To exclude choices from the printed coverage report, use ­­coverage­ignore­choice PATTERN.

Any choice whose fully qualified namematches the regular expression in PATTERN is removed from

the coverage report. The choice will not be included in counts of defined choices or in counts of

exercised choices. The choice is treated as if it does not exist.

The fully qualified name of a choice depends on whether the choice is defined in the local

package or in an external package. Choices defined in the local package are fully qualified as

<module>:<template>:<choice name>. Choices defined in external packages are fully qualified

as <package id>:<module>:<template>:<choice name>. By defining your pattern to match

different sections in the fully qualified names of your choices, you can exclude choices based on

package id, module, template, or name.

1.11. Write Smart Contracts with Daml 167

Daml SDK Documentation, 2.7.3

Example: Excluding Archive Choices

To exclude the Archive choice from coverage, match for the string “Archive” in the “name” portion

of the fully qualified name. Do this by specifying ­­coverage­ignore­choice ':Archive$'.

If applied to the coverage report in Template choice exercise coverage, your coverage report changes

from the following:

> daml test ­­show­coverage

...

­ Internal template choices

9 defined

4 (44.4%) exercised

internal template choices never exercised: 5

Token_Coverage_Part1:T2:Archive

Token_Coverage_Part1:T2:C_T2_2

Token_Coverage_Part1:T3:Archive

Token_Coverage_Part1:T3:C_T3_1

Token_Coverage_Part1:T3:C_T3_2

...

to a report that ignores Archive choices in all cases:

> daml test ­­show­coverage ­­coverage­ignore­choice ':Archive$'

...

­ Internal template choices

7 defined

4 (57.1%) exercised

internal template choices never exercised: 3

Token_Coverage_Part1:T2:C_T2_2

Token_Coverage_Part1:T3:C_T3_1

Token_Coverage_Part1:T3:C_T3_2

...

Example: Excluding Choices from a Specific Module

To exclude a specific module (for example MyModule) from coverage, match for the “mod-

ule” portion of the fully qualified name. Do this by specifying ­­coverage­ignore­choice

'(^|:)MyModule:[^:]*:[^:]*$'. This matches for any template and any choice, matches for

your module name, and ignores any leading package identifier.

Excluding Choices from Serialized Reports

To ensure that serialized data always reflects full coverage information, the flag does not elimi-

nate the choices from serialization using the ­­save­coverage flag. Serialized reports saved to a

file always contain all information collected. The ­­coverage­ignore­choice flag only excludes

choices from the printed report. For any text report generated from serialized data, youmust specify

­­coverage­ignore­choice every time it is generated.

168 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.11.15.7 Next Up

There’s little more to learn about writing Daml at this point that isn’t best learned by practice and

consulting reference material for both Daml and Haskell. In section 13, Interfaces we will cover the

use of interfaces, a feature which aids code reuse across your Daml programs.

1.11.16 Next Steps

Now that you have completed this introduction to the Daml smart contract language, where do you

go next? It depends on what you would like to do with Daml:

• What you have learned so far should be enough to enable to you become a certified Damlmod-

eler. You can test your skills at Daml certifications.

• If you want to improve your understanding of proven design patterns, you can learnmore at the

Patterns page.

• If you’re interested in building off-ledger services that interact and integrate with your

on-ledger Daml models, read the “Building Applications” section.

• If you’re interested in understanding how to install, operate and maintain a production-grade

Daml ledger, you can have a look at the Canton user manual.

• If you want to build Daml applications in a fully-managed environment that handles the

day-to-day operation of your Daml ledger for you, you can start right away on Daml Hub.

• If you want want to see more examples of Daml applications to understand what is possible

with Daml, we have a a library full of examples for you to study.

1.12 Integrate Daml with Off-Ledger Services

1.12.1 Building Applications

The Building Applications section covers the elements that are used to create, extend, and test your

Daml full-stack application (including APIs and JavaScript client libraries) and the architectural best

practices for bringing those elements together.

As with the Writing Daml section, you can find the Daml code for the example application and fea-

tures here or download it using the Daml assistant. For example, to load the sources for section 1

into a folder called intro1, run daml new intro1 –template daml-intro-1.

To run the examples, you will first need to install the Daml SDK.

1.12.2 Daml Application Architecture

This section describes our recommended design of a full-stack Daml application.

1.12. Integrate Daml with Off-Ledger Services 169

https://www.digitalasset.com/developers/certifications
https://hub.daml.com
https://www.digitalasset.com/developers/examples
https://github.com/digital-asset/daml/tree/main/docs/source/daml/intro/daml
https://docs.daml.com/getting-started/installation.html

Daml SDK Documentation, 2.7.3

The above image shows the recommended Daml solution architecture. Here there are four types of

building blocks that go into our application: user code, generated code from Daml, Daml compo-

nents, and external components.

In the recommended architecture, the Daml model determines the DAR files that underpin both the

frontend and backend. The frontend includes user code such as a React Web Frontend, Daml React

libraries or other integration libraries, and generated code from the DAR files (TypeScript). A client

service can access the Daml application backend instead of a GUI frontend with no change to the

rest of the architecture.

From the client point of view, the Daml application backend consists of the JSON API and a par-

ticipant node. The backend uses a Canton synchronization domain (not shown) to distribute

changes to the ledger made by the application, as well as changesmade by other applications, to all

domain-connected participants.

Integrations with a Daml application are done via Java bindings, while automation can be done with

Daml Script and/or Daml Triggers. Daml Scripts allows you to write automations that can be trig-

gered by any off-ledger condition, such as the availability of a file in a folder or a message coming

from a broker or a user interacting with the system directly. Daml Triggers allow a similar approach

but are triggered by on-ledger events, such as the creation of a contract.

Daml application uses JWT tokens for access authorization, checking if the party submitting the

request has the necessary rights for it. How an application acquires access tokens depends on the

participant node it talks to and is ultimately set up by the participant node operator.

There are many ways that the architecture and technology stack can be changed to fit your needs,

which we’ll mention in the corresponding sections.

To get started quickly with the recommended application architecture, generate a new project using

the create­daml­app template:

daml new ­­template=create­daml­app my­project­name

create­daml­app is a small, but fully functional demo application implementing the recom-

mended architecture, providing you with an excellent starting point for your own application. It

170 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

showcases

• using Daml React libraries

• quick iteration against the Daml Sandbox.

• authorization

• deploying your application in the cloud as a Docker container

1.12.2.1 Backend

The backend for your application can be any Daml ledger implementation running your DAR (Daml

Archive) file.

We recommend using the Daml JSON API as an interface to your frontend. It is served by the HTTP JSON

API server connected to the ledger API server. It provides simple HTTP endpoints to interact with the

ledger via GET/POST requests. However, if you prefer, you can also use the gRPC Ledger API directly.

When you use the create­daml­app template application, you can start a Daml Sandbox together

with a JSON API server by running the following command in the root of the project.

daml start ­­start­navigator=no

Daml Sandbox exposes the sameDaml Ledger API a Participant Nodewould exposewithout requiring

a fully-fledged Daml network to back the application. Once your application matures and becomes

ready for production, thedaml deploy commandhelps youdeploy your frontendandDaml artifacts

of your project to a production Daml network.

1.12.2.2 Frontend

We recommended building your frontend with the React framework. However, you can choose virtu-

ally any language for your frontend and interact with the ledger via HTTP JSON endpoints. In addition,

we provide support libraries for Java and you can also interact with the gRPC Ledger API directly.

We provide two libraries to build your React frontend for a Daml application.

Name Summary

@daml/react React hooks to query/create/exercise Daml contracts

@daml/ledger Daml ledger object to connect and directly submit commands to the ledger

You can install any of these libraries by running npm install <library> in the ui directory of

your project, e.g. npm install @daml/react. Please explore the create­daml­app example

project to see the usage of these libraries.

To make your life easy when interacting with the ledger, the Daml assistant can generate JavaScript

libraries with TypeScript typings from the data types declared in the deployed DAR.

daml codegen js .daml/dist/<your­project­name.dar> ­o ui/daml.js

This command will generate a JavaScript library for each DALF in your DAR, containing meta-

data about types and templates in the DALF and TypeScript typings them. In create­daml­app,

ui/package.json refers to these libraries via the "create­daml­app": "file:../daml.js/

create­daml­app­0.1.0" entry in the dependencies field.

1.12. Integrate Daml with Off-Ledger Services 171

https://reactjs.org
https://www.npmjs.com/package/@daml/react
https://www.npmjs.com/package/@daml/ledger

Daml SDK Documentation, 2.7.3

If you choose a different JavaScript based frontend framework, the packages @daml/ledger,

@daml/types and the generated daml.js libraries provide you with the necessary code to connect

and issue commands against your ledger.

1.12.2.3 Authorization

When you deploy your application to a production ledger, you need to authenticate the identities of

your users.

Daml ledgers support a unified interface for authorization of commands. Some Daml ledgers, like

for example https://hub.daml.com, offer integrated authentication and authorization, but you can

also use an external service provider like https://auth0.com. The Daml react libraries support inter-

facing with a Daml ledger that validates authorization of incoming requests. Simply initialize your

DamlLedger object with the token obtained by the respective token issuer. How authorizationworks

and the form of the required tokens is described in the Authorization section.

1.12.2.4 Developer Workflow

The SDK enables a local development environment with fast iteration cycles:

1. The integrated VSCode IDE (daml studio) runs your Scripts on any change to your Damlmod-

els. See Daml Script.

2. daml start will build all of your Daml code, generate the JavaScript bindings, and start the

required “backend” processes (sandbox and HTTP JSON API). It will also allow you to press r

(followed by Enter on Windows) to rebuild your code, regenerate the JavaScript bindings and

upload the new code to the running ledger.

3. npm startwill watch your JavaScript source files for change and recompile them immediately

when they are saved.

Together, these features can provide you with very tight feedback loops while developing your Daml

application, all theway fromyourDaml contractsup to yourwebUI. A typical Damldeveloperworkflow

is to

1. Make a small change to your Daml data model

2. Optionally test your Daml code with Daml Script

3. Edit your React components to be aligned with changes made in Daml code

4. Extend the UI to make use of the newly introduced feature

5. Make further changes either to yourDaml and/or React codeuntil you’re happywithwhat you’ve

developed

See Your First Feature for a more detailed walkthrough of these steps.

172 Chapter 1. Canton References

https://hub.daml.com
https://auth0.com

Daml SDK Documentation, 2.7.3

Command Deduplication

The interaction of a Daml application with the ledger is inherently asynchronous: applications send

commands to the ledger, and some time later they see the effect of that command on the ledger.

Several things can fail during this time window: the application can crash, the participant node can

crash, messages can be lost on the network, or the ledger may be just slow to respond due to a high

load.

If you want to make sure that a command is not executed twice, your application needs to robustly

handle all failure scenarios. Daml ledgers provide a mechanism for command deduplication to help

deal with this problem.

For each command the application provides a command ID and an optional parameter that specifies

the deduplication period. If the latter parameter is not specified in the command submission itself,

the ledger will use the configured maximum deduplication duration. The ledger will then guarantee

that commands with the same change ID will generate a rejection within the effective deduplication

period.

For details on how to use command deduplication, see the Command Deduplication Guide.

Deal With Failures

Crash Recovery

In order to restart your application from a previously known ledger state, your applicationmust keep

track of the last ledger offset received from the transaction service or the command completion service.

By persisting this offset alongside the relevant state as part of a single, atomic operation, your ap-

plication can resume from where it left off.

Fail Over Between Ledger API Endpoints

Some Daml Ledgers support exposing multiple eventually consistent Ledger API endpoints where

command deduplication works across these Ledger API endpoints. For example, these endpoints

might be hosted by separate Ledger API servers that replicate the same data and host the same

parties. Contact your ledger operator to find out whether this applies to your ledger.

Below we describe how you can build your application such that it can switch between such eventu-

ally consistent Ledger API endpoints to tolerate server failures. You can do this using the following

two steps.

First, your application must keep track of the ledger offset as described in the paragraph about crash

recovery. When switching to a new Ledger API endpoint, it must resume consumption of the transac-

tion (tree) and/or the command completion streams starting from this last received offset.

Second, your applicationmust retry on OUT_OF_RANGE errors (see gRPC status codes) received from

a stream subscription – using an appropriate backoff strategy to avoid overloading the server. Such

errors can be raised because of eventual consistency. The Ledger API endpoint that the application

is newly subscribing to might be behind the endpoint that it subscribed to before the switch, and

needs time to catch up. Thanks to eventual consistency this is guaranteed to happen at some point

in the future.

1.12. Integrate Daml with Off-Ledger Services 173

https://grpc.github.io/grpc/core/md_doc_statuscodes.html

Daml SDK Documentation, 2.7.3

Once the application successfully subscribes to its required streams on the new endpoint, it will

resume normal operation.

Deal With Time

The Daml language contains a function getTime which returns a rough estimate of “current time”

called Ledger Time. The notion of time comes with a lot of problems in a distributed setting: differ-

ent participants might run different clocks, there may be latencies due to calculation and network,

clocks may drift against each other over time, etc.

In order to provide a useful notion of time in Daml without incurring severe performance or liveness

penalties, Daml has two notions of time: Ledger Time and Record Time:

• As part of command interpretation, each transaction is automatically assigned a Ledger Time

by the participant server.

• All calls to getTime within a transaction return the Ledger Time assigned to that transaction.

• Ledger Time is chosen (and validated) to respect Causal Monotonicity: The Create action on a

contract c always precedes all other actions on c in Ledger Time.

• As part of the commit/synchronization protocol of the underlying infrastructure, every trans-

action is assigned a Record Time, which can be thought of as the infrastructures “system time”.

It’s the best available notion of “real time”, but the only guarantees on it are the guarantees

the underlying infrastructure can give. It is also not known at interpretation time.

• Ledger Time is kept close to “real time” by bounding it against Record Time. Transactions where

Ledger and Record Time are too far apart are rejected.

Some commands might take a long time to process, and by the time the resulting transaction is

about to be committed to the ledger, it might violate the condition that Ledger Time should be rea-

sonably close to Record Time (even when considering the ledger’s tolerance interval). To avoid such

problems, applications can set the optional parametersmin_ledger_time_abs ormin_ledger_time_rel

that specify (in absolute or relative terms) the minimal Ledger Time for the transaction. The ledger

will then process the command, but wait with committing the resulting transaction until Ledger Time

fits within the ledger’s tolerance interval.

How is this used in practice?

• Be aware that getTime is only reasonably close to real time, and not completely monotonic.

Avoid Daml workflows that rely on very accurate time measurements or high frequency time

changes.

• Set min_ledger_time_abs or min_ledger_time_rel if the duration of command interpre-

tation and transmission is likely to take a long time relative to the tolerance interval set by the

ledger.

• In some corner cases, the participant nodemay be unable to determine a suitable Ledger Time

by itself. If you get an error that no Ledger Time could be found, check whether you have con-

tention on any contract referenced by your command or whether the referenced contracts are

sensitive to small changes of getTime.

For more details, see Background concepts - time.

174 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.12.3 Parties and Users On a Daml Ledger

Identifying parties and users is an important part of building a workable Daml application. Recall

these definitions from the Getting Started Guide:

• Parties are unique across the entire Daml network. These must be allocated before you can

use them to log in, and allocation results in a random-looking (but not actually random) string

that identifies the party and is used in your Daml code. Parties are a builtin concept.

• On each participant node you can create users with human-readable user ids. Each user can

be associated with one or more parties allocated on that participant node, and refers to that

party only on that node. Users are a purely local concept, meaning you can never address a

user on another node by user id, and you never work with users in your Daml code; party ids are

always used for these purposes. Users are also a builtin concept.

This represents a change from earlier versions of Daml, and the implications of these changes are

discussed in more depth here.

1.12.3.1 Parties in SDK 2.0 and Subsequent

In Daml 2.0 and later versions, when you allocate a party with a given hint Alice ei-

ther in the sandbox or on a production ledger you will get back a party id like Al­

ice::1220f2fe29866fd6a0009ecc8a64ccdc09f1958bd0f801166baaee469d1251b2eb72.

The prefix before the double colon corresponds to the hint specified on party allocation. If the hint

is not specified, it defaults to party­${randomUUID}. The suffix is the fingerprint of the public key

that can authorize topology transactions for this party. Keys are generated randomly, so the suffix

will look different locally and every time you restart Sandbox, you will get a different party id. This

has a few new implications:

• You can no longer allocate a party with a fixed party id. While you have some control over the

prefix, we do not recommend that you rely on that to identify parties.

• Party ids are no longer easily understandable by humans. You may want to display something

else in your user interfaces.

• Discovering the party ID of other users might get tricky. For example, to follow the user Bob,

you cannot assume that their party ID is “Bob”.

1.12.3.2 Party ID Hints and Display Names

Party id hints and display nameswhich existed in SDK 1.18.0 are still available in SDK2.0.0. We recom-

mend against relying on display names for new applications, but if you are migrating your existing

application, they function exactly as before.

Party id hints still serve a purpose. Whilewe recommendagainst parsingparty ids and extracting the

hint, for debugging and during development it can be helpful to see the party id hint at the beginning.

Bear in mind that different parties can be allocated to different participants with the same party id

hint. The full party ids will be different due to the suffix, but the party id hint would be the same.

The second remaining use for party id hints is to avoid duplicate party allocation. Consider sending

a party allocation request that fails due to a network error. The client has no way of knowing whether

the party has been allocated. Because a party allocation will be rejected if a party with the given

hint already exists, the client can safely send the same request with the same hint, which will either

allocate a party if the previous request failed or fail itself. (Note that while this works for Canton,

1.12. Integrate Daml with Off-Ledger Services 175

Daml SDK Documentation, 2.7.3

including Sandbox as well as the VMWare blockchain, it is not part of the ledger API specifications,

so other ledgers might behave differently.)

1.12.3.3 Authorization and User Management

Daml 2.0 also introduced user management. User management allows you to create users on a par-

ticipant that are associated with a primary party and a dynamic set of actAs and readAs claims.

Crucially, the user id can be fully controlled when creating a user – unlike party ids – and are unique

on a single participant. You can also use the user id in authorization tokens instead of party tokens

that have specific parties in actAs and readAs fields. This means your IAM, which can sometimes be

limited in configurability, only has to work with fixed user ids.

However, users are purely local to a given participant. You cannot refer to users or parties associated

with a given user on another participant via their user id. You also need admin claims to interact with

the user management endpoint for users other than your own. This means that while you can have

a user id in place of the primary party of your own user, you cannot generally replace party ids with

user ids.

1.12.3.4 Working with Parties

So howdo you handle these unwieldy party ids? The primary rule is to treat themas opaque identifiers.

In particular, don’t parse them, don’t make assumptions about their format, and don’t try to turn

arbitrary strings into party ids. The only way to get a new party id is as the result of a party allocation.

Applications should never hardcode specific parties. Instead either accept them as inputs or read

them from contract or choice arguments.

To illustrate this, we’ll go over the tools in the SDK and how this affects them:

Daml Script

In Daml script, allocateParty returns the party id that has been allocated. This party can then be

used later, for example, in command submissions. When your script should refer to parties that

have been allocated outside of the current script, accept those parties as arguments and pass them

in via –input-file. Similarly, if your script allocates parties and you want to refer to them outside of

the script, either in a later script or somewhere else, you can store them via –output-file. You can

also query the party management and user management endpoints and get access to parties that

way. Keep in mind though, this requires admin rights on a participant and there are no uniqueness

guarantees for display names. That usually makes querying party and user management endpoints

usually only an option for development, and we recommend passing parties as arguments where

possible instead.

176 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Daml Triggers

To start a trigger via the trigger service, you still have to supply the party ids for the actAs and readAs

claims for your trigger. This could, e.g., come fromaparty allocation in aDaml script that youwrote to

a file via Daml Script’s –output-file. Within your trigger, you get access to those parties via getActAs

and getReadAs. To refer to other parties, for example when creating a contract, reference them from

an existing contract. If there is no contract, consider creating a special configuration template that

lists the parties your trigger should interact with outside of your trigger, and query for that template

in your trigger to get access to the parties.

Navigator

Navigator presents you with a list of user ids on the participant as login options. Once logged in, you

will interact with the ledger as the primary party of that user. Any field that expects a party provides

autocompletion, so if you know the prefix (by having chosen the hint), you don’t have to remember

the suffix. In addition, party ids have been shortened in the Navigator UI so that not all of the id is

shown. Clicking on a party identifier will copy the full identifier to the system clipboard, making it

easier to use elsewhere.

Java Bindings

When writing an application using the Java bindings, we recommend that you pass parties as ar-

guments. They can either be CLI arguments or JVM properties as used in the :doc: quickstart-java

example <bindings-java/quickstart.html>.

Create-daml-app and UIs

Create-daml-app and UIs in general are a bit more complex. First, they often need to interact with

an IAM during the login. Second, it is often important to have human-readable names in a UI — to go

back to an earlier example, a user wants to follow Bob without typing a very long party id.

Logging in is going to depend on your specific IAM, but there are a few common patterns. In

create-daml-app, you log in by typing your user id directly and then interacting with the primary

party of that user. In an authorized setup, users might use their email address and a password, and

as a result, the IAM will provide them with a token for their user id. The approach to discovering

party ids corresponding to human-readable uses can also vary depending on privacy requirements

and other constraints. Create-daml-app addresses this by writing alias contracts on the ledger with

associate human-readable names with the party id. These alias contracts are shared with everyone

via a public party.

1.12. Integrate Daml with Off-Ledger Services 177

Daml SDK Documentation, 2.7.3

1.12.4 JSON API

1.12.4.1 HTTP JSON API Service

The JSON API provides a significantly simpler way to interact with a ledger than the Ledger API by

providing basic active contract set functionality:

• creating contracts,

• exercising choices on contracts,

• querying the current active contract set, and

• retrieving all known parties.

The goal of this API is to get your distributed ledger application up and running quickly, so we have

deliberately excluded complicating concerns including, but not limited to:

• inspecting transactions,

• asynchronous submit/completion workflows,

• temporal queries (e.g. active contracts as of a certain time), and

For these and other features, use the Ledger API instead. The HTTP JSON API service is a “proxy”, after

a fashion, for that API; there is literally nothing that HTTP JSON API service can do that your own application

cannot do via gRPC.

If you are using this API from JavaScript or TypeScript, we strongly recommend using the JavaScript

bindings and code generator rather than invoking these endpoints directly. This will both simplify

access to the endpoints described here and (with TypeScript) help to provide the correct JavaScript

value format for each of your contracts, choice arguments, and choice results.

As suggested by those bindings, the primary target application for the HTTP JSON API service is a

web application, where user actions translate to one or a few ledger operations. It is not intended for

high-throughput, high-performance ledger automation; the Ledger API is better suited to such use

cases.

We welcome feedback about the JSON API on our issue tracker, or on our forum.

Run the JSON API

Start a Daml Ledger

You can run the JSON API alongside any ledger exposing the gRPC Ledger API you want. If you don’t

have an existing ledger, you can start an in-memory sandbox:

daml new my­project ­­template quickstart­java

cd my­project

daml build

daml sandbox ­­wall­clock­time ­­dar ./.daml/dist/quickstart­0.0.1.dar

178 Chapter 1. Canton References

/app-dev/bindings-ts/index.html
/app-dev/bindings-ts/index.html
https://github.com/digital-asset/daml/issues/new/choose
https://discuss.daml.com

Daml SDK Documentation, 2.7.3

Start the HTTP JSON API Service

Basic

The most basic way to start the JSON API is with the command:

daml json­api ­­config json­api­app.conf

where a corresponding minimal config file is

{

server {

address = "localhost"

port = 7575

}

ledger­api {

address = "localhost"

port = 6865

}

}

This will start the JSON API on port 7575 and connect it to a ledger running on localhost:6865.

Note: Your JSON API service should never be exposed to the internet. When running in production

the JSON API should be behind a reverse proxy, such as via NGINX.

The full set of configurable options that can be specified via config file is listed below

{

server {

//IP address that HTTP JSON API service listens on. Defaults to 127.0.0.1.

address = "127.0.0.1"

//HTTP JSON API service port number. A port number of 0 will let the system␣

↪→pick an ephemeral port.

port = 7575

}

ledger­api {

address = "127.0.0.1"

port = 6865

tls {

enabled = "true"

// the certificate to be used by the server

cert­chain­file = "cert­chain.crt"

// private key of the server

private­key­file = "pvt­key.pem"

// trust collection, which means that all client certificates will be␣

↪→verified using the trusted

// certificates in this store. if omitted, the JVM default trust store is␣

↪→used.

trust­collection­file = "root­ca.crt"

}

}

query­store {

(continues on next page)

1.12. Integrate Daml with Off-Ledger Services 179

https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/

Daml SDK Documentation, 2.7.3

(continued from previous page)

base­config {

user = "postgres"

password = "password"

driver = "org.postgresql.Driver"

url = "jdbc:postgresql://localhost:5432/test?&ssl=true"

// prefix for table names to avoid collisions, empty by default

table­prefix = "foo"

// max pool size for the database connection pool

pool­size = 12

//specifies the min idle connections for database connection pool.

min­idle = 4

//specifies the idle timeout for the database connection pool.

idle­timeout = 12s

//specifies the connection timeout for database connection pool.

connection­timeout = 90s

}

// option setting how the schema should be handled.

// Valid options are start­only, create­only, create­if­needed­and­start and␣

↪→create­and­start

start­mode = "start­only"

}

// Optional interval to poll for package updates. Examples: 500ms, 5s, 10min,␣

↪→1h, 1d. Defaults to 5 seconds

package­reload­interval = 5s

//Optional max inbound message size in bytes. Defaults to 4194304.

max­inbound­message­size = 4194304

//Optional max inbound message size in bytes used for uploading and downloading␣

↪→package updates. Defaults to the `max­inbound­message­size` setting.

package­max­inbound­message­size = 4194304

//Optional max cache size in entries for storing surrogate template id mappings.

↪→ Defaults to None

max­template­id­cache­entries = 1000

//health check timeout in seconds

health­timeout­seconds = 5

//Optional websocket configuration parameters

websocket­config {

//Maximum websocket session duration

max­duration = 120m

//Server­side heartbeat interval duration

heartbeat­period = 5s

//akka stream throttle­mode one of either `shaping` or `enforcing`

mode = "shaping"

}

metrics {

//Start a metrics reporter. Must be one of "console", "csv:///PATH",

↪→"graphite://HOST[:PORT][/METRIC_PREFIX]", or "prometheus://HOST[:PORT]".

reporter = "console"

//Set metric reporting interval , examples : 1s, 30s, 1m, 1h

reporting­interval = 30s

(continues on next page)

180 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

}

// DEV MODE ONLY (not recommended for production)

// Allow connections without a reverse proxy providing HTTPS.

allow­insecure­tokens = false

// Optional static content configuration string. Contains comma­separated key­

↪→value pairs, where:

// prefix ­­ URL prefix,

// directory ­­ local directory that will be mapped to the URL prefix.

// Example: "prefix=static,directory=./static­content"

static­content {

prefix = "static"

directory = "static­content­dir"

}

}

Note: You can also start JSON API using CLI args (example below) however this is now deprecated

daml json­api ­­ledger­host localhost ­­ledger­port 6865 ­­http­port 7575

Standalone JAR

The daml json­api command is great during development since it is included with the SDK and

integrates with daml start and other commands. Once you are ready to deploy your application,

you can download the standalone JAR from Github releases. It is much smaller than the whole SDK

and easier to deploy since it only requires a JVM but no other dependencies and no installation pro-

cess. The JAR accepts exactly the same command line parameters as daml json­api, so to start

the standalone JAR, you can use the following command:

java ­jar http­json­2.0.0.jar ­­config json­api­app.conf

Replace the version number 2.0.0 by the version of the SDK you are using.

With Query Store

In production setups, you should configure theHTTP JSONAPI service to use a PostgreSQL backend as

a Query Store. The in-memory backendwill call the ledger to fetch the entire active contract set for the

templates in your query every time so it is generally not recommended to rely on this in production.

Note that the query store is a redundant copy of on-ledger data. It is safe to reinitialize the database

at any time.

To enable the PostgreSQL backend you can add the query­store config block as described.

1.12. Integrate Daml with Off-Ledger Services 181

https://github.com/digital-asset/daml/releases

Daml SDK Documentation, 2.7.3

Access Tokens

Each request to the HTTP JSON API Service must come with an access token, regardless of whether

the underlying ledger requires it or not. This also includes development setups using an unsecured

sandbox. The HTTP JSON API Service does not hold on to the access token, which will be only used to

fulfill the request it came along with. The same token will be used to issue the request to the Ledger

API.

The HTTP JSON API Service does not validate the token but may need to decode it to extract informa-

tion that can be used to fill in request fields for party-specific request. How this happens depends

partially on the token format you are using.

Party-specific Requests

Party-specific requests, i.e., command submissions and queries, are subject to additional restric-

tions. For command submissions the token must provide a proof that the bearer can act on behalf

of at least one party (and possibly read on behalf of any number of parties). For queries the token

must provide a proof that the bearer can either act and/or read of at least one party. This happens

regardless of the used access token format. The following paragraphs provide guidance as to how

different token formats are used by the HTTP JSON API in this regard.

Using User Tokens

If the underlying ledger supports user management (this includes Canton and the sandbox), you are

recommended to use user tokens. For command submissions, the user of the bearer should have

actAs rights for at least one party and readAs rights for any number of parties. Queries require the

bearer’s user to have at least one actAs or readAs user right. The application id of the Ledger API

request will be the user id.

Using Claim Tokens

These tokens can be used if the underlying ledger does not support user management. For command

submissions, actAsmust contain at least one party and readAs can contain any number of parties.

Queries require at least one party in either actAs or readAs. The application id is mandatory.

Note: While the JSON API receives the token it doesn’t validate it itself. Upon receiving a token it

will pass it, and all data contained within the request, on to the Ledger API’s AuthService which will

then determine if the token is valid and authorized. However, the JSON API does decode the token

to extract the ledger id, application id and party so it requires that you use a valid Daml ledger access

token format.

For a ledger without authorization, e.g., the default configuration of Daml Sandbox, you can use

https://jwt.io (or the JWT library of your choice) to generate your token. You can use an arbitrary

secret here. The default “header” is fine. Under “Payload”, fill in:

{

"https://daml.com/ledger­api": {

(continues on next page)

182 Chapter 1. Canton References

https://jwt.io/#debugger-io?token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJodHRwczovL2RhbWwuY29tL2xlZGdlci1hcGkiOnsibGVkZ2VySWQiOiJzYW5kYm94IiwiYXBwbGljYXRpb25JZCI6ImZvb2JhciIsImFjdEFzIjpbIkFsaWNlIl19fQ.1Y9BBFH5uVz1Nhfmx12G_ECJVcMncwm-XLaWM40EHbY

Daml SDK Documentation, 2.7.3

(continued from previous page)

"ledgerId": "sandbox",

"applicationId": "foobar",

"actAs": ["Alice"]

}

}

The value of the ledgerId field has tomatch the ledgerId of your underlying Daml Ledger. For the

Sandbox this corresponds to the participant id which by default is just sandbox.

Note: The value of applicationId will be used for commands submitted using that token.

The value for actAs is specified as a list and you provide it with the party that you want to use, such

as in the example above which uses Alice for a party. actAsmay include more than just one party

as the JSON API supports multi-party submissions.

The party should reference an already allocated party.

Note: As mentioned above the JSON API does not validate tokens so if your ledger runs without

authorization you can use an arbitrary secret.

Then the “Encoded” box should have your token, ready for passing to the service as described in the

following sections.

Alternatively, here are two tokens you can use for testing:

{"https://daml.com/ledger­api": {"ledgerId": "sandbox", "applicationId":

"HTTP­JSON­API­Gateway", "actAs": ["Alice"]}}:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.

↪→eyJodHRwczovL2RhbWwuY29tL2xlZGdlci1hcGkiOnsibGVkZ2VySWQiOiJzYW5kYm94IiwiYXBwbGljYXRpb25JZCI6IkhUVFAtSlNPTi1BUEktR2F0ZXdheSIsImFjdEFzIjpbIkFsaWNlIl19fQ.

↪→FIjS4ao9yu1XYnv1ZL3t7ooPNIyQYAHY3pmzej4EMCM

{"https://daml.com/ledger­api": {"ledgerId": "sandbox", "applicationId":

"HTTP­JSON­API­Gateway", "actAs": ["Bob"]}}:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.

↪→eyJodHRwczovL2RhbWwuY29tL2xlZGdlci1hcGkiOnsibGVkZ2VySWQiOiJzYW5kYm94IiwiYXBwbGljYXRpb25JZCI6IkhUVFAtSlNPTi1BUEktR2F0ZXdheSIsImFjdEFzIjpbIkJvYiJdfX0.

↪→y6iwpnYt­ObtNo_FyLVxMtNTwpJF8uxzNfPELQUVKVg

Auth via HTTP

Set HTTP header Authorization: Bearer paste­jwt­here

Example:

Authorization: Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.

↪→eyJodHRwczovL2RhbWwuY29tL2xlZGdlci1hcGkiOnsibGVkZ2VySWQiOiJNeUxlZGdlciIsImFwcGxpY2F0aW9uSWQiOiJIVFRQLUpTT04tQVBJLUdhdGV3YXkiLCJhY3RBcyI6WyJBbGljZSJdfX0.

↪→34zzF_fbWv7p60r5s1kKzwndvGdsJDX­W4Xhm4oVdpk

1.12. Integrate Daml with Off-Ledger Services 183

Daml SDK Documentation, 2.7.3

Auth via WebSockets

WebSocket clients support a “subprotocols” argument (sometimes simply called “protocols”); this

is usually in a list form but occasionally in comma-separated form. Check documentation for your

WebSocket library of choice for details.

For HTTP JSON requests, you must pass two subprotocols:

• daml.ws.auth

• jwt.token.paste­jwt­here

Example:

jwt.token.eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.

↪→eyJodHRwczovL2RhbWwuY29tL2xlZGdlci1hcGkiOnsibGVkZ2VySWQiOiJNeUxlZGdlciIsImFwcGxpY2F0aW9uSWQiOiJIVFRQLUpTT04tQVBJLUdhdGV3YXkiLCJhY3RBcyI6WyJBbGljZSJdfX0.

↪→34zzF_fbWv7p60r5s1kKzwndvGdsJDX­W4Xhm4oVdpk

HTTP Status Codes

The JSON API reports errors using standard HTTP status codes. It divides HTTP status codes into 3

groups indicating:

1. success (200)

2. failure due to a client-side problem (400, 401, 403, 404, 409, 429)

3. failure due to a server-side problem (500, 503)

The JSON API can return one of the following HTTP status codes:

• 200 - OK

• 400 - Bad Request (Client Error)

• 401 - Unauthorized, authentication required

• 403 - Forbidden, insufficient permissions

• 404 - Not Found

• 409 - Conflict, contract ID or key missing or duplicated

• 500 - Internal Server Error

• 503 - Service Unavailable, ledger server is not running yet or has been shut down

• 504 - Gateway Timeout, transaction failed to receive its completion within the predefined time-

out

When the Ledger API returns an error code, the JSON API maps it to one of the above codes according

to the official gRPC to HTTP code mapping.

If a client’s HTTP GET or POST request reaches an API endpoint, the corresponding response will al-

ways contain a JSON object with a status field, and either an errors or result field. It may also

contain an optional warnings and/or an optional ledgerApiError :

{

"status": <400 | 401 | 403 | 404 | 409 | 500 | 503 | 504>,

"errors": <JSON array of strings>, | "result": <JSON object or array>,

["warnings": <JSON object>],

["ledgerApiError": <JSON object>]

}

Where:

184 Chapter 1. Canton References

https://cloud.google.com/apis/design/errors#generating_errors

Daml SDK Documentation, 2.7.3

• status – a JSON number which matches the HTTP response status code returned in the HTTP

header,

• errors – a JSON array of strings, each string represents one error,

• result – a JSON object or JSON array, representing one or many results,

• warnings – an optional field with a JSON object, representing one or many warnings.

• ledgerApiError – an optional field with a JSON object, representing detail of an error if it was

originated from Ledger API.

See the following blog post formore details about error handling best practices: REST API Error Codes

101.

See The Ledger API error codes for more details about error codes from Ledger API.

Successful Response, HTTP Status: 200 OK

• Content-Type: application/json

• Content:

{

"status": 200,

"result": <JSON object>

}

Successful Response with a Warning, HTTP Status: 200 OK

• Content-Type: application/json

• Content:

{

"status": 200,

"result": <JSON object>,

"warnings": <JSON object>

}

Failure, HTTP Status: 400 | 401 | 404 | 500

• Content-Type: application/json

• Content:

{

"status": <400 | 401 | 404 | 500>,

"errors": <JSON array of strings>,

["ledgerApiError": <JSON object>]

}

1.12. Integrate Daml with Off-Ledger Services 185

https://blog.restcase.com/rest-api-error-codes-101/
https://blog.restcase.com/rest-api-error-codes-101/

Daml SDK Documentation, 2.7.3

Examples

Result with JSON Object without Warnings:

{"status": 200, "result": {...}}

Result with JSON Array and Warnings:

{"status": 200, "result": [...], "warnings": {"unknownTemplateIds": [

↪→"UnknownModule:UnknownEntity"]}}

Bad Request Error:

{"status": 400, "errors": ["JSON parser error: Unexpected character 'f' at input␣

↪→index 27 (line 1, position 28)"]}

Bad Request Error with Warnings:

{"status":400, "errors":["Cannot resolve any template ID from request"], "warnings

↪→":{"unknownTemplateIds":["XXX:YYY","AAA:BBB"]}}

Authentication Error:

{"status": 401, "errors": ["Authentication Required"]}

Not Found Error:

{"status": 404, "errors": ["HttpMethod(POST), uri: http://localhost:7575/v1/query1

↪→"]}

Internal Server Error:

{"status": 500, "errors": ["Cannot initialize Ledger API"]}

Create a New Contract

To create an Iou contract from the Quickstart guide:

template Iou

with

issuer : Party

owner : Party

currency : Text

amount : Decimal

observers : [Party]

186 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

HTTP Request

• URL: /v1/create

• Method: POST

• Content-Type: application/json

• Content:

{

"templateId":

↪→"a3b788b4dc18dc060bfb82366ae6dc055b1e361d646d5cfdb1b729607e344336:Iou:IouTransfer

↪→",

"payload": {

"issuer": "Alice",

"owner": "Alice",

"currency": "USD",

"amount": "999.99",

"observers": []

}

}

Where:

• templateId is the contract template identifier, which is formatted as "<package

ID>:<module>:<entity>". As a convenience for interactive API exploration (such as with

curl and similar tools), you can also omit the package ID (i.e. specifying the templateId as

"<module>:<entity>") if there is only one template with that name across all loaded

packages. Code should always specify the package ID, since it’s common to have more ver-

sions of a template sharing the same module and entity name but with different package IDs.

If the package identifier is not specified and the template cannot be uniquely identifiedwithout

it, the HTTP JSON API service will report that the specified template cannot be found. Omitting

the package ID is not supported for production use.

• payload field contains contract fields as defined in the Daml template and formatted accord-

ing to Daml-LF JSON Encoding.

HTTP Response

• Content-Type: application/json

• Content:

{

"status": 200,

"result": {

"observers": [],

"agreementText": "",

"payload": {

"observers": [],

"issuer": "Alice",

"amount": "999.99",

"currency": "USD",

"owner": "Alice"

},

"signatories": [

"Alice"

(continues on next page)

1.12. Integrate Daml with Off-Ledger Services 187

Daml SDK Documentation, 2.7.3

(continued from previous page)

],

"contractId": "#124:0",

"templateId":

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Iou:Iou",

"completionOffset":"0000000000000084"

}

}

Where:

• status field matches the HTTP response status code returned in the HTTP header,

• result field contains created contract details. Keep in mind that templateId in the JSON

API response is always fully qualified (always contains package ID).

Create a Contract with a Command ID

When creating a new contract or exercising a choice you may specify an optional meta field. This

allows you to control various extra settings used when submitting a command to the ledger. Each

of these meta fields is optional.

Note: You cannot currently use commandIds anywhere else in the JSON API, but you can use it for

observing the results of its commands outside the JSON API in logs or via the Ledger API’s Command

Services

{

"templateId":

↪→"a3b788b4dc18dc060bfb82366ae6dc055b1e361d646d5cfdb1b729607e344336:Iou:IouTransfer

↪→",

"payload": {

"observers": [],

"issuer": "Alice",

"amount": "999.99",

"currency": "USD",

"owner": "Alice"

},

"meta": {

"commandId": "a unique ID",

"actAs": ["Alice"],

"readAs": ["PublicParty"],

"deduplicationPeriod": {

"durationInMillis": 10000,

"type": "Duration"

},

"submissionId": "d2f941b1­ee5c­4634­9a51­1335ce6902fa"

}

}

Where:

• commandId – optional field, a unique string identifying the command.

• actAs – a non-empty list of parties, overriding the set from the JWT user; must be a subset of

the JWT user’s set.

188 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

• readAs – a list of parties, overriding the set from the JWT user; must be a subset of the JWT

user’s set.

• submissionId – a string, used for deduplicating retried requests. If you do not set it, a random

one will be chosen, effectively treating the request as unique and disabling deduplication.

• deduplicationPeriod – either a Duration as above, which is how far back in time prior

commands will be searched for this submission, or an Offset as follows, which is the earliest

ledger offset after which to search for the submission.

"deduplicationPeriod": {

"offset": "0000000000000083",

"type": "Offset"

}

Exercise by Contract ID

The JSON command below, demonstrates how to exercise an Iou_Transfer choice on an Iou con-

tract:

choice Iou_Transfer : ContractId IouTransfer

with

newOwner : Party

controller owner

do create IouTransfer with iou = this; newOwner

HTTP Request

• URL: /v1/exercise

• Method: POST

• Content-Type: application/json

• Content:

{

"templateId":

↪→"a3b788b4dc18dc060bfb82366ae6dc055b1e361d646d5cfdb1b729607e344336:Iou:IouTransfer

↪→",

"choiceInterfaceId":

↪→"a3b788b4dc18dc060bfb82366ae6dc055b1e361d646d5cfdb1b729607e344336:Iou:IouTransferInterface

↪→",

"contractId": "#124:0",

"choice": "Iou_Transfer",

"argument": {

"newOwner": "Alice"

}

}

Where:

• templateId – contract template or interface identifier, same as in create request,

• choiceInterfaceId – optional template or interface that defines the choice, same format as

templateId,

• contractId – contract identifier, the value from the create response,

• choice – Daml contract choice, that is being exercised,

1.12. Integrate Daml with Off-Ledger Services 189

Daml SDK Documentation, 2.7.3

• argument – contract choice argument(s).

templateId and choiceInterfaceId are treated as with exercise by key. However, because con­

tractId is always unambiguous, you may alternatively simply specify the interface ID as the tem­

plateId argument, and ignore choiceInterfaceId entirely. This isn’t true of exercise-by-key or

create-and-exercise, so we suggest treating this request as if this alternative isn’t available.

HTTP Response

• Content-Type: application/json

• Content:

{

"status": 200,

"result": {

"exerciseResult": "#201:1",

"events": [

{

"archived": {

"contractId": "#124:0",

"templateId":

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Iou:Iou"

}

},

{

"created": {

"observers": [],

"agreementText": "",

"payload": {

"iou": {

"observers": [],

"issuer": "Alice",

"amount": "999.99",

"currency": "USD",

"owner": "Alice"

},

"newOwner": "Alice"

},

"signatories": [

"Alice"

],

"contractId": "#201:1",

"templateId":

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Iou:IouTransfer

↪→"

}

}

],

"completionOffset":"0000000000000083"

}

}

Where:

• status field matches the HTTP response status code returned in the HTTP header,

• result field contains contract choice execution details:

190 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

– exerciseResult field contains the return value of the exercised contract choice.

– events contains an array of contracts thatwere archived and created as part of the choice

execution. The array may contain: zero or many {"archived": {...}} and zero or

many {"created": {...}} elements. The order of the contracts is the same as on the

ledger.

– completionOffset is the ledger offset of the transaction containing the exercise’s

ledger changes.

Exercise by Contract Key

The JSON command below, demonstrates how to exercise the Archive choice on the Account con-

tract with a (Party, Text) contract key defined like this:

template Account with

owner : Party

number : Text

status : AccountStatus

where

signatory owner

key (owner, number) : (Party, Text)

maintainer key._1

HTTP Request

• URL: /v1/exercise

• Method: POST

• Content-Type: application/json

• Content:

{

"templateId":

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Account:Account

↪→",

"key": {

"_1": "Alice",

"_2": "abc123"

},

"choiceInterfaceId":

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Account:AccountInterface

↪→",

"choice": "Archive",

"argument": {}

}

Where:

• templateId – contract template identifier, same as in create request,

• key – contract key, formatted according to the Daml-LF JSON Encoding,

• choiceInterfaceId – optional template or interface that defines the choice, same format as

templateId,

• choice – Daml contract choice, that is being exercised,

• argument – contract choice argument(s), empty, because Archive does not take any.

1.12. Integrate Daml with Off-Ledger Services 191

Daml SDK Documentation, 2.7.3

key is always searched in relation to the templateId. The choice, on the other hand, is searched

according to choiceInterfaceId; if choiceInterfaceId is not specified, templateId is its de-

fault. We recommend always specifying choiceInterfaceId when invoking an interface choice;

however, if the set of Daml-LF packages on the participant only contains one choice with a given

name associated with templateId, that choice will be exercised, regardless of where it is defined.

If a template and one or more of the interfaces it implements declares a choice, and choiceInter­

faceId is not used, the one directly defined on the choice will be exercised. If choice selection is

still ambiguous given these rules, the endpoint will fail as if the choice isn’t defined.

HTTP Response

Formatted similar to Exercise by Contract ID response.

Create and Exercise in the Same Transaction

This command allows creating a contract and exercising a choice on the newly created contract in

the same transaction.

HTTP Request

• URL: /v1/create­and­exercise

• Method: POST

• Content-Type: application/json

• Content:

{

"templateId":

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Iou:Iou",

"payload": {

"observers": [],

"issuer": "Alice",

"amount": "999.99",

"currency": "USD",

"owner": "Alice"

},

"choiceInterfaceId":

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Iou:IouInterface

↪→",

"choice": "Iou_Transfer",

"argument": {

"newOwner": "Bob"

}

}

Where:

• templateId – the initial contract template identifier, in the same format as in the create re-

quest,

• payload – the initial contract fields as defined in the Daml template and formatted according

to Daml-LF JSON Encoding,

192 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

• choiceInterfaceId – optional template or interface that defines the choice, same format as

templateId,

• choice – Daml contract choice, that is being exercised,

• argument – contract choice argument(s).

templateId and choiceInterfaceId are treated as with exercise by key, with the exception that it

is payload, not key, strictly interpreted according to templateId.

HTTP Response

Please note that the response below is for a consuming choice, so it contains:

• created and archived events for the initial contract ("contractId": "#1:0"), which was

created and archived right away when a consuming choice was exercised on it,

• a created event for the contract that is the result of exercising the choice ("contractId":

"#1:2").

• Content-Type: application/json

• Content:

{

"result": {

"exerciseResult": "#1:2",

"events": [

{

"created": {

"observers": [],

"agreementText": "",

"payload": {

"observers": [],

"issuer": "Alice",

"amount": "999.99",

"currency": "USD",

"owner": "Alice"

},

"signatories": [

"Alice"

],

"contractId": "#1:0",

"templateId":

↪→"a3b788b4dc18dc060bfb82366ae6dc055b1e361d646d5cfdb1b729607e344336:Iou:Iou"

}

},

{

"archived": {

"contractId": "#1:0",

"templateId":

↪→"a3b788b4dc18dc060bfb82366ae6dc055b1e361d646d5cfdb1b729607e344336:Iou:Iou"

}

},

{

"created": {

"observers": [

"Bob"

],

"agreementText": "",

(continues on next page)

1.12. Integrate Daml with Off-Ledger Services 193

Daml SDK Documentation, 2.7.3

(continued from previous page)

"payload": {

"iou": {

"observers": [],

"issuer": "Alice",

"amount": "999.99",

"currency": "USD",

"owner": "Alice"

},

"newOwner": "Bob"

},

"signatories": [

"Alice"

],

"contractId": "#1:2",

"templateId":

↪→"a3b788b4dc18dc060bfb82366ae6dc055b1e361d646d5cfdb1b729607e344336:Iou:IouTransfer

↪→"

}

}

]

},

"status": 200

}

Fetch Contract by Contract ID

HTTP Request

• URL: /v1/fetch

• Method: POST

• Content-Type: application/json

• Content:

application/json body:

{

"contractId": "#201:1",

"templateId":

↪→"a3b788b4dc18dc060bfb82366ae6dc055b1e361d646d5cfdb1b729607e344336:Iou:IouTransfer

↪→"

}

readers may be passed as with Query. templateId is optional, but you are strongly advised to

always pass it explicitly to minimize the data read from the Ledger API to answer the query. It can be

either a template ID or an interface ID.

194 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Contract Not Found HTTP Response

• Content-Type: application/json

• Content:

{

"status": 200,

"result": null

}

Contract Found HTTP Response

• Content-Type: application/json

• Content:

{

"status": 200,

"result": {

"observers": [],

"agreementText": "",

"payload": {

"iou": {

"observers": [],

"issuer": "Alice",

"amount": "999.99",

"currency": "USD",

"owner": "Alice"

},

"newOwner": "Alice"

},

"signatories": [

"Alice"

],

"contractId": "#201:1",

"templateId":

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Iou:IouTransfer

↪→"

}

}

Fetch Contract by Key

Show the currently active contract that matches a given key.

The websocket endpoint /v1/stream/fetch can be used to searchmultiple keys in the same request, or

in place of iteratively invoking this endpoint to respond to changes on the ledger.

1.12. Integrate Daml with Off-Ledger Services 195

Daml SDK Documentation, 2.7.3

HTTP Request

• URL: /v1/fetch

• Method: POST

• Content-Type: application/json

• Content:

{

"templateId":

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Account:Account

↪→",

"key": {

"_1": "Alice",

"_2": "abc123"

}

}

readersmay be passed as with Query.

Contract Not Found HTTP Response

• Content-Type: application/json

• Content:

{

"status": 200,

"result": null

}

Contract Found HTTP Response

• Content-Type: application/json

• Content:

{

"status": 200,

"result": {

"observers": [],

"agreementText": "",

"payload": {

"owner": "Alice",

"number": "abc123",

"status": {

"tag": "Enabled",

"value": "2020­01­01T00:00:01Z"

}

},

"signatories": [

"Alice"

],

"key": {

"_1": "Alice",

(continues on next page)

196 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

"_2": "abc123"

},

"contractId": "#697:0",

"templateId":

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Account:Account

↪→"

}

}

Get All Active Contracts

List all currently active contracts for all known templates.

Note: Retrieved contracts do not get persisted into a query store database. Query store is a search

index and can be used to optimize search latency. See Start HTTP service for information on how to

start JSON API service with a query store enabled.

Note: You can only query active contracts with the /v1/query endpoint. Archived contracts (those

that were archived or consumed during an exercise operation) will not be shown in the results.

HTTP Request

• URL: /v1/query

• Method: GET

• Content: <EMPTY>

HTTP Response

The response is the same as for the POST method below.

Get All Active Contracts Matching a Given Query

List currently active contracts that match a given query.

The websocket endpoint /v1/stream/query can be used in place of iteratively invoking this endpoint

to respond to changes on the ledger.

1.12. Integrate Daml with Off-Ledger Services 197

Daml SDK Documentation, 2.7.3

HTTP Request

• URL: /v1/query

• Method: POST

• Content-Type: application/json

• Content:

{

"templateIds": [

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Iou:Iou"],

"query": {"amount": 999.99},

"readers": ["Alice"]

}

Where:

• templateIds – either an array of contract template identifiers or an array containing a single

interface identifier to search through. Mixing of template ID’s and interface ID’s, or specifying

more than one interface ID is not allowed.

• query – search criteria to apply to the specified templateIds, formatted according to the

Query Language.

• readers – optional non-empty list of parties to query as; must be a subset of the actAs/readAs

parties in the JWT

Empty HTTP Response

• Content-Type: application/json

• Content:

{

"status": 200,

"result": []

}

Nonempty HTTP Response

• Content-Type: application/json

• Content:

{

"result": [

{

"observers": [],

"agreementText": "",

"payload": {

"observers": [],

"issuer": "Alice",

"amount": "999.99",

"currency": "USD",

"owner": "Alice"

},

"signatories": [

(continues on next page)

198 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

"Alice"

],

"contractId": "#52:0",

"templateId":

↪→"b10d22d6c2f2fae41b353315cf893ed66996ecb0abe4424ea6a81576918f658a:Iou:Iou"

}

],

"status": 200

}

Where

• result contains an array of contracts, each contract formatted according to Daml-LF JSON En-

coding,

• statusmatches the HTTP status code returned in the HTTP header.

Nonempty HTTP Response With Unknown Template IDs Warning

• Content-Type: application/json

• Content:

{

"warnings": {

"unknownTemplateIds": ["UnknownModule:UnknownEntity"]

},

"result": [

{

"observers": [],

"agreementText": "",

"payload": {

"observers": [],

"issuer": "Alice",

"amount": "999.99",

"currency": "USD",

"owner": "Alice"

},

"signatories": [

"Alice"

],

"contractId": "#52:0",

"templateId":

↪→"b10d22d6c2f2fae41b353315cf893ed66996ecb0abe4424ea6a81576918f658a:Iou:Iou"

}

],

"status": 200

}

1.12. Integrate Daml with Off-Ledger Services 199

Daml SDK Documentation, 2.7.3

Fetch Parties by Identifiers

• URL: /v1/parties

• Method: POST

• Content-Type: application/json

• Content:

["Alice", "Bob", "Dave"]

If an empty JSON array is passed: [], this endpoint returns BadRequest(400) error:

{

"status": 400,

"errors": [

"JsonReaderError. Cannot read JSON: <[]>. Cause: spray.json.

↪→DeserializationException: must be a list with at least 1 element"

]

}

HTTP Response

• Content-Type: application/json

• Content:

{

"status": 200,

"result": [

{

"identifier": "Alice",

"displayName": "Alice & Co. LLC",

"isLocal": true

},

{

"identifier": "Bob",

"displayName": "Bob & Co. LLC",

"isLocal": true

},

{

"identifier": "Dave",

"isLocal": true

}

]

}

Please note that the order of the party objects in the response is not guaranteed to match the order

of the passed party identifiers.

Where

• identifier – a stable unique identifier of a Daml party,

• displayName – optional human readablenameassociatedwith theparty. Mightnot beunique,

• isLocal – true if party is hosted by the backing participant.

200 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Response With Unknown Parties Warning

• Content-Type: application/json

• Content:

{

"result": [

{

"identifier": "Alice",

"displayName": "Alice & Co. LLC",

"isLocal": true

}

],

"warnings": {

"unknownParties": ["Erin"]

},

"status": 200

}

The resultmight be an empty JSON array if none of the requested parties is known.

Fetch All Known Parties

• URL: /v1/parties

• Method: GET

• Content: <EMPTY>

HTTP Response

The response is the same as for the POST method above.

Allocate a New Party

This endpoint is a JSONAPI proxy for the Ledger API’s AllocatePartyRequest. Formore information about

party management, please refer to Provisioning Identifiers part of the Ledger API documentation.

HTTP Request

• URL: /v1/parties/allocate

• Method: POST

• Content-Type: application/json

• Content:

{

"identifierHint": "Carol",

"displayName": "Carol & Co. LLC"

}

1.12. Integrate Daml with Off-Ledger Services 201

Daml SDK Documentation, 2.7.3

Please refer to AllocateParty documentation for information about the meaning of the fields.

All fields in the request are optional, this means that an empty JSON object is a valid request to

allocate a new party:

{}

HTTP Response

{

"result": {

"identifier": "Carol",

"displayName": "Carol & Co. LLC",

"isLocal": true

},

"status": 200

}

Create a New User

This endpoint exposes the Ledger API’s CreateUser RPC.

HTTP Request

• URL: /v1/user/create

• Method: POST

• Content-Type: application/json

• Content:

{

"userId": "carol",

"primaryParty": "Carol",

"rights": [

{

"type": "CanActAs",

"party": "Carol"

},

{

"type": "CanReadAs",

"party": "Alice"

},

{

"type": "CanReadAs",

"party": "Bob"

},

{

"type": "ParticipantAdmin"

}

]

}

202 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Please refer to CreateUser RPC documentation for information about the meaning of the fields.

Only the userId fields in the request is required, this means that an JSON object containing only it is

a valid request to create a new user.

HTTP Response

{

"result": {},

"status": 200

}

Get Authenticated User Information

This endpoint exposes the Ledger API’s GetUser RPC.

The user ID will always be filled out with the user specified via the currently used user token.

HTTP Request

• URL: /v1/user

• Method: GET

HTTP Response

{

"result": {

"userId": "carol",

"primaryParty": "Carol"

},

"status": 200

}

Get Specific User Information

This endpoint exposes the Ledger API’s GetUser RPC.

HTTP Request

• URL: /v1/user

• Method: POST

• Content-Type: application/json

• Content:

{

"userId": "carol"

}

1.12. Integrate Daml with Off-Ledger Services 203

Daml SDK Documentation, 2.7.3

Please refer to GetUser RPC documentation for information about the meaning of the fields.

HTTP Response

{

"result": {

"userId": "carol",

"primaryParty": "Carol"

},

"status": 200

}

Delete Specific User

This endpoint exposes the Ledger API’s DeleteUser RPC.

HTTP Request

• URL: /v1/user/delete

• Method: POST

• Content-Type: application/json

• Content:

{

"userId": "carol"

}

Please refer to DeleteUser RPC documentation for information about the meaning of the fields.

HTTP Response

{

"result": {},

"status": 200

}

List Users

This endpoint exposes the Ledger API’s ListUsers RPC.

204 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

HTTP Request

• URL: /v1/users

• Method: GET

HTTP Response

{

"result": [

{

"userId": "carol",

"primaryParty": "Carol"

},

{

"userId": "bob",

"primaryParty": "Bob"

}

],

"status": 200

}

Grant User Rights

This endpoint exposes the Ledger API’s GrantUserRights RPC.

HTTP Request

• URL: /v1/user/rights/grant

• Method: POST

• Content-Type: application/json

• Content:

{

"userId": "carol",

"rights": [

{

"type": "CanActAs",

"party": "Carol"

},

{

"type": "CanReadAs",

"party": "Alice"

},

{

"type": "CanReadAs",

"party": "Bob"

},

{

"type": "ParticipantAdmin"

}

(continues on next page)

1.12. Integrate Daml with Off-Ledger Services 205

Daml SDK Documentation, 2.7.3

(continued from previous page)

]

}

Please refer to GrantUserRights RPC documentation for information about the meaning of the fields.

HTTP Response

{

"result": [

{

"type": "CanActAs",

"party": "Carol"

},

{

"type": "CanReadAs",

"party": "Alice"

},

{

"type": "CanReadAs",

"party": "Bob"

},

{

"type": "ParticipantAdmin"

}

],

"status": 200

}

Returns the rights that were newly granted.

Revoke User Rights

This endpoint exposes the Ledger API’s RevokeUserRights RPC.

HTTP Request

• URL: /v1/user/rights/revoke

• Method: POST

• Content-Type: application/json

• Content:

{

"userId": "carol",

"rights": [

{

"type": "CanActAs",

"party": "Carol"

},

{

"type": "CanReadAs",

(continues on next page)

206 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

"party": "Alice"

},

{

"type": "CanReadAs",

"party": "Bob"

},

{

"type": "ParticipantAdmin"

}

]

}

Please refer to RevokeUserRights RPC documentation for information about the meaning of the fields.

HTTP Response

{

"result": [

{

"type": "CanActAs",

"party": "Carol"

},

{

"type": "CanReadAs",

"party": "Alice"

},

{

"type": "CanReadAs",

"party": "Bob"

},

{

"type": "ParticipantAdmin"

}

],

"status": 200

}

Returns the rights that were actually granted.

1.12. Integrate Daml with Off-Ledger Services 207

Daml SDK Documentation, 2.7.3

List Authenticated User Rights

This endpoint exposes the Ledger API’s ListUserRights RPC.

The user ID will always be filled out with the user specified via the currently used user token.

HTTP Request

• URL: /v1/user/rights

• Method: GET

HTTP Response

{

"result": [

{

"type": "CanActAs",

"party": "Carol"

},

{

"type": "CanReadAs",

"party": "Alice"

},

{

"type": "CanReadAs",

"party": "Bob"

},

{

"type": "ParticipantAdmin"

}

],

"status": 200

}

List Specific User Rights

This endpoint exposes the Ledger API’s ListUserRights RPC.

HTTP Request

• URL: /v1/user/rights

• Method: POST

• Content-Type: application/json

• Content:

{

"userId": "carol"

}

Please refer to ListUserRights RPC documentation for information about the meaning of the fields.

208 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

HTTP Response

{

"result": [

{

"type": "CanActAs",

"party": "Carol"

},

{

"type": "CanReadAs",

"party": "Alice"

},

{

"type": "CanReadAs",

"party": "Bob"

},

{

"type": "ParticipantAdmin"

}

],

"status": 200

}

List All DALF Packages

HTTP Request

• URL: /v1/packages

• Method: GET

• Content: <EMPTY>

HTTP Response

{

"result": [

"c1f1f00558799eec139fb4f4c76f95fb52fa1837a5dd29600baa1c8ed1bdccfd",

"733e38d36a2759688a4b2c4cec69d48e7b55ecc8dedc8067b815926c917a182a",

"bfcd37bd6b84768e86e432f5f6c33e25d9e7724a9d42e33875ff74f6348e733f",

"40f452260bef3f29dede136108fc08a88d5a5250310281067087da6f0baddff7",

"8a7806365bbd98d88b4c13832ebfa305f6abaeaf32cfa2b7dd25c4fa489b79fb"

],

"status": 200

}

Where result is the JSON array containing the package IDs of all loaded DALFs.

1.12. Integrate Daml with Off-Ledger Services 209

Daml SDK Documentation, 2.7.3

Download a DALF Package

HTTP Request

• URL: /v1/packages/<package ID>

• Method: GET

• Content: <EMPTY>

Note that the desired package ID is specified in the URL.

HTTP Response, status: 200 OK

• Transfer-Encoding: chunked

• Content-Type: application/octet­stream

• Content: <DALF bytes>

The content (body) of the HTTP response contains raw DALF package bytes, without any encoding.

Note that the package ID specified in the URL is actually the SHA-256 hash of the downloaded DALF

package and can be used to validate the integrity of the downloaded content.

HTTP Response With Error, Any Status Different from 200 OK

Any status different from 200 OK will be in the format specified below.

• Content-Type: application/json

• Content:

{

"errors": [

"io.grpc.StatusRuntimeException: NOT_FOUND"

],

"status": 500

}

Upload a DAR File

HTTP Request

• URL: /v1/packages

• Method: POST

• Content-Type: application/octet­stream

• Content: <DAR bytes>

The content (body) of the HTTP request contains raw DAR file bytes, without any encoding.

210 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

HTTP Response, Status: 200 OK

• Content-Type: application/json

• Content:

{

"result": 1,

"status": 200

}

HTTP Response With Error

• Content-Type: application/json

• Content:

{

"errors": [

"io.grpc.StatusRuntimeException: INVALID_ARGUMENT: Invalid argument:␣

↪→Invalid DAR: package­upload, content: [}]"

],

"status": 500

}

Metering Report

For a description of participant metering, the parameters, and the report format see the Participant

Metering.

• URL: /v1/metering­report

• Method: POST

• Content-Type: application/json

• Content:

{

"from": "2022­01­01",

"to": "2022­02­01",

"application": "some­application"

}

HTTP Response

• Content-Type: application/json

• Content:

{

"status": 200,

"result": {

"participant": "some­participant",

"request": {

"from": "2022­01­01T00:00:00Z",

(continues on next page)

1.12. Integrate Daml with Off-Ledger Services 211

Daml SDK Documentation, 2.7.3

(continued from previous page)

"to": "2022­02­01T00:00:00Z"

},

"final": true,

"applications": [

{

"application": "some­application",

"events": 42

}

]

}

}

Streaming API

Two subprotocols must be passed with every request, as described in Auth via WebSockets.

JavaScript/Node.js example demonstrating how to establish Streaming API connection:

const wsProtocol = "daml.ws.auth";

const tokenPrefix = "jwt.token.";

const jwt =

"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.

↪→eyJodHRwczovL2RhbWwuY29tL2xlZGdlci1hcGkiOnsibGVkZ2VySWQiOiJNeUxlZGdlciIsImFwcGxpY2F0aW9uSWQiOiJIVFRQLUpTT04tQVBJLUdhdGV3YXkiLCJhY3RBcyI6WyJBbGljZSJdfX0.

↪→34zzF_fbWv7p60r5s1kKzwndvGdsJDX­W4Xhm4oVdp";

const subprotocols = [`${tokenPrefix}${jwt}`, wsProtocol];

const ws = new WebSocket("ws://localhost:7575/v1/stream/query", subprotocols);

ws.addEventListener("open", function open() {

ws.send(JSON.stringify({templateIds: [

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Iou:Iou"]}));

});

ws.addEventListener("message", function incoming(data) {

console.log(data);

});

Please note that Streaming API does not allow multiple requests over the same WebSocket connec-

tion. The server returns an error and disconnects if second request received over the same Web-

Socket connection.

Error and Warning Reporting

Errors and warnings reported as part of the regular on­message flow: ws.

addEventListener("message", ...).

Streaming API error messages formatted the same way as synchronous API errors.

Streaming API reports only one type of warnings – unknown template IDs, which is formatted as:

{"warnings":{"unknownTemplateIds":<JSON Array of template ID strings>>}}

212 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Error and Warning Examples

{"warnings": {"unknownTemplateIds": ["UnknownModule:UnknownEntity"]}}

{

"errors":["JsonReaderError. Cannot read JSON: <{\"templateIds\":[]}>. Cause:␣

↪→spray.json.DeserializationException: search requires at least one item in

↪→'templateIds'"],

"status":400

}

{

"errors":["Multiple requests over the same WebSocket connection are not allowed.

↪→"],

"status":400

}

{

"errors":["Could not resolve any template ID from request."],

"status":400

}

Contracts Query Stream

• URL: /v1/stream/query

• Scheme: ws

• Protocol: WebSocket

List currently active contracts that match a given query, with continuous updates.

Simpler use-cases that do not require continuous updates should use the simpler /v1/query endpoint

instead.

application/json body must be sent first, formatted according to the Query Language:

{"templateIds": [

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Iou:Iou"]}

Multiple queries may be specified in an array, for overlapping or different sets of template IDs.:

[

{"templateIds": [

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Iou:Iou"],

↪→"query": {"amount": {"%lte": 50}}},

{"templateIds": [

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:OtherIou:OtherIou

↪→"], "query": {"amount": {"%gt": 50}}},

{"templateIds": [

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Iou:Iou"]}

]

Only one interface ID can be provided in templateIds. An interface ID can be used in all queries:

1.12. Integrate Daml with Off-Ledger Services 213

Daml SDK Documentation, 2.7.3

[

{"templateIds": [

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Ifc:Ifc"],

↪→"query": {"amount": {"%lte": 50}}},

{"templateIds": [

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Ifc:Ifc"],

↪→"query": {"amount": {"%gt": 50}}},

{"templateIds": [

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Ifc:Ifc"]}

]

Mixing of template ID’s and interface ID’s or specifying more than one interface ID across queries is

not allowed. BadRequest(400) error will be returned.:

[

{"templateIds": [

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Iou:Iou"],

↪→"query": {"amount": {"%lte": 50}}},

{"templateIds": [

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Ifc:Ifc"],

↪→"query": {"amount": {"%gt": 50}}},

{"templateIds": [

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Ifc:Ifc"]}

]

Queries have two ways to specify an offset.

An offset, a string supplied by an earlier query outputmessage, may optionally be specified along-

side each query itself:

[

{"templateIds": [

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Iou:Iou"],

↪→"query": {"amount": {"%lte": 50}}},

{"templateIds": [

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Iou:Iou"],

↪→"query": {"amount": {"%gt": 50}}},

{"templateIds": [

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Iou:Iou"],

↪→"offset": "5609"}

]

If specified, the stream will include only contract creations and archivals after the response body

that included that offset. Queries with no offset will begin with all active contracts for that query, as

usual.

If an offset is specified before the queries, as a separate body, it will be used as a default offset for all

queries that do not include an offset themselves:

{"offset": "4307"}

For example, if thismessage preceded the above 3-query example, it would be as if "4307" had been

specified for the first two queries, while "5609" would be used for the third query.

If any offset has been pruned, the websocket will immediately fail with code 1011 and message in­

ternal error.

214 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

The output is a series of JSON documents, each payload formatted according to Daml-LF JSON En-

coding:

{

"events": [{

"created": {

"observers": [],

"agreementText": "",

"payload": {

"observers": [],

"issuer": "Alice",

"amount": "999.99",

"currency": "USD",

"owner": "Alice"

},

"signatories": ["Alice"],

"contractId": "#1:0",

"templateId":

↪→"eb3b150383a979d6765b8570a17dd24ae8d8b63418ee5fd20df20ad2a1c13976:Iou:Iou"

},

"matchedQueries": [1, 2]

}]

}

where matchedQueries indicates the 0-based indices into the request list of queries thatmatched

this contract.

Every events block following the end of contracts that existed when the request started includes

an offset. The stream is guaranteed to send an offset immediately at the beginning of this “live”

data, which may or may not contain any events; if it does not contain events and no events were

emitted before, it may be null if there was no transaction on the ledger or a string representing the

current ledger end; otherwise, it will be a string. For example, you might use it to turn off an initial

“loading” indicator:

{

"events": [],

"offset": "2"

}

Note: Events in the following “live” datamay include events that precede this offset if an earlier

per-query offset was specified.

This has been done with the intent of allowing to use per-query offset s to efficiently use a single

connection to multiplex various requests. To give an example of how this would work, let’s say that

there are two contract templates, A and B . Your application first queries for A s without specifying

an offset. Then some client-side interaction requires the application to do the same for B s. The

application can save the latest observed offset for the previous query, which let’s say is 42, and

issue a new request that queries for all B s without specifying an offset and all A s from 42. While

this happens on the client, a few more A s and B s are created and the new request is issued once

the latest offset is 47. The response to this will contain amessage with all active B s, followed by the

message reporting the offset 47, followed by a stream of live updates that contains new A s starting

from 42 and new B s starting from 47 .

To keep the stream alive, you’ll occasionally see messages like this, which can be safely ignored if

1.12. Integrate Daml with Off-Ledger Services 215

Daml SDK Documentation, 2.7.3

you do not need to capture the last seen ledger offset:

{"events":[],"offset":"5609"}

where offset is the last seen ledger offset.

After submitting an Iou_Split exercise, which creates two contracts and archives the one above,

the same stream will eventually produce:

{

"events": [{

"archived": {

"contractId": "#1:0",

"templateId":

↪→"eb3b150383a979d6765b8570a17dd24ae8d8b63418ee5fd20df20ad2a1c13976:Iou:Iou"

}

}, {

"created": {

"observers": [],

"agreementText": "",

"payload": {

"observers": [],

"issuer": "Alice",

"amount": "42.42",

"currency": "USD",

"owner": "Alice"

},

"signatories": ["Alice"],

"contractId": "#2:1",

"templateId":

↪→"eb3b150383a979d6765b8570a17dd24ae8d8b63418ee5fd20df20ad2a1c13976:Iou:Iou"

},

"matchedQueries": [0, 2]

}, {

"created": {

"observers": [],

"agreementText": "",

"payload": {

"observers": [],

"issuer": "Alice",

"amount": "957.57",

"currency": "USD",

"owner": "Alice"

},

"signatories": ["Alice"],

"contractId": "#2:2",

"templateId":

↪→"eb3b150383a979d6765b8570a17dd24ae8d8b63418ee5fd20df20ad2a1c13976:Iou:Iou"

},

"matchedQueries": [1, 2]

}],

"offset": "3"

}

If any template IDs are found not to resolve, the first element of the stream will report them:

{"warnings": {"unknownTemplateIds": ["UnknownModule:UnknownEntity"]}}

216 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

and the stream will continue, provided that at least one template ID resolved properly.

Aside from "created" and "archived" elements, "error" elements may appear, which contain

a string describing the error. The stream will continue in these cases, rather than terminating.

Some notes on behavior:

1. Each result array means “this is what would have changed if you just polled /v1/query itera-

tively.” In particular, just as polling search can “miss” contracts (as a create and archive can

be paired between polls), such contracts may or may not appear in any result object.

2. No archived ever contains a contract ID occurring within a created in the same array. So,

for example, supposing you are keeping an internal map of active contracts keyed by contract

ID, you can apply the created first or the archived first, forwards, backwards, or in random

order, and be guaranteed to get the same results.

3. Within a given array, if an archived and created refer to contracts with the same template

ID and contract key, the archived is guaranteed to occur before the created.

4. Except in cases of #3, within a single response array, the order of created and archived is

undefined and does not imply that any element occurred “before” or “after” any other one.

5. You will almost certainly receive contract IDs in archived that you never received a created

for. These are contracts that query filtered out, but for which the server no longer is aware

of that. You can safely ignore these. However, such “phantom archives” are guaranteed to

represent an actual archival on the ledger, so if you are keeping a more global dataset outside

the context of this specific search, you can use that archival information as you wish.

Fetch by Key Contracts Stream

• URL: /v1/stream/fetch

• Scheme: ws

• Protocol: WebSocket

List currently active contracts that match one of the given {templateId, key} pairs, with contin-

uous updates.

Simpler use-cases that search for only a single key and do not require continuous updates should

use the simpler /v1/fetch endpoint instead.

application/json body must be sent first, formatted according to the following rule:

[

{"templateId": "<template ID 1>", "key": <key 1>},

{"templateId": "<template ID 2>", "key": <key 2>},

...

{"templateId": "<template ID N>", "key": <key N>}

]

Where:

• templateId – contract template identifier, same as in create request,

• key – contract key, formatted according to the Daml-LF JSON Encoding,

Example:

[

{"templateId":

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Account:Account

↪→", "key": {"_1": "Alice", "_2": "abc123"}},
(continues on next page)

1.12. Integrate Daml with Off-Ledger Services 217

Daml SDK Documentation, 2.7.3

(continued from previous page)

{"templateId":

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Account:Account

↪→", "key": {"_1": "Alice", "_2": "def345"}}

]

The output stream has the same format as the output from the Contracts Query Stream. We further

guarantee that for every archived event appearing on the stream there has been a matching cre­

ated event earlier in the stream, except in the case of missing contractIdAtOffset fields in the

case described below.

You may supply optional offset s for the stream, exactly as with query streams. However, you

should supply with each {templateId, key} pair a contractIdAtOffset, which is the contract

ID currently associated with that pair at the point of the given offset, or null if no contract ID was

associated with the pair at that offset. For example, with the above keys, if you had one "abc123"

contract but no "def345" contract, you might specify:

[

{"templateId":

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Account:Account

↪→", "key": {"_1": "Alice", "_2": "abc123"},

"contractIdAtOffset": "#1:0"},

{"templateId":

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Account:Account

↪→", "key": {"_1": "Alice", "_2": "def345"},

"contractIdAtOffset": null}

]

If every contractIdAtOffset is specified, as is so in the example above, you will not receive any

archived events for contracts created before the offset unless those contracts are identified in a

contractIdAtOffset. By contrast, if any contractIdAtOffset is missing, archived event fil-

tering will be disabled, and you will receive “phantom archives” as with query streams.

Healthcheck Endpoints

The HTTP JSON API provides two healthcheck endpoints for integration with schedulers like Kuber-

netes.

Liveness Check

• URL: /livez

• Method: GET

A status code of 200 indicates a successful liveness check.

This is an unauthenticated endpoint intended to be used as a liveness probe.

218 Chapter 1. Canton References

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

Daml SDK Documentation, 2.7.3

Readiness Check

• URL: /readyz

• Method: GET

A status code of 200 indicates a successful readiness check.

This is an unauthenticated endpoint intended to be used as a readiness probe. It validates both the

ledger connection as well as the database connection.

1.12.4.2 Daml-LF JSON Encoding

We describe how to decode and encode Daml-LF values as JSON. For each Daml-LF type we explain

what JSON inputs we accept (decoding), and what JSON output we produce (encoding).

If you use the JavaScript code generatorwith TypeScript, the generated types for templates and choices

will incorporate the following automatically. You can use this to observe how these rules apply to

your templates, or ignore this document and rely on the TypeScript type checker to tell you how to

encode data for JSON API correctly.

Codec Library

At the library level, the output format is parameterized by two flags:

encodeDecimalAsString: boolean

encodeInt64AsString: boolean

The suggested defaults for both of these flags is false. If the intended recipient is written in

JavaScript, however, note that the JavaScript data model will decode these as numbers, discard-

ing data in some cases; encode-as-String avoids this, as mentioned with respect to JSON.parse

below. For that reason, the HTTP JSON API Service uses ``true`` for both flags.

Type-directed Parsing

Note that throughout the document the decoding is type-directed. In other words, the same JSON

value can correspond tomanyDaml-LF values, anda singleDaml-LF value can correspond tomultiple

JSON encodings. This means it is crucial to know the expected type of a JSON-encoded LF value to

make sense of it.

For that reason, you should parse the data into appropriate data types (including parsing numbers

into appropriate representations) before doing any meaningful manipulations (e.g. comparison for

equality).

1.12. Integrate Daml with Off-Ledger Services 219

Daml SDK Documentation, 2.7.3

ContractId

Contract ids are expressed as their string representation:

"123"

"XYZ"

"foo:bar#baz"

Decimal

Input

Decimals can be expressed as JSON numbers or as JSON strings. JSON strings are accepted using

the same format that JSON accepts, and treated them as the equivalent JSON number:

­?(?:0|[1­9]\d*)(?:\.\d+)?(?:[eE][+­]?\d+)?

Note that JSON numbers would be enough to represent all Decimals. However, we also accept strings

because in many languages (most notably JavaScript) use IEEE Doubles to express JSON numbers,

and IEEE Doubles cannot express Daml-LF Decimals correctly. Therefore, we also accept strings so

that JavaScript users can use them to specify Decimals that do not fit in IEEE Doubles.

Numbers must be within the bounds of Decimal, [–(10³⁸–1)÷10¹⁰, (10³⁸–1)÷10¹⁰]. Numbers outside

those bounds will be rejected. Numbers inside the bounds will always be accepted, using banker’s

rounding to fit them within the precision supported by Decimal.

A few valid examples:

42 ­­> 42

42.0 ­­> 42

"42" ­­> 42

9999999999999999999999999999.9999999999 ­­>

9999999999999999999999999999.9999999999

­42 ­­> ­42

"­42" ­­> ­42

0 ­­> 0

­0 ­­> 0

0.30000000000000004 ­­> 0.3

2e3 ­­> 2000

A few invalid examples:

" 42 "

"blah"

99999999999999999999999999990

+42

220 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Output

If encodeDecimalAsString is set, decimals are encoded as strings, using the format ­?[0­9]{1,

28}(\.[0­9]{1,10})?. If encodeDecimalAsString is not set, they are encoded as JSON numbers,

also using the format ­?[0­9]{1,28}(\.[0­9]{1,10})?.

Note that the flag encodeDecimalAsString is useful because it lets JavaScript consumers consume

Decimals safely with the standard JSON.parse.

Int64

Input

Int64, much like Decimal, can be represented as JSON numbers and as strings, with the string

representation being [+­]?[0­9]+. The numbers must fall within [-9223372036854775808,

9223372036854775807]. Moreover, if represented as JSON numbers, they must have no fractional

part.

A few valid examples:

42

"+42"

­42

0

­0

9223372036854775807

"9223372036854775807"

­9223372036854775808

"­9223372036854775808"

A few invalid examples:

42.3

+42

9223372036854775808

­9223372036854775809

"garbage"

" 42 "

Output

If encodeInt64AsString is set, Int64s are encoded as strings, using the format ­?[0­9]+. If en-

codeInt64AsString is not set, they are encoded as JSON numbers, also using the format ­?[0­9]+.

Note that the flag encodeInt64AsString is useful because it lets JavaScript consumers consume

Int64s safely with the standard JSON.parse.

1.12. Integrate Daml with Off-Ledger Services 221

Daml SDK Documentation, 2.7.3

Timestamp

Input

Timestamps are represented as ISO 8601 strings, rendered using the format

yyyy­mm­ddThh:mm:ss.ssssssZ:

1990­11­09T04:30:23.123456Z

9999­12­31T23:59:59.999999Z

Parsing is a little bit more flexible and uses the format yyyy­mm­ddThh:mm:ss(\.s+)?Z, i.e. it’s

OK to omit the microsecond part partially or entirely, or have more than 6 decimals. Sub-second

data beyond microseconds will be dropped. The UTC timezone designator must be included. The

rationale behind the inclusion of the timezone designator is minimizing the risk that users pass in

local times. Valid examples:

1990­11­09T04:30:23.1234569Z

1990­11­09T04:30:23Z

1990­11­09T04:30:23.123Z

0001­01­01T00:00:00Z

9999­12­31T23:59:59.999999Z

The timestamp must be between the bounds specified by Daml-LF and ISO 8601,

[0001-01-01T00:00:00Z, 9999-12-31T23:59:59.999999Z].

JavaScript

> new Date().toISOString()

'2019­06­18T08:59:34.191Z'

Python

>>> datetime.datetime.utcnow().isoformat() + 'Z'

'2019­06­18T08:59:08.392764Z'

Java

import java.time.Instant;

class Main {

public static void main(String[] args) {

Instant instant = Instant.now();

// prints 2019­06­18T09:02:16.652Z

System.out.println(instant.toString());

}

}

222 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Output

Timestamps are encoded as ISO 8601 strings, rendered using the format yyyy­mm­ddThh:mm:ss[.

ssssss]Z.

The sub-second part will be formatted as follows:

• If no sub-second part is present in the timestamp (i.e. the timestamp represents whole sec-

onds), the sub-second part will be omitted entirely;

• If the sub-second part does not go beyond milliseconds, the sub-second part will be up to mil-

liseconds, padding with trailing 0s if necessary;

• Otherwise, the sub-second part will be up to microseconds, padding with trailing 0s if neces-

sary.

In other words, the encoded timestamp will either have no sub-second part, a sub-second part of

length 3, or a sub-second part of length 6.

Party

Represented using their string representation, without any additional quotes:

"Alice"

"Bob"

Unit

Represented as empty object {}. Note that in JavaScript {} !== {}; however, null would be am-

biguous; for the type Optional Unit, null decodes to None, but {} decodes to Some ().

Additionally, we think that this is the least confusing encoding for Unit since unit is conceptually

an empty record. We do not want to imply that Unit is used similarly to null in JavaScript or None in

Python.

Date

Represented as an ISO 8601 date rendered using the format yyyy­mm­dd:

2019­06­18

9999­12­31

0001­01­01

The dates must be between the bounds specified by Daml-LF and ISO 8601, [0001-01-01, 9999-12-31].

1.12. Integrate Daml with Off-Ledger Services 223

Daml SDK Documentation, 2.7.3

Text

Represented as strings.

Bool

Represented as booleans.

Record

Input

Records can be represented in two ways. As objects:

{ f₁: v₁, ..., fₙ: vₙ }

And as arrays:

[v₁, ..., vₙ]

Note that Daml-LF record fields are ordered. So if we have

record Foo = {f1: Int64, f2: Bool}

when representing the record as an array the user must specify the fields in order:

[42, true]

The motivation for the array format for records is to allow specifying tuple types closer to what it

looks like in Daml. Note that a Daml tuple, i.e. (42, True), will be compiled to a Daml-LF record Tuple2

{ _1 = 42, _2 = True }.

Output

Records are always encoded as objects.

List

Lists are represented as

[v₁, ..., vₙ]

224 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

TextMap

TextMaps are represented as objects:

{ k₁: v₁, ..., kₙ: vₙ }

GenMap

GenMaps are represented as lists of pairs:

[[k₁, v₁], [kₙ, vₙ]]

Order does not matter. However, any duplicate keys will cause the map to be treated as invalid.

Optional

Input

Optionals are encoded using null if the value is None, and with the value itself if it’s Some. However,

this alone does not let us encode nested optionals unambiguously. Therefore, nested Optionals are

encoded using an empty list for None, and a list with one element for Some. Note that after the

top-level Optional, all the nested ones must be represented using the list notation.

A few examples, using the form

JSON ­­> Daml­LF : Expected Daml­LF type

to make clear what the target Daml-LF type is:

null ­­> None : Optional Int64

null ­­> None : Optional (Optional Int64)

42 ­­> Some 42 : Optional Int64

[] ­­> Some None : Optional (Optional Int64)

[42] ­­> Some (Some 42) : Optional (Optional Int64)

[[]] ­­> Some (Some None) : Optional (Optional (Optional Int64))

[[42]] ­­> Some (Some (Some 42)) : Optional (Optional (Optional Int64))

...

Finally, if Optional values appear in records, they can be omitted to represent None. Given Daml-LF

types

record Depth1 = { foo: Optional Int64 }

record Depth2 = { foo: Optional (Optional Int64) }

We have

{ } ­­> Depth1 { foo: None } : Depth1

{ } ­­> Depth2 { foo: None } : Depth2

{ foo: 42 } ­­> Depth1 { foo: Some 42 } : Depth1

{ foo: [42] } ­­> Depth2 { foo: Some (Some 42) } : Depth2

{ foo: null } ­­> Depth1 { foo: None } : Depth1

(continues on next page)

1.12. Integrate Daml with Off-Ledger Services 225

Daml SDK Documentation, 2.7.3

(continued from previous page)

{ foo: null } ­­> Depth2 { foo: None } : Depth2

{ foo: [] } ­­> Depth2 { foo: Some None } : Depth2

Note that the shortcut for records and Optional fields does not apply to Map (which are also repre-

sented as objects), since Map relies on absence of key to determine what keys are present in the

Map to begin with. Nor does it apply to the [f₁, ..., fₙ] record form; Depth1 None in the array

notation must be written as [null].

Type variables may appear in the Daml-LF language, but are always resolved before deciding on a

JSON encoding. So, for example, even though Oa doesn’t appear to contain a nested Optional, it

may contain a nested Optional by virtue of substituting the type variable a:

record Oa a = { foo: Optional a }

{ foo: 42 } ­­> Oa { foo: Some 42 } : Oa Int

{ } ­­> Oa { foo: None } : Oa Int

{ foo: [] } ­­> Oa { foo: Some None } : Oa (Optional Int)

{ foo: [42] } ­­> Oa { foo: Some (Some 42) } : Oa (Optional Int)

In otherwords, the correct JSONencoding for any LF value is the one yougetwhen youhave eliminated

all type variables.

Output

Encoded as described above, never applying the shortcut for None record fields; e.g. { foo: None

} will always encode as { foo: null }.

Variant

Variants are expressed as

{ tag: constructor, value: argument }

For example, if we have

variant Foo = Bar Int64 | Baz Unit | Quux (Optional Int64)

These are all valid JSON encodings for values of type Foo:

{"tag": "Bar", "value": 42}

{"tag": "Baz", "value": {}}

{"tag": "Quux", "value": null}

{"tag": "Quux", "value": 42}

Note that Daml data typeswith named fields are compiled by factoring out the record. So for example

if we have

data Foo = Bar {f1: Int64, f2: Bool} | Baz

We’ll get in Daml-LF

226 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

record Foo.Bar = {f1: Int64, f2: Bool}

variant Foo = Bar Foo.Bar | Baz Unit

and then, from JSON

{"tag": "Bar", "value": {"f1": 42, "f2": true}}

{"tag": "Baz", "value": {}}

This can be encoded and used in TypeScript, including exhaustiveness checking; see a type refine-

ment example.

Enum

Enums are represented as strings. So if we have

enum Foo = Bar | Baz

There are exactly two valid JSON values for Foo, “Bar” and “Baz”.

1.12.4.3 Query Language

The body of POST /v1/query looks like so:

{

"templateIds": [...template IDs...],

"query": {...query elements...}

}

The elements of that query are defined here.

Fallback Rule

Unless otherwise required by one of the other rules below or to follow, values are interpreted accord-

ing to Daml-LF JSON Encoding, and compared for equality.

All types are supported by this simple equality comparison except:

• lists

• textmaps

• genmaps

Simple Equality

Match records having at least all the (potentially nested) keys expressed in the query. The result

record may contain additional properties.

Example: { person: { name: "Bob" }, city: "London" }

• Match: { person: { name: "Bob", dob: "1956­06­21" }, city: "London",

createdAt: "2019­04­30T12:34:12Z" }

• No match: { person: { name: "Bob" }, city: "Zurich" }

1.12. Integrate Daml with Off-Ledger Services 227

https://www.typescriptlang.org/play/#code/C4TwDgpgBAYg9nKBeAsAKCpqBvKwCGA5gFxQBEAQvgE5kA0UAbvgDYCuEpuAZgIykA7NgFsARhGoNuAJlKiELCPgFQAvmvSYAPjjxFSlfAC96TVhy5q1AbnTpubAQGNgASzgrgEAM7AAFIyk8HAAlDiaUN4A7q7ATgAWUAEAdASEYdgRmE743tCGtMRZWE4e3nCKySxwhCnM7BDJfAyMyfUcTdIhthhYmNQQwGzUAj19OXnkVCZFveNlFY3Vta3tEN3F-YPDo8UAJhDc+GwswLN92WXAUAD6ghCMEshMYxpoqkA
https://www.typescriptlang.org/play/#code/C4TwDgpgBAYg9nKBeAsAKCpqBvKwCGA5gFxQBEAQvgE5kA0UAbvgDYCuEpuAZgIykA7NgFsARhGoNuAJlKiELCPgFQAvmvSYAPjjxFSlfAC96TVhy5q1AbnTpubAQGNgASzgrgEAM7AAFIyk8HAAlDiaUN4A7q7ATgAWUAEAdASEYdgRmE743tCGtMRZWE4e3nCKySxwhCnM7BDJfAyMyfUcTdIhthhYmNQQwGzUAj19OXnkVCZFveNlFY3Vta3tEN3F-YPDo8UAJhDc+GwswLN92WXAUAD6ghCMEshMYxpoqkA

Daml SDK Documentation, 2.7.3

• Typecheck failure: { person: { name: ["Bob", "Sue"] }, city: "London" }

A JSON object, when considered with a record type, is always interpreted as a field equality query. Its

type context is thus mutually exclusive with comparison queries.

Comparison Query

Match values on comparison operators for int64, numeric, text, date, and time values. Instead of a

value, a key can be an object with one or more operators: { <op>: value } where <op> can be:

• "%lt" for less than

• "%gt" for greater than

• "%lte" for less than or equal to

• "%gte" for greater than or equal to

"%lt" and "%lte"may not be used at the same time, and likewise with "%gt" and "%gte", but all

other combinations are allowed.

Example: { "person" { "dob": { "%lt": "2000­01­01", "%gte": "1980­01­01" } }

}

• Match: { person: { dob: "1986­06­21" } }

• No match: { person: { dob: "1976­06­21" } }

• No match: { person: { dob: "2006­06­21" } }

These operators cannot occur in objects interpreted in a record context, nor may other keys than

these four operators occur where they are legal, so there is no ambiguity with field equality.

Appendix: Type-aware Queries

This section is non-normative.

This is not a JSON query language, it is a Daml-LF query language. So, while we could theoretically treat

queries (where not otherwise interpreted by the “may contain additional properties” rule above)

without concern for what LF type (i.e. template) we’re considering, we will not do so.

Consider the subquery {"foo": "bar"}. This query conforms to types, among an unbounded

number of others:

record A ↦ { foo : Text }

record B ↦ { foo : Optional Text }

variant C ↦ foo : Party | bar : Unit

// NB: LF does not require any particular case for VariantCon or Field;

// these are perfectly legal types in Daml­LF packages

In the cases of A and B, "foo" is part of the query language, and only "bar" is treated as an LF

value; in the case of C, the whole query is treated as an LF value. The wide variety of ambiguous

interpretations about what elements are interpreted, and what elements treated as literal, and how

those elements are interpreted or compared, would preclude many techniques for efficient query

compilation and LF value representation that we might otherwise consider.

Additionally, it would be extremely easy to overlook unintended meanings of queries when writing

them, and impossible in many cases to suppress those unintended meanings within the query lan-

guage. For example, there is no way that the above query could be written to match A but never C.

228 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

For these reasons, aswith LF value input via JSON, querieswritten in JSONare also always interpreted

with respect to some specified LF types (e.g. template IDs). For example:

{

"templateIds": ["Foo:A", "Foo:B", "Foo:C"],

"query": {"foo": "bar"}

}

will treat "foo" as a field equality query for A and B, and (supposing templates’ associated data

types were permitted to be variants, which they are not, but for the sake of argument) as a whole

value equality query for C.

The above “Typecheck failure” happens because there is no LF type to which both "Bob" and

["Bob", "Sue"] conform; this would be caught when interpreting the query, before considering

any contracts.

Appendix: Known Issues

When Using Oracle, Queries Fail if a Token Is Too Large

This limitation is exclusive to users of the HTTP JSON API using Daml Enterprise support for Ora-

cle. Due to a known limitation in Oracle, the full-test JSON search index on the contract payloads

rejects query tokens larger than 256 bytes. This limitations shouldn’t impact most workloads, but

if this needs to be worked around, the HTTP JSON API server can be started passing the additional

disableContractPayloadIndexing=true (after wiping an existing query store database, if nec-

essary).

Issue on GitHub

1.12.4.4 Using JavaScript Client Libraries with Daml

The JavaScript client libraries allow you to easily build frontend applications that interact with the

HTTP JSON API service.

These libraries can dramatically reduce the time necessary to develop a full-stack application by

abstracting away implementation details, particularly when building a prototype or an application

with relatively simple requirements.

The @daml/types library contains the TypeScript data types corresponding to primitive Daml data

types, such as Party or Text. Apart from its usefulness for TypeScript developers, the library can

also be pulled in as a development-type dependency for JavaScript projects to take advantage of

tooling integration with the TypeScript ecosystem, such as the availability of autocompletion on

Visual Studio Code.

The @daml/ledger library contains functions used to interact with the endpoints exposed by HTTP

JSON API service and forms the basic layer of functionality. At this layer, you can easily query for

active contracts from the ledger, create new ones or exercise choices. This layer is agnostic with

regards to any specific framework required to build the frontend.

Finally, if you are a React.js user, you can take advantage of the@daml/react library, which builds on

top of @daml/ledger with extensions specific to React.js. This bridges the gap between the basic

functionality and the infrastructure required to build a React.js-based frontend application. If you

1.12. Integrate Daml with Off-Ledger Services 229

https://github.com/digital-asset/daml/issues/10780
https://docs.daml.com/2.7.3/app-dev/bindings-ts/daml-types
https://docs.daml.com/2.7.3/app-dev/bindings-ts/daml-ledger
https://reactjs.org
https://docs.daml.com/2.7.3/app-dev/bindings-ts/daml-react

Daml SDK Documentation, 2.7.3

want to start from a ready-made application that uses this library you can start running from the

following template:

daml new ­­template create­daml­app <name­of­your­project>

To use these libraries, you need to use the JavaScript Code Generator to automatically generate Type-

Script containing metadata about Daml packages.

Use the JavaScript Code Generator

The command daml codegen js generates JavaScript (and TypeScript) that can be used in con-

junction with the JavaScript Client Libraries for interacting with a Daml ledger via the HTTP JSON

API.

Inputs to the command are DAR files. Outputs are JavaScript packages with TypeScript typings con-

taining metadata and types for all Daml packages included in the DAR files.

The generated packages use the library @daml/types.

Generate and Use Code

In outline, the command to generate JavaScript and TypeScript typings fromDaml is daml codegen

js ­o OUTDIR DAR where DAR is the path to a DAR file (generated via daml build) and OUTDIR

is a directory where you want the artifacts to be written.

Here’s a complete example on a project built from the standard “skeleton” template.

1 daml new my­proj ­­template skeleton # Create a new project based off the␣

↪→skeleton template

2 cd my­proj # Enter the newly created project directory

3 daml build # Compile the project's Daml files into a DAR

4 daml codegen js ­o daml.js .daml/dist/my­proj­0.0.1.dar # Generate JavaScript␣

↪→packages in the daml.js directory

• On execution of these commands:

– The directory my­proj/daml.js contains generated JavaScript packages with Type-

Script typings;

– The files are arranged into directories;

– One of those directories will be named my-proj-0.0.1 and will contain the definitions cor-

responding to the Daml files in the project;

– For example, daml.js/my­proj­0.0.1/lib/index.js provides access to the defini-

tions for daml/Main.daml;

– The remaining directories correspond to modules of the Daml standard library;

– Those directories have numeric names (the names are hashes of the Daml-LF package

they are derived from).

To get a quickstart idea of how to usewhat has been generated, youmaywish to jump to the Templates

and choices section and return to the reference material that follows as needed.

230 Chapter 1. Canton References

/app-dev/bindings-ts/index.html
/json-api/index.html
/json-api/index.html
https://docs.daml.com/2.7.3/app-dev/bindings-ts/daml-types

Daml SDK Documentation, 2.7.3

Primitive Daml Types: @daml/types

To understand the TypeScript typings produced by the code generator, it is helpful to keep in mind

this quick review of the TypeScript equivalents of the primitive Daml types provided by@daml/types.

Interfaces:

• Template<T extends object, K = unknown>

• Choice<T extends object, C, R, K = unknown>

Types:

Daml TypeScript TypeScript definition

() Unit {}

Bool Bool boolean

Int Int string

Decimal Decimal string

Numeric ν Numeric string

Text Text string

Time Time string

Party Party string

[τ] List<τ> τ[]

Date Date string

ContractId

τ

Contrac­

tId<τ>

string

Optional τ Optional<τ> null | (null extends τ ? [] | [Exclude<τ,

null>] : τ)

TextMap τ TextMap<τ> { [key: string]: τ }

(τ₁, τ₂) Tuple₂<τ₁,

τ₂>

{_1: τ₁; _2: τ₂}

Note: The types given in the “TypeScript” column are defined in @daml/types.

Note: For n-tuples where n ≥ 3, representation is analogous with the pair case (the last line of the

table).

Note: The TypeScript types Time, Decimal, Numeric and Int all alias to string. These choices

relate to the avoidance of precision loss under serialization over the json-api.

Note: The TypeScript definition of type Optional<τ> in the above table might look complicated. It

accounts for differences in the encoding of optional valueswhennested versuswhen they are not (i.e.

“top-level”). For example, null and "foo" are two possible values of Optional<Text> whereas,

[] and ["foo"] are two possible values of type Optional<Optional<Text>> (null is another

possible value, [null] is not).

1.12. Integrate Daml with Off-Ledger Services 231

../json-api/index.html

Daml SDK Documentation, 2.7.3

Daml to TypeScript Mappings

The mappings from Daml to TypeScript are best explained by example.

Records

In Daml, we might model a person like this.

1 data Person =

2 Person with

3 name: Text

4 party: Party

5 age: Int

Given the above definition, the generated TypeScript code will be as follows.

1 type Person = {

2 name: string;

3 party: daml.Party;

4 age: daml.Int;

5 }

Variants

This is a Daml type for a language of additive expressions.

1 data Expr a =

2 Lit a

3 | Var Text

4 | Add (Expr a, Expr a)

In TypeScript, it is represented as a discriminated union.

1 type Expr<a> =

2 | { tag: 'Lit'; value: a }

3 | { tag: 'Var'; value: string }

4 | { tag: 'Add'; value: {_1: Expr<a>, _2: Expr<a>} }

Sum-of-products

Let’s slightly modify the Expr a type of the last section into the following.

1 data Expr a =

2 Lit a

3 | Var Text

4 | Add {lhs: Expr a, rhs: Expr a}

Compared to the earlier definition, the Add case is now in terms of a record with fields lhs and rhs.

This renders in TypeScript like so.

232 Chapter 1. Canton References

https://www.typescriptlang.org/docs/handbook/advanced-types.html#discriminated-unions

Daml SDK Documentation, 2.7.3

1 type Expr<a> =

2 | { tag: 'Lit2'; value: a }

3 | { tag: 'Var2'; value: string }

4 | { tag: 'Add'; value: Expr.Add<a> }

5

6 namespace Expr {

7 type Add<a> = {

8 lhs: Expr<a>;

9 rhs: Expr<a>;

10 }

11 }

The thing to note is how the definition of the Add case has given rise to a record type definition

Expr.Add.

Enums

Given a Daml enumeration like this,

1 data Color = Red | Blue | Yellow

the generated TypeScript will consist of a type declaration and the definition of an associated com-

panion object.

1 type Color = 'Red' | 'Blue' | 'Yellow'

2

3 const Color = {

4 Red: 'Red',

5 Blue: 'Blue',

6 Yellow: 'Yellow',

7 keys: ['Red','Blue','Yellow'],

8 } as const;

Templates and Choices

Here is a Daml template of a basic ‘IOU’ contract.

1 template Iou

2 with

3 issuer: Party

4 owner: Party

5 currency: Text

6 amount: Decimal

7 where

8 signatory issuer

9 choice Transfer: ContractId Iou

10 with

11 newOwner: Party

12 controller owner

13 do

14 create this with owner = newOwner

1.12. Integrate Daml with Off-Ledger Services 233

Daml SDK Documentation, 2.7.3

The daml codegen js command generates types for each of the choices defined on the template

as well as the template itself.

1 type Transfer = {

2 newOwner: daml.Party;

3 }

4

5 type Iou = {

6 issuer: daml.Party;

7 owner: daml.Party;

8 currency: string;

9 amount: daml.Numeric;

10 }

Each template results in the generation of a companion object. Here, is a schematic of the one gen-

erated from the Iou template2.

1 const Iou: daml.Template<Iou, undefined> & {

2 Archive: daml.Choice<Iou, DA_Internal_Template.Archive, {}, undefined>;

3 Transfer: daml.Choice<Iou, Transfer, daml.ContractId<Iou>, undefined>;

4 } = {

5 /* ... */

6 }

The exact details of these companion objects are not important - think of them as representing

“metadata”.

What is important is the use of the companion objects when creating contracts and exercising

choices using the @daml/ledger package. The following code snippet demonstrates their usage.

1 import Ledger from '@daml/ledger';

2 import {Iou, Transfer} from /* ... */;

3

4 const ledger = new Ledger(/* ... */);

5

6 // Contract creation; Bank issues Alice a USD $1MM IOU.

7

8 const iouDetails: Iou = {

9 issuer: 'Chase',

10 owner: 'Alice',

11 currency: 'USD',

12 amount: 1000000.0,

13 };

14 const aliceIouCreateEvent = await ledger.create(Iou, iouDetails);

15 const aliceIouContractId = aliceIouCreateEvent.contractId;

16

17 // Choice execution; Alice transfers ownership of the IOU to Bob.

18

19 const transferDetails: Transfer = {

20 newOwner: 'Bob',

21 }

22 const [bobIouContractId, _] = await ledger.exercise(Transfer, aliceIouContractId,␣

↪→transferDetails);

Observe on line 14, the first argument to create is the Iou companion object and on line 22, the first

argument to exercise is the Transfer companion object.

2 The undefined type parameter captures the fact that Iou has no contract key.

234 Chapter 1. Canton References

https://github.com/digital-asset/daml/tree/main/language-support/ts/daml-ledger

Daml SDK Documentation, 2.7.3

@daml/react

@daml/react documentation

@daml/ledger

@daml/ledger documentation

@daml/types

@daml/types documentation

1.12.4.5 JSON API Production Setup

Production Setup

The vast majority of prior documentation focused on ease of testing and on setting up the service

to run in a dev environment. From a production perspective, given the wide variety of use-cases,

there is far less of an established framework for the deployment of an HTTP JSON API server. In this

document we will make some recommendations for production deployments.

Query Store

Note: Daml Open Source only supports PostgreSQL backends for the HTTP JSON API server, but Daml

Enterprise also supports Oracle backends.

The HTTP JSON API server is a JVM application that uses an in-memory backend by default. This

in-memory backend setup is inefficient for larger datasets as every query fetches the entire active

contract set for all the templates the query references. For production setups we therefore recom-

mend, at a minimum, that one use a database as a query store. This allows for more efficient data

caching and improves query performance. Details for enabling a query store are given below.

The query store is a cached search index and is useful in cases where the application needs to query

large active contract sets (ACS). The HTTP JSON API server can be configured with PostgreSQL/Oracle

(Daml Enterprise only) as the query store backend.

The query store is built by saving the state of the ACS up to the current ledger offset. This allows the

HTTP JSON API to only request the delta on subsequent queries, making itmuch faster than requesting

the entire ACS every time.

1.12. Integrate Daml with Off-Ledger Services 235

https://docs.daml.com/2.7.3/app-dev/bindings-ts/daml-react
https://docs.daml.com/2.7.3/app-dev/bindings-ts/daml-ledger
https://docs.daml.com/2.7.3/app-dev/bindings-ts/daml-types

Daml SDK Documentation, 2.7.3

Configuring

For example, to enable the PostgreSQL backend you can add the query­store config block in your

application config file:

query­store {

base­config {

user = "postgres"

password = "password"

driver = "org.postgresql.Driver"

url = "jdbc:postgresql://localhost:5432/test?&ssl=true"

// prefix for table names to avoid collisions, empty by default

table­prefix = "foo"

// max pool size for the database connection pool

pool­size = 12

//specifies the min idle connections for database connection pool.

min­idle = 4

//specifies the idle timeout for the database connection pool.

idle­timeout = 12s

//specifies the connection timeout for database connection pool.

connection­timeout = 90s

}

// option setting how the schema should be handled.

// Valid options are start­only, create­only, create­if­needed­and­start and␣

↪→create­and­start

start­mode = "start­only"

}

Consult your database vendor’s JDBCdriver documentation to learnhow to specify a JDBCconnection

URL that suits your needs.

You can also use the ­­query­store­jdbc­config CLI flag (deprecated), as shown below.

daml json­api ­­ledger­host localhost ­­ledger­port 6865 ­­http­port 7575 \

­­query­store­jdbc­config "driver=org.postgresql.Driver,url=jdbc:postgresql://

↪→localhost:5432/test?&ssl=true,user=postgres,password=password,start­mode=start­

↪→only"

Managing DB permissions with start­mode

Thestart­mode is a customparameter to specify the initialization andusage of the database back-

ing the query store.

Depending on how you prefer to operate it, you can

• run with start­mode=create­only with a user that has exclusive table-creating rights

that are required for the query store to operate, and then start it once more with

start­mode=start­only with a user that can use the aforementioned tables, but that can-

not apply schema changes

• run with a user that can both create and use the query store tables by passing

start­mode=create­and­start

• run with a user that can drop, create and use the query store tables by passing

start­mode=create­if­needed­and­start

236 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

When restarting the HTTP JSON API server after a schema has already been created, it’s safe practice

to always use start­mode=start­only.

Data Continuity

The query store is a cache. This means that it is perfectly fine to drop it, as the data it contains is a

subset of what can safely be recovered from the ledger.

As such, the query store does not provide data continuity guarantees across versions and further-

more doesn’t guarantee that a query store initialized with a previous version of the HTTP JSON API will

work with a newer version. However, the query store keeps track of the schema version under which

it was initialized and HTTP JSON API service refuses to start if an old schema is detected when it’s

run with a newer version.

To evolve, the operator of the HTTP JSON API query store needs to drop the database used to hold the

HTTP JSON API query store, create a new one (consult your database vendor’s documentation for in-

structions), and then (depending on the operator’s preferred production setup) should proceed to

create and start the server using either start­mode=create­only& start­mode=start­only

or only with start­mode=create­and­start as described above.

Behavior Under High Load

As stated in the overview, the HTTP JSON API service is optimized for rapid application development

and ease of developer onboarding. It is not intended to support every high-performance use case.

To understand how a high-load application may reach the limits of its design, you need to consider

how the query store works.

First, always keep in mind that the HTTP JSON API service can only do whatever an ordinary ledger API client

application could do, including your own. That’s because it is an ordinary client of The Ledger API. So, if

your application’s queries are a poor match for the way HTTP JSON API service’s query store works,

it’s time to consider cutting out the middleman.

Running a Query

Here is what happens every time you run a query with a configured query store:

1. The query store uses the transaction stream from the gRPC API to update its contract table

with an up-to-date “view” of all active contracts that match the template IDs, interface IDs,

and user party set in the request. The payload query is not considered at all; every matching

contract is added to the table. This will use the active contract service to “skip past” most of

the transaction stream, if the contract table is empty at that set.

2. A database query is run on the contract table, filtering on template ID/interface ID, party set,

and the payload.

3. If contention with concurrent requests is detected, the query store will assume it is “behind”

and “catch up” by returning to #1. This uses an iterative “livelocking” strategy, where progress

is guaranteed and more concurrency is permitted, rather than exclusive locking.

4. Results are returned to the user.

A websocket query does the same, but any contract that didn’t exist at the start of the websocket

won’t receive the above treatment; the “live” data described for the websocket query stream is al-

ways filtered directly from the gRPC API, just as if no query store was configured.

1.12. Integrate Daml with Off-Ledger Services 237

Daml SDK Documentation, 2.7.3

Storage Overview

Without going into too much detail, here’s more or less what is stored under step #1 above, for each

contract:

1. full contract ID

2. an integer for the template or interface ID

3. for a template ID, the create arguments, as full JSON

4. for an interface ID, the interface view, as full JSON

5. a list of signatories and observers, i.e. parties

Every query store backend indexes on #2, as we have found this index to be universally beneficial. In

addition, the Oracle backend has an index on #3 and #4.

With this indexing arrangement, our testinghas indicated reasonable performance forwell-matched

use cases as explained below for contract tables of up to 100000 contracts.

Well-Matched Use Cases

The query store is, generally speaking, best matched to “CRUD-like” use cases with relatively stable

active contract sets. Here are somemore specific characteristics likely to be shared by Daml designs

that will perform well with the query store.

1. Workflows properly separated into separate templates. The template ID index is the most effi-

cient part of query store filtering. In addition, contract table updates on separate template IDs

do not contend (i.e. cause the reset to step #1 above), so changes to the ledger on other parts

of the workflow do not affect queries on the template in question.

2. Queries that return <10% of all active contracts for a given contract type ID and party set. This

maximizes the value of storing redundant copies in SQL-queryable form at all, namely, that the

HTTP JSON API service does not even need to consider already-stored, unmatched contracts.

3. Queries against a slow participant. If the transaction stream from your ledger API participant

server is particularly slow, it may be faster to retrieve most contracts from its local database,

even if HTTP JSON API service gets no benefit from #2.

4. Templates with low churn, i.e. most active contracts from the previous query are likely to still

be active for the next query. If the query store is likelier to have already stored most of the

contracts for that template, the update part of the processwill be significantly faster andmuch

less likely to contend.

Ill-Matched Use Cases

By contrast, many Daml applications can yield patterns in the ACS and transactions that hurt the

performance of applications built on the HTTP JSON API service. Below are some “gotchas” that

might indicate that your application calls for a custom view, perhaps even stored locally in SQL and

managed by your application, beyond what HTTP JSON API service’s query store can provide.

1. Workflows that use the “state field” antipattern. This adds a filter on the relatively inefficient

payload query that ought to instead be placed on the template ID. In addition, updates to the

state field will needlessly contend with updates to contracts with the state you’re interested in.

2. Queries that return a large percentage of active contracts against a given contract type ID and

party set. If the query store cannot yield any benefit from letting HTTP JSON API service ignore

most contracts on each query it will spendmore time updating its contract table than it would

238 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

have spent simply reading from the gRPC API and filtering directly, so you might as well turn

off the query store.

3. Templateswithhigh churn, i.e. the active contracts during the last query are very unlikely to still

be active. In such cases HTTP JSON API service may spend so much time updating its contract

table that it washes out any performance advantage frombeing able to SQL query it afterwards.

4. Contracts with highly-overlapping signatories and observers. When signatories and observers

do not intersect, their updates never contend; the more this happens, the more likely updates

for queries with different party-sets will contend.

Security and Privacy

For an HTTP JSON API server, all data is maintained by the operator of the deployment. It is the opera-

tor’s responsibility to ensure that the data abides by the necessary regulations and confidentiality

expectations.

We recommendusing the tools documented by PostgreSQL to protect data at rest, andusing a secure

communication channel between the HTTP JSON API server and the PostgreSQL server.

The HTTP JSON API server provides TLS support to protect data in transit and over untrusted net-

works. To enable TLS you must specify both the private key for your server and the certificate

chain via the below config block that specifies the cert­chain­file, private­key­file. You

can also set a custom root CA certificate that will be used to validate client certificates via the

trust­collection­file parameter:

ledger­api {

address = "127.0.0.1"

port = 6400

tls {

enabled = "true"

// the certificate to be used by the server

cert­chain­file = "cert­chain.crt"

// private key of the server

private­key­file = "pvt­key.pem"

// trust collection, which means that all client certificates will be␣

↪→verified using the trusted

// certificates in this store. if omitted, the JVM default trust store is␣

↪→used.

trust­collection­file = "root­ca.crt"

}

}

Using the cli options (deprecated), you can specify tls options using``daml json-api –pemserver.pem

–crt server.crt``. Custom root CA certificate can be set via ­­cacrt ca.crt

For more details on secure Daml infrastructure setup please see this reference implementation

1.12. Integrate Daml with Off-Ledger Services 239

https://github.com/digital-asset/ex-secure-daml-infra

Daml SDK Documentation, 2.7.3

Architecture

Components

A production setup of the HTTP JSON API involves the following components:

• the HTTP JSON API server

• the query store backend database server

• the ledger

The HTTP JSON API server exposes an API to interact with the Ledger. It uses JDBC to interact with its

underlying query store in order to cache and serve data efficiently.

The HTTP JSON API server releases are regularly tested with the tools described under System Require-

ments.

In production, we recommend running on a x86_64 architecture in a Linux environment. This envi-

ronment shouldhave a JavaSERuntimeEnvironmentwithminimumversion asmentionedat System

Requirements. We recommend using PostgreSQL server as query-store, again with minimum version

as mentioned at System Requirements.

Scaling and Redundancy

Note: This section of the document only talks about scaling and redundancy setup for the HTTP

JSON API server. In all recommendations suggested below we assume that the JSON API is always

interacting with a single participant on the ledger.

We recommend dedicating computation andmemory resources to the HTTP JSON API server and query

store components. This can be achieved via containerization or by setting these components up on

independent physical servers. Make sure that the two components are physically co-located to

reduce network latency for communication. Scaling and availability heavily rely on the interactions

between the core components listed above.

The general principles of scaling apply here: Try to understand the bottlenecks and see if adding

additional processing power/memory helps.

Scaling creates and exercises

The HTTP JSON API service provides simple, synchronous endpoints for carrying out creates and ex-

ercises on the ledger. It does not support the complex multi-command asynchronous submission

protocols supported by the ledger API.

For performing large numbers of creates and exercises at once, while you can perform many HTTP

requests at once to carry out this task, it may be simpler and more concurrent-safe to shift more of

this logic into a Daml choice that can be exercised.

The pattern looks like this:

1. Have a contract with a key and one or more choices on the ledger.

2. Such a choice can carry out as many creates and exercises as desired; all of these will take

place in a single transaction.

240 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

3. Use the HTTP JSON API service to exercise this choice by key.

It’s possible to go too far in the other direction: any error will usually cause the whole transaction to

roll back, so an excessively large amount of work done by a single choice can also cause needless

retrying. You can solve this by batching requests, or using Exception Handling to collect and return

failed cases to the HTTP JSON API service client for retrying, allowing successful parts of the batch to

proceed.

Scaling Queries

The Query Store is a key factor of efficient queries. However, it behaves very differently depending on

the characteristics of the underlying ledger, Daml application, and client query patterns. Understand-

ing how it works is a major prerequisite to understanding how the HTTP JSON API service will interact

with your application’s performance profile.

Additionally, the HTTP JSON API can be scaled independently of its query store. You can have any num-

ber of HTTP JSON API instances talking to the same query store (if, for example, your monitoring indi-

cates that the HTTP JSON API processing time is the bottleneck), or have each HTTP JSON API instance

talk to its own independent query store (if the database response times are the bottleneck).

In the latter case, the Daml privacy model ensures that the HTTP JSON API requests are made using

the user-provided token, thus the data stored in a given query store will be specific to the set of

parties that have made queries through that specific query store instance (for a given template).

Therefore, if you do run with separate query stores, it may be useful to route queries (using a reverse

proxy server) based on requesting party (and possibly queried template), which wouldminimize the

amount of data in each query store as well as the overall redundancy of said data.

Users may consider running PostgreSQL backend in a high availability configuration. The benefits

of this are use-case dependent as this may be more expensive for smaller active contract datasets,

where re-initializing the cache is cheap and fast.

Finally, we recommend using orchestration systems or load balancers which monitor the health of

the service and perform subsequent operations to ensure availability. These systems can use the

healthcheck endpoints provided by the HTTP JSON API server. This can also be tied into supporting an

arbitrary autoscaling implementation in order to ensure aminimumnumber of HTTP JSON API servers

on failures.

Hitting a Scaling Bottleneck

As HTTP JSON API service and its query store are optimized for rapid application development and

ease of developer onboarding, youmay reach a pointwhere your application’s performance demands

exceed what the HTTP JSON API service can offer. The more demanding your application is, the less

likely it is to be well-matched with the simplifications and generalizations that the HTTP JSON API

service makes for developer simplicity.

In this case, it’s important to remember that the HTTP JSON API service can only do whatever an ordinary

ledger API client application could do, including your own.

For example, for a JVM application, interacting with JSON is probably simpler than gRPC directly, but

using Java Bindings codegen are much simpler than either.

There is no way to make Query Storemore suited to high-performance queries for your Daml applica-

tion than a custom data store implemented as your own server on gRPC would be. So an application

1.12. Integrate Daml with Off-Ledger Services 241

https://www.postgresql.org/docs/current/high-availability.html
https://docs.daml.com/json-api/index.html#healthcheck-endpoints

Daml SDK Documentation, 2.7.3

thatmust interact over JSON, but requires very high-performance or very high-load query throughput,

would usually be better served by a custom server.

Set Up the HTTP JSON API Service To Work With Highly Available Participants

If the participant node itself is configured to be highly available, depending on the setup you may

want to choose different approaches to connect to the passive participant node(s). In most setups,

including thosebasedonCanton, you’ll likely haveanactiveparticipantnodewhose role canbe taken

over by a passive node in case the currently active one drops. Just as for the HTTP JSON API itself, you

can use orchestration systems or load balancers to monitor the status of the participant nodes and

have those point your (possibly highly-available) HTTP JSON API nodes to the active participant node.

To learn how to run and monitor Canton with high availability, refer to the Canton documentation.

Logging

The HTTP JSON API server uses the industry-standard logback for logging. You can read more about it

in the Logback documentation.

The logging infrastructure leverages structured logging as implemented by the Logstash Logback

Encoder.

Logged events should carry information about the request being served by the HTTP JSON API server.

This includes the details of the commands being submitted, the endpoints being hit, and the re-

sponse received – highlighting details of failures if any. When using a traditional logging target (e.g.

standard output or rotating files) this information will be part of the log description. Using a logging

target compatible with the Logstash Logback Encoder allows one to have rich logs that come with

structured information about the event being logged.

The default log encoder used is the plaintext one for traditional logging targets.

Metrics

Enable and Configure Reporting

To enable metrics and configure reporting, you can use the below config block in application config:

metrics {

// Start a metrics reporter. Must be one of "console", "csv:///PATH",

↪→"graphite://HOST[:PORT][/METRIC_PREFIX]", or "prometheus://HOST[:PORT]".

reporter = "prometheus://localhost:9000"

// Set metric reporting interval , examples : 1s, 30s, 1m, 1h

reporting­interval = 30s

}

or the two following CLI options (deprecated):

• ­­metrics­reporter: passing a legal value will enable reporting; the accepted values are as

follows:

– console: prints captured metrics on the standard output

– csv://</path/to/metrics.csv>: saves the captured metrics in CSV format at the

specified location

242 Chapter 1. Canton References

http://logback.qos.ch/
https://github.com/logstash/logstash-logback-encoder/blob/logstash-logback-encoder-6.3/README.md
https://github.com/logstash/logstash-logback-encoder/blob/logstash-logback-encoder-6.3/README.md

Daml SDK Documentation, 2.7.3

– graphite://<server_host>[:<server_port>]: sends captured metrics to a

Graphite server. If the port is omitted, the default value 2003 will be used.

– prometheus://<server_host>[:<server_port>]: renders captured metrics on a

HTTP endpoint in accordance with the Prometheus protocol. If the port is omitted, the

default value 55001 will be used. The metrics will be available under the address http:/

/<server_host>:<server_port>/metrics.

• ­­metrics­reporting­interval: allows the user to set the interval at which metrics are

pre-aggregated on the HTTP JSON API and sent to the reporter. The formats accepted are based

on the ISO 8601 duration format PnDTnHnMn.nS with days considered to be exactly 24 hours.

The default interval is 10 seconds.

Types of Metrics

This is a list of type of metrics with all data points recorded for each. Use this as a reference when

reading the list of metrics.

Counter

Number of occurrences of some event.

Meter

A meter tracks the number of times a given event occurred (throughput). The following data points

are kept and reported by any meter.

• <metric.qualified.name>.count: number of registered data points overall

• <metric.qualified.name>.m1_rate: number of registered data points per minute

• <metric.qualified.name>.m5_rate: number of registered data points every 5 minutes

• <metric.qualified.name>.m15_rate: number of registered data points every 15 minutes

• <metric.qualified.name>.mean_rate: mean number of registered data points

Timers

A timer records the time necessary to execute a given operation (in fractional milliseconds).

Metrics Reference

The HTTP JSON API Service supports common HTTPmetrics. In addition, see the following list of impor-

tant metrics:

1.12. Integrate Daml with Off-Ledger Services 243

Daml SDK Documentation, 2.7.3

daml.http_json_api.incoming_json_parsing_and_validation_timing

A timer. Measures latency (in milliseconds) for parsing and decoding of an incoming json payload

daml.http_json_api.response_creation_timing

A timer. Measures latency (in milliseconds) for construction of the response json payload.

daml.http_json_api.db_find_by_contract_key_timing

A timer. Measures latency (in milliseconds) of the find by contract key database operation.

daml.http_json_api.db_find_by_contract_id_timing

A timer. Measures latency (in milliseconds) of the find by contract id database operation.

daml.http_json_api.command_submission_ledger_timing

A timer. Measures latency (in milliseconds) for processing the command submission requests on

the ledger.

daml.http_json_api.websocket_request_count

A Counter. Counts active websocket connections.

1.12.5 The Ledger API

To write an application around a Daml ledger, you will need to interact with the Ledger API.

Every ledger that Daml can run on exposes this same API.

1.12.5.1 What’s in the Ledger API

The Ledger API exposes the following services:

• Submitting commands to the ledger

– Use the command submission service to submit commands (create a contract or exercise a

choice) to the ledger.

– Use the command completion service to track the status of submitted commands.

– Use the command service for a convenient service that combines the command submission

and completion services.

• Reading from the ledger

– Use the transaction service to stream committed transactions and the resulting events

(choices exercised, and contracts created or archived), and to look up transactions.

244 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

– Use the active contracts service to quickly bootstrap an application with the currently active

contracts. It saves you the work to process the ledger from the beginning to obtain its

current state.

• Utility services

– Use the party management service to allocate and find information about parties on the

Daml ledger.

– Use the package service to query the Daml packages deployed to the ledger.

– Use the ledger identity service to retrieve the Ledger ID of the ledger the application is con-

nected to.

– Use the ledger configuration service to retrieve some dynamic properties of the ledger, like

maximum deduplication duration for commands.

– Use the version service to retrieve information about the Ledger API version.

– Use the user management service to manage users and their rights.

– Use the metering report service to retrieve a participant metering report.

• Testing services (on Sandbox only, not for production ledgers)

– Use the time service to obtain the time as known by the ledger.

For full information on the services see The Ledger API Services.

You may also want to read the protobuf documentation, which explains how each service is defined as

protobuf messages.

1.12.5.2 How to Access the Ledger API

You can access the Ledger API via the Java Bindings or the Python Bindings (formerly known as DAZL).

If you don’t use a language that targets the JVM or Python, you can use gRPC to generate the code to

access the Ledger API in several supported programming languages. Further documentation provides

a few pointers on how you may want to approach this.

You can also use the HTTP JSON API Service to tap into the Ledger API.

At its core, this service provides a simplified view of the active contract set and additional primi-

tives to query it and exposing it using a well-defined JSON-based encoding over a conventional HTTP

connection.

A subset of the services mentioned above is also available as part of the HTTP JSON API.

1.12.5.3 Daml-LF

When you compile Daml source into a .dar file, the underlying format is Daml-LF. Daml-LF is similar to

Daml, but is stripped down to a core set of features. The relationship between the surface Daml

syntax and Daml-LF is loosely similar to that between Java and JVM bytecode.

As a user, you don’t need to interact with Daml-LF directly. But internally, it’s used for:

• Executing Daml code on the Sandbox or on another platform

• Sending and receiving values via the Ledger API (using a protocol such as gRPC)

• Generating code in other languages for interacting with Damlmodels (often called “codegen”)

1.12. Integrate Daml with Off-Ledger Services 245

Daml SDK Documentation, 2.7.3

When You Need to Know About Daml-LF

Daml-LF is only really relevant when you’re dealing with the objects you send to or receive from the

ledger. If you use any of the provided language bindings for the Ledger API, you don’t need to know

about Daml-LF at all, because this generates idiomatic representations of Daml for you.

Otherwise, it can be helpful to know what the types in your Daml code look like at the Daml-LF level,

so you know what to expect from the Ledger API.

For example, if you are writing an application that creates some Daml contracts, you need to con-

struct values to pass as parameters to the contract. These values are determined by the Daml-LF

types in that contract template. This means you need an idea of how the Daml-LF types correspond

to the types in the original Daml model.

For the most part the translation of types from Daml to Daml-LF should not be surprising. This page

goes through all the cases in detail.

For the bindings to your specific programming language, you should refer to the language-specific

documentation.

1.12.5.4 The Ledger API Services

The Ledger API is structured as a set of services. The core services are implemented using gRPC and

Protobuf, but most applications access this API through the mediation of the language bindings.

This page gives more detail about each of the services in the API, and will be relevant whichever way

you’re accessing it.

If you want to read low-level detail about each service, see the protobuf documentation of the API.

Overview

The API is structured as two separate data streams:

• A stream of commands TO the ledger that allow an application to submit transactions and

change state.

• A stream of transactions and corresponding events FROM the ledger that indicate all state

changes that have taken place on the ledger.

Commands are the only way an application can cause the state of the ledger to change, and events

are the only mechanism to read those changes.

For an application, themost important consequence of these architectural decisions and implemen-

tation is that the Ledger API is asynchronous. This means:

• The outcome of commands is only known some time after they are submitted.

• The application must deal with successful and erroneous command completions separately

from command submission.

• Ledger state changes are indicated by events received asynchronously from the command sub-

missions that cause them.

The need to handle these issues is a major determinant of application architecture. Understanding

the consequences of the API characteristics is important for a successful application design.

246 Chapter 1. Canton References

https://grpc.io/
https://developers.google.com/protocol-buffers/

Daml SDK Documentation, 2.7.3

For more help understanding these issues so you can build correct, performant and maintainable

applications, read the application architecture guide.

Glossary

• The ledger is a list of transactions. The transaction service returns these.

• A transaction is a tree of actions, also called events, which are of type create, exercise

or archive. The transaction service can return the whole tree, or a flattened list.

• A submission is a proposed transaction, consisting of a list of commands, which correspond

to the top-level actions in that transaction.

• A completion indicates the success or failure of a submission.

Submit Commands to the Ledger

Command Submission Service

Use the command submission service to submit commands to the ledger. Commands either create

a new contract, or exercise a choice on an existing contract.

A call to the command submission service will return as soon as the ledger server has parsed the

command, and has either accepted or rejected it. This does not mean the command has been exe-

cuted, only that the server has looked at the command and decided that its format is acceptable, or

has rejected it for syntactic or content reasons.

The on-ledger effect of the command execution will be reported via the transaction service, described

below. The completion status of the command is reported via the command completion service. Your

application should receive completions, correlate them with command submission, and handle er-

rors and failed commands. Alternatively, you can use the command service, which conveniently wraps

the command submission and completion services.

Change ID

Each intended ledger change is identified by its change ID, consisting of the following three compo-

nents:

• The submitting parties, i.e., the union of party and act_as

• the application ID

• The command ID

Application-specific IDs

The following application-specific IDs, all of which are included in completion events, can be set in

commands:

• A submission ID, returned to the submitting application only. Itmay be used to correlate specific

submissions to specific completions.

• A command ID, returned to the submitting application only; it can be used to correlate com-

mands to completions.

1.12. Integrate Daml with Off-Ledger Services 247

Daml SDK Documentation, 2.7.3

• A workflow ID, returned as part of the resulting transaction to all applications receiving it. It can

be used to track workflows between parties, consisting of several transactions.

For full details, see the proto documentation for the service.

Command Deduplication

The command submission service deduplicates submitted commands based on their change ID.

• Applications can provide a deduplication period for each command. If this parameter is not

set, the default maximum deduplication duration is used.

• A command submission is considered a duplicate submission if the Ledger API server is aware

of another command within the deduplication period and with the same change ID.

• A command resubmission will generate a rejection until the original submission was rejected

(i.e. the command failed and resulted in a rejected transaction) or until the effective dedu-

plication period has elapsed since the completion of the original command, whichever comes

first.

• Command deduplication is only guaranteed to work if all commands are submitted to the same

participant. Ledgers are free to perform additional command deduplication across partici-

pants. Consult the respective ledger’s manual for more details.

For details on how to use command deduplication, see the Command Deduplication Guide.

Explicit contract disclosure (experimental)

Startingwith Canton 2.7, Ledger API clients canuse explicit contract disclosure to submit commands

with attached disclosed contracts received from third parties. For more details, see Explicit contract

disclosure.

Command Completion Service

Use the command completion service to find out the completion status of commands you have

submitted.

Completions contain the command ID of the completed command, and the completion status of the

command. This status indicates failure or success, and your application should use it to update

what it knows about commands in flight, and implement any application-specific error recovery.

For full details, see the proto documentation for the service.

Command Service

Use the command service when you want to submit a command and wait for it to be executed. This

service is similar to the command submission service, but also receives completions andwaits until

it knows whether or not the submitted command has completed. It returns the completion status

of the command execution.

You can use either the command or command submission services to submit commands to effect

a ledger change. The command service is useful for simple applications, as it handles a basic form

248 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

of coordination between command submission and completion, correlating submissions with com-

pletions, and returning a success or failure status. This allow simple applications to be completely

stateless, and alleviates the need for them to track command submissions.

For full details, see the proto documentation for the service.

Read From the Ledger

Transaction Service

Use the transaction service to listen to changes in the ledger state, reported via a stream of trans-

actions.

Transactions detail the changes on the ledger, and contains all the events (create, exercise, archive

of contracts) that had an effect in that transaction.

Transactions contain a transaction ID (assigned by the server), the workflow ID, the command ID, and

the events in the transaction.

Subscribe to the transaction service to read events from an arbitrary point on the ledger. This arbi-

trary point is specified by the ledger offset. This is important when starting or restarting and appli-

cation, and to work in conjunction with the active contracts service.

For full details, see the proto documentation for the service.

Transaction and transaction Trees

TransactionService offers several different subscriptions. The most commonly used is Get­

Transactions. If you need more details, you can use GetTransactionTrees instead, which re-

turns transactions as flattened trees, represented as a map of event IDs to events and a list of root

event IDs.

Verbosity

The service works in a non-verbosemode by default, whichmeans that some identifiers are omitted:

• Record IDs

• Record field labels

• Variant IDs

You can get these included in requests related to Transactions by setting the verbose field in mes-

sage GetTransactionsRequest or GetActiveContractsRequest to true.

1.12. Integrate Daml with Off-Ledger Services 249

Daml SDK Documentation, 2.7.3

Transaction Filter

TransactionService offers transaction subscriptions filtered by templates and interfaces using

GetTransactions calls. A transaction filter in GetTransactionsRequest. allows:

• filtering by a party, when the inclusive field is left empty

• filtering by a party and a template ID

• filtering by a party and an interface ID

• exposing an interface view, when the include_interface_view is set to true

Active Contracts Service

Use the active contracts service to obtain a party-specific view of all contracts that are active on

the ledger at the time of the request.

The active contracts service returns its response as a stream of batches of the created events that

would re-create the state being reported (the size of these batches is left to the ledger implementa-

tion). As part of the last message, the offset at which the reported active contract set was valid is

included. This offset can be used to subscribe to the “flat transactions” stream to keep a consistent

view of the active contract set without querying the active contract service further.

This is most important at application start, if the application needs to synchronize its initial state

with a known view of the ledger. Without this service, the only way to do this would be to read the

Transaction Stream from the beginning of the ledger, which can be prohibitively expensive with a

large ledger.

For full details, see the proto documentation for the service.

Verbosity

See Verbosity above.

Transaction Filter

See Transaction Filter above.

Note: The RPCs exposed as part of the transaction and active contracts servicesmake use of offsets.

An offset is an opaque string of bytes assigned by the participant to each transaction as they are

received from the ledger. Two offsets returned by the same participant are guaranteed to be lexico-

graphically ordered: while interacting with a single participant, the offset of two transactions can be

compared to tell which was committed earlier. The state of a ledger (i.e. the set of active contracts)

as exposed by the Ledger API is valid at a specific offset, which is why the lastmessage your applica-

tion receives when calling the ActiveContractsService is precisely that offset. In this way, the

client can keep track of the relevant state without needing to invoke the ActiveContractsSer­

vice again, by starting to read transactions from the given offset.

Offsets are also useful to perform crash recovery and failover as documented more in depth in the

application architecture page.

250 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

You can read more about offsets in the protobuf documentation of the API.

Event Query Service (EXPERIMENTAL)

Use the event query service to obtain a party-specific view of contract events.

Contract events can be queried by contract id or contract key. If the events being queried are not visi-

ble to the requesting parties, the service returns an empty structure. This service returns consumed

contracts up until they are pruned.

In the case of contract keys, a number of contracts may have used the contract key over time. The

latest contract is returned first, with earlier contracts being returned in subsequent calls with a

populated continuation token.

Note: When querying by contract key, the key value must be structured in the same way as the key

returned in the create event.

For full details, see the proto documentation for the service.

Utility Services

Party Management Service

Use the party management service to allocate parties on the ledger, update party properties local

to the participant and retrieve information about allocated parties.

Parties govern on-ledger access control as per Daml’s privacy model and authorization rules. Applica-

tionsand their operators are expected to allocate anduseparties tomanageon-ledger access control

as per their business requirements.

For more information, refer to the pages on Identity Management and the API reference documentation.

User Management Service

Use the user management service to manage the set of users on a participant node and their ac-

cess rights to that node’s Ledger API services and as the integration point for your organization’s IAM

(Identity and Access Management) framework.

Daml 2.0 introduced the concept of the user in Daml. While a party represents a single individual

with a single set of rights and is universal across participant nodes, a user is local to a specific

participant node. Each user is typically associated with a primary party and is given the right to act

as or read as other parties. Every participant node will maintain its ownmapping from its user ids to

the parties that they can act and/or read as. Also, when used, the user’s ids will serve as application

ids. Thus, participant users can be used to manage the permissions of Daml applications (i.e. to

authorize applications to read as or act as certain parties). Unlike a JWT token-based system, the

user management system does not limit the number of parties that the user can act or read as.

The relation between a participant node’s users and Daml parties is best understood by analogy to

classical databases: a participant node’s users are analogous to database users while Daml parties

1.12. Integrate Daml with Off-Ledger Services 251

../app-dev/grpc/proto-docs.html#ledgeroffset

Daml SDK Documentation, 2.7.3

are analogous to database roles. Further, the rights granted to a user are analogous to the user’s

assigned database roles.

For more information, consult the the API reference documentation for how to list, create, update, and

delete users and their rights. See the UserManagementFeature descriptor to learn about the limits of

the user management service, e.g., the maximum number of rights per user. The feature descriptor

can be retrieved using the Version service.

With user management enabled you can use both new user-based and old custom Daml authoriza-

tion tokens. Consult the Authorization documentation to understand how Ledger API requests are au-

thorized, and how to use user management to dynamically change an application’s rights.

User management is available in Canton-enabled drivers and not yet available in the Daml for

VMware Blockchain driver.

Identity Provider Config Service

Use identity provider config service to define and manage the parameters of an external IDP sys-

tems configured to issue tokens for a participant node.

The identity provider config servicemakes it possible for participant node administrators to set up

andmanage additional identity providers at runtime. This allows using access tokens from identity

providers unknown at deployment time. When an identity provider is configured, independent IDP

administrators can manage their own set of parties and users.

Such parties and users have a matching identity_provider_id defined and are inaccessible to ad-

ministrators fromother identity providers. A userwill only be authenticated if the corresponding JWT

token is issued by the appropriate identity provider. Users and parties without identity_provider_id

defined are assumed to be using the default identity provider, which is configured statically when

the participant node is deployed.

For full details, see the proto documentation for the service.

Package Service

Use the package service to obtain information about Daml packages available on the ledger.

This is useful for obtaining type and metadata information that allow you to interpret event data in

a more useful way.

For full details, see the proto documentation for the service.

Ledger Identity Service (DEPRECATED)

Use the ledger identity service to get the identity string of the ledger that your application is con-

nected to.

Including identity string is optional for all Ledger API requests. If you include it, commands with an

incorrect identity string will be rejected.

For full details, see the proto documentation for the service.

252 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Ledger Configuration Service

Use the ledger configuration service to subscribe to changes in ledger configuration.

This configuration includes the maximum command deduplication period (see Command Deduplica-

tion for details).

For full details, see the proto documentation for the service.

Version Service

Use the version service to retrieve information about the Ledger API version and what optional fea-

tures are supported by the ledger server.

For full details, see the proto documentation for the service.

Pruning Service

Use the pruning service to prune archived contracts and transactions before or at a given offset.

For full details, see the proto documentation for the service.

Metering Report Service

Use themetering report service to retrieve a participant metering report.

For full details, see the proto documentation for the service.

Testing Services

These are only for use for testing with the Sandbox, not for on production ledgers.

Time Service

Use the time service to obtain the time as known by the ledger server.

For full details, see the proto documentation for the service.

1.12.5.5 Java Bindings

The Java bindings is a client implementation of the Ledger API based on RxJava, a library for compos-

ing asynchronous and event-based programs using observable sequences for the Java VM. It pro-

vides an idiomatic way to write Daml Ledger applications.

See also:

This documentation for the Java bindings API includes the JavaDoc reference documentation.

1.12. Integrate Daml with Off-Ledger Services 253

https://github.com/ReactiveX/RxJava
javadocs/index.html

Daml SDK Documentation, 2.7.3

Overview

The Java bindings library is composed of:

• The Data Layer A Java-idiomatic layer based on the Ledger API generated classes. This layer

simplifies the code required to work with the Ledger API.

Can be found in the java package com.daml.ledger.javaapi.data.

• The Reactive Layer A thin layer built on top of the Ledger API services generated classes.

For each Ledger API service, there is a reactive counterpart with a matching name. For

instance, the reactive counterpart of ActiveContractsServiceGrpc is ActiveCon­

tractsClient.

The Reactive Layer also exposes the main interface representing a client connecting via

the Ledger API. This interface is calledLedgerClient and themain implementationwork-

ing against a Daml Ledger is the DamlLedgerClient.

Can be found in the java package com.daml.ledger.rxjava.

Generate Code

When writing applications for the ledger in Java, you want to work with a representation of Daml

templates and data types in Java that closely resemble the original Daml code while still being as

true to the native types in Java as possible.

To achieve this, you can use Daml to Java code generator (“Java codegen”) to generate Java types

based on a Daml model. You can then use these types in your Java code when reading information

from and sending data to the ledger.

For more information on Java code generation, see Generate Java Code from Daml.

Connect to the Ledger: LedgerClient

Connections to the ledger are made by creating instance of classes that implement the interface

LedgerClient. The class DamlLedgerClient implements this interface, and is used to connect

to a Daml ledger.

This class provides access to the ledgerId, and all clients that give access to the various ledger ser-

vices, such as the active contract set, the transaction service, the time service, etc. This is described

below. Consult the JavaDoc for DamlLedgerClient for full details.

Reference Documentation

Click here for the JavaDoc reference documentation.

254 Chapter 1. Canton References

javadocs/com/daml/ledger/rxjava/DamlLedgerClient.html
javadocs/index.html

Daml SDK Documentation, 2.7.3

Get Started

The Java bindings library can be added to a Maven project.

Set Up a Maven Project

To use the Java bindings library, add the following dependencies to your project’s pom.xml:

<dependencies>

<dependency>

<groupId>com.daml</groupId>

<artifactId>bindings­rxjava</artifactId>

<version>x.y.z</version>

</dependency>

</dependencies>

Replace x.y.z for both dependencies with the version that you want to use. You can find the avail-

able versions by checking the Maven Central Repository.

You can also take a look at the pom.xml file from the quickstart project.

Connect to the Ledger

Before any ledger services can be accessed, you must establish a connection to the ledger by cre-

ating an instance of a DamlLedgerClient. To create an instance of a ledger client, use the static

newBuilder(..)method to create aDamlLedgerClient.Builder. Thenuse the builder instance

to create the DamlLedgerClient. Finally, call the connect()method on the client.

// Create a client object to access services on the ledger.

DamlLedgerClient client = DamlLedgerClient.newBuilder(ledgerhost, ledgerport).

↪→build();

// Connects to the ledger and runs initial validation.

client.connect();

Perform Authorization

Some ledgers will require you to send an access token along with each request.

To learn more about authorization, read the Authorization overview.

To use the same token for all Ledger API requests, the DamlLedgerClient builders expose a with­

AccessTokenmethod. This will allow you to not pass a token explicitly for every call.

If your application is long-lived and your tokens are bound to expire, you can reload the necessary

token when needed and pass it explicitly for every call. Every client method has an overload that

allows a token to be passed, as in the following example:

transactionClient.getLedgerEnd(); // Uses the token specified when constructing␣

↪→the client

transactionClient.getLedgerEnd(accessToken); // Override the token for this call␣

↪→exclusively

1.12. Integrate Daml with Off-Ledger Services 255

https://maven.apache.org/
https://search.maven.org/artifact/com.daml/bindings-java

Daml SDK Documentation, 2.7.3

If you’re communicating with a ledger that verifies authorization it’s very important to secure the

communication channel to prevent your tokens to be exposed to man-in-the-middle attacks. The

next chapter describes how to enable TLS.

Connect Securely

The Java bindings library lets you connect to a Daml Ledger via a secure connection. The builders

created by DamlLedgerClient.newBuilder default to a plaintext connection, but you can invoke

withSslContext to pass an SslContext. Using the default plaintext connection is useful only

when connecting to a locally running Sandbox for development purposes.

Secure connections to a Daml Ledger must be configured to use client authentication certificates,

which can be provided by a Ledger Operator.

For information on how to set up an SslContextwith the provided certificates for client authentica-

tion, please consult the gRPC documentation on TLS with OpenSSL as well as the HelloWorldClientTls

example of the grpc­java project.

Advanced Connection Settings

Sometimes the default settings for gRPC connections/channels are not suitable for a given situation.

These use cases are supported by creating a custom NettyChannelBuilder object and passing the it

to the newBuilder static method defined over DamlLedgerClient.

Example Projects

Example projects using the Java bindings are available on GitHub. Read more about them here.

Generate Java Code from Daml

Introduction

When writing applications for the ledger in Java, you want to work with a representation of Daml

templates and data types in Java that closely resemble the original Daml code while still being as

true to the native types in Java as possible. To achieve this, you can use Daml to Java code generator

(“Java codegen”) to generate Java types based on a Daml model. You can then use these types in

your Java code when reading information from and sending data to the ledger.

The Daml assistant documentation describes how to run and configure the code generator for all sup-

ported bindings, including Java.

The rest of this page describes Java-specific topics.

256 Chapter 1. Canton References

https://github.com/grpc/grpc-java/blob/master/SECURITY.md#tls-with-openssl
https://github.com/grpc/grpc-java/blob/70b1b1696a258ffe042c7124217e3a7894821444/examples/src/main/java/io/grpc/examples/helloworldtls/HelloWorldClientTls.java#L46-L57
https://grpc.github.io/grpc-java/javadoc/io/grpc/netty/NettyChannelBuilder.html
javadocs/com/daml/ledger/rxjava/DamlLedgerClient.html
https://github.com/digital-asset/ex-java-bindings

Daml SDK Documentation, 2.7.3

Understand the Generated Java Model

The Java codegen generates source files in a directory tree under the output directory specified on

the command line.

Map Daml Primitives to Java Types

Daml built-in types are translated to the following equivalent types in Java:

Daml type Java type Java Bind-

ings Value

Type

Int java.lang.Long Int64

Numeric java.math.BigDecimal Numeric

Text java.lang.String Text

Bool java.util.Boolean Bool

Party java.lang.String Party

Date java.time.LocalDate Date

Time java.time.Instant Timestamp

List or [] java.util.List DamlList

TextMap java.util.Map Restricted to using String keys. Daml-

TextMap

Optional java.util.Optional DamlOp-

tional

() (Unit) None since the Java language doesn’t have a direct equivalent of

Daml’s Unit type (), the generated code uses the Java Bindings

value type.

Unit

Contrac­

tId

Fields of type ContractId X refer to the generated ContractId

class of the respective template X.

ContractId

Understand Escaping Rules

To avoid clashes with Java keywords, the Java codegen applies escaping rules to the following Daml

identifiers:

• Type names (except the already mapped built-in types)

• Constructor names

• Type parameters

• Module names

• Field names

If any of these identifiers match one of the Java reserved keywords, the Java codegen appends a

dollar sign $ to the name. For example, a field with the name import will be generated as a Java

field with the name import$.

1.12. Integrate Daml with Off-Ledger Services 257

/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Int64.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Numeric.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Text.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Bool.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Party.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Date.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Timestamp.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/DamlList.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/DamlTextMap.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/DamlTextMap.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/DamlOptional.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/DamlOptional.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Unit.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/ContractId.html
https://docs.oracle.com/javase/specs/jls/se12/html/jls-3.html#jls-3.9

Daml SDK Documentation, 2.7.3

Understand the Generated Classes

Every user-defined data type in Daml (template, record, and variant) is represented by one or more

Java classes as described in this section.

The Java package for the generated classes is the equivalent of the lowercase Daml module name.

Listing 2: Daml

module Foo.Bar.Baz where

Listing 3: Java

package foo.bar.baz;

Records (a.k.a Product Types)

A Daml record is represented by a Java class with fields that have the same name as the Daml record

fields. A Daml field having the type of another record is represented as a field having the type of the

generated class for that record.

Listing 4: Com/Acme/ProductTypes.daml

module Com.Acme.ProductTypes where

data Person = Person with name : Name; age : Decimal

data Name = Name with firstName : Text; lastName : Text

A Java file is generated that defines the class for the type Person:

Listing 5: com/acme/producttypes/Person.java

package com.acme.producttypes;

public class Person extends DamlRecord<Person> {

public final Name name;

public final BigDecimal age;

public static Person fromValue(Value value$) { /* ... */ }

public Person(Name name, BigDecimal age) { /* ... */ }

public DamlRecord toValue() { /* ... */ }

}

A Java file is generated that defines the class for the type Name:

Listing 6: com/acme/producttypes/Name.java

package com.acme.producttypes;

public class Name extends DamlRecord<Name> {

public final String firstName;

public final String lastName;

(continues on next page)

258 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

public static Person fromValue(Value value$) { /* ... */ }

public Name(String firstName, String lastName) { /* ... */ }

public DamlRecord toValue() { /* ... */ }

}

Templates

The Java codegen generates three classes for a Daml template:

TemplateName Represents the contract data or the template fields.

TemplateName.ContractId Used whenever a contract ID of the corresponding template

is used in another template or record, for example: data Foo = Foo (Contrac­

tId Bar). This class also provides methods to generate an ExerciseCommand for

each choice that can be sent to the ledger with the Java Bindings.

TemplateName.Contract Represents an actual contract on the ledger. It contains a

field for the contract ID (of type TemplateName.ContractId) and a field for the

template data (of type TemplateName). With the static method TemplateName.

Contract.fromCreatedEvent, you can deserialize a CreatedEvent to an instance

of TemplateName.Contract.

Listing 7: Com/Acme/Templates.daml

module Com.Acme.Templates where

data BarKey =

BarKey

with

p : Party

t : Text

template Bar

with

owner: Party

name: Text

where

signatory owner

key BarKey owner name : BarKey

maintainer key.p

choice Bar_SomeChoice: Bool

with

aName: Text

controller owner

do return True

A file is generated that defines five Java classes and an interface:

1. Bar

2. Bar.ContractId

3. Bar.Contract

4. Bar.CreateAnd

1.12. Integrate Daml with Off-Ledger Services 259

https://docs.daml.com/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/CreatedEvent.html

Daml SDK Documentation, 2.7.3

5. Bar.ByKey

6. Bar.Exercises

Listing 8: com/acme/templates/Bar.java

package com.acme.templates;

public class Bar extends Template {

public static final Identifier TEMPLATE_ID = new Identifier("some­package­id",

↪→"Com.Acme.Templates", "Bar");

public static final Choice<Bar, Archive, Unit> CHOICE_Archive =

Choice.create(/* ... */);

public static final ContractCompanion.WithKey<Contract, ContractId, Bar, BarKey>

↪→ COMPANION =

new ContractCompanion.WithKey<>("com.acme.templates.Bar",

TEMPLATE_ID, ContractId::new, Bar::fromValue, Contract::new, e ­> BarKey.

↪→fromValue(e), List.of(CHOICE_Archive));

public final String owner;

public final String name;

public CreateAnd createAnd() { /* ... */ }

public static ByKey byKey(BarKey key) { /* ... */ }

public static class ContractId extends com.daml.ledger.javaapi.data.codegen.

↪→ContractId<Bar>

implements Exercises<ExerciseCommand> {

// inherited:

public final String contractId;

}

public interface Exercises<Cmd> extends com.daml.ledger.javaapi.data.codegen.

↪→Exercises<Cmd> {

default Cmd exerciseArchive(Unit arg) { /* ... */ }

default Cmd exerciseBar_SomeChoice(Bar_SomeChoice arg) { /* ... */ }

default Cmd exerciseBar_SomeChoice(String aName) { /* ... */ }

}

public static class Contract extends ContractWithKey<ContractId, Bar, BarKey> {

// inherited:

public final ContractId id;

public final Bar data;

public static Contract fromCreatedEvent(CreatedEvent event) { /* ... */ }

}

public static final class CreateAnd

extends com.daml.ledger.javaapi.data.codegen.CreateAnd

implements Exercises<CreateAndExerciseCommand> { /* ... */ }

public static final class ByKey

(continues on next page)

260 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

extends com.daml.ledger.javaapi.data.codegen.ByKey

implements Exercises<ExerciseByKeyCommand> { /* ... */ }

}

Note that byKey and ByKey will only be generated for templates that define a key.

Variants (a.k.a Sum Types)

A variant or sum type is a type with multiple constructors, where each constructor wraps a value of

another type. The generated code is comprised of an abstract class for the variant type itself and

a subclass thereof for each constructor. Classes for variant constructors are similar to classes for

records.

Listing 9: Com/Acme/Variants.daml

module Com.Acme.Variants where

data BookAttribute = Pages Int

| Authors [Text]

| Title Text

| Published with year: Int; publisher: Text

The Java code generated for this variant is:

Listing 10: com/acme/variants/BookAttribute.java

package com.acme.variants;

public class BookAttribute extends Variant<BookAttribute> {

public static BookAttribute fromValue(Value value) { /* ... */ }

public static BookAttribute fromValue(Value value) { /* ... */ }

public abstract Variant toValue();

}

Listing 11: com/acme/variants/bookattribute/Pages.java

package com.acme.variants.bookattribute;

public class Pages extends BookAttribute {

public final Long longValue;

public static Pages fromValue(Value value) { /* ... */ }

public Pages(Long longValue) { /* ... */ }

public Variant toValue() { /* ... */ }

}

Listing 12: com/acme/variants/bookattribute/Au-

thors.java

package com.acme.variants.bookattribute;

(continues on next page)

1.12. Integrate Daml with Off-Ledger Services 261

Daml SDK Documentation, 2.7.3

(continued from previous page)

public class Authors extends BookAttribute {

public final List<String> listValue;

public static Authors fromValue(Value value) { /* ... */ }

public Author(List<String> listValue) { /* ... */ }

public Variant toValue() { /* ... */ }

}

Listing 13: com/acme/variants/bookattribute/Title.java

package com.acme.variants.bookattribute;

public class Title extends BookAttribute {

public final String stringValue;

public static Title fromValue(Value value) { /* ... */ }

public Title(String stringValue) { /* ... */ }

public Variant toValue() { /* ... */ }

}

Listing 14: com/acme/variants/bookattribute/Pub-

lished.java

package com.acme.variants.bookattribute;

public class Published extends BookAttribute {

public final Long year;

public final String publisher;

public static Published fromValue(Value value) { /* ... */ }

public Published(Long year, String publisher) { /* ... */ }

public Variant toValue() { /* ... */ }

}

Enums

An enum type is a simplified sum typewithmultiple constructors but without argument nor type pa-

rameters. The generated code is standard java Enumwhose constantsmap enum type constructors.

Listing 15: Com/Acme/Enum.daml

module Com.Acme.Enum where

data Color = Red | Blue | Green

The Java code generated for this variant is:

262 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Listing 16: com/acme/enum/Color.java

package com.acme.enum;

public enum Color implements DamlEnum<Color> {

RED,

GREEN,

BLUE;

/* ... */

public static final Color fromValue(Value value$) { /* ... */ }

public final DamlEnum toValue() { /* ... */ }

}

Parameterized Types

Note: This section is only included for completeness. The fromValue and toValuemethods would

typically come from a template that doesn’t have any unbound type parameters.

The Java codegen uses Java Generic types to represent Daml parameterized types.

This Daml fragment defines the parameterized type Attribute, used by the BookAttribute type

for modeling the characteristics of the book:

Listing 17: Com/Acme/ParameterizedTypes.daml

module Com.Acme.ParameterizedTypes where

data Attribute a = Attribute

with v : a

data BookAttributes = BookAttributes with

pages : (Attribute Int)

authors : (Attribute [Text])

title : (Attribute Text)

The Java codegen generates a Java file with a generic class for the Attribute a data type:

Listing 18: com/acme/parameterizedtypes/Attribute.java

package com.acme.parameterizedtypes;

public class Attribute<a> {

public final a value;

public Attribute(a value) { /* ... */ }

public DamlRecord toValue(Function<a, Value> toValuea) { /* ... */ }

public static <a> Attribute<a> fromValue(Value value$, Function<Value, a>␣

↪→fromValuea) { /* ... */ }

}

1.12. Integrate Daml with Off-Ledger Services 263

Daml SDK Documentation, 2.7.3

Convert a Value of a Generated Type to a Java Bindings Value

To convert an instance of the generic type Attribute<a> to a Java Bindings Value, call the toValue

method and pass a function as the toValuea argument for converting the field of type a to the

respective Java Bindings Value. The name of the parameter consists of toValue and the name of

the type parameter, in this case a, to form the name toValuea.

Below is a Java fragment that converts an attribute with a java.lang.Long value to the Java Bind-

ings representation using the method reference Int64::new.

Attribute<Long> pagesAttribute = new Attributes<>(42L);

Value serializedPages = pagesAttribute.toValue(Int64::new);

See Daml To Java Type Mapping for an overview of the Java Bindings Value types.

Note: If the Daml type is a record or variant with more than one type parameter, you need to pass a

conversion function to the toValuemethod for each type parameter.

Create a Value of a Generated Type from a Java Bindings Value

Analogous to the toValuemethod, to create a value of a generated type, call themethod fromValue

and pass conversion functions from a Java Bindings Value type to the expected Java type.

Attribute<Long> pagesAttribute = Attribute.<Long>fromValue(serializedPages,

f ­> f.asInt64().getOrElseThrow(() ­> throw new IllegalArgumentException(

↪→"Expected Int field").getValue());

See Java Bindings Value class for themethods to transform the Java Bindings types into correspond-

ing Java types.

Non-exposed Parameterized Types

If the parameterized type is contained in a type where the actual type is specified (as in the BookAt­

tributes type above), then the conversion methods of the enclosing type provides the required

conversion function parameters automatically.

Convert Optional Values

The conversion of the Java Optional requires two steps. The Optionalmust be mapped in order

to convert its contains before to be passed to DamlOptional::of function.

Attribute<Optional<Long>> idAttribute = new Attribute<List<Long>>(Optional.

↪→of(42));

val serializedId = DamlOptional.of(idAttribute.map(Int64::new));

To convert back DamlOptional to Java Optional, onemust use the containersmethod toOptional.

This method expects a function to convert back the value possibly contains in the container.

264 Chapter 1. Canton References

/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Value.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Value.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Value.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Value.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Value.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/DamlOptional.html

Daml SDK Documentation, 2.7.3

Attribute<Optional<Long>> idAttribute2 =

serializedId.toOptional(v ­> v.asInt64().orElseThrow(() ­> new␣

↪→IllegalArgumentException("Expected Int64 element")));

Convert Collection Values

DamlCollectors provides collectors to converted Java collection containers such as List and Map to

DamlValues in one pass. The builders for those collectors require functions to convert the element

of the container.

Attribute<List<String>> authorsAttribute =

new Attribute<List<String>>(Arrays.asList("Homer", "Ovid", "Vergil"));

Value serializedAuthors =

authorsAttribute.toValue(f ­> f.stream().collect(DamlCollector.

↪→toList(Text::new));

To convert back Daml containers to Java ones, one must use the containers methods toList or

toMap. Those methods expect functions to convert back the container’s entries.

Attribute<List<String>> authorsAttribute2 =

Attribute.<List<String>>fromValue(

serializedAuthors,

f0 ­> f0.asList().orElseThrow(() ­> new IllegalArgumentException(

↪→"Expected DamlList field"))

.toList(

f1 ­> f1.asText().orElseThrow(() ­> new IllegalArgumentException(

↪→"Expected Text element"))

.getValue()

)

);

Daml Interfaces

From this daml definition:

Listing 19: Interfaces.daml

module Interfaces where

data TIfView = TIfView { name : Text }

interface TIf where

viewtype TIfView

getOwner: Party

dup: Update (ContractId TIf)

choice Ham: ContractId TIf with

controller getOwner this

do dup this

choice Useless: ContractId TIf with

interfacely: ContractId TIf

controller getOwner this

(continues on next page)

1.12. Integrate Daml with Off-Ledger Services 265

/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/DamlCollectors.html

Daml SDK Documentation, 2.7.3

(continued from previous page)

do

dup this

template Child

with

party: Party

where

signatory party

choice Bar: () with

controller party

do

return ()

interface instance TIf for Child where

view = TIfView "Child"

getOwner = party

dup = toInterfaceContractId <$> create this

The generated file for the interface definition can be seen below. Effectively it is a class that contains

only the inner type ContractId because one will always only be able to deal with Interfaces via their

ContractId.

Listing 20: interfaces/TIf.java

package interfaces

/* imports */

public final class TIf {

public static final Identifier TEMPLATE_ID = new Identifier(

↪→"94fb4fa48cef1ec7d474ff3d6883a00b2f337666c302ec5e2b87e986da5c27a3", "Interfaces

↪→", "TIf");

public static final Choice<TIf, Transfer, ContractId> CHOICE_Transfer =

Choice.create(/* ... */);

public static final Choice<TIf, Archive, Unit> CHOICE_Archive =

Choice.create(/* ... */);

public static final INTERFACE INTERFACE = new INTERFACE();

public static final class ContractId extends com.daml.ledger.javaapi.data.

↪→codegen.ContractId<TIf>

implements Exercises<ExerciseCommand> {

public ContractId(String contractId) { /* ... */ }

}

public interface Exercises<Cmd> extends com.daml.ledger.javaapi.data.codegen.

↪→Exercises<Cmd> {

default Cmd exerciseUseless(Useless arg) { /* ... */ }

default Cmd exerciseHam(Ham arg) { /* ... */ }

}

public static final class CreateAnd

(continues on next page)

266 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

extends com.daml.ledger.javaapi.data.codegen.CreateAnd.ToInterface

implements Exercises<CreateAndExerciseCommand> { /* ... */ }

public static final class ByKey

extends com.daml.ledger.javaapi.data.codegen.ByKey.ToInterface

implements Exercises<ExerciseByKeyCommand> { /* ... */ }

public static final class INTERFACE extends InterfaceCompanion<TIf> { /* ... */}

}

For templates the code generation will be slightly different if a template implements interfaces. To

allow converting the ContractId of a template to an interface ContractId, an additional conversion

method called toInterface is generated. An unsafeFromInterface is also generated to make the

[unchecked] conversion in the other direction.

Listing 21: interfaces/Child.java

package interfaces

/* ... */

public final class Child extends Template {

/* ... */

public static final class ContractId extends com.daml.ledger.javaapi.data.

↪→codegen.ContractId<Child>

implements Exercises<ExerciseCommand> {

/* ... */

public TIf.ContractId toInterface(TIf.INTERFACE interfaceCompanion) { /* ...␣

↪→*/ }

public static ContractId unsafeFromInterface(TIf.ContractId␣

↪→interfaceContractId) { /* ... */ }

}

public interface Exercises<Cmd> extends com.daml.ledger.javaapi.data.codegen.

↪→Exercises<Cmd> {

default Cmd exerciseBar(Bar arg) { /* ... */ }

default Cmd exerciseBar() { /* ... */ }

}

/* ... */

}

1.12. Integrate Daml with Off-Ledger Services 267

Daml SDK Documentation, 2.7.3

Java Bindings Example Project

To try out the Java bindings library, use the examples on GitHub: PingPongReactive.

The example implements the PingPong application, which consists of:

• a Daml model with two contract templates, Ping and Pong

• two parties, Alice and Bob

The logic of the application goes like this:

1. The application injects a contract of type Ping for Alice.

2. Alice sees this contract and exercises the consuming choice RespondPong to create a con-

tract of type Pong for Bob.

3. Bob sees this contract and exercises the consuming choice RespondPing to create a contract

of type Ping for Alice.

4. Points 2 and 3 are repeated until the maximum number of contracts defined in the Daml is

reached.

Set Up the Example Projects

To set up the example projects, clone the public GitHub repository at

github.com/digital-asset/ex-java-bindings and follow the setup instruction in the README file.

This project contains two examples of the PingPong application, built directly with gRPC and using

the RxJava2-based Java bindings.

Example Project

PingPongMain.java

The entry point for the Java code is the main class src/main/java/examples/pingpong/grpc/

PingPongMain.java. Look at this class to see:

• how to connect to and interact with a Daml Ledger via the Java bindings

• how to use the Reactive layer to build an automation for both parties.

At high level, the code does the following steps:

• creates an instance of DamlLedgerClient connecting to an existing Ledger

• connect this instance to the Ledger with DamlLedgerClient.connect()

• create two instances of PingPongProcessor, which contain the logic of the automation

(This is where the application reacts to the new Ping or Pong contracts.)

• run the PingPongProcessor forever by connecting them to the incoming transactions

• inject some contracts for each party of both templates

• wait until the application is done

268 Chapter 1. Canton References

https://github.com/digital-asset/ex-java-bindings
https://github.com/digital-asset/ex-java-bindings
https://github.com/digital-asset/ex-java-bindings/blob/master/README.rst#setting-up-the-example-projects

Daml SDK Documentation, 2.7.3

PingPongProcessor.runIndefinitely()

The core of the application is the PingPongProcessor.runIndefinitely().

The PingPongProcessor queries the transactions first via the TransactionsClient of the

DamlLedgerClient. Then, for each transaction, it produces Commands that will be sent to the

Ledger via the CommandSubmissionClient of the DamlLedgerClient.

Output

The application prints statements similar to these:

Bob is exercising RespondPong on #1:0 in workflow Ping­Alice­1 at count 0

Alice is exercising RespondPing on #344:1 in workflow Ping­Alice­7 at count 9

The first line shows that:

• Bob is exercising the RespondPong choice on the contract with ID #1:0 for the workflow

Ping­Alice­1.

• Count 0means that this is the first choice after the initial Ping contract.

• Theworkflow IDPing­Alice­1 conveys that this is theworkflow triggered by the second initial

Ping contract that was created by Alice.

The second line is analogous to the first one.

Daml IOU Quickstart Tutorial

In this guide, you will learn about developer tools and Daml applications by:

• developing a simple ledger application for issuing, managing, transferring and trading IOUs (“I

Owe You!”)

• developing an integration layer that exposes some of the functionality via custom REST ser-

vices

Prerequisites:

• You understand what an IOU is. If you are not sure, read the IOU tutorial overview.

• You have installed the SDK. See installation.

Download the Quickstart Application

You can get the quickstart application using the Daml assistant (daml):

1. Run daml new quickstart ­­template quickstart­java

This creates the quickstart­java application into a new folder called quickstart.

2. Run cd quickstart to change into the new directory.

1.12. Integrate Daml with Off-Ledger Services 269

Daml SDK Documentation, 2.7.3

Folder Structure

The project contains the following files:

.

├── daml

│ ├── Iou.daml

│ ├── IouTrade.daml

│ ├── Main.daml

│ └── Tests

│ ├── Iou.daml

│ └── Trade.daml

├── daml.yaml

├── frontend­config.js

├── pom.xml

└── src

└── main

├── java

│ └── com

│ └── daml

│ └── quickstart

│ └── iou

│ └── IouMain.java

└── resources

└── logback.xml

• daml.yaml is a Daml project config file used by the SDK to find out how to build the Daml

project and how to run it.

• daml contains the Daml code specifying the contract model for the ledger.

• daml/Tests contains test scripts for the Daml model.

• frontend­config.js is a configuration file for the Navigator frontend.

• pom.xml and src/main/java constitute a Java application that provides REST services to in-

teract with the ledger.

You will explore these in more detail through the rest of this guide.

Understand IOUs

To run through this guide, you will need to understand what an IOU is. This section describes the

properties of an IOU like a bank bill that make it useful as a representation and transfer of value.

A bank bill represents a contract between the owner of the bill and its issuer, the central bank. His-

torically, it is a bearer instrument - it gives anyone who holds it the right to demand a fixed amount

of material value, often gold, from the issuer in exchange for the note.

To do this, the note must have certain properties. In particular, the British pound note shown below

illustrates the key elements that are needed to describe money in Daml:

1) The Legal Agreement

For a long time, money was backed by physical gold or silver stored in a central bank. The British

pound note, for example, represented a promise by the central bank to provide a certain amount of

gold or silver in exchange for the note. This historical artifact is still represented by the following

statement:

270 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

I promise to pay the bearer on demand the sum of five pounds.

The true value of the note comes from the fact that it physically represents a bearer right that is

matched by an obligation on the issuer.

2) The Signature of the Counterparty

The value of a right described in a legal agreement is based on a matching obligation for a counter-

party. The British pound note would be worthless if the central bank, as the issuer, did not recognize

its obligation to provide a certain amount of gold or silver in exchange for the note. The chief cashier

confirms this obligation by signing the note as a delegate for the Bank of England. In general, deter-

mining the parties that are involved in a contract is key to understanding its true value.

3) The Security Token

Another feature of the poundnote is the security token embeddedwithin the physical paper. It allows

the note to be authenticatedwith limited effort by holding it against a light source. Even a third party

can verify the note without requiring explicit confirmation from the issuer that it still acknowledges

the associated obligations.

4) The Unique Identifier

Every note has a unique registration number that allows the issuer to track their obligations and

detect duplicate bills. Once the issuer has fulfilled the obligations associated with a particular note,

duplicates with the same identifier automatically become invalid.

5) The Distribution Mechanism

The note itself is printed on paper, and its legal owner is the person holding it. The physical form of

the note allows the rights associated with it to be transferred to other parties that are not explicitly

mentioned in the contract.

1.12. Integrate Daml with Off-Ledger Services 271

Daml SDK Documentation, 2.7.3

Run the Application Using Prototyping Tools

In this section, you will run the quickstart application and get introduced to the main tools for pro-

totyping Daml:

1. To compile the Daml model, run daml build

This creates a DAR file (DAR is just the format that Daml compiles to) called .daml/dist/

quickstart­0.0.1.dar. The output should look like this:

2022­09­08 14:33:41.65 [INFO] [build]

Compiling quickstart to a DAR.

2022­09­08 14:33:42.90 [INFO] [build]

Created .daml/dist/quickstart­0.0.1.dar

2. To run the sandbox (a lightweight local version of the ledger), run:

daml sandbox ­­port 6865

3. In a separate terminal run the following:

• Upload the DAR file:

daml ledger upload­dar ­­host localhost ­­port 6865 .daml/dist/quickstart­0.0.

↪→1.dar

• Run the init script:

daml script ­­ledger­host localhost ­­ledger­port 6865 ­­dar .daml/dist/

↪→quickstart­0.0.1.dar ­­script­name Main:initialize ­­output­file output.json

• Start the Navigator, a browser-based ledger front-end, by running:

daml navigator server localhost 6865 ­­port 7500

The Navigator automatically connects to the sandbox. You can access it on port 7500.

Try the Application

Now everything is running, you can try out the quickstart application:

1. Go to http://localhost:7500/. This is the Navigator, which you launched earlier.

2. On the login screen, select alice from the dropdown. This logs you in as alice.

This takes you to the contracts view:

This is showing you what contracts are currently active on the sandbox ledger and visible to

alice. You can see that there is a single such contract, in our case with Id 002eb5..., created

from a template called Iou:Iou@8f199da....

Your contract IDwill vary. The actual value doesn’tmatter. We’ll refer to this contract as002eb5

in the rest of this document, and you’ll need to substitute your own value mentally.

3. On the left-hand side, you can see what the pages the Navigator contains:

• Contracts

• Templates

• Issued Ious

• Owned Ious

• Iou Transfers

• Trades

272 Chapter 1. Canton References

http://localhost:7500/

Daml SDK Documentation, 2.7.3

Contracts and Templates are standard views, available in any application. The others are cre-

ated just for this application, specified in the frontend­config.js file.

For information on creating custom Navigator views, see Customizable table views.

4. Click Templates to open the Templates page.

This displays all available contract templates. Instances of contracts (or just contracts) are

created from these templates. The names of the templates are of the format module:tem-

plate@hash. Including the hash disambiguates templates, even when identical module and

template names are used between packages.

On the far right, you see the number of contracts that you can see for each template, if any, or ­

for “no contract”.

5. Try creating a contract from a template. Issue an Iou to yourself by clicking on the

Iou:Iou@8f199... row, filling it out as shown below (use the provided auto-complete fea-

ture for the Party values in issuer and owner) and clicking Submit.

1.12. Integrate Daml with Off-Ledger Services 273

Daml SDK Documentation, 2.7.3

6. On the left-hand side, click Issued Ious to go to that page. You can see the Iou you just issued

yourself.

7. Now, try transferring this Iou to someone else. Click on your Iou, select Iou_Transfer, select

Bob::... as the new owner and hit Submit.

8. Go to the Owned Ious page.

The screen shows the same contract 002eb5 that you already saw on the Contracts page. It is

an Iou for €100, issued by EUR_Bank::....

9. Go to the Iou Transfers page. It shows the transfer of your recently issued Iou to Bob, but Bob

has not accepted the transfer, so it is not settled.

This is an important part of Daml: nobody can be forced into owning an Iou, or indeed agreeing

to any other contract. They must explicitly consent.

You could cancel the transfer by using the IouTransfer_Cancel choice within it, but for this

walk-through, leave it alone for the time being.

10. Try asking Bob to exchange your €100 for $110. To do so, you first have to show your Iou to Bob so

that he can verify the settlement transaction, should he accept the proposal.

Go back toOwned Ious, open the Iou for €100 and click on the buttonIou_AddObserver. Select

Bob::... as the newObserver.

Contracts in Daml are immutable, meaning they cannot be changed, only created and archived.

If you head back to the Owned Ious screen, you can see that the Iou now has a new Contract ID.

In our case, it’s 00018fe....

11. To propose the trade, go to the Templates screen. Click on the IouTrade:IouTrade@... tem-

plate, fill in the form as shown below and submit the transaction. Remember to use the drop-

down for the values of buyer, seller, baseIouCid, baseIssuer, and quoteIssuer.

12. Go to the Trades page. It shows the just-proposed trade.

13. You are now going to switch user to Bob, so you can accept the trades you have just proposed.

Start by clicking on the logout button next to the username, at the top of the screen. On the

login page, select bob from the dropdown.

14. First, accept the transfer of the AliceCoin. Go to the Iou Transfers page, click on the row of the

transfer, and click IouTransfer_Accept, then Submit.

15. Go to the Owned Ious page. It now shows the AliceCoin.

It also shows an Iou for $110 issued by USD_Bank::.... This matches the trade proposal

274 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

you made earlier as Alice. Remember the first few characters of its Contract ID (in our case

0086c84).

16. Settle the trade. Go to the Trades page, and click on the row of the proposal. Accept the trade

by clicking IouTrade_Accept. In the popup, select the Contract ID you just noted from the

dropdown as the quoteIouCid, then click Submit.

The two legs of the transfer are now settled atomically in a single transaction. The trade either

fails or succeeds as a whole.

17. Privacy is an important feature of Daml. You can check that Alice and Bob’s privacy relative to

the Banks was preserved.

To do this, log out, then log in as us, which maps to USD_Bank::....

On the Contracts page, select Include archived. The page now shows all the contracts that

USD_Bank::... has ever known about.

There are just five contracts:

• Three contracts created on startup:

1. A self-issued Iou for $110.

2. The IouTransfer to transfer that Iou to Bob

3. The resulting Iou owned by Bob.

• The transfer of Bob’s Iou to Alice that happened as part of the trade. Note that this is a

transient contract that got archived in the same transaction it got created in.

• The new $110 Iou owned by Alice. This is the only active contract.

Importantly, USD_Bank::... does not know anything about the trade or the EUR-leg. It has no

idea what was exchanged for those $110, or indeed if anything was exchanged at all. For more

information on privacy, refer to the Daml Ledger Model.

Note: USD_Bank::... does know about an intermediate IouTransfer contract that was created

and consumed as part of the atomic settlement in the previous step. Since that contract was

never active on the ledger, it is not shown in Navigator. You will see how to view a complete

transaction graph, including who knows what, in Test Using Daml Script below.

1.12. Integrate Daml with Off-Ledger Services 275

Daml SDK Documentation, 2.7.3

Get Started with Daml

The contractmodel specifies the possible contracts, as well as the allowed transactions on the ledger,

and is written in Daml.

The core concept in Daml is a contract template - you used them earlier to create contracts. Contract

templates specify:

• a type of contract that may exist on the ledger, including a corresponding data type

• the signatories, who need to agree to the creation of a contract of that type

• the rights or choices given to parties by a contract of that type

• constraints or conditions on the data on a contract

• additional parties, called observers, who can see the contract

For more information about Daml Ledgers, consult Daml Ledger Model for an in-depth technical de-

scription.

Develop with Daml Studio

Take a look at the Daml that specifies the contract model in the quickstart application. The core

template is Iou.

1. Open Daml Studio, a Daml IDE based on VS Code, by running daml studio from the root of your

project.

2. Using the explorer on the left, open daml/Iou.daml.

The first (uncommented, non-empty) line specifies the module name:

module Iou where

Next, a template called Iou is declared together with its datatype. This template has five fields:

template Iou

with

issuer : Party

owner : Party

currency : Text

amount : Decimal

observers : [Party]

Conditions for the creation of a contract are specified using the ensure and signatory keywords:

ensure amount > 0.0

signatory issuer, owner

In this case, there are two conditions:

• An Iou can only be created if it is authorized by both issuer and owner.

• The amount needs to be positive.

Earlier, as Alice, you authorized the creation of an Iou. The amount was 1.0, and Alice was both

issuerandowner, so both conditionswere satisfied, and youcould successfully create the contract.

To see this in action, go back to the Navigator and try to create the same Iou again, but with Bob as

owner (with Alice as issuer). It will not work. Note that the Navigator shows success an failures as a

276 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

small icon in the top right, as highlighted here (it would be a small “v” for success):

Observers are specified using the observer keyword:

observer observers

Here, observer is the keyword and observers refers to the field of the template.

Next, the rights or choices are defined, in this case with owner as the controller:

choice Iou_Split : (IouCid, IouCid)

with

splitAmount: Decimal

controller owner

do

let restAmount = amount ­ splitAmount

splitCid <­ create this with amount = splitAmount

restCid <­ create this with amount = restAmount

return (splitCid, restCid)

choice Iou_Merge : IouCid

with

otherCid: IouCid

controller owner

do

otherIou <­ fetch otherCid

­­ Check the two IOU's are compatible

assert (

currency == otherIou.currency &&

owner == otherIou.owner &&

issuer == otherIou.issuer

)

­­ Retire the old Iou

archive otherCid

­­ Return the merged Iou

create this with amount = amount + otherIou.amount

choice Iou_Transfer : ContractId IouTransfer

with

(continues on next page)

1.12. Integrate Daml with Off-Ledger Services 277

Daml SDK Documentation, 2.7.3

(continued from previous page)

newOwner : Party

controller owner

do create IouTransfer with iou = this; newOwner

choice Iou_AddObserver : IouCid

with

newObserver : Party

controller owner

do create this with observers = newObserver :: observers

choice Iou_RemoveObserver : IouCid

with

oldObserver : Party

controller owner

do create this with observers = filter (/= oldObserver) observers

Thus, owner has the right to:

• Split the Iou.

• Merge it with another one differing only on amount.

• Initiate a transfer.

• Add and remove observers.

The Iou_Transfer choice above takes a parameter called newOwner and creates a new IouTrans­

fer contract and returns its ContractId. It is important to know that, by default, choices consume

the contract on which they are exercised. Consuming, or archiving, makes the contract no longer

active. So the IouTransfer replaces the Iou.

A more interesting choice is IouTrade_Accept. To look at it, open IouTrade.daml.

choice IouTrade_Accept : (IouCid, IouCid)

with

quoteIouCid : IouCid

controller seller

do

baseIou <­ fetch baseIouCid

baseIssuer === baseIou.issuer

baseCurrency === baseIou.currency

baseAmount === baseIou.amount

buyer === baseIou.owner

quoteIou <­ fetch quoteIouCid

quoteIssuer === quoteIou.issuer

quoteCurrency === quoteIou.currency

quoteAmount === quoteIou.amount

seller === quoteIou.owner

quoteIouTransferCid <­ exercise quoteIouCid Iou_Transfer with

newOwner = buyer

transferredQuoteIouCid <­ exercise quoteIouTransferCid IouTransfer_Accept

baseIouTransferCid <­ exercise baseIouCid Iou_Transfer with

newOwner = seller

transferredBaseIouCid <­ exercise baseIouTransferCid IouTransfer_Accept

return (transferredQuoteIouCid, transferredBaseIouCid)

This choice uses the === operator from the Daml Standard Library to check pre-conditions. The stan-

dard library is imported using import DA.Assert at the top of the module.

278 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Then, it composes the Iou_Transfer and IouTransfer_Accept choices to build one big transac-

tion. In this transaction, buyer and seller exchange their Ious atomically, without disclosing the

entire transaction to all parties involved.

The Issuers of the two Ious, which are involved in the transaction because they are signatories on the

Iou and IouTransfer contracts, only get to see the sub-transactions that concern them, as we saw

earlier.

For a deeper introduction to Daml, consult the Daml Reference.

Test Using Daml Script

You can check the correct authorization and privacy of a contract model using scripts: tests that are

written in Daml.

Scripts are a linear sequence of transactions that is evaluated using the same consistency, confor-

mance and authorization rules as it would be on the full ledger server or the sandbox ledger. They

are integrated into Daml Studio, which can show you the resulting transaction graph, making them

a powerful tool to test and troubleshoot the contract model.

To take a look at the scripts in the quickstart application, open daml/Tests/Trade.daml in Daml

Studio.

A script test is defined with trade_test = script do. The submit function takes a submitting

party and a transaction, which is specified the same way as in contract choices.

The following block, for example, issues an Iou and transfers it to Alice:

­­ Banks issue IOU transfers.

iouTransferAliceCid <­ submit eurBank do

createAndExerciseCmd

Iou with

issuer = eurBank

owner = eurBank

currency = "EUR"

amount = 100.0

observers = []

Iou_Transfer with

newOwner = alice

Compare the script with the initialize script in daml/Main.daml. You will see that the script

you used to initialize the sandbox is an initial segment of the trade_test script. The latter adds

transactions to perform the trade you performed through Navigator, and a couple of transactions in

which expectations are verified.

After a short time, the text Script results should appear above the test. Click on it (in daml/Tests/

Trade.daml) to open the visualization of the resulting ledger state.

Each row shows a contract on the ledger. The last four columns show which parties know of which

contracts. The remaining columns show the data on the contracts. You can see past contracts by

checking the Show archived box at the top. Click the adjacent Show transaction view button to

switch to a view of the entire transaction tree.

In the transaction view, transaction6 is of particular interest, as it showshow the Ious are exchanged

atomically in one transaction. The lines starting disclosed to (since) show that the Banks do

indeed not know anything they should not:

1.12. Integrate Daml with Off-Ledger Services 279

Daml SDK Documentation, 2.7.3

TX 6 1970­01­01T00:00:00Z (Tests.Trade:70:14)

#6:0

│ disclosed to (since): 'Alice' (6), 'Bob' (6)

└─> 'Bob' exercises IouTrade_Accept on #5:0 (IouTrade:IouTrade)

with

quoteIouCid = #3:1

children:

#6:1

│ disclosed to (since): 'Alice' (6), 'Bob' (6), 'EUR_Bank' (6)

└─> 'Alice' and 'EUR_Bank' fetch #4:1 (Iou:Iou)

#6:2

│ disclosed to (since): 'Alice' (6), 'Bob' (6), 'USD_Bank' (6)

└─> 'Bob' and 'USD_Bank' fetch #3:1 (Iou:Iou)

#6:3

│ disclosed to (since): 'Alice' (6), 'Bob' (6), 'USD_Bank' (6)

└─> 'Bob' exercises Iou_Transfer on #3:1 (Iou:Iou)

with

newOwner = 'Alice'

children:

#6:4

│ consumed by: #6:5

│ referenced by #6:5

│ disclosed to (since): 'Alice' (6), 'Bob' (6), 'USD_Bank' (6)

└─> 'Bob' and 'USD_Bank' create Iou:IouTransfer

with

iou =

(Iou:Iou with

issuer = 'USD_Bank';

owner = 'Bob';

currency = "USD";

amount = 110.0000000000;

observers = []);

newOwner = 'Alice'

#6:5

│ disclosed to (since): 'Alice' (6), 'Bob' (6), 'USD_Bank' (6)

└─> 'Alice' exercises IouTransfer_Accept on #6:4 (Iou:IouTransfer)

children:

#6:6

│ disclosed to (since): 'Alice' (6), 'Bob' (6), 'USD_Bank' (6)

└─> 'Alice' and 'USD_Bank' create Iou:Iou

with

issuer = 'USD_Bank';

(continues on next page)

280 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

owner = 'Alice';

currency = "USD";

amount = 110.0000000000;

observers = []

#6:7

│ disclosed to (since): 'Alice' (6), 'Bob' (6), 'EUR_Bank' (6)

└─> 'Alice' exercises Iou_Transfer on #4:1 (Iou:Iou)

with

newOwner = 'Bob'

children:

#6:8

│ consumed by: #6:9

│ referenced by #6:9

│ disclosed to (since): 'Alice' (6), 'Bob' (6), 'EUR_Bank' (6)

└─> 'Alice' and 'EUR_Bank' create Iou:IouTransfer

with

iou =

(Iou:Iou with

issuer = 'EUR_Bank';

owner = 'Alice';

currency = "EUR";

amount = 100.0000000000;

observers = ['Bob']);

newOwner = 'Bob'

#6:9

│ disclosed to (since): 'Alice' (6), 'Bob' (6), 'EUR_Bank' (6)

└─> 'Bob' exercises IouTransfer_Accept on #6:8 (Iou:IouTransfer)

children:

#6:10

│ disclosed to (since): 'Alice' (6), 'Bob' (6), 'EUR_Bank' (6)

└─> 'Bob' and 'EUR_Bank' create Iou:Iou

with

issuer = 'EUR_Bank';

owner = 'Bob';

currency = "EUR";

amount = 100.0000000000;

observers = []

The submit function used in this script tries to perform a transaction and fails if any of the ledger

integrity rules are violated. There is also a submitMustFail function, which checks that certain

transactions are not possible. This is used in daml/Tests/Iou.daml, for example, to confirm that

the ledger model prevents double spends.

1.12. Integrate Daml with Off-Ledger Services 281

Daml SDK Documentation, 2.7.3

Integrate With the Ledger

A distributed ledger only forms the core of a full Daml application.

To build automations and integrations around the ledger, Daml has language bindings for the Ledger

API in several programming languages.

To compile the Java integration for the quickstart application, we first need to run the Java codegen

on the DAR we built before:

daml codegen java

Once the code has been generated (into target/generated­sources per the instructions in

daml.yaml), we can compile it using:

mvn compile

Now, start the Java integration with:

mvn exec:java@run­quickstart ­Dparty=$(cat output.json | sed 's/\[\"//' | sed 's/

↪→".*//')

Note that this step requires that the sandbox started earlier is still running. If it is not, you’ll have to

run the daml sandbox and daml script commands again to get an output.json in sync with

the new state of the sandbox (party names can change with each sandbox restart).

The application provides REST services on port8080 to performbasic operations on behalf onAlice.

For example, check that:

curl http://localhost:8080/iou

returns, for a newly-created sandbox (where you have just run the init script to get the output.json

file), something like:

{"0":{"issuer":"EUR_Bank::NAMESPACE","owner":"Alice::NAMESPACE","currency":"EUR",

↪→"amount":100.0000000000,"observers":[]}}

If you still have the same sandbox running against which you have run the Navigator steps above,

the output might look more like:

{"0":{"issuer":"Alice::NAMESPACE","owner":"Bob::NAMESPACE","currency":"AliceCoin",

↪→"amount":1.0000000000,"observers":[]},"1":{"issuer":"USD_Bank::NAMESPACE","owner

↪→":"Alice::NAMESPACE","currency":"USD","amount":110.0000000000,"observers":[]}}

To start the same application on another port, use the command-line parameter ­Drestport=PORT.

To start it for another party, use ­Dparty=PARTY. For example, to start the application for Bob on

8081, run:

mvn exec:java@run­quickstart ­Drestport=8081 ­Dparty=Bob$(cat output.json | sed

↪→'s/\[\"//' | sed 's/".*//')

The following REST services are included:

• GET on http://localhost:8080/iou lists all active Ious, and their Ids.

Note that the Ids exposed by the REST API are not the ledger contract Ids, but integers. You can

open the address in your browser or run curl ­X GET http://localhost:8080/iou.

282 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

• GET on http://localhost:8080/iou/ID returns the Iou with Id ID.

For example, to get the content of the Iou with Id 0, run:

curl ­X GET http://localhost:8080/iou/0

• PUT on http://localhost:8080/iou creates a new Iou on the ledger.

To create another AliceCoin, run:

curl ­X PUT ­d '{"issuer":"Alice::NAMESPACE","owner":"Alice::NAMESPACE",

↪→"currency":"AliceCoin","amount":1.0,"observers":[]}' http://localhost:8080/

↪→iou

Note that you have to replace NAMESPACE with the real namespace assigned by the sandbox;

you can find it in output.json:

ns=$(cat output.json | sed 's/\[\"Alice:://' | sed 's/".*//'); curl ­X PUT ­d

↪→"$(printf '{"issuer":"Alice::%s","owner":"Alice::%s","currency":"AliceCoin",

↪→"amount":1.0,"observers":[]}' $ns $ns)" http://localhost:8080/iou

• POST on http://localhost:8080/iou/ID/transfer transfers the Iou with Id ID.

Check the index of your new AliceCoin by listing all active Ious. If you have just run the init script,

it will be 0; if you have run the Navigator section, it will likely be 2. Once you have the index, you

can run:

ns=$(cat output.json | sed 's/\[\"Alice:://' | sed 's/".*//'); curl ­X POST ­

↪→d "{\"newOwner\":\"Bob::${ns}\"}" http://localhost:8080/iou/0/transfer

to transfer it to Bob. If it’s not 0, just replace the 0 in iou/0 in the above command.

The automation is based on the Java bindings and the output of the Java code generator, which are

included as a Maven dependency and Maven plugin respectively in the pom.xml file created by the

template:

<dependency>

<groupId>com.daml</groupId>

<artifactId>bindings­rxjava</artifactId>

<version>__VERSION__</version>

<exclusions>

<exclusion>

<groupId>com.google.protobuf</groupId>

<artifactId>protobuf­lite</artifactId>

</exclusion>

</exclusions>

</dependency>

It consists of the application in file IouMain.java. It uses the class Iou from Iou.java, which is

generated from theDamlmodelwith the Java codegenerator. TheIou classprovidesbetter serializa-

tion and de-serialization to JSON via gson. Looking at src/main/java/com/daml/quickstart/

iou/IouMain.java:

1. A connection to the ledger is established using a DamlLedgerClient object.

DamlLedgerClient client = DamlLedgerClient.newBuilder(ledgerhost, ledgerport).

↪→build();

// Connects to the ledger and runs initial validation.

client.connect();

2. An in-memory contract store is initialized. This is intended to provide a live view of all active

contracts, with mappings between ledger and external Ids.

1.12. Integrate Daml with Off-Ledger Services 283

https://github.com/google/gson

Daml SDK Documentation, 2.7.3

ConcurrentHashMap<Long, Iou> contracts = new ConcurrentHashMap<>();

BiMap<Long, Iou.ContractId> idMap = Maps.synchronizedBiMap(HashBiMap.

↪→create());

AtomicReference<LedgerOffset> acsOffset =

new AtomicReference<>(LedgerOffset.LedgerBegin.getInstance());

3. The Active Contracts Service (ACS) is used to quickly build up the contract store to a recent

state.

client

.getActiveContractSetClient()

.getActiveContracts(Iou.contractFilter(), Collections.singleton(party),␣

↪→true)

.blockingForEach(

response ­> {

response.offset.ifPresent(offset ­> acsOffset.set(new LedgerOffset.

↪→Absolute(offset)));

response.activeContracts.forEach(

contract ­> {

long id = idCounter.getAndIncrement();

contracts.put(id, contract.data);

idMap.put(id, contract.id);

});

});

blockingForEach is used to ensure that the contract store is consistent with the ledger state

at the latest offset observed by the client.

4. The Transaction Service is wired up to update the contract store on occurrences of

ArchiveEvent and CreateEvent for Ious. Since getTransactions is called without end

offset, it will stream transactions indefinitely, until the application is terminated.

client

.getTransactionsClient()

.getTransactions(

Iou.contractFilter(), acsOffset.get(), Collections.

↪→singleton(party), true)

.forEach(

t ­> {

for (Event event : t.getEvents()) {

if (event instanceof CreatedEvent) {

CreatedEvent createdEvent = (CreatedEvent) event;

long id = idCounter.getAndIncrement();

Iou.Contract contract = Iou.Contract.

↪→fromCreatedEvent(createdEvent);

contracts.put(id, contract.data);

idMap.put(id, contract.id);

} else if (event instanceof ArchivedEvent) {

ArchivedEvent archivedEvent = (ArchivedEvent) event;

long id =

idMap.inverse().get(new Iou.ContractId(archivedEvent.

↪→getContractId()));

contracts.remove(id);

idMap.remove(id);

}

}

});

5. Commands are submitted via the Command Submission Service.

284 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

var params =

CommandsSubmission.create(APP_ID, randomUUID().toString(), update.

↪→commands())

.withActAs(party);

return client.getCommandClient().submitAndWaitForResult(params, update).

↪→blockingGet();

You can find examples of Update instantiations for creating contract and exercising a choice

in the bodies of the transfer and iou endpoints, respectively.

Listing 22: Exercise a choice

Map m = g.fromJson(req.body(), Map.class);

Iou.ContractId contractId = idMap.get(Long.parseLong(req.params("id")));

var update = contractId.exerciseIou_Transfer(m.get("newOwner").toString());

Listing 23: Create a contract

Iou iou = g.fromJson(req.body(), Iou.class);

var iouCreate = iou.create();

var createdContractId = submit(client, party, iouCreate);

The rest of the application sets up the REST services using Spark Java, and does dynamic package

Id detection using the Package Service. The latter is useful during development when package Ids

change frequently.

For a discussion of ledger application design and architecture, take a look at Application Architecture

Guide.

Next Steps

Great - you’ve completed the quickstart guide!

Some steps you could take next include:

• Explore examples for guidance and inspiration.

• Learn Daml.

• Language reference.

• Learn more about application development.

• Learn about the conceptual models behind Daml.

1.12.5.6 Python Bindings

The Python bindings (formerly known as DAZL) are a client implementation of the Ledger API for the

Python language and are supported under the Daml Enterprise license.

The Python bindings are supported for use with Daml and with Daml Hub. Documentation for the

bindings can be found here.

1.12. Integrate Daml with Off-Ledger Services 285

http://sparkjava.com/
https://daml.com/examples
https://hub.daml.com/
https://digital-asset.github.io/dazl-client/

Daml SDK Documentation, 2.7.3

1.12.5.7 Use the Ledger API With gRPC

If you want to write an application for the ledger API in other languages, you’ll need to use gRPC

directly.

If you’re not familiar with gRPC and protobuf, we strongly recommend following the gRPC quickstart

and gRPC tutorials. This documentation is written assuming you already have an understanding of

gRPC.

Get Started

You can get the protobufs from a GitHub release, or from the daml repository here.

Protobuf Reference Documentation

For full details of all of the Ledger API services and their RPC methods, see Ledger API Reference.

Example Project

We have an example project demonstrating the use of the Ledger API with gRPC. To get the example

project, PingPongGrpc:

1. Configure your machine to use the example by following the instructions at Set Up a Maven

Project.

2. Clone the repository from GitHub.

3. Follow the setup instructions in the README. Use examples.pingpong.grpc.

PingPongGrpcMain as the main class.

About the Example Project

The example shows very simply how two parties can interact via a ledger, using two Daml contract

templates, Ping and Pong.

The logic of the application goes like this:

1. The application injects a contract of type Ping for Alice.

2. Alice sees this contract and exercises the consuming choice RespondPong to create a con-

tract of type Pong for Bob.

3. Bob sees this contract and exercises the consuming choice RespondPing to create a contract

of type Ping for Alice.

4. Points 2 and 3 are repeated until the maximum number of contracts defined in the Daml is

reached.

The entry point for the Java code is the main class src/main/java/examples/pingpong/grpc/

PingPongGrpcMain.java. Look at it to see how connect to and interact with a ledger using gRPC.

The application prints output like this:

Bob is exercising RespondPong on #1:0 in workflow Ping­Alice­1 at count 0

Alice is exercising RespondPing on #344:1 in workflow Ping­Alice­7 at count 9

286 Chapter 1. Canton References

https://grpc.io
https://grpc.io/docs/quickstart/
https://grpc.io/docs/tutorials/
https://github.com/digital-asset/daml/releases/download/v2.7.3/protobufs-2.7.3.zip
https://github.com/digital-asset/daml/tree/main/ledger-api/grpc-definitions
https://github.com/digital-asset/ex-java-bindings
https://github.com/digital-asset/ex-java-bindings/blob/master/README.rst#setting-up-the-example-projects

Daml SDK Documentation, 2.7.3

The first line shows:

• Bob is exercising the RespondPong choice on the contract with ID #1:0 for the workflow

Ping­Alice­1.

• Count 0means that this is the first choice after the initial Ping contract.

• Theworkflow IDPing­Alice­1 conveys that this is theworkflow triggered by the second initial

Ping contract that was created by Alice.

This example subscribes to transactions for a single party, as different parties typically live on dif-

ferent participant nodes. However, if you have multiple parties registered on the same node, or are

running an application against the Sandbox, you can subscribe to transactions for multiple parties

in a single subscription by puttingmultiple entries into the filters_by_party field of the Trans­

actionFiltermessage. Subscribing to transactions for an unknown party will result in an error.

Daml Types and Protobuf

For information on how Daml types and contracts are represented by the Ledger API as protobuf

messages, see How Daml Types are Translated to Protobuf.

Error Handling

The Ledger API generally uses thegRPCstandard status codes for signaling response failures to client

applications.

For more details on the gRPC standard status codes, see the gRPC documentation .

Generically, on submitted commands the Ledger API responds with the following gRPC status codes:

ABORTED The platform failed to record the result of the command due to a transient server-side

error (e.g. backpressure due to high load) or a time constraint violation. You can retry the

submission. In case of a time constraint violation, please refer to the section Dealing with time

on how to handle commands with long processing times.

DEADLINE_EXCEEDED (when returned by the Command Service) The request might not have

been processed, as its deadline expired before its completion was signalled.

ALREADY_EXISTS The command was rejected because the resource (e.g. contract key) already ex-

ists or because it was sent within the deduplication period of a previous command with the

same change ID.

NOT_FOUND The command was rejected due to a missing resources (e.g. contract key not found).

INVALID_ARGUMENT The submission failed because of a client error. The platform will definitely

reject resubmissions of the same command.

FAILED_PRECONDITION The command was rejected due to an interpretation error or due to a con-

sistency error due to races.

OK (when returned by the Command Submission Service) Assume that the command was ac-

cepted and wait for the resulting completion or a timeout from the Command Completion Ser-

vice.

OK (when returned by the Command Service) You can be sure that the command was successful.

INTERNAL, UNKNOWN (when returned by the Command Service) An internal system fault oc-

curred. Contact the participant operator for the resolution.

Aside from the standard gRPC status codes, the failures returned by the Ledger API are enriched with

details meant to help the application or the application developer to handle the error autonomously

(e.g. by retrying on a retryable error). For more details on the rich error details see the Error Codes

1.12. Integrate Daml with Off-Ledger Services 287

https://github.com/grpc/grpc/blob/600272c826b48420084c2ff76dfb0d34324ec296/doc/statuscodes.md

Daml SDK Documentation, 2.7.3

1.12.5.8 Ledger API Reference

com/daml/ledger/api/v1/active_contracts_service.proto

GetActiveContractsRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger

Identification Service. Must be a valid LedgerString (as de-

scribed in value.proto). Optional

filter
Transaction-

Filter

Templates to include in the served snapshot, per party. Re-

quired

verbose
bool If enabled, values served over the APIwill containmore infor-

mation than strictly necessary to interpret the data. In par-

ticular, setting the verbose flag to true triggers the ledger to

include labels for record fields. Optional

ac-

tive_at_off-

set

string The offset at which the snapshot of the active contracts will

be computed. Must be no greater than the current ledger

end offset. Must be greater than or equal to the last pruning

offset. If not set the current ledger end offset will be used.

Optional

GetActiveContractsResponse

Field Type Label Description

offset
string Included only in the lastmessage. The client should start

consuming the transactions endpoint with this offset.

The format of this field is described in ledger_offset.

proto.

work-

flow_id

string The workflow that created the contracts. Must be a valid

LedgerString (as described in value.proto).

ac-

tive_con-

tracts

CreatedE-

vent

repeated The list of contracts that were introduced by theworkflow

with workflow_id at the offset. Must be a valid Ledger-

String (as described in value.proto).

ActiveContractsService

Allows clients to initialize themselves according to a fairly recent state of the ledger without read-

ing through all transactions that were committed since the ledger’s creation. In V2 Ledger API this

service is not available anymore. Use v2.StateService instead.

288 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Method

name

Request

type

Response

type

Description

GetActive-

Contracts

GetActive-

ContractsRe-

quest

GetActive-

ContractsRe-

sponse

Returns a stream of the snapshot of the active con-

tracts at a ledger offset. If there are no active con-

tracts, the stream returns a single response mes-

sage with the offset at which the snapshot has been

taken. Clients SHOULDuse the offset in the last GetAc-

tiveContractsResponse message to continue stream-

ing transactions with the transaction service. Clients

SHOULD NOT assume that the set of active contracts

they receive reflects the state at the ledger end.

com/daml/ledger/api/v1/admin/config_management_service.proto

GetTimeModelRequest

GetTimeModelResponse

Field Type Label Description

configura-

tion_gener-

ation

int64 The current configuration generation. The generation is a

monotonically increasing integer that is incremented on each

change. Used when setting the time model.

time_model
TimeModel The current ledger time model.

SetTimeModelRequest

Field Type Label Description

submis-

sion_id

string Submission identifier used for tracking the request and to

reject duplicate submissions. Required.

maxi-

mum_record_time

google.pro-

to-

buf.Times-

tamp

Deadline for the configuration change after which the

change is rejected.

configura-

tion_gener-

ation

int64 The current configuration generation which we’re sub-

mitting the change against. This is used to perform

a compare-and-swap of the configuration to safeguard

against concurrent modifications. Required.

new_time_model
TimeModel The new timemodel that replaces the current one. Required.

1.12. Integrate Daml with Off-Ledger Services 289

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

Daml SDK Documentation, 2.7.3

SetTimeModelResponse

Field Type Label Description

configuration_genera-

tion

int64 The configuration generation of the committed time

model.

TimeModel

Field Type Label Description

avg_trans-

action_la-

tency

google.pro-

tobuf.Dura-

tion

The expected average latency of a transaction, i.e., the aver-

age time from submitting the transaction to a [[WriteSer-

vice]] and the transaction being assigned a record time. Re-

quired.

min_skew
google.pro-

tobuf.Dura-

tion

Theminimimumskewbetween ledger time and record time:

lt_TX >= rt_TX - minSkew Required.

max_skew
google.pro-

tobuf.Dura-

tion

The maximum skew between ledger time and record time:

lt_TX <= rt_TX + maxSkew Required.

ConfigManagementService

Status: experimental interface, will change before it is deemed production ready

The ledger configuration management service provides methods for the ledger administrator to

change the current ledger configuration. The services providesmethods tomodify different aspects

of the configuration. In V2 Ledger API this service is not available anymore.

Method

name

Request

type

Response

type

Description

GetTimeM-

odel

GetTimeMod-

elRequest

GetTimeModel-

Response

Return the currently active timemodel and the cur-

rent configuration generation.

SetTimeM-

odel

SetTimeMod-

elRequest

SetTimeModel-

Response

Set the ledger time model.

com/daml/ledger/api/v1/admin/identity_provider_config_service.proto

CreateIdentityProviderConfigRequest

Field Type Label Description

identity_provider_config
IdentityProviderConfig Required

290 Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration

Daml SDK Documentation, 2.7.3

CreateIdentityProviderConfigResponse

Field Type Label Description

identity_provider_config
IdentityProviderConfig

DeleteIdentityProviderConfigRequest

Field Type Label Description

identity_provider_id
string The identity provider config to delete. Required

DeleteIdentityProviderConfigResponse

Does not (yet) contain any data.

GetIdentityProviderConfigRequest

Field Type Label Description

identity_provider_id
string Required

GetIdentityProviderConfigResponse

Field Type Label Description

identity_provider_config
IdentityProviderConfig

1.12. Integrate Daml with Off-Ledger Services 291

Daml SDK Documentation, 2.7.3

IdentityProviderConfig

Field Type Label Description

iden-

tity_provider_id

string The identity provider identifierMust be a valid LedgerString (as de-

scribe in value.proto). Required

is_deacti-

vated

bool When set, the callers using JWT tokens issued by this identity

provider are denied all access to the Ledger API. Optional, Modifi-

able

issuer
string Specifies the issuer of the JWT token. The issuer value is a case

sensitive URL using the https scheme that contains scheme, host,

and optionally, port number and path components and no query or

fragment components. Required Modifiable

jwks_url
string The JWKS (JSON Web Key Set) URL. The Ledger API uses JWKs

(JSON Web Keys) from the provided URL to verify that the JWT has

been signed with the loaded JWK. Only RS256 (RSA Signature with

SHA-256) signing algorithm is supported. Required Modifiable

audience
string Specifies the audience of the JWT token. When set, the callers us-

ing JWT tokens issued by this identity provider are allowed to get

anaccess only if the “aud” claim includes the string specifiedhere

Optional, Modifiable

ListIdentityProviderConfigsRequest

Pagination is not required as the resulting data set is small enough to be returned in a single call

ListIdentityProviderConfigsResponse

Field Type Label Description

identity_provider_configs
IdentityProviderConfig repeated

292 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

UpdateIdentityProviderConfigRequest

Field Type Label Description

iden-

tity_provider_con-

fig

Identi-

tyProvider-

Config

The identity provider config to update. Required, Modifiable

up-

date_mask

google.pro-

tobuf.Field-

Mask

An update mask specifies how and which properties of the

IdentityProviderConfig message are to be updated.

An update mask consists of a set of update paths. A

valid update path points to a field or a subfield relative to

the IdentityProviderConfig message. A valid update

mask must: (1) contain at least one update path, (2) con-

tain only valid update paths. Fields that can be updated

are marked as Modifiable. For additional information

see the documentation for standard protobuf3’s google.

protobuf.FieldMask. Required

UpdateIdentityProviderConfigResponse

Field Type Label Description

identity_provider_config
IdentityProviderConfig Updated identity provider config

IdentityProviderConfigService

Identity Provider Config Service makes it possible for participant node administrators to setup and

manage additional identity providers at runtime.

This allows using access tokens from identity providers unknown at deployment time. When an

identity provider is configured, independent IDP administrators canmanage their own set of parties

and users. Such parties and users have a matching identity_provider_id defined and are inaccessi-

ble to administrators from other identity providers. A user will only be authenticated if the corre-

sponding JWT token is issued by the appropriate identity provider. Users and parties without iden-

tity_provider_id defined are assumed to be using the default identity provider, which is configured

statically at the participant node’s deployment time.

The Ledger API uses the “iss” claim of a JWT token to match the token to a specific IDP. If there is no

match, the default IDP is assumed.

The fields of request messages (and sub-messages) are marked either as Optional or Required:

(1) Optional denoting the client may leave the field unset when sending a request. (2) Required

denoting the client must set the field to a non-default value when sending a request.

An identity provider config resource is described by the IdentityProviderConfig message, An

identity provider config resource, once it has been created, can be modified. In order to update

the properties represented by the IdentityProviderConfig message use the UpdateIdenti­

tyProviderConfig RPC. The only fields that can be modified are those marked as Modifiable.

1.12. Integrate Daml with Off-Ledger Services 293

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.FieldMask
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.FieldMask
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.FieldMask

Daml SDK Documentation, 2.7.3

Method

name

Request

type

Response

type

Description

CreateI-

denti-

tyProvider-

Config

CreateIden-

tityProvider-

ConfigRe-

quest

CreateIdenti-

tyProviderCon-

figResponse

Create a new identity provider configuration. The re-

quest will fail if the maximum allowed number of

separate configurations is reached.

GetIdenti-

tyProvider-

Config

GetIdenti-

tyProvider-

ConfigRe-

quest

GetIdenti-

tyProviderCon-

figResponse

Get the identity provider configuration data by id.

UpdateI-

denti-

tyProvider-

Config

UpdateIden-

tityProvider-

ConfigRe-

quest

UpdateIdenti-

tyProviderCon-

figResponse

Update selected modifiable attribute of an identity

provider config resource described by the Identi­

tyProviderConfigmessage.

ListIdenti-

tyProvider-

Configs

ListIdenti-

tyProvider-

ConfigsRe-

quest

ListIdenti-

tyProviderCon-

figsResponse

List all existing identity provider configurations.

DeleteI-

denti-

tyProvider-

Config

DeleteIden-

tityProvider-

ConfigRe-

quest

DeleteIdenti-

tyProviderCon-

figResponse

Delete an existing identity provider configuration.

com/daml/ledger/api/v1/admin/metering_report_service.proto

GetMeteringReportRequest

Authorized if and only if the authenticated user is a participant admin.

Field Type Label Description

from
google.proto-

buf.Timestamp

The from timestamp (inclusive). Required.

to
google.proto-

buf.Timestamp

The to timestamp (exclusive). If not provided, the server

will default to its current time.

applica-

tion_id

string If set to a non-empty value, then the report will only be

generated for that application. Optional.

294 Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

Daml SDK Documentation, 2.7.3

GetMeteringReportResponse

Field Type Label Description

request
GetMeter-

ingReportRe-

quest

The actual request that was executed.

re-

port_gen-

era-

tion_time

google.pro-

to-

buf.Times-

tamp

The time at which the report was computed.

meter-

ing_re-

port_json

google.pro-

to-

buf.Struct

The metering report json. For a JSON Schema defini-

tion of the JSon see: https://github.com/digital-asset/

daml/blob/main/ledger-api/grpc-definitions/

metering-report-schema.json

MeteringReportService

Experimental API to retrieve metering reports.

Metering reports aim to provide the information necessary for billing participant and application

operators.

Method name Request type Response type Description

GetMeteringRe-

port

GetMeteringReportRe-

quest

GetMeteringReportRe-

sponse

Retrieve a metering re-

port.

com/daml/ledger/api/v1/admin/object_meta.proto

ObjectMeta

Represents metadata corresponding to a participant resource (e.g. a participant user or participant

local information about a party).

Based on ObjectMeta meta used in Kubernetes API. See https://github.com/kubernetes/

apimachinery/blob/master/pkg/apis/meta/v1/generated.proto#L640

1.12. Integrate Daml with Off-Ledger Services 295

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Struct
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Struct
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Struct
https://github.com/digital-asset/daml/blob/main/ledger-api/grpc-definitions/metering-report-schema.json
https://github.com/digital-asset/daml/blob/main/ledger-api/grpc-definitions/metering-report-schema.json
https://github.com/digital-asset/daml/blob/main/ledger-api/grpc-definitions/metering-report-schema.json
https://github.com/kubernetes/apimachinery/blob/master/pkg/apis/meta/v1/generated.proto#L640
https://github.com/kubernetes/apimachinery/blob/master/pkg/apis/meta/v1/generated.proto#L640

Daml SDK Documentation, 2.7.3

Field Type Label Description

re-

source_ver-

sion

string An opaque, non-empty value, populated by a participant

server which represents the internal version of the re-

source this ObjectMeta message is attached to. The

participant server will change it to a unique value each

time the corresponding resource is updated. You must

not rely on the format of resource version. Theparticipant

servermight change it without notice. You can obtain the

newest resource version value by issuing a read request.

You may use it for concurrent change detection by pass-

ing it back unmodified in an update request. The partici-

pant server will then compare the passed value with the

valuemaintained by the system to determine if any other

updates took place since you had read the resource ver-

sion. Upon a successful update you are guaranteed that

noother update tookplaceduring your read-modify-write

sequence. However, if another update took place during

your read-modify-write sequence then your update will

fail with an appropriate error. Concurrent change con-

trol is optional. It will be applied only if you include a

resource version in an update request. When creating a

new instance of a resource you must leave the resource

version empty. Its value will be populated by the partici-

pant server upon successful resource creation. Optional

annota-

tions

Object-

Meta.Annota-

tionsEntry

repeated A set of modifiable key-value pairs that can be used

to represent arbitrary, client-specific metadata. Con-

straints: 1. The total size over all keys and values can-

not exceed 256kb in UTF-8 encoding. 2. Keys are com-

posed of an optional prefix segment and a required

name segment such that: - key prefix, when present,

must be a valid DNS subdomain with at most 253 char-

acters, followed by a ‘/’ (forward slash) character, -

name segment must have at most 63 characters that

are either alphanumeric ([a-z0-9A-Z]), or a ‘.’ (dot), ‘-’

(dash) or ‘_’ (underscore); and it must start and end

with an alphanumeric character. 2. Values can be any

non-empty strings. Keys with empty prefix are reserved

for end-users. Properties set by external tools or inter-

nally by the participant server must use non-empty key

prefixes. Duplicate keys are disallowed by the seman-

tics of the protobuf3 maps. See: https://developers.

google.com/protocol-buffers/docs/proto3#maps Anno-

tations may be a part of a modifiable resource. Use the

resource’s update RPC to update its annotations. In order

to add a new annotation or update an existing one using

an update RPC, provide the desired annotation in the up-

date request. In order to remove an annotation using an

update RPC, provide the target annotation’s key but set

its value to the empty string in the update request. Op-

tional Modifiable

296 Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/proto3#maps
https://developers.google.com/protocol-buffers/docs/proto3#maps

Daml SDK Documentation, 2.7.3

ObjectMeta.AnnotationsEntry

Field Type Label Description

key
string

value
string

com/daml/ledger/api/v1/admin/package_management_service.proto

ListKnownPackagesRequest

ListKnownPackagesResponse

Field Type Label Description

pack-

age_details

PackageDe-

tails

repeated The details of all Daml-LF packages known to backing

participant. Required

PackageDetails

Field Type Label Description

pack-

age_id

string The identity of the Daml-LF package. Must be a valid Pack-

ageIdString (as describe in value.proto). Required

pack-

age_size

uint64 Size of the package in bytes. The size of the package is given

by the size of the daml_lf ArchivePayload. See further de-

tails in daml_lf.proto. Required

known_since
google.pro-

to-

buf.Times-

tamp

Indicates since when the package is known to the backing

participant. Required

source_de-

scription

string Description provided by the backing participant describing

where it got the package from. Optional

UploadDarFileRequest

Field Type Label Description

dar_file
bytes Contains a Daml archive DAR file, which in turn is a jar like zipped

container for daml_lf archives. See further details in daml_lf.

proto. Required

submis-

sion_id

string Unique submission identifier. Optional, defaults to a random iden-

tifier.

1.12. Integrate Daml with Off-Ledger Services 297

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

Daml SDK Documentation, 2.7.3

UploadDarFileResponse

An empty message that is received when the upload operation succeeded.

PackageManagementService

Status: experimental interface, will change before it is deemed production ready

Query the Daml-LF packages supported by the ledger participant and upload DAR files. We use ‘back-

ing participant’ to refer to this specific participant in the methods of this API.

Method

name

Request

type

Response

type

Description

ListKnown-

Packages

ListKnown-

PackagesRe-

quest

ListKnown-

PackagesRe-

sponse

Returns the details of all Daml-LF packages known to

the backing participant.

Upload-

DarFile

Upload-

DarFil-

eRequest

Upload-

DarFileRe-

sponse

Upload a DAR file to the backing participant. De-

pendingon the ledger implementation thismight also

make the package available on the whole ledger. This

call might not be supported by some ledger imple-

mentations. Canton could be an example, where up-

loading a DAR is not sufficient to render it usable, it

must be activated first. This call may: - Succeed, if

the packagewas successfully uploaded, or if the same

package was already uploaded before. - Respond with

a gRPC error

com/daml/ledger/api/v1/admin/participant_pruning_service.proto

PruneRequest

Field Type Label Description

prune_up_to
string Inclusive offset up to which the ledger is to be pruned. By default

the following data is pruned: 1. All normal and divulged contracts

that have been archived before prune_up_to. 2. All transaction

events and completions before prune_up_to

submis-

sion_id

string Unique submission identifier. Optional, defaults to a random iden-

tifier, used for logging.

prune_all_di-

vulged_con-

tracts

bool Prune all immediately and retroactively divulged contracts created

before prune_up_to independent of whether they were archived be-

fore prune_up_to. Useful to avoid leaking storage on participant

nodes that can see a divulged contract but not its archival.

Application developers SHOULD write their Daml applications such that they do not rely on divulged

contracts; i.e., no warnings from using divulged contracts as inputs to transactions are emitted.

Participant node operators SHOULD set the prune_all_divulged_contracts flag to avoid leaking storage

due to accumulating unarchived divulged contracts PROVIDED that: 1. no application using this

298 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

participant node relies on divulgence OR 2. divulged contracts on which applications rely have been

re-divulged after the prune_up_to offset.

PruneResponse

Empty for now, but may contain fields in the future

ParticipantPruningService

Prunes/truncates the “oldest” transactions from the participant (the participant Ledger Api Server

plus any other participant-local state) by removing a portion of the ledger in such a way that the set

of future, allowed commands are not affected.

This enables: 1. keeping the “inactive” portion of the ledger to a manageable size and 2. removing

inactive state to honor the right to be forgotten.

Method

name

Request

type

Response

type

Description

Prune PruneRequest PruneRe-

sponse

Prune the ledger specifying the offset before and at

which ledger transactions should be removed. Only

returns when the potentially long-running prune re-

quest ends successfully or with an error.

com/daml/ledger/api/v1/admin/party_management_service.proto

AllocatePartyRequest

Required authorization: HasRight(ParticipantAdmin) OR IsAuthenticatedIdenti­

tyProviderAdmin(identity_provider_id)

Field Type Label Description

party_id_hint
string Ahint to the participantwhichparty ID to allocate. It canbe ig-

nored. Must be a valid PartyIdString (as described in value.

proto). Optional

dis-

play_name

string Human-readable name of the party to be added to the partici-

pant. It doesn’t have to be unique. Use of this field is discour-

aged. Use local_metadata instead. Optional

lo-

cal_meta-

data

ObjectMeta Participant-localmetadata tobe stored in thePartyDetails

of this newly allocated party. Optional

iden-

tity_provider_id

string The id of the Identity Provider Optional, if not set, as-

sume the party is managed by the default identity provider

or party is not hosted by the participant.

1.12. Integrate Daml with Off-Ledger Services 299

Daml SDK Documentation, 2.7.3

AllocatePartyResponse

Field Type Label Description

party_details
PartyDetails

GetParticipantIdRequest

Required authorization: HasRight(ParticipantAdmin)

GetParticipantIdResponse

Field Type Label Description

partici-

pant_id

string Identifier of the participant, which SHOULD be globally unique.

Must be a valid LedgerString (as describe in value.proto).

GetPartiesRequest

Required authorization: HasRight(ParticipantAdmin) OR IsAuthenticatedIdenti­

tyProviderAdmin(identity_provider_id)

Field Type Label Description

parties
string repeated The stable, unique identifier of the Daml parties. Must be valid

PartyIdStrings (as described in value.proto). Required

iden-

tity_provider_id

string The id of the Identity Provider whose parties should be re-

trieved. Optional, if not set, assume the party is managed by

the default identity provider or party is not hosted by the par-

ticipant.

GetPartiesResponse

Field Type Label Description

party_de-

tails

PartyDetails repeated The details of the requested Daml parties by the partici-

pant, if known. The party details may not be in the same

order as requested. Required

300 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

ListKnownPartiesRequest

Required authorization: HasRight(ParticipantAdmin) OR IsAuthenticatedIdenti­

tyProviderAdmin(identity_provider_id)

Field Type Label Description

iden-

tity_provider_id

string The id of the Identity Provider whose parties should be re-

trieved. Optional, if not set, assume the party is managed by the

default identity provider or party is not hosted by the participant.

ListKnownPartiesResponse

Field Type Label Description

party_de-

tails

PartyDetails repeated The details of all Daml parties known by the participant.

Required

PartyDetails

Field Type Label Description

party
string The stable unique identifier of a Daml party. Must be a valid

PartyIdString (as described in value.proto). Required

dis-

play_name

string Human readable nameassociatedwith the party at allocation

time. Caution, it might not be unique. Use of this field is dis-

couraged. Use the local_metadata field instead. Optional

is_local
bool true if party is hosted by the participant and the party shares

the same identity provider as the user issuing the request.

Optional

lo-

cal_meta-

data

ObjectMeta Participant-local metadata of this party. Optional, Modifiable

iden-

tity_provider_id

string The id of the Identity Provider Optional, if not set, there

could be 3 options: 1) the party is managed by the default

identity provider. 2) party is not hosted by the participant. 3)

party is hosted by the participant, but is outside of the user’s

identity provider.

1.12. Integrate Daml with Off-Ledger Services 301

Daml SDK Documentation, 2.7.3

UpdatePartyDetailsRequest

Requiredauthorization: HasRight(ParticipantAdmin) OR IsAuthenticatedIdentityProviderAdmin(party_details.

identity_provider_id)

Field Type Label Description

party_de-

tails

PartyDetails Party to be updated Required, Modifiable

up-

date_mask

google.pro-

tobuf.Field-

Mask

An update mask specifies how and which properties of the

PartyDetails message are to be updated. An update

mask consists of a set of update paths. A valid update

path points to a field or a subfield relative to the PartyDe­

tails message. A valid update mask must: (1) contain at

least one update path, (2) contain only valid update paths.

Fields that can be updated are marked as Modifiable.

An update path can also point to non-Modifiable fields

such as ‘party’ and ‘local_metadata.resource_version’ be-

cause they are used: (1) to identify the party details resource

subject to the update, (2) for concurrent change control.

An update path can also point to non-Modifiable fields

such as ‘is_local’ and ‘display_name’ as long as the val-

ues provided in the update requestmatch the server values.

Examples of update paths: ‘local_metadata.annotations’,

‘local_metadata’. For additional information see the doc-

umentation for standard protobuf3’s google.protobuf.

FieldMask. For similar Ledger API seecom.daml.ledger.

api.v1.admin.UpdateUserRequest. Required

UpdatePartyDetailsResponse

Field Type Label Description

party_details
PartyDetails Updated party details

UpdatePartyIdentityProviderRequest

Required authorization: HasRight(ParticipantAdmin)

Field Type Label Description

party
string Party to update

source_identity_provider_id
string Current identity provider id of the party

target_identity_provider_id
string Target identity provider id of the party

302 Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.FieldMask
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.FieldMask
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.FieldMask

Daml SDK Documentation, 2.7.3

UpdatePartyIdentityProviderResponse

PartyManagementService

This service allows inspecting the party management state of the ledger known to the participant

and managing the participant-local party metadata.

The authorization rules for its RPCs are specified on the <RpcName>Requestmessages as boolean

expressions over these facts: (1) HasRight(r) denoting whether the authenticated user has right

r and (2) IsAuthenticatedIdentityProviderAdmin(idp) denoting whether idp is equal to

the identity_provider_id of the authenticated user and the user has an IdentityProviderAdmin

right. If identity_provider_id is set to an empty string, then it’s effectively set to the value of access to-

ken’s ‘iss’ field if that is provided. If identity_provider_id remains an empty string, the default identity

provider will be assumed.

The fields of request messages (and sub-messages) are marked either as Optional or Required:

(1) Optional denoting the client may leave the field unset when sending a request. (2) Required

denoting the client must set the field to a non-default value when sending a request.

A party details resource is described by the PartyDetailsmessage, A party details resource, once

it has been created, can be modified using the UpdatePartyDetails RPC. The only fields that can

be modified are those marked as Modifiable.

1.12. Integrate Daml with Off-Ledger Services 303

Daml SDK Documentation, 2.7.3

Method

name

Request

type

Response

type

Description

GetPartici-

pantId

GetPar-

ticipan-

tIdRequest

GetPar-

ticipan-

tIdResponse

Return the identifier of the participant. All hori-

zontally scaled replicas should return the same id.

daml-on-kv-ledger: returns an identifier supplied on

command line at launch time canton: returns glob-

ally unique identifier of the participant

GetParties GetParties-

Request

GetParties-

Response

Get the party details of the given parties. Only known

parties will be returned in the list.

ListKnown-

Parties

ListKnown-

PartiesRe-

quest

ListKnown-

PartiesRe-

sponse

List the parties known by the participant. The list

returned contains parties whose ledger access is fa-

cilitated by the participant and the ones maintained

elsewhere.

Allo-

cateParty

AllocatePar-

tyRequest

AllocatePar-

tyResponse

Allocates a new party on a ledger and adds it to the

set managed by the participant. Caller specifies a

party identifier suggestion, the actual identifier al-

located might be different and is implementation

specific. Caller can specify party metadata that is

stored locally on the participant. This call may: -

Succeed, in which case the actual allocated identi-

fier is visible in the response. - Respond with a gRPC

error daml-on-kv-ledger: suggestion’s uniqueness is

checked by the validators in the consensus layer and

call rejected if the identifier is already present. can-

ton: completely different globally unique identifier

is allocated. Behind the scenes calls to an inter-

nal protocol are made. As that protocol is richer

than the surface protocol, the arguments take im-

plicit values The party identifier suggestion must be

a valid party name. Party names are required to be

non-empty US-ASCII strings built from letters, digits,

space, colon, minus and underscore limited to 255

chars

UpdatePar-

tyDetails

UpdatePar-

tyDetailsRe-

quest

UpdatePar-

tyDetailsRe-

sponse

Update selected modifiable participant-local at-

tributes of a party details resource. Can update the

participant’s local information for local parties.

UpdatePar-

tyIdenti-

tyProviderId

UpdatePar-

tyIdenti-

tyProvider-

Request

UpdatePar-

tyIdenti-

tyProvider-

Response

Update the assignment of a party from one IDP to an-

other.

304 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

com/daml/ledger/api/v1/admin/user_management_service.proto

CreateUserRequest

Requiredauthorization: HasRight(ParticipantAdmin) OR IsAuthenticatedIdentityProviderAdmin(user.

identity_provider_id)

Field Type Label Description

user
User The user to create. Required

rights
Right repeated The rights to be assigned to the user upon creation, which SHOULD

include appropriate rights for the user.primary_party. Optional

CreateUserResponse

Field Type Label Description

user
User Created user.

DeleteUserRequest

Required authorization: HasRight(ParticipantAdmin) OR IsAuthenticatedIdenti­

tyProviderAdmin(identity_provider_id)

Field Type Label Description

user_id
string The user to delete. Required

iden-

tity_provider_id

string The id of theIdentity ProviderOptional, if not set, assume the

user is managed by the default identity provider.

DeleteUserResponse

Does not (yet) contain any data.

GetUserRequest

Required authorization: HasRight(ParticipantAdmin) OR IsAuthenticatedIdenti­

tyProviderAdmin(identity_provider_id) OR IsAuthenticatedUser(user_id)

Field Type Label Description

user_id
string The user whose data to retrieve. If set to empty string (the default),

then the data for the authenticated user will be retrieved. Optional

iden-

tity_provider_id

string The id of the Identity ProviderOptional, if not set, assume the

user is managed by the default identity provider.

1.12. Integrate Daml with Off-Ledger Services 305

Daml SDK Documentation, 2.7.3

GetUserResponse

Field Type Label Description

user
User Retrieved user.

GrantUserRightsRequest

Add the rights to the set of rights granted to the user.

Required authorization: HasRight(ParticipantAdmin) OR IsAuthenticatedIdenti­

tyProviderAdmin(identity_provider_id)

Field Type Label Description

user_id
string The user to whom to grant rights. Required

rights
Right repeated The rights to grant. Optional

iden-

tity_provider_id

string The id of the Identity Provider Optional, if not set, assume

the user is managed by the default identity provider.

GrantUserRightsResponse

Field Type Label Description

newly_granted_rights
Right repeated The rights that were newly granted by the request.

ListUserRightsRequest

Required authorization: HasRight(ParticipantAdmin) OR IsAuthenticatedIdenti­

tyProviderAdmin(identity_provider_id) OR IsAuthenticatedUser(user_id)

Field Type Label Description

user_id
string The user for which to list the rights. If set to empty string (the de-

fault), then the rights for the authenticated user will be listed. Re-

quired

iden-

tity_provider_id

string The id of the Identity ProviderOptional, if not set, assume the

user is managed by the default identity provider.

306 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

ListUserRightsResponse

Field Type Label Description

rights
Right repeated All rights of the user.

ListUsersRequest

Required authorization: HasRight(ParticipantAdmin) OR IsAuthenticatedIdenti­

tyProviderAdmin(identity_provider_id)

Field Type Label Description

page_to-

ken

string Pagination token to determine the specific page to fetch. Leave

empty to fetch the first page. Optional

page_size
int32 Maximum number of results to be returned by the server. The

server will return no more than that many results, but it might re-

turn fewer. If 0, the server will decide the number of results to be

returned. Optional

iden-

tity_provider_id

string The id of the Identity ProviderOptional, if not set, assume the

user is managed by the default identity provider.

ListUsersResponse

Field Type Label Description

users
User repeated A subset of users of the participant node that fit into this

page.

next_page_to-

ken

string Pagination token to retrieve the next page. Empty, if there are

no further results.

RevokeUserRightsRequest

Remove the rights from the set of rights granted to the user.

Required authorization: HasRight(ParticipantAdmin) OR IsAuthenticatedIdenti­

tyProviderAdmin(identity_provider_id)

Field Type Label Description

user_id
string The user from whom to revoke rights. Required

rights
Right repeated The rights to revoke. Optional

iden-

tity_provider_id

string The id of the Identity Provider Optional, if not set, assume

the user is managed by the default identity provider.

1.12. Integrate Daml with Off-Ledger Services 307

Daml SDK Documentation, 2.7.3

RevokeUserRightsResponse

Field Type Label Description

newly_revoked_rights
Right repeated The rights that were actually revoked by the request.

Right

A right granted to a user.

Field Type Label Description

oneof kind.partici-

pant_admin

Right.Partici-

pantAdmin

The user can administer the participant node.

oneof

kind.can_act_as

Right.CanAc-

tAs

The user can act as a specific party.

oneof

kind.can_read_as

Right.Can-

ReadAs

The user can read ledger data visible to a specific

party.

oneof kind.iden-

tity_provider_ad-

min

Right.Identi-

tyProviderAd-

min

The user can administer users and parties assigned

to the same identity provider as the one of the user.

Right.CanActAs

Field Type Label Description

party
string The right to authorize commands for this party.

Right.CanReadAs

Field Type Label Description

party
string The right to read ledger data visible to this party.

Right.IdentityProviderAdmin

The right to administer the identity provider that the user is assigned to. It means, being able to

manage users and parties that are also assigned to the same identity provider.

308 Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof

Daml SDK Documentation, 2.7.3

Right.ParticipantAdmin

The right to administer the participant node.

UpdateUserIdentityProviderRequest

Required authorization: HasRight(ParticipantAdmin)

Field Type Label Description

user_id
string User to update

source_identity_provider_id
string Current identity provider id of the user

target_identity_provider_id
string Target identity provider id of the user

UpdateUserIdentityProviderResponse

UpdateUserRequest

Requiredauthorization: HasRight(ParticipantAdmin) OR IsAuthenticatedIdentityProviderAdmin(user.

identity_provider_id)

Field Type Label Description

user
User The user to update. Required, Modifiable

up-

date_mask

google.pro-

tobuf.Field-

Mask

An update mask specifies how and which properties of

the User message are to be updated. An update mask

consists of a set of update paths. A valid update path

points to a field or a subfield relative to the User mes-

sage. A valid update mask must: (1) contain at least one

update path, (2) contain only valid update paths. Fields

that can be updated are marked as Modifiable. An up-

date path can also point to a non-Modifiable fields such

as ‘id’ and ‘metadata.resource_version’ because they are

used: (1) to identify the user resource subject to the up-

date, (2) for concurrent change control. Examples of valid

update paths: ‘primary_party’, ‘metadata’, ‘metadata.anno-

tations’. For additional information see the documentation

for standard protobuf3’s google.protobuf.FieldMask.

For similar Ledger API see com.daml.ledger.api.v1.

admin.UpdatePartyDetailsRequest. Required

1.12. Integrate Daml with Off-Ledger Services 309

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.FieldMask
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.FieldMask
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.FieldMask

Daml SDK Documentation, 2.7.3

UpdateUserResponse

Field Type Label Description

user
User Updated user

User

Users are used to dynamically manage the rights given to Daml applications. They are stored and

managed per participant node.

Read the Authorization documentation to learn more.

Field Type Label Description

id
string The user identifier, which must be a non-empty string of at

most 128 characters that are either alphanumeric ASCII char-

acters or one of the symbols “@^$.!`-#+’~_|:”. Required

pri-

mary_party

string The primary party as which this user reads and acts by de-

fault on the ledger provided it has the corresponding Can­

ReadAs(primary_party) or CanActAs(primary_party)

rights. Ledger API clients SHOULD set this field to a non-empty

value for all users to enable the users to act on the ledger us-

ing their own Daml party. Users for participant administra-

tors MAY have an associated primary party. Optional, Modifi-

able

is_deacti-

vated

bool When set, then the user is denied all access to the Ledger API.

Otherwise, the user has access to the Ledger API as per the

user’s rights. Optional, Modifiable

metadata
ObjectMeta The metadata of this user. Note that the metadata.

resource_version tracks changes to the properties de-

scribed by the User message and not the user’s rights. Op-

tional, Modifiable

iden-

tity_provider_id

string The id of the identity provider configured by Identity

Provider Config Optional, if not set, assume the user is

managed by the default identity provider.

UserManagementService

Service to manage users and their rights for interacting with the Ledger API served by a participant

node.

The authorization rules for its RPCs are specified on the <RpcName>Requestmessages as boolean

expressions over these facts: (1) HasRight(r) denoting whether the authenticated user has right r

and (2)IsAuthenticatedUser(uid)denotingwhetheruid is the empty string or equal to the id of

the authenticated user. (3) IsAuthenticatedIdentityProviderAdmin(idp) denoting whether

idp is equal to the identity_provider_id of the authenticated user and the user has an Identi-

tyProviderAdmin right. If user_id is set to the empty string (the default), then the data for the authen-

ticated user will be retrieved. If identity_provider_id is set to an empty string, then it’s effectively set

310 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

to the value of access token’s ‘iss’ field if that is provided. If identity_provider_id remains an empty

string, the default identity provider will be assumed.

The fields of request messages (and sub-messages) are marked either as Optional or Required:

(1) Optional denoting the client may leave the field unset when sending a request. (2) Required

denoting the client must set the field to a non-default value when sending a request.

A user resource consists of: (1) a set of properties represented by the Usermessage, (2) a set of user

rights, where each right is represented by the Rightmessage.

A user resource, once it has been created, can be modified. In order to update the properties repre-

sented by the Usermessage use theUpdateUserRPC. The only fields that can bemodified are those

marked as Modifiable. In order to grant or revoke user rights use GrantRights' and ``Revok­

eRights RPCs.

Method

name

Request

type

Response

type

Description

CreateUser CreateUserRe-

quest

CreateUserRe-

sponse

Create a new user.

GetUser GetUserRe-

quest

GetUserRe-

sponse

Get the user data of a specific user or the au-

thenticated user.

UpdateUser UpdateUserRe-

quest

UpdateUserRe-

sponse

Update selected modifiable attribute of a user

resource described by the Usermessage.

DeleteUser DeleteUserRe-

quest

DeleteUserRe-

sponse

Delete an existing user and all its rights.

ListUsers ListUsersRe-

quest

ListUsersRe-

sponse

List all existing users.

GrantUser-

Rights

GrantUser-

RightsRequest

GrantUserRight-

sResponse

Grant rights to a user. Granting rights does not

affect the resource version of the correspond-

ing user.

RevokeUser-

Rights

RevokeUser-

RightsRequest

RevokeUser-

RightsResponse

Revoke rights fromauser. Revoking rights does

not affect the resource version of the corre-

sponding user.

ListUser-

Rights

ListUserRight-

sRequest

ListUserRight-

sResponse

List the set of all rights granted to a user.

Upda-

teUserIdenti-

tyProviderId

Upda-

teUserIden-

tityProviderRe-

quest

UpdateUserI-

dentityProvider-

Response

Update the assignment of a user from one IDP

to another.

com/daml/ledger/api/v1/command_completion_service.proto

Checkpoint

Checkpoints may be used to:

• detect time out of commands.

• provide an offset which can be used to restart consumption.

1.12. Integrate Daml with Off-Ledger Services 311

Daml SDK Documentation, 2.7.3

Field Type Label Description

record_time
google.pro-

to-

buf.Times-

tamp

All commands with a maximum record time below this

value MUST be considered lost if their completion has not

arrived before this checkpoint. Required

offset
LedgerOffset May be used in a subsequent CompletionStreamRequest to

resume the consumption of this stream at a later time. Re-

quired

CompletionEndRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger Identifica-

tion Service. Must be a valid LedgerString (as described in value.

proto). Optional

CompletionEndResponse

Field Type Label Description

offset
LedgerOffset This offset can be used in a CompletionStreamRequest message.

Required

312 Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

Daml SDK Documentation, 2.7.3

CompletionStreamRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger id reported by the Ledger

Identification Service. Must be a valid LedgerString (as

described in value.proto). Optional

applica-

tion_id

string Only completions of commands submitted with the same

application_id will be visible in the stream. Must be a

valid ApplicationIdString (as described invalue.proto).

Required unless authentication is used with a user token

or a custom token specifying an application-id. In that

case, the token’s user-id, respectively application-id, will

be used for the request’s application_id.

parties
string repeated Non-empty list of parties whose data should be included.

Only completions of commands for which at least one of

the act_as parties is in the given set of parties will be

visible in the stream. Must be a valid PartyIdString (as

described in value.proto). Required

offset
LedgerOffset This field indicates the minimum offset for completions.

This can be used to resume an earlier completion stream.

This offset is exclusive: the response will only contain

commands whose offset is strictly greater than this. Op-

tional, if not set the ledger uses the current ledger end off-

set instead.

CompletionStreamResponse

Field Type Label Description

checkpoint
Checkpoint This checkpoint may be used to restart consumption. The

checkpoint is after any completions in this response. Op-

tional

comple-

tions

Completion repeated If set, one or more completions.

CommandCompletionService

Allows clients to observe the status of their submissions. Commandsmaybe submitted via theCom-

mand Submission Service. The on-ledger effects of their submissions are disclosed by the Transac-

tion Service.

Commands may fail in 2 distinct manners:

1. Failure communicated synchronously in the gRPC error of the submission.

2. Failure communicated asynchronously in a Completion, see completion.proto.

Note that not only successfully submitted commandsMAYproduce a completion event. For example,

the participant MAY choose to produce a completion event for a rejection of a duplicate command.

1.12. Integrate Daml with Off-Ledger Services 313

Daml SDK Documentation, 2.7.3

Clients that do not receive a successful completion about their submission MUST NOT assume that

it was successful. Clients SHOULD subscribe to the CompletionStream before starting to submit

commands to prevent race conditions.

Method

name

Request type Response type Description

Completion-

Stream

CompletionStream-

Request

CompletionStreamRe-

sponse

Subscribe to command completion

events.

Completio-

nEnd

CompletionEn-

dRequest

CompletionEn-

dResponse

Returns the offset after the latest

completion.

com/daml/ledger/api/v1/command_service.proto

SubmitAndWaitForTransactionIdResponse

Field Type Label Description

transac-

tion_id

string The id of the transaction that resulted from the submitted com-

mand. Must be a valid LedgerString (as described in value.

proto). Required

comple-

tion_offset

string The format of this field is described in ledger_offset.proto.

Optional

SubmitAndWaitForTransactionResponse

Field Type Label Description

transaction
Transaction The flat transaction that resulted from the submitted

command. Required

comple-

tion_offset

string The format of this field is described in ledger_offset.

proto. Optional

SubmitAndWaitForTransactionTreeResponse

Field Type Label Description

transaction
Transaction-

Tree

The transaction tree that resulted from the submitted

command. Required

comple-

tion_offset

string The format of this field is described in ledger_offset.

proto. Optional

314 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

SubmitAndWaitRequest

These commands are atomic, and will become transactions.

Field Type Label Description

commands
Commands The commands to be submitted. Required

CommandService

CommandService is able to correlate submitted commandswith completiondata, identify timeouts,

and return contextual information with each tracking result. This supports the implementation of

stateless clients.

Note that submitted commands generally produce completion events as well, even in case a com-

mand gets rejected. For example, the participant MAY choose to produce a completion event for a

rejection of a duplicate command.

Method

name

Request

type

Response

type

Description

Submi-

tAndWait

SubmitAnd-

WaitRequest

.google.pro-

to-

buf.Empty

Submits a single composite command and waits for

its result. Propagates the gRPC error of failed submis-

sions including Daml interpretation errors.

Submi-

tAndWait-

ForTransac-

tionId

SubmitAnd-

WaitRequest

SubmitAnd-

WaitFor-

Transaction-

IdResponse

Submits a single composite command, waits for its

result, and returns the transaction id. Propagates the

gRPC error of failed submissions including Daml in-

terpretation errors.

Submi-

tAndWait-

ForTransac-

tion

SubmitAnd-

WaitRequest

SubmitAnd-

WaitFor-

Transaction-

Response

Submits a single composite command, waits for its

result, and returns the transaction. Propagates the

gRPC error of failed submissions including Daml in-

terpretation errors.

Submi-

tAndWait-

ForTransac-

tionTree

SubmitAnd-

WaitRequest

SubmitAnd-

WaitFor-

Transac-

tionTreeRe-

sponse

Submits a single composite command, waits for its

result, and returns the transaction tree. Propagates

the gRPC error of failed submissions including Daml

interpretation errors.

com/daml/ledger/api/v1/command_submission_service.proto

SubmitRequest

The submitted commandswill be processed atomically in a single transaction. Moreover, each Com­

mand in commands will be executed in the order specified by the request.

Field Type Label Description

commands
Commands The commands to be submitted in a single transaction. Re-

quired

1.12. Integrate Daml with Off-Ledger Services 315

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty

Daml SDK Documentation, 2.7.3

CommandSubmissionService

Allows clients to attempt advancing the ledger’s state by submitting commands. The final states of

their submissions are disclosed by the Command Completion Service. The on-ledger effects of their

submissions are disclosed by the Transaction Service.

Commands may fail in 2 distinct manners:

1. Failure communicated synchronously in the gRPC error of the submission.

2. Failure communicated asynchronously in a Completion, see completion.proto.

Note that not only successfully submitted commandsMAYproduce a completion event. For example,

the participant MAY choose to produce a completion event for a rejection of a duplicate command.

Clients that do not receive a successful completion about their submission MUST NOT assume that

it was successful. Clients SHOULD subscribe to the CompletionStream before starting to submit

commands to prevent race conditions.

Method

name

Request

type

Response type Description

Submit SubmitRequest .google.proto-

buf.Empty

Submit a single composite com-

mand.

com/daml/ledger/api/v1/commands.proto

Command

A command can either create a new contract or exercise a choice on an existing contract.

Field Type Label Description

oneof command.create
CreateCommand

oneof command.exercise
ExerciseCommand

oneof command.exerciseByKey
ExerciseByKeyCommand

oneof command.createAndExercise
CreateAndExerciseCommand

Commands

A composite command that groups multiple commands together.

316 Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof

Daml SDK Documentation, 2.7.3

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger

Identification Service. Must be a valid LedgerString (as

described in value.proto). Optional

work-

flow_id

string Identifier of the on-ledger workflow that this command

is a part of. Must be a valid LedgerString (as described in

value.proto). Optional

applica-

tion_id

string Uniquely identifies the application or participant user

that issued the command. Must be a valid ApplicationId-

String (as described in value.proto). Required unless

authentication is used with a user token or a custom to-

ken specifying an application-id. In that case, the token’s

user-id, respectively application-id, will be used for the

request’s application_id.

com-

mand_id

string Uniquely identifies the command. The triple (applica-

tion_id, party + act_as, command_id) constitutes the

change ID for the intended ledger change, where party +

act_as is interpreted as a set of party names. The change

ID can be used formatching the intended ledger changes

with all their completions. Must be a valid LedgerString

(as described in value.proto). Required

party
string Party on whose behalf the command should be executed.

If ledger API authorization is enabled, then the authoriza-

tion metadata must authorize the sender of the request

to act on behalf of the given party. Must be a valid Par-

tyIdString (as described in value.proto). Deprecated

in favor of the act_as field. If both are set, then the effec-

tive list of parties on whose behalf the command should

be executed is the union of all parties listed in party and

act_as. Optional

commands
Command repeated Individual elements of this atomic command. Must be

non-empty. Required

oneof

deduplica-

tion_pe-

riod.dedu-

plica-

tion_time

google.pro-

tobuf.Dura-

tion

Specifies the length of the deduplication period. Same

semantics apply as for deduplication_duration. Must be

non-negative. Must not exceed the maximum dedupli-

cation time (see ledger_configuration_service.

proto).

oneof

deduplica-

tion_pe-

riod.dedu-

plica-

tion_dura-

tion

google.pro-

tobuf.Dura-

tion

Specifies the length of the deduplication period. It is in-

terpreted relative to the local clock at some point dur-

ing the submission’s processing. Must be non-negative.

Must not exceed the maximum deduplication time (see

ledger_configuration_service.proto).

oneof

deduplica-

tion_pe-

riod.dedu-

plica-

tion_offset

string Specifies the start of the deduplication period by a com-

pletion stream offset (exclusive). Must be a valid Ledger-

String (as described in ledger_offset.proto).

min_ledger_time_abs
google.pro-

to-

buf.Times-

tamp

Lower bound for the ledger time assigned to the resulting

transaction. Note: The ledger time of a transaction is as-

signed as part of command interpretation. Use this prop-

erty if you expect that command interpretation will take

a considerate amount of time, such that by the time the

resulting transaction is sequenced, its assigned ledger

time is not valid anymore. Must not be set at the same

time as min_ledger_time_rel. Optional

min_ledger_time_rel
google.pro-

tobuf.Dura-

tion

Same as min_ledger_time_abs, but specified as a du-

ration, starting from the time the command is received

by the server. Must not be set at the same time as

min_ledger_time_abs. Optional

act_as
string repeated Set of parties on whose behalf the command should be

executed. If ledger API authorization is enabled, then the

authorizationmetadatamust authorize the sender of the

request to act on behalf of each of the given parties. This

field supersedes the party field. The effective set of par-

ties on whose behalf the command should be executed

is the union of all parties listed in party and act_as,

whichmust be non-empty. Each elementmust be a valid

PartyIdString (as described in value.proto). Optional

read_as
string repeated Set of parties on whose behalf (in addition to all parties

listed in act_as) contracts can be retrieved. This affects

Daml operations such as fetch, fetchByKey, lookup­

ByKey, exercise, and exerciseByKey. Note: A partic-

ipant node of a Daml network can host multiple parties.

Each contract present on the participant node is only vis-

ible to a subset of these parties. A command can only use

contracts that are visible to at least one of the parties in

act_as or read_as. This visibility check is independent

from the Daml authorization rules for fetch operations. If

ledger API authorization is enabled, then the authoriza-

tion metadata must authorize the sender of the request

to read contract data on behalf of each of the given par-

ties. Optional

submis-

sion_id

string A unique identifier to distinguish completions for differ-

ent submissions with the same change ID. Typically a

random UUID. Applications are expected to use a differ-

ent UUID for each retry of a submission with the same

change ID. Must be a valid LedgerString (as described in

value.proto).

1.12. Integrate Daml with Off-Ledger Services 317

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration

Daml SDK Documentation, 2.7.3

If omitted, the participant or the committer may set a value of their choice. Optional

• – disclosed_contracts

– DisclosedContract

– repeated

– Additional contracts used to resolve contract & contract key lookups. Optional

CreateAndExerciseCommand

Create a contract and exercise a choice on it in the same transaction.

Field Type Label Description

tem-

plate_id

Identifier The template of the contract the clientwants to create. Required

create_ar-

guments

Record The arguments required for creating a contract from this tem-

plate. Required

choice
string The name of the choice the client wants to exercise. Must be a

valid NameString (as described in value.proto). Required

choice_ar-

gument

Value The argument for this choice. Required

CreateCommand

Create a new contract instance based on a template.

Field Type Label Description

template_id
Identifier The template of contract the client wants to create. Required

create_argu-

ments

Record The arguments required for creating a contract from this

template. Required

318 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

DisclosedContract

An additional contract that is used to resolve contract & contract key lookups.

Field Type Label Description

template_id
Identifier The template id of the contract. Required

contract_id
string The contract id Required

oneof argu-

ments.cre-

ate_argu-

ments

Record The contract arguments as typed Record

oneof argu-

ments.cre-

ate_argu-

ments_blob

google.pro-

tobuf.Any

The contract arguments specified using an opaque blob

extracted from the create_arguments_blob field of a

com.daml.ledger.api.v1.CreatedEvent.

metadata
Contract-

Metadata

The contract metadata from the create event. Required

ExerciseByKeyCommand

Exercise a choice on an existing contract specified by its key.

Field Type Label Description

tem-

plate_id

Identifier The template of contract the client wants to exercise. Required

con-

tract_key

Value The key of the contract the client wants to exercise upon. Re-

quired

choice
string The name of the choice the client wants to exercise. Must be a

valid NameString (as described in value.proto) Required

choice_ar-

gument

Value The argument for this choice. Required

1.12. Integrate Daml with Off-Ledger Services 319

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Any
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Any

Daml SDK Documentation, 2.7.3

ExerciseCommand

Exercise a choice on an existing contract.

Field Type Label Description

tem-

plate_id

Identifier The template of contract the client wants to exercise. Required

con-

tract_id

string The ID of the contract the client wants to exercise upon. Must be

a valid LedgerString (as described in value.proto). Required

choice
string The name of the choice the client wants to exercise. Must be a

valid NameString (as described in value.proto) Required

choice_ar-

gument

Value The argument for this choice. Required

com/daml/ledger/api/v1/completion.proto

Completion

A completion represents the status of a submitted command on the ledger: it can be successful or

failed.

320 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Field Type Label Description

com-

mand_id

string The ID of the succeeded or failed command. Must be a

valid LedgerString (as described in value.proto). Re-

quired

status
google.rpc.Sta-

tus

Identifies the exact type of the error. It uses the same

format of conveying error details as it is used for the RPC

responses of the APIs. Optional

transac-

tion_id

string The transaction_id of the transaction that resulted from

the command with command_id. Only set for success-

fully executed commands. Must be a valid LedgerString

(as described in value.proto). Optional

applica-

tion_id

string The application-id or user-id that was used for the

submission, as described in commands.proto. Must

be a valid ApplicationIdString (as described in value.

proto). Optional for historic completions where this

data is not available.

act_as
string repeated The set of parties on whose behalf the commands were

executed. Contains the union of party and act_as from

commands.proto. The order of the parties need not be

the same as in the submission. Each element must be a

valid PartyIdString (as described in value.proto). Op-

tional for historic completions where this data is not

available.

submis-

sion_id

string The submission ID this completion refers to, as described

in commands.proto. Must be a valid LedgerString (as

described in value.proto). Optional

oneof

deduplica-

tion_pe-

riod.dedu-

plica-

tion_offset

string Specifies the start of the deduplication period by a com-

pletion stream offset (exclusive).

Must be a valid LedgerString (as described in value.proto).

• – oneof deduplication_period.deduplication_duration

– google.protobuf.Duration

–

– Specifies the length of the deduplication period. It ismeasured in record time of com-

pletions.

Must be non-negative.

1.12. Integrate Daml with Off-Ledger Services 321

https://cloud.google.com/tasks/docs/reference/rpc/google.rpc#google.rpc.Status
https://cloud.google.com/tasks/docs/reference/rpc/google.rpc#google.rpc.Status
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration

Daml SDK Documentation, 2.7.3

com/daml/ledger/api/v1/contract_metadata.proto

ContractMetadata

Contract-related metadata used in DisclosedContract (that can be included in command submis-

sion) or forwarded as part of the CreateEvent in Active Contract Set or Transaction streams.

Field Type Label Description

created_at
google.proto-

buf.Timestamp

Ledger effective time of the transaction that cre-

ated the contract. Required

con-

tract_key_hash

bytes Hash of the contract key if defined. Optional

driver_meta-

data

bytes Driver-specific metadata. This is opaque and can-

not be decoded. Optional

com/daml/ledger/api/v1/event.proto

ArchivedEvent

Records that a contract has been archived, and choices may no longer be exercised on it.

Field Type Label Description

event_id
string The ID of this particular event. Must be a valid LedgerString

(as described in value.proto). Required

con-

tract_id

string The ID of the archived contract. Must be a valid LedgerString

(as described in value.proto). Required

tem-

plate_id

Identifier The template of the archived contract. Required

wit-

ness_par-

ties

string repeated The parties that are notified of this event. For an

ArchivedEvent, these are the intersection of the stake-

holders of the contract in question and the parties specified

in the TransactionFilter. The stakeholders are the union

of the signatories and the observers of the contract. Each one

of its elementsmust be a valid PartyIdString (as described in

value.proto). Required

CreatedEvent

Records that a contract has been created, and choices may now be exercised on it.

322 Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

Daml SDK Documentation, 2.7.3

Field Type Label Description

event_id
string The ID of this particular event. Must be a valid Ledger-

String (as described in value.proto). Required

con-

tract_id

string The ID of the created contract. Must be a valid Ledger-

String (as described in value.proto). Required

tem-

plate_id

Identifier The template of the created contract. Required

con-

tract_key

Value The key of the created contract. This will be set if and only

if create_arguments is set and template_id defines

a contract key. Optional

create_ar-

guments

Record The arguments that have been used to create the con-

tract. Set either: - if there was a party, which is in

the witness_parties of this event, and for which

an InclusiveFilters exists with the template_id

of this event among the template_ids, - or if there

was a party, which is in the witness_parties of this

event, and for which a wildcard filter exists (Filters

without InclusiveFilters, or with an Inclusive­

Filterswith empty template_ids and empty inter­

face_filters). Optional

cre-

ate_argu-

ments_blob

google.pro-

tobuf.Any

Opaque representation of contract payload intended for

forwarding to an API server as a contract disclosed as

part of a command submission. Optional

inter-

face_views

Interface-

View

repeated Interface views specified in the transaction filter. In-

cludes an InterfaceView for each interface for which

there is a InterfaceFilter with - its party in the

witness_parties of this event, - and which is imple-

mented by the template of this event, - and which has

include_interface_view set. Optional

wit-

ness_par-

ties

string repeated The parties that are notified of this event. When a Cre­

atedEvent is returned as part of a transaction tree, this

will include all the parties specified in the Transac­

tionFilter that are informees of the event. If served

as part of a flat transaction those will be limited to all

parties specified in the TransactionFilter that are

stakeholders of the contract (i.e. either signatories or ob-

servers). In case of v2 API: If the CreatedEvent is re-

turned as part of an AssignedEvent, ActiveContract or In-

completeUnassigned (so the event is related to an as-

signment or unassignment): this will include all parties

of the TransactionFilter that are stakeholders of the

contract. Required

signatories
string repeated The signatories for this contract as specified by the tem-

plate. Required

observers
string repeated The observers for this contract as specified explicitly by

the template or implicitly as choice controllers. This field

never contains parties that are signatories. Required

agree-

ment_text

google.pro-

to-

buf.String-

Value

The agreement text of the contract. We use StringValue

to properly reflect optionality on the wire for backwards

compatibility. This is necessary since the empty string

is an acceptable (and in fact the default) agreement text,

but also the default string in protobuf. This means a

newer client works with an older sandbox seamlessly.

Optional

metadata
Contract-

Metadata

Metadata of the contract. Required for contracts created

after the introduction of explicit disclosure. Optional

1.12. Integrate Daml with Off-Ledger Services 323

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Any
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Any
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.StringValue
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.StringValue
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.StringValue
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.StringValue

Daml SDK Documentation, 2.7.3

Event

An event in the flat transaction stream can either be the creation or the archiving of a contract.

In the transaction service the events are restricted to the events visible for the parties specified in

the transaction filter. Each event message type below contains a witness_parties field which in-

dicates the subset of the requested parties that can see the event in question. In the flat transaction

stream you’ll only receive events that have witnesses.

Field Type Label Description

oneof event.created
CreatedEvent

oneof event.archived
ArchivedEvent

ExercisedEvent

Records that a choice has been exercised on a target contract.

324 Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof

Daml SDK Documentation, 2.7.3

Field Type Label Description

event_id
string The ID of this particular event. Must be a valid LedgerString

(as described in value.proto). Required

con-

tract_id

string The ID of the target contract. Must be a valid LedgerString (as

described in value.proto). Required

tem-

plate_id

Identifier The template of the target contract. Required

inter-

face_id

Identifier The interface where the choice is defined, if inherited. Op-

tional

choice
string The choice that was exercised on the target contract. Must

be a valid NameString (as described in value.proto). Re-

quired

choice_ar-

gument

Value The argument of the exercised choice. Required

act-

ing_parties

string repeated The parties that exercised the choice. Each element must

be a valid PartyIdString (as described in value.proto). Re-

quired

consuming
bool If true, the target contract may no longer be exercised. Re-

quired

wit-

ness_par-

ties

string repeated Theparties that are notified of this event. Thewitnesses of an

exercise node will depend on whether the exercise was con-

suming or not. If consuming, the witnesses are the union of

the stakeholders and the actors. If not consuming, the wit-

nesses are the union of the signatories and the actors. Note

that the actors might not necessarily be observers and thus

signatories. This is the case when the controllers of a choice

are specified using “flexible controllers”, using the choice

... controller syntax, and said controllers are not ex-

plicitly marked as observers. Each element must be a valid

PartyIdString (as described in value.proto). Required

child_event_ids
string repeated References to further events in the same transaction that

appeared as a result of this ExercisedEvent. It contains

only the immediate children of this event, not all members

of the subtree rooted at this node. The order of the children

is the same as the event order in the transaction. Each ele-

ment must be a valid LedgerString (as described in value.

proto). Optional

exer-

cise_result

Value The result of exercising the choice. Required

1.12. Integrate Daml with Off-Ledger Services 325

Daml SDK Documentation, 2.7.3

InterfaceView

View of a create event matched by an interface filter.

Field Type Label Description

inter-

face_id

Identifier The interface implemented by the matched event. Required

view_sta-

tus

google.rpc.Sta-

tus

Whether the viewwas successfully computed, and if not, the

reason for the error. The error is reported using the same

rules for error codes and messages as the errors returned

for API requests. Required

view_value
Record The value of the interface’s viewmethod on this event. Set if

it was requested in the InterfaceFilter and it could be

sucessfully computed. Optional

com/daml/ledger/api/v1/event_query_service.proto

GetEventsByContractIdRequest

Field Type Label Description

con-

tract_id

string The contract id being queried. Required

request-

ing_parties

string repeated The parties whose events the client expects to see. The

events associated with the contract id will only be returned

if the requesting parties includes at least one party that

is a stakeholder of the event. For a definition of stake-

holders see https://docs.daml.com/concepts/ledger-model/

ledger-privacy.html#contract-observers-and-stakeholders

Required

GetEventsByContractIdResponse

Field Type Label Description

cre-

ate_event

CreatedE-

vent

The create event for the contract with the contract_id

given in the request provided it exists and has not yet been

pruned. Optional

archive_event
ArchivedE-

vent

The archive event for the contract with the contract_id

given in the request provided such an archive event exists

and it has not yet been pruned. Optional

326 Chapter 1. Canton References

https://cloud.google.com/tasks/docs/reference/rpc/google.rpc#google.rpc.Status
https://cloud.google.com/tasks/docs/reference/rpc/google.rpc#google.rpc.Status
https://docs.daml.com/concepts/ledger-model/ledger-privacy.html#contract-observers-and-stakeholders
https://docs.daml.com/concepts/ledger-model/ledger-privacy.html#contract-observers-and-stakeholders

Daml SDK Documentation, 2.7.3

GetEventsByContractKeyRequest

Field Type Label Description

con-

tract_key

Value The contract key to search for. Required

tem-

plate_id

Identifier The template id associated with the contract key Required

request-

ing_parties

string repeated The parties whose events the client expects to see. The

events associated with the contract key will only be returned

if the requesting parties includes at least one party that is

a stakeholder of the event. For a definition of stakehold-

ers see https://docs.daml.com/concepts/ledger-model/

ledger-privacy.html#contract-observers-and-stakeholders

To gain visibility of all contract key bindings and to ensure

consistent performance use a key maintainer as a request-

ing party. Required

continua-

tion_token

string A continuation_token associated with a previous re-

sponse. Optional

GetEventsByContractKeyResponse

Field Type Label Description

cre-

ate_event

CreatedE-

vent

The most recent create event for a contract with the key

given in the request, if no continuation_token is pro-

vided. If a continuation_token is provided, then this

is the most recent create event preceding the create event

whose continuation_token was provided. Optional

archive_event
ArchivedE-

vent

The archive event for the create event provided the created

contract is archived. Optional

continua-

tion_token

string If the continuation_token is populated then there may

be additional events available. To retrieve these events use

the continuation_token in a subsequent request. Op-

tional

1.12. Integrate Daml with Off-Ledger Services 327

https://docs.daml.com/concepts/ledger-model/ledger-privacy.html#contract-observers-and-stakeholders
https://docs.daml.com/concepts/ledger-model/ledger-privacy.html#contract-observers-and-stakeholders

Daml SDK Documentation, 2.7.3

EventQueryService

Query events by contract id or key.

Method

name

Request

type

Response

type

Description

GetEvents-

ByContrac-

tId

GetEvents-

ByContrac-

tIdRequest

GetEvents-

ByContrac-

tIdResponse

Get the create and the consuming exercise event for

the contract with the provided ID. No events will be re-

turned for contracts that have been pruned because

they have already been archived before the latest

pruning offset.

GetEvents-

ByContrac-

tKey

GetEvents-

ByContrac-

tKeyRequest

GetEvents-

ByContrac-

tKeyRe-

sponse

Get all create and consuming exercise events for the

contracts with the provided contract key. Only events

for unpruned contracts will be returned. Matching

events aredelivered in reverse chronological order, i.e.,

the most recent events are delivered first.

com/daml/ledger/api/v1/experimental_features.proto

AcsActiveAtOffsetFeature

Whether the Ledger API supports requesting ACS at an offset

Field Type Label Description

supported
bool

CommandDeduplicationFeatures

Feature descriptors for command deduplication intended to be used for adapting Ledger API tests.

Field Type Label Description

deduplica-

tion_pe-

riod_sup-

port

Com-

mandDedu-

plicationPe-

riodSupport

deduplica-

tion_type

Com-

mandDedu-

plicationType

max_dedu-

plica-

tion_du-

ration_en-

forced

bool The ledger will reject any requests which specify a dedupli-

cation period which exceeds the specified max deduplica-

tion duration. This is also enforced for ledgers that convert

deduplication periods specified as offsets to durations.

328 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

CommandDeduplicationPeriodSupport

Feature descriptor specifying how deduplication periods can be specified and how they are handled

by the participant node.

Field Type Label Description

offset_support
CommandDeduplicationPeriodSupport.OffsetSupport

duration_support
CommandDeduplicationPeriodSupport.DurationSupport

ExperimentalCommitterEventLog

How the committer stores events.

Field Type Label Description

event_log_type
ExperimentalCommitterEventLog.CommitterEventLogType

ExperimentalContractIds

See daml-lf/spec/contract-id.rst for more information on contract ID formats.

Field Type Label Description

v1
ExperimentalContractIds.ContractIdV1Support

ExperimentalExplicitDisclosure

Enables the use of explicitly disclosed contracts for command submission

Field Type Label Description

supported
bool

ExperimentalFeatures

See the feature message definitions for descriptions.

1.12. Integrate Daml with Off-Ledger Services 329

Daml SDK Documentation, 2.7.3

Field Type Label Descrip-

tion

self_service_error_codes
ExperimentalSelfServiceErrorCodes

static_time
ExperimentalStaticTime

command_deduplication
CommandDeduplicationFeatures

optional_ledger_id
ExperimentalOptionalLedgerId

contract_ids
ExperimentalContractIds

committer_event_log
ExperimentalCommitterEventLog

explicit_disclosure
ExperimentalExplicitDisclosure

user_and_party_local_meta-

data_extensions

ExperimentalUserAndPartyLocalMeta-

dataExtensions

acs_active_at_offset
AcsActiveAtOffsetFeature

ExperimentalOptionalLedgerId

Ledger API does not require ledgerId to be set in the requests.

ExperimentalSelfServiceErrorCodes

GRPC self-service error codes are returned by the Ledger API.

ExperimentalStaticTime

Ledger is in the static time mode and exposes a time service.

Field Type Label Description

supported
bool

ExperimentalUserAndPartyLocalMetadataExtensions

Whether the Ledger API supports: - is_deactivated user property, - metadata with annotations and

resource version for users and parties, - update calls for users and parties.

Field Type Label Description

supported
bool

330 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

CommandDeduplicationPeriodSupport.DurationSupport

How the participant node supports deduplication periods specified as durations.

Name Number Description

DURATION_NATIVE_SUPPORT
0

DURATION_CONVERT_TO_OFFSET
1

CommandDeduplicationPeriodSupport.OffsetSupport

How the participant node supports deduplication periods specified using offsets.

Name Number Description

OFFSET_NOT_SUPPORTED
0

OFFSET_NATIVE_SUPPORT
1

OFFSET_CONVERT_TO_DURATION
2

CommandDeduplicationType

How the participant node reports duplicate command submissions.

Name Number Description

ASYNC_ONLY
0 Duplicate commands are exclusively reported asynchronously via com-

pletions.

ASYNC_AND_CON-

CUR-

RENT_SYNC

1 Commands that are duplicates of concurrently submitted commands

are reported synchronously via a gRPC error on the command submis-

sion, while all other duplicate commands are reported asynchronously

via completions.

ExperimentalCommitterEventLog.CommitterEventLogType

Name Number Description

CENTRAL-

IZED

0 Default. There is a single log.

DIS-

TRIBUTED

1 There is more than one event log. Usually, when the committer itself

is distributed. Or there are per-participant event logs. It may result in

transaction IDs being different for the same transaction across partic-

ipants, for example.

1.12. Integrate Daml with Off-Ledger Services 331

Daml SDK Documentation, 2.7.3

ExperimentalContractIds.ContractIdV1Support

Name Number Description

SUFFIXED
0 Contract IDs must be suffixed. Distributed ledger implementations

must reject non-suffixed contract IDs.

NON_SUF-

FIXED

1 Contract IDs do not need to be suffixed. This can be useful for shorter

contract IDs in centralized committer implementations. Suffixed con-

tract IDs must also be supported.

com/daml/ledger/api/v1/ledger_configuration_service.proto

GetLedgerConfigurationRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger Identifica-

tion Service. Must be a valid LedgerString (as described in value.

proto). Optional

GetLedgerConfigurationResponse

Field Type Label Description

ledger_configuration
LedgerConfiguration The latest ledger configuration.

LedgerConfiguration

LedgerConfiguration contains parameters of the ledger instance that may be useful to clients.

Field Type Label Description

max_dedu-

plica-

tion_dura-

tion

google.pro-

tobuf.Dura-

tion

If a command submission specifies a deduplication period

of length up to max_deduplication_duration, the sub-

mission SHOULD not be rejected with FAILED_PRECONDI­

TION because the deduplication period starts too early. The

deduplication period is measured on a local clock of the

participant or Daml ledger, and therefore subject to clock

skews and clock drifts. Command submissions with longer

periods MAY get accepted though.

332 Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration

Daml SDK Documentation, 2.7.3

LedgerConfigurationService

LedgerConfigurationService allows clients to subscribe to changes of the ledger configuration. In V2

Ledger API this service is not available anymore.

Method

name

Request

type

Response

type

Description

GetLedger-

Configura-

tion

GetLedger-

Configura-

tionRequest

GetLedgerCon-

figurationRe-

sponse

Returns the latest configuration as the first re-

sponse, and publishes configuration updates in

the same stream.

com/daml/ledger/api/v1/ledger_identity_service.proto

GetLedgerIdentityRequest

GetLedgerIdentityResponse

Field Type Label Description

ledger_id
string The ID of the ledger exposed by the server. Must be a valid Ledger-

String (as described in value.proto). Optional

LedgerIdentityService

DEPRECATED: This service is now deprecated and ledger identity string is optional for all Ledger API

requests.

Allows clients to verify that the server they are communicating with exposes the ledger they wish to

operate on. In V2 Ledger API this service is not available anymore.

Method

name

Request

type

Response

type

Description

GetLedgerI-

dentity

GetLedgerIden-

tityRequest

GetLedgerIden-

tityResponse

Clients may call this RPC to return the identifier

of the ledger they are connected to.

com/daml/ledger/api/v1/ledger_offset.proto

LedgerOffset

Describes a specific point on the ledger.

The Ledger API endpoints that take offsets allow to specify portions of the ledger that are relevant for

the client to read.

Offsets returned by the Ledger API can be used as-is (e.g. to keep track of processed transactions

and provide a restart point to use in case of need).

1.12. Integrate Daml with Off-Ledger Services 333

Daml SDK Documentation, 2.7.3

The format of absolute offsets is opaque to the client: no client-side transformation of an offset is

guaranteed to return a meaningful offset.

The server implementation ensures internally that offsets are lexicographically comparable.

Field Type Label Description

oneof value.ab-

solute

string The format of this string is specific to the ledger

and opaque to the client.

oneof

value.bound-

ary

LedgerOff-

set.LedgerBoundary

LedgerOffset.LedgerBoundary

Name Number Description

LEDGER_BEGIN
0 Refers to the first transaction.

LEDGER_END
1 Refers to the currently last transaction, which is a moving target.

com/daml/ledger/api/v1/package_service.proto

GetPackageRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger Identifica-

tion Service. Must be a valid LedgerString (as described in value.

proto). Optional

pack-

age_id

string The ID of the requested package. Must be a valid PackageIdString

(as described in value.proto). Required

GetPackageResponse

Field Type Label Description

hash_func-

tion

HashFunc-

tion

The hash function we use to calculate the hash. Required

archive_pay-

load

bytes Contains a daml_lf ArchivePayload. See further details in

daml_lf.proto. Required

hash
string The hash of the archive payload, can also used as a pack­

age_id. Must be a valid PackageIdString (as described in

value.proto). Required

334 Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof

Daml SDK Documentation, 2.7.3

GetPackageStatusRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger Identifica-

tion Service. Must be a valid LedgerString (as described in value.

proto). Optional

pack-

age_id

string The ID of the requested package. Must be a valid PackageIdString

(as described in value.proto). Required

GetPackageStatusResponse

Field Type Label Description

package_status
PackageStatus The status of the package.

ListPackagesRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger Identifica-

tion Service. Must be a valid LedgerString (as described in value.

proto). Optional

ListPackagesResponse

Field Type Label Description

pack-

age_ids

string repeated The IDs of all Daml-LF packages supported by the server. Each

element must be a valid PackageIdString (as described in

value.proto). Required

HashFunction

Name Number Description

SHA256
0

1.12. Integrate Daml with Off-Ledger Services 335

Daml SDK Documentation, 2.7.3

PackageStatus

Name Number Description

UNKNOWN
0 The server is not aware of such a package.

REGISTERED
1 The server is able to execute Daml commands operating on this pack-

age.

PackageService

Allows clients to query the Daml-LF packages that are supported by the server.

Method

name

Request type Response type Description

ListPackages ListPackagesRe-

quest

ListPackagesRe-

sponse

Returns the identifiers of all sup-

ported packages.

GetPackage GetPackageRequest GetPackageRe-

sponse

Returns the contents of a single pack-

age.

GetPackageS-

tatus

GetPackageStatus-

Request

GetPackageStatus-

Response

Returns the status of a single pack-

age.

com/daml/ledger/api/v1/testing/time_service.proto

GetTimeRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger Identifica-

tion Service. Must be a valid LedgerString (as describe in value.

proto). Optional

GetTimeResponse

Field Type Label Description

cur-

rent_time

google.protobuf.Times-

tamp

The current time according to the ledger

server.

336 Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

Daml SDK Documentation, 2.7.3

SetTimeRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger

Identification Service. Must be a valid LedgerString (as de-

scribe in value.proto). Optional

cur-

rent_time

google.pro-

to-

buf.Times-

tamp

MUST precisely match the current time as it’s known to the

ledger server.

new_time
google.pro-

to-

buf.Times-

tamp

The time the client wants to set on the ledger. MUST be a

point int time after current_time.

TimeService

Optional service, exposed for testing static time scenarios.

Method

name

Request

type

Response

type

Description

GetTime Get-

TimeRequest

GetTimeRe-

sponse

Returns a stream of time updates. Always returns at

least one response, where the first one is the current

time. Subsequent responses are emitted whenever

the ledger server’s time is updated.

SetTime Set-

TimeRequest

.google.pro-

to-

buf.Empty

Allows clients to change the ledger’s clock in an

atomic get-and-set operation.

com/daml/ledger/api/v1/transaction.proto

Transaction

Filtered view of an on-ledger transaction’s create and archive events.

1.12. Integrate Daml with Off-Ledger Services 337

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty

Daml SDK Documentation, 2.7.3

Field Type Label Description

transac-

tion_id

string Assigned by the server. Useful for correlating logs. Must

be a valid LedgerString (as described in value.proto).

Required

com-

mand_id

string The ID of the command which resulted in this transac-

tion. Missing for everyone except the submitting party.

Must be a valid LedgerString (as described in value.

proto). Optional

work-

flow_id

string The workflow ID used in command submission. Must be

a valid LedgerString (as described in value.proto). Op-

tional

effec-

tive_at

google.pro-

to-

buf.Times-

tamp

Ledger effective time. Must be a valid LedgerString (as

described in value.proto). Required

events
Event repeated The collection of events. Only contains CreatedEvent or

ArchivedEvent. Required

offset
string The absolute offset. The format of this field is described

in ledger_offset.proto. Required

TransactionTree

Complete view of an on-ledger transaction.

338 Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

Daml SDK Documentation, 2.7.3

Field Type Label Description

transac-

tion_id

string Assigned by the server. Useful for correlating logs. Must

be a valid LedgerString (as described in value.proto).

Required

com-

mand_id

string The ID of the command which resulted in this transac-

tion. Missing for everyone except the submitting party.

Must be a valid LedgerString (as described in value.

proto). Optional

work-

flow_id

string The workflow ID used in command submission. Only set

if the workflow_id for the command was set. Must be

a valid LedgerString (as described in value.proto). Op-

tional

effec-

tive_at

google.pro-

to-

buf.Times-

tamp

Ledger effective time. Required

offset
string The absolute offset. The format of this field is described

in ledger_offset.proto. Required

events_by_id
Transaction-

Tree.Events-

ByIdEntry

repeated Changes to the ledger that were caused by this transac-

tion. Nodes of the transaction tree. Each key be a valid

LedgerString (as describe in value.proto). Required

root_event_ids
string repeated Roots of the transaction tree. Each element must be a

valid LedgerString (as describe in value.proto). The

elements are in the same order as the commands in

the corresponding Commands object that triggered this

transaction. Required

TransactionTree.EventsByIdEntry

Field Type Label Description

key
string

value
TreeEvent

TreeEvent

Each tree event message type below contains a witness_parties field which indicates the subset

of the requested parties that can see the event in question.

Note that transaction trees might contain events with _no_ witness parties, which were included

simply because they were children of events which have witnesses.

Field Type Label Description

oneof kind.created
CreatedEvent

oneof kind.exercised
ExercisedEvent

1.12. Integrate Daml with Off-Ledger Services 339

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof

Daml SDK Documentation, 2.7.3

com/daml/ledger/api/v1/transaction_filter.proto

Filters

The union of a set of contract filters, or a wildcard.

Field Type Label Description

inclusive
Inclusive-

Filters

If set, then contracts matching any of the Inclusive­

Filtersmatch this filter. If not set, or if InclusiveFilters

has empty template_ids and empty interface_filters:

any contract matches this filter. Optional

InclusiveFilters

A filter that matches all contracts that are either an instance of one of the template_ids or that

match one of the interface_filters.

Field Type Label Description

tem-

plate_ids

Identifier repeated A collection of templates for which the payload will be in-

cluded in the create_arguments of a matching Cre­

atedEvent. SHOULD NOT contain duplicates. All tem­

plate_ids needs to be valid: corresponding template

should be defined in one of the available packages at the

time of the query. Optional

inter-

face_filters

Interface-

Filter

repeated Include an InterfaceView for every In­

terfaceFilter matching a contract. The

InterfaceFilter``s MUST use unique

``interface_id``s. All ``interface_id needs

to be valid: corresponding interface should be defined

in one of the available packages at the time of the query.

Optional

InterfaceFilter

This filter matches contracts that implement a specific interface.

Field Type Label Description

inter-

face_id

Identifier The interface that a matching contract must implement. Re-

quired

include_in-

ter-

face_view

bool Whether to include the interface view on the contract in the re-

turned CreateEvent. Use this to access contract data in a uni-

formmanner in your API client. Optional

in-

clude_cre-

ate_argu-

ments_blob

bool Whether to include a create_arguments_blob in the re-

turned CreateEvent. Use this to access the complete contract

data in your API client for submitting it as a disclosed contract

with future commands. Optional

340 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

TransactionFilter

A filter both for filtering create and archive events as well as for filtering transaction trees.

Field Type Label Description

fil-

ters_by_party

Transaction-

Filter.Filters-

ByPartyEntry

repeated Each key must be a valid PartyIdString (as described in

value.proto). The interpretation of the filter depends

on the stream being filtered: (1) For transaction tree

streams only party filters with wildcards are allowed,

and all subtrees whose root has one of the listed par-

ties as an informee are returned. (2) For transaction and

active-contract-set streams create and archive events

are returned for all contractswhose stakeholders include

at least one of the listed parties andmatch the per-party

filter. Required

TransactionFilter.FiltersByPartyEntry

Field Type Label Description

key
string

value
Filters

com/daml/ledger/api/v1/transaction_service.proto

GetFlatTransactionResponse

Field Type Label Description

transaction
Transaction

GetLatestPrunedOffsetsRequest

Empty for now, but may contain fields in the future.

1.12. Integrate Daml with Off-Ledger Services 341

Daml SDK Documentation, 2.7.3

GetLatestPrunedOffsetsResponse

Field Type Label Description

partici-

pant_pruned_up_to_in-

clusive

LedgerOffset The offset up towhich the ledger has beenpruned, disregard-

ing the state of all divulged contracts pruning.

all_di-

vulged_con-

tracts_pruned_up_to_in-

clusive

LedgerOffset The offset up to which all divulged events have been

pruned on the ledger. It can be at or before the par­

ticipant_pruned_up_to_inclusive offset. For

more details about all divulged events pruning, see

PruneRequest.prune_all_divulged_contracts in

participant_pruning_service.proto.

GetLedgerEndRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger Identifica-

tion Service. Must be a valid LedgerString (as describe in value.

proto). Optional

GetLedgerEndResponse

Field Type Label Description

offset
LedgerOffset The absolute offset of the current ledger end.

GetTransactionByEventIdRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger Identi-

fication Service. Must be a valid LedgerString (as described in

value.proto). Optional

event_id
string The ID of a particular event. Must be a valid LedgerString (as

described in value.proto). Required

request-

ing_parties

string repeated The parties whose events the client expects to see. Events

that are not visible for the parties in this collection will not be

present in the response. Each element must be a valid PartyId-

String (as described in value.proto). Required

342 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

GetTransactionByIdRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger Iden-

tification Service. Must be a valid LedgerString (as describe in

value.proto). Optional

transac-

tion_id

string The ID of a particular transaction. Must be a valid LedgerString

(as describe in value.proto). Required

request-

ing_parties

string repeated The parties whose events the client expects to see. Events

that are not visible for the parties in this collection will not be

present in the response. Each element be a valid PartyIdString

(as describe in value.proto). Required

GetTransactionResponse

Field Type Label Description

transaction
TransactionTree

GetTransactionTreesResponse

Field Type Label Description

transac-

tions

Transaction-

Tree

repeated The list of transaction trees that matches the filter in

GetTransactionsRequest for the GetTransaction­

Treesmethod.

1.12. Integrate Daml with Off-Ledger Services 343

Daml SDK Documentation, 2.7.3

GetTransactionsRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger Iden-

tification Service. Must be a valid LedgerString (as described

in value.proto). Optional

begin
LedgerOffset Beginning of the requested ledger section. This offset is ex-

clusive: the response will only contain transactions whose

offset is strictly greater than this. Required

end
LedgerOffset End of the requested ledger section. This offset is inclusive:

the response will only contain transactions whose offset is

less than or equal to this. Optional, if not set, the stream will

not terminate.

filter
Transaction-

Filter

Requesting parties with template filters. Template filters

must be empty for GetTransactionTrees requests. Required

verbose
bool If enabled, values served over the API will contain more infor-

mation than strictly necessary to interpret the data. In par-

ticular, setting the verbose flag to true triggers the ledger to

include labels for record fields. Optional

GetTransactionsResponse

Field Type Label Description

transac-

tions

Transaction repeated The list of transactions thatmatches the filter in GetTrans-

actionsRequest for the GetTransactions method.

TransactionService

Allows clients to read transactions from the ledger. In V2 Ledger API this service is not available

anymore. Use v2.UpdateService instead.

344 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Method

name

Request

type

Response

type

Description

GetTransac-

tions

GetTransac-

tionsRequest

GetTrans-

actionsRe-

sponse

Read the ledger’s filtered transaction stream for a set

of parties. Lists only creates and archives, but not

other events. Omits all events on transient contracts,

i.e., contracts that were both created and archived in

the same transaction.

GetTransac-

tionTrees

GetTransac-

tionsRequest

GetTransac-

tionTreesRe-

sponse

Read the ledger’s complete transaction tree stream

for a set of parties. The stream can be filtered only

by parties, but not templates (template filter must be

empty).

GetTransac-

tionByEven-

tId

GetTransac-

tionByEven-

tIdRequest

GetTrans-

actionRe-

sponse

Lookupa transaction tree by the ID of an event that ap-

pears within it. For looking up a transaction instead

of a transaction tree, please see GetFlatTransaction-

ByEventId

GetTransac-

tionById

GetTrans-

action-

ByIdRequest

GetTrans-

actionRe-

sponse

Lookup a transaction tree by its ID. For looking up a

transaction instead of a transaction tree, please see

GetFlatTransactionById

GetFlat-

Transac-

tionByEven-

tId

GetTransac-

tionByEven-

tIdRequest

GetFlat-

Transaction-

Response

Lookup a transaction by the ID of an event that ap-

pears within it.

GetFlat-

Transac-

tionById

GetTrans-

action-

ByIdRequest

GetFlat-

Transaction-

Response

Lookup a transaction by its ID.

Ge-

tLedgerEnd

GetLedgerEn-

dRequest

GetLedgerEn-

dResponse

Get the current ledger end. Subscriptions startedwith

the returned offset will serve transactions created af-

ter this RPC was called.

GetLatest-

PrunedOff-

sets

GetLatest-

PrunedOff-

setsRequest

GetLatest-

Pruned-

OffsetsRe-

sponse

Get the latest successfully pruned ledger offsets

com/daml/ledger/api/v1/value.proto

Enum

A value with finite set of alternative representations.

Field Type Label Description

enum_id
Identifier Omitted from the transaction stream when verbose streaming

is not enabled. Optional when submitting commands.

constructor
string Determines which of the Variant’s alternatives is encoded in

this message. Must be a valid NameString. Required

1.12. Integrate Daml with Off-Ledger Services 345

Daml SDK Documentation, 2.7.3

GenMap

Field Type Label Description

entries
GenMap.Entry repeated

GenMap.Entry

Field Type Label Description

key
Value

value
Value

Identifier

Unique identifier of an entity.

Field Type Label Description

pack-

age_id

string The identifier of the Daml package that contains the entity. Must

be a valid PackageIdString. Required

mod-

ule_name

string The dot-separated module name of the identifier. Required

en-

tity_name

string The dot-separated name of the entity (e.g. record, template, …)

within the module. Required

List

A homogenous collection of values.

Field Type Label Description

elements
Value repeated The elements must all be of the same concrete value type. Op-

tional

Map

Field Type Label Description

entries
Map.Entry repeated

346 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Map.Entry

Field Type Label Description

key
string

value
Value

Optional

Corresponds to Java’s Optional type, Scala’s Option, and Haskell’s Maybe. The reason why we need to

wrap this in an additional message is that we need to be able to encode the None case in the Value

oneof.

Field Type Label Description

value
Value optional

Record

Contains nested values.

Field Type Label Description

record_id
Identifier Omitted from the transaction streamwhen verbose stream-

ing is not enabled. Optional when submitting commands.

fields
RecordField repeated The nested values of the record. Required

RecordField

A named nested value within a record.

Field Type Label Description

label
string When reading a transaction stream, it’s omitted if verbose streaming

is not enabled. When submitting a commmand, it’s optional: - if all

keys within a single record are present, the order in which fields appear

does not matter. however, each key must appear exactly once. - if any

of the keys within a single record are omitted, the order of fields MUST

match the order of declaration in the Daml template. Must be a valid

NameString

value
Value A nested value of a record. Required

1.12. Integrate Daml with Off-Ledger Services 347

Daml SDK Documentation, 2.7.3

Value

Encodes values that the ledger accepts as command arguments and emits as contract arguments.

The values encoding use different classes of non-empty strings as identifiers. Those classes are

defined as follows: - NameStrings are strings with length <= 1000 that match the regexp [A­Za­z\

$_][A­Za­z0­9\$_]*. - PackageIdStrings are strings with length <= 64 that match the reg-

exp [A­Za­z0­9\­_]+. - PartyIdStrings are strings with length <= 255 that match the reg-

exp [A­Za­z0­9:\­_]+. - LedgerStrings are strings with length <= 255 that match the regexp

[A­Za­z0­9#:\­_/]+. - ApplicationIdStrings are strings with length <= 255 that match the reg-

exp [A­Za­z0­9#:\­_/ @\|]+.

348 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Field Type Label Description

oneof

Sum.record

Record

oneof

Sum.vari-

ant

Variant

oneof

Sum.con-

tract_id

string Identifier of an on-ledger contract. Commands which ref-

erence an unknown or already archived contract ID will fail.

Must be a valid LedgerString.

oneof

Sum.list

List Represents a homogeneous list of values.

oneof

Sum.int64

sint64

oneof

Sum.nu-

meric

string A Numeric, that is a decimal value with precision 38 (at

most 38 significant digits) and a scale between 0 and 37

(significant digits on the right of the decimal point). The

field has to match the regex [+-]?d{1,38}(.d{0,37})? and

should be representable by a Numeric without loss of pre-

cision.

oneof

Sum.text

string A string.

oneof

Sum.times-

tamp

sfixed64 Microseconds since the UNIX epoch. Can go backwards.

Fixed since the vast majority of values will be greater than

2^28, since currently the number ofmicroseconds since the

epoch is greater than that. Range: 0001-01-01T00:00:00Z

to 9999-12-31T23:59:59.999999Z, so that we can convert

to/from https://www.ietf.org/rfc/rfc3339.txt

oneof

Sum.party

string An agent operating on the ledger. Must be a valid PartyId-

String.

oneof

Sum.bool

bool True or false.

oneof

Sum.unit

google.pro-

to-

buf.Empty

This value is used for example for choices that don’t take

any arguments.

oneof

Sum.date

int32 Days since the unix epoch. Can go backwards. Limited from

0001-01-01 to 9999-12-31, also to be compatible with https:

//www.ietf.org/rfc/rfc3339.txt

oneof

Sum.op-

tional

Optional The Optional type, None or Some

oneof

Sum.map

Map The Map type

oneof

Sum.enum

Enum The Enum type

oneof

Sum.gen_map

GenMap The GenMap type

1.12. Integrate Daml with Off-Ledger Services 349

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://www.ietf.org/rfc/rfc3339.txt
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://www.ietf.org/rfc/rfc3339.txt
https://www.ietf.org/rfc/rfc3339.txt
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof

Daml SDK Documentation, 2.7.3

Variant

A value with alternative representations.

Field Type Label Description

variant_id
Identifier Omitted from the transaction stream when verbose streaming

is not enabled. Optional when submitting commands.

constructor
string Determines which of the Variant’s alternatives is encoded in

this message. Must be a valid NameString. Required

value
Value The value encoded within the Variant. Required

com/daml/ledger/api/v1/version_service.proto

FeaturesDescriptor

Field Type Label Description

user_man-

agement

UserManage-

mentFeature

If set, then the Ledger API server supports user manage-

ment. It is recommended that clients query this field to

gracefully adjust their behavior for ledgers that do not sup-

port user management.

experimen-

tal

Experimen-

talFeatures

Features under development or features that are used for

ledger implementation testing purposes only.

Daml applications SHOULD not depend on these in production.

GetLedgerApiVersionRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger Identifica-

tion Service. Must be a valid LedgerString (as described in value.

proto). Optional

GetLedgerApiVersionResponse

Field Type Label Description

version
string The version of the ledger API.

features
FeaturesDescriptor The features supported by this Ledger API endpoint.

Daml applications CAN use the feature descriptor on top of version constraints on the Ledger API

version to determine whether a given Ledger API endpoint supports the features required to run the

application.

350 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

See the feature descriptions themselves for the relation between Ledger API versions and feature

presence.

UserManagementFeature

Field Type Label Description

supported
bool Whether the Ledger API server provides the user management ser-

vice.

max_rights_per_user
int32 The maximum number of rights that can be assigned to a single

user. Servers MUST support at least 100 rights per user. A value of

0 means that the server enforces no rights per user limit.

max_users_page_size
int32 The maximum number of users the server can return in a single

response (page). Servers MUST support at least a 100 users per

page. A value of 0means that the server enforcesnopage size limit.

VersionService

Allows clients to retrieve information about the ledger API version

Method name Request type Response type Description

GetLedgerApiVer-

sion

GetLedgerApiVersionRe-

quest

GetLedgerApiVersionRe-

sponse

Read the Ledger API ver-

sion

com/daml/ledger/api/v2/command_completion_service.proto

CompletionStreamRequest

Field Type Label Description

applica-

tion_id

string Only completions of commands submitted with the

same application_id will be visible in the stream.

Must be a valid ApplicationIdString (as described in

value.proto). Required unless authentication is used

with a user token or a custom token specifying an

application-id. In that case, the token’s user-id, respec-

tively application-id, will be used for the request’s appli-

cation_id.

parties
string repeated Non-empty list of parties whose data should be included.

Only completions of commands for which at least one of

the act_as parties is in the given set of parties will be

visible in the stream. Must be a valid PartyIdString (as

described in value.proto). Required

begin_ex-

clusive

Partici-

pantOffset

This field indicates the minimum offset for completions.

This can be used to resume an earlier completion stream.

Optional, if not set the ledger uses the current ledger end

offset instead.

1.12. Integrate Daml with Off-Ledger Services 351

Daml SDK Documentation, 2.7.3

CompletionStreamResponse

Field Type Label Description

checkpoint
com.daml.ledger.api.v1.Check-

point

This checkpoint may be used to restart consumption. The

checkpoint belongs to the completion in this response. Re-

quired

completion
Completion Required

domain_id
string The sequencing domain. In case - successful/failed trans-

actions: identifies the sequencing domain of the transac-

tion - for successful/failed unassign commands: identi-

fies the source domain - for successful/failed assign com-

mands: identifies the target domain Required

CommandCompletionService

Allows clients to observe the status of their submissions. Commandsmaybe submitted via theCom-

mand Submission Service. The on-ledger effects of their submissions are disclosed by the Update

Service.

Commands may fail in 2 distinct manners:

1. Failure communicated synchronously in the gRPC error of the submission.

2. Failure communicated asynchronously in a Completion, see completion.proto.

Note that not only successfully submitted commandsMAYproduce a completion event. For example,

the participant MAY choose to produce a completion event for a rejection of a duplicate command.

Clients that do not receive a successful completion about their submission MUST NOT assume that

it was successful. Clients SHOULD subscribe to the CompletionStream before starting to submit

commands to prevent race conditions.

Method

name

Request type Response type Description

Completion-

Stream

CompletionStream-

Request

CompletionStreamRe-

sponse

Subscribe to command comple-

tion events.

com/daml/ledger/api/v2/command_service.proto

SubmitAndWaitForTransactionResponse

Field Type Label Description

transaction
Transaction The flat transaction that resulted from the submitted com-

mand. Required

comple-

tion_offset

string The format of this field is described in

participant_offset.proto. Optional

352 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

SubmitAndWaitForTransactionTreeResponse

Field Type Label Description

transaction
Transaction-

Tree

The transaction tree that resulted from the submitted

command. Required

comple-

tion_offset

string The format of this field is described in

participant_offset.proto. Optional

SubmitAndWaitForUpdateIdResponse

Field Type Label Description

update_id
string The id of the transaction that resulted from the submitted com-

mand. Must be a valid LedgerString (as described in value.

proto). Required

comple-

tion_offset

string The format of this field is described in participant_offset.

proto. Optional

SubmitAndWaitRequest

These commands are atomic, and will become transactions.

Field Type Label Description

commands
Commands The commands to be submitted. Required

CommandService

CommandService is able to correlate submitted commandswith completiondata, identify timeouts,

and return contextual information with each tracking result. This supports the implementation of

stateless clients.

Note that submitted commands generally produce completion events as well, even in case a com-

mand gets rejected. For example, the participant SHOULD produce a completion event for a rejection

of a duplicate command.

1.12. Integrate Daml with Off-Ledger Services 353

Daml SDK Documentation, 2.7.3

Method

name

Request

type

Response

type

Description

Submi-

tAndWait

SubmitAnd-

WaitRequest

.google.pro-

to-

buf.Empty

Submits a single composite command and waits for

its result. Propagates the gRPC error of failed submis-

sions including Daml interpretation errors.

Submi-

tAndWait-

ForUp-

dateId

SubmitAnd-

WaitRequest

Submi-

tAndWait-

ForUpdateI-

dResponse

Submits a single composite command, waits for its

result, and returns theupdate id. Propagates the gRPC

error of failed submissions including Daml interpre-

tation errors.

Submi-

tAndWait-

ForTransac-

tion

SubmitAnd-

WaitRequest

SubmitAnd-

WaitFor-

Transaction-

Response

Submits a single composite command, waits for its

result, and returns the transaction. Propagates the

gRPC error of failed submissions including Daml in-

terpretation errors.

Submi-

tAndWait-

ForTransac-

tionTree

SubmitAnd-

WaitRequest

SubmitAnd-

WaitFor-

Transac-

tionTreeRe-

sponse

Submits a single composite command, waits for its

result, and returns the transaction tree. Propagates

the gRPC error of failed submissions including Daml

interpretation errors.

com/daml/ledger/api/v2/command_submission_service.proto

SubmitReassignmentRequest

Field Type Label Description

reassignment_com-

mand

ReassignmentCom-

mand

The reassignment command to be submit-

ted. Required

SubmitReassignmentResponse

SubmitRequest

The submitted commandswill be processed atomically in a single transaction. Moreover, each Com­

mand in commands will be executed in the order specified by the request.

Field Type Label Description

commands
Commands The commands to be submitted in a single transaction. Re-

quired

354 Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty

Daml SDK Documentation, 2.7.3

SubmitResponse

CommandSubmissionService

Allows clients to attempt advancing the ledger’s state by submitting commands. The final states of

their submissions are disclosed by the Command Completion Service. The on-ledger effects of their

submissions are disclosed by the Update Service.

Commands may fail in 2 distinct manners:

1. Failure communicated synchronously in the gRPC error of the submission.

2. Failure communicated asynchronously in a Completion, see completion.proto.

Note that not only successfully submitted commandsMAYproduce a completion event. For example,

the participant MAY choose to produce a completion event for a rejection of a duplicate command.

Clients that do not receive a successful completion about their submission MUST NOT assume that

it was successful. Clients SHOULD subscribe to the CompletionStream before starting to submit

commands to prevent race conditions.

Method name Request type Response type Description

Submit SubmitRequest SubmitResponse Submit a single composite

command.

SubmitReas-

signment

SubmitReassignmen-

tRequest

SubmitReassignmen-

tResponse

Submit a single reassign-

ment.

com/daml/ledger/api/v2/commands.proto

Commands

A composite command that groups multiple commands together.

1.12. Integrate Daml with Off-Ledger Services 355

Daml SDK Documentation, 2.7.3

Field Type Label Description

work-

flow_id

string Identifier of the on-ledger workflow that this command

is a part of. Must be a valid LedgerString (as described in

value.proto). Optional

applica-

tion_id

string Uniquely identifies the application or participant user

that issued the command. Must be a valid ApplicationId-

String (as described in value.proto). Required unless

authentication is used with a user token or a custom to-

ken specifying an application-id. In that case, the token’s

user-id, respectively application-id, will be used for the

request’s application_id.

com-

mand_id

string Uniquely identifies the command. The triple (applica-

tion_id, party + act_as, command_id) constitutes the

change ID for the intended ledger change, where party +

act_as is interpreted as a set of party names. The change

ID can be used formatching the intended ledger changes

with all their completions. Must be a valid LedgerString

(as described in value.proto). Required

party
string Party on whose behalf the command should be executed.

If ledger API authorization is enabled, then the authoriza-

tion metadata must authorize the sender of the request

to act on behalf of the given party. Must be a valid Par-

tyIdString (as described in value.proto). Deprecated

in favor of the act_as field. If both are set, then the effec-

tive list of parties on whose behalf the command should

be executed is the union of all parties listed in party and

act_as. Optional

commands
com.daml.ledger.api.v1.Com-

mand

repeated Individual elements of this atomic command. Must be

non-empty. Required

oneof

deduplica-

tion_pe-

riod.dedu-

plica-

tion_dura-

tion

google.pro-

tobuf.Dura-

tion

Specifies the length of the deduplication period. It is in-

terpreted relative to the local clock at some point dur-

ing the submission’s processing. Must be non-negative.

Must not exceed the maximum deduplication time (see

ledger_configuration_service.proto).

oneof

deduplica-

tion_pe-

riod.dedu-

plica-

tion_offset

string Specifies the start of the deduplication period by a com-

pletion stream offset (exclusive). Must be a valid Ledger-

String (as described in participant_offset.proto).

min_ledger_time_abs
google.pro-

to-

buf.Times-

tamp

Lower bound for the ledger time assigned to the resulting

transaction. Note: The ledger time of a transaction is as-

signed as part of command interpretation. Use this prop-

erty if you expect that command interpretation will take

a considerate amount of time, such that by the time the

resulting transaction is sequenced, its assigned ledger

time is not valid anymore. Must not be set at the same

time as min_ledger_time_rel. Optional

min_ledger_time_rel
google.pro-

tobuf.Dura-

tion

Same as min_ledger_time_abs, but specified as a du-

ration, starting from the time the command is received

by the server. Must not be set at the same time as

min_ledger_time_abs. Optional

act_as
string repeated Set of parties on whose behalf the command should be

executed. If ledger API authorization is enabled, then the

authorizationmetadatamust authorize the sender of the

request to act on behalf of each of the given parties. This

field supersedes the party field. The effective set of par-

ties on whose behalf the command should be executed

is the union of all parties listed in party and act_as,

whichmust be non-empty. Each elementmust be a valid

PartyIdString (as described in value.proto). Optional

read_as
string repeated Set of parties on whose behalf (in addition to all parties

listed in act_as) contracts can be retrieved. This affects

Daml operations such as fetch, fetchByKey, lookup­

ByKey, exercise, and exerciseByKey. Note: A partic-

ipant node of a Daml network can host multiple parties.

Each contract present on the participant node is only vis-

ible to a subset of these parties. A command can only use

contracts that are visible to at least one of the parties in

act_as or read_as. This visibility check is independent

from the Daml authorization rules for fetch operations. If

ledger API authorization is enabled, then the authoriza-

tion metadata must authorize the sender of the request

to read contract data on behalf of each of the given par-

ties. Optional

submis-

sion_id

string A unique identifier to distinguish completions for differ-

ent submissions with the same change ID. Typically a

random UUID. Applications are expected to use a differ-

ent UUID for each retry of a submission with the same

change ID. Must be a valid LedgerString (as described in

value.proto).

356 Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration

Daml SDK Documentation, 2.7.3

If omitted, the participant or the committer may set a value of their choice. Optional

• – disclosed_contracts

– com.daml.ledger.api.v1.DisclosedContract

– repeated

– Additional contracts used to resolve contract & contract key lookups. Optional

• – domain_id

– string

–

– Must be a valid domain ID Required

com/daml/ledger/api/v2/completion.proto

Completion

A completion represents the status of a submitted command on the ledger: it can be successful or

failed.

Field Type Label Description

com-

mand_id

string The ID of the succeeded or failed command. Must be a

valid LedgerString (as described in value.proto). Re-

quired

status
google.rpc.Sta-

tus

Identifies the exact type of the error. It uses the same

format of conveying error details as it is used for the RPC

responses of the APIs. Optional

update_id
string The update_id of the transaction or reassignment that

resulted from the command with command_id. Only set

for successfully executed commands. Must be a valid

LedgerString (as described in value.proto).

applica-

tion_id

string The application-id or user-id that was used for the

submission, as described in commands.proto. Must

be a valid ApplicationIdString (as described in value.

proto). Optional for historic completions where this

data is not available.

act_as
string repeated The set of parties on whose behalf the commands were

executed. Contains the union of party and act_as from

commands.proto. The order of the parties need not be

the same as in the submission. Each element must be a

valid PartyIdString (as described in value.proto). Op-

tional for historic completions where this data is not

available.

submis-

sion_id

string The submission ID this completion refers to, as described

in commands.proto. Must be a valid LedgerString (as

described in value.proto). Optional

oneof

deduplica-

tion_pe-

riod.dedu-

plica-

tion_offset

string Specifies the start of the deduplication period by a com-

pletion stream offset (exclusive).

1.12. Integrate Daml with Off-Ledger Services 357

https://cloud.google.com/tasks/docs/reference/rpc/google.rpc#google.rpc.Status
https://cloud.google.com/tasks/docs/reference/rpc/google.rpc#google.rpc.Status
https://developers.google.com/protocol-buffers/docs/proto3#oneof

Daml SDK Documentation, 2.7.3

Must be a valid LedgerString (as described in value.proto).

• – oneof deduplication_period.deduplication_duration

– google.protobuf.Duration

–

– Specifies the length of the deduplication period. It ismeasured in record time of com-

pletions.

Must be non-negative.

com/daml/ledger/api/v2/event_query_service.proto

Archived

Field Type Label Description

archived_event
com.daml.ledger.api.v1.ArchivedE-

vent

Required

domain_id
string Required The domain which sequenced the

archival of the contract

Created

Field Type Label Description

cre-

ated_event

com.daml.ledger.api.v1.Cre-

atedEvent

Required

domain_id
string The domain which sequenced the creation of the

contract Required

GetEventsByContractIdResponse

Field Type Label Description

created
Created The create event for the contract with the contract_id given in

the request provided it exists and has not yet been pruned. Op-

tional

archived
Archived The archive event for the contract with the contract_id given in

the request provided such an archive event exists and it has not

yet been pruned. Optional

358 Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration

Daml SDK Documentation, 2.7.3

EventQueryService

Query events by contract id.

Note that querying by contract key is not (yet) supported, as contract keys are not supported (yet) in

multi-domain scenarios.

Method

name

Request

type

Response

type

Description

GetEvents-

ByContrac-

tId

.com.daml.ledger.api.v1.GetEvents-

ByContrac-

tIdRequest

GetEvents-

ByContrac-

tIdResponse

Get the create and the consuming exercise event for

the contract with the provided ID. No events will be re-

turned for contracts that have been pruned because

they have already been archived before the latest

pruning offset.

com/daml/ledger/api/v2/package_service.proto

GetPackageRequest

Field Type Label Description

pack-

age_id

string The ID of the requested package. Must be a valid PackageIdString

(as described in value.proto). Required

GetPackageStatusRequest

Field Type Label Description

pack-

age_id

string The ID of the requested package. Must be a valid PackageIdString

(as described in value.proto). Required

ListPackagesRequest

PackageService

Allows clients to query the Daml-LF packages that are supported by the server.

Method

name

Request type Response type Description

ListPack-

ages

ListPackagesRe-

quest

.com.daml.ledger.api.v1.ListPack-

agesResponse

Returns the identifiers of all

supported packages.

GetPackage GetPack-

ageRequest

.com.daml.ledger.api.v1.GetPack-

ageResponse

Returns the contents of a single

package.

GetPack-

ageStatus

GetPackageSta-

tusRequest

.com.daml.ledger.api.v1.GetPack-

ageStatusResponse

Returns the status of a single

package.

1.12. Integrate Daml with Off-Ledger Services 359

Daml SDK Documentation, 2.7.3

com/daml/ledger/api/v2/participant_offset.proto

ParticipantOffset

Describes a specific point on the participant. This is a participant local value: a participant offset

is meaningful only in the context of its participant. Different participants may associate different

offsets to the same change synchronized over a domain, and conversely, the same literal participant

offset may refer to different changes on different participants.

This is also a unique index of the changes which happened on the virtual shared ledger. Participant

offset define an order, which is the same in which order the updates are visible as subscribing to

the UpdateService. This ordering is also a fully causal ordering for one specific domain: for two

updates synchronized by the same domain, the one with a bigger participant offset happened after

than the one with a smaller participant offset. Please note this is not true for updates synchronized

by a different domain. Accordingly, the participant offset order may deviate from the order of the

changes on the virtual shared ledger.

The Ledger API endpoints that take offsets allow to specify portions of the participant that are rele-

vant for the client to read.

Offsets returned by the Ledger API can be used as-is (e.g. to keep track of processed transactions

and provide a restart point to use in case of need).

The format of absolute offsets is opaque to the client: no client-side transformation of an offset is

guaranteed to return a meaningful offset.

The server implementation ensures internally that offsets are lexicographically comparable.

Field Type Label Description

oneof

value.ab-

solute

string The format of this string is specific to the partic-

ipant and opaque to the client.

oneof

value.bound-

ary

ParticipantOffset.Par-

ticipantBoundary

ParticipantOffset.ParticipantBoundary

Name Number Description

PARTICIPANT_BE-

GIN

0 Refers to the first transaction.

PARTICIPANT_END
1 Refers to the currently last transaction, which is a moving tar-

get.

360 Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof

Daml SDK Documentation, 2.7.3

com/daml/ledger/api/v2/reassignment.proto

AssignedEvent

Records that a contract has been assigned, and it can be used on the target domain.

Field Type Label Description

source
string The ID of the source domain. Must be a valid domain ID. Re-

quired

target
string The ID of the target domain. Must be a valid domain ID. Re-

quired

unas-

sign_id

string The ID from the unassigned event. For correlation capabil-

ities. For one contract the (unassign_id, source domain)

pair is unique. Must be a valid LedgerString (as described

in value.proto). Required

submitter
string Party on whose behalf the assign command was executed.

Must be a valid PartyIdString (as described in value.

proto). Required

reassign-

ment_counter

uint64 Each corresponding assigned and unassigned event has

the same reassignment_counter. This strictly increases

with each unassign command for the same contract. Cre-

ation of the contract corresponds to reassignment_counter

equals zero. Required

cre-

ated_event

com.daml.ledger.api.v1.Cre-

atedEvent

Required

Reassignment

Complete view of an on-ledger reassignment.

1.12. Integrate Daml with Off-Ledger Services 361

Daml SDK Documentation, 2.7.3

Field Type Label Description

update_id
string Assigned by the server. Useful for correlating logs. Must be

a valid LedgerString (as described in value.proto). Re-

quired

com-

mand_id

string The ID of the commandwhich resulted in this reassignment.

Missing for everyone except the submitting party on the

submitting participant. Must be a valid LedgerString (as de-

scribed in value.proto). Optional

work-

flow_id

string The workflow ID used in reassignment command submis-

sion. Only set if the workflow_id for the command was

set. Must be a valid LedgerString (as described in value.

proto). Optional

offset
string The absolute offset. The format of this field is described in

participant_offset.proto. Required

oneof

event.unas-

signed_event

Unas-

signedEvent

oneof

event.as-

signed_event

AssignedE-

vent

UnassignedEvent

Records that a contract has been unassigned, and it becomes unusable on the source domain

362 Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof

Daml SDK Documentation, 2.7.3

Field Type Label Description

unas-

sign_id

string The ID of the unassignment. This needs to be used as an

input for a assign ReassignmentCommand. For one con-

tract the (unassign_id, source domain) pair is unique.

Must be a valid LedgerString (as described in value.

proto). Required

con-

tract_id

string The ID of the reassigned contract. Must be a valid Ledger-

String (as described in value.proto). Required

tem-

plate_id

com.daml.ledger.api.v1.Iden-

tifier

The template of the reassigned contract. Required

source
string The ID of the source domain Must be a valid domain ID

Required

target
string The ID of the target domain Must be a valid domain ID

Required

submitter
string Party on whose behalf the unassign command was ex-

ecuted. Must be a valid PartyIdString (as described in

value.proto). Required

reassign-

ment_counter

uint64 Each corresponding assigned and unassigned event

has the same reassignment_counter. This strictly in-

creases with each unassign command for the same con-

tract. Creation of the contract corresponds to reassign-

ment_counter equals zero. Required

assign-

ment_ex-

clusivity

google.pro-

to-

buf.Times-

tamp

Assignment exclusivity Before this time (measured on

the target domain), only the submitter of the unassign-

ment can initiate the assignment Defined for reassign-

ing participants. Optional

wit-

ness_par-

ties

string repeated The parties that are notified of this event. Required

com/daml/ledger/api/v2/reassignment_command.proto

AssignCommand

Assign a contract

Field Type Label Description

unas-

sign_id

string The ID from the unassigned event to be completed by this as-

signment. Must be a valid LedgerString (as described in value.

proto). Required

source
string The ID of the source domain Must be a valid domain ID Required

target
string The ID of the target domain Must be a valid domain ID Required

1.12. Integrate Daml with Off-Ledger Services 363

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

Daml SDK Documentation, 2.7.3

ReassignmentCommand

Field Type Label Description

work-

flow_id

string Identifier of the on-ledger workflow that this command is

a part of. Must be a valid LedgerString (as described in

value.proto). Optional

applica-

tion_id

string Uniquely identifies the application or participant user that

issued the command. Must be a valid ApplicationIdString

(as described in value.proto). Required unless authenti-

cation is used with a user token or a custom token specify-

ing an application-id. In that case, the token’s user-id, re-

spectively application-id, will be used for the request’s ap-

plication_id.

com-

mand_id

string Uniquely identifies the command. The triple (applica-

tion_id, submitter, command_id) constitutes the change

ID for the intended ledger change. The change ID can be

used formatching the intended ledger changeswithall their

completions. Must be a valid LedgerString (as described in

value.proto). Required

submitter
string Party on whose behalf the command should be executed. If

ledger API authorization is enabled, then the authorization

metadata must authorize the sender of the request to act

on behalf of the given party. Must be a valid PartyIdString

(as described in value.proto). Required

oneof com-

mand.unas-

sign_com-

mand

Unassign-

Command

oneof com-

mand.as-

sign_com-

mand

AssignCom-

mand

submis-

sion_id

string A unique identifier to distinguish completions for different

submissions with the same change ID. Typically a random

UUID. Applications are expected to use a different UUID for

each retry of a submission with the same change ID. Must

be a valid LedgerString (as described in value.proto).

If omitted, the participant or the committer may set a value of their choice. Optional

364 Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof

Daml SDK Documentation, 2.7.3

UnassignCommand

Unassign a contract

Field Type Label Description

con-

tract_id

string The ID of the contract the client wants to unassign. Must be a valid

LedgerString (as described in value.proto). Required

source
string The ID of the source domain Must be a valid domain ID Required

target
string The ID of the target domain Must be a valid domain ID Required

com/daml/ledger/api/v2/state_service.proto

ActiveContract

Field Type Label Description

cre-

ated_event

com.daml.ledger.api.v1.Cre-

atedEvent

Required

domain_id
string A valid domain ID Required

reassign-

ment_counter

uint64 Each corresponding assigned and unassigned event has

the same reassignment_counter. This strictly increases

with each unassign command for the same contract. Cre-

ation of the contract corresponds to reassignment_counter

equals zero. This field will be the reassignment_counter of

the latest observable activation event on this domain, which

is before the active_at_offset. Required

GetActiveContractsRequest

Field Type Label Description

filter
Transaction-

Filter

Templates to include in the served snapshot, per party. Re-

quired

verbose
bool If enabled, values served over the APIwill containmore infor-

mation than strictly necessary to interpret the data. In par-

ticular, setting the verbose flag to true triggers the ledger to

include labels for record fields. Optional

ac-

tive_at_off-

set

string The offset at which the snapshot of the active contracts will

be computed. Must be no greater than the current ledger

end offset. Must be greater than or equal to the last pruning

offset. If not set the current ledger end offset will be used.

Optional

1.12. Integrate Daml with Off-Ledger Services 365

Daml SDK Documentation, 2.7.3

GetActiveContractsResponse

Field Type Label Description

offset
string Included only in the last message. The client should start

consuming the transactions endpoint with this offset. The

format of this field is described in participant_offset.

proto.

work-

flow_id

string The workflow ID used in command submission which corre-

sponds to the contract_entry. Only set if the workflow_id

for the command was set. Must be a valid LedgerString (as

described in value.proto). Optional

oneof con-

tract_en-

try.ac-

tive_con-

tract

ActiveCon-

tract

The contract is active on the given domain, meaning: there

was an activation event on the given domain (created,

assigned), which is not followed by a deactivation event

(archived, unassigned) on the same domain, until the ac-

tive_at_offset. Since activeness is defined as a per domain

concept, it is possible, that a contract is active on one do-

main, but already archived on another. There will be one

such message for each domain the contract is active on.

oneof con-

tract_en-

try.incom-

plete_unas-

signed

Incomplete-

Unassigned

Included iff the unassigned event was before or at the ac-

tive_at_offset, but there was no corresponding assigned

event before or at the active_at_offset.

oneof con-

tract_en-

try.incom-

plete_as-

signed

Incomplete-

Assigned

Important: this message is not indicating that the contract

is active on the target domain! Included iff the assigned

event was before or at the active_at_offset, but there was

no corresponding unassigned event before or at the ac-

tive_at_offset.

GetConnectedDomainsRequest

Field Type Label Description

party
string The party of interest Must be a valid PartyIdString (as described in

value.proto). Required

GetConnectedDomainsResponse

Field Type Label Descrip-

tion

connected_domains
GetConnectedDomainsResponse.ConnectedDo-

main

repeated

366 Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof

Daml SDK Documentation, 2.7.3

GetConnectedDomainsResponse.ConnectedDomain

Field Type Label Description

domain_alias
string The alias of the domain Required

domain_id
string The ID of the domain Required

permission
ParticipantPermission The permission on the domain Required

GetLatestPrunedOffsetsRequest

Empty for now, but may contain fields in the future.

GetLatestPrunedOffsetsResponse

Field Type Label Description

partici-

pant_pruned_up_to_in-

clusive

Partici-

pantOffset

The offset up to which the ledger has been pruned, disre-

garding the state of all divulged contracts pruning.

all_di-

vulged_con-

tracts_pruned_up_to_in-

clusive

Partici-

pantOffset

The offset up to which all divulged events have been

pruned on the ledger. It can be at or before the par­

ticipant_pruned_up_to_inclusive offset. For

more details about all divulged events pruning, see

PruneRequest.prune_all_divulged_contracts in

participant_pruning_service.proto.

GetLedgerEndRequest

GetLedgerEndResponse

Field Type Label Description

offset
ParticipantOffset The absolute offset of the current ledger end.

IncompleteAssigned

Field Type Label Description

assigned_event
AssignedEvent Required

1.12. Integrate Daml with Off-Ledger Services 367

Daml SDK Documentation, 2.7.3

IncompleteUnassigned

Field Type Label Description

created_event
com.daml.ledger.api.v1.CreatedEvent Required

unassigned_event
UnassignedEvent Required

ParticipantPermission

Enum indicating the permission level that the participant has for the party whose connected do-

mains are being listed.

Name Number Description

Submission
0

Confirmation
1 participant can only confirm transactions

Observation
2 participant can only observe transactions

StateService

Allows clients to get state from the ledger.

Method

name

Request

type

Response

type

Description

GetActive-

Contracts

GetActive-

ContractsRe-

quest

GetActive-

ContractsRe-

sponse

Returns a stream of the snapshot of the active con-

tracts and incomplete reassignments at a ledger off-

set. If there are no active contracts, the stream re-

turns a single response message with the offset at

which the snapshot has been taken. Clients SHOULD

use the offset in the last GetActiveContractsResponse

message to continue streaming transactionswith the

update service. Clients SHOULD NOT assume that the

set of active contracts they receive reflects the state

at the ledger end.

GetCon-

nectedDo-

mains

GetCon-

nectedDo-

mainsRe-

quest

GetCon-

nectedDo-

mainsRe-

sponse

Get the list of connected domains at the time of the

query.

Ge-

tLedgerEnd

GetLedgerEn-

dRequest

GetLedgerEn-

dResponse

Get the current ledger end. Subscriptions startedwith

the returned offset will serve events after this RPCwas

called.

GetLatest-

PrunedOff-

sets

GetLatest-

PrunedOff-

setsRequest

GetLatest-

Pruned-

OffsetsRe-

sponse

Get the latest successfully pruned ledger offsets

368 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

com/daml/ledger/api/v2/testing/time_service.proto

GetTimeRequest

GetTimeResponse

Field Type Label Description

cur-

rent_time

google.protobuf.Times-

tamp

The current time according to the ledger

server.

SetTimeRequest

Field Type Label Description

cur-

rent_time

google.proto-

buf.Timestamp

MUST precisely match the current time as it’s known to

the ledger server.

new_time
google.proto-

buf.Timestamp

The time the client wants to set on the ledger. MUST be

a point int time after current_time.

TimeService

Optional service, exposed for testing static time scenarios.

Method

name

Request

type

Response

type

Description

GetTime Get-

TimeRequest

GetTimeRe-

sponse

Returns the current time according to the ledger

server.

SetTime Set-

TimeRequest

.google.proto-

buf.Empty

Allows clients to change the ledger’s clock in an

atomic get-and-set operation.

com/daml/ledger/api/v2/transaction.proto

Transaction

Filtered view of an on-ledger transaction’s create and archive events.

1.12. Integrate Daml with Off-Ledger Services 369

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty

Daml SDK Documentation, 2.7.3

Field Type Label Description

update_id
string Assigned by the server. Useful for correlating logs. Must

be a valid LedgerString (as described in value.proto).

Required

com-

mand_id

string The ID of the command which resulted in this transac-

tion. Missing for everyone except the submitting party.

Must be a valid LedgerString (as described in value.

proto). Optional

work-

flow_id

string The workflow ID used in command submission. Must be

a valid LedgerString (as described in value.proto). Op-

tional

effec-

tive_at

google.pro-

to-

buf.Times-

tamp

Ledger effective time. Must be a valid LedgerString (as

described in value.proto). Required

events
com.daml.ledger.api.v1.Eventrepeated The collection of events. Only contains CreatedEvent or

ArchivedEvent. Required

offset
string The absolute offset. The format of this field is described

in participant_offset.proto. Required

domain_id
string A valid domain ID. Identifies the domain that synchro-

nized the transaction. Required

TransactionTree

Complete view of an on-ledger transaction.

370 Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

Daml SDK Documentation, 2.7.3

Field Type Label Description

update_id
string Assigned by the server. Useful for correlating logs. Must

be a valid LedgerString (as described in value.proto).

Required

com-

mand_id

string The ID of the command which resulted in this transac-

tion. Missing for everyone except the submitting party.

Must be a valid LedgerString (as described in value.

proto). Optional

work-

flow_id

string The workflow ID used in command submission. Only set

if the workflow_id for the command was set. Must be

a valid LedgerString (as described in value.proto). Op-

tional

effec-

tive_at

google.pro-

to-

buf.Times-

tamp

Ledger effective time. Required

offset
string The absolute offset. The format of this field is described

in participant_offset.proto. Required

events_by_id
Transaction-

Tree.Events-

ByIdEntry

repeated Changes to the ledger that were caused by this transac-

tion. Nodes of the transaction tree. Each key be a valid

LedgerString (as describe in value.proto). Required

root_event_ids
string repeated Roots of the transaction tree. Each element must be a

valid LedgerString (as describe in value.proto). The

elements are in the same order as the commands in

the corresponding Commands object that triggered this

transaction. Required

domain_id
string A valid domain ID. Identifies the domain that synchro-

nized the transaction. Required

TransactionTree.EventsByIdEntry

Field Type Label Description

key
string

value
com.daml.ledger.api.v1.TreeEvent

com/daml/ledger/api/v2/transaction_filter.proto

TransactionFilter

A filter both for filtering create and archive events as well as for filtering transaction trees.

1.12. Integrate Daml with Off-Ledger Services 371

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

Daml SDK Documentation, 2.7.3

Field Type Label Description

fil-

ters_by_party

Transaction-

Filter.Filters-

ByPartyEntry

repeated Each key must be a valid PartyIdString (as described in

value.proto). The interpretation of the filter depends

on the stream being filtered: (1) For transaction tree

streams all party keys used as wildcard filters, and all

subtrees whose root has one of the listed parties as an

informee are returned. If there are InclusiveFilters, those

will control returned CreateEvent fields were applica-

ble, but not used for template/interface filtering. (2)

For transaction and active-contract-set streams create

and archive events are returned for all contracts whose

stakeholders include at least one of the listedparties and

match the per-party filter. Required

TransactionFilter.FiltersByPartyEntry

Field Type Label Description

key
string

value
com.daml.ledger.api.v1.Filters

com/daml/ledger/api/v2/update_service.proto

GetTransactionByEventIdRequest

Field Type Label Description

event_id
string The ID of a particular event. Must be a valid LedgerString (as

described in value.proto). Required

request-

ing_parties

string repeated The parties whose events the client expects to see. Events

that are not visible for the parties in this collection will not be

present in the response. Each element must be a valid PartyId-

String (as described in value.proto). Required

GetTransactionByIdRequest

Field Type Label Description

update_id
string The ID of a particular transaction. Must be a valid LedgerString

(as describe in value.proto). Required

request-

ing_parties

string repeated The parties whose events the client expects to see. Events

that are not visible for the parties in this collection will not be

present in the response. Each element be a valid PartyIdString

(as describe in value.proto). Required

372 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

GetTransactionResponse

Field Type Label Description

transaction
Transaction Required

GetTransactionTreeResponse

Field Type Label Description

transaction
TransactionTree Required

GetUpdateTreesResponse

Field Type Label Description

oneof update.transaction_tree
TransactionTree

oneof update.reassignment
Reassignment

GetUpdatesRequest

Field Type Label Description

begin_ex-

clusive

Partici-

pantOffset

Beginning of the requested ledger section. The responsewill

only contain transactions whose offset is strictly greater

than this. Required

end_inclu-

sive

Partici-

pantOffset

End of the requested ledger section. The response will only

contain transactions whose offset is less than or equal to

this. Optional, if not set, the stream will not terminate.

filter
Transaction-

Filter

Requesting parties with template filters. Template filters

must be empty for GetUpdateTrees requests. Required

verbose
bool If enabled, values served over the APIwill containmore infor-

mation than strictly necessary to interpret the data. In par-

ticular, setting the verbose flag to true triggers the ledger to

include labels, record and variant type ids for record fields.

Optional

1.12. Integrate Daml with Off-Ledger Services 373

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof

Daml SDK Documentation, 2.7.3

GetUpdatesResponse

Field Type Label Description

oneof update.transaction
Transaction

oneof update.reassignment
Reassignment

UpdateService

Allows clients to read updates (transactions and reassignments) from the ledger.

GetUpdates and GetUpdateTrees provide a comprehensive stream of updates/changes which

happened on the virtual shared ledger. These streams are indexed with ledger offsets, which are

strictly increasing. The virtual shared ledger consist of changes happening on multiple domains

which are connected to the serving participant. Each update belongs to one domain, this is provided

in the result (the domain_id field in Transaction and TransactionTree for transactions, the

source field in UnassignedEvent and the target field in AssignedEvent). Consumers can rely

on strong causal guarantees on the virtual shared ledger for a single domain: updates which have

greater offsets are happened after than updates with smaller offsets for the same domain. Across

different domains this is not guaranteed.

Method

name

Request

type

Response

type

Description

GetUpdates GetUpdates-

Request

GetUpdates-

Response

Read the ledger’s filtered transaction stream and re-

lated reassignments for a set of parties. For transac-

tions it lists only creates and archives, but no other

events. Omits all events on transient contracts, i.e.,

contracts that were both created and archived in the

same transaction.

GetUpdate-

Trees

GetUpdates-

Request

GetUpdate-

TreesRe-

sponse

Read the ledger’s complete transaction tree stream

and related reassignments for a set of parties. The

stream will be filtered only by the parties as wildcard

parties. The template/interface filters describe the re-

spective fields in the CreatedEvent results.

GetTrans-

actionTree-

ByEventId

GetTransac-

tionByEven-

tIdRequest

GetTransac-

tionTreeRe-

sponse

Lookupa transaction tree by the ID of an event that ap-

pearswithin it. For looking up a transaction instead of

a transaction tree, please see GetTransactionByEven-

tId

GetTrans-

actionTree-

ById

GetTrans-

action-

ByIdRequest

GetTransac-

tionTreeRe-

sponse

Lookup a transaction tree by its ID. For looking up a

transaction instead of a transaction tree, please see

GetTransactionById

GetTransac-

tionByEven-

tId

GetTransac-

tionByEven-

tIdRequest

GetTrans-

actionRe-

sponse

Lookup a transaction by the ID of an event that ap-

pears within it.

GetTransac-

tionById

GetTrans-

action-

ByIdRequest

GetTrans-

actionRe-

sponse

Lookup a transaction by its ID.

374 Chapter 1. Canton References

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof

Daml SDK Documentation, 2.7.3

com/daml/ledger/api/v2/version_service.proto

GetLedgerApiVersionRequest

VersionService

Allows clients to retrieve information about the ledger API version

Method

name

Request type Response type Description

GetLedger-

ApiVersion

GetLedgerApiVer-

sionRequest

.com.daml.ledger.api.v1.GetLedger-

ApiVersionResponse

Read the Ledger API

version

1.12. Integrate Daml with Off-Ledger Services 375

Daml SDK Documentation, 2.7.3

Scalar Value Types

.proto type Notes C++ type Java type Python

type

double
double double float

float
float float float

int32
Uses variable-length encoding. Inefficient

for encoding negative numbers – if your

field is likely to have negative values, use

sint32 instead.

int32 int int

int64
Uses variable-length encoding. Inefficient

for encoding negative numbers – if your

field is likely to have negative values, use

sint64 instead.

int64 long int/long

uint32
Uses variable-length encoding. uint32 int int/long

uint64
Uses variable-length encoding. uint64 long int/long

sint32
Uses variable-length encoding. Signed int

value. These more efficiently encode nega-

tive numbers than regular int32s.

int32 int int

sint64
Uses variable-length encoding. Signed int

value. These more efficiently encode nega-

tive numbers than regular int64s.

int64 long int/long

fixed32
Always four bytes. More efficient than

uint32 if values are often greater than

2^28.

uint32 int int

fixed64
Always eight bytes. More efficient than

uint64 if values are often greater than2^56.

uint64 long int/long

sfixed32
Always four bytes. int32 int int

sfixed64
Always eight bytes. int64 long int/long

bool
bool boolean boolean

string
A string must always contain UTF-8 en-

coded or 7-bit ASCII text.

string String str/unicode

bytes
May contain any arbitrary sequence of

bytes.

string ByteString str

1.12.5.9 How Daml Types are Translated to Protobuf

This page gives an overview and reference on how Daml types and contracts are represented by the

Ledger API as protobuf messages, most notably:

• in the stream of transactions from the TransactionService

• as payload for CreateCommand and ExerciseCommand sent to CommandSubmissionService and

CommandService.

The Daml code in the examples below is written in Daml 1.1.

376 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Notation

Thenotationusedon thispage for theprotobufmessages is the sameas youget if you invokeprotoc

­­decode=Foo < some_payload.bin. To illustrate the notation, here is a simple definition of the

messages Foo and Bar:

message Foo {

string field_with_primitive_type = 1;

Bar field_with_message_type = 2;

}

message Bar {

repeated int64 repeated_field_inside_bar = 1;

}

A particular value of Foo is then represented by the Ledger API in this way:

{ // Foo

field_with_primitive_type: "some string"

field_with_message_type { // Bar

repeated_field_inside_bar: 17

repeated_field_inside_bar: 42

repeated_field_inside_bar: 3

}

}

The name of messages is added as a comment after the opening curly brace.

Records and Primitive Types

Records or product types are translated to Record. Here’s an example Daml record type that contains

a field for each primitive type:

data MyProductType = MyProductType with

intField : Int

textField : Text

decimalField : Decimal

boolField : Bool

partyField : Party

timeField : Time

listField : [Int]

contractIdField : ContractId SomeTemplate

And here’s an example of creating a value of type MyProductType:

alice <­ allocateParty "Alice"

bob <­ allocateParty "Bob"

someCid <­ submit alice do createCmd SomeTemplate with owner=alice

let myProduct = MyProductType with

intField = 17

textField = "some text"

decimalField = 17.42

boolField = False

(continues on next page)

1.12. Integrate Daml with Off-Ledger Services 377

Daml SDK Documentation, 2.7.3

(continued from previous page)

partyField = bob

timeField = datetime 2018 May 16 0 0 0

listField = [1,2,3]

contractIdField = someCid

For this data, the respective data on the Ledger API is shown below. Note that this value would be

enclosed by a particular contract containing a field of type MyProductType. See Contract templates for

the translation of Daml contracts to the representation by the Ledger API.

{ // Record

record_id { // Identifier

package_id: "some­hash"

name: "Types.MyProductType"

}

fields { // RecordField

label: "intField"

value { // Value

int64: 17

}

}

fields { // RecordField

label: "textField"

value { // Value

text: "some text"

}

}

fields { // RecordField

label: "decimalField"

value { // Value

decimal: "17.42"

}

}

fields { // RecordField

label: "boolField"

value { // Value

bool: false

}

}

fields { // RecordField

label: "partyField"

value { // Value

party: "Bob"

}

}

fields { // RecordField

label: "timeField"

value { // Value

timestamp: 1526428800000000

}

}

fields { // RecordField

label: "listField"

value { // Value

list { // List

elements { // Value

(continues on next page)

378 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

int64: 1

}

elements { // Value

int64: 2

}

elements { // Value

int64: 3

}

}

}

}

fields { // RecordField

label: "contractIdField"

value { // Value

contract_id: "some­contract­id"

}

}

}

Variants

Variants or sum types are types with multiple constructors. This example defines a simple variant

type with two constructors:

data MySumType = MySumConstructor1 Int

| MySumConstructor2 (Text, Bool)

The constructor MyConstructor1 takes a single parameter of type Integer, whereas the construc-

tor MyConstructor2 takes a tuple with two fields as parameter. The snippet below shows how you

can create values with either of the constructors.

let mySum1 = MySumConstructor1 17

let mySum2 = MySumConstructor2 ("it's a sum", True)

Similar to records, variants are also enclosed by a contract, a record, or another variant.

The snippets below shows the value of mySum1 and mySum2 respectively as they would be transmit-

ted on the Ledger API within a contract.

Listing 24: mySum1

{ // Value

variant { // Variant

variant_id { // Identifier

package_id: "some­hash"

name: "Types.MySumType"

}

constructor: "MyConstructor1"

value { // Value

int64: 17

}

}

}

1.12. Integrate Daml with Off-Ledger Services 379

Daml SDK Documentation, 2.7.3

Listing 25: mySum2

{ // Value

variant { // Variant

variant_id { // Identifier

package_id: "some­hash"

name: "Types.MySumType"

}

constructor: "MyConstructor2"

value { // Value

record { // Record

fields { // RecordField

label: "sumTextField"

value { // Value

text: "it's a sum"

}

}

fields { // RecordField

label: "sumBoolField"

value { // Value

bool: true

}

}

}

}

}

}

Contract Templates

Contract templates are represented as records with the same identifier as the template.

This first example template below contains only the signatory party and a simple choice to exercise:

data MySimpleTemplateKey =

MySimpleTemplateKey

with

party: Party

template MySimpleTemplate

with

owner: Party

where

signatory owner

key MySimpleTemplateKey owner: MySimpleTemplateKey

maintainer key.party

380 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Create a Contract

Creating contracts is done by sending a CreateCommand to the CommandSubmissionService or the Com-

mandService. The message to create a MySimpleTemplate contract with Alice being the owner is shown

below:

{ // CreateCommand

template_id { // Identifier

package_id: "some­hash"

name: "Templates.MySimpleTemplate"

}

create_arguments { // Record

fields { // RecordField

label: "owner"

value { // Value

party: "Alice"

}

}

}

}

Receive a Contract

Contracts are received from the TransactionService in the form of a CreatedEvent. The data contained

in the event corresponds to the data that was used to create the contract.

{ // CreatedEvent

event_id: "some­event­id"

contract_id: "some­contract­id"

template_id { // Identifier

package_id: "some­hash"

name: "Templates.MySimpleTemplate"

}

create_arguments { // Record

fields { // RecordField

label: "owner"

value { // Value

party: "Alice"

}

}

}

witness_parties: "Alice"

}

1.12. Integrate Daml with Off-Ledger Services 381

Daml SDK Documentation, 2.7.3

Exercise a Choice

A choice is exercised by sending an ExerciseCommand. Taking the same contract template again,

exercising the choice MyChoice would result in a command similar to the following:

{ // ExerciseCommand

template_id { // Identifier

package_id: "some­hash"

name: "Templates.MySimpleTemplate"

}

contract_id: "some­contract­id"

choice: "MyChoice"

choice_argument { // Value

record { // Record

fields { // RecordField

label: "parameter"

value { // Value

int64: 42

}

}

}

}

}

If the template specifies a key, the ExerciseByKeyCommand can be used. It works in a similar way as

ExerciseCommand, but instead of specifying the contract identifier you have to provide its key. The

example above could be rewritten as follows:

{ // ExerciseByKeyCommand

template_id { // Identifier

package_id: "some­hash"

name: "Templates.MySimpleTemplate"

}

contract_key { // Value

record { // Record

fields { // RecordField

label: "party"

value { // Value

party: "Alice"

}

}

}

}

choice: "MyChoice"

choice_argument { // Value

record { // Record

fields { // RecordField

label: "parameter"

value { // Value

int64: 42

}

}

}

}

}

382 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.12.5.10 How Daml Types are Translated to Daml-LF

This page shows how types in Daml are translated into Daml-LF. It should help you understand and

predict the generated client interfaces, which is useful when you’re building a Daml-based applica-

tion that uses the Ledger API or client bindings in other languages.

For an introduction to Daml-LF, see Daml-LF.

Primitive Types

Built-in data types in Daml have straightforward mappings to Daml-LF.

This section only covers the serializable types, as these are what client applications can interact

with via the generated Daml-LF. (Serializable types are ones whose values can exist on the ledger.

Function types, Update and Scenario types and any types built up from these are excluded, and

there are several other restrictions.)

Most built-in types have the same name in Daml-LF as in Daml. These are the exact mappings:

Daml primitive type Daml-LF primitive type

Int Int64

Time Timestamp

() Unit

[] List

Decimal Decimal

Text Text

Date Date

Party Party

Optional Optional

ContractId ContractId

Be aware that only the Daml primitive types exported by the Prelude module map to the Daml-LF

primitive types above. Thatmeans that, if you define your own type namedParty, it will not translate

to the Daml-LF primitive Party.

Tuple Types

Daml tuple type constructors take types T1, T2, …, TN to the type (T1, T2, …, TN). These are

exposed in the Daml surface language through the Prelude module.

The equivalent Daml-LF type constructors are daml­prim:DA.Types:TupleN, for each particular

N (where 2 <= N <= 20). This qualified name refers to the package name (ghc­prim) and the module

name (GHC.Tuple).

For example: the Daml pair type (Int, Text) is translated to daml­prim:DA.Types:Tuple2

Int64 Text.

1.12. Integrate Daml with Off-Ledger Services 383

Daml SDK Documentation, 2.7.3

Data Types

Daml-LF has three kinds of data declarations:

• Record types, which define a collection of data

• Variant or sum types, which define a number of alternatives

• Enum, which defines simplified sum types without type parameters nor argument.

Data type declarations in Daml (starting with the data keyword) are translated to record, variant or

enum types. It’s sometimes not obvious what they will be translated to, so this section lists many

examples of data types in Daml and their translations in Daml-LF.

Record Declarations

This section uses the syntax for Daml records with curly braces.

Daml declaration Daml-LF translation

data Foo = Foo { foo1: Int;

foo2: Text }

record Foo ↦ { foo1: Int64; foo2: Text }

data Foo = Bar { bar1: Int;

bar2: Text }

record Foo ↦ { bar1: Int64; bar2: Text }

data Foo = Foo { foo: Int } record Foo ↦ { foo: Int64 }

data Foo = Bar { foo: Int } record Foo ↦ { foo: Int64 }

data Foo = Foo {} record Foo ↦ {}

data Foo = Bar {} record Foo ↦ {}

384 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Variant Declarations

Daml declaration Daml-LF translation

data Foo = Bar Int | Baz

Text

variant Foo ↦ Bar Int64 | Baz Text

data Foo a = Bar a | Baz

Text

variant Foo a ↦ Bar a | Baz Text

data Foo = Bar Unit | Baz

Text

variant Foo ↦ Bar Unit | Baz Text

data Foo = Bar Unit | Baz variant Foo ↦ Bar Unit | Baz Unit

data Foo a = Bar | Baz variant Foo a ↦ Bar Unit | Baz Unit

data Foo = Foo Int variant Foo ↦ Foo Int64

data Foo = Bar Int variant Foo ↦ Bar Int64

data Foo = Foo () variant Foo ↦ Foo Unit

data Foo = Bar () variant Foo ↦ Bar Unit

data Foo = Bar { bar: Int }

| Baz Text

variant Foo ↦ Bar Foo.Bar | Baz Text, record

Foo.Bar ↦ { bar: Int64 }

data Foo = Foo { foo: Int }

| Baz Text

variant Foo ↦ Foo Foo.Foo | Baz Text, record

Foo.Foo ↦ { foo: Int64 }

data Foo = Bar { bar1: Int;

bar2: Decimal } | Baz Text

variant Foo ↦ Bar Foo.Bar | Baz Text, record

Foo.Bar ↦ { bar1: Int64; bar2: Decimal }

data Foo = Bar { bar1: Int;

bar2: Decimal } | Baz {

baz1: Text; baz2: Date }

data Foo ↦ Bar Foo.Bar | Baz Foo.Baz, record

Foo.Bar ↦ { bar1: Int64; bar2: Decimal },

record Foo.Baz ↦ { baz1: Text; baz2: Date

}

Enum Declarations

Daml declaration Daml-LF declaration

data Foo = Bar | Baz enum Foo ↦ Bar | Baz

data Color = Red | Green |

Blue

enum Color ↦ Red | Green | Blue

Banned Declarations

There are two gotchas to be aware of: things youmight expect to be able to do in Daml that you can’t

because of Daml-LF.

The first: a single constructor data type must be made unambiguous as to whether it is a record or

a variant type. Concretely, the data type declaration data Foo = Foo causes a compile-time error,

because it is unclear whether it is declaring a record or a variant type.

To fix this, you must make the distinction explicitly. Write data Foo = Foo {} to declare a record

type with no fields, or data Foo = Foo () for a variant with a single constructor taking unit argu-

ment.

The second gotcha is that a constructor in a data type declaration can have at most one unlabelled

argument type. This restriction is so that we can provide a straight-forward encoding of Daml-LF

1.12. Integrate Daml with Off-Ledger Services 385

Daml SDK Documentation, 2.7.3

types in a variety of client languages.

Banned declaration Workaround

data Foo = Foo data Foo = Foo {} to produce record Foo ↦ {} OR

data Foo = Foo () to produce variant Foo ↦ Foo

Unit

data Foo = Bar data Foo = Bar {} to produce record Foo ↦

{} OR data Foo = Bar () to produce variant

Foo ↦ Bar Unit

data Foo = Foo Int Text Name constructor arguments using a record declaration,

for example data Foo = Foo { x: Int; y: Text

}

data Foo = Bar Int Text Name constructor arguments using a record declaration,

for example data Foo = Bar { x: Int; y: Text

}

data Foo = Bar | Baz Int

Text

Name arguments to the Baz constructor, for example

data Foo = Bar | Baz { x: Int; y: Text }

Type Synonyms

Type synonyms (starting with the type keyword) are eliminated during conversion to Daml-LF. The

body of the type synonym is inlined for all occurrences of the type synonym name.

For example, consider the following Daml type declarations.

type Username = Text

data User = User { name: Username }

The Username type is eliminated in the Daml-LF translation, as follows:

record User ↦ { name: Text }

Template Types

A template declaration in Daml results in one ormore data type declarations behind the scenes. These

data types, detailed in this section, are not written explicitly in the Daml program but are created by

the compiler.

They are translated to Daml-LF using the same rules as for record declarations above.

These declarations are all at the top level of the module in which the template is defined.

386 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Template Data Types

Every contract template defines a record type for the parameters of the contract. For example, the

template declaration:

template Iou

with

issuer: Party

owner: Party

currency: Text

amount: Decimal

where

results in this record declaration:

data Iou = Iou { issuer: Party; owner: Party; currency: Text; amount: Decimal }

This translates to the Daml-LF record declaration:

record Iou ↦ { issuer: Party; owner: Party; currency: Text; amount: Decimal }

Choice Data Types

Every choice within a contract template results in a record type for the parameters of that choice.

For example, let’s suppose the earlier Iou template has the following choices:

nonconsuming choice DoNothing: ()

controller owner

do

return ()

choice Transfer: ContractId Iou

with newOwner: Party

controller owner

do

updateOwner newOwner

This results in these two record types:

data DoNothing = DoNothing {}

data Transfer = Transfer { newOwner: Party }

Whether the choice is consuming or nonconsuming is irrelevant to the data type declaration. The

data type is a record even if there are no fields.

These translate to the Daml-LF record declarations:

record DoNothing ↦ {}

record Transfer ↦ { newOwner: Party }

1.12. Integrate Daml with Off-Ledger Services 387

Daml SDK Documentation, 2.7.3

Names with Special Characters

All names inDaml—of types, templates, choices, fields, and variant data constructors—are translated

to the more restrictive rules of Daml-LF. ASCII letters, digits, and _ underscore are unchanged in

Daml-LF; all other characters must be mangled in some way, as follows:

• $ changes to $$,

• Unicode codepoints less than 65536 translate to $uABCD, where ABCD are exactly four

(zero-padded) hexadecimal digits of the codepoint in question, using only lowercase a­f, and

• Unicode codepoints greater translate to $UABCD1234, where ABCD1234 are exactly eight

(zero-padded) hexadecimal digits of the codepoint in question, with the same a­f rule.

Daml name Daml-LF identifier

Foo_bar Foo_bar

baz' baz$u0027

:+: $u003a$u002b$u003a

naïveté na$u00efvet$u00e9

:🙂: $u003a$U0001f642$u003a

1.12.5.11 Create Your Own Bindings

This page gets you started with creating custom bindings for a Daml Ledger.

Bindings for a language consist of two main components:

• Ledger API Client “stubs” for the programming language, – the remote API that allows sending

ledger commandsand receiving ledger transactions. Youhave to generate Ledger API from

the gRPC protobuf definitions in the daml repository on GitHub. Ledger API is documented

on this page: Use the Ledger API With gRPC. The gRPC tutorial explains how to generate client

“stubs”.

• Codegen A code generator is a program that generates classes representing Daml contract

templates in the language. These classes incorporate all boilerplate code for constructing:

CreateCommand and ExerciseCommand corresponding for each Daml contract template.

Technically codegen is optional. Youcanconstruct the commandsmanually fromtheauto-generated

Ledger API classes. However, it is very tedious and error-prone. If you are creating ad hoc bindings

for a project with a few contract templates, writing a proper codegen may be overkill. On the other

hand, if you have hundreds of contract templates in your project or are planning to build language

bindings that you will share across multiple projects, we recommend including a codegen in your

bindings. It will save you and your users time in the long run.

Note that for different reasons we chose codegen, but that is not the only option. There is really a

broad category of metaprogramming features that can solve this problem just as well or even better

than codegen; they are language-specific, but often much easier to maintain (i.e. no need to add a

build step). Some examples are:

• F# Type Providers

• Template Haskell

388 Chapter 1. Canton References

https://github.com/digital-asset/daml/tree/main/ledger-api/grpc-definitions
https://grpc.io/docs/
https://docs.microsoft.com/en-us/dotnet/fsharp/tutorials/type-providers/creating-a-type-provider#a-type-provider-that-is-backed-by-local-data
https://wiki.haskell.org/Template_Haskell

Daml SDK Documentation, 2.7.3

Build Ledger Commands

No matter what approach you take, either manually building commands or writing a codegen to do

this, you need to understand how ledger commands are structured. This section demonstrates how

to build create and exercise commands manually and how it can be done using contract classes.

Create Command

Let’s recall an IOU example from the Quickstart guide, where Iou template is defined like this:

template Iou

with

issuer : Party

owner : Party

currency : Text

amount : Decimal

observers : [Party]

If you do not specify any of the above fields or type their names or values incorrectly, or do not or-

der them exactly as they are in the Daml template, the above code will compile but fail at run-time

because you did not structure your create command correctly.

Exercise Command

To build ExerciseCommand for Iou_Transfer:

choice Iou_Transfer : ContractId IouTransfer

with

newOwner : Party

controller owner

do create IouTransfer with iou = this; newOwner

Summary

When creating custom bindings for Daml Ledgers, you will need to:

• generate Ledger API from the gRPC definitions

• decide whether to write a codegen to generate ledger commands ormanually build them for all

contracts defined in your Daml model.

The above examples should help you get started. If you are creating custom binding or have any

questions, see the Getting Help page for how to get in touch with us.

1.12. Integrate Daml with Off-Ledger Services 389

Daml SDK Documentation, 2.7.3

Links

• gRPC documentation: https://grpc.io/docs/

• Documentation for Protobuf “well known types”: https://developers.google.com/

protocol-buffers/docs/reference/google.protobuf

• Daml Ledger API gRPC Protobuf definitions

– current main: https://github.com/digital-asset/daml/tree/main/ledger-api/

grpc-definitions

– for specific versions: https://github.com/digital-asset/daml/releases

• Required gRPC Protobuf definitions:

– https://raw.githubusercontent.com/grpc/grpc/v1.18.0/src/proto/grpc/status/status.

proto

– https://raw.githubusercontent.com/grpc/grpc/v1.18.0/src/proto/grpc/health/v1/

health.proto

1.12.6 Daml Off-Ledger Automation

1.12.6.1 Write Off-Ledger Automation Using Daml

The Daml smart contract language is mostly meant to provide a way to define on-ledger logic, i.e.

code that defines how a transaction happens on ledger. Daml is not meant to be used as a general

purpose language that can interact with your file system or network; instead, the templates and

choices defined with Daml are available to be used by off-ledger logic that interacts with the ledger

API. Usually this off-ledger logic is written in a general-purpose language like Java or JavaScript and

the codegen allows to interact with models defined in Daml without boilerplate.

However, there are times when it would be nice to write your off-ledger logic in Daml. For relatively

simple automations that don’t require full access to your system’s capabilities, using Daml means

that you don’t have to map from your on-ledger Daml types and their representation on a separate

off-ledger general purpose language (either through the codegen or by manipulating the Protobuf

representation of Daml types directly).

There are two tools that allow you to use Daml as an off-ledger language:

• Daml Script allows you to write automations that can be triggered by any off-ledger condition,

suchas the availability of a file in a folder, amessage coming fromabroker or a user interacting

with the system directly.

• Daml Triggers allow a similar approach but triggered by on-ledger events, such as the creation

of a contract.

In their interactions with a traditional database system Daml Scripts and Daml Triggers are analo-

gous to SQL scripts and SQL triggers.

390 Chapter 1. Canton References

https://grpc.io/docs/
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf
https://github.com/digital-asset/daml/tree/main/ledger-api/grpc-definitions
https://github.com/digital-asset/daml/tree/main/ledger-api/grpc-definitions
https://github.com/digital-asset/daml/releases
https://raw.githubusercontent.com/grpc/grpc/v1.18.0/src/proto/grpc/status/status.proto
https://raw.githubusercontent.com/grpc/grpc/v1.18.0/src/proto/grpc/status/status.proto
https://raw.githubusercontent.com/grpc/grpc/v1.18.0/src/proto/grpc/health/v1/health.proto
https://raw.githubusercontent.com/grpc/grpc/v1.18.0/src/proto/grpc/health/v1/health.proto

Daml SDK Documentation, 2.7.3

1.12.6.2 Daml Script

Daml Script provides a simple way of testing Daml models and getting quick feedback in Daml stu-

dio. In addition to running it in a virtual ledger in Daml Studio, you can also point it against an actual

ledger. This means that you can use it for application scripting, to test automation logic and also

for ledger initialization.

You can also use Daml Script interactively using Daml REPL.

Hint: Remember that you canaccess all the example codeby runningdaml new script­example

­­template script­example

Usage

Our example for this tutorial consists of 2 templates.

First, we have a template called Coin:

template Coin

with

issuer : Party

owner : Party

where

signatory issuer, owner

This template represents a coin issued to owner by issuer. Coin has both the owner and the

issuer as signatories.

Second, we have a template called CoinProposal:

template CoinProposal

with

coin : Coin

where

signatory coin.issuer

observer coin.owner

choice Accept : ContractId Coin

controller coin.owner

do create coin

CoinProposal is only signed by the issuer and it provides a single Accept choice which, when

exercised by the controller will create the corresponding Coin.

Having defined the templates, we can nowmove on to write Daml scripts that operate on these tem-

plates. To get access to the API used to implement Daml scripts, you need to add the daml­script

library to the dependencies field in daml.yaml.

dependencies:

­ daml­prim

­ daml­stdlib

­ daml­script

We also enable the ApplicativeDo extension. We will see below why this is useful.

1.12. Integrate Daml with Off-Ledger Services 391

Daml SDK Documentation, 2.7.3

{­# LANGUAGE ApplicativeDo #­}

module ScriptExample where

import DA.Time

import Daml.Script

Since on an actual ledger parties cannot be arbitrary strings, we define a record containing all the

parties that we will use in our script so that we can easily swap them out.

data LedgerParties = LedgerParties with

bank : Party

alice : Party

bob : Party

Let us now write a function to initialize the ledger with 3 CoinProposal contracts and accept 2 of

them. This function takes the LedgerParties as an argument and returns a value of type Script

() which is Daml script’s equivalent of Scenario ().

initialize : LedgerParties ­> Script ()

initialize parties = do

First we create the proposals. To do so, we use the submit function to submit a transaction. The

first argument is the party submitting the transaction. In our case, we want all proposals to be cre-

ated by the bank so we use parties.bank. The second argument must be of type Commands a

so in our case Commands (ContractId CoinProposal, ContractId CoinProposal, Con­

tractId CoinProposal) corresponding to the 3 proposals that we create. However, Commands

requires that the individual commands do not depend on each other. This matches the restriction

on the Ledger API where a transaction consists of a list of commands. Using ApplicativeDo we

can still use do-notation as long as we respect this and the last statement in the do-block is of the

form return expr or pure expr. In Commands we use createCmd instead of create and exer­

ciseCmd instead of exercise.

(coinProposalAlice, coinProposalBob, coinProposalBank) <­ submit parties.bank $␣

↪→do

coinProposalAlice <­ createCmd (CoinProposal (Coin parties.bank parties.

↪→alice))

coinProposalBob <­ createCmd (CoinProposal (Coin parties.bank parties.bob))

coinProposalBank <­ createCmd (CoinProposal (Coin parties.bank parties.bank))

pure (coinProposalAlice, coinProposalBob, coinProposalBank)

Now that we have created the CoinProposals, we want Alice and Bob to accept the proposal while

the Bank will ignore the proposal that it has created for itself. To do so we use separate submit

statements for Alice and Bob and call exerciseCmd.

coinAlice <­ submit parties.alice $ exerciseCmd coinProposalAlice Accept

coinBob <­ submit parties.bob $ exerciseCmd coinProposalBob Accept

Finally, we call pure () on the last line of our script to match the type Script ().

pure ()

392 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Party Management

Wehavenowdefinedaway to initialize the ledger sowecanwrite a test that checks that the contracts

that we expect exist afterwards.

First, we define the signature of our test. We will create the parties used here in the test, so it does

not take any arguments.

test : Script ()

test = do

Now, we create the parties using the allocateParty function. This uses the party management

service to create new parties with the given display name. Note that the display name does not

identify a party uniquely. If you call allocateParty twice with the same display name, it will create

2 different parties. This is very convenient for testing since a new party cannot see any old contracts

on the ledger so using new parties for each test removes the need to reset the ledger. We factor out

party allocation into a function so we can reuse it in later sections.

allocateParties : Script LedgerParties

allocateParties = do

alice <­ allocateParty "alice"

bob <­ allocateParty "bob"

bank <­ allocateParty "Bank"

pure (LedgerParties bank alice bob)

We now call the initialize function that we defined before on the parties that we have just allo-

cated.

initialize parties

Queries

To verify the contracts on the ledger, we use the query function. We pass it the type of the template

and a party. It will then give us all active contracts of the given type visible to the party. In our

example, we expect to see one active CoinProposal for bank and one Coin contract for each of

Alice and Bob. We get back list of (ContractId t, t) pairs from query. In our tests, we do not

need the contract ids, so we throw them away using map snd.

proposals <­ query @CoinProposal bank

assertEq [CoinProposal (Coin bank bank)] (map snd proposals)

aliceCoins <­ query @Coin alice

assertEq [Coin bank alice] (map snd aliceCoins)

bobCoins <­ query @Coin bob

assertEq [Coin bank bob] (map snd bobCoins)

1.12. Integrate Daml with Off-Ledger Services 393

Daml SDK Documentation, 2.7.3

Interfaces

To use interfaces within Daml code, the target language version must be at least 1.15.

build­options:

­ ­­target=1.15

Now we can define an Asset interface which can be implemented by the Coin template. We also

define AssetInfo for use as the viewtype.

data AssetInfo = AssetInfo { info : Text } deriving (Eq,Show)

interface Asset where

viewtype AssetInfo

interface instance Asset for Coin where

view = AssetInfo { info = "A Coin" }

Now we use the queryInterface function. We pass it the type of the interface and a party. It will

return a list of active contract views for the given interface type. As beforewe throwaway the contract

ids using map snd.

aliceAssets <­ queryInterface @Asset alice

assertEq [Some $ AssetInfo "A Coin"] (map snd aliceAssets)

Run a Script

To run our script, we first build it with daml build and then run it by pointing to the DAR, the name

of our script, and the host and port our ledger is running on.

daml script ­­dar .daml/dist/script­example­0.0.1.dar ­­script­name Scrip­

tExample:test ­­ledger­host localhost ­­ledger­port 6865

Up to now, we have workedwith a script (test) that is entirely self-contained. This is fine for running

unit-test type script in the IDE, but for more complex use-cases youmay want to vary the inputs of a

script and inspect its outputs, ideally without having to recompile it. To that end, the daml script

command supports the flags ­­input­file and ­­output­file. Both flags take a filename, and

said file will be read/written as JSON, following the Daml-LF JSON Encoding.

The­­output­file option instructsdaml script towrite the result of the given­­script­name

to the given filename (creating the file if it does not exist; overwriting it otherwise). This is most

useful if the given program has a type Script b, where b is a meaningful value. In our example, we

can use this to write out the party ids that have been allocated by allocateParties:

daml script ­­dar .daml/dist/script­example­0.0.1.dar ­­script­name

ScriptExample:allocateParties ­­ledger­host localhost ­­ledger­port 6865

­­output­file ledger­parties.json

The resulting file will look similar to the following but the actual party IDs will be different each time

you run it:

{

"bank": "party­93affbfe­8717­4996­990c­

↪→9f4c5a889663::12201d00faa0968d7ab81e63ad6ad4ee0d31b08a3581b1d8596e68a1356f27519ccb

↪→", (continues on next page)

394 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

"alice": "party­99595f45­75e3­4373­997c­

↪→fbdf899439f7::12201d00faa0968d7ab81e63ad6ad4ee0d31b08a3581b1d8596e68a1356f27519ccb

↪→",

"bob": "party­6e38e1ed­c070­4ded­ba20­

↪→073e0dbdb13c::12201d00faa0968d7ab81e63ad6ad4ee0d31b08a3581b1d8596e68a1356f27519ccb

↪→"

}

Next, we want to call the initialize function with those parties using the ­­input­file flag.

If the ­­input­file flag is specified, the ­­script­name flag must point to a function of one

argument returning a Script, and the function will be called with the result of parsing the input file

as its argument. For example, we can initialize our ledger using the initialize function defined

above.

Using the previously created ­ledger­parties.json file, we can initialize our ledger as follows:

daml script ­­dar .daml/dist/script­example­0.0.1.dar ­­script­name Scrip­

tExample:initialize ­­ledger­host localhost ­­ledger­port 6865 ­­input­file

ledger­parties.json

Use Daml Script for Ledger Initialization

YoucanuseDaml script to initialize a ledger onstartup. Todo so, specify aninit­script: Scrip­

tExample:initializeUser field in yourdaml.yaml. This will automatically be picked up bydaml

start and used to initialize sandbox. During development not being able to control party ids can

often be inconvenient. Here, we rely on users which do put us in control of their id. User ids can be

used in Navigator, triggers & other tools instead of party ids.

initializeUser : Script ()

initializeUser = do

parties <­ allocateParties

bank <­ validateUserId "bank"

alice <­ validateUserId "alice"

bob <­ validateUserId "bob"

_ <­ createUser (User bank (Some parties.bank)) [CanActAs parties.bank]

_ <­ createUser (User alice (Some parties.alice)) [CanActAs parties.alice]

_ <­ createUser (User bob (Some parties.bob)) [CanActAs parties.bob]

initialize parties

Migrate From Scenarios

Existing scenarios that you used for ledger initialization can be translated to Daml script but there

are a few things to keep in mind:

1. You need to add daml­script to the list of dependencies in your daml.yaml.

2. You need to import the Daml.Scriptmodule.

3. Calls to create, exercise, exerciseByKey and createAndExercise need to be suffixed

with Cmd, e.g., createCmd.

4. Instead of specifying a scenario field in your daml.yaml, you need to specify an

init­script field. The initialization script is specified via Module:identifier for both

fields.

1.12. Integrate Daml with Off-Ledger Services 395

Daml SDK Documentation, 2.7.3

5. In Daml script, submit and submitMustFail are limited to the functionality provided by the

ledger API: A list of independent commands consisting of createCmd, exerciseCmd, cre­

ateAndExerciseCmd and exerciseByKeyCmd. There are two issues youmight run into when

migrating an existing scenario:

1. Your commands depend on each other, e.g., you use the result of a createwithin a follow-

ing command in the samesubmit. In this case, you have two options: If it is not important

that they are part of a single transaction, split them into multiple calls to submit. If you

do need them to be within the same transaction, you can move the logic to a choice and

call that using createAndExerciseCmd.

2. You use something that is not part of the 4 ledger API command types, e.g., fetch. For

fetch and fetchByKey, you can instead use queryContractId and queryContrac­

tKey with the caveat that they do not run within the same transaction. Other types of

Update statements can bemoved to a choice that you call via createAndExerciseCmd.

6. Instead of Scenario’s getParty, Daml Script provides you with allocateParty and allo­

catePartyWithHint. There are a few important differences:

1. Allocating a party always gives you back a new party (or fails). If you havemultiple calls to

getPartywith the same string and expect to get back the sameparty, you should instead

allocate the party once at the beginning and pass it along to the rest of the code.

2. If you want to allocate a party with a specific party id, you can use allocatePartyWith­

Hint x (PartyIdHint x) as a replacement for getParty x. Note that while this is sup-

ported in Daml Studio, some ledgers can behave differently and ignore the party id hint or

interpret it another way. Try to not rely on any specific party id.

7. Instead of pass and passToDate, Daml Script provides passTime and setTime.

Use Daml Script with the IDE Ledger

Similarly to running daml test or when running a script in VSCode itself via the provided buttons,

you can use daml script to run the scripts in a given DAR file within the IDE Ledger. This is a fully

in-memory child process of daml script, allowing you to quickly invoke a script without having to

spin up a ledger in the background.

To run daml script in thismode, you should provide the ­­ide­ledger flag. This flag is not com-

patible with ­­ledger­host, ­­ledger­port, ­­participant­config (described more in the

next section), and ­­json­api. Note that since this uses an in-memory ledger, no state will be pre-

served once the script finishes. You will only receive a success flag and, optionally, the script result

if you use ­­output­file.

Use Daml Script in Canton

So far, we have run Daml script against a single participant node. It is also possible to

run it in a setting where different parties are hosted on different participant nodes. To do

so, pass the ­­participant­config participant­config.json file to daml script in-

stead of ­­ledger­host and ledger­port. You can generate this file by calling utils.gener-

ate_daml_script_participants_conf(defaultParticipant = Some(one)) in the canton console or in the boot-

strap scripts.

The generated file will look similar to the one shown below:

{

"default_participant": {"host": "localhost", "port": 6866},

(continues on next page)

396 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

"participants": {

"one": {"host": "localhost", "port": 6866},

"two": {"host": "localhost", "port": 6865}

},

"party_participants": {"alice": "one", "bob": "two"}

}

This will define a participant called one, declare one as the default participant and it defines that

the party alice is hosted on participant one. Whenever you submit something as party, we will use

the participant for that party or if none is specified default_participant.

If you use utils.generate_daml_script_participants_conf() without a default partici-

pant, the default_participant won’t be defined and therefore using a party with an unspecified par-

ticipant is an error.

allocateParty will also use the default_participant. If you want to allocate a party on a spe-

cific participant, you can use allocatePartyOn which accepts the participant name as an extra

argument.

Hints for synchronizing contracts on multiple-participant Canton

When you create a contract on participant1 and try to use it on participant2, you can run

into synchronization issues where participant2 doesn’t see the contract yet. One option to

workaround this limitation is to poll until the contract is visible. In the example below, the bank

and alice parties are allocated on two different participants and to avoid synchronization issues,

we wait until the contract is visible on alice participant.

tries : Int

tries = 60

waitForCid : (Template t, HasAgreement t) => Int ­> Party ­> ContractId t ­>␣

↪→Script ()

waitForCid tries p cid

| tries <= 0 = abort $ "Cid " <> show cid <> " did not appear"

| otherwise = do

r <­ queryContractId p cid

case r of

None ­> do

sleep delay

waitForCid (tries ­ 1) p cid

Some _ ­> pure ()

where delay = seconds 1

testWithSync: LedgerParties ­> Script ()

testWithSync parties = do

coinProposalAlice <­ submit parties.bank $ createCmd (CoinProposal (Coin␣

↪→parties.bank parties.alice))

waitForCid tries parties.alice coinProposalAlice

coinAlice <­ submit parties.alice $ exerciseCmd coinProposalAlice Accept

pure ()

1.12. Integrate Daml with Off-Ledger Services 397

https://github.com/digital-asset/daml/issues/10618

Daml SDK Documentation, 2.7.3

Run Daml Script Against Ledgers with Authorization

To run Daml Script against a ledger that verifies authorization, you need to specify an access token.

There are two ways of doing that:

1. Specify a single access token via ­­access­token­file path/to/jwt. This tokenwill then

be used for all requests so it must provide claims for all parties that you use in your script.

2. If you need multiple tokens, e.g., because you only have single-party tokens you can define the

access_token field in the participant config specified via ­­participant­config. Note

that you can specify the same participant twice if you want different auth tokens. The file

should be of the format

{

"default_participant": {"host": "localhost", "port": 6866, "access_token":

↪→"default_jwt", "application_id": "myapp"},

"participants": {

"one": {"host": "localhost", "port": 6866, "access_token": "jwt_for_alice

↪→", "application_id": "myapp"},

"two": {"host": "localhost", "port": 6865, "access_token": "jwt_for_bob",

↪→"application_id": "myapp"}

},

"party_participants": {"alice": "one", "bob": "two"}

}

If you specify both ­­access­token­file and ­­participant­config, the participant config

takes precedence and the token from the file will be used for any participant that does not have a

token specified in the config.

Run Daml Script Against the HTTP JSON API

In some cases, you only have access to the HTTP JSON API but not to the gRPC of a ledger, e.g., on Daml

Hub. For this use case, Daml script can be run against the JSON API. Note that if you do have access

to the gRPC Ledger API, running Daml script against the JSON API does not have any advantages.

To run Daml script against the JSON API you have to pass the ­­json­api parameter to daml

script. There are a few differences and limitations compared to running Daml Script against the

gRPC Ledger API:

1. When running against the JSON API, the ­­host argument has to contain an http:/

/ or https:// prefix, e.g., daml script ­­host http://localhost ­­port 7575

­­json­api.

2. The JSON API only supports single-command submissions. Thismeans that within a single call

to submit you can only execute one ledger API command, e.g., one createCmd or one exer­

ciseCmd.

3. The JSON API requires authorization tokens even when it is run against a ledger that doesn’t

verify authorization. The section on authorization describes how to specify the tokens.

4. The parties used for command submissions and queries must match the parties specified in

the token exactly. For command submissions that means actAs and readAs must match

exactly what you specified whereas for queries the union of actAs and readAs must match

the parties specified in the query.

5. If you use multiple parties within your Daml Script, you need to specify one token per party or

every submission and query must specify all parties of the multi-party token.

398 Chapter 1. Canton References

https://hub.daml.com
https://hub.daml.com

Daml SDK Documentation, 2.7.3

6. getTime will always return the Unix epoch in static time mode since the time service is not

exposed via the JSON API.

7. setTime is not supported and will throw a runtime error.

1.12.6.3 Daml Triggers - Off-Ledger Automation in Daml

In addition to the actual Daml logic which is uploaded to the Ledger and the UI, Daml applications

often need to automate certain interactions with the ledger. This is commonly done in the form of

a ledger client that listens to the transaction stream of the ledger and when certain conditions are

met, e.g., when a template of a given type has been created, the client sends commands to the ledger

to create a template of another type.

It is possible to write these clients in a language of your choice, such as JavaScript, using the HTTP

JSON API. However, that introduces an additional layer of friction: you now need to translate between

the template and choice types in Daml and a representation of those Daml types in the language you

are using for your client. Daml triggers address this problem by allowing you to write certain kinds

of automation directly in Daml, reusing all the Daml types and logic that you have already defined.

Note that, while the logic for Daml triggers is written in Daml, they act like any other ledger client:

they are executed separately from the ledger, they do not need to be uploaded to the ledger and they

do not allow you to do anything that any other ledger client could not do.

If you don’t want to follow along, but still want to get the final code for this section to play with, you

can get it by running:

daml new ­­template=gsg­trigger gsg­trigger

How To Think About Triggers

It is tempting to think of Daml Triggers as snippets of code that “react to ledger events”. However,

this is not the best way to think about them; while it will work in some cases, in many corner cases

that line of thought will lead to subtle errors.

Instead, you should think of, and write, your triggers from the perspective of “correcting the current

ACS” to match some predefined expectations. Trigger rules should be a combination of checking

those expectations on the current ACS and applying corrective actions to bring back the ACS in line

with its expected state.

The “trigger” part is best thought of as an optimization: rather than check the ACS constantly, we

only apply our rules when something happens that we believe may lead to the state of the ledger

diverging from our expectations.

Sample Trigger

Our example for this tutorial builds upon the Getting StartedGuide, specifically picking up right after

the Your First Feature section.

We assume that our requirements are to build a chatbot that responds to every message with:

“Please, tell me more about that.”

That should fool anyone and pass the Turing test, easily.

1.12. Integrate Daml with Off-Ledger Services 399

Daml SDK Documentation, 2.7.3

As explainedabove, while the laymandescriptionmaybe“responds to everymessage”, our technical

description is better phrased as “ensure that, at all times, the lastmessagewe can see has been sent

by us; if that is not the case, the corrective action is to send a response to the last message we can

see”.

Daml Trigger Basics

A Daml trigger is a regular Daml project that you can build using daml build. To get access to the

API used to build a trigger, you need to add the daml­trigger library to the dependencies field in

daml.yaml:

dependencies:

­ daml­prim

­ daml­stdlib

­ daml­script

­ daml­trigger

Note: In the specific case of the Getting Started Guide, this is already included as part of the

create­daml­app template.

In addition to that you also need to import the Daml.Triggermodule in your own code.

Daml triggers automatically track the active contract set (ACS), i.e., the set of contracts that have

been created and have not been archived, and the commands in flight for you. In addition to that,

they allow you to have user-defined state that is updated based on new transactions and command

completions. For our chatbot trigger, the ACS is sufficient, so we will simply use () as the type of the

user defined state.

To create a trigger you need to define a value of type Trigger s where s is the type of your

user-defined state:

data Trigger s = Trigger

{ initialize : TriggerInitializeA s

, updateState : Message ­> TriggerUpdateA s ()

, rule : Party ­> TriggerA s ()

, registeredTemplates : RegisteredTemplates

, heartbeat : Optional RelTime

}

To clarify, this is the definition in the Daml.Trigger library, reproduced here for illustration pur-

poses. This is not something you need to add to your own code.

The initialize function is called on startup and allows you to initialize your user-defined state

based on querying the active contract set.

The updateState function is called on new transactions and command completions and can be

used to update your user-defined state based on the ACS and the transaction or completion. Since

our Daml trigger does not have any interesting user-defined state, we will not go into details here.

The rule function is the core of a Daml trigger. It defines which commands need to be sent to the

ledger based on the party the trigger is executed at, the current state of the ACS, and the user defined

state. The type TriggerA allows you to emit commands that are then sent to the ledger, query

the ACS with query, update the user-defined state, as well as retrieve the commands in flight with

getCommandsInFlight. Like Scenario or Update, you can use do notation and getTime with

TriggerA.

400 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

We can specify the templates and interfaces that our trigger will operate on. In our case, we will sim-

ply specify AllInDarwhichmeans that the trigger will receive events for all template and interface

types defined in the DAR.

It is also possible to specify an explicit list of templates and interfaces. For example, to only receive

events for the Message template, one would write:

...

registeredTemplates = RegisteredTemplates [registeredTemplate @Message],

...

This is mainly useful for performance reasons if your DAR contains many templates and interfaces

that are not relevant for your trigger. Note that providing an explicit list of templates and interfaces

also filters the result of querying the ACS using the Trigger API: contracts of the excluded templates

and interfaces cannot be queried.

Note: In these examples we used templates. Note that interfaces can be passed as well wherever a

template is passed, using the same RegisteredTemplates type. You are free to passmultiple templates

and interfaces and possibly mix the two freely in a single request.

Finally, you can specify an optional heartbeat interval at which the trigger will be sent a MHeartbeat

message. This is useful if you want to ensure that the trigger is executed at a certain rate to issue

timed commands. We will not be using heartbeats in this example.

Run a No-Op Trigger

To implement a no-op trigger, one could write the following in a separate daml/ChatBot.daml file:

module NoOp where

import qualified Daml.Trigger as T

noOp : T.Trigger ()

noOp = T.Trigger with

initialize = pure ()

updateState = _ ­> pure ()

rule = _ ­> do

debug "triggered"

pure ()

registeredTemplates = T.AllInDar

heartbeat = None

In the context of the Getting Started app, if you write the above file, then run daml start and npm

start as usual, and then set up the trigger with:

daml trigger ­­dar .daml/dist/gsg­trigger­0.1.0.dar \

­­trigger­name NoOp:noOp \

­­ledger­host localhost \

­­ledger­port 6865 \

­­ledger­user "bob"

and then play with the app as alice and bob just like you did for Your First Feature, you should see the

trigger command printing a line for each interaction, containing themessage triggered as well as

1.12. Integrate Daml with Off-Ledger Services 401

Daml SDK Documentation, 2.7.3

other debug information.

Diversion: Updating Message

Before we can make our Trigger more useful, we need to think a bit more about what it is supposed

to do. For example, we don’t want to respond to bob’s own messages. We also do not want to send

messages when we have not received any.

In order to start with something reasonably simple, we’re going to set the rule as

if the last message we can see was not sent by bob, then we’ll send "Please, tell me

more about that." to whoever sent the last message we can see.

This raises the question of how we can determine which message is the last one, given the current

structure of a message. In order to solve that, we need to add a Time field to Message, which can be

done by editing the Message template in daml/User.daml to look like:

template Message with

sender: Party

receiver: Party

content: Text

receivedAt: Time

where

signatory sender, receiver

This should result in Daml Studio reporting an error in the SendMessage choice, as it now needs to

set the receivedAt field. Here is the updated code for SendMessage:

­­ New definition for SendMessage

nonconsuming choice SendMessage: ContractId Message with

sender: Party

content: Text

controller sender

do

assertMsg "Designated user must follow you back to send a message" (elem␣

↪→sender following)

now <­ getTime

create Message with sender, receiver = username, content, receivedAt = now

The getTime action (doc) returns the time at which the command was received by the sandbox.

In more sensitive applications, this may not be sufficiently reliable, as transactions may be pro-

cessed in parallel (so “received at” timestamp order may not match actual transaction order), and

in distributed cases dishonest participantsmay fudge this value. It’s good enough for this example,

though.

Now that we have a field to sort on, and thus a way to identify the latest message, we can turn our

attention back to our trigger code.

402 Chapter 1. Canton References

/daml/stdlib/Prelude.html#function-da-internal-lf-gettime-99334

Daml SDK Documentation, 2.7.3

AutoReply

Open up the trigger code again (daml/ChatBot.daml), and change it to:

module ChatBot where

import qualified Daml.Trigger as T

import qualified User

import qualified DA.List.Total as List

import DA.Action (when)

import DA.Optional (whenSome)

autoReply : T.Trigger ()

autoReply = T.Trigger

{ initialize = pure ()

, updateState = _ ­> pure ()

, rule = \p ­> do

message_contracts <­ T.query @User.Message

let messages = map snd message_contracts

debug $ "Messages so far: " <> show (length messages)

let lastMessage = List.maximumOn (.receivedAt) messages

debug $ "Last message: " <> show lastMessage

whenSome lastMessage $ \m ­>

when (m.receiver == p) $ do

users <­ T.query @User.User

debug users

let isSender = (\user ­> user.username == m.sender)

let replyTo = List.head $ filter (\(_, user) ­> isSender user) users

whenSome replyTo $ \(sender, _) ­>

T.dedupExercise sender (User.SendMessage p "Please, tell me more␣

↪→about that.")

, registeredTemplates = T.AllInDar

, heartbeat = None

}

Refresh daml start by pressing r (followed by Enter on Windows) in its terminal, then start the

trigger with:

daml trigger ­­dar .daml/dist/gsg­trigger­0.1.0.dar \

­­trigger­name ChatBot:autoReply \

­­ledger­host localhost \

­­ledger­port 6865 \

­­ledger­user "bob"

Play a bit with alice and bob in your browser, to get a feel for how the trigger works. Watch both the

messages in-browser and the debug statements printed by the trigger runner.

Let’s walk through the rule code line-by-line:

• We use the query function to get all of the Message templates visible to the current party (p;

in our case this will be bob). Per the documentation, this returns a list of tuples (contract id,

payload), which we store as message_contracts.

• We then map the snd function on the result to get only the payloads, i.e. the actual data of the

messages we can see.

• We print, as a debugmessage, the number of messages we can see.

• On the next line, get the message with the highest receivedAt field (maximumOn).

1.12. Integrate Daml with Off-Ledger Services 403

/triggers/api/Daml-Trigger.html#function-daml-trigger-query-2759
/daml/stdlib/Prelude.html#function-ghc-base-map-40302
/daml/stdlib/Prelude.html#function-da-internal-prelude-snd-86578
/daml/stdlib/DA-List-Total.html#function-da-list-total-maximumon-67732

Daml SDK Documentation, 2.7.3

• We then print another debug message, this time printing the message our code has identified

as “the last message visible to the current party”. If you run this, you’ll see that lastMessage

is actually a Optional Message. This is because the maximumOn function will return the

element from a list for which the given functions produces the highest value if the list has at

least one element, but it needs to still do something sensible if the list is empty; in this case,

it would return None.

• When lastMessage is Some m (whenSome), we execute the given function. Otherwise,

lastMessage is None and we implicitly do nothing.

• Next, we need to checkwhether themessage has been sent to or by the party running the trigger

(with the current Daml model, it has to be one or the other, as messages are only visible to the

sender and receiver). when the expression m.receiver == p is True, our expectations of the

ledger state are wrong and we need to correct it. Otherwise, the state matches our rule and we

don’t need to do anything.

• At this point we know the state is “wrong”, per our expectations, and start engaging in correct-

ing actions. For this trigger, this means sending a message to the sender of the last message.

In order to do that, we need to find the User contract for the sender. We start by getting the

list of all User contracts we know about, which will be all users who follow the party running

the trigger (and that party’s own User contract). As for Message contracts earlier, the result

of query @User is going to be a list of tuples with (contract id, payload). The big difference

is that this time we actually want to keep the contract ids, as that is what we’ll use to send a

message back.

• We print the list of users we just fetched, as a debug message.

• We create a function isSender to identify the user we are looking for.

• We get the user contract by applying our isSender function as a filter on the list of users, and

then taking the head of that list, i.e. its first element.

• Just like maximumOn, headwill return an Optional a, so the next step is to check whether we

have actually found the relevant User contract. In most cases we should find it, but remember

that users can send us a message if we follow them, whereas we can only answer if they follow

us.

• If we did find some User contract to reply to, we extract the corresponding contract id (first

element of the tuple, sender) and discard the payload (second element, _), and we exercise

the SendMessage choice, passing in the current party p as the sender. See below for additional

information on what that dedup in the name of the command means.

Command Deduplication

Daml Triggers react tomany things, and it’s usually important tomake sure that the same command

is not sent multiple times.

For example, in our autoReply chatbot above, the rule will be triggered not only when we receive a

message, but also when we send one, as well as when we follow a user or get followed by a user, and

when we stop following a user or a user stops following us.

It’s easy to imagine a sequence of events that would make a naive trigger implementation send too

many messages. For example:

• alice sends "hi", so the trigger runs and sends an exercise command.

• _Before_ the exercise command is fully processed, carol follows bob, which triggers the

rule again. The state of all the Message contracts bob can see has not changed, so the rule

might send the response to alice again.

We obviously don’t want that to happen, as it would likely prevent us from passing that Turing test

404 Chapter 1. Canton References

/daml/stdlib/DA-List-Total.html#function-da-list-total-maximumon-67732
/daml/stdlib/DA-Optional.html#function-da-optional-whensome-23804
/daml/stdlib/DA-Action.html#function-da-action-when-53144
/daml/stdlib/Prelude.html#function-da-internal-prelude-filter-41317
/daml/stdlib/DA-List-Total.html#function-da-list-total-head-26095
/triggers/api/Daml-Trigger.html#function-daml-trigger-dedupexercise-2238

Daml SDK Documentation, 2.7.3

we were after.

Triggers offer a few features to help users manage that. Possibly the simplest one is the dedup*

family of ledger operations. When using those, the trigger runner will keep track of the commands

currently sent and prevent sending the exact same command again. In the above example, the trig-

ger would see that, when carol follows bob and the rule runs dedupExercise, there is already an

Exercise command in flight with the exact same value, in this case samemessage, same sender and

same receiver.

Note that, if instead the in-between event isalice followingcarol, this simple deduplicationmech-

anism might not work as expected: because the User contract ID for alice would have changed,

the new command is not the same as the in-flight one and thus a second SendMessage exercise

would be sent to the ledger.

Similarly, if alice sends a second message quickly after the first one, this deduplication would

prevent it, because the “response” does not have any reference to which message it’s responding

to. This may or may not be what we want.

If this simple deduplication is not suited to your use-case, you have two other tools at your disposal.

The first one is the second argument to the emitCommands action (doc), which is a list of contract

IDs. These IDs will be filtered out of any ACS query made by this trigger until the commands sub-

mitted as part of the same emitCommands call have completed. If your trigger is based on seeing

certain contracts, this can be a simple, effective way to prevent triggering it multiple times.

The last tool you have at your disposal is the getCommandsInflight action (doc), which returns all

of the commands this instance of the trigger runner has sent and that have not yet been resolved

(i.e. either committed or failed). You can then build your own logic based on this list, the ACS, and

possibly your own trigger state.

Finally, do keep in mind that all of these mechanisms rely on internal state from the trigger runner,

which keeps track of which commands it has sent and for which it’s not seen a completion. They will

all fail to deduplicate if that internal state is lost, e.g. if the trigger runner is shut down and a new one

is started. As such, these deduplicationmechanisms should be seen as an optimization rather than

a requirement for correctness. The Damlmodel should be designed such that duplicated commands

are either rejected (e.g. using keys or relying on changing contract IDs) or benign.

Authorization

When using Daml triggers against a Ledger with request authorization, you can pass

­­access­token­file token.jwt to daml trigger which will read the token from the

file token.jwt.

If you plan to run more than one trigger at a time, or triggers for more than one party at a time, you

may be interested in the Trigger Service.

1.12. Integrate Daml with Off-Ledger Services 405

https://docs.daml.com/triggers/api/Daml-Trigger.html#function-daml-trigger-emitcommands-10563
https://docs.daml.com/triggers/api/Daml-Trigger.html#function-daml-trigger-getcommandsinflight-32524

Daml SDK Documentation, 2.7.3

When Not to Use Daml Triggers

Daml triggers deliberately only allow you to express automation that listens for ledger events and

reacts to them by sending commands to the ledger.

Daml Triggers are not suited for automation that needs to interact with services or data outside

of the ledger. For those cases, you can write a ledger client using the JavaScript bindings running

against the HTTP JSON API or the Java bindings running against the gRPC Ledger API.

Trigger Service

The Run a No-Op Trigger section shows a simple method using the daml trigger command to ar-

range for the execution of a single trigger. Using this method, a dedicated process is launched to

host the trigger.

Complex workflows can require runningmany triggers formany parties and at a certain point, use of

daml trigger with its process-per-trigger model becomes unwieldy. The Trigger Service provides

themeans to hostmultiple triggers formultiple parties running against a common ledger in a single

process and provides a convenient interface for starting, stopping and monitoring them.

The Trigger Service is a ledger client that acts as an end-user agent. The Trigger Service intermediates

between the ledger and end-users by running triggers on their behalf. The Trigger Service is an HTTP

service. All requests and responses use JSON to encode data.

Start the Trigger Service

In this example, it is assumed there is a Ledger API server running on port 6865 on localhost.

daml trigger­service ­­config trigger­service.conf

The following snippet provides an example of what a possible trigger-service.conf configuration file

could look like, alongside a few annotations with regards to the meaning of the configuration keys

and possibly their default values.

{

// Paths to the DAR files containing the code executed by the trigger.

dar­paths = [

"./my­app.dar"

]

// Host address that the Trigger Service listens on. Defaults to 127.0.0.1.

address = "127.0.0.1"

// Trigger Service port number. Defaults to 8088.

// A port number of 0 will let the system pick an ephemeral port.

port = 8088

// Optional. If using 0 as the port number, consider specifying the path to a␣

↪→`port­file` where the chosen port will be saved in textual format.

//port­file = "/path/to/port­file"

// Mandatory. Ledger API server address and port.

ledger­api {

(continues on next page)

406 Chapter 1. Canton References

/app-dev/bindings-ts/index.html

Daml SDK Documentation, 2.7.3

(continued from previous page)

address = "localhost"

port = 6865

}

// Maximum inbound message size in bytes. Defaults to 4194304 (4 MB).

max­inbound­message­size = 4194304

// Minimum and maximum time interval before restarting a failed trigger.␣

↪→Defaults to 5 and 60 seconds respectively.

min­restart­interval = 5s

max­restart­interval = 60s

// Maximum HTTP entity upload size in bytes. Defaults to 4194304 (4 MB).

max­http­entity­upload­size = 4194304

// HTTP entity upload timeout. Defaults to 60 seconds.

http­entity­upload­timeout = 60s

// Use static or wall­clock time. Defaults to `wall­clock`.

time­provider­type = "wall­clock"

// Compiler configuration type to use between `default` or `dev`. Defaults to␣

↪→`default`.

compiler­config = "default"

// Time­to­live used for commands emitted by the trigger. Defaults to 30␣

↪→seconds.

ttl = 30s

// If true, initialize the database and terminate immediately. Defaults to␣

↪→false.

init­db = "false"

// Do not abort if there are existing tables in the database schema. EXPERT␣

↪→ONLY. Defaults to false.

allow­existing­schema = "false"

// Configuration of trigger runners.

trigger­config {

// The number of ledger client command invocations each trigger will attempt␣

↪→to execute in parallel. Defaults to 8.

parallelism = 8

// Maximum number of retries for a failing ledger API command submission.␣

↪→Failed submission requests may be

// handled by trigger rules. Defaults to 6.

max­retries = 6

// Used to control maximum rate at which we perform ledger client submission␣

↪→requests.

max­submission­requests = 100 // Defaults to 100.

max­submission­duration = 5s // Defaults to 5s.

// Size of the queue holding ledger API command submission failures. When␣

↪→queue is filled, submission requests

// are dropped. Defaults to 264.

(continues on next page)

1.12. Integrate Daml with Off-Ledger Services 407

Daml SDK Documentation, 2.7.3

(continued from previous page)

submission­failure­queue­size = 264

}

// Configuration for the persistent store that will be used to keep track of␣

↪→running triggers across restarts.

// Mandatory if `init­db` is true. Otherwise optional. If not provided, the␣

↪→trigger state will not be persisted

// and restored across restarts.

trigger­store {

// Mandatory. Database coordinates.

user = "postgres"

password = "password"

driver = "org.postgresql.Driver"

url = "jdbc:postgresql://localhost:5432/test?&ssl=true"

// Prefix for table names to avoid collisions. EXPERT ONLY. By default, this␣

↪→is empty and not used.

//table­prefix = "foo"

// Maximum size for the database connection pool. Defaults to 8.

pool­size = 8

// Minimum idle connections for the database connection pool. Defaults to 8.

min­idle = 8

// Idle timeout for the database connection pool. Defaults to 10 seconds.

idle­timeout = 10s

// Timeout for database connection pool. Defaults to 5 seconds.

connection­timeout = 5s

}

authorization {

// Auth client to redirect to login. Defaults to `no`.

auth­redirect = "no"

// The following options configure the auth URIs.

// Either just `auth­common­uri` or both `auth­internal­uri` and `auth­

↪→external­uri` must be specified.

// If all are specified, `auth­internal­uri` and `auth­external­uri` take␣

↪→precedence.

// Sets both the internal and external auth URIs.

//auth­common­uri = "https://oauth2/common­uri"

// Internal auth URI used by the Trigger Service to connect directly to the␣

↪→Auth Middleware.

auth­internal­uri = "https://oauth2/internal­uri"

// External auth URI (the one returned to the browser).

// This value takes precedence over the one specified for `auth­common`.

auth­external­uri = "https://oauth2/external­uri"

// Optional. URI to the auth login flow callback endpoint `/cb`. By default␣

↪→it is constructed from the incoming login request. (continues on next page)

408 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

// auth­callback­uri = "https://oauth2/callback­uri"

// Maximum number of pending authorization requests. Defaults to 250.

max­pending­authorizations = 250

// Authorization timeout. Defaults to 60 seconds.

authorization­timeout = 60s

}

// Optional. Trigger service ledger API client TLS configuration. By default␣

↪→TLS configuration is disabled.

//tls­config {

// enabled = "true"

//

// // the certificate to be used by the server

// cert­chain­file = "/path/to/participant.crt"

//

// // private key of the server

// private­key­file = "/path/to/participant.pem"

//

// // trust collection, which means that all client certificates that will be␣

↪→verified using the trusted

// // certificates in this store. If omitted, the JVM default trust store is␣

↪→used.

// trust­collection­file = "/path/to/root­ca.crt"

//}

}

The Trigger Service can also be started using command line arguments as shown below. The com-

mand daml trigger­service ­­help lists all available parameters.

Note: Using the configuration format shown above is the recommended way to configure Trigger

Service, running with command line arguments is now deprecated.

daml trigger­service ­­ledger­host localhost \

­­ledger­port 6865 \

­­wall­clock­time

Although, as we’ll see, the Trigger Service exposes an endpoint for end-users to upload DAR files to

the service it is sometimes convenient to start the service pre-configured with a specific DAR. To do

this, the ­­dar option is provided.

daml trigger­service ­­ledger­host localhost \

­­ledger­port 6865 \

­­wall­clock­time \

­­dar .daml/dist/create­daml­app­0.1.0.dar

1.12. Integrate Daml with Off-Ledger Services 409

Daml SDK Documentation, 2.7.3

Endpoints

Start a Trigger

Start a trigger. In this example, alice starts the trigger called

trigger in a module called TestTrigger of a package with ID

312094804c1468e2166bae3c9ba8b5cc0d285e31356304a2e9b0ac549df59d14. The re-

sponse contains an identifier for the running trigger that alice can use in subsequent commands

involving the trigger.

HTTP Request

• URL: /v1/triggers

• Method: POST

• Content-Type: application/json

• Content:

{

"triggerName":

↪→"312094804c1468e2166bae3c9ba8b5cc0d285e31356304a2e9b0ac549df59d14:TestTrigger:trigger

↪→",

"party": "alice",

"applicationId": "my­app­id"

}

where

• triggerName contains the identifier for the trigger in the form ${packageId}:${modu­

leName}:${identifierName}. You can find the package ID using daml damlc inspect

path/to/trigger.dar | head ­1.

• party is the party on behalf of which the trigger is running.

• applicationId is an optional field to specify the application ID the trigger will use for com-

mand submissions. If omitted, the trigger will default to using its random UUID identifier re-

turned in the start request as the application ID.

410 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

HTTP Response

{

"result":{"triggerId":"4d539e9c­b962­4762­be71­40a5c97a47a6"},

"status":200

}

Stop a Trigger

Stop a running trigger. In this example, the request asks to stop the trigger started above.

HTTP Request

• URL: /v1/triggers/:id

• Method: DELETE

• Content-Type: application/json

• Content:

HTTP Response

• Content-Type: application/json

• Content:

{

"result": {"triggerId":"4d539e9c­b962­4762­be71­40a5c97a47a6"},

"status":200

}

List Running Triggers

List the triggers running on behalf of a given party.

HTTP Request

• URL: /v1/triggers?party=:party

• Method: GET

1.12. Integrate Daml with Off-Ledger Services 411

Daml SDK Documentation, 2.7.3

HTTP Response

• Content-Type: application/json

• Content:

{

"result": {"triggerIds":["4d539e9c­b962­4762­be71­40a5c97a47a6"]},

"status":200

}

Status of a Trigger

This endpoint returns data about a trigger, including the party on behalf of which it is running, its

identifier, and its current state (querying the active contract set, running, or stopped).

HTTP Request

• URL: /v1/triggers/:id

• Method: GET

HTTP Response

• Content-Type: application/json

• Content:

{

"result":

{

"party": "Alice",

"triggerId":

↪→"312094804c1468e2166bae3c9ba8b5cc0d285e31356304a2e9b0ac549df59d14:TestTrigger:trigger

↪→",

"status": "running"

},

"status":200

}

Upload a New DAR

Upload a DAR containing one or more triggers. If successful, the DAR’s “main package ID” will be

in the response (the main package ID for a DAR can also be obtained using daml damlc inspect

path/to/dar | head ­1).

412 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

HTTP Request

• URL: /v1/packages

• Method: POST

• Content-Type: multipart/form­data

• Content:

dar=$dar_content

HTTP Response

• Content-Type: application/json

• Content:

{

"result": {"mainPackageId":

↪→"312094804c1468e2166bae3c9ba8b5cc0d285e31356304a2e9b0ac549df59d14"},

"status": 200

}

Liveness Check

This can be used as a liveness probe, e.g., in Kubernetes.

HTTP Request

• URL: /livez

• Method: GET

HTTP Response

A status code of 200 indicates a successful liveness check.

• Content-Type: application/json

• Content:

{ "status": "pass" }

Readiness Check

This can be used as a readiness probe, e.g., in Kubernetes.

1.12. Integrate Daml with Off-Ledger Services 413

Daml SDK Documentation, 2.7.3

HTTP Request

• URL: /readyz

• Method: GET

HTTP Response

A status code of 200 indicates a successful readiness check.

Metrics

Enable and Configure Reporting

To enable metrics and configure reporting, you can use the below config block in application config:

metrics {

// Start a metrics reporter. Must be one of "console", "csv:///PATH",

↪→"graphite://HOST[:PORT][/METRIC_PREFIX]", or "prometheus://HOST[:PORT]".

reporter = "prometheus://localhost:9000"

// Set metric reporting interval, examples: 1s, 30s, 1m, 1h

reporting­interval = 30s

}

Reported Metrics

If a Prometheus metrics reporter is configured, the Trigger Service exposes the common HTTP metrics

for all endpoints.

Authorization

The trigger service issues commands to the ledger thatmay require authorization through an access

token. See Ledger Authorization for a description of authentication and authorization on Daml ledgers.

How to obtain an access token is defined by the ledger operator. The trigger service interfaces with

an Auth Middleware to obtain an access token in order to decouple it from the specific authentica-

tion and authorization mechanism used for a given ledger. The documentation includes an Example

Configuration using Auth0.

Enable Authorization

You can use the following command-line flags to configure the trigger service to interface with a

given auth middleware.

­­auth The URI to the auth middleware. The auth middleware should be reachable under this URI

from the client as well as the trigger service itself.

­­auth­callback The login workflow may require redirection to the callback endpoint of the trig-

ger service. This flag configures theURI to the trigger service’s/cb endpoint, it should be reach-

able from the client.

414 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

For example, use the following flags if the trigger service and the auth middleware are both running

behind a reverse proxy.:

­­auth https://example.com/auth

­­auth­callback https://example.com/trigger/cb

Assuming that the auth middleware is available under https://example.com/auth and the trig-

ger service is available under https://example.com/trigger.

Note that the trigger service must be able to share cookies with the auth middleware as described

in the Deployment notes.

Obtain Authorization

The trigger service will respond with 401 Unauthorized if a request requires authentication and au-

thorization of the user. The trigger service can be configured to redirect to the /login endpoint via

HTTP redirect (302 Found) using the command-line flag ­auth­redirect. This can be useful for

testing if the IAM does not require user input.

The 401 Unauthorized response will include a WWW-Authenticate header of the form:

WWW­Authenticate

DamlAuthMiddleware realm=":claims",login=":login",auth=":auth"

where

• claims are the required Daml Ledger Claims.

• login is the URL to initiate the login flow on the auth middleware.

• auth is the URL to check whether authorization has been granted.

The response will also include an entity with

• Content-Type: application/json

• Content:

{

"realm": ":claims",

"login": ":auth",

"auth": ":login",

}

An application can direct the user to the login URL, wait until authorization has been granted, and re-

peat the original request once authorization has been granted. The auth URL can be used to poll until

authorization has been granted. Alternatively, it can append a custom redirect_url parameter to

the login URL and redirect to the resulting URL. Note that login with the IAM may require entering

credentials into a web-form, i.e. the login URL should be opened in a web browser.

1.12. Integrate Daml with Off-Ledger Services 415

https://tools.ietf.org/html/rfc7235#section-4.1

Daml SDK Documentation, 2.7.3

Example

This section describes how a web frontend can interact with the trigger service when authorization

is required. Note, to avoid cross-origin requests and to enable sharing of cookies theweb application

and authmiddleware should be exposed under the same domain, e.g. behind a shared reverse proxy.

Let’s start with a request to the list running triggers endpoint.

const resp = await fetch("/trigger/v1/triggers?party=Alice");

if (resp.status >= 200 && resp.status < 300) {

const result = await resp.json();

// process result ...

} else if (resp.status === 401) {

// handle Unauthorized ...

} else {

// handle other error ...

}

If the request succeeds it decodes the JSON response body and continues processing the result,

otherwise it checks if the request failed with 401 Unauthorized or another error. We will ignore the

general error case and focus only on handling the Unauthorized response.

Login via Redirect

A simple solution is to redirect the browser to the login URL after adding a redirect_url parameter

that points back to the current page.

const challenge = await resp.json();

var loginUrl = new URL(challenge.login);

loginUrl.searchParams.append("redirect_uri", window.location.href);

window.location.replace(loginUrl.href);

This code first decodes the JSON encoded authentication challenge included in the response body,

then it extends the login URL with a redirect_uri parameter that points back to the current page,

and redirects the browser to the login flow. The browser will be redirected to the original page after

the login flow completed at which point authorization should have been granted and the original

request should succeed.

Login via Popup

Another solution is to direct the user to the login page in a separate window, wait until authorization

has been granted, and then retry the original request.

const challenge = await resp.json();

await popupLogin(challenge.login, challenge.auth);

// retry original request ...

The function popupLogin opens the login URL in a popup window and polls on the auth URL until

authorization has been granted. It raises an error if the login window closes before authorization has

been granted.

416 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

function popupLogin(login, auth) {

return new Promise(function (resolve, reject) {

var popup = window.open(login);

var timer = setInterval(async function() {

const closed = popup.closed;

const resp = await fetch(auth);

if (resp.status >= 200 && resp.status < 300) {

// The user logged in

clearInterval(timer);

popup.close();

resolve();

} else if (closed) {

// The popup is closed but we are not logged in.

reject(new Error("Login failed"))

}

}, 1000);

});

}

Auth Middleware

Daml ledgers only validate authorization tokens. The issuance of those tokens however is some-

thing defined by the participant operator and can vary significantly across deployments. This poses

a challenge when developing applications that need to be able to acquire and refresh authorization

tokens but don’t want to tie themselves to any particular mechanism for token issuance. The Auth

Middleware aims to address this problembyproviding anAPI that decouplesDaml applications from

these details. The participant operator can provide an Auth Middleware that is suitable for their au-

thentication and authorization mechanism. Daml includes an implementation of an Auth Middle-

ware that supports OAuth 2.0 Authorization Code Grant. If this implementation is not compatible

with your mechanism for token issuance, you can implement your own Auth Middleware provided it

conforms to the same API.

Features

The Auth Middleware is designed to fulfill the following goals:

• Be agnostic of the authentication and authorization protocol required by the identity and ac-

cess management (IAM) system used by the participant operator.

• Allow fine grained access control via Daml ledger claims.

• Support token refresh for long running clients that should not require user interaction.

1.12. Integrate Daml with Off-Ledger Services 417

https://oauth.net/2/grant-types/authorization-code/

Daml SDK Documentation, 2.7.3

Auth Middleware API

An implementation of the Auth Middleware must provide the following API.

Obtain Access Token

The application contacts this endpoint to determine if the issuer of the request is authenticated

and authorized to access the given claims. The application must forward any cookies that it itself

received in the original request. The response will contain an access token and optionally a refresh

token if the issuer of the request is authenticated and authorized. Otherwise, the response will be

401 Unauthorized.

HTTP Request

• URL: /auth?claims=:claims

• Method: GET

• Headers: Cookie

where

• claims are the requested Daml Ledger Claims.

For example:

/auth?claims=actAs:Alice+applicationId:MyApp

Note: When using user management, the participant operator may have configured their IAM to is-

sue user tokens. The Auth Middleware currently doesn’t accept an input parameter specific to user

IDs. As such, it is up to the IAM to map claims request to the required user token. Our recommenda-

tion to participant operators is tomap theapplicationId claim to the required user ID. Application

developers should contact their ledger operator to understand how they are supposed to request for

a token.

HTTP Response

{

"access_token": "...",

"refresh_token": "..."

}

where

• access_token is the access token to use for Daml ledger commands.

• refresh_token (optional) can be used to refresh an expired access token on the /refresh

endpoint.

418 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Request Authorization

The application directs the user to this endpoint if the /auth endpoint returned 401 Unauthorized.

This will request authentication and authorization of the user from the IAM for the given claims. E.g.

in the OAuth 2.0 based implementation included in Daml, this will start an Authorization Code Grant

flow.

If authorization is granted this will store the access and optional refresh token in a cookie. The

request can define a callback URI, if specified this endpoint will redirect to the callback URI at the

end of the flow. Otherwise, it will respond with a status code that indicates whether authorization

was successful or not.

HTTP Request

• URL: /login?claims=:claims&redirect_uri=:redirect_uri&state=:state

• Method: GET

where

• claims are the requested Daml Ledger Claims.

• redirect_uri (optional) redirect to this URI at the end of the flow. Passes error and option-

ally error_description parameters if authorization failed.

• state (optional) forward this parameter to the redirect_uri if specified.

For example:

/login?claims=actAs:Alice+applicationId:MyApp&redirect_uri=http://example.com/cb&

↪→state=2b56cc2e­01ad­4e51­a9b3­124d4bbe0a91

Refresh Access Token

The application contacts this endpoint to refresh an expired access token without requiring user

input. Token refresh is available if the /auth endpoint return a refresh token along side the access

token. This endpoint will return a new access token and optionally a new refresh token to replace the

old.

HTTP Request

• URL: /refresh

• Method: POST

• Content-Type: application/json

• Content:

{

"refresh_token": "..."

}

where

• refresh_token is the refresh token returned by /auth or a previous /refresh request.

1.12. Integrate Daml with Off-Ledger Services 419

Daml SDK Documentation, 2.7.3

HTTP Response

{

"access_token": "...",

"refresh_token": "..."

}

where

• access_token is the access token to use for Daml ledger commands.

• refresh_token (optional) can be used to refresh an expired access token on the /refresh

endpoint.

Daml Ledger Claims

A list of claims specifies the set of capabilities that are requested. These are passed as a

URL-encoded, space-separated list of individual claims of the following form:

• admin Access to admin-level services.

• readAs:<Party Name> Read access for the given party.

• actAs:<Party Name> Issue commands on behalf of the given party.

• applicationId:<Application Id> Restrict access to commands issued with the given application

ID.

See Access Tokens and Claims for further information on Daml ledger capabilities.

OAuth 2.0 Auth Middleware

Daml includes an implementation of an auth middleware that supports OAuth 2.0 Authorization

Code Grant. The implementation aims to be configurable to support different OAuth 2.0 providers

and to allow custommappings from Daml ledger claims to OAuth 2.0 scopes.

OAuth 2.0 Configuration

RFC 6749 specifies that OAuth 2.0 providers offer two endpoints: The authorization endpoint and the

token endpoint. The URIs for these endpoints can be configured independently using the following

fields:

• oauth­auth

• oauth­token

The OAuth 2.0 provider may require that the application identify itself using a client identifier and

client secret. These can be specified using the following environment variables:

• DAML_CLIENT_ID

• DAML_CLIENT_SECRET

The auth middleware assumes that the OAuth 2.0 provider issues JWT access tokens. The /auth

endpoint will validate the token, if available, and ensure that it grants the requested claims. The

authmiddleware accepts the same command-line flags as the Daml Sandbox to define the public key

for token validation.

420 Chapter 1. Canton References

https://oauth.net/2/grant-types/authorization-code/
https://oauth.net/2/grant-types/authorization-code/
https://tools.ietf.org/html/rfc6749#section-3
https://tools.ietf.org/html/rfc6749#section-3.1
https://tools.ietf.org/html/rfc6749#section-3.2

Daml SDK Documentation, 2.7.3

Request Templates

The exact format of OAuth 2.0 requestsmay vary between providers. Furthermore, themapping from

Daml ledger claims to OAuth 2.0 scopes is defined by the IAM operator. For that reason OAuth 2.0

requests made by auth middleware can be configured using user defined Jsonnet templates. Tem-

plates are parameterized configurations expressed as top-level functions.

Authorization Request

This template defines the format of the Authorization request. Use the following config field to use

a custom template:

• oauth­auth­template

Arguments

The template will be passed the following arguments:

• config (object)

– clientId (string) the OAuth 2.0 client identifier

– clientSecret (string) the OAuth 2.0 client secret

• request (object)

– claims (object) the requested claims

* admin (bool)

* applicationId (string or null)

* actAs (list of string)

* readAs (list of string)

– redirectUri (string)

– state (string)

Returns

The query parameters for the authorization endpoint encoded as an object with string values.

Example

local scope(claims) =

local admin = if claims.admin then "admin";

local applicationId = if claims.applicationId != null then "applicationId:" +␣

↪→claims.applicationId;

local actAs = std.map(function(p) "actAs:" + p, claims.actAs);

local readAs = std.map(function(p) "readAs:" + p, claims.readAs);

[admin, applicationId] + actAs + readAs;

function(config, request) {

"audience": "https://daml.com/ledger­api",

"client_id": config.clientId,

"redirect_uri": request.redirectUri,

(continues on next page)

1.12. Integrate Daml with Off-Ledger Services 421

https://jsonnet.org/
https://tools.ietf.org/html/rfc6749#section-4.1.1

Daml SDK Documentation, 2.7.3

(continued from previous page)

"response_type": "code",

"scope": std.join(" ", ["offline_access"] + scope(request.claims)),

"state": request.state,

}

Token Request

This template defines the format of the Token request. Use the following config field to use a custom

template:

• oauth­token­template

Arguments

The template will be passed the following arguments:

• config (object)

– clientId (string) the OAuth 2.0 client identifier

– clientSecret (string) the OAuth 2.0 client secret

• request (object)

– code (string)

– redirectUri (string)

Returns

The request parameters for the token endpoint encoded as an object with string values.

Example

function(config, request) {

"client_id": config.clientId,

"client_secret": config.clientSecret,

"code": request.code,

"grant_type": "authorization_code",

"redirect_uri": request.redirectUri,

}

Refresh Request

This template defines the format of the Refresh request. Use the following config field to use a cus-

tom template:

• oauth­refresh­template

422 Chapter 1. Canton References

https://tools.ietf.org/html/rfc6749#section-4.1.3
https://tools.ietf.org/html/rfc6749#section-6

Daml SDK Documentation, 2.7.3

Arguments

The template will be passed the following arguments:

• config (object)

– clientId (string) the OAuth 2.0 client identifier

– clientSecret (string) the OAuth 2.0 client secret

• request (object)

– refreshToken (string)

Returns

The request parameters for the authorization endpoint encoded as an object with string values.

Example

function(config, request) {

"client_id": config.clientId,

"client_secret": config.clientSecret,

"grant_type": "refresh_code",

"refresh_token": request.refreshToken,

}

Deployment Notes

The authmiddleware API relies on sharing cookies between the authmiddleware and the Daml appli-

cation. One way to enable this is to expose the authmiddleware and the Daml application under the

same domain, e.g. through a reverse proxy. Note that you will need to specify the external callback

URI in that case using the ­­callback command-line flag.

For example, assuming the following nginx configuration snippet:

http {

server {

server_name example.com

location /auth/ {

proxy_pass http://localhost:3000/;

}

}

}

You would invoke the OAuth 2.0 auth middleware with the following flags:

oauth2­middleware \

­­config oauth­middleware.conf

The required config would look like

{

// Environment variables:

(continues on next page)

1.12. Integrate Daml with Off-Ledger Services 423

Daml SDK Documentation, 2.7.3

(continued from previous page)

// DAML_CLIENT_ID The OAuth2 client­id ­ must not be empty

// DAML_CLIENT_SECRET The OAuth2 client­secret ­ must not be empty

client­id = ${DAML_CLIENT_ID}

client­secret = ${DAML_CLIENT_SECRET}

//IP address that OAuth2 Middleware service listens on. Defaults to 127.0.0.1.

address = "127.0.0.1"

//OAuth2 Middleware service port number. Defaults to 3000. A port number of 0␣

↪→will let the system pick an ephemeral port. Consider specifying `­­port­file`␣

↪→option with port number 0.

port = 3000

//URI to the auth middleware's callback endpoint `/cb`. By default constructed␣

↪→from the incoming login request.

callback­uri = "https://example.com/auth/cb"

//Maximum number of simultaneously pending login requests. Requests will be␣

↪→denied when exceeded until earlier requests have been completed or timed out.

max­login­requests = 250

//Login request timeout. Requests will be evicted if the callback endpoint␣

↪→receives no corresponding request in time.

login­timeout = 60s

//Enable the Secure attribute on the cookie that stores the token. Defaults to␣

↪→true. Only disable this for testing and development purposes.

cookie­secure = "true"

//URI of the OAuth2 authorization endpoint

oauth­auth="https://oauth2­provider.com/auth_uri"

//URI of the OAuth2 token endpoint

oauth­token="https://oauth2­provider.com/token_uri"

//OAuth2 authorization request Jsonnet template

oauth­auth­template="file://path/oauth/auth/template"

//OAuth2 token request Jsonnet template

oauth­token­template = "file://path/oauth/token/template"

//OAuth2 refresh request Jsonnet template

oauth­refresh­template = "file://path/oauth/refresh/template"

// Enables JWT­based authorization, where the JWT is signed by one of the below␣

↪→Jwt based token verifiers

token­verifier {

// type can be rs256­crt, es256­crt, es512­crt or rs256­jwks

type = "rs256­jwks"

// X509 certificate file (.crt)/JWKS url from where the public key is loaded

uri = "https://example.com/.well­known/jwks.json"

}

}

The oauth2-middleware can also be started using cli-args.

Note: Configuration file is the recommended way to run oauth2-middleware, running via cli-args is

424 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

now deprecated

oauth2­middleware \

­­callback https://example.com/auth/cb \

­­address localhost \

­­http­port 3000 \

­­oauth­auth https://oauth2­provider.com/auth_uri \

­­oauth­token https://oauth2­provider.com/token_uri \

­­auth­jwt­rs256­jwks https://example.com/.well­known/jwks.json

Some browsers reject Secure cookies on unencrypted connections even on localhost. You can pass

the command-line flag ­­cookie­secure no for testing and development on localhost to avoid

this.

Metrics

You may configure the oauth2-middleware to expose the common HTTP metrics via a Prometheus re-

porter by adding the below section to the application config:

metrics {

// Start a metrics reporter. Must be one of "console", "csv:///PATH",

↪→"graphite://HOST[:PORT][/METRIC_PREFIX]", or "prometheus://HOST[:PORT]".

reporter = "prometheus://localhost:9000"

// Set metric reporting interval , examples : 1s, 30s, 1m, 1h

reporting­interval = 30s

}

Liveness and Readiness Endpoints

The following sections describe the endpoints that can be used to probe the liveness and readiness

of the auth middleware service.

Liveness Check

This can be used as a liveness probe, e.g., in Kubernetes.

HTTP Request

• URL: /livez

• Method: GET

1.12. Integrate Daml with Off-Ledger Services 425

Daml SDK Documentation, 2.7.3

HTTP Response

A status code of 200 indicates a successful liveness check.

• Content-Type: application/json

• Content:

{ "status": "pass" }

Readiness Check

This can be used as a readiness probe, e.g., in Kubernetes.

HTTP Request

• URL: /readyz

• Method: GET

HTTP Response

A status code of 200 indicates a successful readiness check.

1.12.7 Errors

1.12.7.1 Command Deduplication

The interaction of a Daml application with the ledger is inherently asynchronous: applications send

commands to the ledger, and some time later they see the effect of that command on the ledger.

Many things can fail during this time window:

• The application can crash.

• The participant node can crash.

• Messages can be lost on the network.

• The ledger may be slow to respond due to a high load.

If you want to make sure that an intended ledger change is not executed twice, your application

needs to robustly handle all failure scenarios. This guide covers the following topics:

• How command deduplication works.

• How applications can effectively use the command deduplication.

426 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

How Command Deduplication Works

The following fields in a command submissions are relevant for command deduplication. The first

three form the change ID that identifies the intended ledger change.

• The union of party and act_as define the submitting parties.

• The application ID identifies the application that submits the command.

• The command ID is chosen by the application to identify the intended ledger change.

• The deduplication period specifies the period for which no earlier submissions with the same

change ID should have been accepted, as witnessed by a completion event on the command

completion service. If such a change has been accepted in that period, the current submission

shall be rejected. The period is specified either as a deduplication duration or as a deduplication

offset (inclusive).

• The submission ID is chosen by the application to identify a specific submission. It is included in

the corresponding completion event so that the application can correlate specific submissions

to specific completions. An application should never reuse a submission ID.

The ledgermay arbitrarily extend the deduplication period specified in the submission, even beyond

the maximum deduplication duration specified in the ledger configuration.

Note: The maximum deduplication duration is the length of the deduplication period guaranteed

to be supported by the participant.

The deduplication period chosen by the ledger is the effective deduplication period. The ledger may

also convert a requested deduplication duration into an effective deduplication offset or vice versa.

The effective deduplication period is reported in the command completion event in the deduplication

duration or deduplication offset fields.

A command submission is considered a duplicate submission if at least one of the following holds:

• The submitting participant’s completion service contains a successful completion event for

the same change ID within the effective deduplication period.

• The participant or Daml ledger are aware of another command submission in-flight with the

same change ID when they perform command deduplication.

The outcome of command deduplication is communicated as follows:

• Commandsubmissions via the commandservice indicate the commanddeduplication outcome

as a synchronous gRPC response unless the gRPC deadline was exceeded.

Note: The outcome MAY additionally appear as a completion event on the command comple-

tion service, but applications using the command service typically need not process completion

events.

• Command submissions via the command submission service can indicate the outcome as a syn-

chronous gRPC response, or asynchronously through the command completion service. In partic-

ular, the submission may be a duplicate even if the command submission service acknowl-

edges the submission with the gRPC status code OK.

Independently of how the outcome is communicated, command deduplication generates the follow-

ing outcomes of a command submission:

• If there is no conflicting submission with the same change ID on the Daml ledger or in-flight,

the completion event and possibly the response convey the result of the submission (success

1.12. Integrate Daml with Off-Ledger Services 427

https://grpc.io/blog/deadlines/

Daml SDK Documentation, 2.7.3

or a gRPC error; Error Codes explains how errors are communicated).

• The gRPC status code ALREADY_EXISTS with error code ID DUPLICATE_COMMAND indicates that

there is an earlier command completion for the same change ID within the effective deduplica-

tion period.

• The gRPC status code ABORTED with error code id SUBMISSION_ALREADY_IN_FLIGHT indicates

that another submission for the same change ID was in flight when this submission was pro-

cessed.

• The gRPC status code FAILED_PRECONDITION with error code id INVALID_DEDUPLICATION_PE-

RIOD indicates that the specified deduplication period is not supported. The fields

longest_duration or earliest_offset in the metadata specify the longest duration or

earliest offset that is currently supported on the Ledger API endpoint. At least one of the two

fields is present.

Neither deduplication durations up to the maximum deduplication duration nor deduplication

offsets published within that duration SHOULD result in this error. Participants may accept

longer periods at their discretion.

• The gRPC status code FAILED_PRECONDITION with error code id PARTICI-

PANT_PRUNED_DATA_ACCESSED, when specifying a deduplication period represented by an

offset, indicates that the specified deduplication offset has been pruned. The field earli­

est_offset in the metadata specifies the last pruned offset.

For deduplication to work as intended, all submissions for the same ledger change must be sub-

mitted via the same participant. Whether a submission is considered a duplicate is determined by

completion events, and by default a participant outputs only the completion events for submissions

that were requested via the very same participant.

How to Use Command Deduplication

To effectuate a ledger change exactly once, the application must resubmit a command if an ear-

lier submission was lost. However, the application typically cannot distinguish a lost submission

from slow submission processing by the ledger. Command deduplication allows the application to

resubmit the command until it is executed and reject all duplicate submissions thereafter.

Some ledger changes can be executed at most once, so no command deduplication is needed for

them. For example, if the submitted command exercises a consuming choice on a given contract ID,

this command can be accepted at most once because every contract can be archived at most once.

All duplicate submissions of such a change will be rejected with CONTRACT_NOT_ACTIVE.

In contrast, a Create command would create a fresh contract instance of the given template for each

submission that reaches the ledger (unless other constraints such as the template preconditions or

contract key uniqueness are violated). Similarly, an Exercise command on a non-consuming choice

or an Exercise-By-Key command may be executed multiple times if submitted multiple times. With

command deduplication, applications can ensure such intended ledger changes are executed only

once within the deduplication period, even if the application resubmits, say because it considers the

earlier submissions to be lost or forgot during a crash that it had already submitted the command.

428 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Known Processing Time Bounds

For this strategy, youmust estimate a bound B on the processing time and forward clock drifts in the

Daml ledger with respect to the application’s clock. If processing measured across all retries takes

longer than your estimate B, the ledger change may take effect several times. Under this caveat, the

following strategy works for applications that use the Command Service or the Command Submission

and Command Completion Service.

Note: The bound B should be at most the configuredmaximum deduplication duration. Otherwise you

rely on the ledger accepting longer deduplication durations. Such reliance makes your application

harder to port to other Daml ledgers and fragile, as the ledger may stop accepting such extended

durations at its own discretion.

1. Choose a command ID for the ledger change, in a way that makes sure the same ledger change

is always assigned the same command ID. Either determine the command ID deterministically

(e.g., if your contract payload contains a globally unique identifier, you can use that as your

command ID), or choose the command ID randomly and persist it with the ledger change so

that the application can use the same command ID in resubmissions after a crash and restart.

Note: Make sure that you assign the same command ID to all command (re-)submissions

of the same ledger change. This is useful for the recovery procedure after an application

crash/restart. After a crash, the application in general cannot know whether it has submit-

ted a set of commands before the crash. If in doubt, resubmit the commands using the same

command ID. If the commands had been submitted before the crash, command deduplication

on the ledger will reject the resubmissions.

2. When you use the Command Completion Service, obtain a recent offset on the completion stream

OFF1, say the current ledger end.

3. Submit the command with the following parameters:

• Set the command ID to the chosen command ID from Step 1.

• Set the deduplication duration to the bound B.

Note: It is prudent to explicitly set the deduplication duration to the desired bound B,

to guard against the case where a ledger configuration update shortens the maximum

deduplication duration. With the bound B, you will be notified of such a problem via an IN-

VALID_DEDUPLICATION_PERIOD error if the ledger does not support deduplication durations

of length B any more.

If you omitted the deduplication period, the currently validmaximumdeduplication dura-

tion would be used. In this case, a ledger configuration update could silently shorten the

deduplication period and thus invalidate your deduplication analysis.

• Set the submission ID to a fresh value, e.g., a random UUID.

• Set the timeout (gRPC deadline) to the expected submission processing time (Command

Service) or submission hand-off time (Command Submission Service).

The submission processing time is the time between when the application sends off a

submission to the Command Service and when it receives (synchronously, unless it times

out) the acceptance or rejection. The submission hand-off time is the time betweenwhen

the application sends off a submission to the Command Submission Service and when it

obtains a synchronous response for this gRPC call. After the RPC timeout, the application

considers the submission as lost and enters a retry loop. This timeout is typically much

1.12. Integrate Daml with Off-Ledger Services 429

Daml SDK Documentation, 2.7.3

shorter than the deduplication duration.

4. Wait until the RPC call returns a response.

• Status codes other than OK should be handled according to error handling.

• When you use the Command Service and the response carries the status code OK, the ledger

change took place. You can report success.

• When you use the Command Submission Service, subscribe with the Command Completion

Service for completions for actAs from OFF1 (exclusive) until you see a completion event

for the change ID and the submission ID chosen in Step 3. If the completion’s status is OK,

the ledger change took place and you can report success. Other status codes should be

handled according to error handling.

This step needs no timeout as the Command Submission Service acknowledges a submis-

sion only if there will eventually be a completion event, unless relevant parts of the system

become permanently unavailable.

Error Handling

Error handling is needed when the status code of the command submission RPC call or in the com-

pletion event is not OK. The following table lists appropriate reactions by status code (written as STA­

TUS_CODE) and error code (written in capital letters with a link to the error code documentation).

Fields in the error metadata are written as field in lowercase letters.

430 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Table 1: Command deduplication error handling with

known processing time bound

Error condi-

tion

Reaction

DEAD­

LINE_EX­

CEEDED

Consider the submission lost.

Retry from Step 2, obtaining the completion offset OFF1, and possibly increase

the timeout.

Application

crashed

Retry from Step 2, obtaining the completion offset OFF1.

AL­

READY_EX­

ISTS / DU-

PLICATE_COM-

MAND

The change ID has already been accepted by the ledger within the reported dedu-

plication period. The optional field completion_offset contains the precise

offset. The optional field existing_submission_id contains the submission

ID of the successful submission. Report success for the ledger change.

FAILED_PRE­

CONDITION /

INVALID_DEDU-

PLICATION_PE-

RIOD

The specified deduplication period is longer than what the Daml ledger supports

or the ledger cannot handle the specified deduplication offset. earliest_off­

set contains the earliest deduplication offset or longest_duration contains

the longest deduplication duration that can be used (at least one of the twomust

be provided).

Options:

• Negotiate support for longer deduplication periodswith the ledger operator.

• Set the deduplication offset to earliest_offset or the deduplication du-

ration to longest_duration and retry from Step 2, obtaining the comple-

tion offset OFF1. This may lead to accepting the change twice within the

originally intended deduplication period.

FAILED_PRE­

CONDITION

/ PARTICI-

PANT_PRUNED_DATA_AC-

CESSED

The specified deduplication offset has been pruned by the participant. earli­

est_offset contains the last pruned offset.

Use the Command Completion Service by asking for the completions,

starting from the last pruned offset by setting offset to the value of

earliest_offset, and use the first received offset as a deduplica-

tion offset.

ABORTED

/ SUBMIS-

SION_AL-

READY_IN_FLIGHT

This error

occurs only

as an RPC

response,

not inside a

completion

event.

There is already another submission in flight, with the submission ID in exist­

ing_submission_id.

• When you use the Command Service, wait a bit and retry from Step 3, submit-

ting the command.

Since the in-flight submissionmight still be rejected, (repeated) resubmis-

sion ensures that you (eventually) learn the outcome: If an earlier submis-

sion was accepted, you will eventually receive a DUPLICATE_COMMAND rejec-

tion. Otherwise, you have a second chance to get the ledger change ac-

cepted on the ledger and learn the outcome.

• When you use the Command Completion Service, look for a completion for ex­

isting_submission_id instead of the chosen submission ID in Step 4.

ABORTED /

other error

codes

Wait a bit and retry from Step 2, obtaining the completion offset OFF1.

other error

conditions

Use background knowledge about the business workflow and the current ledger

state to decide whether earlier submissions might still get accepted.

• If you conclude that it cannot be accepted anymore, stop retrying and report

that the ledger change failed.

• Otherwise, retry from Step 2, obtaining a completion offset OFF1, or give up

without knowing for sure that the ledger change will not happen.

For example, if the ledger change only creates a contract instance of a template,

you can never be sure, as any outstanding submission might still be accepted

on the ledger. In particular, you must not draw any conclusions from not having

received a SUBMISSION_ALREADY_IN_FLIGHT error, because the outstanding sub-

mission may be queued somewhere and will reach the relevant processing point

only later.

1.12. Integrate Daml with Off-Ledger Services 431

Daml SDK Documentation, 2.7.3

Failure Scenarios

The above strategy can fail in the following scenarios:

1. The bound B is too low: The command can be executed multiple times.

Possible causes:

• Youhave retried for longer than the deduplication duration, but never got ameaningful an-

swer, e.g., because the timeout (gRPC deadline) is too short. For example, this can happen

due to long-running Daml interpretation when using the Command Service.

• The application clock drifts significantly from the participant’s or ledger’s clock.

• There are unexpected network delays.

• Submissions are retried internally in the participant or Daml ledger and those retries do

not stop before B is over. Refer to the specific ledger’s documentation for more informa-

tion.

2. Unacceptable changes cause infinite retries

You need business workflow knowledge to decide that retrying does not make sense any more.

Of course, you can always stop retrying and accept that you do not know the outcome for sure.

Unknown Processing Time Bounds

Finding a good bound B on the processing time is hard, and there may still be unforeseen circum-

stances that delay processing beyond the chosen bound B. You can avoid these problems by using

deduplication offsets instead of durations. An offset defines a point in the history of the ledger and is

thus not affected by clock skews and network delays. Offsets are arguably less intuitive and require

more effort by the application developer. We recommend the following strategy for using deduplica-

tion offsets:

1. Choose a fresh command ID for the ledger change and the actAs parties, which (together with

the application ID) determine the change ID. Remember the command ID across application

crashes. (Analogous to Step 1 above)

2. Obtain a recent offsetOFF0 on the completion event streamand remember across crashes that

you use OFF0 with the chosen command ID. There are several ways to do so:

• Use the Command Completion Service by asking for the current ledger end.

Note: Some ledger implementations reject deduplication offsets that do not iden-

tify a command completion visible to the submitting parties with the error code id IN-

VALID_DEDUPLICATION_PERIOD. In general, the ledger end need not identify a command com-

pletion that is visible to the submitting parties. When running on such a ledger, use the

Command Service approach described next.

• Use the Command Service to obtain a recent offset by repeatedly submitting a dummy

command, e.g., a Create-And-Exercise command of some single-signatory template with the

Archive choice, until you get a successful response. The response contains the completion

offset.

3. When you use the Command Completion Service:

• If you execute this step the first time, set OFF1 = OFF0.

• If you execute this step as part of error handling retrying from Step 3, obtaining the com-

pletion offset OFF1, obtain a recent offset on the completion stream OFF1, say its current

end. (Analogous to step 2 above)

4. Submit the command with the following parameters (analogous to Step 3 above except for the

deduplication period):

432 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

• Set the command ID to the chosen command ID from Step 1.

• Set the deduplication offset to OFF0.

• Set the submission ID to a fresh value, e.g., a random UUID.

• Set the timeout (gRPC deadline) to the expected submission processing time (Command

Service) or submission hand-off time (Command Submission Service).

5. Wait until the RPC call returns a response.

• Status codes other than OK should be handled according to error handling.

• When you use the Command Service and the response carries the status code OK, the ledger

change took place. You can report success. The response contains a completion offset that

you can use in Step 2 of later submissions.

• When you use the Command Submission Service, subscribe with the Command Completion

Service for completions for actAs from OFF1 (exclusive) until you see a completion event

for the change ID and the submission ID chosen in step 3. If the completion’s status is OK,

the ledger change took place and you can report success. Other status codes should be

handled according to error handling.

Error Handling

The same as for known bounds, except that the former retry from Step 2 becomes retry from Step 3.

Failure Scenarios

The above strategy can fail in the following scenarios:

1. No success within the supported deduplication period

When the application receives a INVALID_DEDUPLICATION_PERIOD error, it cannot achieve exactly

once execution any more within the originally intended deduplication period.

2. Unacceptable changes cause infinite retries

You need business workflow knowledge to decide that retrying does not make sense any more.

Of course, you can always stop retrying and accept that you do not know the outcome for sure.

1.12.8 Authorization

When developing Daml applications using SDK tools, your local setup will most likely not perform

any Ledger API request authorization – by default, any valid Ledger API request will be accepted by

the sandbox.

This is not the case for participant nodes of deployed ledgers. For every Ledger API request, the par-

ticipant node checks whether the request contains an access token that is valid and sufficient to

authorize that request. You thus need to add support for authorization using access tokens to your

application to run it against a deployed ledger.

Note: In case of mutual (two-way) TLS authentication, the Ledger API client must present its cer-

tificate (in addition to an access token) to the Ledger API server as part of the authentication pro-

cess. The provided certificate must be signed by a certificate authority (CA) trusted by the Ledger

API server. Note that the identity of the application will not be proven by using this method, i.e. the

application_id field in the request is not necessarily correlated with the CN (Common Name) in the

certificate.

1.12. Integrate Daml with Off-Ledger Services 433

Daml SDK Documentation, 2.7.3

1.12.8.1 Introduction

Your Daml application sends requests to the Ledger API exposed by a participant node to submit

changes to the ledger (e.g., “exercise choice X on contract Y as party Alice”), or to read data from the

ledger (e.g., “read all active contracts visible to party Alice”). Your applicationmight send these requests

via a middleware like the JSON API.

Whether a participant node can serve such a request depends onwhether the participant node hosts

the respective parties, and whether the request is valid according to the Daml Ledger Model. Whether

a participant node will serve such a request to a Daml application depends on whether the request

includes an access token that is valid and sufficient to authorize the request for this participant

node.

1.12.8.2 Acquire and Use Access Tokens

How an application acquires access tokens depends on the participant node it talks to and is ulti-

mately set up by the participant node operator. Many setups use a flow in the style of OAuth 2.0.

In this scenario, the Daml application first contacts a token issuer to get an access token. The token

issuer verifies the identity of the requesting application, looks up the privileges of the application,

and generates a signed access token describing those privileges.

Once the access token is issued, the Daml application sends it along with every Ledger API request.

The Daml ledger verifies:

• that the token was issued by one of its trusted token issuers

• that the token has not been tampered with

• that the token had not expired

• that the privileges described in the token authorize the request

434 Chapter 1. Canton References

https://oauth.net/2/

Daml SDK Documentation, 2.7.3

How you attach tokens to requests depends on the tool or library you use to interact with the Ledger

API. See the tool’s or library’s documentation for more information. (E.g. relevant documentation for

the Java bindings and the JSON API.)

1.12.8.3 Access Tokens and Rights

Access tokens contain information about the rights granted to the bearer of the token. These rights

are specific to the API being accessed.

The Daml Ledger API uses the following rights to govern request authorization:

• public: the right to retrieve publicly available information, such as the ledger identity

• participant_admin: the right to administer the participant node

• idp_admin: the right to administer the users and parties belonging the same identity provider

configuration as the authenticated user

• canReadAs(p): the right to read information off the ledger (like the active contracts) visible

to the party p

• canActsAs(p): sameascanReadAs(p), with the added right of issuing commands onbehalf

of the party p

The following table summarizes the rights required to access each Ledger API endpoint:

1.12. Integrate Daml with Off-Ledger Services 435

Daml SDK Documentation, 2.7.3

Ledger API ser-

vice

Endpoint Required right

LedgerIdentitySer-

vice

GetLedgerIdentity public

ActiveCon-

tractsService

GetActiveContracts for each requested party p: can-

ReadAs(p)

CommandComple-

tionService

CompletionEnd public

CompletionStream for each requested party p: can-

ReadAs(p)

CommandSubmis-

sionService

Submit for submitting party p: canAc-

tAs(p)

CommandService All for submitting party p: canAc-

tAs(p)

EventQueryService All for each requesting party p: can-

ReadAs(p)

Health All no access token required for

health checking

IdentityProvider-

ConfigService

All participant_admin

LedgerConfigura-

tionService

GetLedgerConfiguration public

MeteringReport-

Service

All participant_admin

PackageService All public

PackageManage-

mentService

All participant_admin

PartyManage-

mentService

All participant_admin

All (except GetParticipantId, Up-

datePartyIdentityProviderId)

idp_admin

ParticipantPrun-

ingService

All participant_admin

ServerReflection All no access token required for gRPC

service reflection

TimeService GetTime public

SetTime participant_admin

TransactionService LedgerEnd public

All (except LedgerEnd) for each requested party p: can-

ReadAs(p)

UserManage-

mentService

All participant_admin

All (except UpdateUserIdenti-

tyProviderId)

idp_admin

GetUser authenticated users can get their

own user

ListUserRights authenticated users can list their

own rights

VersionService All public

436 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.12.8.4 Access Token Formats

Applications should treat access tokens as opaque blobs. However, as an application developer it

can be helpful to understand the format of access tokens to debug problems.

All Daml ledgers represent access tokens as JSON Web Tokens (JWTs), and there are two formats of

the JSON payload used by Daml ledgers.

Note: To generate access tokens for testing purposes, you can use the jwt.io web site.

User Access Tokens

Daml ledgers that support participant user management also accept user access tokens. They are

useful for scenarioswhere anapplication’s rights changedynamically over the application’s lifetime.

User access tokens do not encode rights directly like the custom Daml claims tokens explained in

the following sections. Instead, user access tokens encode the participant user on whose behalf the

request is issued.

When handling such requests, participant nodes look up the participant user’s current rights before

checking request authorization per the table above. Thus the rights granted to an application can be

changed dynamically using the participant user management service without issuing new access

tokens, as would be required for the custom Daml claims tokens.

User access tokens are JWTs that follow the OAuth 2.0 standard. There are two different JSON encod-

ings: An audience-based token format that relies on the audience field to specify that it is designated

for a specific Daml participant and a scope-based audience token format which relies on the scope

field to designate the purpose. Both formats can be used interchangeably but if possible, use of the

audience-based token format is recommend as it is compatible with a wider range of IAMs, e.g., Ku-

bernetes does not support setting the scope field and makes the participant id mandatory which

prevents misuse of a token on a different participant.

Audience-Based Tokens

{

"aud": "https://daml.com/jwt/aud/participant/someParticipantId",

"sub": "someUserId",

"iss": "someIdpId",

"exp": 1300819380

}

To interpret the above notation:

• aud is a required field which restricts the token to participant nodes with the given ID (e.g.

someParticipantId)

• sub is a required field which specifies the participant user’s ID

• iss is a field which specifies the identity provider id

• exp is an optional field which specifies the JWT expiration date (in seconds since EPOCH)

1.12. Integrate Daml with Off-Ledger Services 437

https://datatracker.ietf.org/doc/html/rfc7519
https://jwt.io/
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc6749

Daml SDK Documentation, 2.7.3

Scope-Based Tokens

{

"aud": "someParticipantId",

"sub": "someUserId",

"exp": 1300819380,

"iss": "someIdpId",

"scope": "daml_ledger_api"

}

To interpret the above notation:

• aud is an optional field which restricts the token to participant nodes with the given ID

• sub is a required field which specifies the participant user’s ID

• iss is a field which specifies the identity provider id

• exp is an optional field which specifies the JWT expiration date (in seconds since EPOCH)

• scope is a space-separated list of OAuth 2.0 scopes that must contain the

"daml_ledger_api" scope

Requirements for User IDs

User IDs must be non-empty strings of at most 128 characters that are either alphanumeric ASCII

characters or one of the symbols “@^$.!`-#+’~_|:”.

Identity providers

An identity provider configuration can be thought of as a set of participant users which:

• Have a defined way to verify their access tokens

• Can be administered in isolation from the rest of the users on the same participant node

• Have an identity provider id unique per participant node

• Have a related set of parties that share the same identity provider id

A participant node always has a statically configured default identity provider configuration whose

id is the empty string "". Additionally, you can configure a small number of non-default identity

providers using IdentityProviderConfigService by supplying a non-empty identity provider

id and a JWK Set URL which the participant node will use to retrieve the cryptographic data needed

to verify the access tokens.

When authenticating as a user from a non-default identity provider configuration, your access to-

kensmust contain the iss field whose value matches the identity provider id. In case of the default

identity provider configuration, the iss field can be empty or omitted from the access tokens.

438 Chapter 1. Canton References

https://datatracker.ietf.org/doc/html/rfc6749#section-3.3
https://datatracker.ietf.org/doc/html/rfc7517

Daml SDK Documentation, 2.7.3

Custom Daml Claims Access Tokens

This format represents the rights granted by the access token as customclaims in the JWT’s payload,

like so:

{

"https://daml.com/ledger­api": {

"ledgerId": null,

"participantId": "123e4567­e89b­12d3­a456­426614174000",

"applicationId": null,

"admin": true,

"actAs": ["Alice"],

"readAs": ["Bob"]

},

"exp": 1300819380

}

where all of the fields are optional, and if present,

• ledgerId and participantId restrict the validity of the token to the given ledger or partici-

pant node

• applicationId requires requests with this token to use that application id or not set an ap-

plication id at all, which should be used to distinguish requests from different applications

• exp is the standard JWT expiration date (in seconds since EPOCH)

• actAs, readAs and (participant) admin encode the rights granted by this access token

The public right is implicitly granted to any request bearing a non-expired JWT issued by a trusted

issuer with matching ledgerId, participantId and applicationId values.

Note: All Daml ledgers also support a deprecated legacy format of custom Daml claims access

tokens whose format is equal to the above except that the custom claims are present at the same

level asexp in the token above, instead of being nested below"https://daml.com/ledger­api".

1.12.9 Explicit Contract Disclosure (Alpha)

In Daml, you must specify upfront who can view data using observer annotations on contracts. To

change who can see the data, you would typically need to rewrite the contract (eg an asset) with

a new annotation. Canton 2.7 introduces explicit contract disclosure as a feature that allows you

to seamlessly delegate contract read rights to a non-stakeholder using off-ledger data distribution.

This supports efficient, scalable data sharing on the ledger.

Here are some use cases that illustrate how you might benefit from explicit contract disclosure:

• You want to provide proof of the price data for a stock transaction. Instead of subscribing to

price updates and potentially being inundated with thousands of price updates every minute,

you could serve the price data though a traditionalWeb 2.0 API. You can then use that API to feed

only the current price back into the ledger at the time of use. You still get the same validation

and security, but reduce the amount of data being transferred manyfold.

• You want to run an open market on ledger. Rather than making all bids and asks explicitly

visible to all marketplace users, you serve market data though standard Web 2.0 APIs. At the

point of use, the available bids and asks are fed back into the transactions to get the same

1.12. Integrate Daml with Off-Ledger Services 439

Daml SDK Documentation, 2.7.3

activeness and correctness guarantees that would be provided had they been shared though

the observer mechanism.

Toggle the explicit­disclosure­unsafe flag in the participant configuration as shown below to

use disclosed contracts in command submission by means of explicit contract disclosure.

Note: This feature is experimental andmust not be used in production environments.

participants {

participant {

ledger­api.explicit­disclosure­unsafe = true

}

}

1.12.9.1 Contract Read Delegation

Contract read delegation allows a party to acquire read rights during command submission over a

contract of which it is neither a stakeholder nor an informee.

As an example application where read delegation could be used, consider a simplified trade between

two parties. In this example, party Seller owns a unit of Digital Asset Stock issued by the StockEx-

change party. As the issuer of the stock, StockExchange also publishes the stock’s PriceQuota­

tion as public data, which can be used for settling trades at the correct market value. The Seller

announces an offer to sell its stock publicly by creating an Offer contract that can be exercised by

anyone who can pay the correct market value in terms of IOU units.

On the other side, party Buyer owns an IOU with 10 monetary units, which it wants to use to acquire

Seller’s stock.

The Daml templates used to model the above-mentioned trade are outlined below.

template IOU

with

issuer: Party

owner: Party

value: Int

where

signatory issuer

observer owner

choice IOU_Transfer: ()

with

target: Party

amount: Int

controller owner

do

­­ Check that the transferred amount is not higher than the current IOU␣

↪→value

assert (value >= amount)

create this with issuer = issuer, owner = target, value = amount

­­ No need to create a new IOU for owner if the full value is transferred

if value == amount then pure ()

else void $ create this with issuer = issuer, owner = owner, value =␣

↪→value ­ amount

(continues on next page)

440 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

pure ()

template Stock

with

issuer: Party

owner: Party

stockName: Text

where

signatory issuer

observer owner

choice Stock_Transfer: ()

with

newOwner: Party

controller owner

do

create this with owner = newOwner

pure ()

­­ Expresses the current market value of a stock issued by the issuer.

­­ Not modelled in this example: the issuer ensures that only one `PriceQuotation`

­­ is active at a time for a specific `stockName`.

template PriceQuotation

with

issuer: Party

stockName: Text

value: Int

where

signatory issuer

­­ Helper choice to allow the controller to fetch this contract without being␣

↪→a stakeholder.

­­ By fetching this contract, the controller (i.e. `fetcher`) proves

­­ that this contract is active and represents the current market value for␣

↪→this stock.

nonconsuming choice PriceQuotation_Fetch: PriceQuotation

with fetcher: Party

controller fetcher

do pure this

template Offer

with

seller: Party

quotationProducer: Party

offeredAssetCid: ContractId Stock

where

signatory seller

choice Offer_Accept: ()

with

priceQuotationCid: ContractId PriceQuotation

buyer: Party

buyerIou: ContractId IOU

controller buyer

do

priceQuotation <­ exercise

(continues on next page)

1.12. Integrate Daml with Off-Ledger Services 441

Daml SDK Documentation, 2.7.3

(continued from previous page)

priceQuotationCid PriceQuotation_Fetch with

fetcher = buyer

asset <­ fetch offeredAssetCid

­­ Assert the quotation issuer and asset name

priceQuotation.issuer === quotationProducer

priceQuotation.stockName === asset.stockName

_ <­ exercise

offeredAssetCid Stock_Transfer with

newOwner = buyer

­­ Purchase the stock at the currently published fair price.

_ <­ exercise

buyerIou IOU_Transfer with target = seller, amount = priceQuotation.

↪→value

pure ()

The following snippet of Daml Script models the setup of the trade between the parties.

let stockName = "Daml"

stockCid <­ submit stockExchange do

createCmd Stock with

issuer = stockExchange

owner = seller

stockName = stockName

offerCid <­ submit seller do

createCmd Offer with

seller = seller

quotationProducer = stockExchange

offeredAssetCid = stockCid

priceQuotationCid <­ submit stockExchange do

createCmd PriceQuotation with

issuer = stockExchange

stockName = stockName

value = 3

buyerIouCid <­ submit bank do

createCmd IOU with

issuer = bank

owner = buyer

value = 10

Settling the trade on-ledger implies that Buyer exercises Offer_Accept on the offerCid contract.

But how can Buyer exercise a choice on a contract on which it is neither a stakeholder nor a prior

informee? The same question applies to Buyer’s visibility over the stockCid and priceQuota­

tionCid contracts.

If Buyer plainly exercises the choice as shown in the snippet below, the submission will fail with an

error citing missing visibility rights over the involved contracts.

­­ Command fails with missing visibility over the contracts for buyer

(continues on next page)

442 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

_ <­ submit buyer do

exerciseCmd offerCid Offer_Accept with priceQuotationCid = priceQuotationCid,␣

↪→buyer = buyer, buyerIou = buyerIouCid

Read delegation using explicit contract disclosure

With the introduction of explicit contract disclosure, Buyer can accept the offer from Seller without

having seen the involved contracts on the ledger. This is possible if the contracts’ stakeholders

decide to disclose their contracts to any party desiring to execute such a trade. Buyer can attach

the disclosed contracts to the command submission that is exercising Offer_Accept on Seller’s

offerCid, thus bypassing the visibility restriction over the contracts.

Note: The Ledger API uses the disclosed contracts attached to command submissions for resolv-

ing contract and key activeness lookups during command interpretation. This means that usage

of a disclosed contract effectively bypasses the visibility restriction of the submitting party over

the respective contract. However, the authorization restrictions of the Daml model still apply: the

submitted command still needs to be well authorized. The actors need to be properly authorized to

execute the action, as described in Privacy Through Authorization.

1.12.9.2 How do stakeholders disclose contracts to submitters?

The disclosed contract’s details can be fetched by the contract’s stakeholder from the contract’s

associated CreatedEvent, which can be read from the Ledger API via the active contracts and transac-

tions queries (see Reading from the ledger).

The stakeholder can then share the disclosed contract details to the submitter off-ledger (outside of

Daml) by conventionalmeans, such as HTTPS, SFTP, or e-mail. A DisclosedContract can be constructed

from the fields of the same name from the original contract’s CreatedEvent.

Note: Only contracts created starting with Canton 2.6 can be shared as disclosed contracts. Prior

to this version, contracts’ CreatedEvent does not have ContractMetadata populated and cannot

be used as disclosed contracts.

1.12.9.3 Attaching a disclosed contract to a command submission

A disclosed contract can be attached as part of the Command’s disclosed_contracts and requires the

following fields (see DisclosedContract for content details) to be populated from the original CreatedE-

vent (see above):

• template_id - The contract’s template id.

• contract_id - The contract id.

• arguments - The contract’s create arguments. This field is aprotobufoneofand it allows either

passing the contract’s create arguments typed (as create_arguments) or as a byte array (as

create_arguments_blob). Generally, clients should use the create_arguments_blob for

convenience since they can be received as such from the stakeholder off-ledger (see above).

1.12. Integrate Daml with Off-Ledger Services 443

Daml SDK Documentation, 2.7.3

• metadata - The contract metadata. This field can be populated as received from the stake-

holder (see below).

1.12.9.4 Trading the stock with explicit disclosure

In the example above, Buyer does not have visibility over the stockCid, priceQuotationCid and

offerCid contracts, so Buyermust provide them as disclosed contracts in the command submis-

sion exercising Offer_Accept. To do so, the contracts’ stakeholders must fetch them from the

ledger and make them available to the Buyer.

Note: Daml Script support for explicit disclosure is currently not implemented. The last steps of

the example are modeled using raw gRPC queries.

The contracts’ stakeholders issue fetch queries to the Ledger API for retrieving the associated con-

tract payloads. For simplicity in the example, all parties reside on participant participant with

the Ledger API running on port 5031.

Needs to be extracted via package lookup

packageId="436c13be1424a16fb69a3dda4983b94f1965ac12c66d8a6d879ad3027ea4782d"

Needs to be extracted via party lookup

buyerId=

↪→"Buyer::122001002fb09c069a0f4e7badf9cb1a6d7dd9097fbdb653e1278193aa5f36b9c6b3"

stockExchangeId=

↪→"StockExchange::122001002fb09c069a0f4e7badf9cb1a6d7dd9097fbdb653e1278193aa5f36b9c6b3

↪→"

sellerId=

↪→"Seller::122001002fb09c069a0f4e7badf9cb1a6d7dd9097fbdb653e1278193aa5f36b9c6b3"

StockExchange fetches the Stock contract referenced by stockCid from the ledger␣

↪→by querying the Ledger API

﴾here we are using the GetTransactions query﴿

grpcurl ­plaintext ­d '{"ledgerId":"participant","begin":{"absolute":

↪→"0000000000000000"},"end":{"boundary":"LEDGER_END"},"filter":{"filters_by_party

↪→":{"'"$stockExchangeId"'":{"inclusive":{"template_ids":[{"package_id":"'"

↪→$packageId"'","module_name":"StockExchange","entity_name":"Stock"}]}}}},"verbose

↪→":true}' localhost:5031 com.daml.ledger.api.v1.TransactionService/

↪→GetTransactions

Result: {"transactions":[{"transaction_id":

↪→"1220073a3db0e42b536791ed24689ec587276de2cad79887e466c380c26ffda7baf1","command_

↪→id":"e1cbb1b7­277c­4126­bde7­13b3cb158b36","effective_at":"2023­04­05T09:11:29.

↪→062939Z","events":[{"created":{"event_id":"

↪→#1220073a3db0e42b536791ed24689ec587276de2cad79887e466c380c26ffda7baf1:0",

↪→"contract_id":

↪→"00406f5cfbe495a21d576fbc4971e5d12c1ec5de972439ca0c054bbe54883de2a9ca01122064de6a454a83ce3ac4535ac9df550b21b90b9524fee6210af213fccf0ac4acca

↪→","template_id":{"package_id":

↪→"436c13be1424a16fb69a3dda4983b94f1965ac12c66d8a6d879ad3027ea4782d","module_name

↪→":"StockExchange","entity_name":"Stock"},"create_arguments":{"record_id":{

↪→"package_id":"436c13be1424a16fb69a3dda4983b94f1965ac12c66d8a6d879ad3027ea4782d",

↪→"module_name":"StockExchange","entity_name":"Stock"},"fields":[{"label":"issuer

↪→","value":{"party":

↪→"StockExchange::122001002fb09c069a0f4e7badf9cb1a6d7dd9097fbdb653e1278193aa5f36b9c6b3

↪→"}},{"label":"owner","value":{"party":

↪→"Seller::122001002fb09c069a0f4e7badf9cb1a6d7dd9097fbdb653e1278193aa5f36b9c6b3"}}

↪→,{"label":"stockName","value":{"text":"Daml"}}]},"witness_parties":[

↪→"StockExchange::122001002fb09c069a0f4e7badf9cb1a6d7dd9097fbdb653e1278193aa5f36b9c6b3

↪→"],"agreement_text":"","signatories":[

↪→"StockExchange::122001002fb09c069a0f4e7badf9cb1a6d7dd9097fbdb653e1278193aa5f36b9c6b3

↪→"],"observers":[

↪→"Seller::122001002fb09c069a0f4e7badf9cb1a6d7dd9097fbdb653e1278193aa5f36b9c6b3"],

↪→"metadata":{"created_at":"2023­04­05T09:11:29.062939Z","driver_metadata":

↪→"CiYKJAgBEiA5hhYAzLWLGx4dr6MO0r1xoD/AAu/Xe6H56hCOzDqOlQ=="}}}],"offset":

↪→"00000000000000000d"}]}

(continues on next page)

444 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

As above, StockExchange fetches the PriceQuotation referenced by␣

↪→priceQuotationCid

grpcurl ­plaintext ­d '{"ledgerId":"participant","begin":{"absolute":

↪→"0000000000000000"},"end":{"boundary":"LEDGER_END"},"filter":{"filters_by_party

↪→":{"'"$stockExchangeId"'":{"inclusive":{"template_ids":[{"package_id":"'"

↪→$packageId"'","module_name":"StockExchange","entity_name":"PriceQuotation"}]}}}}

↪→,"verbose":true}' localhost:5031 com.daml.ledger.api.v1.TransactionService/

↪→GetTransactions

Result: {"transactions":[{"transaction_id":

↪→"1220ecf0113498df1e9a4fd9aeed82b877b71cb0a8d57fdaca188294dfdeeada5eac","command_

↪→id":"433e9786­df09­4243­ad70­1d27fee05031","effective_at":"2023­04­05T09:11:29.

↪→257808Z","events":[{"created":{"event_id":"

↪→#1220ecf0113498df1e9a4fd9aeed82b877b71cb0a8d57fdaca188294dfdeeada5eac:0",

↪→"contract_id":

↪→"00e0be88a38c25bc0b3b35acd6f46de92584becf99009cb512a71727fb928c90fdca01122080169e053bd955dc5e29efeeb500fd28182546e1306e7ca968eca48c5fd1bc19

↪→","template_id":{"package_id":

↪→"436c13be1424a16fb69a3dda4983b94f1965ac12c66d8a6d879ad3027ea4782d","module_name

↪→":"StockExchange","entity_name":"PriceQuotation"},"create_arguments":{"record_id

↪→":{"package_id":

↪→"436c13be1424a16fb69a3dda4983b94f1965ac12c66d8a6d879ad3027ea4782d","module_name

↪→":"StockExchange","entity_name":"PriceQuotation"},"fields":[{"label":"issuer",

↪→"value":{"party":

↪→"StockExchange::122001002fb09c069a0f4e7badf9cb1a6d7dd9097fbdb653e1278193aa5f36b9c6b3

↪→"}},{"label":"stockName","value":{"text":"Daml"}},{"label":"value","value":{

↪→"int64":"3"}}]},"witness_parties":[

↪→"StockExchange::122001002fb09c069a0f4e7badf9cb1a6d7dd9097fbdb653e1278193aa5f36b9c6b3

↪→"],"agreement_text":"","signatories":[

↪→"StockExchange::122001002fb09c069a0f4e7badf9cb1a6d7dd9097fbdb653e1278193aa5f36b9c6b3

↪→"],"metadata":{"created_at":"2023­04­05T09:11:29.257808Z","driver_metadata":

↪→"CiYKJAgBEiBsywnjtj+a0Px6A2LwSV2MrOxE9QyJDM0VpgPAEGamqg=="}}}],"offset":

↪→"00000000000000000f"}]}

As above, Seller fetches the Offer referenced by offerCid

grpcurl ­plaintext ­d '{"ledgerId":"participant","begin":{"absolute":

↪→"0000000000000000"},"end":{"boundary":"LEDGER_END"},"filter":{"filters_by_party

↪→":{"'"$sellerId"'":{"inclusive":{"template_ids":[{"package_id":"'"$packageId"'",

↪→"module_name":"StockExchange","entity_name":"Offer"}]}}}},"verbose":true}'␣

↪→localhost:5031 com.daml.ledger.api.v1.TransactionService/GetTransactions

Result: {"transactions":[{"transaction_id":

↪→"1220af12e338e39694374f8e7fc992a9361dfbe942705bdcfb29e56f5c6668713bb3","command_

↪→id":"aecbac54­5166­450c­868d­3ee912e7073c","effective_at":"2023­04­05T09:11:29.

↪→158305Z","events":[{"created":{"event_id":"

↪→#1220af12e338e39694374f8e7fc992a9361dfbe942705bdcfb29e56f5c6668713bb3:0",

↪→"contract_id":

↪→"00b8355cf81045ad6212e6168380dd9ca4b7dbe9b7f0b53c595bdc0b9e60ec6789ca011220249c851ca8927e761d2fdba628f1508c6e2a3bb9fa64164f5c297aae023bfdd3

↪→","template_id":{"package_id":

↪→"436c13be1424a16fb69a3dda4983b94f1965ac12c66d8a6d879ad3027ea4782d","module_name

↪→":"StockExchange","entity_name":"Offer"},"create_arguments":{"record_id":{

↪→"package_id":"436c13be1424a16fb69a3dda4983b94f1965ac12c66d8a6d879ad3027ea4782d",

↪→"module_name":"StockExchange","entity_name":"Offer"},"fields":[{"label":"seller

↪→","value":{"party":

↪→"Seller::122001002fb09c069a0f4e7badf9cb1a6d7dd9097fbdb653e1278193aa5f36b9c6b3"}}

↪→,{"label":"quotationProducer","value":{"party":

↪→"StockExchange::122001002fb09c069a0f4e7badf9cb1a6d7dd9097fbdb653e1278193aa5f36b9c6b3

↪→"}},{"label":"offeredAssetCid","value":{"contract_id":

↪→"00406f5cfbe495a21d576fbc4971e5d12c1ec5de972439ca0c054bbe54883de2a9ca01122064de6a454a83ce3ac4535ac9df550b21b90b9524fee6210af213fccf0ac4acca

↪→"}}]},"witness_parties":[

↪→"Seller::122001002fb09c069a0f4e7badf9cb1a6d7dd9097fbdb653e1278193aa5f36b9c6b3"],

↪→"agreement_text":"","signatories":[

↪→"Seller::122001002fb09c069a0f4e7badf9cb1a6d7dd9097fbdb653e1278193aa5f36b9c6b3"],

↪→"metadata":{"created_at":"2023­04­05T09:11:29.158305Z","driver_metadata":

↪→"CiYKJAgBEiBNiC/8U069Zpc7gOt3YGmmdk+TGWEZRsNukLYri+64Sg=="}}}],"offset":

↪→"00000000000000000e"}]}

(continues on next page)

1.12. Integrate Daml with Off-Ledger Services 445

Daml SDK Documentation, 2.7.3

(continued from previous page)

Buyer receives these contracts from the stakeholders and adapts them to disclosed contracts (as

described in the previous section) in a command submission that executes Offer_Accept on the

offerCid. The resulting gRPC command submission, which succeeds, is shown below.

Extracted from the transaction lookup query results from above

offerCid=

↪→"00b8355cf81045ad6212e6168380dd9ca4b7dbe9b7f0b53c595bdc0b9e60ec6789ca011220249c851ca8927e761d2fdba628f1508c6e2a3bb9fa64164f5c297aae023bfdd3

↪→"

priceQuotationCid=

↪→"00e0be88a38c25bc0b3b35acd6f46de92584becf99009cb512a71727fb928c90fdca01122080169e053bd955dc5e29efeeb500fd28182546e1306e7ca968eca48c5fd1bc19

↪→"

stockCid=

↪→"00406f5cfbe495a21d576fbc4971e5d12c1ec5de972439ca0c054bbe54883de2a9ca01122064de6a454a83ce3ac4535ac9df550b21b90b9524fee6210af213fccf0ac4acca

↪→"

The contract id of Buyer's IOU ﴾for conciseness, not shown in this example but␣

↪→can be extracted by the Buyer from the getTransactions queries as above﴿

buyerIouCid=

↪→"00cd7d7b27f1b323bb55c2b0adf2aac76657079741adf6dc98a5d977338e3c92eeca011220649fd780478bb1d2159639fa6df276c0214c672609252c4db601ade0c67605fb

↪→"

stockContractCreatedAt="2023­04­05T09:11:29.062939Z"

stockContractDriverMetadata="CiYKJAgBEiA5hhYAzLWLGx4dr6MO0r1xoD/AAu/

↪→Xe6H56hCOzDqOlQ=="

offerContractCreatedAt="2023­04­05T09:11:29.158305Z"

offerContractDriverMetadata="CiYKJAgBEiBNiC/

↪→8U069Zpc7gOt3YGmmdk+TGWEZRsNukLYri+64Sg=="

priceQuotationContractCreatedAt="2023­04­05T09:11:29.257808Z"

priceQuotationContractDriverMetadata=

↪→"CiYKJAgBEiBsywnjtj+a0Px6A2LwSV2MrOxE9QyJDM0VpgPAEGamqg=="

Buyer exercises Offer_Accept on offerCid with populating the Command.disclosed_

↪→contracts field

with the data previously shared off­ledger for offerCid, stockCid and␣

↪→priceQuotationCid contracts

grpcurl ­plaintext ­d '{"commands":{"ledger_id":"participant","workflow_id":

↪→"ExplicitDisclosureWorkflow","application_id":"ExplicitDisclosure","command_id":

↪→"ExplicitDisclosure­command","party":"'"$buyerId"'","commands":[{"exercise":{

↪→"template_id":{"package_id":"'"$packageId"'","module_name":"StockExchange",

↪→"entity_name":"Offer"},"contract_id":"'"$offerCid"'","choice":"Offer_Accept",

↪→"choice_argument":{"record":{"record_id":{"package_id":"'"$packageId"'","module_

↪→name":"StockExchange","entity_name":"Offer_Accept"},"fields":[{"label":

↪→"priceQuotationCid","value":{"contract_id":"'"$priceQuotationCid"'"}},{"label":

↪→"buyer","value":{"party":"'"$buyerId"'"}},{"label":"buyerIou","value":{

↪→"contract_id":"'"$buyerIouCid"'"}}]}}}}],"submission_id":"ExplicitDisclosure­

↪→submission","disclosed_contracts":[{"template_id":{"package_id":"'"$packageId"'

↪→","module_name":"StockExchange","entity_name":"Stock"},"contract_id":"'"

↪→$stockCid"'","create_arguments":{"record_id":{"package_id":"'"$packageId"'",

↪→"module_name":"StockExchange","entity_name":"Stock"},"fields":[{"label":"issuer

↪→","value":{"party":"'"$stockExchangeId"'"}},{"label":"owner","value":{"party":"'

↪→"$sellerId"'"}},{"label":"stockName","value":{"text":"Daml"}}]},"metadata":{

↪→"created_at":"'"$stockContractCreatedAt"'","driver_metadata":"'"

↪→$stockContractDriverMetadata"'"}},{"template_id":{"package_id":"'"$packageId"'",

↪→"module_name":"StockExchange","entity_name":"Offer"},"contract_id":"'"$offerCid"

↪→'","create_arguments":{"record_id":{"package_id":"'"$packageId"'","module_name":

↪→"StockExchange","entity_name":"Offer"},"fields":[{"label":"seller","value":{

↪→"party":"'"$sellerId"'"}},{"label":"quotationProducer","value":{"party":"'"

↪→$stockExchangeId"'"}},{"label":"offeredAssetCid","value":{"contract_id":"'"

↪→$stockCid"'"}}]},"metadata":{"created_at":"'"$offerContractCreatedAt"'","driver_

↪→metadata":"'"$offerContractDriverMetadata"'"}},{"template_id":{"package_id":"'"

↪→$packageId"'","module_name":"StockExchange","entity_name":"PriceQuotation"},

↪→"contract_id":"'"$priceQuotationCid"'","create_arguments":{"record_id":{

↪→"package_id":"'"$packageId"'","module_name":"StockExchange","entity_name":

↪→"PriceQuotation"},"fields":[{"label":"issuer","value":{"party":"'"

↪→$stockExchangeId"'"}},{"label":"stockName","value":{"text":"Daml"}},{"label":

↪→"value","value":{"int64":"3"}}]},"metadata":{"created_at":"'"

↪→$priceQuotationContractCreatedAt"'","driver_metadata":"'"

↪→$priceQuotationContractDriverMetadata"'"}}]}}' localhost:5031 com.daml.ledger.

↪→api.v1.CommandService/SubmitAndWait

(continues on next page)

446 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

1.13 Resource Management in Daml Application Design

This section discusses approaches to avoiding potential resource pitfalls by strengthening Daml

contract design.

Note: In this document, we focus on building resilience into the system by writing performant Daml

code at design time. We are not concerned with ledger optimization. Read more about Canton per-

formance and scaling.

1.13.1 Managing Latency and Throughput

1.13.1.1 Problem Definition

Latency is a measure of how long a business transaction takes to complete. Throughput measures,

on average, the number of business transactions possible per second while taking into account any

lower or upper bounds which may point to bottlenecks. Defense against latency and throughput

issues can be written into the Daml application during design.

First we need to identify the potential bottlenecks in a Daml application. We can do this by analyzing

the domain-specific transactions.

Each Daml business transaction kicks off when a Ledger API client sends the commands create or

exercise to a participant.

Important:

• Ledger transactions are not synonymous with business transactions.

• Often a complete business transaction spansmultipleworkflow steps and thusmultiple ledger

transactions.

• Multiple business transactions can be processed in a single ledger transaction through batch-

ing.

• Expected ledger transaction latencies are on the order of 0.5-1 secondsondatabase sequencers,

and multiple seconds on blockchain sequencers.

Refer to the Daml execution model that describes a ledger transaction processed by the Canton

ledger. The table below highlights potential resource-intensive activities at each step.

1.13. Resource Management in Daml Application Design 447

../../canton/usermanual/performance.html
../../canton/usermanual/performance.html
../intro/7_Composing.html#daml-s-execution-model

Daml SDK Documentation, 2.7.3

Step Participant Resources used Possible bottleneck

drivers

Inter-

preta-

tion

• Submitting par-

ticipant node

1. CPU

2. Memory

3. DB read access

1. Calculation complex-

ity

2. Size and number of

variables

3. Number of contract

fetches

Blind-

ing
• Submitting par-

ticipant node

• CPU/memory • Number and size of

views

Sub-

mis-

sion

• Submitting par-

ticipant node

• Sequencer

1. CPU

2. Memory
1. Serialization/deseri-

alization

2. Transaction

size/number of

views

Se-

quenc-

ing

• Sequencer 1. Backend storage

2. Network bandwidth

1. Transaction size

2. Transaction

size/number of

views

Valida-

tion
• Receiving partic-

ipant nodes

1. Network bandwidth

2. CPU

3. Memory

4. DB read throughput

1. Transaction size ->

download, deserial-

ization, storage costs

2. Computation com-

plexity

3. Number of contract

fetch reads

4. Number and size of

variables

Confir-

mation
• Validating par-

ticipant nodes

• Sequencer

1. Network bandwidth

2. Sequencer network

3. Backend write throughput

• Number of confirm-

ing parties

Media-

tion
• Mediator nodes 1. Network throughput

2. CPU

3. Memory

• Number of confirm-

ing parties

Com-

mit
• Mediator nodes

• Sequencer

1. CPU

2. Memory

3. DB

4. Network bandwidth

• Number of confirm-

ing parties

448 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Possible Throughput Bottlenecks in Order of Likelihood

1. Transaction size causing high serialization/deserialization and encryption/decryption costs

on participant nodes.

2. Transaction size causing sequencer backend overload, especially on blockchains.

3. High interpretation and validation cost due to calculation complexity or memory use.

4. Large number of involved nodes and associated network bandwidth on sequencer.

Latency can also be affected by the above factors. However, baseline latency usually has more to do

with system set-up issues (DB or blockchain latency) rather than Daml modeling problems.

Solutions

1. Minimize transaction size.

Each of the following actions in Daml adds a node to the transaction containing the payload of the

contract being acted on. A large number of such operations, and/or operations of this kind on large

contracts, are the most common cause of performance bottlenecks.

• create

• fetch

• fetchByKey

• lookupByKey

• exercise

• exerciseByKey

• archive

Use the above actions sparingly. For example, if contracts have intermediary states within a trans-

action, you can often skip them by writing only the end state. For example:

template Incrementor

with

p : Party

n : Int

where

signatory p

choice Increment : ContractId Incrementor

controller p

do create this with n = n+1

­­ This adds all m­1 intermediary versions of

­­ the contract to the transaction tree

choice BadIncrementMany : ContractId Incrementor

with m : Int

controller p

do foldlA (\self' _ ­> exercise self' Increment) self [1..m]

­­ This only adds the end result to the transaction

choice GoodIncrementMany : ContractId Incrementor

with m : Int

controller p

do create this with n = n+m

1.13. Resource Management in Daml Application Design 449

Daml SDK Documentation, 2.7.3

When you need to read a contract, or act on a single contract in multiple ways, you can often bundle

those operations into a single action. For example:

template Asset

with

issuer : Party

owner : Party

quantity : Decimal

where

signatory [issuer, owner]

­­ BadMerge acts on each of the otherCids three times:

­­ Once for validation

­­ Once to extract the quantities

­­ Once to archive

choice BadMerge : ContractId Asset

with otherCids : [ContractId Asset]

controller owner

do

­­ validate the cids.

forA_ otherCids (\cid ­> do

other <­ fetch cid

assert (other.issuer == issuer && other.owner == owner))

­­ extract the quantities

quantities <­ forA otherCids (\cid ­> do

other <­ fetch cid

return other.quantity)

­­ archive the others

forA_ otherCids archive

create this with quantity = quantity + sum quantities

­­ Allow us to do a fetch and an archive in one action

choice ConsumingFetch : Asset

controller owner

do return this

­­ GoodMerge only acts on each of the other assets once.

choice GoodMerge : ContractId Asset

with otherCids : [ContractId Asset]

controller owner

do

­­ Get and archive the others

others <­ forA otherCids (`exercise` ConsumingFetch)

­­ validate

forA_ others (\other ­> do

assert (other.issuer == issuer && other.owner == owner))

­­ extract the quantities

let quantities = map (.quantity) others

create this with quantity = quantity + sum quantities

Separate templates for large payloads that change rarely and require minimum access from those

for fields that change with almost every action. This optimizes resource consumption for multiple

450 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

business transactions.

This batching approach makes updates in one transaction submission rather than requiring sepa-

rate transactions for each update. Note: this option can cause a small increase in latency and may

increase the possibility of command failure but this can be avoided. For example:

template T

with

p : Party

where

signatory p

choice Foo : ()

controller p

do return ()

batching : Script ()

batching = do

p <­ allocateParty "p"

­­ without batching we have 10 ledger

­­ transactions.

cid1 <­ submit p do createCmd T with ..

cid2 <­ submit p do createCmd T with ..

cid3 <­ submit p do createCmd T with ..

cid4 <­ submit p do createCmd T with ..

cid5 <­ submit p do createCmd T with ..

submit p do exerciseCmd cid1 Foo

submit p do exerciseCmd cid2 Foo

submit p do exerciseCmd cid3 Foo

submit p do exerciseCmd cid4 Foo

submit p do exerciseCmd cid5 Foo

­­ With batching, there are only two ledger transactions.

cids <­ submit p do

replicateA 5 $ createCmd T with ..

submit p do

forA_ cids (`exerciseCmd` Foo)

2. CPU and memory issues: Use the Daml profiler to analyze Daml code execution.

3. Once you feel interpretation is not the bottleneck, scale up your machine.

Tip: Profile the JVM and monitor your databases to see where the bottlenecks occur.

1.13. Resource Management in Daml Application Design 451

Daml SDK Documentation, 2.7.3

1.13.2 Avoid Contention Issues

Measuring the performance of business applications involves more than considering the transac-

tions per second and transaction latency of the underlying blockchain and Distributed Ledger Tech-

nology (DLT). Blockchains are distributed systems; even the highest-performance blockchains have

considerably higher transaction latencies than traditional databases. These factors make the sys-

tems prone to contention, which can stifle the performance of applications when not handled ap-

propriately.

It is, unfortunately, easy to design low-performance applications even on a high-performance

blockchain system. Applications that initially perform well may fail under pressure. It is better to

plan around contention in your application design than to fix issues later. The marginal cost of in-

cluding extra business logic within a blockchain transaction is often small.

Contention is expected indistributed systems. The aim is to reduce it to acceptable levels andhandle

it gracefully, not to eliminate it at all costs. If contention only occurs rarely, it may be cheaper for

both performance and complexity to simply let the occasional allocation fail and retry, rather than

implement an advanced technique to avoid it.

As an added benefit to reducing contention issues, carefully bundling or batching strategic business

logic can improve performance by yielding business transaction throughput that far exceeds the

blockchain transaction throughput.

1.13.2.1 Contention in Daml

Daml uses an unspent transaction output (UTXO) ledger model. UTXO models enable higher perfor-

mance by supporting parallel transactions. This means that you can send new transactions while

other transactions are still processing. The downside is that contention can occur if a second trans-

action arrives while a conflicting earlier transaction is still pending.

Daml guarantees that there can only be one consuming choice exercised per contract. If you try to

commit two transactions that would consume the same contract, you have write-write contention.

Contention can also result from incomplete or stale knowledge. For example, a contract may have

been archived, but a client hasn’t yet been notified due to latencies or a privacymodelmight prevent

the client from ever knowing. If you try to commit two transactions on the same contract where one

transaction reads and the other one consumes an input, you run the risk of a read-write contention.

A contract is considered pending when you do not know if the output has been consumed. It is best

to assume that your transactions will go through and to treat pending ones as probably consumed.

You must also assume that acting on a pending contract will fail.

You need to wait while the sequencer is processing a transaction in order to confirm that an input

was consumed from a consuming input request. If you do not get confirmation back from the first

transaction before submitting a second transaction on the same contract, the sequence is not guar-

anteed. The only way to avoid this conflict is to control the sequence of those two transactions.

Ledger state is read in the following places within the Daml Execution Model :

1. A client submits a command based on the client’s latest view of the state of the shared ledger.

The command might include references to ContractIds that the client believes are active.

2. During interpretation, ledger state is used to look up active contracts.

3. During validation, ledger state is again used to look up contracts and to validate the transac-

tion by reinterpreting it.

452 Chapter 1. Canton References

../intro/7_Composing.html#daml-s-execution-model

Daml SDK Documentation, 2.7.3

Contention can occur both between #1 and #2 and between #2 and #3:

• The client is constructing the command in #1 based on contracts it believes to be active. But by

the time the participant performs interpretation in #2, it has processed the commit of another

transaction that consumed those contracts. The participant node rejects the command due to

contention.

• The participant successfully constructs a transaction in #2 based on contracts it believes to

be active. But by the time validation happens in #3, another transaction that consumes the

same contracts has already been sequenced. The validating participants reject the command

due to contention.

The complete and relevant ledger state at the time of the transaction is known only after sequencing,

which happens between #2 and #3. That ledger state takes precedence to ensure double spend

protection.

Contention slows performance significantly. While you cannot avoid contention completely, you can

design logic to minimize it. The same considerations apply to any UTXO ledger.

1.13.2.2 Reduce Contention

Contention is natural and expected when programming within a distributed system like Daml in

which every action is asynchronous. It is important to understand the different causes of contention,

be able to diagnose the root cause if errors of this type occur, and be able to avoid contention by

designing contracts appropriately.

You can use different techniques to manage contention and to improve performance by increasing

throughput and decreasing latency. These techniques include the following:

• Add retry logic.

• Run transactions that have causality in series.

• Bundle or batch business logic to increase business transaction throughput.

• Maximize parallelismwith techniques suchas sharding, while ensuringno contention between

shards.

• Split contracts across natural lines to reduce single, high-contention contracts.

• Avoid write-write and write-read contention on contracts. This type of contention occurs when

one requester submits a transaction with a consuming exercise on a contract while another

requester submits another exercise or a fetch on the same contract. This type of contention

cannot be eliminated entirely, since there will always be some latency between a client sub-

mitting a command to a participant and other clients learning of the committed transaction.

Here are a few scenarios and specific measures you can take to reduce this type of collision:

– Shard data. Imagine you want to store a user directory on the ledger. At the core, this is of

type[(Text, Party)], whereText is a display name andParty is the associated Party.

If you store this entire list on a single contract, any two users wanting to update their

display name at the same time will cause a collision. If you instead keep each (Text,

Party) on a separate contract, these write operations become independent from each

other.

A helpful analogywhen structuring your data is to envision that a template defines a table,

where a contract is a row in that table. Keeping large pieces of data on a contract is like

storing big blobs in a database row. If these blobs can change through different actions,

you have write conflicts.

– Use non-consuming choices, where possible, as they do not collide. Non-consuming

choices can be used to model events that have occurred, so instead of creating a

1.13. Resource Management in Daml Application Design 453

Daml SDK Documentation, 2.7.3

short-lived contract to hold some data that needs to be referenced, that data could be

recorded as a ledger event using a non-consuming choice.

– Avoid workflows that encouragemultiple parties to simultaneously exercise a consuming

choice on the same contract. For example, imagine an auction contract containing a field

highestBid : (Party, Decimal). If Alice tries to bid $100 at the same time that Bob

tries to bid $90, it does not matter that Alice’s bid is higher. The sequencer rejects the

second because it has a write collision with the first transaction. It is better to record the

bids in separate Bid contracts, which can be updated independently. Think about how you

would structure this data in a relational database to avoid data lossdue to race conditions.

– Think carefully about storing ContractIds. Imagine that you create a sharded user di-

rectory according to the first bullet in this list. Each user has a User contract that stores

their display name and party. Now assume that you write a chat application, where each

Message contract refers to the sender by ContractId User.

If a user changes the display name, that reference goes stale. You either have to modify

all messages that the user ever sent, or you cannot use the sender contract in Daml.

Contract keys can be used to make this link inside Daml. If the only place you need to link

Party to User is in the user interface, it might be best to not store contract references in

Daml at all.

1.13.2.3 Example Application with Techniques for Reducing Contention

The example application below illustrates the relationship between blockchain and business appli-

cation performance, as well as the impact of design choices. Trading, settlement, and related sys-

tems are core use cases of blockchain technology, so this example demonstrates different ways of

designing such a system within a UTXO ledger model and how the design choices affect application

performance.

The Example Minimal Settlement System

This section defines the requirements that the example application should fulfill, as well as how to

measure its performance andwhere contentionmight occur. Assume that there are initial processes

already in place to issue assets to parties. All of the concrete numbers in the example are realistic

order-of-magnitude figures that are for illustrative purposes only.

Basic functional requirements for the example application

A trading system is a system that allows parties to swap assets. In this example, the parties are Alice

and Bob, and the assets are shares and dollars. The basic settlement workflow could be:

1. Proposal: Alice offers Bob to swap one share for $1.

2. Acceptance: Bob agrees to the swap.

3. Settlement: The swap is settled atomically, meaning that at the same time Alice transfers $1

to Bob, Bob transfers one share to Alice.

454 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Practical and security requirements for the example application

The following list adds some practical matters to complete the rough functional requirements of an

example minimal trading system.

• Parties can hold asset positions of different asset types which they control.

– An asset position consists of the type, owner, and quantity of the asset.

– An asset type is usually the combination of an on-ledger issuer and a symbol (such as

currency, CUSIP, or ISIN).

• Parties can transfer an asset position (or part of a position) to another party.

• Parties can agree on a settlement consisting of a swap of one position for another.

• Settlement happens atomically.

• There are no double spends.

• It is possible to constrain the total asset position of an owner to be non-negative. In other words,

it is possible to ensure that settlements are funded. The total asset position is the sum of the

quantities of all assets of a given type by that owner.

Performance measurement in the example application

Performance in the example can bemeasured by latency and throughput; specifically, settlement la-

tency and settlement throughput. Another important factor in measuring performance is the ledger

transaction latency.

• Settlement latency: the time it takes fromone party wanting to settle (just before the proposal

step) to the time that party receives final confirmation that the settlement was committed

(after the settlement step). For this example, assume that the best possible path occurs and

that parties take zero time to make decisions.

• Settlement throughput: the maximum number of settlements per second that the system as

a whole can process over a long period.

• Transaction latency: the time it takes from when a client application submits a command or

transaction to the ledger to the time it receives the commit confirmation. The length of time

depends on the command. A transaction settling a batch of 100 settlements will take longer

than a transaction settling a single swap. For this example, assume that transaction latency

has a simple formula of a fixed cost fixed_tx and a variable processing cost of var_tx times

the number of settlements, as shown here:

transaction latency = fixed_tx + (var_tx * #settlements)

• Note that the example application does not assign any latency cost to settlement proposals

and acceptances.

• For the example application, assume that:

– fixed_tx = 250ms

– var_tx = 10ms

To set a baseline performance measure for the example application, consider the simplest possible

settlement workflow, consisting of one proposal transaction plus one settlement transaction done

back-to-back. The following formula approximates the settlement latency of the simple workflow:

(2 * fixed_tx) + var_tx

= (2 * 250ms) + 10ms

= 510ms

1.13. Resource Management in Daml Application Design 455

Daml SDK Documentation, 2.7.3

To find out howmany settlements per second are possible if you perform them in series, throughput

evaluates to the following formula (there are 1,000ms in one second):

1000ms / (fixed_tx + var_tx) settlements per second

= 1000ms / (250ms + 10ms)

= 1000 / 260

= 3.85 or ≈ 4 settlements per second

These calculations set the optimal baselines for a high performance system.

The next goal is to increase throughput without dramatically increasing latency. Assume that the

underlying DLT has limits on total throughput and on transaction size. Use a simple cost model in

a unit called dlt_min_tx representing the minimum throughput unit in the DLT system. An empty

transaction has a fixed cost dlt_fixed_tx which is:

dlt_fixed_tx = 1 dlt_min_tx

Assume that the ratio of the marginal throughput cost of a settlement to the throughput cost of

a transaction is roughly the same as the ratio of marginal latency to transaction latency (shown

previously). A marginal settlement throughput cost dlt_var_tx can then be determined by this

calculation:

dlt_var_tx = ratio * dlt_fixed_tx

= dlt_var_tx = (var_tx / fixed_tx) * dlt_fixed_tx

= dlt_var_tx = 10sm/250ms * dlt_fixed_tx

= dlt_var_tx = 0.04 * dlt_fixed_tx

and, since from previously

dlt_fixed_tx = 1 dlt_min_tx

then

dlt_var_tx = 0.04 * dlt_min_tx

Evenwith good parallelism, ledgers have limitations. The limitationsmight involve CPUs, databases,

or networks. Calculate and design for whatever ceiling you hit first. Specifically, there is amaximum

throughput max_throughput (measured in dlt_min_tx/second) and a maximum transaction

size max_transaction (measured in dlt_min_tx). For this example, assume that max_through­

put is limited by being CPU-bound. Assume that there are 10 CPUs available and that an empty

transaction takes 10ms of CPU time. For each second:

max_throughput = 10 * each CPU’s capacity

Each dlt_min_tx takes 10ms and there are 1,000ms in a second. The capacity for each CPU is then

100 dlt_min_tx per second. The throughput calculation becomes:

max_throughput = 10 * 100 dlt_min_tx/second

= max_throughput = 1,000 dlt_min_tx/second

Similarly, max_transaction could be limited bymessage size limit. For this example, assume that

the message size limit is 3 MB and that an empty transaction dlt_min_tx is 1 MB. So

max_transaction = 3 * dlt_min_tx

456 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

One of the three transactions needs to hold an approval with no settlements. That leaves the equiv-

alent of (2 * dlt_min_tx) available to hold many settlements in the biggest possible trans-

action. Using the ratio described earlier, each marginal settlement dlt_var_tx takes 0.04 *

dlt_min_tx. So the maximum number of settlements per second is:

(2 * dlt_min_tx)/(0.04 * dlt_min_tx)

= 50 settlements/second

Using the same assumptions, if you process settlements in parallel rather than in series (with only

one settlement per transaction), latency stays constant while settlement throughput increases. Ear-

lier, it was noted that a simple workflow can be (2 * fixed_tx) + var_tx. In the DLT system, the

simple workflow calculation is:

(2 * dlt_min_tx) + dlt_var_tx

= (2 * dlt_min_tx) + (0.04 * dlt_min_tx)

= 2.04 * dlt_min_tx

It was assumed earlier that max_throughput is 1,000 dlt_min_tx/second. So the maximum

number of settlements per second possible through parallel processing alone in the example DLT

system is:

1,000/2.04 settlements per second

= 490.196 or ~490 settlements per second

These calculations provide a baseline when comparing various techniques that can improve perfor-

mance. The techniques are described in the following sections.

Prepare Transactions for Contention-Free Parallelism

This section examines which aspects of UTXO ledgermodels can be processed in parallel to improve

performance. In UTXO ledger models, the state of the system consists of a set of immutable con-

tracts, sometimes also called UTXOs.

Only two things canhappen to a contract: it is createdand later it is consumed (or spent). Each trans-

action is a set of input contracts and a set of output contracts, which may overlap. The transaction

creates any output contracts that are not also consumed in the same transaction. It also consumes

any input contracts, unless they are defined as non-consumed in the smart contract logic.

Other than smart contract logic, the execution model is the same for all UTXO ledger systems:

1. Interpretation: the submitting party precalculates the transaction, which consists of input

and output contracts.

2. Submission: the submitting party submits the transaction to the network.

3. Sequencing: the consensus algorithm for the network assigns the transaction a place in the

total order of all transactions.

4. Validation: the transaction is validated and considered valid if none of the inputs were already

spent by a previous transaction.

5. Commitment: the transaction is committed.

6. Response: the submitting party receives a response that the transaction was committed.

The only step in this process which has a sequential component is sequencing. All other stages of

transaction processing are parallelizable, which makes UTXO a good model for high-performance

systems. However, the submitting party has a challenge. The interpretation step relies on knowing

1.13. Resource Management in Daml Application Design 457

Daml SDK Documentation, 2.7.3

possible input contracts, whicharebydefinitionunspent outputs fromaprevious transaction. Those

outputs only become known in the response step, after a minimum delay of fixed_tx.

For example, if a party has a single $1,000 contract and wants to perform 1,000 settlements of $1

each, sequencing in parallel for all 1,000 settlements leads to 1,000 transactions, each trying to con-

sume the same contract. Only one succeeds, and all the others fail due to contention. The system

could retry the remaining 999 settlements, then the remaining 998, and so on, but this does not lead

to a performant system. On the other hand, using the example latency of 260ms per settlement, pro-

cessing these in series would take 260s or four minutes 20s, instead of the theoretical optimum of

one second given by max_throughput. The trading party needs a better strategy. Assume that:

max_transaction > dlt_fixed_tx + 1,000 * dlt_var_tx = 41 dlt_min_tx

The trading party could perform all 1,000 settlements in a single transaction that takes:

fixed_tx + 1,000 * var_tx = 10.25s

If the latency limit is too small or this latency is unacceptable, the trading party could perform three

steps to split $1,000 into:

• 10 * $100

• 100 * $10

• 1,000 * $1

and perform the 1,000 settlements in parallel. Latency would then be theoretically around:

3 * fixed_tx + (fixed_tx + var_tx) = 1.01s

However, since the actual settlement starts after 750 ms, and the max_throughput is 1,000

dlt_min_tx/s, it would actually be:

0.75s + (1,000 * (dlt_fixed_tx + dlt_var_tx)) / 1,000 dlt_min_tx/s

= 1.79s

These strategies apply to one particular situation with a very static starting state. In a real-world

high performance system, your strategy needs to perform with these assumptions:

• There are constant incoming settlement requests, which you have limited ability to predict.

Treat this as an infinite stream of random settlements from some distribution and maximize

settlement throughput with reasonable latency.

• Not all settlements are successful, due to withdrawals, rejections, and business errors.

To comparebetweendifferent techniques, assume that the settlementworkflowconsists of the steps

previously illustrated with Alice and Bob:

1. Proposal: proposal of the settlement

2. Acceptance: acceptance of the settlement

3. Settlement: actual settlement

These steps are usually split across two transactions by bundling the acceptance and settle-

ment steps into one transaction. Assume that the first two steps, proposal and acceptance, are

contention-free and that all contention is on settlement in the last step. Note that the cost model

allocates the entire latency and throughput costs var_tx and dlt_var_tx to the settlement, so

rather than discussing performant trading systems, the concern is for performant settlement sys-

tems. The following sections describe some strategies for trading under these assumptions and

their tradeoffs.

458 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Non-UTXO Alternative Ledger Models

As an alternative to a UTXO ledger model, you could use a replicated state machine ledger model,

where the calculation of the transaction only happens after the sequencing.

The steps would be:

1. Submission: the submitting party submits a command to the network.

2. Sequencing: the consensus algorithmof the network assigns the commandaplace in the total

order of all commands.

3. Validation: the command is evaluated to a transaction and then validated.

4. Response: the submitting party receives a response about the effect of the command.

Pros

This technique has a major advantage for the submitting party: no contention. The party pipes the

streamof incoming transactions into a streamof commands to the ledger, and the ledger takes care

of the rest.

Cons

The disadvantage of this approach is that the submitting party cannot predict the effect of the com-

mand. This makes systems vulnerable to attacks such as frontrunning and reordering.

In addition, the validation step is difficult to optimize. Command evaluation may still depend on

the effects of previous commands, so it is usually done in a single-threaded manner. Transaction

evaluation is at least as expensive as transaction validation. Simplifying and assuming thatvar_tx

is mostly due to evaluation and validation cost, a single-threaded system would be limited to 1s /

var_tx = 100 settlements per second. It could not be scaled further by adding more hardware.

Simple Strategies for UTXO Ledger Models

To attain high throughput and scalability, UTXO is the best option for a ledger model. However, you

need strategies to reduce contention so that you can parallelize settlement processing.

Batch transactions sequentially

Since (var_tx << fixed_tx), processing two settlements in one transaction is much cheaper

than processing them in two transactions. One strategy is to batch transactions and submit one

batch at a time in series.

Pros

This technique completely removes contention, just as the replicated state machine model does. It

is not susceptible to reordering or frontrunning attacks.

Cons

As in the replicated state machine technique, each batch is run in a single-threaded manner. How-

ever, on top of the evaluation time, there is transaction latency. Assuming a batch size of N <

max_settlements, the latency is:

fixed_tx + N * var_tx

and transaction throughput is:

1.13. Resource Management in Daml Application Design 459

Daml SDK Documentation, 2.7.3

N / (fixed_tx + N * var_tx)

As N goes up, this tends toward 1 / var_tx = 100, which is the same as the throughput of repli-

cated state machine ledgers.

In addition, there is the max_settlements ceiling. Assuming max_settlements = 50, you are

limited to a throughput of 50 / 0.75 = 67 settlement transactions per second, with a latency

of 750ms. Assuming that the proposal and acceptance steps add another transaction before set-

tlement, the settlement throughput is 67 settlements per second, with a settlement latency of one

second. This is better than the original four settlements per second, but far from the 490 settlements

per second that is achievable with full parallelism.

Additionally, the success or failure of a whole batch of transactions is tied together. If one transac-

tion fails in any way, all will fail, and the error handling is complex. This can be somewhat mitigated

by using features such as Daml exception handling, but contention errors cannot be handled. As

long as there is more than one party acting on the system and contention is possible between par-

ties (which is usually the case), batches may fail. The larger the batch is, the more likely it is to fail,

and the more costly the failure is.

Use sequential processing or batching per asset type and owner

In this technique, assume that all contention is within the asset allocation steps. Imagine that there

is a single contract on the ledger that takes care of all bookkeeping, as shown in this Daml code

snippet:

template AllAssets

with

­­ A map from owner and type to quantity

holdings : Map Party (Map AssetType Decimal)

where

signatory (keys holdings)

This is a typical pattern in replicated statemachine ledgers, where contention does notmatter. On a

UTXO ledger, however, this pattern means that any two operations on assets experience contention.

With this representation of assets, you cannot do better than sequential batching. There are many

additional issues with this approach, including privacy and contract size.

Since you typically only need to touch one owner’s asset of one type at a time and constraints such

as non-negativity are also at that level, assets are usually represented by asset positions in UTXO

ledgers, as shown in this Daml code snippet:

template

with

assetType : AssetType

owner : Party

quantity : Decimal

where

signatory assetType.issuer, owner

An asset position is a contract containing a triple (owner, asset type, and quantity). The total asset

position of an asset type for an owner is the sum of the quantities for all asset positions with that

owner andasset type. If the settlement transaction touches two total asset positions for the buy-side

and two total asset positions for the sell-side, batching by asset type and owner does not helpmuch.

460 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Imagine that Alice wants to settle USD for EUR with Bob, Bob wants to settle EUR for GBP with Carol,

and Carol wants to settle GBP for USD with Alice. The three settlement transactions all experience

contention, so you cannot do better than sequential batching.

However, if you could ensure that each transaction only touches one total asset position, you could

then apply sequential processing or batching per total asset position. This is always possible to do

by decomposing the settlement step into the following:

1. Buy-side allocation: the buy-side splits out an asset position from their total asset position

and allocates it to the settlement.

2. Sell-side allocation: the sell-side splits out an asset position from their total asset position

and allocates it to the settlement.

3. Settlement: the asset positions change ownership.

4. Buy-side merge: the buy-side merges their new position back into the total asset position.

5. Sell-side merge: the sell-side merges their new position back into the total asset position.

This does not need to result in five transactions.

• Buy-side allocation is usually done as part of a settlement proposal.

• Sell-side allocation is typically handled as part of the settlement.

• Buy-side merge and sell-side merge technically do not need any action. By definition of total

asset positions, merging is an optional step. It is easy to keep things organized without extra

transactions. Every time a total asset position is touched as part of buy-side allocation or

sell-side allocation above, youmerge all positions into a single one. As long as there is a similar

amount of inbound and outbound traffic on the total asset position, the number of individual

positions stays low.

Pros

Assuming that a settlement is considered complete after the settlement step and that you bundle

the allocation steps above into the proposal and settlement steps, the system performance will stay

at the optimum settlement latency of 510ms.

Also, if there are enough open settlements on distinct total asset positions, the total throughputmay

reach up to the optimal 490 settlements per second.

With batch sizes of N=50 for both proposals and settlements and sufficient total asset positions

with open settlements, the maximum theoretical settlement throughput is:

50 stls * 1,000 dlt_min_tx/s / (2 * dlt_fixed_tx + 50 * dlt_var_tx) = 12,

500 stls/s

Cons

Without batching, you are limited to the original four outgoing settlements per second, per total

asset position. If there are high-traffic assets, such as the USD position of a central counterparty,

this can bottleneck the system as a whole.

Using higher batch sizes, you have the same tradeoffs as for sequential batching, except that it is

at a total asset position level rather than a global level. Latency also scales exactly as it does for

sequential batching.

Using a batch size of 50, you would get settlement latencies of around 1.5s and amaximum through-

put per total asset position of 67 settlements per second, per total asset position.

Another disadvantage is that allocating the buy-side asset in a transaction before the settlement

means that asset positions can be locked up for short periods.

1.13. Resource Management in Daml Application Design 461

Daml SDK Documentation, 2.7.3

Additionally, if the settlement fails, the already allocated asset needs to be merged back into the

total asset position.

Shard Asset Positions for UTXO Ledger Models

In systemswhere peak loads on a single total asset position is in the tens or hundreds of settlements

per second, more sophisticated strategies are needed. The total asset positions in question cannot

be made up of a single asset position. They need to be sharded.

Shard total asset positions without global constraints

Consider a total asset position that represents a bookkeeping position without any on-ledger con-

straints. For example, the trading system may deal with fiat settlement off-ledger, and you simply

want to record a balance, whether it is positive or negative. In this situation, you can easily get rid

of contention altogether by assigning all allocations an arbitrary amount. To allocate $1 to a settle-

ment, write two new asset positions of $1 and -$1 to the ledger, then use the $1 to allocate. The total

asset position is unchanged.

Pros

This approach removes all contention on a total asset position.

Trading between two such total asset positions without global constraints can run at the theoreti-

cally optimal latency and throughput. Combining this with batching of batch size 50, it is possible

to achieve settlements per second up to the same 12,500 settlements per second per total asset

position that are possible globally.

Cons

Besides the inability to enforce any global constraints on the total asset position, this creates many

new contracts. At 500 settlements per second, two allocations per settlement, and two new assets

per allocation, that results in 2,000 new asset positions per second, which adds up quickly.

This effect has to bemitigated by a netting automation that nets themup into a single position once

a period (for example, every time it sees >= 100 asset positions for a total position). This automation

does not contend with the trading, but it adds up to 20 large transactions per second to the system

and slightly reduces total throughput.

Shard total asset positions with global constraints

As an example of a global constraint, assume that the total asset position has to stay positive. This

is usually done by ensuring that each individual asset position is positive. If that is the case, the

strategy is to define a sharding schemewhere the total position is decomposed into N smaller shard

positions and then run sequential processing or batching per shard position.

Each asset position has to be clearly assignable to a single shard position so that there is no

contention between shards. The partitioning of the total asset position does not have to be done

on-ledger. If the automation for all shards can communicate off-ledger, it is possible to run a shard-

ing strategy where you simply set the total number of desired asset positions.

For example, assume that there should be 100 asset positions for a total asset position with some

minimal value.

462 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

• The automation keeps track of a synchronized pending set of asset positions, which marks

asset positions that are in use.

• Every time the automation triggers (whichmay happen concurrently), it looks at howmany as-

set positions there are relative to the desired 100 and howmuch quantity is needed to allocate

the open settlements.

• It then selects an appropriate set of non-pending asset positions so that it can allocate the

open settlements and return new asset positions to move the total number closer to 100.

• Before sending the transaction, it adds those positions to the pending set to make sure that

another thread does not also use them.

Alternatively, if you have a sufficiently large total position compared to settlement values, you can

pick the 99th percentile p_99 of settlement values and maintain N­1 positions of value between

p_99 and 2 * p_99 and one of the (still large) remainder. 99% of transactions will be processed in

the N­1 shard positions, and the remaining 1% will be processed against the remaining pool. When-

ever a shard moves out of the desired range, it is balanced against the pool.

Pros

Assuming that there is always enough liquidity in the total asset position, the performance can be

the same as without global constraints: up to 12,500 settlements per second on a single total asset

position.

Cons

If settlement values are large compared to total asset holdings, this technique helps little. In an

extreme case, if every settlement needs more than 50% of the total holding, it does not perform any

better than the sequential processing or batching per asset type and owner technique.

In realistic scenarios where settlement values are distributed on a broad range relative to total as-

set position and those relativities change as holdings go up and down, developing strategies that

perform optimally is complex. There are competing priorities that need to be balanced carefully:

• Keeping the total number of asset positions limited so that the number of active contracts

does not impact system performance.

• Having sufficient large asset positions so that frequent small settlements can be processed in

parallel.

• Having a mechanism that ensures large settlements, possibly requiring as much as 100% of

the available total asset position, are not blocked.

1.13.3 Managing Active Contract Set (ACS) Size

1.13.3.1 Problem Definition

The Active Contract Set (ACS) size makes up the load related to the number of active contracts in

the system at any one time. It means the totality of all the contracts that have been created but not

yet archived. ACS size may come from a deliberate Daml workflow design, but the size may also be

unexpected when insufficient care is given to supporting and auxiliary contract lifetimes.

Tip: See the documentation on Daml contracts for more information.

In Daml systems, ACS size can reach orders ofmagnitude higher than synonymous loads in common

database or blockchain systems. When the ACS size is in the high 100s GBs or TBs, local database

1.13. Resource Management in Daml Application Design 463

../intro/1_Token.html#basic-contracts

Daml SDK Documentation, 2.7.3

access performance may deteriorate. We will look at potential issues around large ACS size and

possible solutions.

1.13.3.2 Relational Databases

Large ACS can have a negative impact on many aspects of system performance in relational

databases. The following points focus on PostgreSQL as the underlying database; the details dif-

fer in the case of Oracle but the results are similar.

• Large ACS size directly affects the resource consumption andperformance of a Ledger API client

application dealing with a large data set that may not fit into the memory or the application

database.

• ACS size directly affects the speed at which the ACS can be transmitted from the Ledger API

server using the ActiveContractService. In extreme cases, it could take hours to transfer the

complete set requested by the application due to the limits imposed by the gRPC channel ca-

pacity and the speed of storage queries.

• Increased latency is a less direct impact which shows up wherever a query is issued to the

database index to make progress. Large ACS size means that the corresponding indices are

also large, and at a certain point they will no longer fit into the shared-buffer space. It then

takes increasingly longer for the database engine to produce query results. This affects activ-

ities such as contract lookups during the command submission, transaction tree streaming,

or pointwise transaction lookups.

• Large ACS size may affect the speed at which the database underpinning the participant in-

gests new transactions. Normally, as new updates pour in the write-ahead log commits the

table and index changes immediately. Those updates come in two shapes; full-page writes or

differential writes. With large volumes, many are full-page writes.

• Finally, many dirty pages also translate into prolonged and expensive flushes to the disk as

part of the checkpointing process.

Solutions

• Pay attention to the lifetime of the contracts. Make sure that the supporting and auxiliary

contracts don’t clutter the ACS and archive them as soon as it is practical to do so.

• Set up a frequent pruning schedule. Be aware that pruning is only effective if there are archived

contracts available for pruning. If all contracts are still active, pruning has limited success.

Refer to our pruning documentation for more information.

• Implement an ODS in your ledger client application to limit reliance on read access to the ACS.

Do this whenever you notice that the time to initialize the application from the ACS exceeds

your pain level.

• Monitor database performance.

– Monitor the disk read and write activity. Look for sudden changes in the operation

patterns. For instance, a sudden increase in the disk’s read activity may be a sign of

indices no longer fitting into the shared buffers.

– Observe the performance of the database queries. Check our monitoring docu-

mentation for query metrics that can assist. You may also consider setting up a

log_min_duration_statement parameter in the PostgreSQL configuration.

• Set up autovacuum on the PostgreSQL database. Note that, after pruning, a lot of dead tuples

will need removing.

464 Chapter 1. Canton References

../../canton/usermanual/pruning.html
../../canton/usermanual/monitoring.html#daml-index-db-operation-query
https://www.postgresql.org/docs/current/runtime-config-logging.html
https://www.postgresql.org/docs/13/routine-vacuuming.html

Daml SDK Documentation, 2.7.3

1.13.3.3 HTTP JSON API Service

We recommend using a relational database and dedicated compute resources to manage large ACS

size when using the HTTP JSON API and refer the reader to the above considerations.

Tip: See the HTTP JSON API service documentation on managing high load in the query store and

server scaling and redundancy for more information.

1.14 Upgrading and Extending Daml Applications

Database schemas tend to evolve over time. A new feature in your application might need an ad-

ditional choice in one of your templates. Or a change in your data model will make you application

perform better. We distinguish two kinds of changes to a Daml model:

• A Daml model extension

• A Daml model upgrade

An extension adds new templates and data structures to yourmodel, while leaving all previously writ-

ten definitions unchanged.

An upgrade changes previously defined data structures and templates.

Whether extension or upgrade, your new code needs to be compatible with data that is already live

in a production system. The next two sections show how to extend and upgrade Daml models. The

last section shows how to automate the data migration process.

1.14.1 Extending Daml Applications

Consider the following simple Daml model for carbon certificates:

module CarbonV1 where

template CarbonCert

with

issuer : Party

owner : Party

carbon_metric_tons : Int

where

signatory issuer, owner

It contains two templates. The above template representing a carbon compensation certificate. And

a second template to create the CarbonCert via a Propose-Accept workflow.

Now we want to extend this model to add trust labels for certificates by third parties. We don’t want

tomake any changes to the already deployedmodel. Changes to a Damlmodel will result in changed

package ID’s for the contained templates. This means that if a Daml model is already deployed, the

modified Daml code will not be able to reference contracts instantiated with the old package. To

avoid this problem, it’s best to put extensions in a new package.

In our example we call the new package carbon-label and implement the label template like

1.14. Upgrading and Extending Daml Applications 465

../../json-api/production-setup/query-store.html#behavior-under-high-load
../../json-api/production-setup/scaling-and-redundancy.html

Daml SDK Documentation, 2.7.3

module CarbonLabel where

import CarbonV1

template CarbonLabel

with

cert : ContractId CarbonCert

labelOwner : Party

where

signatory labelOwner

The CarbonLabel template references the CarbonCert contract of the carbon-1.0.0 packages by contract

ID. Hence, we need to import the CarbonV1 module and add the carbon-1.0.0 to the dependencies in

the daml.yaml file. Because we want to be independent of the Daml SDK used for both packages, we

import the carbon-1.0.0 package as data dependency

name: carbon­label

version: 1.0.0

dependencies:

­ daml­prim

­ daml­stdlib

data­dependencies:

­ path/to/carbon­1.0.0.dar

Deploying an extension is simple: just upload the new package to the ledger with the daml ledger

upload-dar command. In our example the ledger runs on the localhost:

daml ledger upload­dar ­­ledger­port 6865 ­­ledger­host localhost ./daml/dist/

↪→carbon­label­1.0.0.dar

If instead of just extending a Daml model you want to modify an already deployed template of your

Daml model, you need to perform an upgrade of your Daml application. This is the content of the

next section.

1.14.2 Upgrading Daml Applications

In applications backed by a centralized database controlled by a single operator, it is possible to

upgrade an application in a single step that migrates all existing data to a new data model.

As a running example, let’s imagine a centralized database containing carbon offset certificates. Its

operator created the database schema with

CREATE TABLE carbon_certs (

carbon_metric_tons VARINT,

owner VARCHAR NOT NULL

issuer VARCHAR NOT NULL

)

The certificate has a field for the quantity of offset carbon in metric tons, an owner and an issuer.

In the next iteration of the application, the operator decides to also store and display the carbon

offsetmethod. In the centralized case, the operator canupgrade thedatabaseby executing the single

SQL command

466 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

ALTER TABLE carbon_certs ADD carbon_offset_method VARCHAR DEFAULT "unknown"

This adds a new column to the carbon_certs table and inserts the value unknown for all existing

entries.

While upgrading this centralized database is simple and convenient, its data entries lack any kind

of signature and hence proof of authenticity. The data consumers need to trust the operator.

In contrast, Daml templates always have at least one signatory. The consequence is that the upgrade

process for a Daml application needs to be different.

1.14.2.1 Daml Upgrade Overview

In a Daml application running on a distributed ledger, the signatories of a contract have agreed

to one specific version of a template. Changing the definition of a template, e.g., by extending it

with a new data field or choice without agreement from its signatories would completely break the

authorization guarantees provided by Daml.

Therefore, Daml takes a different approach to upgrades and extensions. Rather than having a sep-

arate concept of data migration that sidesteps the fundamental guarantees provided by Daml, up-

grades are expressed as Daml contracts. This means that the same guarantees and rules that apply to

other Daml contracts also apply to upgrades.

In a Daml application, it thus makes sense to think of upgrades as an extension of an existing appli-

cation instead of an operation that replaces existing contracts with a newer version. The existing

templates stay on the ledger and can still be used. Contracts of existing templates are not automat-

ically replaced by newer versions. However, the application is extended with new templates. Then

if all signatories of a contract agree, a choice can archive the old version of a contract and create a

new contract instead.

1.14.2.2 Structure Upgrade Contracts

Upgrade contracts are specific to the templates that are being upgraded. But most of them share

common patterns. Here is the implementation of the above carbon_certs schema in Daml. We

have some prescience that there will be future versions of CarbonCert, and so place the definition of

CarbonCert in a module named CarbonV1

module CarbonV1 where

template CarbonCert

with

issuer : Party

owner : Party

carbon_metric_tons : Int

where

signatory issuer, owner

A CarbonCert has an issuer and an owner. Both are signatories. Our goal is to extend this CarbonCert

template with a field that adds themethod used to offset the carbon. We use a different name for the

new template here for clarity. This is not required as templates are identified by the triple (PackageId,

ModuleName, TemplateName).

1.14. Upgrading and Extending Daml Applications 467

Daml SDK Documentation, 2.7.3

module CarbonV2 where

template CarbonCertWithMethod

with

issuer : Party

owner : Party

carbon_metric_tons : Int

carbon_offset_method : Text

where

signatory issuer, owner

Next, we need to provide a way for the signatories to agree to a contract being upgraded. It would

be possible to structure this such that issuer and owner have to agree to an upgrade for each indi-

vidual CarbonCert contract separately. Since the template definition for all of them is the same, this

is usually not necessary for most applications. Instead, we collect agreement from the signatories

only once and use that to upgrade all carbon certificates.

Since there are multiple signatories involved here, we use a Propose-Accept workflow. First, we define

an UpgradeCarbonCertProposal template that will be created by the issuer. This template has an Accept

choice that the owner can exercise. Upon execution it will then create an UpgradeCarbonCertAgreement.

template UpgradeCarbonCertProposal

with

issuer : Party

owner : Party

where

signatory issuer

observer owner

key (issuer, owner) : (Party, Party)

maintainer key._1

choice Accept : ContractId UpgradeCarbonCertAgreement

controller owner

do create UpgradeCarbonCertAgreement with ..

Now we can define the UpgradeCarbonCertAgreement template. This template has one nonconsuming

choice that takes the contract ID of a CarbonCert contract, archives this CarbonCert contract and cre-

ates a CarbonCertWithMethod contract with the same issuer and owner and the carbon_offset_method

set to unknown.

template UpgradeCarbonCertAgreement

with

issuer : Party

owner : Party

where

signatory issuer, owner

key (issuer, owner) : (Party, Party)

maintainer key._1

nonconsuming choice Upgrade : ContractId CarbonCertWithMethod

with

certId : ContractId CarbonCert

controller issuer

do cert <­ fetch certId

assert (cert.issuer == issuer)

assert (cert.owner == owner)

archive certId

(continues on next page)

468 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

create CarbonCertWithMethod with

issuer = cert.issuer

owner = cert.owner

carbon_metric_tons = cert.carbon_metric_tons

carbon_offset_method = "unknown"

1.14.2.3 Build and Deploy carbon­1.0.0

Let’s see everything in action by first building and deploying carbon­1.0.0. After this we’ll see how

to deploy and upgrade to carbon­2.0.0 containing the CarbonCertWithMethod template.

First we’ll need a sandbox ledger to which we can deploy.

$ daml sandbox ­­port 6865

Now we’ll setup the project for the original version of our certificate. The project contains the Daml

for just the CarbonCert template, along with a CarbonCertProposal template which will allow

us to issue some coins in the example below.

Here is the project config.

name: carbon

version: 1.0.0

dependencies:

­ daml­prim

­ daml­stdlib

­ daml­script

source: .

Now we can build and deploy carbon­1.0.0.

$ cd example/carbon­1.0.0

$ daml build

$ daml ledger upload­dar ­­port 6865

1.14.2.4 Create carbon-1.0.0 Certificates

Let’s create some certificates!

First, we run a setup script to create 3 users alice, bob and charlie and corresponding parties.

We write out the actual party ids to a JSON file so we can later use them in Navigator.

$ cd example/carbon­1.0.0

$ daml script ­­dar .dar/dist/carbon­1.0.0.dar ­­script­name Setup:setup ­­ledger­

↪→host localhost ­­ledger­port 6865 ­­output­file parties.json

The resulting parties.json file will look similar to the following but the actual party ids will vary.

{

"alice": "party­19a21501­ba87­47be­90a6­

↪→692dfaefe64a::12203977cedf2d394073b4c58036e047fcc590f7f2d61d82503df431473c4277fe70

↪→",

(continues on next page)

1.14. Upgrading and Extending Daml Applications 469

Daml SDK Documentation, 2.7.3

(continued from previous page)

"bob": "party­7ecb1d67­1d20­4612­be67­

↪→b5741c86204d::12203977cedf2d394073b4c58036e047fcc590f7f2d61d82503df431473c4277fe70

↪→"

"charlie": "party­fae6a574­9860­422a­9fd4­

↪→7ca2f7295e41::12203977cedf2d394073b4c58036e047fcc590f7f2d61d82503df431473c4277fe70

↪→"

}

We’ll use thenavigator to connect to the ledger, and create two certificates issuedbyAlice, andowned

by Bob.

$ cd example/carbon­1.0.0

$ daml navigator server localhost 6865

We point a browser to http://localhost:4000, and follow the steps:

1. Login as alice:

1. Select Templates tab.

2. Create a CarbonCertProposal with Alice as issuer and Bob as owner and an arbitrary

value for the carbon_metric_tons field. Note that in place of Alice and Bob, you

need to use the party ids from the previously created parties.json.

3. Create a 2nd proposal in the same way.

2. Login as bob:

1. Exercise the CarbonCertProposal_Accept choice on both proposal contracts.

1.14.2.5 Build and Deploy carbon­2.0.0

Now we setup the project for the improved certificates containing the carbon_offset_method field.

This project contains only the CarbonCertWithMethod template. The upgrade templates are in a

third carbon­upgrade package. While it would be possible to include the upgrade templates in the

samepackage, thismeans that the package containing the new CarbonCertWithMethod template

depends on the previous version. With the approach taken here of keeping the upgrade templates

in a separate package, the carbon­1.0.0 package is no longer needed once we have upgraded all

certificates.

It’s worth stressing here that extensions always need to go into separate packages. We cannot just

add the new definitions to the original project, rebuild and re-deploy. This is because the crypto-

graphically computed package identifier would change. Consequently, it would not match the pack-

age identifier of the originalCarbonCert contracts fromcarbon­1.0.0whichare live on the ledger.

Here is the new project config:

name: carbon

version: 2.0.0

dependencies:

­ daml­prim

­ daml­stdlib

Now we can build and deploy carbon­2.0.0.

$ cd example/carbon­2.0.0

$ daml build

$ daml ledger upload­dar ­­port 6865

470 Chapter 1. Canton References

http://localhost:4000

Daml SDK Documentation, 2.7.3

1.14.2.6 Build and Deploy carbon­upgrade

Havingbuilt anddeployedcarbon­1.0.0andcarbon­2.0.0wearenow ready tobuild theupgrade

package carbon­upgrade. The project config references both carbon­1.0.0 and carbon­2.0.0

via the data­dependencies field. This allows us to import modules from the respective packages.

With these imported modules we can reference templates from packages that we already uploaded

to the ledger.

When following this example, path/to/carbon­1.0.0.dar and path/to/carbon­2.0.0.dar

should be replaced by the relative or absolute path to the DAR file created by building the respective

projects. Commonly the carbon­1.0.0 and carbon­2.0.0 projects would be sibling directories

in the file systems, so this path would be: ../carbon­1.0.0/.daml/dist/carbon­1.0.0.dar.

name: carbon­upgrade

version: 1.0.0

dependencies:

­ daml­prim

­ daml­stdlib

data­dependencies:

­ path/to/carbon­1.0.0.dar

­ path/to/carbon­2.0.0.dar

The Daml for the upgrade contracts imports the modules for both the new and old certificate ver-

sions.

module UpgradeFromCarbonCertV1 where

import CarbonV1

import CarbonV2

Now we can build and deploy carbon­upgrade. Note that uploading a DAR also uploads its depen-

dencies so if carbon­1.0.0 and carbon­2.0.0 had not already been deployed before, they would

be deployed as part of deploying carbon­upgrade.

$ cd example/carbon­upgrade

$ daml build

$ daml ledger upload­dar ­­port 6865

1.14.2.7 Upgrade Existing Certificates from carbon-1.0.0 to carbon-2.0.0

We start the navigator again.

$ cd example/carbon­upgrade

$ daml navigator server localhost 6865

Finally, we point a browser to http://localhost:4000 and can start the carbon certificates upgrades:

1. Login as alice

1. Select Templates tab.

2. Create an UpgradeCarbonCertProposal with Alice as issuer and Bob as owner. As

before, in place of Alice and Bob use the party ids from parties.json.

2. Login as bob

1. Exercise the Accept choice of the upgrade proposal, creating an UpgradeCarbon­

CertAgreement.

3. Login again as alice

1.14. Upgrading and Extending Daml Applications 471

http://localhost:4000

Daml SDK Documentation, 2.7.3

1. Use the UpgradeCarbonCertAgreement repeatedly to upgrade any certificate for

which Alice is issuer and Bob is owner.

1.14.2.8 Further Steps

For theupgrade of our carbon certificatemodel above, weperformedall stepsmanually viaNavigator.

However, if Alice had issued millions of carbon certificates, performing all upgrading steps manu-

ally becomes infeasible. It thus becomes necessary to automate these steps. We will go through a

potential implementation of an automated upgrade in the next section.

1.14.3 Automating the Upgrade Process

In this section, we are going to automate the upgrade of our carbon certificate process using Daml

Script and Daml Triggers. Note that automation for upgrades is specific to an individual application,

just like the upgrade models. Nevertheless, we have found that the pattern shown here occurs fre-

quently.

1.14.3.1 Structure the Upgrade

There are three kinds of actions performed during the upgrade:

1. Alice creates UpgradeCarbonCertProposal contracts. We assume here, that Alice wants to

upgrade all CarbonCert contracts she has issued. Since the UpgradeCarbonCertProposal

proposal is specific to each owner, Alice has to create one UpgradeCarbonCertProposal

per owner. There can be potentially many owners but this step only has to be performed once

assuming Alice will not issue more CarbonCert contracts after this point.

2. Bob and other owners accept the UpgradeCarbonCertProposal. To keep this example sim-

ple, we assume that there are only carbon certificates issued by Alice. Therefore, each owner

has to accept at most one proposal.

3. As owners accept upgrade proposals, Alice has to upgrade each certificate. This means that

she has to execute the upgrade choice once for each certificate. Owners will not all accept

the upgrade at the same time and some might never accept it. Therefore, this should be a

long-running process that upgrades all carbon certificates of a given owner as soon as they

accept the upgrade.

Given those constraints, we are going to use the following tools for the upgrade:

1. A Daml script that will be executed once by Alice and creates an UpgradeCarbonCertPro­

posal contract for each owner.

2. Navigator to accept the UpgradeCarbonCertProposal as Bob. While we could also use a

Daml script to accept the proposal, this step will often be exposed as part of a web UI so doing

it interactively in Navigator resembles that workflow more closely.

3. A long-running Daml trigger that upgrades all CarbonCert contracts for which there is a cor-

responding UpgradeCarbonCertAgreement.

472 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.14.3.2 Implementation of the Daml Script

In our Daml Script, we are first going to query the ACS (Active Contract Set) to find all CarbonCert

contracts issued by us. Next, we are going to extract the owner of each of those contracts and remove

any duplicates coming from multiple certificates issued to the same owner. Finally, we iterate over

the owners and create an UpgradeCarbonCertAgreement contract for each owner.

initiateUpgrade : Setup.Parties ­> Script ()

initiateUpgrade Setup.Parties{alice} = do

certs <­ query @CarbonCert alice

let myCerts = filter (\(_cid, c) ­> c.issuer == alice) certs

let owners = dedup $ map (\(_cid, c) ­> c.owner) myCerts

forA_ owners $ \owner ­> do

debugRaw ("Creating upgrade proposal for: " <> show owner)

submit alice $ createCmd (UpgradeCarbonCertProposal alice owner)

1.14.3.3 Implementation of the Daml Trigger

Our trigger does not need any custom user state and no heartbeat so the only interesting field in its

definition is the rule.

upgradeTrigger : Trigger ()

upgradeTrigger = Trigger with

initialize = pure ()

updateState = _msg ­> pure ()

registeredTemplates = AllInDar

heartbeat = None

rule = triggerRule

In our rule, we first filter out all agreements and certificates issued by us. Next, we iterate over all

agreements. For each agreement we filter the certificates by the owner of the agreement and finally

upgrade the certificate by exercising the Upgrade choice. Wemark the certificate as pending which

temporarily removes it from the ACS and therefore stops the trigger from trying to upgrade the same

certificate multiple times if the rule is triggered in quick succession.

triggerRule : Party ­> TriggerA () ()

triggerRule issuer = do

agreements <­

filter (\(_cid, agreement) ­> agreement.issuer == issuer) <$>

query @UpgradeCarbonCertAgreement

allCerts <­

filter (\(_cid, cert) ­> cert.issuer == issuer) <$>

query @CarbonCert

forA_ agreements $ \(agreementCid, agreement) ­> do

let certsForOwner = filter (\(_cid, cert) ­> cert.owner == agreement.owner)␣

↪→allCerts

forA_ certsForOwner $ \(certCid, _) ­>

emitCommands

[exerciseCmd agreementCid (Upgrade certCid)]

[toAnyContractId certCid]

The trigger is a long-running process and the rule will be executed whenever the state of the ledger

changes. So whenever an owner accepts an upgrade proposal, the trigger will run the rule and up-

grade all certificates of that owner.

1.14. Upgrading and Extending Daml Applications 473

Daml SDK Documentation, 2.7.3

1.14.3.4 Deploy and Execute the Upgrade

Now that we defined our Daml script and our trigger, it is time to use them! If you still have Sandbox

running from the previous section, stop it to clear out all data before continuing.

First, we start sandbox passing in the carbon­upgrade DAR. Since a DAR includes all transitive

dependencies, this includes carbon­1.0.0 and carbon­2.0.0.

$ cd example/carbon­upgrade

$ daml sandbox ­­dar .daml/dist/carbon­upgrade­1.0.0.dar

To simplify the setup here, we use a Daml script to create 3 parties Alice, Bob and Charlie and two

CarbonCert contracts issues by Alice, one owned by Bob and one owned by Charlie. This Daml script

reuses the Setup.setup Daml script from the previous section to create the parties & users.

setup : Script Setup.Parties

setup = do

parties@Setup.Parties{..} <­ Setup.setup

bobProposal <­ submit alice $ createCmd (CarbonCertProposal alice bob 10)

submit bob $ exerciseCmd bobProposal CarbonCertProposal_Accept

charlieProposal <­ submit alice $ createCmd (CarbonCertProposal alice charlie 5)

submit charlie $ exerciseCmd charlieProposal CarbonCertProposal_Accept

pure parties

Run the script as follows:

$ cd example/carbon­initiate­upgrade

$ daml build

$ daml script ­­dar=.daml/dist/carbon­initiate­upgrade­1.0.0.dar ­­script­

↪→name=InitiateUpgrade:setup ­­ledger­host=localhost ­­ledger­port=6865 ­­output­

↪→file parties.json

As before, parties.json contains the actual party ids we can use later.

If you now start Navigator from the carbon­initiate­upgrade directory and log in as alice, you

can see the two CarbonCert contracts.

Next, we run the trigger for Alice. The trigger will keep running throughout the rest of this example.

$ cd example/carbon­upgrade­trigger

$ daml build

$ daml trigger ­­dar=.daml/dist/carbon­upgrade­trigger­1.0.0.dar ­­trigger­

↪→name=UpgradeTrigger:upgradeTrigger ­­ledger­host=localhost ­­ledger­port=6865 ­­

↪→ledger­user=alice

With the trigger running, we can now run the script to create the UpgradeCarbonCertProposal

contracts (we could also have done that before starting the trigger). The script takes an argument of

type Parties corresponding to the result of the previous setup script. We can pass this in via the

­­input­file argument.

$ cd example/carbon­initiate­upgrade

$ daml build

$ daml script ­­dar=.daml/dist/carbon­initiate­upgrade­1.0.0.dar ­­script­

↪→name=InitiateUpgrade:initiateUpgrade ­­ledger­host=localhost ­­ledger­port=6865␣

↪→­­input­file=parties.json

474 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

At this point, our trigger is running and the UpgradeCarbonCertProposal contracts for Bob and

Charlie have been created. What is left to do is to accept the proposals. Our trigger will then auto-

matically pick them up and upgrade the CarbonCert contracts.

First, start Navigator and log in as bob. Click on the UpgradeCarbonCertProposal and accept

it. If you now go back to the contracts tab, you can see that the CarbonCert contract has been

archived and instead there is a new CarbonCertWithMethod upgrade. Our trigger has successfully

upgraded the CarbonCert!

Next, log in as charlie and accept the UpgradeCarbonCertProposal. Just like for Bob, you can

see that the CarbonCert contract has been archived and instead there is a new CarbonCertWith­

Method contract.

SinceweupgradedallCarbonCert contracts issuedbyAlice, we cannowstop the trigger anddeclare

the update successful.

1.15 Developer Tools

1.15.1 Daml Assistant (daml)

daml is a command-line tool that does a lot of useful things related to the SDK. Using daml, you can:

• Create new Daml projects: daml new <path to create project in>

• Create a new project based on the create­daml­app template: daml new

­­template=create­daml­app <path to create project in>

• Initialize a Daml project: daml init

• Compile a Daml project: daml build

This builds the Daml project according to the project config file daml.yaml (see Configuration

files below).

In particular, it will download and install the specified version of the Daml SDK (the

sdk­version field in daml.yaml) if missing, and use that SDK version to resolve dependen-

cies and compile the Daml project.

• Launch the tools in the SDK:

– Launch Daml Studio: daml studio

– Launch Sandbox, Navigator and the HTTP JSON API Service: daml start You can disable the

HTTP JSONAPI by passing­­json­api­port none todaml start. To specify additional

options for sandbox/navigator/the HTTP JSON API you can use ­­sandbox­option=opt,

­­navigator­option=opt and ­­json­api­option=opt.

– Launch Sandbox: daml sandbox

– Launch Navigator: daml navigator

– Launch the HTTP JSON API Service: daml json­api

– Run Daml codegen: daml codegen

• Install new SDK versions manually: daml install <version>

Note that you need to update your project config file <#configuration-files> to use the new

version.

1.15. Developer Tools 475

Daml SDK Documentation, 2.7.3

1.15.1.1 Full Help for Commands

To see information about any command, run it with ­­help.

1.15.1.2 Configuration Files

The Daml assistant and the SDK are configured using two files:

• The global config file, one per installation, which controls some options regarding SDK instal-

lation and updates

• The project config file, one per Daml project, which controls how the SDK builds and interacts

with the project

Global Config File (daml­config.yaml)

The global config file daml­config.yaml is in the daml home directory (~/.daml on Linux and

Mac, C:/Users/<user>/AppData/Roaming/daml onWindows). It controls options related to SDK

version installation and upgrades.

By default it’s blank, and you usually won’t need to edit it. It recognizes the following options:

• auto­install: whetherdamlautomatically installs amissingSDKversionwhen it is required

(defaults to true)

• update­check: how often daml will check for new versions of the SDK, in seconds (default to

86400, i.e. once a day)

This setting is only used to inform you when an update is available.

Set update­check: <number> to check for new versions every N seconds. Set

update­check: never to never check for new versions.

• artifactory­api­key: If you have a license for Daml EE, you can use this to specify the

Artifactory API key displayed in your user profile. The assistant will use this to download the EE

edition.

Here is an example daml­config.yaml:

auto­install: true

update­check: 86400

Project Config File (daml.yaml)

The project config file daml.yamlmust be in the root of your Daml project directory. It controls how

the Daml project is built and how tools like Sandbox and Navigator interact with it.

The existence of a daml.yaml file is what tells daml that this directory contains a Daml project, and

lets you use project-aware commands like daml build and daml start.

daml init creates a daml.yaml in an existing folder, so daml knows it’s a project folder.

daml new creates a skeleton application in a new project folder, which includes a config file. For

example, daml new my_project creates a new folder my_projectwith a project config file daml.

yaml like this:

476 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

sdk­version: __VERSION__

name: __PROJECT_NAME__

source: daml

init­script: Main:setup

parties:

­ Alice

­ Bob

version: 1.0.0

exposed­modules:

­ Main

dependencies:

­ daml­prim

­ daml­stdlib

script­service:

grpc­max­message­size: 134217728

grpc­timeout: 60

jvm­options: []

build­options: ["­­ghc­option", "­Werror",

"­­ghc­option", "­v"]

Here is what each field means:

• sdk­version: the SDK version that this project uses.

The assistant automatically downloads and installs this version if needed (see the

auto­install setting in the global config). We recommend keeping this up to date

with the latest stable release of the SDK. It is possible to override the version without

modifying the daml.yaml file by setting the DAML_SDK_VERSION environment vari-

able. This is mainly useful when you are working with an external project that you

want to build with a specific version.

The assistant will warn you when it is time to update this setting (see the

update­check setting in the global config to control how often it checks, or to dis-

able this check entirely).

• name: the name of the project. This determines the filename of the .dar file compiled by daml

build.

• source: the root folder of your Daml source code files relative to the project root.

• init­script: the name of the Daml script to run when using daml start.

• parties: the parties to display in the Navigator when using daml start.

• version: the project version.

• exposed­modules: the Damlmodules that are exposed by this project, which can be imported

in other projects. If this field is not specified all modules in the project are exposed.

• dependencies: library-dependencies of this project. See Reference: Daml Packages.

• data­dependencies: Cross-SDK dependencies of this project See Reference: Daml Packages.

• module­prefixes: Prefixes for all modules in package See Reference: Daml Packages.

• script­service: settings for the script service

– grpc­max­message­size: This option controls themaximum size of gRPCmessages. If

unspecified this defaults to 128MB (134217728 bytes). Unless you get errors, there should

be no reason to modify this.

– grpc­timeout: This option controls the timeout used for communicating with the script

service. If unspecified this defaults to 60s. Unless youget errors, there shouldbeno reason

to modify this.

– jvm­options: A list of options passed to the JVM when starting the script service. This

can be used to limit maximum heap size via the ­Xmx flag.

• build­options: a list of tokens thatwill be appended to some invocationsofdamlc (currently

1.15. Developer Tools 477

Daml SDK Documentation, 2.7.3

build and ide). Note that there is no further shell parsing applied.

• sandbox­options: a list of options that will be passed to Sandbox in daml start.

• navigator­options: a list of options that will be passed to Navigator in daml start.

• json­api­options: a list of options that will be passed to the HTTP JSON API in daml start.

• script­options: a list of options that will be passed to the Daml script runner when running

the init­script as part of daml start.

• start­navigator: Controls whether navigator is started as part of daml start. Defaults

to true. If this is specified as a CLI argument, say daml start ­­start­navigator=true,

the CLI argument takes precedence over the value in daml.yaml.

Recommended build­options

The default set of warnings enabled by the Daml compiler is fairly conservative. When you are just

starting out, seeing a huge set of warnings can easily be overwhelming and distract from what you

are actually working on. However, as you get more experienced and more people work on a Daml

project, enabling additional warnings (and enforcing their absence in CI) can be useful.

Here are build­options you might declare in a project’s daml.yaml for a stricter set of warnings.

build­options:

­ ­­ghc­option=­Wunused­top­binds

­ ­­ghc­option=­Wunused­matches

­ ­­ghc­option=­Wunused­do­bind

­ ­­ghc­option=­Wincomplete­uni­patterns

­ ­­ghc­option=­Wredundant­constraints

­ ­­ghc­option=­Wmissing­signatures

­ ­­ghc­option=­Werror

Each option enables a particular warning, except for the last one, ­Werror, which turns every warn-

ing into an error; this is especially useful for CI build arrangements. Simply remove or comment out

any line to disable that category of warning. See the Daml forum for a discussion of the meaning of

these warnings and pointers to other available warnings.

1.15.1.3 Build Daml Projects

To compile your Daml source code into a Daml archive (a .dar file), run:

daml build

You can control the build by changing your project’s daml.yaml:

sdk­version The SDK version to use for building the project.

name The name of the project.

source The path to the source code.

The generated .dar file is created in .daml/dist/${name}.dar by default. To override the default

location, pass the ­o argument to daml build:

daml build ­o path/to/darfile.dar

478 Chapter 1. Canton References

https://discuss.daml.com/t/making-the-most-out-of-daml-compiler-warnings/739

Daml SDK Documentation, 2.7.3

1.15.1.4 Manage Releases

You can manage SDK versions manually by using daml install.

To download and install SDK of the latest stable Daml version:

daml install latest

To download and install the latest snapshot release:

daml install latest ­­snapshots=yes

Please note that snapshot releases are not intended for production usage.

To install the SDK version specified in the project config, run:

daml install project

To install a specific SDK version, for example version 2.0.0, run:

daml install 2.0.0

Rarely, you might need to install an SDK release from a downloaded SDK release tarball. This is

an advanced feature: you should only ever perform this on an SDK release tarball that is released

through the official digital­asset/daml github repository. Otherwise your daml installationmay

become inconsistent with everyone else’s. To do this, run:

daml install path­to­tarball.tar.gz

By default, daml install will update the assistant if the version being installed is newer. You can

force the assistant to be updatedwith ­­install­assistant=yes and prevent the assistant from

being updated with ­­install­assistant=no.

See daml install ­­help for a full list of options.

1.15.1.5 Terminal Command Completion

The daml assistant comes with support for bash and zsh completions. These will be installed auto-

matically on Linux and Mac when you install or upgrade the Daml assistant.

If you use the bash shell, and your bash supports completions, you can use the TAB key to complete

many daml commands, such as daml install and daml version.

For Zsh you first need to add ~/.daml/zsh to your $fpath, e.g., by adding the following to the be-

ginning of your ~/.zshrc before you call compinit: fpath=(~/.daml/zsh $fpath)

You can override whether bash completions are installed for daml by passing

­­bash­completions=yes or ­­bash­completions=no to daml install.

1.15. Developer Tools 479

Daml SDK Documentation, 2.7.3

1.15.1.6 Run Commands Outside of the Project Directory

In some cases, it can be convenient to run a command in a project without having to change direc-

tories. For that use case, you can set the DAML_PROJECT environment variable to the path to the

project:

DAML_PROJECT=/path/to/my/project daml build

Note that while some commands, most notably, daml build, accept a ­­project­root option, it

can end up choosing the wrong SDK version so you should prefer the environment variable instead.

1.15.2 Canton Console

1.15.2.1 Introduction

Canton offers a console where you can run administrative or debugging commands.

When you run the Sandbox using daml start or daml sandbox, you are effectively starting an

in-memory instance of Canton with a single domain and a single participant.

As such, you can interact with the running Sandbox using the console, just like you would in a pro-

duction environment.

The purpose of this page is to give a few pointers on how the console can be used to interact with

a running Sandbox. For an in-depth guide on how to use this tool against a production, staging or

testing environment, consult the main documentation for the Canton console.

1.15.2.2 Run the Canton Console Against the Sandbox

Once youhave aSandbox running locally (for example after runningdaml start ordaml sandbox)

you can start the console with the following command (in a separate terminal):

daml canton­console

Once the console starts (it might take some time the first time) you can quit the session by running

the exit command.

1.15.2.3 Built-in Documentation

The Canton console comes with built-in documentation. You can use the help command to get

online documentation for top-level commands. Many objects in the console also have further built-in

help that you can access by invoking the helpmethod on them.

For example, you can ask for help on the health object by typing:

health.help

Or go more in depth about specific items within that object as in the following example:

health.help("status")

480 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.15.2.4 Interact With the Sandbox

One of the objects available in the Canton console represents the Sandbox itself. The object is called

sandbox and you can use it to interact with the Sandbox. For example, you can list the DARs loaded

on the Sandbox by running the following command:

sandbox.dars.list()

Among the various features available as part of the console, you can manage parties and packages,

check the health of the Sandbox, perform pruning operations and more. Consult the built-in docu-

mentation mentioned above and the main documentation for the Canton console to learn about further

capabilities.

1.15.3 Deploy to a Generic Daml Ledger

Daml ledgers expose a unified administration API. This means that deploying to a Daml ledger is no

different from deploying to your local sandbox.

To deploy to a Daml ledger, run the following command from within your Daml project:

$ daml deploy ­­host=<HOST> ­­port=<PORT> ­­access­token­file=<TOKEN­FILE>

where <HOST> and <PORT> is the hostname and port your ledger is listening on, which defaults to

port6564. The<TOKEN­FILE> is needed if your sandbox runswith authorizationandneeds to contain

a JWT token for a user with an admin claim. If your sandbox is not set up to use any authentication

it can be omitted.

Instead of passing ­­host, ­­port and ­­access­token­file flags to the command above, you

can add the following section to the project’s daml.yaml file:

ledger:

host: <HOSTNAME>

port: <PORT>

access­token­file: <PATH TO ACCESS TOKEN FILE>

The daml deploy command will:

1. upload the project’s compiled DAR file to the ledger. This will make the Daml templates defined

in the current project available to the API users of the sandbox.

2. allocate the parties specified in the project’s daml.yaml on the ledger if they are missing.

For additional interactions with the ledger, use the daml ledger command. Try running daml

ledger ­­help to get a list of available ledger commands:

$ daml ledger ­­help

Usage: daml ledger COMMAND

Interact with a remote Daml ledger. You can specify the ledger in daml.yaml

with the ledger.host and ledger.port options, or you can pass the ­­host and

­­port flags to each command below. If the ledger is authenticated, you should

pass the name of the file containing the token using the ­­access­token­file

flag or the `daml.access­token­file` field in daml.yaml.

Available options:

­h,­­help Show this help text

(continues on next page)

1.15. Developer Tools 481

Daml SDK Documentation, 2.7.3

(continued from previous page)

Available commands:

list­parties List parties known to ledger

allocate­parties Allocate parties on ledger if they don't exist

upload­dar Upload DAR file to ledger

fetch­dar Fetch DAR from ledger into file

metering­report Report on Ledger Use

1.15.3.1 Connect via TLS

To connect to the ledger via TLS, pass ­­tls to the various commands. If your ledger supports or

requires mutual authentication you can pass your client key and certificate chain files via ­­pem

client_key.pem ­­crt client.crt. Finally, you can use a custom certificate authority for val-

idating the server certificate by passing ­­cacrt server.crt. If ­­pem, ­­crt or ­­cacrt are

specified TLS is enabled automatically so ­­tls is redundant.

1.15.3.2 Configure Request Timeouts

You can configure the timeout used on API requests by passing ­­timeout=N to the various daml

ledger commands and daml deploy which will set the timeout to N seconds. Note that this is a

per-request timeout not a timeout for the whole command. That matters for commands like daml

deploy that consist of multiple requests.

1.15.4 Daml REPL

The Daml REPL allows you to use the Daml Script API interactively. This is useful for debugging and

for interactively inspecting and manipulating a ledger.

1.15.4.1 Usage

First create a new project based on the script­example template. Take a look at the documenta-

tion for Daml Script for details on this template.

daml new script­example ­­template script­example # create a project called␣

↪→script­example based on the template

cd script­example # switch to the new project

Now, build the project and start Daml Sandbox, the in-memory ledger included in the SDK. Note that

we are starting Sandbox in wallclock mode. Static time is not supported in daml repl.

daml build

daml sandbox ­­wall­clock­time ­­port=6865 ­­dar .daml/dist/script­example­0.0.1.

↪→dar

Now that the ledger has been started, you can launch the REPL in a separate terminal using the

following command.

daml repl ­­ledger­host=localhost ­­ledger­port=6865 .daml/dist/script­example­0.

↪→0.1.dar ­­import script­example

482 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

The ­­ledger­host and ­­ledger­port parameters point to the host and port your ledger is run-

ning on. In addition to that, you also need to pass in the name of a DAR containing the templates

and other definitions that will be accessible in the REPL. We also specify that we want to import all

modules from the script­example package. If your modules provide colliding definitions you can

also import modules individually fromwithin the REPL. Note that you can also specify multiple DARs

and they will all be available.

You should now see a prompt looking like

daml>

You can think of this prompt like a line in a do-block of the Script action. Each line of input has to

have one of the following two forms:

1. An expression expr of type Script a for some type a. This will execute the script and print

the result if a is an instance of Show and not ().

2. A pure expression expr of type a for some type a where a is an instance of Show. This will

evaluate expr and print the result. If you are only interest in pure expressions you can also use

Daml REPL without connecting to a ledger.

3. A binding of the form pat <­ expr where pat is pattern, e.g., a variable name x to bind the

result to and expr is an expression of type Script a. This will execute the script and match

the result against the pattern pat bindings the matches to the variables in the pattern. You

can then use those variables on subsequent lines.

4. A let binding of the form let pat = y, where pat is a pattern and y is a pure expression or

let f x = y to define a function. The bound variables can be used on subsequent lines.

5. Next to Daml code the REPL also understands REPL commands which are prefixed by :. Enter

:help to see a list of supported REPL commands.

First create two parties: A party with the display name "Alice" and the party id "alice" and a

party with the display name "Bob" and the party id "bob".

daml> alice <­ allocatePartyWithHint "Alice" (PartyIdHint "alice")

daml> bob <­ allocatePartyWithHint "Bob" (PartyIdHint "bob")

Next, create a CoinProposal from Alice to Bob

daml> submit alice (createCmd (CoinProposal (Coin alice bob)))

As Bob, you can now get the list of active CoinProposal contracts using the query function. The

debug : Show a => a ­> Script () function can be used to print values.

daml> proposals <­ query @CoinProposal bob

daml> debug proposals

[Daml.Script:39]: [(<contract­id>,CoinProposal {coin = Coin {issuer = 'alice',␣

↪→owner = 'bob'}})]

Finally, accept all proposals using the forA function to iterate over them.

daml> forA proposals $ \(contractId, _) ­> submit bob (exerciseCmd contractId␣

↪→Accept)

Using the query function we can now verify that there is one Coin and no CoinProposal:

daml> coins <­ query @Coin bob

daml> debug coins

(continues on next page)

1.15. Developer Tools 483

Daml SDK Documentation, 2.7.3

(continued from previous page)

[Daml.Script:39]: [(<contract­id>,Coin {issuer = 'alice', owner = 'bob'})]

daml> proposals <­ query @CoinProposal bob

[Daml.Script:39]: []

To exit daml repl press Control­D.

1.15.4.2 What Is in Scope at the Prompt?

In the prompt, all modules from DALFs specified in ­­import are imported automatically. In ad-

dition to that, the Daml.Script module is also imported and gives you access to the Daml Script

API.

You can use the commands :module + ModA ModB … to import additional modules and :module

­ ModA ModB … to remove previously added imports. Modules can also be imported using regular

import declarations instead of module +. The command :show imports lists the currently active

imports.

daml> import DA.Time

daml> debug (days 1)

1.15.4.3 Using Daml REPL Without a Ledger

If you are only interested in pure expressions, e.g., because you want to test how some function be-

haves you can omit the ­­ledger­host and ­ledger­port parameters. Daml REPL will work as

usual but any attempts to call Daml Script APIs that interact with the ledger, e.g., submit will result

in the following error:

daml> java.lang.RuntimeException: No default participant

1.15.4.4 Connecting via TLS

You can connect to a ledger that requires TLS by passing ­­tls. A custom root certificate used for

validating the server certificate can be set via ­­cacrt. Finally, you can also enable client authenti-

cation by passing ­­pem client.key ­­crt client.crt. If ­­cacrt or ­­pem and ­­crt are

passed TLS is automatically enabled so ­­tls is redundant.

1.15.4.5 Connection to a Ledger With Authorization

If your ledger requires an authorization token you can pass it via ­­access­token­file.

484 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.15.4.6 Using Daml REPL to Convert to JSON

Using the :json command you can encode serializable Daml expressions as JSON. For example us-

ing the definitions and imports from above:

daml> :json days 1

{"microseconds":86400000000}

daml> :json map snd coins

[{"issuer":"alice","owner":"bob"}]

1.15.5 Daml Studio

Daml Studio is an integrated development environment (IDE) for Daml. It is an extension on top

of Visual Studio Code (VS Code), a cross-platform, open-source editor providing a rich code editing

experience.

1.15.5.1 Install

Daml Studio is included in the Daml SDK.

1.15.5.2 Create Your First Daml File

1. Start Daml Studio by running daml studio in the current project.

This command starts Visual Studio Code and (if needs be) installs the Daml Studio extension,

or upgrades it to the latest version.

2. Make sure the Daml Studio extension is installed:

1. Click on the Extensions icon at the bottom of the VS Code sidebar.

2. Click on the Daml Studio extension that should be listed on the pane.

3. Open a new file (⌘N) and save it (⌘S) as Test.daml.

1.15. Developer Tools 485

https://code.visualstudio.com
https://code.visualstudio.com/docs/editor/editingevolved
https://code.visualstudio.com/docs/editor/editingevolved

Daml SDK Documentation, 2.7.3

4. Copy the following code into your file:

module Test where

double : Int ­> Int

double x = 2 * x

Your screen should now look like the image below.

5. Introduce a parse error by deleting the = sign and then clicking the Ⓧ symbol on the lower-left

corner. Your screen should now look like the image below.

486 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

6. Remove the parse error by restoring the = sign.

We recommend reviewing the Visual Studio Code documentation to learn more about how to use it.

To learn more about Daml, see Language Reference.

1.15.5.3 Supported Features

Visual Studio Code providesmany helpful features for editing Daml files and we recommend review-

ing Visual Studio Code Basics and Visual Studio Code Keyboard Shortcuts for OS X. The Daml Studio

extension for Visual Studio Code provides the following Daml-specific features:

Symbols and Problem Reporting

Use the commands listed below to navigate between symbols, rename them, and inspect any prob-

lems detected in your Daml files. Symbols are identifiers such as template names, lambda argu-

ments, variables, and so on.

Command Shortcut (OS X)

Go to Definition F12

Peek Definition ⌥F12

Rename Symbol F2

Go to Symbol in File ⇧⌘O

Go to Symbol in Workspace ⌘T

Find all References ⇧F12

Problems Panel ⇧⌘M

Note: You can also start a command by typing its name into the command palette (press ⇧⌘P or

F1). The command palette is also handy for looking up keyboard shortcuts.

Note:

• Rename Symbol, Go to Symbol in File, Go to Symbol inWorkspace, and Find all References work

on: choices, record fields, top-level definitions, let-bound variables, lambda arguments, and

modules

• Go to Definition and Peek Definition work on: top-level definitions, let-bound variables, lambda

arguments, and modules

1.15. Developer Tools 487

https://code.visualstudio.com/docs/editor/codebasics
https://code.visualstudio.com/docs/editor/codebasics
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-macos.pdf
https://code.visualstudio.com/docs/editor/editingevolved#_go-to-definition
https://code.visualstudio.com/docs/editor/editingevolved#_peek
https://code.visualstudio.com/docs/editor/editingevolved#_rename-symbol
https://code.visualstudio.com/docs/editor/editingevolved#_go-to-symbol
https://code.visualstudio.com/docs/editor/editingevolved#_open-symbol-by-name
https://code.visualstudio.com/docs/editor/editingevolved#_peek
https://code.visualstudio.com/docs/editor/editingevolved#_errors-warnings
https://code.visualstudio.com/docs/editor/editingevolved#_rename-symbol
https://code.visualstudio.com/docs/editor/editingevolved#_go-to-symbol
https://code.visualstudio.com/docs/editor/editingevolved#_open-symbol-by-name
https://code.visualstudio.com/docs/editor/editingevolved#_peek
https://code.visualstudio.com/docs/editor/editingevolved#_go-to-definition
https://code.visualstudio.com/docs/editor/editingevolved#_peek

Daml SDK Documentation, 2.7.3

Hover Tooltips

You can hover over most symbols in the code to display additional information such as its type.

Daml Script Results

Top-level declarations of type Script are decorated with a Script results code lens. You can

click on the code lens to inspect the execution transaction graph and the active contracts.

For the script from theIoumodule, you get the following table displaying all contracts that are active

at the end of the script. The first column displays the contract id. The columns afterwards represent

the fields of the contract and finally you get one column per party with an X if the party can see the

contract or a ­ if not.

If you want more details, you can click on the Show archived checkbox, which extends the table to

include archived contracts, and on the Show detailed disclosure checkbox, which displays why the

contract is visible to each party, based on four categories:

1. S, the party sees the contract because they are a signatory on the contract.

2. O, the party sees the contract because they are an observer on the contract.

3. W, the party sees the contract because theywitnessed the creation of this contract, e.g., because

they are an actor on the exercise that created it.

4. D, the party sees the contract because they have been divulged the contract, e.g., because they

witnessed an exercise that resulted in a fetch of this contract.

For details on the meaning of those four categories, refer to the Daml Ledger Model. For the example

above, the resulting table looks as follows. You can see the archived Bank contract and the active

Bank contract whose creation Alice has witnessed by virtue of being an actor on the exercise

that created it.

If you want to see the detailed transaction graph you can click on the Show transaction view

button. The transaction graph consists of transactions, each of which contain one or more updates

to the ledger, that is creates and exercises. The transaction graph also records fetches of contracts.

488 Chapter 1. Canton References

https://code.visualstudio.com/docs/editor/editingevolved#_hover

Daml SDK Documentation, 2.7.3

For example a script for the Ioumodule looks as follows:

Fig. 8: Script results

Each transaction is the result of executing a step in the script. In the image below, the transaction

#0 is the result of executing the first line of the script (line 20), where the Iou is created by the bank.

The following information can be gathered from the transaction:

• The result of the first script transaction #0 was the creation of the Iou contract with the argu-

ments bank, 10, and "USD".

• The created contract is referenced in transaction #1, step 0.

• The created contract was consumed in transaction #1, step 0.

• A new contract was created in transaction #1, step 1, and has been divulged to parties ‘Alice’,

‘Bob’, and ‘Bank’.

1.15. Developer Tools 489

Daml SDK Documentation, 2.7.3

• At the end of the script only the contract created in #1:1 remains.

• The return value from running the script is the contract identifier #1:1.

• And finally, the contract identifiers assigned in script execution correspond to the script step

that created them (e.g. #1).

You can navigate to the corresponding source code by clicking on the location shown in parenthesis

(e.g. Iou:25:12, whichmeans theIoumodule, line 25 and column 1). You can also navigate between

transactions by clicking on the transaction and contract ids (e.g. #1:0).

Daml Snippets

You can automatically complete a number of “snippets” when editing a Daml source file. By default,

hitting ^­Space after typing a Daml keyword displays available snippets that you can insert.

To define your own workflow around Daml snippets, adjust your user settings in Visual Studio Code

to include the following options:

{

"editor.tabCompletion": true,

"editor.quickSuggestions": false

}

With those changes in place, you can simply hit Tab after a keyword to insert the code pattern.

You can develop your own snippets by following the instructions in Creating your own Snippets to

create an appropriate daml.json snippet file.

490 Chapter 1. Canton References

https://code.visualstudio.com/docs/editor/userdefinedsnippets

Daml SDK Documentation, 2.7.3

1.15.5.4 Common Script Errors

During Daml execution, errors can occur due to exceptions (e.g. use of “abort”, or division by zero),

or due to authorization failures. You can expect to run into the following errors when writing Daml.

When a runtime error occurs in a script execution, the script result view shows the error together

with the following additional information, if available:

Location of the failed commit If the failing part of the script was a submitCmd, the source location

of the call to submitCmd will be displayed.

Stack trace A list of source locations that were encountered before the error occurred. The last en-

countered location is the first entry in the list.

Ledger time The ledger time at which the error occurred.

Partial transaction The transaction that is being constructed, but not yet committed to the ledger.

Committed transaction Transactions that were successfully committed to the ledger prior to the

error.

Trace Any messages produced by calls to trace and debug.

Abort, Assert, and Debug

The abort, assert and debug inbuilt functions can be used in updates and scripts. All three can

be used to output messages, but abort and assert can additionally halt the execution:

abortTest = script do

debug "hello, world!"

abort "stop"

Script execution failed:

Unhandled exception: DA.Exception.GeneralError:GeneralError with

message = "stop"

Ledger time: 1970­01­01T00:00:00Z

Trace:

"hello, world!"

Missing Authorization on Create

If a contract is being created without approval from all authorizing parties the commit will fail. For

example:

template Example

with

party1 : Party; party2 : Party

where

signatory party1

signatory party2

example = script do

alice <­ allocateParty "Alice"

bob <­ allocateParty "Bob"

alice `submit` createCmd Example with

(continues on next page)

1.15. Developer Tools 491

Daml SDK Documentation, 2.7.3

(continued from previous page)

party1 = alice

party2 = bob

Execution of the example script fails due to ‘Bob’ being a signatory in the contract, but not authoriz-

ing the create:

Script execution failed:

#0: create of CreateAuthFailure:Example at unknown source

failed due to a missing authorization from 'Bob'

Ledger time: 1970­01­01T00:00:00Z

Partial transaction:

Sub­transactions:

#0

└─> Alice creates CreateAuthFailure:Example

with

party1 = 'Alice'; party2 = 'Bob'

To create the “Example” contract one would need to bring both parties to authorize the creation via

a choice, for example ‘Alice’ could create a contract giving ‘Bob’ the choice to create the ‘Example’

contract.

Missing Authorization on Exercise

Similarly to creates, exercises can also fail due to missing authorizations when a party that is not a

controller of a choice exercises it.

template Example

with

owner : Party

friend : Party

where

signatory owner

observer friend

choice Consume : ()

controller owner

do return ()

choice Hello : ()

controller friend

do return ()

example = script do

alice <­ allocateParty "Alice"

bob <­ allocateParty "Bob"

cid <­ alice `submit` createCmd Example with

owner = alice

friend = bob

bob `submit` exerciseCmd cid Consume

The execution of the example script fails when ‘Bob’ tries to exercise the choice ‘Consume’ of which

he is not a controller

492 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Script execution failed:

#1: exercise of Consume in ExerciseAuthFailure:Example at unknown source

failed due to a missing authorization from 'Alice'

Ledger time: 1970­01­01T00:00:00Z

Partial transaction:

Failed exercise:

exercises Consume on #0:0 (ExerciseAuthFailure:Example)

with

Sub­transactions:

0

└─> 'Alice' exercises Consume on #0:0 (ExerciseAuthFailure:Example)

with

Committed transactions:

TX #0 1970­01­01T00:00:00Z (unknown source)

#0:0

│ disclosed to (since): 'Alice' (#0), 'Bob' (#0)

└─> 'Alice' creates ExerciseAuthFailure:Example

with

owner = 'Alice'; friend = 'Bob'

From the error we can see that the parties authorizing the exercise (‘Bob’) is not a subset of the

required controlling parties.

Contract Not Visible

Contract not being visible is another common error that can occur when a contract that is being

fetched or exercised has not been disclosed to the committing party. For example:

template Example

with owner: Party

where

signatory owner

choice Consume : ()

controller owner

do return ()

example = script do

alice <­ allocateParty "Alice"

bob <­ allocateParty "Bob"

cid <­ alice `submit` createCmd Example with owner = alice

bob `submit` exerciseCmd cid Consume

In the above script the ‘Example’ contract is created by ‘Alice’ and makes no mention of the party

‘Bob’ and hence does not cause the contract to be disclosed to ‘Bob’. When ‘Bob’ tries to exercise the

contract the following error would occur:

Script execution failed:

Attempt to fetch or exercise a contract not visible to the reading parties.

Contract: #0:0 (NotVisibleFailure:Example)

actAs: 'Bob'

(continues on next page)

1.15. Developer Tools 493

Daml SDK Documentation, 2.7.3

(continued from previous page)

readAs:

Disclosed to: 'Alice'

Ledger time: 1970­01­01T00:00:00Z

Partial transaction:

Committed transactions:

TX #0 1970­01­01T00:00:00Z (unknown source)

#0:0

│ disclosed to (since): 'Alice' (#0)

└─> 'Alice' creates NotVisibleFailure:Example

with

owner = 'Alice'

To fix this issue the party ‘Bob’ should be made a controlling party in one of the choices.

1.15.5.5 Work with Multiple Packages

Often a Daml project consists of multiple packages, e.g., one containing your templates and one

containing a Daml trigger so that you can keep the templates stable whilemodifying the trigger. It is

possible to work onmultiple packages in a single session of Daml studio but you have to keep some

things in mind. You can see the directory structure of a simple multi-package project consisting of

two packages pkga and pkgb below:

.

├── daml.yaml

├── pkga

│ ├── daml

│ │ └── A.daml

│ └── daml.yaml

└── pkgb

├── daml

│ └── B.daml

└── daml.yaml

pkga and pkgb are regular Daml projects with a daml.yaml and a Daml module. In addition to

the daml.yaml files for the respective packages, you also need to add a daml.yaml to the root of

your project. This file only needs to specify the SDK version. Replace X.Y.Z by the SDK version you

specified in the daml.yaml files of the individual packages.

sdk­version: X.Y.Z

You can then open Daml Studio once in the root of your project and work on files in both packages.

Note that if pkgb refers to pkga.dar in its dependencies field, changes will not be picked up auto-

matically. This is always the case even if you open Daml Studio in pkgb. However, for multi-package

projects there is an additional caveat: You have to both rebuild pkga.dar using daml build and

then build pkgb using daml build before restarting Daml Studio.

494 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.15.6 Daml Sandbox

The Daml Sandbox, or Sandbox for short, is a simple ledger implementation that enables rapid ap-

plication prototyping by simulating a Daml Ledger.

You can start Sandbox together with Navigator using the daml start command in a Daml project.

This command will compile the Daml file and its dependencies as specified in the daml.yaml.

It will then launch Sandbox passing the just obtained DAR packages. The script specified in the

init­script field in daml.yaml will be loaded into the ledger. Finally, it launches the navigator

connecting it to the running Sandbox.

It is possible to execute the Sandbox launching step in isolation by typing daml sandbox.

Sandbox can also be run manually as in this example:

$ daml sandbox ­­dar Main.dar ­­static­time

Starting Canton sandbox.

Listening at port 6865

Uploading .daml/dist/foobar­0.0.1.dar to localhost:6865

DAR upload succeeded.

Canton sandbox is ready.

Behind the scenes, Sandbox spins up a Canton ledger with an in-memory participant sandbox and

an in-memory domain local. You can pass additional Canton configuration files via ­c. This option

can be specified multiple times and the resulting configuration files will be merged.

$ daml sandbox ­c path/to/canton/config

1.15.6.1 Run With Authorization

By default, Sandbox accepts all valid ledger API requests without performing any request authoriza-

tion.

To start Sandbox with authorization using JWT-based access tokens as described in the Authorization

documentation, create a config file that specifies the type of authorization service and the path to the

certificate.

Listing 26: auth.conf

canton.participants.sandbox.ledger­api.auth­services = [{

// type can be

// jwt­rs­256­crt

// jwt­es­256­crt

// jwt­es­512­crt

// jwt­rs­256­jwks with an additional url

// unsafe­jwt­hmac­256 with an additional secret

type = jwt­rs­256­crt

certificate = my­certificate.cert

}]

The settings under auth­services are described in detail in API configuration documentation

1.15. Developer Tools 495

https://jwt.io/
/canton/usermanual/apis.html#jwt-authorization

Daml SDK Documentation, 2.7.3

Generate JSONWeb Tokens (JWT)

To generate access tokens for testing purposes, use the jwt.io web site.

Generate RSA keys

To generate RSA keys for testing purposes, use the following command

openssl req ­nodes ­new ­x509 ­keyout sandbox.key ­out sandbox.crt

which generates the following files:

• sandbox.key: the private key in PEM/DER/PKCS#1 format

• sandbox.crt: a self-signed certificate containing the public key, in PEM/DER/X.509 Certifi-

cate format

Generate EC keys

To generate keys to be used with ES256 for testing purposes, use the following command

openssl req ­x509 ­nodes ­days 3650 ­newkey ec:<(openssl ecparam ­name␣

↪→prime256v1) ­keyout ecdsa256.key ­out ecdsa256.crt

which generates the following files:

• ecdsa256.key: the private key in PEM/DER/PKCS#1 format

• ecdsa256.crt: a self-signed certificate containing the public key, in PEM/DER/X.509 Certifi-

cate format

Similarly, you can use the following command for ES512 keys:

openssl req ­x509 ­nodes ­days 3650 ­newkey ec:<(openssl ecparam ­name secp521r1)␣

↪→­keyout ecdsa512.key ­out ecdsa512.crt

1.15.6.2 Run With TLS

To enable TLS, you need to specify the private key for your server and the certificate chain. This en-

ables TLS for both the Ledger API and the Canton Admin API. When enabling client authentication, you

also need to specify client certificates which can be used by Canton’s internal processes. Note that

the identity of the application will not be proven by using this method, i.e. the application_id field in

the request is not necessarily correlated with the CN (Common Name) in the certificate. Below, you

can see an example config. For more details on TLS, refer to Canton’s documentation on TLS.

Listing 27: tls.conf

canton.participants.sandbox.ledger­api {

tls {

// the certificate to be used by the server

cert­chain­file = "./tls/participant.crt"

// private key of the server

private­key­file = "./tls/participant.pem"

(continues on next page)

496 Chapter 1. Canton References

https://jwt.io/

Daml SDK Documentation, 2.7.3

(continued from previous page)

// trust collection, which means that all client certificates will be␣

↪→verified using the trusted

// certificates in this store. if omitted, the JVM default trust store is␣

↪→used.

trust­collection­file = "./tls/root­ca.crt"

// define whether clients need to authenticate as well (default not)

client­auth = {

// none, optional and require are supported

type = require

// If clients are required to authenticate as well, we need to provide a␣

↪→client

// certificate and the key, as Canton has internal processes that need to␣

↪→connect to these

// APIs. If the server certificate is trusted by the trust­collection, then␣

↪→you can

// just use the server certificates. Otherwise, you need to create separate␣

↪→ones.

admin­client {

cert­chain­file = "./tls/admin­client.crt"

private­key­file = "./tls/admin­client.pem"

}

}

}

}

1.15.6.3 Command-line Reference

To start Sandbox, run: daml sandbox [options] [­c canton.config].

To see all the available options, rundaml sandbox ­­help. Note that thiswill show you the options

of the Sandbox wrapper around Canton. To see options of the underlying Canton runner, use daml

sandbox ­­canton­help.

1.15.6.4 Metrics

Enable and Configure Reporting

You can enable metrics reporting via Prometheus using the following configuration file.

1.15. Developer Tools 497

Daml SDK Documentation, 2.7.3

Listing 28: metrics.conf

canton.monitoring.metrics.reporters = [{

type = prometheus

address = "localhost" // default

port = 9000 // default

}]

For other options and more details refer to the Canton documentation.

Types of Metrics

This is a list of type of metrics with all data points recorded for each. Use this as a reference when

reading the list of metrics.

Gauge

An individual instantaneous measurement.

Counter

Number of occurrences of some event.

Meter

A meter tracks the number of times a given event occurred. The following data points are kept and

reported by any meter.

• <metric.qualified.name>.count: number of registered data points overall

• <metric.qualified.name>.m1_rate: number of registered data points per minute

• <metric.qualified.name>.m5_rate: number of registered data points every 5 minutes

• <metric.qualified.name>.m15_rate: number of registered data points every 15 minutes

• <metric.qualified.name>.mean_rate: mean number of registered data points

Histogram

An histogram records aggregated statistics about collections of events. The exact meaning of the

number depends on themetric (e.g. timers are histograms about the time necessary to complete an

operation).

• <metric.qualified.name>.mean: arithmetic mean

• <metric.qualified.name>.stddev: standard deviation

• <metric.qualified.name>.p50: median

• <metric.qualified.name>.p75: 75th percentile

• <metric.qualified.name>.p95: 95th percentile

• <metric.qualified.name>.p98: 98th percentile

• <metric.qualified.name>.p99: 99th percentile

498 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

• <metric.qualified.name>.p999: 99.9th percentile

• <metric.qualified.name>.min: lowest registered value overall

• <metric.qualified.name>.max: highest registered value overall

Histograms only keep a small reservoir of statistically relevant data points to ensure that metrics

collection can be reasonably accurate without being too taxing resource-wise.

Unless mentioned otherwise all histograms (including timers, mentioned below) use exponentially

decaying reservoirs (i.e. the data is roughly relevant for the last five minutes of recording) to ensure

that recent and possibly operationally relevant changes are visible through the metrics reporter.

Note that min and max values are not affected by the reservoir sampling policy.

You can readmore about reservoir sampling and possible associated policies in the DropwizardMet-

rics library documentation.

Timers

A timer records all metrics registered by a meter and by an histogram, where the histogram

records the time necessary to execute a given operation (unless otherwise specified, the precision

is nanoseconds and the unit of measurement is milliseconds).

Database Metrics

A “database metric” is a collection of simpler metrics that keep track of relevant numbers when

interacting with a persistent relational store.

These metrics are:

• <metric.qualified.name>.wait (timer): time to acquire a connection to the database

• <metric.qualified.name>.exec (timer): time to run the query and read the result

• <metric.qualified.name>.query (timer): time to run the query

• <metric.qualified.name>.commit (timer): time to perform the commit

• <metric.qualified.name>.translation (timer): if relevant, time necessary to turn seri-

alized Daml-LF values into in-memory objects

List of Metrics

The following is a non-exhaustive list of selectedmetrics that can be particularly important to track.

Note that not all the following metrics are available unless you run the sandbox with a PostgreSQL

backend.

1.15. Developer Tools 499

https://metrics.dropwizard.io/4.1.2/manual/core.html#man-core-histograms/
https://metrics.dropwizard.io/4.1.2/manual/core.html#man-core-histograms/

Daml SDK Documentation, 2.7.3

daml.commands.delayed_submissions

Ameter. Number of delayed submissions (submission that have been evaluated to transaction with

a ledger time farther in the future than the expected latency).

daml.commands.failed_command_interpretations

A meter. Number of commands that have been deemed unacceptable by the interpreter and thus

rejected (e.g. double spends)

daml.commands.submissions

A timer. Time to fully process a submission (validation, deduplication and interpretation) before it’s

handed over to the ledger to be finalized (either committed or rejected).

daml.commands.valid_submissions

A meter. Number of submission that pass validation and are further sent to deduplication and in-

terpretation.

daml.commands.validation

A timer. Time to validate submitted commands before they are fed to the Daml interpreter.

daml.commands.input_buffer_capacity

A counter. The capacity of the queue accepting submissions on the CommandService.

daml.commands.input_buffer_length

A counter. The number of currently pending submissions on the CommandService.

daml.commands.input_buffer_delay

A timer. Measures the queuing delay for pending submissions on the CommandService.

500 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

daml.commands.max_in_flight_capacity

A counter. The capacity of the queue tracking completions on the CommandService.

daml.commands.max_in_flight_length

A counter. The number of currently pending completions on the CommandService.

daml.execution.get_lf_package

A timer. Time spent by the engine fetching the packages of compiled Daml code necessary for inter-

pretation.

daml.execution.lookup_active_contract_count_per_execution

A histogram. Number of active contracts fetched for each processed transaction.

daml.execution.lookup_active_contract_per_execution

A timer. Time to fetch all active contracts necessary to process each transaction.

daml.execution.lookup_active_contract

A timer. Time to fetch each individual active contract during interpretation.

daml.execution.lookup_contract_key_count_per_execution

A histogram. Number of contract keys looked up for each processed transaction.

daml.execution.lookup_contract_key_per_execution

A timer. Time to lookup all contract keys necessary to process each transaction.

daml.execution.lookup_contract_key

A timer. Time to lookup each individual contract key during interpretation.

1.15. Developer Tools 501

Daml SDK Documentation, 2.7.3

daml.execution.retry

A meter. Overall number of interpretation retries attempted due to mismatching ledger effective

time.

daml.execution.total

A timer. Time spent interpreting a valid command into a transaction ready to be submitted to the

ledger for finalization.

daml.index.db.connection.api.server.pool

This namespace holds a number of interesting metrics about the connection pool used to commu-

nicate with the persistent store that underlies the index.

These metrics include:

• daml.index.db.connection.api.server.pool.Wait (timer): time spent waiting to ac-

quire a connection

• daml.index.db.connection.api.server.pool.Usage (histogram): time spent using

each acquired connection

• daml.index.db.connection.api.server.pool.TotalConnections (gauge): number

or total connections

• daml.index.db.connection.api.server.pool.IdleConnections (gauge): number of

idle connections

• daml.index.db.connection.api.server.pool.ActiveConnections (gauge): number

of active connections

• daml.index.db.connection.api.server.pool.PendingConnections (gauge): num-

ber of threads waiting for a connection

daml.index.db.get_active_contracts

A database metric. Time spent retrieving a page of active contracts to be served from the active

contract service. The page size is configurable, please look at the CLI reference.

daml.index.db.get_completions

A database metric. Time spent retrieving a page of command completions to be served from the

command completion service. The page size is configurable, please look at the CLI reference.

502 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

daml.index.db.get_flat_transactions

A database metric. Time spent retrieving a page of flat transactions to be streamed from the trans-

action service. The page size is configurable, please look at the CLI reference.

daml.index.db.get_ledger_end

Adatabasemetric. Time spent retrieving the current ledger end. The count for thismetric is expected

to be very high and always increasing as the indexed is queried for the latest updates.

daml.index.db.get_ledger_id

A database metric. Time spent retrieving the ledger identifier.

daml.index.db.get_transaction_trees

A database metric. Time spent retrieving a page of flat transactions to be streamed from the trans-

action service. The page size is configurable, please look at the CLI reference.

daml.index.db.load_all_parties

A database metric. Load the currently allocated parties so that they are served via the party man-

agement service.

daml.index.db.load_archive

A database metric. Time spent loading a package of compiled Daml code so that it’s given to the

Daml interpreter when needed.

daml.index.db.load_configuration_entries

A database metric. Time to load the current entries in the log of configuration entries. Used to verify

whether a configuration has been ultimately set.

daml.index.db.load_package_entries

A database metric. Time to load the current entries in the log of package uploads. Used to verify

whether a package has been ultimately uploaded.

1.15. Developer Tools 503

Daml SDK Documentation, 2.7.3

daml.index.db.load_packages

A database metric. Load the currently uploaded packages so that they are served via the package

management service.

daml.index.db.load_parties

A database metric. Load the currently allocated parties so that they are served via the party service.

daml.index.db.load_party_entries

A database metric. Time to load the current entries in the log of party allocations. Used to verify

whether a party has been ultimately allocated.

daml.index.db.lookup_active_contract

A database metric. Time to fetch one contract on the index to be used by the Daml interpreter to

evaluate a command into a transaction.

daml.index.db.lookup_configuration

A database metric. Time to fetch the configuration so that it’s served via the configuration manage-

ment service.

daml.index.db.lookup_contract_by_key

A database metric. Time to lookup one contract key on the index to be used by the Daml interpreter

to evaluate a command into a transaction.

daml.index.db.lookup_flat_transaction_by_id

A database metric. Time to lookup a single flat transaction by identifier to be served by the transac-

tion service.

daml.index.db.lookup_maximum_ledger_time

A databasemetric. Time spent looking up the ledger effective time of a transaction as themaximum

ledger time of all active contracts involved to ensure causal monotonicity.

504 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

daml.index.db.lookup_transaction_tree_by_id

A database metric. Time to lookup a single transaction tree by identifier to be served by the trans-

action service.

daml.index.db.store_configuration_entry

A databasemetric. Time spent persisting a change in the ledger configuration provided through the

configuration management service.

daml.index.db.store_ledger_entry

A database metric. Time spent persisting a transaction that has been successfully interpreted and

is final.

daml.index.db.store_package_entry

A databasemetric. Time spent storing a Daml package uploaded through the packagemanagement

service.

daml.index.db.store_party_entry

A database metric. Time spent storing party information as part of the party allocation endpoint

provided by the party management service.

daml.index.db.store_rejection

A database metric. Time spent persisting the information that a given command has been rejected.

daml.indexer.last_received_record_time

A monotonically increasing integer value that represents the record time of the last event ingested

by the index db. It is measured in milliseconds since the EPOCH time.

daml.indexer.last_received_offset

A string value representing the last ledger offset ingested by the index db. It is only available on

metrics backends that support strings. In particular it is not available in Prometheus.

1.15. Developer Tools 505

Daml SDK Documentation, 2.7.3

daml.indexer.current_record_time_lag

A lag between the record time of a transaction and the wall-clock time registered at the ingestion

time to the index db. Depending on the systemic clock skew between different machines, this value

can be negative.

daml.indexer.ledger_end_sequential_id

Amonotonically increasing integer value representing the sequential id ascribed to themost recent

ledger event ingested by the index db. Please note, that only a subset of all ledger events are ingested

and given a sequential id. These are: creates, consuming exercises, non-consuming exercises and

divulgence events. This value can be treated as a counter of all such events visible to a given partic-

ipant.

daml.lapi

Everymetrics under this namespace is a timer, one for each service exposed by the Ledger API, in the

format:

daml.lapi.service_name.service_endpoint

As in the following example:

daml.lapi.command_service.submit_and_wait

Single call services return the time to serve the request, streaming services measure the time to

return the first response.

daml.lapi.return_status

This namespace contains counters for various gRPC return status codes in the following format

daml.lapi.return_status.<gRPC status code>

As in the following example:

daml.lapi.return_status.ABORTED

daml.services

Every metrics under this namespace is a timer, one for each endpoint exposed by the index, read or

write service. Metrics are in the format:

daml.services.service_name.service_endpoint

The following example demonstrates a metric for transactions submitted over the write service:

daml.services.write.submit_transaction

Single call services return the time to serve the request, streaming services measure the time to

return the first response.

506 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

jvm

Under the jvm namespace there is a collection of metrics that tracks important measurements

about the JVM that the sandbox is running on, including CPU usage, memory consumption and the

current state of threads.

1.15.7 Navigator

The Navigator is a front-end that you can use to connect to any Daml Ledger and inspect andmodify

the ledger. You can use it during Daml development to explore the flow and implications of the Daml

models.

The first sections of this guide cover use of the Navigator with the SDK. Refer to Advanced Usage for

information on using Navigator outside the context of the SDK.

1.15.7.1 Navigator Functionality

Connect the Navigator to any Daml Ledger and use it to:

• View templates

• View active and archived contracts

• Exercise choices on contracts

• Advance time (This option applies only when using Navigator with the Daml Sandbox ledger.)

1.15.7.2 Starting Navigator

Navigator is included in the SDK. To launch it:

1. Start Navigator via a terminal window running Daml Assistant by typing daml start

2. The Navigator web-app is automatically started in your browser. If it fails to start, open a

browser window and point it to the Navigator URL

When running daml start you will see the Navigator URL. By default it will be http://

localhost:7500/.

Note: Navigator is compatible with these browsers: Safari, Chrome, or Firefox.

1.15.7.3 Logging In

By default, Navigator shows a drop-down list with the users that have been created via the user man-

agement service. During development, it is common to create these users in a Daml script: that you

specify in the init­script section of your daml.yaml file so it is executed on daml start. Most

of the templates shipped with the Daml SDK already include such a setup script. Only users that

have a primary party set will be displayed.

After logging in, you will interact with the ledger as the primary party of that user, meaning that you

can see contracts visible to that party and submit commands (e.g. create a contract) as that party.

The party you are logged in as is not displayed directly. However, Navigator provides autocompletion

based on the party id which starts with the party id hint so a good option is to set the party id hint

1.15. Developer Tools 507

http://localhost:7500/
http://localhost:7500/

Daml SDK Documentation, 2.7.3

to the user id when you allocate the party in your setup script. You can see an example of that in the

skeleton template:

alice <­ allocatePartyWithHint "Alice" (PartyIdHint "Alice")

bob <­ allocatePartyWithHint "Bob" (PartyIdHint "Bob")

aliceId <­ validateUserId "alice"

bobId <­ validateUserId "bob"

createUser (User aliceId (Some alice)) [CanActAs alice]

createUser (User bobId (Some bob)) [CanActAs bob]

The first step in using Navigator is to use the dropdown list on the Navigator home screen to select

from the available users.

The main Navigator screen will be displayed, with contracts that the primary party of this user is

entitled to view in the main pane and the option to switch from contracts to templates in the pane

at the left. Other options allow you to filter the display, include or exclude archived contracts, and

exercise choices as described below.

To change the active user:

1. Click the name of the current user in the top left corner of the screen.

2. On the home screen, select a different user.

508 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

You can act as different users in different browser windows. Use Chrome’s profile feature https:

//support.google.com/chrome/answer/2364824 and sign in as a different user for each Chrome pro-

file.

Logging in as a Party

Instead of logging in by specifying a user, you can also log in by specifying a party directly. This

is useful if you do not want to or cannot (because your ledger does not support user management)

create users.

To do so, you can start Navigator with a flag to disable support for user management:

daml navigator ­­feature­user­management=false

To use this via daml start, you can specify it in your daml.yaml file:

navigator­options:

­ ­­feature­user­management=false

Instead of displaying a list of users on login, Navigator will display a list of parties where each party

is identified by its display name.

Alternatively you can specify a fixed list of parties in your daml.yaml file. This will automatically

disable user management and display those parties on log in. Note that you still need to allocate

those parties before you can log in as them.

parties:

­ Alice::12201d00faa0968d7ab81e63ad6ad4ee0d31b08a3581b1d8596e68a1356f27519ccb

­ Bob::12201d00faa0968d7ab81e63ad6ad4ee0d31b08a3581b1d8596e68a1356f27519ccb

1.15.7.4 Viewing Templates or Contracts

Daml contract ​templates are ​models ​that contain ​the ​agreement ​statement, ​all ​the ​applica-

ble parameters, ​and ​the ​choices ​that ​can ​be ​made ​in ​acting ​on ​that ​data. They ​specify

 ​acceptable input ​and ​the ​resulting ​output. ​A ​contract ​template ​contains ​placeholders

 ​rather ​than ​actual names, ​amounts, ​dates, ​and ​so ​on. In ​a contract, ​the ​placeholders

 ​have ​been ​replaced ​with ​actual ​data.

The Navigator allows you to list templates or contracts, view contracts based on a template, and view

template and contract details.

1.15. Developer Tools 509

https://support.google.com/chrome/answer/2364824
https://support.google.com/chrome/answer/2364824

Daml SDK Documentation, 2.7.3

Listing templates

To see what contract templates are available on the ledger you are connected to, choose Templates

in the left pane of the main Navigator screen.

Use the Filter field at the top right to select template IDs that include the text you enter.

Listing contracts

To view a list of available contracts, choose Contracts in the left pane.

510 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

In the Contracts list:

• Changes to the ledger are automatically reflected in the list of contracts. To avoid the auto-

matic updates, select the Frozen checkbox. Contracts will still be marked as archived, but the

contracts list will not change.

• Filter the displayed contracts by entering text in the Filter field at the top right.

• Use the Include Archived checkbox at the top to include or exclude archived contracts.

Viewing contracts based on a template

You can also view the list of contracts that are based on a particular template.

1. You will see icons to the right of template IDs in the template list with a number indicating how

many contracts are based on this template.

2. Click the number to display a list of contracts based on that template.

Number of Contracts

1.15. Developer Tools 511

Daml SDK Documentation, 2.7.3

List of Contracts

512 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Viewing template and contract details

To view template or contract details, click on a template or contract in the list. The template or

contracts detail page is displayed.

Template Details

Contract Details

1.15. Developer Tools 513

Daml SDK Documentation, 2.7.3

1.15.7.5 Using Navigator

Creating contracts

Contracts in a ledger are created automatically when you exercise choices. In some cases, you create

a contract directly from a template. This feature can be particularly useful for testing and experi-

menting during development.

To create a contract based on a template:

1. Navigate to the template detail page as described above.

2. Complete the values in the form

3. Choose the Submit button.

When the command has been committed to the ledger, the loading indicator in the navbar at the top

will display a tick mark.

While loading…

When committed to the ledger…

514 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Exercising choices

To exercise a choice:

1. Navigate to the contract details page (see above).

2. Click the choice you want to exercise in the choice list.

3. Complete the form.

4. Choose the Submit button.

Or

1. Navigate to the choice form by clicking the wrench icon in a contract list.

2. Select a choice.

You will see the loading and confirmation indicators, as pictured above in Creating Contracts.

1.15. Developer Tools 515

Daml SDK Documentation, 2.7.3

Advancing time

It is possible to advance time against the Daml Sandbox. (This is not true of all Daml Ledgers.) This

advance-time functionality can be useful when testing, for example, when entering a trade on one

date and settling it on a later date.

To advance time:

1. Click on the ledger time indicator in the navbar at the top of the screen.

2. Select a new date / time.

3. Choose the Set button.

1.15.7.6 Authorizing Navigator

If you are running Navigator against a Ledger API server that verifies authorization, youmust provide

the access token when you start the Navigator server.

The access token retrieval depends on the specific Daml setup you are working with: please refer to

the ledger operator to learn how.

Once you have retrieved your access token, you can provide it to Navigator by storing it in a file and

provide the path to it using the ­­access­token­file command line option.

If the access token cannot be retrieved, is missing or wrong, you’ll be unable to move past the Navi-

gator’s frontend login screen and see the following:

516 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.15.7.7 Advanced Usage

Customizable table views

Customizable table views is an advanced rapid-prototyping feature, intended for Daml developers

who wish to customize the Navigator UI without developing a custom application.

To use customized table views:

1. Create a file frontend­config.js in your project root folder (or the folder from which you

run Navigator) with the content below:

import { DamlLfValue } from '@da/ui­core';

export const version = {

schema: 'navigator­config',

major: 2,

minor: 0,

};

export const customViews = (userId, party, role) => ({

customview1: {

type: "table­view",

title: "Filtered contracts",

source: {

type: "contracts",

filter: [

{

field: "id",

value: "1",

}

],

search: "",

sort: [

{

field: "id",

direction: "ASCENDING"

}

]

},

columns: [

{

key: "id",

title: "Contract ID",

createCell: ({rowData}) => ({

type: "text",

value: rowData.id

}),

sortable: true,

width: 80,

weight: 0,

alignment: "left"

},

{

key: "template.id",

title: "Template ID",

createCell: ({rowData}) => ({

(continues on next page)

1.15. Developer Tools 517

Daml SDK Documentation, 2.7.3

(continued from previous page)

type: "text",

value: rowData.template.id

}),

sortable: true,

width: 200,

weight: 3,

alignment: "left"

}

]

}

})

2. Reload your Navigator browser tab. You should now see a sidebar item titled “Filtered con-

tracts” that links to a table with contracts filtered and sorted by ID.

To debug config file errors and learnmore about the config file API, open the Navigator /config page

in your browser (e.g., http://localhost:7500/config).

Using Navigator with a Daml Ledger

By default, Navigator is configured to use an unencrypted connection to the ledger. To run Navigator

against a secured Daml Ledger, configure TLS certificates using the ­­pem, ­­crt, and ­­cacrt

command line parameters. Details of these parameters are explained in the command line help:

daml navigator ­­help

1.15.8 Daml Profiler

The Daml Profiler is only available in Daml Enterprise.

TheDaml Profiler allows you to toprofile execution of yourDaml codewhich canhelp spot bottlenecks

and opportunities for optimization.

1.15.8.1 Usage

To test this out, we use the skeleton project included in the assistant. We first create the project and

build the DAR.

daml new profile­tutorial ­­template skeleton

cd profile­tutorial

daml build

Next we load the DAR into Sandbox with a special profile­dir option. Sandbox will behave as

usual but all profile results will be written to that directory. For this, we first create a configuration

file that sets the profile­dir for Sandbox:

518 Chapter 1. Canton References

http://localhost:7500/config
https://www.digitalasset.com/products/daml-enterprise

Daml SDK Documentation, 2.7.3

Listing 29: profile.conf

canton.participants.sandbox.features.profile­dir = profile­results

We then pass

daml sandbox ­­dar .daml/dist/profile­tutorial­0.0.1.dar ­c profile.conf

To actually produce some profile results, we have to create transactions. For the purposes of this

tutorial, the Daml Script included in the skeleton project does the job admirably:

daml script ­­dar .daml/dist/profile­tutorial­0.0.1.dar ­­ledger­host localhost ­­

↪→ledger­port 6865 ­­script­name Main:setup

If we now look at the contents of the profile­results directory, we can see one JSON file per

transaction produced by the script. Each file has a name of the form $timestamp­$command.json

where $timestamp is the submission time of the transaction and $command is a human-readable

description of the command that produced the transaction (for multi-command submissions, only

the first one will be in the file name).

$ ls profile­results

2021­03­17T12:32:16.846404Z­create:Asset.json

2021­03­17T12:32:17.361596Z­exercise:Asset:Give.json

2021­03­17T12:32:17.623537Z­exercise:Asset:Give.json

At this point, you can stop Sandbox.

To view the profiling results you can use speedscope. The easiest option is to use the web version

but you can also install it locally.

Let’s open the first exercise profile above 2021­03­17T12:32:17.

361596Z­exercise:Asset:Give.json:

You can see the exercise as the root of the profile. Below that there are a few expressions to calculate

signatories, observer and controllers and finally we see the create of the contract. In this simple

example, nothing obvious stands out that we could do to optimize further.

Speedscope provides a few other views that can be useful depending on your profile. Refer to the

documentation for more information on that.

1.15. Developer Tools 519

https://github.com/jlfwong/speedscope
https://www.speedscope.app/
https://github.com/jlfwong/speedscope#command-line-usage
https://github.com/jlfwong/speedscope#views

Daml SDK Documentation, 2.7.3

1.15.8.2 Caveats

1. The profiler currently does not take time into account that is spent outside of pure interpreta-

tion, e.g., time needed to fetch a contract from the database.

2. The profiler operates on Daml-LF. This means that the identifiers used in the profiler corre-

spond to Daml-LF expressions which includes autogenerated identifiers used by the compiler.

E.g., in the example above, Main:$csignatory is the name of the function used to compute

signatories of Asset. You can view the Daml-LF code that the compiler generated using daml

damlc inspect. This can be useful to see where an identifier is being used but it does take

some experience to be able to read Daml-LF code with ease.

daml damlc inspect .daml/dist/profiler­tutorial­0.0.1.dar

1.15.9 Daml Codegen

1.15.9.1 Introduction

You can use the Daml codegen to generate Java, and JavaScript/TypeScript classes represent-

ing Daml contract templates. These classes incorporate all boilerplate code for constructing

corresponding ledger com.daml.ledger.api.v1.CreateCommand, com.daml.ledger.api.

v1.ExerciseCommand, com.daml.ledger.api.v1.ExerciseByKeyCommand, and com.daml.

ledger.api.v1.CreateAndExerciseCommand.

1.15.9.2 Run the Daml Codegen

The basic command to run the Daml codegen is:

$ daml codegen [java|js] [options]

There are two modes:

• Command line configuration, specifying all settings in the command line (all codegens sup-

ported)

• Project file configuration, specifying all settings in the daml.yaml (currently Java only)

Command Line Configuration

Help for each specific codegen:

$ daml codegen [java|js] ­­help

Java codegens take the same set of configuration settings:

<DAR­file[=package­prefix]>...

DAR file to use as input of the codegen with an optional,

↪→ but recommend, package prefix for the generated sources.

­o, ­­output­directory <value>

Output directory for the generated sources

­d, ­­decoderClass <value>

Fully Qualified Class Name of the optional Decoder␣

↪→utility
(continues on next page)

520 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

­V, ­­verbosity <value> Verbosity between 0 (only show errors) and 4 (show all␣

↪→messages) ­­ defaults to 0

­r, ­­root <value> Regular expression for fully­qualified names of␣

↪→templates to generate ­­ defaults to .*

­­help This help text

JavaScript/TypeScript codegen takes a different set of configuration settings:

DAR­FILES DAR files to generate TypeScript bindings for

­o DIR Output directory for the generated packages

­s SCOPE The NPM scope name for the generated packages;

defaults to daml.js

­h,­­help Show this help text

Project File Configuration (Java)

The above settings can be configured in the codegen element of the Daml project file daml.yaml.

See this issue for status on this feature.

Here is an example:

sdk­version: 2.0.0

name: quickstart

source: daml

init­script: Main:initialize

parties:

­ Alice

­ Bob

­ USD_Bank

­ EUR_Bank

version: 0.0.1

exposed­modules:

­ Main

dependencies:

­ daml­prim

­ daml­stdlib

codegen:

js:

output­directory: ui/daml.js

npm­scope: daml.js

java:

package­prefix: com.daml.quickstart.iou

output­directory: java­codegen/src/main/java

verbosity: 2

You can then run the above configuration to generate your Java code:

$ daml codegen java

The equivalent JavaScript command line configuration would be:

$ daml codegen js ./.daml/dist/quickstart­0.0.1.dar ­o ui/daml.js ­s daml.js

and the equivalent Java command line configuration:

1.15. Developer Tools 521

https://github.com/digital-asset/daml/issues/6355

Daml SDK Documentation, 2.7.3

$ daml codegen java ./.daml/dist/quickstart­0.0.1.dar=com.daml.quickstart.iou ­­

↪→output­directory=java­codegen/src/main/java ­­verbosity=2

In order to compile the resulting Java classes, you need to add the corresponding dependencies to

your build tools.

For Java, add the followingMaven dependency:

<dependency>

<groupId>com.daml</groupId>

<artifactId>bindings­java</artifactId>

<version>YOUR_SDK_VERSION</version>

</dependency>

Note: Replace YOUR_SDK_VERSION with the version of your SDK

1.16 Daml Finance Documentation

Welcome to the Daml Finance documentation. This page provides an overview of the documenta-

tion content as well as suggested starting points. Use the left-hand menu to explore the various

sections, or the search bar above for quick navigation. If you are missing content from the docu-

mentation, have feedback on the library, or need any help using it, do not hesitate to open an issue

on the repository.

1.16.1 Content

• Overview: description of the purpose of the library, its high-level architecture, aswell as targeted

use cases

• Concepts: explanation of the main concepts used throughout the library, and how they fit to-

gether

• Instruments: description of the instruments that are included in Daml Finance and can be used

out of the box

• Packages: documentation for each individual package and its contained modules

• Tutorials: step-by-step implementation guides across different use cases

• Reference: glossary as well as code-level documentation for each package

1.16.2 Starting Points

The following is a suggested learning path to get productive quickly:

1. Get started quickly

2. Read up on the background, purpose, and intended usage of the library

3. Understand the fundamental concepts in depth

4. Learn how to use the instrument packages to model different financial instruments

5. Explore the Daml Finance Demo Application

522 Chapter 1. Canton References

https://github.com/digital-asset/daml-finance/issues

Daml SDK Documentation, 2.7.3

1.16.3 Releases

This section details the list of released packages for each Daml SDK release. It also provides status

information for each package according to the Daml Ecosystem convention.

1.16.3.1 Daml SDK 2.7.0

Stable Packages

Package Version Status

ContingentClaims.Core 2.0.0 Stable

ContingentClaims.Lifecycle 2.0.0 Stable

Daml.Finance.Account 2.0.0 Stable

Daml.Finance.Claims 2.0.0 Stable

Daml.Finance.Data 2.0.0 Stable

Daml.Finance.Holding 2.0.0 Stable

Daml.Finance.Instrument.Bond 1.0.0 Stable

Daml.Finance.Instrument.Generic 2.0.0 Stable

Daml.Finance.Instrument.Token 2.0.0 Stable

Daml.Finance.Interface.Account 2.0.0 Stable

Daml.Finance.Interface.Claims 2.0.0 Stable

Daml.Finance.Interface.Data 3.0.0 Stable

Daml.Finance.Interface.Holding 2.0.0 Stable

Daml.Finance.Interface.Instrument.Base 2.0.0 Stable

Daml.Finance.Interface.Instrument.Bond 1.0.0 Stable

Daml.Finance.Interface.Instrument.Generic 2.0.0 Stable

Daml.Finance.Interface.Instrument.Token 2.0.0 Stable

Daml.Finance.Interface.Lifecycle 2.0.0 Stable

Daml.Finance.Interface.Settlement 2.0.0 Stable

Daml.Finance.Interface.Types.Common 1.0.1 Stable

Daml.Finance.Interface.Types.Date 2.0.1 Stable

Daml.Finance.Interface.Util 2.0.0 Stable

Daml.Finance.Lifecycle 2.0.0 Stable

Daml.Finance.Settlement 2.0.0 Stable

Daml.Finance.Util 3.0.0 Stable

Early Access Packages

Package Version Status

ContingentClaims.Valuation 0.2.1 Labs

Daml.Finance.Instrument.Equity 0.3.0 Alpha

Daml.Finance.Instrument.Option 0.2.0 Alpha

Daml.Finance.Instrument.Swap 0.3.0 Alpha

Daml.Finance.Interface.Instrument.Equity 0.3.0 Alpha

Daml.Finance.Interface.Instrument.Option 0.2.0 Alpha

Daml.Finance.Interface.Instrument.Swap 0.3.0 Alpha

1.16. Daml Finance Documentation 523

https://docs.daml.com/support/status-definitions.html

Daml SDK Documentation, 2.7.3

Deprecated Packages

Package Version Status

ContingentClaims.Core 1.* Depr.

ContingentClaims.Lifecycle 1.* Depr.

Daml.Finance.Account 1.* Depr.

Daml.Finance.Claims 1.* Depr.

Daml.Finance.Data 1.* Depr.

Daml.Finance.Holding 1.* Depr.

Daml.Finance.Instrument.Generic 1.* Depr.

Daml.Finance.Instrument.Token 1.* Depr.

Daml.Finance.Interface.Account 1.* Depr.

Daml.Finance.Interface.Claims 1.* Depr.

Daml.Finance.Interface.Data 2.* Depr.

Daml.Finance.Interface.Holding 1.* Depr.

Daml.Finance.Interface.Instrument.Base 1.* Depr.

Daml.Finance.Interface.Instrument.Generic 1.* Depr.

Daml.Finance.Interface.Instrument.Token 1.* Depr.

Daml.Finance.Interface.Lifecycle 1.* Depr.

Daml.Finance.Interface.Settlement 1.* Depr.

Daml.Finance.Interface.Util 1.* Depr.

Daml.Finance.Lifecycle 1.* Depr.

Daml.Finance.Settlement 1.* Depr.

Daml.Finance.Util 2.* Depr.

1.16.3.2 Daml SDK 2.6.0

Stable Packages

Package Version Status

Daml.Finance.Account 1.0.1 Stable

Daml.Finance.Claims 1.0.1 Stable

Daml.Finance.Data 1.0.1 Stable

Daml.Finance.Holding 1.0.2 Stable

Daml.Finance.Instrument.Generic 1.0.1 Stable

Daml.Finance.Instrument.Token 1.0.1 Stable

Daml.Finance.Interface.Data 2.0.0 Stable

Daml.Finance.Interface.Types.Date 2.0.0 Stable

Daml.Finance.Lifecycle 1.0.1 Stable

Daml.Finance.Settlement 1.0.2 Stable

Daml.Finance.Util 2.0.0 Stable

524 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Early Access Packages

Package Version Status

Daml.Finance.Instrument.Bond 0.2.1 Alpha

Daml.Finance.Instrument.Equity 0.2.1 Alpha

Daml.Finance.Instrument.Option 0.1.0 Alpha

Daml.Finance.Instrument.Swap 0.2.1 Alpha

Daml.Finance.Interface.Instrument.Bond 0.2.1 Alpha

Daml.Finance.Interface.Instrument.Option 0.1.0 Alpha

Daml.Finance.Interface.Instrument.Swap 0.2.1 Alpha

Deprecated Packages

Package Version Status

Daml.Finance.Interface.Data 1.* Depr.

Daml.Finance.Interface.Types.Date 1.* Depr.

Daml.Finance.Util 1.* Depr.

1.16.3.3 Daml SDK 2.5.0

1.16. Daml Finance Documentation 525

Daml SDK Documentation, 2.7.3

Stable Packages

Package Version Status

ContingentClaims.Core 1.0.0 Stable

ContingentClaims.Lifecycle 1.0.0 Stable

Daml.Finance.Account 1.0.0 Stable

Daml.Finance.Claims 1.0.0 Stable

Daml.Finance.Data 1.0.0 Stable

Daml.Finance.Holding 1.0.1 Stable

Daml.Finance.Instrument.Generic 1.0.0 Stable

Daml.Finance.Instrument.Token 1.0.0 Stable

Daml.Finance.Interface.Account 1.0.0 Stable

Daml.Finance.Interface.Claims 1.0.0 Stable

Daml.Finance.Interface.Data 1.0.0 Stable

Daml.Finance.Interface.Holding 1.0.0 Stable

Daml.Finance.Interface.Instrument.Base 1.0.0 Stable

Daml.Finance.Interface.Instrument.Generic 1.0.0 Stable

Daml.Finance.Interface.Instrument.Token 1.0.0 Stable

Daml.Finance.Interface.Lifecycle 1.0.0 Stable

Daml.Finance.Interface.Settlement 1.0.0 Stable

Daml.Finance.Interface.Types.Common 1.0.0 Stable

Daml.Finance.Interface.Types.Date 1.0.0 Stable

Daml.Finance.Interface.Util 1.0.0 Stable

Daml.Finance.Lifecycle 1.0.0 Stable

Daml.Finance.Settlement 1.0.1 Stable

Daml.Finance.Util 1.0.0 Stable

Early Access Packages

Package Version Status

ContingentClaims.Valuation 0.2.0 Labs

Daml.Finance.Instrument.Bond 0.2.0 Alpha

Daml.Finance.Instrument.Equity 0.2.0 Alpha

Daml.Finance.Instrument.Option 0.1.0 Alpha

Daml.Finance.Instrument.Swap 0.2.0 Alpha

Daml.Finance.Interface.Instrument.Bond 0.2.0 Alpha

Daml.Finance.Interface.Instrument.Equity 0.2.0 Alpha

Daml.Finance.Interface.Instrument.Option 0.1.0 Alpha

Daml.Finance.Interface.Instrument.Swap 0.2.0 Alpha

526 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Deprecated Packages

Package Version Status

None

1.17 Overview

This overview section describes the purpose of the Daml Finance library, its high-level architecture,

as well as targeted use cases.

1.17.1 Introduction

1.17.1.1 Purpose

Daml Finance supports the modeling of financial and non-financial use cases in Daml. It provides a

standard way to represent assets on Daml ledgers and defines common behaviours and rules. There

are two main benefits to using the library in your application:

• Shortened time-to-market

Implementing basic financial concepts like ownership or economic terms of an asset

is a complex and tedious task. By providing common building blocks, Daml Finance

increases delivery velocity and shortens the time-to-market when building Daml ap-

plications. The rich set of functionality of Daml Finance is at your disposal so you

don’t have to reinvent the wheel.

• Application composability

Building your application on Daml Financemakes it compatible with other platforms

in the wider ecosystem. By using a shared library assets become “mobile”, allow-

ing them to be used seamlessly across application boundaries without the need for

translation or integration layers. For instance, a Daml Finance-based asset that is

originated in a bond issuance application can be used in the context of a secondary

market trading application that is also built on Daml Finance.

1.17.1.2 Design Goals

Daml Finance optimizes for the following aspects:

• Accessibility

The library is designed to have a low barrier to entry. Users familiar with Daml can

get started quickly and leverage the provided functionality easily.

• Maintainability

BuildingwithDaml Finance decouples your application code from the underlying rep-

resentation of assets. This allows the application to evolve without the need to mi-

grate assets from one version to another, and makes maintenance easier.

• Extensibility

Various extension points allow customization and extension of the library as re-

quired. If an existing implementation does not fulfill the requirements it is straight-

forward to provide a custom extension.

1.17. Overview 527

Daml SDK Documentation, 2.7.3

1.17.1.3 Scope

The library covers the following areas:

• Holdings: modeling of ownership structures, custodial relationships, intermediated securities,

and accounts

• Instruments: structuring the economic terms of an asset and the events that govern its evolu-

tion

• Settlement: executing complex transactions involving multiple parties and assets

• Lifecycling: governing the evolution of financial instruments over their lifetime

1.17.1.4 Use Cases

Daml Finance comes with broad asset and workflow capabilities to allow for a variety of use cases

to be modeled:

• Simple tokens: digital representation of traditional assets

• Central bank digital currency: retail or wholesale distribution models

• Standard asset classes: equities with corporate actions, bonds with flexible cash flow model-

ing

• Derivatives: time- and path-dependent derivatives with optionality

• Synchronized lifecycling: atomic, intermediated lifecycling and settlement of cash flows

across investors and custodians

• Cross-entity issuance: atomic, multi-party issuance across investors, issuer, risk book, and

treasury

• Asset-agnostic trading facility: generic delivery-vs-payment and immediate, guaranteed set-

tlement

• Exotic asset types: non-fungible and non-transferable assets

1.17.1.5 Exploring the Library

If you want to review the Daml Finance codebase in more detail you can clone the repository locally

on your machine. This allows you to navigate the code, including both the template definitions and

the tests. In particular the tests are useful to show how the library works and how the different

components interact with each other. If you need to view the code for a specific package release, you

can check out the corresponding tag.

As a pre-requisite, the Daml SDK needs to be installed on your machine.

In order to download the repository, open a terminal and run:

git clone git@github.com:digital­asset/daml­finance.git

This creates a new folder daml­finance containing the Daml Finance source code. Navigate to the

folder and run:

make build

This downloads all required packages and builds the project. You can then run:

daml studio

to open the code editor and inspect the code.

528 Chapter 1. Canton References

https://github.com/digital-asset/daml-finance
https://github.com/digital-asset/daml-finance/tags
https://docs.daml.com/getting-started/installation.html

Daml SDK Documentation, 2.7.3

1.17.1.6 Demo Application

In addition to Daml Finance, there is also a separate Demo Application, showcasing several of the

library’s capabilities in a web-based graphical user interface.

If you are interested in trying out the app locally, you can clone the corresponding repo and follow

the installation instructions on the Daml Finance Demo App GitHub page.

1.17.2 Architecture

This page outlines the architecture of the library and the relationships between the different pack-

ages.

Daml Finance consists of a set of .dar packages that can be divided into two layers:

• an interface layer representing its public, stable API

• an implementation layer providing a set of default implementation packages

1.17.2.1 Interface Layer

The interface layer provides common types and Daml interface definitions that represent the public

API of Daml Finance. It includes several Daml packages, each grouping related business functions.

These packages can in principle be used independently of each other.

The interface layer consists of the following packages:

• Daml.Finance.Interface.Holding defines interfaces for holdings and related properties

such as transferability or fungibility.

• Daml.Finance.Interface.Account defines interfaces for accounts

• Daml.Finance.Interface.Settlement defines interfaces for settlement route providers,

settlement instructions, and batched settlements

• Daml.Finance.Interface.Lifecycle defines interfaces used for instrument lifecycling

• Daml.Finance.Interface.Instrument.* contains interfaces used for different instru-

ment types

• Daml.Finance.Interface.Claims contains interfaces used for Contingent Claims based in-

strument types

• Daml.Finance.Interface.Data defines interfaces related to reference data

• Daml.Finance.Interface.Types.Common provides common types

• Daml.Finance.Interface.Types.Date provides types related to dates

• Daml.Finance.Interface.Util defines utilities and interfaces used by other interface

packages.

• ContingentClaims.Core contains types for representing Contingent Claims tree structures.

1.17. Overview 529

https://github.com/digital-asset/daml-finance-app

Daml SDK Documentation, 2.7.3

1.17.2.2 Implementation Layer

The implementation layer contains concrete template definitions implementing the interfaces de-

fined in the interface layer. These represent the contracts that are ultimately stored on the ledger.

For instance, Daml.Finance.Holding contains a concrete implementation of a Transferable and

Fungible holding. These interfaces are defined in Daml.Finance.Interface.Holding.

The implementation layer consists of the following packages:

• Daml.Finance.Holding defines default implementations for holdings

• Daml.Finance.Account defines default implementations for accounts

• Daml.Finance.Settlementdefines templates for settlement route providers, settlement in-

structions, and batched settlements

• Daml.Finance.Lifecycledefinesan implementationof lifecycle effects anda rule template

to facilitate their settlement

• Daml.Finance.Instrument.* contains implementations for various instrument types

• Daml.Finance.Data includes templates used to store reference data on the ledger

• Daml.Finance.Claims contains utility functions relating to Contingent Claims based instru-

ments and lifecycling

• Daml.Finance.Util provides a set of pure utility functions mainly for date manipulation

• ContingentClaims.Lifecycle provides lifecycle utility functions for Contingent Claims

based instruments

• ContingentClaims.Valuation contains experimental functions to transform Contingent

Claims instrument trees into a mathematical representation suitable for integration with pric-

ing and risk frameworks

1.17.2.3 Versioning and Compatibility

Daml Finance follows the semantic versioning scheme.

The interface packages define the public API of the library. Specifically, the interface definitions

which include interface views, methods and choices are guaranteed to remain stable within a ma-

jor version of a package. Note that this does not include the package id itself. So purely additive

(e.g. adding new interfaces), or non-functional changes (like compiling a package with a later SDK

version), which do change the package id of a package but do not change the interface definitions,

can be released inminor or patch version increments. Such changes will require dependent applica-

tions to be recompiled and upgraded, but the upgrades are trivial as none of the existing interfaces

changed functionally.

Implementation packages follow a similar convention. A purely additive change, or a change that

does not affect the implemented interfaces can be rolled out as a minor or patch version increase.

Similarly, an upgrade to implement a new minor or patch version of of an interface, which doesn’t

functionally change the interface implementation is also considered a minor or patch version in-

crease of an implementation package. If an implementation package changes to implement a new

major version of an interface the major version of the implementation will change as well.

We intend to document the upgrade process and/or provide sample upgrade scripts for contracts

within the Daml Finance perimeter for major version upgrades only.

Note that deprecations of package versions only happen in the context of a Daml SDK release. They

will be listed in the release section of the documentation and follow the standard Daml component

deprecation guidelines.

530 Chapter 1. Canton References

https://docs.daml.com/support/status-definitions.html#deprecation

Daml SDK Documentation, 2.7.3

1.17.3 Building Applications

This page describes the patterns to follow when building applications using Daml Finance.

1.17.3.1 Installing Daml Finance

Each Daml SDK release defines a set of consistent Daml Finance package versions that have been

tested to work with each other. The list of package versions for each Daml SDK release can be

found here. To facilitate getting started with a particular release set, the Daml SDK comes with a

quickstart­finance template that contains a script to download these packages.

After installing theDaml SDK, you can execute the following commands to create a newDaml Finance

project based on the set of packages released with the given SDK version:

On Unix-based systems execute:

daml new quickstart­finance ­­template=quickstart­finance

cd quickstart­finance

./get­dependencies.sh

On Windows-based systems execute:

daml new quickstart­finance ­­template=quickstart­finance

cd quickstart­finance

get­dependencies.bat

You can then edit the daml.yaml file and uncomment the lines corresponding to the packages you

require in your project.

Alternatively, if you want to install the latest Daml Finance version into an existing project, you can

copy and execute these scripts (Unix andWindows variants) from themain branch of the repository.

1.17.3.2 Application Architecture

When building applications using Daml Finance it is important to ensure your application only de-

pends on the interface layer (i.e., the public API) of Daml Finance. Furthermore, it is suggested that

your application follows a similar split between interface (API) and implementation layer in order

to maximize upgradability and minimize the impact of incremental changes to your application or

Daml Finance.

The following picture shows a suggested architecture that minimizes undesirable coupling and op-

timizes for upgradability of your application:

1.17. Overview 531

https://github.com/digital-asset/daml-finance/blob/main/docs/code-samples/getting-started/get-dependencies.sh
https://github.com/digital-asset/daml-finance/blob/main/docs/code-samples/getting-started/get-dependencies.bat

Daml SDK Documentation, 2.7.3

The following annotations are highlighted in the diagram:

1. The customer application should be split into an implementation and an interface (API) layer.

This ensures that implementations canbeupgradedwithout affecting client-side applications,

like the UI, integrations, or Daml Triggers.

2. The customer application (both the interface and implementation layer) should only depend

on the interface layer (API) of Daml Finance. This ensures that upgrades to the implementation

layer of Daml Finance do not affect the Customer Application.

3. All client-side code (UI, integrations, Daml Triggers, etc.) should only depend on the interface

layers of Daml Finance and the Customer Application. This ensures that any implementation

upgrades in Daml Finance or the Customer Application do not affect client-side code.

4. Any setup scripts used to initialize the application can (and usually have to) depend on the

implementation layers of Daml Finance and the Customer Application. This is required to set

532 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

up contracts like factories, where a dependency on the implementation package is needed. It

does not affect the overall upgradability of the Customer Application as these operations are

usually executed either at initial setup or on a one-off basis, but not during normal operation

of the application.

Following the above patterns ensuresminimal impact of changes to any implementation part of the

overall application:

• If aDaml Finance implementationpackage is upgraded, only the contracts for templateswithin

the package have to be upgraded. The Customer Application itself is unaffected because it only

depends on the interface packages, which remain unchanged.

• If a customer application implementation package is upgraded, only the contracts for tem-

plates within that package need to be upgraded. The client-side code of the application is un-

affected, as it only depends on the Customer Application interface layer.

• If a Daml Finance interface package is upgraded, the affected parts in the customer application

implementation, interface, or client-side layer need to be upgraded. To minimize the impact of

such change it is suggested that the customer application layers themselves are divided into

packages, that each depend on a minimal set of Daml Finance interface packages.

• If a customer application interface package is upgraded the corresponding implementation

packages, as well as the affected client-side code have to be upgraded. Again, splitting up the

interface (API) layer of the customer application can minimize the impact of such a change.

In general, we will provide upgrade contracts and scripts to facilitate migration between major ver-

sion updates of packages within the Daml Finance perimeter.

1.17.3.3 Using Daml Codegen

The Daml Finance packages are compatible with the Daml Codegen tool.

If you, e.g., want to create a JavaScript app that uses Daml Finance, it is possible to generate JavaScript

classes from the Daml Finance packages you need. Use daml codegen js, for example:

daml codegen js ­o ./output .lib/daml­finance­interface­instrument­swap­0.2.1.dar␣

↪→.lib/daml­finance­interface­instrument­bond­0.2.1.dar

Alternatively, if your app uses Java, you can run daml codegen java in a similar way:

daml codegen java ­o ./output .lib/daml­finance­interface­instrument­swap­0.2.1.

↪→dar .lib/daml­finance­interface­instrument­bond­0.2.1.dar

Note, this Daml Finance codegen is only supported on SDK versions 2.5.x and higher.

1.17.4 Extending Daml Finance

Daml Finance is designed to be extended whenever the provided implementations do not satisfy

the requirements at hand. In principle, all interfaces in the interface layer can be implemented with

custom implementations. Specific extension points we expect and encourage users to customize

are explained below.

Note that for all of the listed extension points, we are happy to receive external contributions to be

included in the library.

1.17. Overview 533

Daml SDK Documentation, 2.7.3

1.17.4.1 Custom Holding Implementations

Daml Finance provides default implementations for fungible, non-fungible, and non-transferable

holdings. The transferability of transferable holdings canbe flexibly controlled through the controllers

property on an Account. Some use cases, however, might require additional functionality on holding

contracts:

• Restricted transferability: a custom implementation of the Transferable interface can enforce addi-

tional conditions (e.g. the presence of some contract) required to transfer a holding.

• Fixed divisibility: a custom implementation of the Fungible interface can enforce specific require-

ments regarding the divisibility of a holding.

• Additional information: a custom implementation of a holding can provide additional informa-

tion, for example, the timestamp of when the holding was obtained. This can be used to im-

plement features that depend on the time a particular asset has been held (e.g. holding fees,

interest, etc.).

Note that any customholding implementationwill still allow you to leverage other parts of the library

(e.g. lifecycling or settlement) as those are implemented against the respective interfaces. You will

need to provide an implementation of the Holding Factory interface for your implementation to be

usable throughout the library.

1.17.4.2 Custom Account Implementations

The default account implementation in Daml Finance allows you to define authorization require-

ments for incoming and outgoing transfers through the controllers property. For some cases, how-

ever, a custom account implementation may be warranted:

• Restricted credit and debit: a custom implementation of the Credit and / or Debit choices

on the Account interface can place additional restrictions on those actions that can depend, for

example, on the presence of a separate know-your-customer (KYC) contract.

• Additional information: a custom account implementation can serve to represent different

concepts of accounts. For example, a shelf in a vault for gold bars or a specific location within

a warehouse can be represented by providing additional information on an account implemen-

tation.

1.17.4.3 Custom Instrument Implementations

Daml Finance provides default implementations for a wide range of financial instruments. However,

we anticipate that specific requirements will lead to the adaptation of existing, or the creation of

entirely new instrument types. The following are typical examples of when a custom instrument

implementation is required:

• Additional information: a custom instrument implementation might, for example, build upon

the Equity interface to provide additional information pertinent to private equity (like share

class, or liquidation preference).

• New instrument types: if Daml Finance does not provide an implementation for a given instru-

ment type, a custom implementation can be provided to fill that gap. The implementation can

either leverage the Contingent Claims framework, as described in this tutorial, or be implemented

through standard interfaces, as seen in the implementation of the Equity instrument.

534 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.17.4.4 Custom Lifecycle Implementations

Daml Finance provides a default set of lifecycle rules that can be used to evolve instruments.

Examples are the implementation of Distributions, Replacements, or the time-based evolution of

contingent-claims based instruments. There are many more lifecycle events and rules that can be

implemented using the provided interfaces. Typically, implementations of the Event and Rule inter-

face are required to handle new lifecycle events. Examples of events where a library extensionmight

be warranted include:

• Credit events on bonds: our bond implementations don’t provide an implementation for han-

dling default events, as these are highly case-specific. A custom lifecycle event and rule imple-

mentation can provide the logic to handle the treatment of bond positions in case of default.

• Special corporate actions: a distribution that is either restricted to, or dependent on certain

conditions can be implemented through a custom lifecycle implementation.

• Custom evolution logic: a non-fungible token following a specific evolution logic (i.e., it can be

evolved under certain circumstances) can be implemented using custom lifecycle events and

rules.

1.17.4.5 Custom Settlement Implementations

Daml Finance aims to provide a flexible and powerful mechanism to orchestrate asset settlement.

There are cases, however, where a custom implementation might be required:

• Off-ledger integrations: specific information might be required to facilitate handling of settle-

ment instructions in off-ledger rails. This could include, for example, information required to

create SWIFT messages.

• Cross-ledger settlement: mechanisms like Hashed Timelock Contracts or custodial-bridged

settlement might require a custom implementation of the settlement choices.

1.18 Concepts

This section describes the core concepts of theDaml Finance library. It also refers the reader towhere

each of these concepts is implemented in the library.

The most important definitions are also summarized in the glossary.

1.18.1 Asset Model

The library’s asset model is the set of contracts that describe the financial rights and obligations

that exist between parties. It is composed of instruments, holdings, and accounts.

1.18. Concepts 535

Daml SDK Documentation, 2.7.3

1.18.1.1 Instrument

An instrument contract describes the economic terms (rights and obligations) of one unit of a fi-

nancial contract.

It can be as simple as an ISIN code referencing some real-world (off-ledger) security, or it can encode

specific on-ledger lifecycling logic.

Signatories

Every instrument must have an issuer party and a depository party, which are both signatories

of the contract.

The terminology is borrowed from the real world. For example, an issuer of a stock instrument

deposits the paper certificate at a depository and gets the corresponding amount credited in

book-entry form.

On the ledger, the depository acts as a trusted party that prevents the issuer from potentially

acting maliciously.

Keys and Versioning

Instruments are keyed by an InstrumentKey, which comprises:

• the instrument issuer

• the instrument depository

• a textual id

• a textual version

The version is used to keep track of the linear evolution of an instrument. For example, once a divi-

dend on a share is paid, the version is used to identify the cum-dividend and the ex-dividend share.

Interfaces

Instrument interfaces are defined in the Daml.Finance.Interface.Instrument.* packages.

All instruments must implement the base interface, defined in Daml.Finance.Interface.Instrument.Base.

Implementations

A base implementation is provided in Daml.Finance.Instrument.Token.

This template does not define any lifecycling logic and is suitable to model contracts that are likely

to stay stable, such as currency instruments.

The extension packages provide additional business-specific implementations, such as an Equity

instrument (where the issuer can pay dividends) or a Bond instrument (which includes coupon pay-

ments).

The expectation is that customers define their own instruments suiting the use-case they are mod-

eling.

536 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.18.1.2 Holding

A holding contract represents the ownership of a certain amount of an instrument by an owner at a

custodian.

Whereas an instrument defineswhat a party holds (the rights and obligations), a holding defines how

much (ie., the amount) of an instrument and against which party (ie., the custodian) the instrument is

being held.

It is important to understand that the economic terms of an asset (the instrument) are separated

from the representation of an asset holding. This allows centralized management of instruments

(e.g. lifecycling) and the reuse of instruments and associated logic across different entities (e.g.

custodians). It also avoids the data redundancy of replicating instrument data and logic on every

holding contract.

Signatories

Every holdingmust have an owner party and a custodian party, which are usually both signatories

of the contract.

The terminology is again borrowed from the real world: our cash or shares are usually deposited at

a custodian and we have (at least in principle) the right to claim them back from the custodian at

any given time.

Properties of Holdings

A holding implementation can have specific properties such as being fungible or transferable.

When, for instance, a holding is transferable, the ownership can be transferred to a different party at

the same custodian.

These properties are exposedby implementing the corresponding interface (Fungible and Transferable,

respectively).

Interfaces

Holding interfaces are defined in theDaml.Finance.Interface.Holdingpackage. These include

a base holding interface, as well as interface definitions for the above properties.

Implementations

Implementations are provided in Daml.Finance.Holding for:

• a fungible and transferable holding

• a holding which is transferable but not fungible

• a holding which is neither transferable nor fungible

1.18. Concepts 537

Daml SDK Documentation, 2.7.3

1.18.1.3 Account

Account contracts are used as proof of a relationship between a custodian and an owner.

Anownermust have an account contractwith acustodianbefore a holding contract can be created

between the two parties.

This is similar to how, in the real world, you need to open a bank account before you can use the

bank’s services.

The account contract also controls which parties are authorized to transfer holdings in and out of

the account. To be more precise, the controllers field of the account contains:

• outgoing: a set of parties authorizing outgoing transfers

• incoming: a set of parties authorizing incoming transfers

This allows for modeling various controllers of transfers between Alice’s and Bob’s accounts. For

example:

• owners-controlled: If the owner is the sole member the outgoing and incoming controllers

for the accounts, a transfer of a holding from Alice’s account to Bob’s account needs to be

authorized jointly by Alice and Bob.

• owner-only-controlled: If, instead, there are no incoming controllers of Bob’s account, it is

enough that Alice authorizes the transfer alone.

• custodian-controlled: If, as often is the case, the custodian needs to control what is being

transferred, we can instead let thecustodianbe the solemember ofoutgoing andincoming

controllers of the accounts.

Accounts also serve to prevent holding transfers to unvetted third parties: a holding of Alice can only

be transferred to Bob if Bob has an account at the same Bank (and has therefore been vetted by the

Bank).

Signatories

An account is co-signed by the account owner and the custodian.

Keys

Accounts are keyed by an AccountKey, which comprises:

• the account owner

• the account custodian

• a textual id

538 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Interfaces

The account interface is defined in the Daml.Finance.Interface.Account package.

Implementations

A base account implementation is provided in Daml.Finance.Account.

The account can be created with arbitrary controllers (for incoming and outgoing transfers).

In our examples, we typically let accounts be owners-controlled, i.e., both the current owner and the

new owner must authorize transfers.

1.18.1.4 Example setups

We can now look at a few examples of how real-world rights and obligations can be modeled using

the Daml Finance asset model.

Currency

Westart bymodeling a standard cash bank account. There are three parties involved: a Central Bank,

a Commercial Bank, and a Retail Client.

The Central Bank defines the economic terms of the currency asset and is generally a highly trusted

entity, therefore it acts as issuer as well as depository of the corresponding instrument.

We can use the Token instrument implementation for a currency asset, as we do not need any lifecy-

cling logic.

The Retail Client has an Account at the Commercial Bank, with the former acting as owner and the

latter as custodian.

Finally, the Retail Client is owner of a fungible holding at the Commercial Bank (the custodian in the

contract). The holding references the currency instrument, as well as the account.

1.18. Concepts 539

Daml SDK Documentation, 2.7.3

In this scenario, we can see how:

• the instrument defines what is held

• the holding defines where the rights and obligations lie, as well as the corresponding amount

Equity

Wenowmodel units of shares held by an investor. There are three parties involved: an Issuing Entity,

a Securities Depository, and an Investor.

The Issuing Entity acts as issuer of the Equity Instrument. The Securities Depository acts as depos­

itory of the instrument, thus preventing the Issuing Entity from single-handedlymodifying details

of the instrument (such as the share’s nominal value).

The Institutional Investor holds units of shares against the Securities Depository, through corre-

sponding Account and Holding contracts.

540 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

It is worth noting that theissuer of the Equity Instrument has the right to performcertain Corporate

Actions, such as declaring dividends. This topic is covered in the lifecycling section.

OTC Swap

Finally, we model an OTC (over-the-counter) fixed vs. floating interest rate swap agreement between

two parties, namely Party A and Party B. We can use the Interest Rate Swap instrument template for

this purpose.

In this case, all contracts are agreed and co-signed by both parties. In the instrument contract, it

does not really matter whether Party A is the issuer and Party B the depository, or the other way

around. However, the role matters in the Holding contract, as it defines the direction of the trade, i.e.,

which party receives the fixed leg and which party receives the floating one.

1.18. Concepts 541

Daml SDK Documentation, 2.7.3

1.18.2 Settlement

Settlement refers to the execution of holding transfers originating from a financial transaction.

Daml Finance provides facilities to execute these transfers atomically (i.e., within the same Daml

transaction). Interfaces are defined in the Daml.Finance.Interface.Settlement package,

whereas implementations are provided in the Daml.Finance.Settlement package.

In this section, we first illustrate the settlement workflow with the help of an example FX transac-

tion, where Alice transfers a EUR-denominated holding to Bob, in exchange for a USD-denominated

holding of the same amount.

We then delve into the details of each of the settlement components.

1.18.2.1 Workflow

Our initial state looks as follows:

• Alice owns a holding on a EUR instrument, for an amount of 1000

• Bob owns a holding on a USD instrument, for an amount of 1000

These holdings are generally held at different custodians.

Instruct

Alice and Bob want to exchange their holdings and agree to enter into the transaction by being sig-

natories on a transaction contract. Settlement can then be instructed which results in 3 contract

instances being created:

1. an Instruction to transfer EUR 1000 from Alice to Bob

2. an Instruction to transfer USD 1000 from Bob to Alice

3. a Batch used to execute the above Instructions

542 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Each instruction defines who is the sender, who is the receiver, and what should be transferred (in-

strument and amount) at which custodian.

Allocate and Approve

In order to execute the FX transaction, we first need to:

• allocate, i.e., specify which holding should be used

• approve, i.e., specify to which account the asset should be transferred

Allocation and approval is required for each Instruction.

Alice allocates the instruction where she is the sender by pledging her holding. Bob does the same

on the instruction where he is the sender.

1.18. Concepts 543

Daml SDK Documentation, 2.7.3

Each receiver can then specify to which account the holding should be sent by approving the corre-

sponding instruction.

544 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Execute

Once both instructions are allocated and approved, a Settler party uses the Batch contract to execute

them and finalize settlement in one atomic transaction.

The instructions and the batch are archived following a successful execution.

Remarks

There are some assumptions that need to hold in order for the settlement to work in practice:

• Bob needs to have an account at the custodian where Alice’s holding is held and vice versa (for

an example with intermediaries, see Route provider below.

• Both holdings need to be Transferable

• The transfer must be fully authorized (i.e., the parties allocating and approving an instruction

must be the controllers of outgoing and incoming transfers of the corresponding accounts,

respectively)

Also, note that the allocation and approval steps can happen in any order.

1.18.2.2 The components in detail

Route provider

When a transfer requires intermediaries to be involved, the role of a Route Provider becomes impor-

tant. Let us assume, for instance, that Alice’s EUR holding in the example above is held at Bank A,

whereas Bob has a EUR account at Bank B. Bank A and Bank B both have accounts at the Central

Bank.

1.18. Concepts 545

Daml SDK Documentation, 2.7.3

In this case, a direct holding transfer from Alice to Bob cannot generally be instructed. The original

Instruction between Alice and Bob needs to be replaced by three separate Instructions:

• 1A: Alice sends EUR 1000 (held at Bank A) to Bank A

• 1B: Bank A sends EUR 1000 (held at the Central Bank) to Bank B.

• 1C: Bank B credits EUR 1000 to Bob’s account (held at Bank B)

We refer to this scenario as settlement with intermediaries, or just intermediated settlement.

The Route Provider is used to discover a settlement route, i.e., routed steps, for each settlement step.

546 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Settlement factory

The Settlement Factory is used to instruct settlement, i.e., create the Batch contract and the settlement

Instructions, from routed steps, so that they can be allocated and approved by the respective parties.

Instruction

The Instruction is used to settle a single holding transfer at a specific custodian, once it isallocated

and approved.

In the Allocation step, the sender acknowledges the transfer and determines how to send the holding.

This is usually done by allocatingwith a Pledge of the sender’s existing holding (which has the correct

instrument quantity) at the custodian. When the sender is also the custodian, the instruction can

be allocated with CreditReceiver. In this case, a new holding is directly credited into the receiver’s

account.

In the Approval step, the receiver acknowledges the transfer and determines how to receive the hold-

ing. This is usually done by approving with TakeDelivery to one of the receiver’s accounts at the cus-

todian. When the receiver is also the incoming holding’s custodian, the instruction can be approved

with DebitSender. In this case, the holding is directly debited from the sender’s account. A holding

owned by the custodian at the custodian has no economical value, it is a liability against themselves

and can therefore be archived without consequence.

To clarify these concepts, here is how the 3 instructions in the intermediated example above would

be allocated / approved.

Instruction Allocation Approval

1A : EUR 1000 from Alice to Bank A @

Bank A

Alice pledges her holding Bank A approves with Deb-

itSender

1B : EUR 1000 from Bank A to Bank B @

Central Bank

Bank A pledges its holding BankB takes delivery to its

account

1C : EUR 1000 from Bank B to Bob @

Bank B

Bank B allocates with Cred-

itReceiver

Bob takes delivery to his

account

Finally, the Instruction supports two additional settlement modes:

• Any instruction can settle off-ledger (if the stakeholders agree to do so). For this to work, we

require the custodian and the sender to jointly allocate the instruction with a SettleOffledger,

and the custodian and the receiver to jointly approve the instruction with a SettleOffledgerAc-

knowledge.

• A special case occurs when a transfer happens via an intermediary at the same custodian, i.e.,

we have 2 instructions having the same custodian and instrument quantity (in a batch), and

the receiver of the first instruction is the same as the sender of the second instruction. In this

case, we allow the holding received from the first instruction to be passed through to settle

the second instruction, i.e., without using any pre-existing holding of the intermediary. For this

to work, the first instruction is approved with PassThroughTo (i.e., pass through to the second

instruction), and the second instruction is allocated with PassThroughFrom (i.e., pass through

from the first instruction). An intermediary account used for the passthrough is thereby also

to be specified.

1.18. Concepts 547

Daml SDK Documentation, 2.7.3

Batch

The Batch is used to execute a set of instructions atomically. Execution will fail if any of the Instruc-

tions is not fully allocated / approved, or if the transfer is unsuccessful.

1.18.2.3 Remarks and further references

The settlement concepts are also explored in the Settlement tutorial.

1.18.3 Lifecycling

Lifecycling refers to the evolution of financial instruments over their lifetime. This includes pro-

cessing of contractual events, like interest payments or coupon cashflows, as well as discretionary

events, like dividends and other corporate actions. The library provides a standard mechanism for

processing such events across different instruments.

The interfaces for lifecycling are defined in the Daml.Finance.Interface.Lifecycle package,

and several default implementations are provided in the Daml.Finance.Lifecycle package.

In this section, we first motivate the particular approach to lifecycling in Daml Finance. We then

explain the process in detail using the example of a cash dividend event. Finally, we describe each

of the involved components in depth.

1.18.3.1 Approach

Single Source of Truth

A general principle we follow in Daml Finance is that there should only be a single instance of any

given instrument on the ledger. This instance is centrally maintained by the issuer of the instru-

ment, with the possibility for a depository to act as an additional, third-party trust anchor. As part

of lifecycling, this single instance of the instrument produces lifecycle effects, which are then used

across all parties on the ledger as a single source of truth for how to process a certain event. This

avoids any duplication of lifecycling logic or redundant processing of instruments, and therefore

removes the need for reconciliation across parties involved in the process.

Instrument Versioning

In current financial markets instruments are usually referenced by a textual identifier, like an ISIN

or CUSIP number. When a particular corporate action is processed on its effective date the instru-

ment referred to by an identifier changes implicitly. As an example, the ISIN for a stock refers to the

“cum-dividend” instrument (where holders are still entitled to the dividend) upuntil the ex-dividend

date. From the ex-dividend date onwards the same ISIN refers to the “ex-dividend” instrument, so

any stock acquired on or after that date is not entitled to the dividend anymore. This leads to a lot

of complexity during processing of such corporate actions. In particular, it forces these events to

be processed in a “big bang” approach, as a consistent snapshot of holdings needs to be taken to

determine the rightful recipients of any resulting cashflows.

In Daml Finance we aim for a more efficient and flexible operating model for processing lifecycle

events. All instruments are strictly versioned so that we can clearly differentiate between the cum-

548 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

and ex-event version of an instrument. This means that it is perfectly safe for those versions to

co-exist at the same time, and it allows for a gradual transition from one version to another. Gen-

erally, the issuer of an instrument is responsible for creating andmaintaining instrument versions,

and for producing the cashflow effects of a particular lifecycle event. During the lifecycle process,

holders of this instrument will migrate their holdings to a new version of the instrument while at the

same time claiming any resulting cashflows from the event.

Versions are usually considered opaque strings, but one can follow a numerical versioning scheme

if an instrument is known to have linear evolution (i.e., there is no optionality that can result in two

different evolution paths).

1.18.3.2 Workflow

In this scenario we go through the process of paying a cash dividend from an issuer to an investor.

The initial state looks as follows:

• An issuer maintains an ACME instrument representing shares in a company

• An investor owns a holding of 1000 units of the ACME instrument (version 1) with the issuer

• The issuer wants to process and pay a cash dividend of USD 10.0 per unit of its ACME instrument

(version 1)

1.18. Concepts 549

Daml SDK Documentation, 2.7.3

We will now explain each step in the process in detail.

Creating the event

The issuer first creates a new instance of the ACME instrument, assigning a new version. Note that

the logic to create the new version of an instrument can also be encoded in the lifecycle rule. The new

version is then automatically produced when processing the event as described in the next step.

Now, the issuer creates a lifecycle event defining the terms of dividend. In our example we can use

the DistributeDividend choice on the Equity instrument to create such an event. This is merely

a convenience choice available for equities, any workflow can be used to create new instrument ver-

sions and associated lifecycle events.

550 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Processing the event

The event is now passed into a Distribution Rule, which generates the Lifecycle Effect describing the

distribution of assets per unit of ACME stock. The effect refers to a targetInstrument, which is the

version of the instrument that can be used by stock holders to claim the cash dividend according to

the number of stocks held. By being tied to a specific version we prevent holders from (accidentally

or intentionally) claiming a particular effect twice.

Claiming the effect

The investor can now present its holding of ACME stock along with the corresponding Effect to a Claim

Rule. This will instruct settlement for:

• The exchange ofACME stock versionsheld: the investor sendsback the old version, and receives

the new one

• The payment of the cash dividend amount corresponding to the number of stocks held

Both legs of this settlement are grouped in a Batch to provide atomicity. This ensures that the in-

vestor can never claim a dividend twice, as after settlement they only hold the new version of the

stock, which is not entitled to the dividend anymore.

1.18. Concepts 551

Daml SDK Documentation, 2.7.3

Note that the party responsible for claiming an effect can be specified flexibly in the Claim Rule con-

tract. Through this contract, custodians can be given the authority to push a given corporate action

to the asset holder as is common in current operating procedures.

The model also supports atomic, intermediated settlement of lifecycle events. For example, if a div-

idend is to be settled between issuer, custodian, and investor in a single transaction, the custodian

(having visibility of both its holding at the issuer and the investor’s holding) can pass in both hold-

ings into the claim rule, and thereby instruct a single batch to settle both sides.

Settlement

The batch and instructions resulting from claiming an effect can now be settled as described in the

Settlement section of the documentation.

The following picture shows the three asset movements involved in this particular example:

The result of processing the settlement batch results in the investor receiving a 10000 USD dividend

and 1000 shares of ACME v2 in return for their 1000 shares of ACME v1.

552 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.18.3.3 Components

Events

The Event interface describes basic properties of a lifecycle event:

• The event providers

• The event identifier and description

• The event timestamp

Different implementations exist to cover typical event types:

• The Distribution event can be used to distribute assets to holders of an instrument. This covers

cash-, share-, and mixed dividends, rights issues, or the distribution of voting rights.

• The Replacement event handles replacements of one instrument for another with support for a

factor. This covers corporate actions like (reverse) stock splits, mergers, and spin-offs.

Lifecycle Rule

The Lifecycle Rule is used to process an event and calculate the resulting lifecycle effect. A lifecycle

rule can either assume that a new version of the instrument has already been created (as is the case

for the Distribution and Replacement rules), or it can create the new version of the instrument as part

of its implementation. The latter can be useful if information required to create the new version is

only available upon processing of the event, as is the case for Generic Instrument evolution, as well as

other Contingent Claims based instruments.

Lifecycling of Contingent Claims based instruments can be divided into two categories:

• Time based evolution: An instrument is evolved solely due to the passage of time. An example

is a fixed coupon bond, where a coupon payment is due at the end of every coupon period. This

can be automatically lifecycled by providing the event time (and any observables required). The

tutorial Time-based lifecycling (using a fixed rate bond) describes how this is done.

• Election based evolution: An instrument is evolved as a result of amanual election. One example

is a callable bond, where the custodian of the corresponding holding has the right (but not the

obligation) to call, or redeem early, the instrument on certain call dates. Lifecycling of such

an instrument requires an Election event. Time alone is not sufficient, because the evolution of

the instrument depends onmanual actions of the holding stakeholders. Check out the tutorial

Election-based lifecycling (using a callable bond) for more details on how this can be implemented

in practice.

Note that some instruments can require both types of lifecycling. An example of this is a callable

bond that is callable only on some of the coupon dates.

1.18. Concepts 553

Daml SDK Documentation, 2.7.3

Claim Rule

The Claim Rule is used to claim lifecycle effects and instruct settlement thereof. Each effect specifies

a target instrument (and version), and holdings on this instrument (version) are required to claiman

effect. This serves as proof of ownership such that there is no need for an issuer to take a consistent

snapshot of holdings as of a specific date.

The output of the claim rule is a Batch and a set of Instruction s forming an atomic unit of settlement.

Note that multiple holdings can be passed into the claim rule in order to instruct intermediated

settlement of an effect, or to instruct atomic settlement for multiple asset holders at the same time.

Effects

An Effect describes the asset movements resulting from a particular event. It specifies these move-

ments per unit of a target instrument and version. Holdings on this specific instrument version

entitle a holder to claim the effect, which results in the required asset movements to be instructed.

1.19 Instruments

This section describes which instruments are included out of the box in Daml Finance. Each instru-

ment package contains a list of supported instruments. The instrument extension pages explain

what each instrument does and how to set it up.

1.19.1 Bonds

The following instruments are included in the Bond Instrument package:

• Fixed rate bonds

• Floating rate bonds

• Callable bonds

• Inflation linked bonds

• Zero coupon bonds

1.19.2 Equites

The following instruments are included in the Equity Instrument package:

• Equities (can also be used to model ETFs)

554 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.19.3 Options

The following instruments are included in the Option Instrument package:

• Cash-settled European options

• Physically-settled European options

• Barrier options

• Dividend options

1.19.4 Swaps

The following instruments are included in the Swap Instrument package:

• Interest rate swaps

• Currency swaps

• Foreign exchange swaps

• Credit default swaps

• Asset swaps

• FpML swaps (supports the above swap types using the FpML schema)

1.19.5 Other Instruments

In addition to the above instruments, which model specific payoffs, the library provides

• a Token Instrument, whose terms are defined by a simple textual label

• a Generic Instrument, which provides a flexible framework to structure user-defined payoffs and

lifecycle them on the ledger

1.19.6 How to use the Token Instrument packages

A Token is a simple instrument template whose economic terms on the ledger are defined by two

textual fields, namely an id and a description.

It is often used to model financial instruments that do not exhibit complex lifecycling logic, such as

currencies.

1.19.6.1 How to create a Token Instrument

The following code snippets are taken from the Getting Started tutorial, which you can install using the

Daml assistant.

In order to instantiate a Token Instrument, we first need to create the corresponding instrument

factory template

tokenFactoryCid <­ toInterfaceContractId @Token.F <$> submit bank do

createCmd Token.Factory with

provider = bank

observers = empty

We can then specify the terms of the instrument and exercise the Create choice in the factory to

create the token.

1.19. Instruments 555

Daml SDK Documentation, 2.7.3

let

instrumentId = Id "USD"

instrumentVersion = "0"

instrumentKey = InstrumentKey with

issuer = bank

depository = bank

id = instrumentId

version = instrumentVersion

now <­ getTime

submit bank do

exerciseCmd tokenFactoryCid Token.Create with

token = Token with

instrument = instrumentKey

description = "Instrument representing units of a generic token"

validAsOf = now

observers = empty

1.19.6.2 How to lifecycle a Token Instrument

Generic corporate actions, such as Distribution events, can be applied to Token Instruments. The Life-

cycling section of the Getting Started tutorial shows how this is done in detail.

1.19.7 How to use the Bond Instrument packages

To follow the code snippets used in this page in Daml Studio, you can clone the Daml Finance repos-

itory and run the scripts included in the Instrument/Bond/Test folder.

1.19.7.1 How to use a Bond Instrument in your application

As explained in the Getting Started section and on the Architecture page, your app should only depend

on the interface layer of Daml Finance. For bonds this means that you should only include the bond

interface package.

Your initialization scripts are an exception, since they are only run once when your app is initial-

ized. These are used to create the necessary instrument factories. Your app can then create bond

instruments through these factory contracts.

1.19.7.2 How to Create a Bond Instrument

There are different types of bonds, which mainly differ in the way the coupon is defined. In order to

create a bond instrument you first have to decide what type of bond you need. The bond instrument

package currently supports the following bond types:

556 Chapter 1. Canton References

https://github.com/digital-asset/daml-finance
https://github.com/digital-asset/daml-finance
https://github.com/digital-asset/daml-finance/blob/main/src/test/daml/Daml/Finance/Instrument/Bond/Test

Daml SDK Documentation, 2.7.3

Fixed Rate

Fixed rate bonds pay a constant coupon rate at the end of each coupon period. The coupon is quoted

on a yearly basis (per annum, p.a.), but it could be paid more frequently (e.g. quarterly). For example,

a bond could have a 2% p.a. coupon and a 6M coupon period. That would mean a 1% coupon is paid

twice a year.

As an example we will create a bond instrument paying a 1.1% p.a. coupon with a 12M coupon pe-

riod. This example is taken from Instrument/Bond/Test/FixedRate.daml , where all the details are

available.

We start by defining the terms:

let

issueDate = date 2019 Jan 16

firstCouponDate = date 2019 May 15

maturityDate = date 2020 May 15

notional = 1.0

couponRate = 0.011

couponPeriod = M

couponPeriodMultiplier = 12

dayCountConvention = Act365Fixed

businessDayConvention = Following

The day count convention is used to determine how many days, i.e., what fraction of a full year, each

coupon period has. This will determine the exact coupon amount that will be paid each period.

The business day convention determines how a coupon date is adjusted if it falls on a non-business

day.

We also need holiday calendars, which determine when to adjust dates.

We can use these variables to create a PeriodicSchedule:

let

(y, m, d) = toGregorian firstCouponDate

periodicSchedule = PeriodicSchedule with

businessDayAdjustment =

BusinessDayAdjustment with

calendarIds = holidayCalendarIds

convention = businessDayConvention

effectiveDateBusinessDayAdjustment = None

terminationDateBusinessDayAdjustment = None

frequency =

Periodic Frequency with

rollConvention = DOM d

period = Period with

period = couponPeriod

periodMultiplier = couponPeriodMultiplier

effectiveDate = issueDate

firstRegularPeriodStartDate = Some firstCouponDate

lastRegularPeriodEndDate = Some maturityDate

stubPeriodType = None

terminationDate = maturityDate

This is used to determine the periods that are used to calculate the coupon. There are a few things

to note here:

1.19. Instruments 557

https://github.com/digital-asset/daml-finance/blob/main/src/test/daml/Daml/Finance/Instrument/Bond/Test/FixedRate.daml

Daml SDK Documentation, 2.7.3

• The RollConventionEnum defines whether dates are rolled at the end of the month or on a given

date of the month. In our example above, we went for the latter option.

• TheStubPeriodTypeEnumallows you to explicitly specifywhat kindof stubperiod thebondshould

have. This is optional andnot used in the example above. Instead, wedefined the stub implicitly

by specifying a firstRegularPeriodStartDate: since the time between the issue date and

the first regular period start date is less than 12M (our regular coupon period), this implies a

short initial stub period.

Now that we have defined the terms we can create the bond instrument:

let

instrument = InstrumentKey with

issuer

depository

id = Id label

version = "0"

cid <­ submitMulti [issuer] [publicParty] do

exerciseCmd fixedRateBondFactoryCid FixedRate.Create with

fixedRate = FixedRate with

instrument

description

couponRate

periodicSchedule

holidayCalendarIds

calendarDataProvider

dayCountConvention

currency

notional

lastEventTimestamp

observers = M.fromList observers

Once this is done, you can create a holding on it using Account.Credit.

Floating Rate

Floating rate bonds pay a coupon which is determined by a reference rate. There is also a rate spread,

which is paid in addition to the reference rate.

Here is an example of a bond paying Euribor 3M + 1.1% p.a. with a 3M coupon period:

let

issueDate = date 2019 Jan 16

firstCouponDate = date 2019 Feb 15

maturityDate = date 2019 May 15

referenceRateId = "EUR/EURIBOR/3M"

notional = 1.0

couponSpread = 0.011

couponPeriod = M

couponPeriodMultiplier = 3

dayCountConvention = Act365Fixed

businessDayConvention = Following

Using these terms we can create the floating rate bond instrument:

558 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

let

instrument = InstrumentKey with

issuer

depository

id = Id label

version = "0"

cid <­ submitMulti [issuer] [publicParty] do

exerciseCmd floatingRateBondFactoryCid FloatingRate.Create with

floatingRate = FloatingRate.FloatingRate with

instrument

description

referenceRateId

couponSpread

periodicSchedule

holidayCalendarIds

calendarDataProvider

dayCountConvention

currency

notional

lastEventTimestamp

observers = M.fromList observers

The reference rate (Euribor 3M) is observed once at the beginning of each coupon period and used

for the coupon payment at the end of that period.

Callable

Callable bonds are similar to the bonds above, but in addition they can be redeemed by the issuer

before maturity. The callability is restricted to some (or all) of the coupon dates. In other words,

these bonds have a Bermudan style embedded call option.

Both fixed and floating rate coupons are supported by this instrument. In case of a floating rate,

there is often a fixed spread as well. This can be represented by a fixed rate coupon, which is shown

in the following example. Here is a bond paying Libor 3M + 0.1% p.a. with a 3M coupon period:

­­ Libor + 0.1% coupon every 3M ﴾with a 0% floor and a 1.5% cap﴿

let

rollDay = 15

issueDate = date 2022 Jan rollDay

firstCouponDate = date 2022 Apr rollDay

maturityDate = date 2024 Jan rollDay

notional = 1.0

couponRate = 0.001

capRate = Some 0.015

floorRate = Some $ 0.0

couponPeriod = M

couponPeriodMultiplier = 3

dayCountConvention = Act360

useAdjustedDatesForDcf = True

businessDayConvention = Following

referenceRateId = "USD/LIBOR/3M"

floatingRate = Some FloatingRate with

referenceRateId

(continues on next page)

1.19. Instruments 559

Daml SDK Documentation, 2.7.3

(continued from previous page)

referenceRateType = SingleFixing CalculationPeriodStartDate

fixingDates = FixingDates with

periodMultiplier = ­2

period = D

dayType = Some Business

businessDayConvention = NoAdjustment

businessCenters = ["USD"]

The coupon rate in this example also has a 0% floor and a 1.5% cap. This is configurable, just set the

cap or floor to None if it does not apply.

The fixed rate is fairly simple to define, but the floating rate requiresmore inputs. A FloatingRate data

type is used to specify which reference rate should be used and on which date the reference rate is

fixed for each coupon period.

The above variables can be used to create a couponSchedule:

couponSchedule = createPaymentPeriodicSchedule firstCouponDate␣

↪→holidayCalendarIds

businessDayConvention couponPeriod couponPeriodMultiplier issueDate␣

↪→maturityDate

This couponSchedule is used to determine the coupon payment dates, where the businessDayConven-

tion specifies how dates are adjusted. Also, useAdjustedDatesForDcf determines whether adjusted or

unadjusted dates should be used for day count fractions (to determine the coupon amount).

In addition to the Libor/Euribor style reference rates, compounded SOFR and similar reference rates

are also supported. In order to optimize performance, these compounded rates are calculated via

a (pre-computed) continuously compounded index, as described in the ReferenceRateTypeEnum. For

example, here is how daily compounded SOFR can be specified using the SOFR Index:

referenceRateId = "SOFR/INDEX"

floatingRate = Some FloatingRate with

referenceRateId

referenceRateType = CompoundedIndex Act360

This instrument also allows you to configure onwhich coupon dates the bond is callable. This is done

by specifying a separate callSchedule. The bond is callable on the last date of each schedule period.

For example, if the bond is callable on every coupon date, simply set callSchedule = couponSchedule.

Alternatively, if the bond is only callable every six months, this can be configured by specifying a

different schedule:

­­ Define a schedule for callability. The bond is callable on the *last* date␣

↪→of each schedule

­­ period.

­­ In this example, it is possible to call the bond every 6M ﴾every second␣

↪→coupon date﴿.

callScheduleStartDate = issueDate

callScheduleEndDate = maturityDate

callPeriod = couponPeriod

callPeriodMultiplier = 6

callScheduleFirstRegular = None ­­ Only used in case of an irregular schedule

callSchedule = createPeriodicSchedule callScheduleFirstRegular␣

↪→holidayCalendarIds

businessDayConvention callPeriod callPeriodMultiplier callScheduleStartDate

(continues on next page)

560 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

callScheduleEndDate rollDay

noticeDays = 5

The noticeDays field defines howmany business days notice is required to call the bond. The election

whether or not to call the bond must be done on this date.

Using these terms we can create the callable bond instrument:

let

instrument = InstrumentKey with

issuer

depository

id = Id label

version = "0"

cid <­ submitMulti [issuer] [publicParty] do

exerciseCmd callableBondFactoryCid Callable.Create with

callable = Callable with

instrument

description

floatingRate

couponRate

capRate

floorRate

couponSchedule

noticeDays

callSchedule

holidayCalendarIds

calendarDataProvider

dayCountConvention

useAdjustedDatesForDcf

currency

notional

lastEventTimestamp

prevElections = []

observers = M.fromList observers

Unlike regular fixed and floating bonds, which are lifecycled based on the passage of time, this

callable bond instrument contains an embedded option that is not automatically exercised. Instead,

the custodian of the bond holdingmustmanually decide whether or not to call the bond. This is done

by making an Election.

This callable bond example is taken from Instrument/Bond/Test/Callable.daml , where all the details

are available. Also, check out the Election based lifecycling tutorial formore details on how to define and

process an Election in practice. Note that the sample bond above, which is callable only on some of

the coupon dates, will require two types of lifecycling:

• Time based lifecycling on coupon dates when the bond is not callable.

• Election based lifecycling on coupon dates when the bond is callable.

1.19. Instruments 561

https://github.com/digital-asset/daml-finance/blob/main/src/test/daml/Daml/Finance/Instrument/Bond/Test/Callable.daml

Daml SDK Documentation, 2.7.3

Inflation Linked

Inflation linked bonds pay a fixed coupon rate at the end of every coupon period. The coupon is calcu-

lated based on a principal that is adjusted according to an inflation index, for example the Consumer

Price Index (CPI) in the U.S.

Here is an example of a bond paying 1.1% p.a. (on a CPI adjusted principal) with a 3M coupon period:

let

issueDate = date 2019 Jan 16

firstCouponDate = date 2019 Feb 15

maturityDate = date 2019 May 15

inflationIndexId = "CPI"

notional = 1.0

couponRate = 0.011

couponPeriod = M

couponPeriodMultiplier = 3

dayCountConvention = Act365Fixed

businessDayConvention = Following

Based on these terms we can create the inflation linked bond instrument:

let

instrument = InstrumentKey with

issuer

depository

id = Id label

version = "0"

cid <­ submitMulti [issuer] [publicParty] do

exerciseCmd inflationLinkedBondFactoryCid InflationLinked.Create with

inflationLinked = InflationLinked with

instrument

description

periodicSchedule

holidayCalendarIds

calendarDataProvider

dayCountConvention

couponRate

inflationIndexId

inflationIndexBaseValue

currency

notional

lastEventTimestamp

observers = M.fromList observers

At maturity, the greater of the adjusted principal and the original principal is redeemed. For clar-

ity, this only applies to the redemption amount. The coupons are always calculated based on the

adjusted principal. This means that in the case of deflation, the coupons would be lower than the

specified coupon rate but the original principal would still be redeemed at maturity.

562 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Zero Coupon

A zero coupon bond does not pay any coupons at all. It only pays the redemption amount at maturity.

Here is an example of a zero coupon bond:

let

issueDate = date 2019 Jan 16

maturityDate = date 2020 May 15

notional = 1000.0

Based on this we create the zero coupon bond instrument:

let

instrument = InstrumentKey with

issuer

depository

id = Id label

version = "0"

cid <­ submitMulti [issuer] [publicParty] do

exerciseCmd zeroCouponBondFactoryCid ZeroCoupon.Create with

zeroCoupon = ZeroCoupon with

instrument

description

currency

issueDate

maturityDate

notional

lastEventTimestamp

observers = M.fromList observers

1.19.7.3 Frequently Asked Questions

How do I transfer or trade a bond?

When you have created a holding on a bond instrument this can be transferred to another party. This

is described in the Getting Started: Transfer tutorial.

In order to trade a bond (transfer it in exchange for cash) you can also initiate a delivery versus

payment with atomic settlement. This is described in the Getting Started: Settlement tutorial.

How do I process coupon payments for a bond?

On the coupon payment date, the issuer will need to lifecycle the bond. This will result in a lifecycle

effect for the coupon, which can be cash settled. This is described in detail in the Lifecycling and the

Intermediated Lifecycling tutorials.

1.19. Instruments 563

Daml SDK Documentation, 2.7.3

How do I redeem a bond?

On the redemption date, both the last coupon and the redemption amount will be paid. This is pro-

cessed in the same way as a single coupon payment described above.

How do I view the terms of a bond instrument?

There are several ways to access the data of a contract, as explained in the Patterns section.

1.19.8 How to use the Equity Instrument packages

To follow the code snippets used in this page in Daml Studio, you can clone the Daml Finance repos-

itory and run the scripts included in the Instrument/Equity/Test/ folder.

1.19.8.1 How to use an Equity Instrument in your application

As explained in the Getting Started section and on the Architecture page, your app should only depend

on the interface layer of Daml Finance. For equities this means that you should only include the

equity interface package.

Your initialization scripts are an exception, since they are only run once when your app is initial-

ized. These are used to create the necessary instrument factories. Your app can then create equity

instruments through these factory contracts.

1.19.8.2 The Equity Interface

The equity instrument supports different lifecycle events, such as dividends, stock splits andmerg-

ers. These are modeled using the choices on the Equity interface, namely DeclareDistribution,

DeclareReplacement and DeclareStockSplit. We will now demonstrate each one with a con-

crete lifecycle event.

1.19.8.3 Dividend

The most common lifecycle event of an equity is probably dividends. This normally means that the

holder of a stock receives a given amount of cash for each stock held. This is modeled using the De­

clareDistribution choice. It creates a Distribution Event, which allows you to specify distribution

per share. In the case of a cash dividend, this would be a cash instrument. However, the company

can also choose to distribute additional stock or even stock options. Since the Distribution Event sup-

ports an arbitrary perUnitDistribution instrument, it can be used to model those use cases as

well.

In order to process a lifecycle event, you have to create two versions of the instrument: one before

the event and one after the event. In the case of a dividend event, this means one instrument cum

dividend (which includes the dividend) and one ex dividend (which does no longer include the divi-

dend):

564 Chapter 1. Canton References

https://github.com/digital-asset/daml-finance
https://github.com/digital-asset/daml-finance
https://github.com/digital-asset/daml-finance/blob/main/src/test/daml/Daml/Finance/Instrument/Equity/Test/

Daml SDK Documentation, 2.7.3

cumEquityInstrument <­ originateEquity issuer issuer "EQUITY­INST­1" "0" "ABC"␣

↪→pp now

exEquityInstrument <­ originateEquity issuer issuer "EQUITY­INST­1" "1" "ABC"␣

↪→[] now

Once this is done, you can create a holding on it. This is not limited to integer holdings, but fractional

holdings are supported as well:

­­ Distribute holdings: fractional holdings are also supported.

investorEquityCid <­ Account.credit [publicParty] cumEquityInstrument 1000.25␣

↪→investorAccount

We create a distribution rule for the cash dividend. It defines the business logic for the dividend and

it has the issuer as signatory:

­­ Create cash dividend rule

distributionRuleCid <­ toInterfaceContractId @Lifecycle.I <$> submit issuer do

createCmd Distribution.Rule with

providers = S.singleton issuer

lifecycler = issuer

observers = S.singleton publicParty

id = Id "LifecycleRule"

description = "Rule to lifecycle an instrument following a distribution␣

↪→event"

We also need a distribution event, which defines the terms of the dividend. In this case, it is USD 2

cash per share (this also works for a fractional amount of shares):

­­ Create cash dividend event: USD 2 per share ﴾this also works with fractional␣

↪→shares﴿

distributionEventCid <­

Instrument.submitExerciseInterfaceByKeyCmd @Equity.I [issuer] []␣

↪→cumEquityInstrument

Equity.DeclareDistribution with

id = Id $ "ABC ­ " <> show now

description = "Cash Dividend"

effectiveTime = now

newInstrument = exEquityInstrument

perUnitDistribution = [qty 2.0 cashInstrument]

This allows the issuer to lifecycle the instrument by exercising the Evolve choice:

­­ Lifecycle cash dividend

(_, [effectCid]) <­ submit issuer do

exerciseCmd distributionRuleCid Lifecycle.Evolve with

observableCids = []

eventCid = distributionEventCid

instrument = cumEquityInstrument

This results in a lifecycle effect, which can be settled. The settlement of effects is covered in the

Lifecycling tutorial.

1.19. Instruments 565

Daml SDK Documentation, 2.7.3

1.19.8.4 Bonus issue

Instead of a cash dividend, a company may also decide to offer free shares (or warrants) instead

of cash to current shareholders. This is called bonus issue and it is modeled in a similar way to the

dividend above. The main difference is in the distribution event, which now distributes a different

instrument (equity instead of cash):

­­ Create bonus issue event: receive 2 additional shares for each share␣

↪→currently held

­­ ﴾this also works with fractional shares﴿

distributionEventCid <­

Instrument.submitExerciseInterfaceByKeyCmd @Equity.I [issuer] []␣

↪→cumEquityInstrument

Equity.DeclareDistribution with

id = Id $ "ABC ­ " <> show now

description = "Bonus issue"

effectiveTime = now

newInstrument = exEquityInstrument

perUnitDistribution = [qty 2.0 exEquityInstrument]

Similarly, if there is a bonus issue that awards warrants instead of equity, that can be modeled in

the same way. Just replace the equity instrument by a warrant instrument on the perUnitDistri­

bution line above.

1.19.8.5 Dividend option

A companymay give shareholders the option of choosing what kind of dividend they want to receive.

For example, a shareholder could choose between a dividend in cash or in stock. Currently, there are

two different ways this can be modeled in the library:

1. Using a dividend option instrument

The preferred way is to model this using the following two components:

• A dividend option instrument, which describes the economic terms of the rights a shareholder

receives. The page on the Option Instrument package describes how to create a physically settled

Dividend option.

• The DeclareDistribution choice to distribute the above option instrument in the correct

proportion (e.g. 1 option contract for each share held). This can be done in the same way as

the Bonus Issue example described earlier, just change the perUnitDistribution line to dis-

tribute the option instrument you created above.

When current shareholders receive the option instrument they can choose between one of the divi-

dend payment types offered by the issuer, for example cash in a foreign currency.

More details on this dividend option process are described in Instrument/Equity/Test/DivOp-

tion.daml , in particular how to define and process an Election.

566 Chapter 1. Canton References

https://github.com/digital-asset/daml-finance/blob/main/src/test/daml/Daml/Finance/Instrument/Equity/Test/DivOption.daml
https://github.com/digital-asset/daml-finance/blob/main/src/test/daml/Daml/Finance/Instrument/Equity/Test/DivOption.daml

Daml SDK Documentation, 2.7.3

2. Using multiple distribution events

The DeclareDistribution choice can be used for this as well. The issuer creates one event for

each dividend option that shareholders can choose from:

­­ Create dividend option event.

­­ For each share currently held, the shareholder can choose to either receive␣

↪→cash ﴾USD 10.5﴿ or

­­ stock ﴾1.5 additional shares﴿.

­­ perUnitDistribution is an arbitrary list, so this can be extended with␣

↪→additional options, e.g.

­­ warrants or cash in a different currency.

distributionEventCashCid <­

Instrument.submitExerciseInterfaceByKeyCmd @Equity.I [issuer] []␣

↪→cumEquityInstrument

Equity.DeclareDistribution with

id = Id $ "ABC ­ " <> show now

description = "Dividend option: cash"

effectiveTime = now

newInstrument = exEquityInstrument

perUnitDistribution = [qty 10.5 cashInstrument]

distributionEventStockCid <­

Instrument.submitExerciseInterfaceByKeyCmd @Equity.I [issuer] []␣

↪→cumEquityInstrument

Equity.DeclareDistribution with

id = Id $ "ABC ­ " <> show now

description = "Dividend option: stock"

effectiveTime = now

newInstrument = exEquityInstrument

perUnitDistribution = [qty 1.5 exEquityInstrument]

The issuer then lifecycles each event individually, to generate two alternative lifecycling effects:

­­ Lifecycle dividend option

(_, [effectCashCid]) <­ submit issuer do

exerciseCmd distributionRuleCid Lifecycle.Evolve with

observableCids = []

eventCid = distributionEventCashCid

instrument = cumEquityInstrument

(_, [effectStockCid]) <­ submit issuer do

exerciseCmd distributionRuleCid Lifecycle.Evolve with

observableCids = []

eventCid = distributionEventStockCid

instrument = cumEquityInstrument

The investor can then claim one or the other:

­­ The investor chooses the stock dividend

result <­ submitMulti [investor] [publicParty] do

exerciseCmd claimRuleCid Claim.ClaimEffect with

claimer = investor

holdingCids = [investorEquityCid]

effectCid = effectStockCid

batchId = Id "DividendOptionSettlement"

1.19. Instruments 567

Daml SDK Documentation, 2.7.3

When this is settled, the investor’s holding is consumed, which prevents the investor from receiving

more than one of the dividend options.

1.19.8.6 Rights Issue

In order to raise money, a company may decide to issue new shares and give current shareholders

the right (but not the obligation) to purchase those additional shares at a discounted price. This can

be modeled using two components:

• An option instrument, whichdescribes the economic termsof the rights a shareholder receives.

For example, this could be a European option with a strike price below the current spot price,

and a maturity three weeks in the future. The page on the Option Instrument package describes

how to create a physically settled European option.

• The DeclareDistribution choice to distribute the above option instrument in the correct

proportion (e.g. 3 option contracts for each 10 shares held). This can be done in the same way

as the Bonus Issue example described earlier, just change the perUnitDistribution line to

distribute the option instrument you created above.

When current shareholders receive the option instrument they can typically choose between:

1. Exercising the option. This corresponds to a Rights Subscription (described in more detail in

the next section below).

2. Choosing not to exercise the option. The option will expire worthless.

3. Selling the option. This is not always possible, it depends on the terms of the rights issue.

Getting Started: Settlement describes how this could be done.

1.19.8.7 Rights Subscription

Investors that decide to purchase those additional shares (subscribe to the stock issuance) can

elect to exercise their right (a call option), either in parts or in whole. Sometimes, it is also possible

to to apply for excess subscription. For example, an investor would like to subscribe for 150 shares

but has regular rights for only 100 shares. In that case, the investor would:

• Exercise the call option in whole to subscribe for the guaranteed part (100 shares).

• Write a put option for the excess part (50 shares). The issuer could then exercise this in part or

in whole.

More details on the Rights Issue and Subscription process are described in Instrument/Eq-

uity/Test/RightsIssue.daml , in particular how to define and process an Election.

1.19.8.8 Stock split

A stock split is when a company increases its number of shares. For example, a 2-for-1 stock split

means that a shareholderwill have two shares after the split for every share held before the split. This

is modeled using the DeclareStockSplit choice, which has an adjustmentFactor argument.

The DeclareStockSplit choice creates a Replacement Event, which allows you to replace units of an

instrument with another instrument (or a basket of other instruments). Consequently, this interface

can also be used for other types of corporate actions (for example, see the merger scenario below).

The workflow for a stock split is quite similar to that of a dividend above. We start by defining the

instrument before and after the lifecycle event:

568 Chapter 1. Canton References

https://github.com/digital-asset/daml-finance/blob/main/src/test/daml/Daml/Finance/Instrument/Equity/Test/RightsIssue.daml
https://github.com/digital-asset/daml-finance/blob/main/src/test/daml/Daml/Finance/Instrument/Equity/Test/RightsIssue.daml

Daml SDK Documentation, 2.7.3

preEquityInstrument <­ originateEquity issuer issuer "INST­1" "0" "AAPL" pp now

postEquityInstrument <­ originateEquity issuer issuer "INST­1" "1" "AAPL" [] now

We create a replacement rule for the stock split:

­­ Create lifecycle rule

replacementRuleCid <­ toInterfaceContractId @Lifecycle.I <$> submit issuer do

createCmd Replacement.Rule with

providers = S.singleton issuer

lifecycler = issuer

observers = S.singleton publicParty

id = Id "LifecycleRule"

description = "Rule to lifecycle an instrument following a replacement event

↪→"

We also need a replacement event. For a 2-for-1 stock split, the adjustmentFactor is 1/2 = 0.5:

­­ Create stock split event

replacementEventCid <­

Instrument.submitExerciseInterfaceByKeyCmd @Equity.I [issuer] []␣

↪→preEquityInstrument

Equity.DeclareStockSplit with

id = Id $ "APPL ­ " <> show now

description = "Stocksplit"

effectiveTime = now

newInstrument = postEquityInstrument

adjustmentFactor = 0.5

This allows the issuer to lifecycle the instrument:

­­ Lifecycle stock split

(_, [effectCid]) <­ submit issuer do

exerciseCmd replacementRuleCid Lifecycle.Evolve with

observableCids = []

eventCid = replacementEventCid

instrument = preEquityInstrument

This results in a lifecycle effect, which can be settled (similar to the dividend scenario above).

Reverse Stock Split

The stock split described above increases the number of shares available. Alternatively, a company

may also decide to decrease the number of shares. This is referred to as reverse stock split or stock

consolidation.

The DeclareStockSplit choice supports this as well. For example, for a 1-for-10 reverse split, mod-

ify the adjustmentFactor to 10/1 = 10.0 in the example above.

1.19. Instruments 569

Daml SDK Documentation, 2.7.3

1.19.8.9 Merger

The merger scenario models the case when one company acquires another company and pays for

it using its own shares. This is modeled using the DeclareReplacement choice, which also uses

the Replacement Event (like the stock split scenario above). This is a mandatory exchange offer: no

election is required (or possible) by the shareholder.

We start by defining the instrument before and after the merger. Shares of company ABC are being

replaced by shares of company XYZ:

mergingInstrument <­ originateEquity merging merging "INST­1" "0" "ABC" pp now

mergedInstrument <­ originateEquity merged merged "INST­2" "0" "XYZ" pp now

We create a replacement rule for the merger:

­­ Create lifecycle rules

replacementRuleCid <­ toInterfaceContractId @Lifecycle.I <$> submit merging do

createCmd Replacement.Rule with

providers = S.singleton merging

lifecycler = merging

observers = S.singleton publicParty

id = Id "LifecycleRule"

description = "Rule to lifecycle an instrument following a replacement event

↪→"

We also need a replacement event. Two shares of ABC are replaced by one share of XYZ, so the factor

used in perUnitReplacement is 0.5:

­­ Create replacement event

­­ perUnitReplacement is an arbitrary list of instruments, so the investor can␣

↪→also receive a

­­ combination of shares and cash.

replacementEventCid <­

Instrument.submitExerciseInterfaceByKeyCmd @Equity.I [merging] []␣

↪→mergingInstrument

Equity.DeclareReplacement with

id = Id $ "ABC merge ­ " <> show now

description = "Merge"

effectiveTime = now

perUnitReplacement = [qty 0.5 mergedInstrument]

This allows the issuer to lifecycle the instrument:

­­ Lifecycle replacement event

(_, [effectCid]) <­ submit merging do

exerciseCmd replacementRuleCid Lifecycle.Evolve with

eventCid = replacementEventCid

observableCids = []

instrument = mergingInstrument

This results in a lifecycle effect, which can be settled as usual.

570 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.19.8.10 Frequently Asked Questions

How do I transfer or trade an Equity?

When you have created a holding on an Equity instrument this can be transferred to another party.

This is described in the Getting Started: Transfer tutorial.

In order to trade an Equity (transfer it in exchange for cash) you can also initiate a delivery versus

payment with atomic settlement. This is described in the Getting Started: Settlement tutorial.

How do I process dividend payments for an Equity?

On the dividend payment date, the issuer will need to lifecycle the Equity. This will result in a lifecycle

effect for the dividend, which can be cash settled. This is described in detail in the Lifecycling and the

Intermediated Lifecycling tutorials (depending on what kind of settlement you need).

1.19.9 How To Use the Option Extension Package

To follow the script used in this tutorial, you can clone the Daml Finance repository. In particular, the

Option test folder Instrument/Option/Test/ is the starting point of this tutorial.

1.19.9.1 How To Create an Option Instrument

In order to create an option instrument, you first have to decide what type of option you need. The

option extension package currently supports the following types of options:

European Options

European options give the holder the right, but not the obligation, to buy (in case of a call) or to sell

(in case of a put) the underlying asset at predetermined strike price on a specific expiry date in the

future.

Daml Finance supports two types of European Options:

Physically settled European Option

The EuropeanPhysical instrument models physically settled call or put options.

There are two important characteristics of this instrument:

1. physical settlement: option holders that choose to exercise will buy (in case of a call) or sell (in

case of a put) the underlying asset at the predetermined strike price. Since this option instru-

ment is physically settled, it means that the underlying asset will change hands.

2. manual exercise: This option instrument is not automatically exercised. Instead, the option

holder must manually decide whether or not to exercise. This is done by making an Election.

As an example, consider an option instrument that gives the holder the right to buy AAPL stock at a

given price. This example is taken from Instrument/Option/Test/EuropeanPhysical.daml , where all

1.19. Instruments 571

https://github.com/digital-asset/daml-finance
https://github.com/digital-asset/daml-finance/blob/main/src/test/daml/Daml/Finance/Instrument/Option/Test/
https://github.com/digital-asset/daml-finance/blob/main/src/test/daml/Daml/Finance/Instrument/Option/Test/EuropeanPhysical.daml

Daml SDK Documentation, 2.7.3

the details are available. Also, Check out the Election based lifecycling tutorial for more details on how

how to define and process an Election in practice.

You start by defining the terms:

strike = 50.0

expiryDate = date 2019 May 15

Now that the terms have been defined, you can create the option instrument:

let

instrument = InstrumentKey with

issuer

depository

id = Id label

version = "0"

cid <­ submitMulti [issuer] [publicParty] do

exerciseCmd europeanPhysicalOptionFactoryCid EuropeanPhysical.Create with

european = EuropeanPhysical.European with

instrument

description

expiryDate

optionType

strike

referenceAsset

ownerReceives

currency

lastEventTimestamp

prevElections = []

observers = M.fromList observers

Once this is done, you can create a holding on it using Account.Credit.

Cash-settled European Option

The EuropeanCash instrumentmodels cash-settled, auto-exercising call or put options. They are sim-

ilar to the EuropeanPhysical instrument described above, but there are two important differences:

1. cash settlement: This means that the underlying asset will not change hands. Instead, a cash

settlemement will take place (if the option is exercised).

2. automatic exercise: This option instrument is automatically exercised. No manual Election is

required by the holder.

As an example, consider an option instrument that gives the holder the right to buy AAPL stock at a

given price. This example is taken from Instrument/Option/Test/EuropeanCash.daml , where all the

details are available.

You start by defining the terms:

strike = 50.0

expiryDate = date 2019 May 15

referenceAssetId = "AAPL­CLOSE"

Now that the terms have been defined, you can create the option instrument:

572 Chapter 1. Canton References

https://github.com/digital-asset/daml-finance/blob/main/src/test/daml/Daml/Finance/Instrument/Option/Test/EuropeanCash.daml

Daml SDK Documentation, 2.7.3

let

instrument = InstrumentKey with

issuer

depository

id = Id label

version = "0"

cid <­ submitMulti [issuer] [publicParty] do

exerciseCmd europeanCashOptionFactoryCid EuropeanCash.Create with

european = EuropeanCash.European with

instrument

description

expiryDate

optionType

strike

referenceAssetId

ownerReceives

currency

lastEventTimestamp

observers = M.fromList observers

Once this is done, you can create a holding on it using Account.Credit.

If the close price of AAPL on the expiry date is above the strike price, the option holder would profit

from exercising the option and buying the stock at the strike price. The value of the option would be

spot - strike. Since this option type is cash-settled, this amount would be paid in the option currency

after lifecycling.

On the other hand, if the closeprice of AAPL is below the strikeprice, the optionwould expireworthless.

This option instrument is automatically exercised. This means that the decision whether or not to

exercise is done automatically by comparing the strike price to an observation of the close price. For

this to work, you need to define an Observation as well:

let observations = M.fromList [(dateToDateClockTime $ date 2019 May 15, 48.78)]

observableCid <­ toInterfaceContractId <$> submit issuer do

createCmd Observation with

provider = issuer; id = Id referenceAssetId; observations; observers = M.

↪→empty

Barrier Option

The BarrierEuropeanCash instrument models barrier options. They are similar to the EuropeanCash

instrument described above, but also contain a barrier that is used to activate (or, alternatively,

knock out) the option. The BarrierTypeEnum describes which barrier types are supported.

As an example, consider an option instrument that gives the holder the right to buy AAPL stock at a

given price. However, if AAPL ever trades at or below a given barrier level, the option is knocked out

(which means that it expires worthless). In other words, this describes a DownAndOut option. This

example is taken from Instrument/Option/Test/BarrierEuropeanCash.daml , where all the details are

available.

You start by defining the terms:

1.19. Instruments 573

https://github.com/digital-asset/daml-finance/blob/main/src/test/daml/Daml/Finance/Instrument/Option/Test/BarrierEuropeanCash.daml

Daml SDK Documentation, 2.7.3

barrier = 30.0

barrierType = DownAndOut

barrierStartDate = date 2019 Jan 20

strike = 40.0

expiryDate = date 2019 May 15

referenceAssetId = "AAPL­CLOSE"

Now that the terms have been defined, you can create the option instrument:

let

instrument = InstrumentKey with

issuer

depository

id = Id label

version = "0"

cid <­ submitMulti [issuer] [publicParty] do

exerciseCmd barrierOptionFactoryCid BarrierEuropeanCash.Create with

barrierEuropean = BarrierEuropean with

instrument

description

expiryDate

optionType

strike

barrier

barrierType

barrierStartDate

referenceAssetId

ownerReceives

currency

lastEventTimestamp

observers = M.fromList observers

Once this is done, you can create a holding on it using Account.Credit.

Compared to the EuropeanCash option this instrument needs to be lifecycled not only at expiry but also

during its lifetime in case of a barrier hit. This is done in the same way as lifecycling at maturity, i.e.

an Observation is provided for the reference asset identifier, containing the date and the underlying

price.

Dividend Option

The Dividend instrument models physically settled, manually exercised dividend options. For refer-

ence, a dividend option gives the holder the right to choose one out of several dividend payouts, on

a specific expiry date in the future. The following payout types are supported:

1. Cash: The dividend is paid in cash. This a mandatory option. In addition, the issue can offer:

2. Shares: The dividend is paid in shares. To the investor this is similar to a Bonus Issue.

3. CashFx: The dividend is paid in cash in a foreign currency.

As an example, consider an option instrument that gives the holder the right to choose to receive

AAPL dividends either as cash, shares or cash in a foreign currency (EUR). This example is taken

from Instrument/Option/Test/Dividend.daml , where all the details are available.

You start by defining the terms:

574 Chapter 1. Canton References

https://github.com/digital-asset/daml-finance/blob/main/src/test/daml/Daml/Finance/Instrument/Option/Test/Dividend.daml

Daml SDK Documentation, 2.7.3

expiryDate = date 2019 May 15

cashQuantity = qty 0.19 cashInstrument

sharesQuantity = Some $ qty 0.0041 aaplInstrument

fxQuantity = Some $ qty 0.17 eurInstrument

Now that the terms have been defined, you can create the option instrument:

let

instrument = InstrumentKey with

issuer

depository

id = Id label

version = "0"

cid <­ submitMulti [issuer] [publicParty] do

exerciseCmd dividendOptionFactoryCid Dividend.Create with

dividend = Dividend with

instrument

description

expiryDate

cashQuantity

sharesQuantity

fxQuantity

lastEventTimestamp

prevElections = []

observers = M.fromList observers

Once this is done, you can create a holding on it using Account.Credit.

On the expiry date, the option holder will make an Election out of the available choices. The lifecycling

of this option works in the same way as for physically settled European options.

1.19.9.2 Frequently Asked Questions

How do I transfer or trade an option?

When you have created a holding on an option instrument this can be transferred to another party.

This is described in the Getting Started: Transfer tutorial.

In order to trade an option (transfer it in exchange for cash) you can also initiate a delivery versus

payment with atomic settlement. This is described in the Getting Started: Settlement tutorial.

How do I calculate settlement payments for an option?

On the expiry date, the issuer will need to lifecycle the European option. This will result in a lifecycle

effect for the payoff, which can be cash settled. This is described in detail in the Lifecycling and the

Intermediated Lifecycling tutorials.

1.19. Instruments 575

Daml SDK Documentation, 2.7.3

1.19.10 How To Use the Swap Instrument Packages

To follow the code snippets used in this page in Daml Studio, you can clone the Daml Finance repos-

itory and run the scripts included in the Instrument/Swap/Test/ folder.

1.19.10.1 Prerequisites

Swap instruments share many similarities with Bond instruments. This page builds on the page for

the Bond Instruments. Please, check it out before reading the Swap specifics below.

1.19.10.2 How To Create a Swap Instrument

There are different types of swaps, which differ both in the way regular payments are defined and

whether notional is exchanged. In order to create a swap instrument, you first have to decide what

type of swap you need. The swap instrument package currently supports the following types of swaps:

Interest Rate

Interest rate swap is the type of swap that shares most similarities with a bond. It has two legs: one

which pays a fix rate and another one which pays a floating rate. These rates are paid at the end of

every payment period.

As an example, we will create a swap instrument paying Libor 3M vs a 2.01% p.a. with a 3M payment

period. This example is taken from Instrument/Swap/Test/InterestRate.daml , where all the details

are available.

We start by defining the terms:

let

issueDate = date 2019 Jan 16

firstPaymentDate = date 2019 Feb 15

maturityDate = date 2019 May 15

referenceRateId = "USD/LIBOR/3M"

ownerReceivesFix = False

fixRate = 0.0201

paymentPeriod = M

paymentPeriodMultiplier = 3

dayCountConvention = Act360

businessDayConvention = ModifiedFollowing

The floating leg depends on a reference rate, which is defined by the referenceRateId variable. The

value of the reference rate is observed at the beginning of each payment period.

The ownerReceivesFix variable is used to specify whether a holding owner of this instrument receives

the fix or the floating leg. This is not needed for bonds, because the regular payments are always in

one direction (from the issuer to the holder). However, in the case of a swap with two counterparties

A and B, we need the ownerReceivesFix variable to specify who receives fix and who receives floating.

In this example, the holding owner receives the floating leg.

Just as for bonds, we can use these variables to create a PeriodicSchedule:

576 Chapter 1. Canton References

https://github.com/digital-asset/daml-finance
https://github.com/digital-asset/daml-finance
https://github.com/digital-asset/daml-finance/blob/main/src/test/daml/Daml/Finance/Instrument/Swap/Test/
https://github.com/digital-asset/daml-finance/blob/main/src/test/daml/Daml/Finance/Instrument/Swap/Test/InterestRate.daml

Daml SDK Documentation, 2.7.3

let

(y, m, d) = toGregorian firstCouponDate

periodicSchedule = PeriodicSchedule with

businessDayAdjustment =

BusinessDayAdjustment with

calendarIds = holidayCalendarIds

convention = businessDayConvention

effectiveDateBusinessDayAdjustment = None

terminationDateBusinessDayAdjustment = None

frequency =

Periodic Frequency with

rollConvention = DOM d

period = Period with

period = couponPeriod

periodMultiplier = couponPeriodMultiplier

effectiveDate = issueDate

firstRegularPeriodStartDate = Some firstCouponDate

lastRegularPeriodEndDate = Some maturityDate

stubPeriodType = None

terminationDate = maturityDate

Note that this instrument only has one periodic schedule, which is used for both the fixed and the

floating leg. It is also used for both the calculation period (to determine which floating rate to be

used) and the payment period (to determinewhen payments are done). The FpML swap template below

offers more flexibility here. It has individual schedules, both for the fixed/floating leg and for the

calculation/payment periods. That would allow you to specify whether payments should be made

e.g. after each calculation period or only after every second calculation period.

Now that we have defined the terms we can create the swap instrument:

let

instrument = InstrumentKey with

issuer

depository

id = Id label

version = "0"

cid <­ submitMulti [issuer] [publicParty] do

exerciseCmd interestRateSwapFactoryCid InterestRate.Create with

interestRate = InterestRate with

instrument

description

periodicSchedule

holidayCalendarIds

calendarDataProvider

dayCountConvention

referenceRateId

fixRate

ownerReceivesFix

currency

lastEventTimestamp

observers = M.fromList observers

Once this is done, you cancreate aholding on it using Account.Credit. The owner of theholding receives

the floating leg (and pays the fix leg).

1.19. Instruments 577

Daml SDK Documentation, 2.7.3

Currency

Currency swaps are quite similar to interest rate swaps, except that the two legs are in different cur-

rencies. Consequently, we need to create two cash instruments:

cashInstrument <­ originate custodian issuer "USD" "US Dollars" observers now

foreignCashInstrument <­ originate custodian issuer "EUR" "Euro" observers now

In the swap template they are referred to as base currency and foreign currency.

Here is an example of a fix vs fix currency swap: 3% p.a. in USD vs 2% p.a. in EUR with payments every

3M:

let

issueDate = date 2019 Jan 16

firstPaymentDate = date 2019 Feb 15

maturityDate = date 2019 May 15

ownerReceivesBase = False

baseRate = 0.03

foreignRate = 0.02

fxRate = 1.1

paymentPeriod = M

paymentPeriodMultiplier = 3

dayCountConvention = Act360

businessDayConvention = ModifiedFollowing

In this example, the holding owner receives the foreign currency leg.

In order to calculate the interest rate payments, a notional is required in each currency. The quantity

of the holding refers to the notional of the base currency. The notional of the foreign currency is

defined as the quantity of the holding multiplied by the specified fxRate.

Note that this template is limited to fixed rates. It also does not support exchange of notionals. If you

need floating rates or exchange of notionals, please use the FpML swap template below. It supports

both of those features.

Here is how we create the currency swap instrument, using the two currencies defined above:

let

instrument = InstrumentKey with

issuer

depository

id = Id label

version = "0"

cid <­ submitMulti [issuer] [publicParty] do

exerciseCmd currencySwapFactoryCid Currency.Create with

currencySwap = CurrencySwap with

instrument

description

periodicSchedule

holidayCalendarIds

calendarDataProvider

dayCountConvention

ownerReceivesBase

baseRate

foreignRate

(continues on next page)

578 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

baseCurrency

foreignCurrency

fxRate

lastEventTimestamp

observers = M.fromList observers

Once the instrument is created, you can create a holding on it. In our example, it the owner of the

holding receives the foreign currency leg (and pays the base currency leg).

Foreign Exchange

Despite the similarities in name, foreign exchange swaps (or FX swaps) are quite different from cur-

rency swaps. An FX swap does not pay or receive interest. Instead, the two legs define an initial FX

transaction and a final FX transaction. Each transaction requires an FX rate and a transaction date,

which are predetermined between the counterparties.

The FX transactions involve two currencies. In the swap template these are referred to as base cur-

rency and foreign currency. The convention is that the holding owner receives the foreign currency in

the initial transaction (and pays it in the final transaction).

Here is an example of an USD vs EUR FX swap. First, we define the two cash instruments:

cashInstrument <­ originate custodian issuer "USD" "US Dollars" observers now

foreignCashInstrument <­ originate custodian issuer "EUR" "Euro" observers now

Then, we define the transaction dates and FX rates:

let

issueDate = date 2019 Jan 16

firstPaymentDate = date 2019 Feb 15

maturityDate = date 2019 May 15

firstFxRate = 1.1

finalFxRate = 1.2

The firstPaymentDate variable defines the date of the initial FX transaction. Generally, this is on the

issue date or shortly afterwards.

Finally, we create the FX swap instrument:

let

instrument = InstrumentKey with

issuer

depository

id = Id label

version = "0"

cid <­ submitMulti [issuer] [publicParty] do

exerciseCmd fxSwapFactoryCid ForeignExchange.Create with

foreignExchange = ForeignExchange with

instrument

description

baseCurrency

foreignCurrency

firstFxRate

(continues on next page)

1.19. Instruments 579

Daml SDK Documentation, 2.7.3

(continued from previous page)

finalFxRate

issueDate

firstPaymentDate

maturityDate

lastEventTimestamp

observers = M.fromList observers

Once the instrument is created, you can create a holding on it. The owner of the holding receives the

foreign currency in the initial transaction. In the final transaction the sides are reversed.

Credit Default

A credit default swap (CDS) pays a protection amount in case of a credit default event, in exchange for

a fix rate at the end of every payment period. The protection amount is defined as 1-recoveryRate. The

recoveryRate is defined as the amount recoveredwhen a borrower defaults, expressed as a percentage

of notional.

If a credit event occurs, the swap expires after the protection amount has been paid, i.e., no more

rate payments are required afterwards.

Here is an example of a CDS that pays 1-recoveryRate in the case of a default on TSLA bonds:

issueDate = date 2019 Jan 16

firstPaymentDate = date 2019 Feb 15

maturityDate = date 2019 May 15

defaultProbabilityReferenceId = "TSLA­DEFAULT­PROB"

recoveryRateReferenceId = "TSLA­RECOVERY­RATE"

ownerReceivesFix = False

fixRate = 0.0201

paymentPeriod = M

paymentPeriodMultiplier = 3

dayCountConvention = Act360

businessDayConvention = ModifiedFollowing

In our example, the issuer pays the protection leg of the swap.

As you can see in this example, two observables are required for a CDS:

1. defaultProbabilityReferenceId: The reference ID of the default probability observable. For example,

in case of protection against a “TSLA bond payment default” this should be a valid reference

to the “TSLA default probability”.

2. recoveryRateReferenceId: The reference ID of the recovery rate observable. For example, in case of

a “TSLA bond payment default with a 60% recovery rate” this should be a valid reference to the

“TSLA bond recovery rate”.

Finally, we create the CDS instrument:

let

instrument = InstrumentKey with

issuer

depository

id = Id label

version = "0"

(continues on next page)

580 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

cid <­ submitMulti [issuer] [publicParty] do

exerciseCmd cdsFactoryCid CreditDefault.Create with

creditDefault = CreditDefault with

instrument

description

periodicSchedule

holidayCalendarIds

calendarDataProvider

dayCountConvention

fixRate

ownerReceivesFix

defaultProbabilityReferenceId

recoveryRateReferenceId

currency

lastEventTimestamp

observers = M.fromList observers

Once the instrument is created, you can create a holding on it. In our example, the owner of the

holding receives the protection leg (and pays the fix leg).

Asset

An asset swap is a general type of swapwith two legs: one which pays a fix rate and another onewhich

pays the performance of an asset. It can be used to model:

• equity swaps

• some types of commodity swaps (of the form performance vs rate)

• other swaps with the same payoff on other asset types.

Here is an example of an asset swap that pays AAPL total return vs 2.01% fix p.a., payment every 3M:

let

issueDate = date 2019 Jan 16

firstPaymentDate = date 2019 Feb 15

maturityDate = date 2019 May 15

referenceAssetId = "AAPL­CLOSE­ADJ"

ownerReceivesFix = False

fixRate = 0.0201

paymentPeriod = M

paymentPeriodMultiplier = 3

dayCountConvention = Act360

businessDayConvention = ModifiedFollowing

In our example, the issuer pays the asset leg of the swap.

One observable is required: referenceAssetId. The template calculates the performance for each pay-

ment period using this observable. Performance is calculated from the start date to the end date

of each payment period. The reference asset Observable needs to contain the appropriate type of

fixings:

• unadjusted fixings in case of a price return asset swap

• adjusted fixings in case of a total return asset swap

Finally, we create the asset swap instrument:

1.19. Instruments 581

Daml SDK Documentation, 2.7.3

let

instrument = InstrumentKey with

issuer

depository

id = Id label

version = "0"

cid <­ submitMulti [issuer] [publicParty] do

exerciseCmd assetSwapFactoryCid Asset.Create with

asset = Asset with

instrument

description

periodicSchedule

holidayCalendarIds

calendarDataProvider

dayCountConvention

fixRate

ownerReceivesFix

referenceAssetId

currency

lastEventTimestamp

observers = M.fromList observers

Once this is done, you can create a holding on it. The owner of the holding receives the asset leg (and

pays the fix leg).

FpML

Unlike the other swap types above, the FpML swap template is not a new type of payoff. Instead, it

allows you to input other types of swaps using the FpML schema. Currently, interest rate swaps and

currency swaps are supported. The template can quite easily be extended to FX swaps.

Specifically, it allows you to specify one swapStream object for each leg of the swap.

We start by defining the general terms:

let

issueDate = date 2022 Sep 14

firstRegularPeriodDate = date 2022 Sep 20

lastRegularPeriodDate = date 2023 Jun 20

maturityDate = date 2023 Sep 14

firstRegularPeriodDateFixLeg = date 2022 Sep 20

lastRegularPeriodDateFixLeg = firstRegularPeriodDateFixLeg

referenceRateId = "USD/LIBOR/3M"

referenceRateOneMonthId = "USD/LIBOR/1M"

fixRate = 0.02

paymentPeriod = Regular M

paymentPeriodMultiplier = 3

dayCountConvention = Act360

businessDayConvention = ModifiedFollowing

issuerPartyRef = "Counterparty"

clientPartyRef = "ExecutingParty"

The issuerPartyRef and the clientPartyRef variables are used to specify who pays each leg (see payerPar-

tyReference below).

582 Chapter 1. Canton References

https://www.fpml.org/spec/fpml-5-11-3-lcwd-1/html/confirmation/schemaDocumentation/schemas/fpml-ird-5-11_xsd/complexTypes/Swap.html
https://www.fpml.org/spec/fpml-5-11-3-lcwd-1/html/confirmation/schemaDocumentation/schemas/fpml-ird-5-11_xsd/complexTypes/Swap/swapStream.html

Daml SDK Documentation, 2.7.3

The fixed leg of the swap can now be defined using Daml data types that correspond to the swap-

Stream schema:

swapStreamFixedLeg = SwapStream with

payerPartyReference = clientPartyRef

receiverPartyReference = issuerPartyRef

calculationPeriodDates = CalculationPeriodDates with

id = "fixedLegCalcPeriodDates"

effectiveDate = AdjustableDate with

unadjustedDate = issueDate

dateAdjustments = BusinessDayAdjustments with

businessDayConvention = NoAdjustment

businessCenters = []

terminationDate = AdjustableDate with

unadjustedDate = maturityDate

dateAdjustments = BusinessDayAdjustments with

businessDayConvention = ModifiedFollowing

businessCenters = holidayCalendarIds

calculationPeriodDatesAdjustments = CalculationPeriodDatesAdjustments with

businessDayConvention = ModifiedFollowing

businessCenters = holidayCalendarIds

firstPeriodStartDate = None

firstRegularPeriodStartDate = Some firstRegularPeriodDateFixLeg

lastRegularPeriodEndDate = Some lastRegularPeriodDateFixLeg

calculationPeriodFrequency = CalculationPeriodFrequency with

periodMultiplier = 1

period = Regular Y

rollConvention = DOM 20

paymentDates = PaymentDates with

calculationPeriodDatesReference = "fixedLegCalcPeriodDates"

paymentFrequency = PaymentFrequency with

periodMultiplier = 1

period = Regular Y

firstPaymentDate = Some firstRegularPeriodDateFixLeg

lastRegularPaymentDate = Some lastRegularPeriodDateFixLeg

payRelativeTo = CalculationPeriodEndDate

paymentDatesAdjustments = BusinessDayAdjustments with

businessDayConvention = ModifiedFollowing

businessCenters = holidayCalendarIds

paymentDaysOffset = None

resetDates = None

calculationPeriodAmount = CalculationPeriodAmount with

calculation = Calculation with

notionalScheduleValue = NotionalSchedule_Regular NotionalSchedule with

id = "fixedLegNotionalSchedule"

notionalStepSchedule = NotionalStepSchedule with

initialValue = 1000000.0

step = []

currency = "USD"

rateTypeValue = RateType_Fixed FixedRateSchedule with

initialValue = fixRate

step = []

dayCountFraction = dayCountConvention

compoundingMethodEnum = None

stubCalculationPeriodAmount = None

principalExchanges = None

As you can see, the Daml SwapStream data type matches the swapStream FpML schema. Please note

1.19. Instruments 583

https://www.fpml.org/spec/fpml-5-11-3-lcwd-1/html/confirmation/schemaDocumentation/schemas/fpml-ird-5-11_xsd/complexTypes/Swap/swapStream.html
https://www.fpml.org/spec/fpml-5-11-3-lcwd-1/html/confirmation/schemaDocumentation/schemas/fpml-ird-5-11_xsd/complexTypes/Swap/swapStream.html
https://www.fpml.org/spec/fpml-5-11-3-lcwd-1/html/confirmation/schemaDocumentation/schemas/fpml-ird-5-11_xsd/complexTypes/Swap/swapStream.html

Daml SDK Documentation, 2.7.3

that the actual parsing from FpML to Daml is not done by this template. It has to be implemented

on the client side.

Similarly, the floating leg of the swap is defined like this:

swapStreamFloatingLeg = SwapStream with

payerPartyReference = issuerPartyRef

receiverPartyReference = clientPartyRef

calculationPeriodDates = CalculationPeriodDates with

id = "floatingLegCalcPeriodDates"

effectiveDate = AdjustableDate with

unadjustedDate = issueDate

dateAdjustments = BusinessDayAdjustments with

businessDayConvention = NoAdjustment

businessCenters = []

terminationDate = AdjustableDate with

unadjustedDate = maturityDate

dateAdjustments = BusinessDayAdjustments with

businessDayConvention = ModifiedFollowing

businessCenters = holidayCalendarIds

calculationPeriodDatesAdjustments = CalculationPeriodDatesAdjustments with

businessDayConvention = ModifiedFollowing

businessCenters = holidayCalendarIds

firstPeriodStartDate = None

firstRegularPeriodStartDate = Some firstRegularPeriodDate

lastRegularPeriodEndDate = Some lastRegularPeriodDate

calculationPeriodFrequency = CalculationPeriodFrequency with

periodMultiplier = paymentPeriodMultiplier

period = paymentPeriod

rollConvention = DOM 20

paymentDates = PaymentDates with

calculationPeriodDatesReference = "floatingLegCalcPeriodDates"

paymentFrequency = PaymentFrequency with

periodMultiplier = paymentPeriodMultiplier

period = paymentPeriod

firstPaymentDate = Some firstRegularPeriodDate

lastRegularPaymentDate = Some lastRegularPeriodDate

payRelativeTo = CalculationPeriodEndDate

paymentDatesAdjustments = BusinessDayAdjustments with

businessDayConvention = ModifiedFollowing

businessCenters = holidayCalendarIds

paymentDaysOffset = None

resetDates = Some ResetDates with

calculationPeriodDatesReference = "floatingLegCalcPeriodDates"

resetRelativeTo = CalculationPeriodStartDate

fixingDates = FixingDates with

periodMultiplier = ­2

period = D

dayType = Some Business

businessDayConvention = NoAdjustment

businessCenters = fixingHolidayCalendarId

resetFrequency = ResetFrequency with

periodMultiplier = paymentPeriodMultiplier

period = paymentPeriod

resetDatesAdjustments = ResetDatesAdjustments with

businessDayConvention = ModifiedFollowing

businessCenters = holidayCalendarIds

(continues on next page)

584 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

calculationPeriodAmount = CalculationPeriodAmount with

calculation = Calculation with

notionalScheduleValue = NotionalSchedule_Regular NotionalSchedule with

id = "floatingLegNotionalSchedule"

notionalStepSchedule = NotionalStepSchedule with

initialValue = 1000000.0

step = []

currency = "USD"

rateTypeValue = RateType_Floating FloatingRateCalculation with

floatingRateIndex = referenceRateId

indexTenor = Some Period with

periodMultiplier = paymentPeriodMultiplier

period = M

spreadSchedule = [SpreadSchedule with initialValue = 0.005]

finalRateRounding = None

dayCountFraction = dayCountConvention

compoundingMethodEnum = Some Straight

stubCalculationPeriodAmount = Some StubCalculationPeriodAmount with

calculationPeriodDatesReference = "floatingLegCalcPeriodDates"

initialStub = Some $ StubValue_StubRate 0.015

finalStub = Some $ StubValue_FloatingRate

[StubFloatingRate with

floatingRateIndex=referenceRateOneMonthId

indexTenor = Some (Period with period = M; periodMultiplier = 1)

, StubFloatingRate with

floatingRateIndex = referenceRateId

indexTenor = Some (Period with period = M; periodMultiplier = 3)

]

principalExchanges = None

There are three main ways to define which interest rate should be used for a stub period. They are

all included in the fix or floating leg above, either in the inital or in the final stub period. In short, it

depends on the content of StubCalculationPeriodAmount:

1. None: No special stub rate is provided. Instead, use the same rate as was specified in the cor-

responding Calculation.

2. Specific stubRate: Use this specific fix rate.

3. Specific floatingRate: Use this specific floating rate (if one rate is provided). If two rates are

provided: use linear interpolation between the two rates.

Finally, we create the FpML swap instrument:

let

instrument = InstrumentKey with

issuer

depository

id = Id label

version = "0"

cid <­ submitMulti [issuer] [publicParty] do

exerciseCmd fpmlSwapFactoryCid Fpml.Create with

fpml = Fpml with

instrument

description

swapStreams

(continues on next page)

1.19. Instruments 585

Daml SDK Documentation, 2.7.3

(continued from previous page)

issuerPartyRef

currencies

calendarDataProvider

lastEventTimestamp

observers = M.fromList observers

Once this is done, you can create a holding on it. In this particular example trade, the notional is

specified in the FpML instrument. Thismeans that you would only book a unit holding (quantity=1.0)

on the instrument.

1.19.10.3 Frequently Asked Questions

Why do the swaps have an issuer?

In the case of bonds, the instrument has a well-defined issuer. This is not necessarily the case for

swaps, where two counterparties A and B swap the payments associated with each leg. However, in

practice one of the counterparties is often a swap dealer, who shares some of the characteristics of

a bond issuer. For the purpose of lifecycling in Daml Finance, we require one of the counterparties to

take the role as issuer. This counterparty will serve as calculation agent and provide the observables

required to calculate the swap payments.

The documentation of the Daml Finance asset model contains an OTC swap example.

1.19.11 How to use the Generic Instrument packages

The Generic Instrument provides a flexible framework to model and lifecycle custom payoffs in Daml

Finance. It encapsulates the Contingent Claims library, which gives us the tools tomodel the economic

terms of the payoff.

To follow the code snippets used in this page in Daml Studio, you can clone the Daml Finance repos-

itory and run the scripts in the Instrument/Generic/Test/Intermediated/BondCoupon.daml and In-

strument/Generic/Test/EuropeanOption.daml files.

The Generic Instrument and the Contingent Claims library are introduced in the Payoff Modeling tuto-

rial, which we encourage you to check out.

1.19.11.1 How to create a Generic Instrument

Define the Claim of a Bond

Consider a fixed rate bond which pays a 4% coupon per annum with a coupon period of 6 months.

Assume that there are two coupons remaining until maturity: one to be paid today and one to be

paid in 180 days. This can be modeled in the following way:

let

today = toDateUTC now

expiry = addDays today 180

bondLabel = "ABC.DE 4% p.a. " <> show expiry <> " Corp"

claims = mapClaimToUTCTime $ andList

(continues on next page)

586 Chapter 1. Canton References

https://github.com/digital-asset/daml-finance
https://github.com/digital-asset/daml-finance
https://github.com/digital-asset/daml-finance/blob/main/src/test/daml/Daml/Finance/Instrument/Generic/Test/Intermediated/BondCoupon.daml
https://github.com/digital-asset/daml-finance/blob/main/src/test/daml/Daml/Finance/Instrument/Generic/Test/EuropeanOption.daml
https://github.com/digital-asset/daml-finance/blob/main/src/test/daml/Daml/Finance/Instrument/Generic/Test/EuropeanOption.daml

Daml SDK Documentation, 2.7.3

(continued from previous page)

[when (at today) $ scale (Const 0.02) $ one cashInstrument

, when (at expiry) $ scale (Const 0.02) $ one cashInstrument

, when (at expiry) $ scale (Const 1.0) $ one cashInstrument

]

Now that we have specified the economic terms of the payoff we can create a generic instrument:

instrument <­ originateGeneric csd issuer bondLabel "Bond" now claims pp now

On every coupon payment date, the issuer will need to lifecycle the instrument. This will result in a

lifecycle effect for the coupon, which can be then be claimed and settled. This process is described

in detail in Getting Started: Lifecycling.

Define the Claim of a European Option

Alternatively, if you want to model a European Option instead, you can define the claim as follows

let

exerciseClaim = scale (Observe spot ­ Const strike) $ one ccy

option = european maturity exerciseClaim

This uses the european builder function, which is included in Contingent Claims.

Compared to the bond, where the passage of time results in a coupon payment being due, the option

instrument requires amanual Election: the holder of the instrument holdingneeds to choosewhether

or not to exercise the option. How this is done is described in the next section.

1.19.11.2 How to lifecycle a Generic Instrument

Election based lifecycling of Contingent Claims based instruments

We describe how to lifecycle an option instrument (which can be Exercised or Expired), but the same

concepts apply to other Election based instruments (for example, a callable bond that can be Called

or NotCalled). A similar workflow is also applicable to some of the instruments available in the Bond,

Swap, and Option packages.

First, an Election factory is created:

­­ Create election offers to allow holders to create elections

electionFactoryCid <­ submit broker do

toInterfaceContractId <$> createCmd Election.Factory with

provider = broker

observers = M.fromList pp

Then, election offers are created for the different election choices that are available. Specifically, for

option instruments, an election offer to exercise is created:

exerciseElectionFactoryCid <­ submit broker do

createCmd ElectionOffer with

provider = broker

id = Id "EXERCISE"

(continues on next page)

1.19. Instruments 587

Daml SDK Documentation, 2.7.3

(continued from previous page)

description = "OPTION­AAPL ­ Exercise"

claim = "EXERCISE"

observers = S.singleton publicParty

instrument = genericInstrument

factoryCid = electionFactoryCid

Similarly, an election offer to expire the option is also created:

expireElectionFactoryCid <­ submit broker do

createCmd ElectionOffer with

provider = broker

id = Id "EXPIRE"

description = "OPTION­AAPL ­ Expire"

claim = "EXPIRE"

observers = S.singleton publicParty

instrument = genericInstrument

factoryCid = electionFactoryCid

Assuming the investor wants to exercise the option, an election candidate contract is created. In

order to do this, the investor presents a holding for which an election should be made, and also

specifies the amount that this election applies to. This amount cannot exceed the quantity of the

holding:

­­ One cannot exercise for more units than they own

submitMultiMustFail [investor1] [publicParty] do

exerciseCmd exerciseElectionFactoryCid CreateElectionCandidate with

elector = investor1

electionTime = dateToDateClockTime maturity

holdingCid = investor1GenericHoldingCid

amount = 5000.0

Instead, the elected amount must be the same as the holding quantity, or lower:

­­ Create election

exerciseOptionProposalCid <­ submitMulti [investor1] [publicParty] do

exerciseCmd exerciseElectionFactoryCid CreateElectionCandidate with

elector = investor1

electionTime = dateToDateClockTime maturity

holdingCid = investor1GenericHoldingCid

amount = 500.0

A time event is also required to indicate when the election is made:

currentTimeCid <­ createDateClock (S.singleton broker) maturity S.empty

It is now possible to create the Election:

exerciseOptionCid <­ submit broker do

exerciseCmd exerciseOptionProposalCid ValidateElectionCandidate with

currentTimeCid

Note: these templates (election offer and election candidate) are not considered a core part of the

Daml Finance library. There can be different processes to create the Election, so this is rather appli-

cation specific. Still, in order to showcase one way how this could be done, this workflow is included

here for convenience.

588 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

The Election has a flag electorIsOwner, which indicates whether the election is on behalf of the owner

of the holding. This is typically the case for options, where the option holder has the right, but not

the obligation, to exercise the option. On the other hand, for callable bonds it is not the holding

owner (the bond holder) who gets to decide whether the bond is redeemed early. Instead, it is the

counterparty. In this case, electorIsOwner would be false.

A lifecycle rule is required to specify how to process the Election:

­­ Apply election to generate new instrument version + effects

lifecycleRuleCid <­ toInterfaceContractId <$> submit bank do

createCmd Lifecycle.Rule with

providers = S.singleton bank

observers= M.empty

lifecycler = broker

id = Id "LifecycleRule"

description = "Rule to lifecycle a generic instrument"

This is similar to time-based lifecycling.

Finally, it is possible to apply the Election according to the lifecycle rule provided:

(Some exercisedOption, [effectCid]) <­ submit broker do

exerciseCmd exerciseOptionCid Election.Apply with

observableCids = [observableCid]

exercisableCid = lifecycleRuleCid

This creates lifecycle effects, which can be claimed and settled in the usual way (as described in

GettingStarted: Lifecycling). However, the holding contract used to claim the effectmust be compatible

with the election that has been made: if Alice made an election and electorIsOwner = True, then only a

holding where owner = alice will be accepted.

1.19.11.3 Contingent Claims

Introduction

Contingent Claims is a library for modeling financial instruments in Daml. An instrument is rep-

resented by a tree of Claims, which describe future cashflows between two parties as well as the

conditions under which these cashflows occur.

The library offers lifecycling capabilities, as well as an (experimental) valuation semantics to map a

claim to a mathematical expression that can be used for no-arbitrage pricing.

Examples of how to create and lifecycle contracts using Contingent Claims can be found in the Payoff

Modeling tutorial.

In the following we present a user guide for getting started with Contingent Claims instrumentmod-

eling. It is meant to teach the basics of the framework, but does not cover every aspect. The work

is based on the papers [Cit1] and [Cit2], and we recommend that you refer to these for an in-depth

understanding of how it works.

1.19. Instruments 589

Daml SDK Documentation, 2.7.3

The Model

The approach taken in the papers is to model financial instruments by their cashflows. This should

be familiar to anyone having taken a course in corporate finance or valuation. Let’s start with an

example:

The picture above represents the cashflows of a fixed-rate bond. Or alternatively, you can think of it

as a mortgage, from the point of view of the bank: there are interest payments at regular intervals

(the small arrows), and a single repayment of the loan at maturity (the big arrow on the right). So

how do we go about modelling this?

We use the following data type, slightly simplified from Claim:

data Claim a

= zero

| one a

| give (Claim a)

| and with lhs: Claim a, rhs: Claim a

| or with lhs: Claim a, rhs: Claim a

| scale with k: Date ­> Decimal, claim: Claim a

| when with predicate: Date ­> Bool, claim: Claim a

| anytime with predicate : Date ­> Bool, claim: Claim a

| until with predicate : Date ­> Bool, claim: Claim a

There are a couple of things to consider.

First note that the constructors of this data type create a tree structure. The leaf constructors are

zero and one a, and the other constructors create branches (observe they call Claim a recur-

sively). The constructors are just functions, and can be combined to produce complex cashflows.

For example, to represent the above bond, we could write the following:

when (time == t_0) (scale (pure coupon) (one “USD”)) `and` ...

Let’s look at the constructors used in the above expression in more detail:

• one "USD" means that the acquirer of the contract receives one unit of the asset,

parametrised by a, immediately. In this case we use a 3-letter ISO code to represent a currency,

590 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

but you can use your own type to represent any asset.

• scale (pure coupon) modifies the magnitude of the arrow in the diagram. For example, in

the diagram, the big arrow would have a distinct scale factor from the small arrows. In our

example, the scale factor is constant: pure coupon = const coupon, however, it’s possible

to have a scale factor that depends on an unobserved value, such as a stock price, the weather,

or any other measurable quantity.

• when (time == t_0) tells us where along the x-axis the arrow is placed, i.e., it modifies the

point in time when the claim is acquired. The convention is that this must be the first instant

that the predicate (time == t_0 in this case) is true. In our example it is a point, but again,

we could have used an expressionwith an unknownquantity, for examplespotPrice > pure

k, and it would trigger the first instant that the expression becomes true.

• and is used to chain multiple expressions together. Remember that in the data definition

above, each constructor is a function: and : Claim a ­> Claim a ­> Claim a. We use

the Daml backtick syntax to write and as an infix operator, for legibility.

Additionally, there are several constructors which were not used in the above example:

• zero, used to indicate an absence of obligations. While itmay notmake sense to create a zero

claim, it could, for example, result from applying a function on a tree of claims.

• givewould flip the direction of the arrows in our diagram. For example, in a swap we could use

give to distinguish the received/paid legs.

• or is used to give the bearer the right to choose between two different claims. This is typically

used for options.

• anytime is like when, except it allows the bearer to choose (vs. no choice) acquisition within a

region (or timeframe), vs. a specific point in time.

• until is used to adjust the expiration (horizon in [Cit1]) of a claim. Typically, it is used with

anytime to limit aforesaid acquisition region.

The tree produced by our expression (corresponding to the cashflow figure above) looks like this:

1.19. Instruments 591

Daml SDK Documentation, 2.7.3

Composition and Extensibility

Althoughwe couldmodel every subsequent arrow the way we did the first one, as good programmers

we wish to avoid repeating ourselves. Hence, we could write functions to re-use subexpressions of

the tree. But which parts should we factor out? It turns out that Finance 101 comes to the rescue

again. Fixed income practitioners will typically model a fixed-rate bond as a sum of zero-coupon

bonds. That’s how we model them in Claims.Util.Builders. Below are slightly simplified versions:

zcb maturity principal asset =

when (time == maturity) (scale (O.pure principal) (one asset))

Here we’ve just wrapped our expression from the previous section in a function zcb, that we can

reuse to build a fixed-rate bond:

fixed : Decimal ­> Decimal ­> a ­> [Date] ­> Claim a

fixed principal coupon asset [] = zero

fixed principal coupon asset [maturity] =

zcb maturity coupon asset `and` zcb maturity principal asset

fixed principal coupon asset (t :: ts) =

zcb t coupon asset `and` fixed principal coupon asset ts

We define the fixed rate bond by induction, iterating over a list of dates [t], and producingmultiple

zero-coupon bonds zcb combined together with and:

• The first definition covers the trivial case where we pass an empty list of dates.

• The second definition handles the base case, at maturity: we create both a coupon (interest)

payment, and the principal payment.

• The third definition is the induction step; it peels the first element off the list, and calls itself

recursively on the tail of the list, until it reaches the base case at maturity.

This re-use of code is prevalent throughout the library. It’s great as it mirrors how instruments are

defined in the industry. Let’s look at yet another example, a fixed vs floating USD/EUR swap.

type Ccy = Text

usdVsEur : [Date] ­> Claim Ccy

usdVsEur =

fixed 100.0 0.1 "USD" `swap` floating (spot "EURUSD" * pure 100.0) (spot

↪→"EURUSD") "EUR"

We define it in terms of its two legs, fixed and floating, which themselves are functions. We use

swap in infix form, and partially apply it - it takes a final [Date] argument which we omit, hence the

resulting signature [Date] ­> Claim Ccy.

As you can see, not only is this approach highly composable, but it also mirrors the way derivative

instruments are modelled in finance.

Another major advantage of this approach is its extensibility. Unlike a traditional approach, where

wemight in an object-oriented language represent different instruments as classes, in the cashflow

approach, wedonot need to enumerate possible asset classes/instruments apriori. This is especially

relevant in a distributed setting, where parties must execute the same code, i.e., have the same *.

dars on their ledger to interact. In other words, party A can issue a new instrument, or even write a

new combinator function that is in a private *.dar, while being able to trade with party B, who has

no knowledge of this new *.dar.

592 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Concerning Type Parameters

The curious reader may have noticed that the signature we gave for data Claim is not quite what

is in the library, where we have data Claim t x a o. In our examples, we have specialised this

to type Claim' t x a o = Claim Date Decimal a a. Parameterising these variables allows

us to reason about Assets and Observations that appear inClaims as function-like objects. The

main use of this is to create claims with ‘placeholders’ for actual parameters, that can later be ‘filled

in’ by mapping over them (mapParams).

The Time Parameter

t is used to represent the first input argument to an Observation, and above we used Date for this

purpose. One reason this has been left parametrised is to be able to distinguish different calendar

and day count conventions at the type level. This is quite a technical topic, but it suffices to know

that for financial calculations, interest is not always accrued the same way, nor is settlement possi-

ble every day, as this depends on local jurisdictions or market conventions. Having different types

makes this explicit at the instrument level.

Another use for this is expressing time as an ordinal values, representing e.g. days from issue. Such

a Claim can be used repeatedly to represent instruments issued at different dates, but with the

same durations. For example, consider a series of listed futures or options which are issued with

quarterly/monthly maturities - their duration is about the same, but they are issued on different

dates.

The Asset Parameter

a, as we already explained, is the type used to represent assets in your application. Keeping this

generic means the library can be used with any asset representation. For example, you could use

one of the instrument implementations in Daml Finance, but are not forced to do so.

The Observation Parameter

o is the type used to represent Observations, which are time-dependent quantities that can be

observed at any given time (such as the “EURUSD” exchange rate in the example above).

The Value Parameter

x is the ‘output’ type of an Observation, but it can also serve as input when defining a constant

observation using, e.g., Observation.pure 10.08.

1.19. Instruments 593

Daml SDK Documentation, 2.7.3

Lifecycling

So far we’ve learned how to model arbitrary financial instruments by representing them as trees

of cashflows. We’ve seen that these trees can be constructed using the type constructors of data

Claim, and that they can be factored intomore complex building blocks using function composition.

But now that we have these trees, what can we do with them?

The original paper [Cit1] focuses on using these trees for valuing the instruments they represent,

i.e., finding the ‘fair price’ that one should pay for these cashflows. Instead, we’ll focus here on a

different use case: the lifecycling (aka safekeeping, processing corporate actions) of these instru-

ments.

Let’s go back to our fixed-rate bond example, above. Wewant to process the coupon payments. There

is a function in the Lifecycle module for doing exactly this:

type C t a o = Claim t Decimal a o

­­ | Used to specify pending payments.

data Pending t a = Pending

with

t : t

­­ ^ Payment time.

amount : Decimal

­­ ^ Amount of asset to be paid.

asset : a

­­ ^ Asset in which the payment is denominated.

deriving (Eq, Show)

­­ | Returned from a `lifecycle` operation.

data Result t a o = Result

with

pending : [Pending t a]

­­ ^ Payments requiring settlement.

remaining : C t a o

­­ ^ The tree after lifecycled branches have been pruned.

deriving (Eq, Show)

­­ | Collect claims falling due into a list, and return the tree with those nodes␣

↪→pruned.

­­ `m` will typically be `Update`. It is parametrised so it can be run in a␣

↪→`Script`. The first

­­ argument is used to lookup the value of any `Observables`. Returns the pruned␣

↪→tree + pending

­­ settlements up to the provided market time.

lifecycle : (Ord t, Eq a, CanAbort m)

=> (o ­> t ­> m Decimal)

­­ ^ Function to evaluate observables.

­> C t a o

­­ ^ The input claim.

­> t

­­ ^ The input claim's acquisition time.

­> t

­­ ^ The current market time. This is the time up to which observations are␣

↪→known.

­> m (Result t a o)

This may look daunting, but let’s look at an example in ContingentClaims/Test/FinancialCon-

594 Chapter 1. Canton References

https://github.com/digital-asset/daml-finance/blob/main/src/test/daml/ContingentClaims/Test/FinancialContract.daml
https://github.com/digital-asset/daml-finance/blob/main/src/test/daml/ContingentClaims/Test/FinancialContract.daml
https://github.com/digital-asset/daml-finance/blob/main/src/test/daml/ContingentClaims/Test/FinancialContract.daml

Daml SDK Documentation, 2.7.3

tract.daml to see this in action:

do

t <­ toDateUTC <$> getTime

let

getSpotRate isin t = do

(_, Quote{close}) <­ fetchByKey (isin, t, bearer)

pure close

lifecycleResult <­ Lifecycle.lifecycle getSpotRate claims␣

↪→acquisitionTime t

The first argument to lifecycle,getSpotRate, is a function takingan ISIN (security) code, and today’s

date. All this does is fetch a contract from the ledger that is keyed by these two values, and extract

the price of the security.

The last two arguments are simply the claims we wish to process, and today’s date, evaluated using

getTime.

The return value, lifecycleResult, will contain both the remaining tree after lifecycling, and any

assets that need to be settled. In our running bond example, we would extract the coupon from

the first payment, and return it, along with the rest of the tree, after that branch has been pruned

(depicted greyed-out below):

You may wonder why we’ve separated the settlement procedure from the lifecycling function. The

reason is that we can’t assume that settlement will happen on-chain; if it does, that is great, as

we can embed this call into a template choice, and lifecycle and settle atomically. However, in the

case where settlement must happen off-chain, there’s no way to to do this in one step. This design

supports both choices.

1.19. Instruments 595

https://github.com/digital-asset/daml-finance/blob/main/src/test/daml/ContingentClaims/Test/FinancialContract.daml
https://github.com/digital-asset/daml-finance/blob/main/src/test/daml/ContingentClaims/Test/FinancialContract.daml
https://github.com/digital-asset/daml-finance/blob/main/src/test/daml/ContingentClaims/Test/FinancialContract.daml

Daml SDK Documentation, 2.7.3

Pricing (Experimental)

This is an experimental feature. Expect breaking changes.

The ContigentClaims.Valuation.Stochastic module can be used for valuation. There is a fapf function

which is used to derive a fundamental asset pricing formula for an arbitrary Claim tree. The result-

ing AST is represented by Expr, but can be rendered as XML/MathML with the provided MathML.

presentation function, for display in a web browser. See the Test/Pricingmodule for examples.

Here is a sample rendering of a margrabe option:

<math display="block"><msub><mi>USD</mi><mi>t</mi></msub><mo> ⁢</mo><mo>𝔼</mo><mo> ⁡

↪→</mo><mrow><mo fence="true">[</mo><mrow><mo fence="true">(</mo><msub><mo>I</mo>

↪→<mrow><msub><mi>AMZN</mi><mi>T</mi></msub><mo>­</mo><msub><mi>APPL</mi><mi>T</

↪→mi></msub><mo>≤</mo><mn>0.0</mn></mrow></msub><mo> ⁢</mo><mrow><mo fence="true">(

↪→</mo><msub><mi>AMZN</mi><mi>T</mi></msub><mo>­</mo><msub><mi>APPL</mi><mi>T</mi>

↪→</msub><mo fence="true">)</mo></mrow><mo>+</mo><msub><mo>I</mo><mrow><mn>0.0</

↪→mn><mo>≤</mo><msub><mi>AMZN</mi><mi>T</mi></msub><mo>­</mo><msub><mi>APPL</mi>

↪→<mi>T</mi></msub></mrow></msub><mo>×</mo><mn>0.0</mn><mo fence="true">)</mo></

↪→mrow><mo> ⁢</mo><msup><mrow><msub><mi>USD</mi><mi>T</mi></msub></mrow><mrow><mo>­

↪→</mo><mn>1.0</mn></mrow></msup><mo>|</mo><msub><mo mathvariant="script">F</mo>

↪→<mi>t</mi></msub><mo fence="true">]</mo></mrow></math>

You can cut-and-paste this into a web page in ‘developer mode’ in any modern browser.

References

The papers can be downloaded from Microsoft Research.

1.20 Packages

This section explains the different packages in Daml Finance. It describes the modules contained

in each package and points to resources for learning how to use the packages (either a tutorial or a

test that describes how to use the package step-by-step).

1.20.1 Interface Packages

This section lists the interface packages contained within Daml Finance:

1.20.1.1 Daml.Finance.Interface.Holding

This package contains the interface and utility functions for holdings. It has the following modules:

• Factory: Interface for a holding factory used to create (credit) and archive (debit) holdings

• Base: Interface for a base holding which includes locking capabilities

• Fungible: Interface for a fungible holding which allows splitting and merging

• Transferable: Interface for a transferable holding, i.e., where ownership can be transferred to

other parties

• Util: Utility functions related to holdings, e.g., getting the amount or the instrument of a holding

596 Chapter 1. Canton References

https://www.microsoft.com/en-us/research/publication/composing-contracts-an-adventure-in-financial-engineering/

Daml SDK Documentation, 2.7.3

The Asset Model page explains the relationship between instruments, holdings, and accounts. Check

out the Transfer tutorial for a description on how to create a holding on an instrument and how to

transfer it between accounts.

The following diagram shows the incoming and outgoing dependencies for this package:

Changelog

Daml.Finance.Interface.Holding - Changelog

Version 2.0.0

• Update of SDK version and dependencies

• Remove implementation of Remove choice from factory templates

• Removed unnecessary ArchiveFungible choice

• Make use of the requires keyword to enforce the interface hierarchy (in particular the asDisclo-

sure, asBase, and asTransferable methods were removed)

• Fix to signature of disclose (removed the actor argument)

1.20. Packages 597

Daml SDK Documentation, 2.7.3

1.20.1.2 Daml.Finance.Interface.Account

This package contains the interface and utility functions for accounts. It has the following modules:

• Factory: Interface that allows implementing templates to create and remove accounts

• Account: Interface which represents an established relationship between a custodian and an

owner. It specifies parties controlling incomingandoutgoing transfers, andallows for crediting

and debiting holdings

• Util: Utility functions related to accounts, e.g., getting the custodian or the owner of an account

Changelog

Daml.Finance.Interface.Account - Changelog

Version 2.0.0

• Update of SDK version and dependencies

• Remove type synonym for AccountKey

• Make use of the requires keyword to enforce the interface hierarchy (in particular the asDisclo-

sure method was removed)

1.20.1.3 Daml.Finance.Interface.Settlement

This package contains the interface for settlement. It has the following modules:

• RouteProvider: Interface for providing a discovery mechanism for settlement routes

• Instruction: Interface for providing a single instruction to transfer an asset at a custodian

• Batch: Interface for atomically executing instructions, i.e., settling Transferables

• Factory: Interface used to generate a batch and associated instructions

• Types: Types required in the settlement process, e.g., Step, RoutedStep, Allocation, and Approval

The Settlement page contains an overview of the settlement process and explains the relationship

between instructions and batches. Check out the Settlement tutorial for a description on how to use

the settlement workflow in practice.

The following diagram shows the incoming and outgoing dependencies for this package:

598 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Changelog

Daml.Finance.Interface.Settlement - Changelog

Version 2.0.0

• Update of SDK version and dependencies

• Make use of the requires keyword to enforce the interface hierarchy (in particular the asDisclo-

sure was removed)

1.20.1.4 Daml.Finance.Interface.Lifecycle

This package contains the interface for lifecycle related processes. It contains the followingmodules:

• Effect: Interface for contracts exposing effects of lifecycling processes, e.g., the payment result-

ing from a bond coupon

• Election: Interface to allow for elections to be made on claim based instruments

• Election.Factory: Factory interface to instantiate elections on claim based instruments

• Event: Interface for a lifecycle event. An event is any contract that triggers the processing of a

lifecycle rule. Events can be, e.g., dividend announcements or simply the passing of time.

• Event.Distribution: Event interface for the distribution of units of an instrument for each unit of

a target instrument (e.g. share or cash dividends)

1.20. Packages 599

Daml SDK Documentation, 2.7.3

• Event.Replacement: Event interface for the replacement of units of an instrument with a basket

of other instruments (e.g. stock merger)

• Event.Time: Event interface for events that signal the passing of (business) time

• Rule.Lifecycle: Interface implemented by rules that lifecycle and evolve instruments

• Rule.Claim: Interface for contracts that allow holders to claim an Effect and generate settle-

ment instructions

• Observable.NumericObservable: Interface to observe time-dependent numerical values (e.g. a

stock price or an interest rate fixing)

• Observable.TimeObservable: Interface implemented by templates exposing time information

The Lifecycling page contains an overview of the lifecycle process and explains the relationship be-

tween events, lifecycle rules and effects. Check out the Lifecycling tutorial for a description on how

lifecycling works in practice. There is also the tutorial How to implement a Contingent Claims-based in-

strument, which describes how claims are defined, how to use a NumericObservable, and how the

Lifecycle interface is implemented for bonds.

The following diagram shows the incoming and outgoing dependencies for this package:

Changelog

Daml.Finance.Interface.Lifecycle - Changelog

Version 2.0.0

• Update of SDK version and dependencies

• Remove implementation of Remove choice from factory interfaces

• Move the Election module from the Generic to the Lifecycle package

• Make use of the requires keyword to enforce the interface hierarchy (in particular the asDisclo-

sure and asEvent methods were removed)

600 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.20.1.5 Daml.Finance.Interface.Instrument.Base

This package contains the root interface for all instruments. It contains the following modules:

• Instrument: Root instrument abstraction containing basic properties that every instrument ex-

hibits

Changelog

Daml.Finance.Interface.Instrument.Base - Changelog

Version 2.0.0

• Update of SDK version and dependencies

• Removed type synonym for InstrumentKey

• Make use of the requires keyword to enforce the interface hierarchy (in particular the asDisclo-

sure method was removed)

1.20.1.6 Daml.Finance.Interface.Claims

This package contains the interface for Contingent Claims based instruments. It contains the follow-

ing modules:

• Claim: Interface implemented by templates that can be represented as a set of contingent

claims

• Dynamic.Instrument: Interface implemented by instruments that create Contingent Claims trees

on-the-fly (i.e. the tree is not stored on disk as part of a contract, but created and processed

in-memory)

• Types: Types related to claims and what is required to represent claims (e.g. Deliverable and

Observable)

Changelog

Daml.Finance.Interface.Claims - Changelog

Version 2.0.0

• Update of SDK version and dependencies

• Make use of the requires keyword to enforce the interface hierarchy (in particular the asBaseIn-

strument method was removed)

1.20. Packages 601

Daml SDK Documentation, 2.7.3

1.20.1.7 Daml.Finance.Interface.Data

This package contains the interface for inspecting and working with observables, which are used in

the context of lifecycling. It contains the following modules:

• Numeric.Observation.Factory: Interface for a factory used to create, remove and view a Numeric.

Observation

• Numeric.Observation: Interface for a time-dependent Numeric.Observation, where the values

are explicitly stored on-ledger

• Reference.HolidayCalendar.Factory: Interface for a factory used to create, remove and view a Hol­

idayCalendar

• Reference.HolidayCalendar: Interface for contracts storing holiday calendar data on the ledger

• Reference.Time: Interface for contracts that control business time, providing choices to advance

or rewind time

Changelog

Daml.Finance.Interface.Data - Changelog

Version 3.0.0

• Update of SDK version and dependencies

• Remove implementation of Remove choice from factory templates

• Make use of the requires keyword to enforce the interface hierarchy (in particular the asDisclo-

sure, asNumericObservable, and asTimeObservable methods were removed)

Version 2.0.0

• Changed the signature of advance and rewind in the Reference.Time interface

• Dependencies update

1.20.1.8 Daml.Finance.Interface.Types.Common

This package contains common type definitions. They are defined in the following modules:

• Types: Various types related to keys, observers, parties, identifiers and quantities, which are

commonly used in several packages

Changelog

Daml.Finance.Interface.Types.Common - Changelog

Version 1.0.1

• Update of SDK version and dependencies

602 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.20.1.9 Daml.Finance.Interface.Types.Date

This package contains types related to dates. They are defined in the following modules:

• Date.Calendar: Types for holiday calendar data and how to adjust non-business days

• Date.Classes: Type class that specifies what can be converted to UTC time

• Date.DayCount: Type to specify the conventions used to calculate day count fractions

• Date.RollConvention: Types to define date periods and how to roll dates

• Date.Schedule: Types to define date schedules

Changelog

Daml.Finance.Interface.Types.Date - Changelog

Version 2.0.1

• Update of SDK version and dependencies

Version 2.0.0

• Introduce ScheduleFrequency data type

• Added NoRollConvention to RollConventionEnum. It applies to D and W periods

• PeriodicSchedule.frequency is of type ScheduleFrequency instead of Frequency

1.20.1.10 Daml.Finance.Interface.Util

This package contains the interface for the disclosure of contracts and some commonly used utility

functions. They are defined in these modules:

• Disclosure: An interface for managing the visibility of contracts for non-authorizing parties

• Common: Different utility functions related to interfaces and assertions

Changelog

Daml.Finance.Interface.Util - Changelog

Version 2.0.0

• Update of SDK version and dependencies

• Remove mapWithIndex utility function

• Remove the HasImplementation type class definition

1.20. Packages 603

Daml SDK Documentation, 2.7.3

1.20.1.11 ContingentClaims.Core

This package contains the interface to represent Contingent Claims trees. It contains data types and

utility functions to process such trees. It also contains builder functions to facilitate the creation of

trees using composition. The following modules are included:

• Builders: Builder functions to compose trees from smaller building blocks

• Internal.Claim: Internal data types to represent tree nodes

• Claim: Smart constructors for the types defined in Internal.Claim

• Observation: Data types to represent observations in trees

• Util.Recursion: Utility functions to facilitate recursive traversal of trees

Changelog

ContingentClaims.Core - Changelog

Version 2.0.0

• Update of SDK version and dependencies

• Add orList and andList smart constructors

• Add ObserveAt observation builder, used to explicitly state when an Observation should be ob-

served

• Refactor or and anytime smart constructors to identify electable sub-trees by a textual tag

1.20.1.12 Daml.Finance.Interface.Instrument.Bond

This package contains the interface definitions for bond instruments. It contains the following mod-

ules:

• Callable.Instrument: Instrument interface for callable bonds

• Callable.Factory: Factory interface to instantiate callable bond instruments

• Callable.Types: Type definitions to support callable bond instruments

• FixedRate.Instrument: Instrument interface for fixed-rate bonds

• FixedRate.Factory: Factory interface to instantiate fixed-rate bond instruments

• FixedRate.Types: Type definitions to support fixed-rate bond instruments

• FloatingRate.Instrument: Instrument interface for floating-rate bonds

• FloatingRate.Factory: Factory interface to instantiate floating-rate bond instruments

• FloatingRate.Types: Type definitions to support floating-rate bond instruments

• InflationLinked.Instrument: Instrument interface for inflation-linked bonds

• InflationLinked.Factory: Factory interface to instantiate inflation-linked bond instruments

• InflationLinked.Types: Type definitions to support inflation-linked bond instruments

• ZeroCoupon.Instrument: Instrument interface for zero-coupon bonds

• ZeroCoupon.Factory: Factory interface to instantiate zero-coupon bond instruments

• ZeroCoupon.Types: Type definitions to support zero-coupon bond instruments

• Types: Type definitions common to different types of bonds

604 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Changelog

Daml.Finance.Interface.Instrument.Bond - Changelog

Version 1.0.0

• Update of SDK version and dependencies

• The Create choice on the instrument factories returns the corresponding interface (rather than

the base instrument interface)

• Add GetView choice to all instrument interfaces

• Make use of the requires keyword to enforce the interface hierarchy (in particular the asDisclo-

sure and asBaseInstrument methods were removed)

• Introduce a new callable bond instrument

• Add a notional field to all instruments

Version 0.2.1

• Dependencies update

1.20.1.13 Daml.Finance.Interface.Instrument.Equity

This package contains the interface definitions for equity instruments. It contains the followingmod-

ules:

• Instrument: Instrument interface for equities. It supports lifecycling events through the De­

clareDistribution, DeclareReplacement and DeclareStockSplit choices.

• Factory: Factory interface to instantiate equities

Changelog

Daml.Finance.Interface.Instrument.Equity - Changelog

Version 0.3.0

• Update of SDK version and dependencies

• The Create choice on the instrument factory returns the corresponding interface (rather than

the base instrument interface)

• Make use of the requires keyword to enforce the interface hierarchy (in particular the asDisclo-

sure and asBaseInstrument methods were removed)

• Rename DeclareDividend to DeclareDistribution

1.20. Packages 605

Daml SDK Documentation, 2.7.3

1.20.1.14 Daml.Finance.Interface.Instrument.Generic

This package contains the interface definitions for generic, contingent-claims-based instruments. It

contains the following modules:

• Instrument: Instrument interface for generic instruments

• Factory: Factory interface to instantiate generic instruments

Changelog

Daml.Finance.Interface.Instrument.Generic - Changelog

Version 2.0.0

• Update of SDK version and dependencies

• The Create choice on the instrument factory returns the corresponding interface (rather than

the base instrument interface)

• Move the Election module to the Lifecycle package. Also, refactor the Election to identify the

elected sub-tree by a textual tag rather than the actual sub-tree

• Make use of the requires keyword to enforce the interface hierarchy (in particular the asDisclo-

sure, asBaseInstrument, and asClaim methods were removed)

1.20.1.15 Daml.Finance.Interface.Instrument.Option

This package contains the interface definitions for various option instruments. It contains the fol-

lowing modules:

• BarrierEuropeanCash.Instrument: Instrument interface for barrier options

• BarrierEuropeanCash.Factory: Factory interface to instantiate barrier options

• BarrierEuropeanCash.Types: Type definitions to support barrier options

• Dividend.Instrument: Instrument interface for dividend options

• Dividend.Factory: Factory interface to instantiate dividend options

• Dividend.Types: Type definitions to support dividend options

• Dividend.Election.Factory: Factory interface to instantiate elections for dividend options

• EuropeanCash.Instrument: Instrument interface for cash-settled European options

• EuropeanCash.Factory: Factory interface to instantiate cash-settled European options

• EuropeanCash.Types: Type definitions to support cash-settled European options

• EuropeanPhysical.Instrument: Instrument interface for physically settled European options

• EuropeanPhysical.Factory: Factory interface to instantiate physically settled European options

• EuropeanPhysical.Types: Type definitions to support physically settled European options

• Types: Type definitions common to several instruments in this package

606 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Changelog

Daml.Finance.Interface.Instrument.Option - Changelog

Version 0.2.0

• Update of SDK version and dependencies

• The Create choice on the instrument factories returns the corresponding interface (rather than

the base instrument interface)

• Add instruments physically-settled European options, dividend options, barrier options

• Renamed cash-settled European options to EuropeanCash

• Added GetView choice to all instrument interfaces

• Make use of the requires keyword to enforce the interface hierarchy (in particular the asDisclo-

sure, asBaseInstrument, and asEvent methods were removed)

1.20.1.16 Daml.Finance.Interface.Instrument.Swap

This package contains the interface definitions for various swap instruments. It contains the follow-

ing modules:

• Asset.Instrument: Instrument interface for asset swaps

• Asset.Factory: Factory interface to instantiate asset swaps

• Asset.Types: Type definitions to support asset swaps

• CreditDefault.Instrument: Instrument interface for credit default swaps

• CreditDefault.Factory: Factory interface to instantiate credit default swaps

• CreditDefault.Types: Type definitions to support credit default swaps

• Currency.Instrument: Instrument interface for currency swaps

• Currency.Factory: Factory interface to instantiate currency swaps

• Currency.Types: Type definitions to support currency swaps

• ForeignExchange.Instrument: Instrument interface for foreign exchange swaps

• ForeignExchange.Factory: Factory interface to instantiate foreign exchange swaps

• ForeignExchange.Types: Type definitions to support foreign exchange swaps

• Fpml.Instrument: Instrument interface for FpML swaps

• Fpml.Factory: Factory interface to instantiate FpML swaps

• Fpml.FpmlTypes: Specific FpML types used to support FpML swaps

• Fpml.Types: Type definitions to support FpML swaps

• InterestRate.Instrument: Instrument interface for interest rate swaps

• InterestRate.Factory: Factory interface to instantiate interest rate swaps

• InterestRate.Types: Type definitions to support interest rate swaps

Changelog

Daml.Finance.Interface.Instrument.Swap - Changelog

Version 0.3.0

• Update of SDK version and dependencies

• The Create choice on the instrument factories returns the corresponding interface (rather than

the base instrument interface)

1.20. Packages 607

Daml SDK Documentation, 2.7.3

• Added GetView choice to all instrument interfaces

• Make use of the requires keyword to enforce the interface hierarchy (in particular the asDisclo-

sure and asBaseInstrument methods were removed)

Version 0.2.1

• Updates to data types related to interest rate compounding and payment lag

• Updates to data types related to Term period

1.20.1.17 Daml.Finance.Interface.Instrument.Token

This package contains the interface definitions for simple token instruments which do not define any

lifecycling logic. It contains the following modules:

• Instrument: Instrument interface for simple tokens

• Factory: Factory interface to instantiate simple tokens

• Types: Type definitions to support simple tokens

Check out the Transfer tutorial for an example on how to create a simple token instrument and use it

for a transfer.

Changelog

Daml.Finance.Interface.Instrument.Token - Changelog

Version 2.0.0

• Update of SDK version and dependencies

• The Create choice on the instrument factory returns the corresponding interface (rather than

the base instrument interface)

• Make use of the requires keyword to enforce the interface hierarchy (in the particular asDisclo-

sure and asBaseInstrument implementations were removed)

1.20.2 Implementation Packages

This section lists the implementation packages contained within Daml Finance:

1.20.2.1 Daml.Finance.Holding

This package contains the implementation of holdings, including utility functions. It has the following

modules:

• Fungible: Implementation of a fungible holding, including split and merge functionality

• NonFungible: Implementation of a non-fungible holding, which cannot be split or merged

• NonTransferable: Implementation of a non-transferable holding

• Util: Utility functions related to holdings, e.g., to transfer or lock/release a holding

608 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

The Asset Model page explains the relationship between instruments, holdings, and accounts. Also,

check out the Transfer tutorial for a description of how to create a holding on an instrument and trans-

fer it between accounts.

Changelog

Daml.Finance.Holding - Changelog

Version 2.0.0

• Update of SDK version and dependencies

• Remove implementation of Remove choice from factory templates

• Added default splitImpl and mergeImpl for Fungible to Util.daml

• Generalized the acquireImpl and releaseImpl to not rely on an attribute called “lock”

• Make use of the requires keyword to enforce the interface hierarchy (in particular the asDisclo-

sure, asBase, and asTransferable implementations were removed)

• The Transfer choice of the Transferable interface now includes the new owner as a choice observer

• Implementation of Lockable does not allow an empty lockers set

Version 1.0.2

• Dependencies update

Version 1.0.1

• Fix bug in the implementation of Fungible.Merge

• Improve error message when acquiring a lock

1.20.2.2 Daml.Finance.Account

This package contains the implementation of accounts. It has the following module:

• Account: Implementation of an account, i.e., a relationship between a custodian and an asset

owner, referenced by holdings. It also provides an implementation of a factory from which

you can create and remove accounts. Upon creation of an account, it allows you to specify

controlling parties for incoming / outgoing transfers.

Changelog

Daml.Finance.Account - Changelog

Version 2.0.0

• Update of SDK version and dependencies

• Make use of the requires keyword to enforce the interface hierarchy (in particular the asDisclo-

sure implementation was removed)

1.20. Packages 609

Daml SDK Documentation, 2.7.3

• Use ensure to ensure that the set of outgoing controllers is non-empty

Version 1.0.1

• Dependencies update

1.20.2.3 Daml.Finance.Settlement

This package contains the implementation of the componentsused for settlement. It has the following

modules:

• RouteProvider.SingleCustodian: Used to generate a single RoutedStep from a Step using a single

custodian

• RouteProvider.IntermediatedStatic: Used to generate a route, i.e., RoutedSteps, for each settlement

Step

• Instruction: Used to settle a single RoutedStep, i.e., a Step at a custodian.

• Batch: Allows you to atomically settle a set of settlement Instructions

• Factory: Used to create a set of settlement Instructions, and a Batch to atomically settle them

• Hierarchy: Data type that describes a hierarchical account structure between multiple parties

The Settlement page contains an overview of the settlement process and explains the relationship

between Instruction and Batch. Also, check out the Settlement tutorial for a description on how to

implement the settlement workflow in practice.

Changelog

Daml.Finance.Settlement - Changelog

Version 2.0.0

• Update of SDK version and dependencies

• In the settlement Factory, the id values used for the Instruction`s weremodified to accurately reflect

their order within the `Batch.

• In the Batch, the order of the settledCids were changed to match the initial order of the instruc-

tions in the batch.

• Bug fix: replace groupOn by sortAndGroupOn in the Instruction and IntermediatedStatic templates

• Lock pledged holding when allocating to an Instruction: the pledged holding is locked to the

instruction’s requestors and the outgoing controllers of the sending account

• Make use of the requires keyword to enforce the interface hierarchy (in particular the asDisclo-

sure implementation was removed)

• When an Allocation (resp. Approval) takes place, a check has been added to ensure that either

the sender or the custodian (resp. the receiver or the custodian) is among the choice authorizers

• When reallocation (resp. re-approval) occurs, it is required that the signedSenders (resp. signe-

dReceivers) of the Instruction are part of the authorizing set

• Add additional checks to the pass-through allocation/approval process. Specifically, verify

that the specified pass-through Instruction is actually part of the Batch. These checks detect

settlement failures during the allocation/approval stage rather than waiting until settlement

occurs.

• Removed the key from the Batch implementation

610 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Version 1.0.2

• Dependencies update

Version 1.0.1

• Additional sanity checks added to Instruction

1.20.2.4 Daml.Finance.Lifecycle

This package contains the implementation of lifecycle related processes. It contains the following

modules:

• Effect: A contract encoding the consequences of a lifecycle event for one unit of the target instru-

ment

• Election: Implementation of elections (e.g. the exercise of an option) for claim based instru-

ments

• ElectionEffect: A contract encoding the consequences of an election for one unit of the target in-

strument

• Rule.Claim: Rule contract that allows an actor to process/claim effects, returning settlement

instructions

• Rule.Distribution: Rule contract that defines the distribution of units of an instrument for each

unit of a target instrument (e.g. share or cash dividends)

• Rule.Replacement: Rule contract that defines the replacement of units of an instrument with a

basket of other instruments (e.g. stock merger)

• Rule.Util: Utility functions to net, split and merge pending payments

• Event.Distribution: Event contract for the distribution of units of an instrument for each unit of

a target instrument (e.g. share or cash dividends)

• Event.Replacement: Event contract for the replacement of units of an instrument with a basket

of other instruments (e.g. stock merger)

Check out the Lifecycling tutorial for a description on how lifecycling works in practice, including how

to Claim an Effect. There is also the tutorial How to implement a Contingent Claims-based instrument,

which describes how to create an Effect. For a description of Distribution and Replacement,

check out the Instrument/Equity/Test folder. It demonstrates how to create and lifecycle a cash

dividend, and how to handle corporate actions like mergers and stock splits.

Changelog

Daml.Finance.Lifecycle - Changelog

Version 2.0.0

• Update of SDK version and dependencies

• Remove implementation of Remove choice from factory templates

• Move the Election module from the Generic to the Lifecycle package

• Election and ElectionEffect implement the Disclosure interface

• Make use of the requires keyword to enforce the interface hierarchy (in particular the asDisclo-

sure and asEvent implementations were removed)

1.20. Packages 611

https://github.com/digital-asset/daml-finance/blob/main/src/test/daml/Daml/Finance/Instrument/Equity/Test

Daml SDK Documentation, 2.7.3

• The Distribution and Replacement lifecycle rules check that the target and procued instruments

are active

Version 1.0.1

• Dependencies update

1.20.2.5 Daml.Finance.Data

This package implements templates containing reference data. It includes the following modules:

• Numeric.Observation: An implementation of an observation that explicitly stores

time-dependent numerical values on the ledger. It can be used to, e.g., store equity or

rate fixings.

• Reference.HolidayCalendar: A holiday calendar of an entity (typically an exchange or a currency)

• Time.DateClock.Types: A date type which can be converted to time, and time-related utility func-

tions

• Time.DateClock: A contract specifying what is the current local date. It is used to inject date

information in lifecycle processing rules

• Time.DateClockUpdate: A contract representing passing of (market) time that can be used to

trigger contractual, time-based cashflows, like interest payments on a bond. It is, for example,

used to drive the evolution and lifecycling of Contingent Claims-based instruments.

• Time.LedgerTime: A time observable which uses ledger time

Changelog

Daml.Finance.Data - Changelog

Version 2.0.0

• Update of SDK version and dependencies

• Remove implementation of Remove choice from factory templates

• Make use of the requires keyword to enforce the interface hierarchy (in particular the asDisclo-

sure, asNumericObservable, asTimeObservable, and asEvent implementations were removed)

• Removed key from DateClock.

Version 1.0.1

• Fixed a bug in the DateClock implementation to avoid key violations

• Dependencies update

612 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.20.2.6 Daml.Finance.Claims

This package contains utility functions that facilitate building and working with Contingent Claims

based instruments. It includes the following modules:

• Lifecycle.Rule: Rule to process a lifecycle event for instruments that build a Contingent Claims tree

dynamically.

• Util: Contains utility functions for claims, e.g., checking the content of a claim and converting

the claim time

• Util.Lifecycle: Defines different types of events and how to lifecycle them

• Util.Builders: Utility functions related to creating Contingent Claims, e.g. for bonds/swaps

• Util.Date: Utility functions related to dates and schedule periods, which are used to define

claims.

Changelog

Daml.Finance.Claims - Changelog

Version 2.0.0

• Update of SDK version and dependencies

• The lifecycle rule supports a combination of elections and time-based events

• Improve tagging of new instrument versions in the lifecycle rule

• Anew instrument version is created and returnedby the Evolve choice alsowhen the instrument

expires

Version 1.0.1

• Dependencies update

1.20.2.7 Daml.Finance.Util

This packagemainly contains utility functions related to dates, lists, maps, and disclosure. They are

defined in the following modules:

• Date.Calendar: Functions regarding dates and holiday calendars (business vs non-business

days)

• Date.DayCount: Functions to calculate day count fractions according to different conventions

• Date.RollConvention: Functions to calculate date periods including rolling dates

• Date.Schedule: Functions to calculate a periodic schedule, including both adjusted and unad-

justed dates

• Common: Various functions related to lists and maps, which are used in several packages

• Disclosure: Utility functions related to disclosure, e.g., to add or remove observers

1.20. Packages 613

Daml SDK Documentation, 2.7.3

Changelog

Daml.Finance.Util - Changelog

Version 3.0.0

• Update of SDK version and dependencies

• Remove the groupBy utility function

Version 2.0.0

• calcPeriodDcf and calcPeriodDcfActActISMA take a ScheduleFrequency instead of a Frequency

• Dependencies update

1.20.2.8 ContingentClaims.Lifecycle

This package contains the implementation of utility functions to lifecycle a Contingent Claims tree. The

following modules are included:

• Lifecycle: Functions to lifecycle a Contingent Claims tree

• Util: Utility functions to query a Contingent Claims tree for certain properties

Changelog

ContingentClaims.Lifecycle - Changelog

Version 2.0.0

• Update of SDK version and dependencies

• Refactor exercise to identify the elected sub-tree by a textual tag rather than the actual sub-tree

1.20.2.9 ContingentClaims.Valuation

This package contains the implementation of utility functions to map a Contingent Claims tree into a

mathematical representation to facilitate integration with pricing and risk frameworks. The follow-

ing modules are included:

• Stochastic: Utilities to map a Contingent Claims tree to a stochastic process representation

• MathML: Typeclass definition to map an expression in the MathML presentation format

614 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Changelog

ContingentClaims.Valuation - Changelog

Version 0.2.1

• Update of SDK version and dependencies

1.20.2.10 Daml.Finance.Instrument.Bond

This package contains the implementation of different bond types, defined in the following modules:

• Callable.Instrument: Instrument implementation for callable bonds

• Callable.Factory: Factory implementation to instantiate callable bonds

• FixedRate.Instrument: Instrument implementation for fixed-rate bonds

• FixedRate.Factory: Factory implementation to instantiate fixed-rate bonds

• FloatingRate.Instrument: Instrument implementation for floating-rate bonds

• FloatingRate.Factory: Factory implementation to instantiate floating-rate bonds

• InflationLinked.Instrument: Instrument implementation for inflation-linked bonds

• InflationLinked.Factory: Factory implementation to instantiate inflation-linked bonds

• ZeroCoupon.Instrument: Instrument implementation for zero-coupon bonds

• ZeroCoupon.Factory: Factory implementation to instantiate zero-coupon bonds

• Util: Bond-specific utility functions

Check out the page on How to use the Bond Instrument packages for a description of how to use these

instruments in practice. There is also the tutorial How to implement a Contingent Claims-based instru-

ment, which describes how the claims are defined and how the lifecycle interface is implemented for

bonds.

Changelog

Daml.Finance.Instrument.Bond - Changelog

Version 1.0.0

• Update of SDK version and dependencies

• The Create choice on the instrument factories returns the corresponding interface (rather than

the base instrument interface)

• Make use of the requires keyword to enforce the interface hierarchy (in particular the asDisclo-

sure and asBaseInstrument implementations were removed)

• Introduce a new callable bond instrument

• Add a notional field to all instruments

1.20. Packages 615

Daml SDK Documentation, 2.7.3

Version 0.2.1

• Dependencies update

1.20.2.11 Daml.Finance.Instrument.Equity

This package contains the implementation of equity instruments, defined in the following modules:

• Instrument: Instrument implementation for equities

• Factory: Factory implementation to instantiate equities

For a detailed explanation of this package, check out the page on How to use the Equity Instrument

packages. It demonstrates how to originate an equity instrument, how to create and lifecycle a cash

dividend, and how to handle corporate actions like mergers and stock splits.

Changelog

Daml.Finance.Instrument.Equity - Changelog

Version 0.3.0

• Update of SDK version and dependencies

• The Create choice on the instrument factory returns the corresponding interface (rather than

the base instrument interface)

• Make use of the requires keyword to enforce the interface hierarchy (in particular the asDisclo-

sure and asBaseInstrument implementations were removed)

• Rename DeclareDividend to DeclareDistribution

Version 0.2.1

• Dependencies update

1.20.2.12 Daml.Finance.Instrument.Generic

This package contains the implementation of generic, Contingent Claims based instruments, defined

in the following modules:

• Instrument: Instrument implementation for generic instruments

• Factory: Factory implementation to instantiate generic instruments

• Lifecycle.Rule: Rule to process a lifecycle event for generic instruments

Check out the page on How to use the Generic Instrument packages as well as the Payoff modeling tutorial

to learn how to use this instrument in practice.

616 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Changelog

Daml.Finance.Instrument.Generic - Changelog

Version 2.0.0

• Update of SDK version and dependencies

• The Create choice on the instrument factory returns the corresponding interface (rather than

the base instrument interface)

• Move the Election module to the Lifecycle package. Also, refactor the Election to identify the

elected sub-tree by a textual tag rather than the actual sub-tree

• Make use of the requires keyword to enforce the interface hierarchy (in particular the asDisclo-

sure, asBaseInstrument, and asClaim implementations were removed)

• A new instrument version is created and returned by the lifecycle rule choice also when the

instrument expires

Version 1.0.1

• Dependencies update

1.20.2.13 Daml.Finance.Instrument.Option

This package contains the implementation of different option types, defined in the followingmodules:

• BarrierEuropeanCash.Instrument: Instrument implementation for barrier options

• BarrierEuropeanCash.Factory: Factory implementation to instantiate barrier options

• Dividend.Instrument: Instrument implementation for dividend options

• Dividend.Factory: Factory implementation to instantiate dividend options

• Dividend.Election: Factory implementation to create an Election for dividend options

• EuropeanCash.Instrument: Instrument implementation for cash-settled European options

• EuropeanCash.Factory: Factory implementation to instantiate cash-settled European options

• EuropeanPhysical.Instrument: Instrument implementation for physically settled European op-

tions

• EuropeanPhysical.Factory: Factory implementation to instantiate physically settled European op-

tions

• Util: Utility functions for options

Check out the page on How to use the Option Instrument packages for a description of how to use the

these instruments in practice.

1.20. Packages 617

Daml SDK Documentation, 2.7.3

Changelog

Daml.Finance.Instrument.Option - Changelog

Version 0.2.0

• Update of SDK version and dependencies

• The Create choice on the instrument factories returns the corresponding interface (rather than

the base instrument interface)

• Add instruments physically-settled European options, dividend options, barrier options

• Renamed cash-settled European options to EuropeanCash

• Make use of the requires keyword to enforce the interface hierarchy (in particular the asDisclo-

sure and asBaseInstrument implementations were removed)

1.20.2.14 Daml.Finance.Instrument.Swap

This package contains the implementation of different swap types, defined in the following modules:

• Asset.Instrument: Instrument implementation for asset swaps

• Asset.Factory: Factory implementation to instantiate asset swaps

• CreditDefault.Instrument: Instrument implementation for credit default swaps

• CreditDefault.Factory: Factory implementation to instantiate credit default swaps

• Currency.Instrument: Instrument implementation for currency swaps

• Currency.Factory: Factory implementation to instantiate currency swaps

• ForeignExchange.Instrument: Instrument implementation for foreign exchange swaps

• ForeignExchange.Factory: Factory implementation to instantiate foreign exchange swaps

• Fpml.Instrument: Instrument implementation for FpML swaps (FpML swap schema)

• Fpml.Factory: Factory implementation to instantiate FpML swaps

• Fpml.Util: Utility functions to support FpML swaps

• InterestRate.Instrument: Instrument implementation for interest rate swaps

• InterestRate.Factory: Factory implementation to instantiate interest rate swaps

Check out the page on How to use the Swap Instrument packages for a description of how to use these

instruments in practice.

Changelog

Daml.Finance.Instrument.Swap - Changelog

Version 0.3.0

• Update of SDK version and dependencies

• The Create choice on the instrument factories returns the corresponding interface (rather than

the base instrument interface)

• Make use of the requires keyword to enforce the interface hierarchy (in particular the asDisclo-

sure and asBaseInstrument implementations were removed)

• FpmlSwap now accepts a non-zero rate fixing lag

618 Chapter 1. Canton References

https://www.fpml.org/spec/fpml-5-11-3-lcwd-1/html/confirmation/schemaDocumentation/schemas/fpml-ird-5-11_xsd/complexTypes/Swap.html

Daml SDK Documentation, 2.7.3

Version 0.2.1

• Implement interest rate compounding (several calculation periods per payment period)

• Support a more generic way of specifying notional step schedules

• Support specification of a payment lag

• Efficient calculation of SOFR-like daily compounded reference rates

• Implement arrears reset

• Implement step-up coupon

• Add support for initial stub period that starts before the issue date of the swap

• Improve handling of principal exchange

• Add support for Term period of a swap leg

• Additional improvements required to make the official FpML trades 1..7 work as expected

1.20.2.15 Daml.Finance.Instrument.Token

This package contains the implementation of simple token instruments which do not define any life-

cycling logic. It contains the following modules:

• Instrument: Instrument implementation for simple tokens

• Factory: Factory implementation to instantiate simple tokens

Check out the Transfer tutorial for an example on how to create a simple token instrument and use it

for a transfer.

Changelog

Daml.Finance.Instrument.Token - Changelog

Version 2.0.0

• Update of SDK version and dependencies

• The Create choice on the instrument factory returns the corresponding interface (rather than

the base instrument interface)

• Make use of the requires keyword to enforce the interface hierarchy (in the particular asDisclo-

sure and asBaseInstrument implementations were removed)

Version 1.0.1

• Dependencies update

1.20. Packages 619

Daml SDK Documentation, 2.7.3

1.21 Tutorials

This section contains step-by-step implementation guides across different aspects of the Daml Fi-

nance library.

1.21.1 Getting Started tutorials

This section explains how some key concepts of Daml Finance work in practice. It combines a step

by step description of different workflows with supporting Daml code.

The following tutorials are available:

• Holdings: describes the core asset model used in Daml Finance.

• Transfer: shows how to transfer ownership of a holding to another party.

• Settlement: explains how to execute multiple asset movements atomically.

• Lifecycling: describes how lifecycle rules and events can be used to evolve instruments over

time.

Each tutorial builds on top of the previous ones, so they should ideally be followed in order.

1.21.1.1 Prerequisites

We expect the reader to be familiar with the basic building blocks of Daml. If that is not the case, a

suitable introduction can be found here.

An understanding of Daml Interfaces is very helpful, as these are used extensively throughout the

library. However, you shouldbe able to followalongandgrasp the fundamental concepts alsowithout

detailed knowledge on interfaces.

Finally, make sure that the Daml SDK is installed on your machine.

1.21.1.2 Download the code for the tutorials

Open a new terminal window and run:

daml new quickstart­finance ­­template quickstart­finance

This creates a new folder with contents from our template. Navigate to the folder and then run the

following to download the required Daml Finance packages:

./get­dependencies.sh

or, if you are using Windows

./get­dependencies.bat

Finally, you can start Daml Studio to inspect the code and run the project’s scripts:

daml studio

620 Chapter 1. Canton References

https://www.digitalasset.com/developers/learn

Daml SDK Documentation, 2.7.3

1.21.1.3 Structure of the Code and Dependencies

The project includes

• four workflows defined in the Workflows folder

• four Daml scripts defined in the Scripts folder

The Workflows encapsulate the core business logic of the application, whereas the Scripts are

meant to be executed on a one-off basis.

As you can see from the import list, modules in the Workflows folder depend only on interface pack-

ages of Daml Finance (the packages that start with Daml.Finance.Interface.*).

This is important, as it decouples the user-defined business logic from the template implemen-

tations used in Daml Finance, which makes it easier to upgrade the application. The user-defined

business logic in the Workflowswill not need to bemodified nor re-compiled to work with upgraded

(ie., newer versions of) implementation packages.

On the other hand, modules in the Scripts folder depend on both the interface packages and the

implementation packages (in this case, Daml.Finance.Account, Daml.Finance.Holding, and

Daml.Finance.Instrument.Token). This is not problematic as scripts are meant to be run only

once when the application is initialized.

1.21.1.4 Holdings

This tutorial introduces the core assetmodel of the library through a simple example. The purpose is

to illustrate the concepts of account, instrument, and holding, as well as to show some useful patterns

when working with Daml interfaces.

We are going to use the Daml Finance library to create tokenized cash on the ledger. This is done in

three steps:

1. we first create accounts for Alice and Bob at the Bank

2. we then proceed to issue a cash instrument, representing tokenized dollars

3. we finally credit a cash holding to Alice’s account

The holding contract represents the record of ownership on the ledger for Alice’s tokenized cash.

Run the script

In order to show how this works in practice, let us explore the Holding script step-by-step.

Create Account, Holding, and Instrument Factories

The first instruction instantiates an account factory. This is a template that is used by a party (the

Bank in this case) to create accounts as part of the CreateAccount workflow.

accountFactoryCid <­ toInterfaceContractId @Account.F <$> submit bank do

createCmd Account.Factory with

provider = bank

observers = empty

1.21. Tutorials 621

Daml SDK Documentation, 2.7.3

Notice how the ContractId is immediately converted to an interface upon creation: this is because

ourworkflows, suchasCreateAccount, do not have any knowledge of concrete template implemen-

tations.

Similarly, we define a holding factory, which is used within an account to create (Credit) holdings.

holdingFactoryCid <­ toInterfaceContractId @Holding.F <$> submit bank do

createCmd Fungible.Factory with

provider = bank

observers = fromList [("Settlers", S.fromList [alice, bob])]

This factory contract instantiates a specific implementation of holdings, which are defined in

Daml.Finance.Holding.Fungible and are both fungible, as well as transferable.

Finally, we create a factory template which is used to instantiate token instruments.

tokenFactoryCid <­ toInterfaceContractId @Token.F <$> submit bank do

createCmd Token.Factory with

provider = bank

observers = empty

Open Alice’s and Bob’s Accounts

Once the factory templates are setup, we leverage the CreateAccount workflow to create accounts

at the Bank for Alice and Bob.

The creation of an account needs to be authorized by both Alice and the Bank. Authorization is col-

lected using a propose / accept pattern.

aliceRequestCid <­ submit alice do

createCmd CreateAccount.Request with

owner = alice

custodian = bank

aliceAccount <­ submit bank do

exerciseCmd aliceRequestCid CreateAccount.Accept with

label = "Alice@Bank"

description = "Account of Alice at Bank"

accountFactoryCid = accountFactoryCid

holdingFactoryCid = holdingFactoryCid

observers = []

The Bank acts as the custodian, or account provider, whereas Alice is the account owner. Bob’s

account is created in a similar fashion.

622 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Create the Cash Instrument

In order to credit Alice’s account with some cash, we first create a cash instrument. An instrument is

a representation of what it is that we are holding against the Bank. It can be as simple as just a tex-

tual label (like the Token Instrument used in this case) or it can include complex on-ledger lifecycling

logic.

let

instrumentId = Id "USD"

instrumentVersion = "0"

instrumentKey = InstrumentKey with

issuer = bank

depository = bank

id = instrumentId

version = instrumentVersion

now <­ getTime

submit bank do

exerciseCmd tokenFactoryCid Token.Create with

token = Token with

instrument = instrumentKey

description = "Instrument representing units of a generic token"

validAsOf = now

observers = empty

Notice how in this case the Bank acts both as the issuer and depository of the cash instrument. This

means that we fully trust the Bank with any action concerning the instrument contract.

Deposit Cash in Alice’s Account

We can now deposit cash in Alice’s account, using the CreditAccount workflow. Alice creates a

request to deposit USD 1000 at the Bank, the Bank then accepts the request and a corresponding

Holding is created.

aliceRequestCid <­ submit alice do

createCmd CreditAccount.Request with

account = aliceAccount

instrument = instrumentKey

amount = 1000.0

aliceCashHoldingCid <­ submit bank do exerciseCmd aliceRequestCid CreditAccount.

↪→Accept

You can imagine that the latter step happens only after Alice has shown up at the Bank and delivered

physical banknotes corresponding to the amount of the deposit.

The holding contract represents the record of ownership on the ledger. In this scenario, Alice’s hold-

ing of 1000 units of the cash instrument means that she is entitled to claim USD 1000 from hold-

ing’s custodian, the Bank.

To summarize

• an instrument defines what a party holds (the rights and obligations).

• a holding defines how much (i.e., the amount) of an instrument and against which party (i.e., the

custodian) the instrument is being held.

1.21. Tutorials 623

Daml SDK Documentation, 2.7.3

Frequently Asked Questions

What are accounts used for?

An account is used as the proof of a business relationship between an owner and a custodian: Alice

may transfer cash to Bob because Bob has a valid account at the Bank.

This is done to avoid that Alice transfers cash to Charlie without Charlie being vetted and acknowl-

edged by the Bank.

The account is also used to determine who is required to authorize incoming and outgoing transfers.

For the account at hand, the owner acts as a controller for both incoming and outgoing transfers. The

other options are explained as part of the settlement tutorials.

Why do we need factories?

You might be wondering why we use account factories and holding factories instead of creating an

Account or Holding directly.

This is done to avoid having to reference the Daml.Finance.Holding package directly in the user

workflows (and hence simplify upgrading procedures).

This pattern is described in detail in the Daml Finance Patterns page and is based on the assumption

that there are very few factory contracts which are setup on ledger initialization.

Summary

You now know how to setup basic accounts, holdings, and instruments. The key concepts to take

away are:

• Holdings represent the ownership of a financial instrument at a custodian.

• Instruments define the economic terms of a financial contract.

• Accounts ensure that only known parties can obtain ownership.

• Factories are used to create the respective contracts without having to depend on implemen-

tation packages.

1.21.1.5 Transfer

This tutorial builds on the previous chapter, which introduced account, instrument, and holding.

We are now going to transfer the holding that we created in the previous tutorial from Alice to Bob.

624 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Run the Script

Let us nowexplore theTransfer script step-by-step. It builds on the previousHoldings tutorial script

in the sense that the same accounts and the existing holdings are used.

Transfer Cash from Alice to Bob

The final step of our Setup script transfers Alice’s holding to Bob using the Transfer workflow. In

our tutorial example, the receiver of the cash makes the transfer request:

transferRequestCid <­ submit bob do

createCmd Transfer.Request with

receiverAccount = bobAccount

instrument = cashInstrument

amount = 1000.0

currentOwner = alice

bobCashHoldingCid <­ submit alice do

exerciseCmd transferRequestCid Transfer.Accept with holdingCid =␣

↪→aliceCashHoldingCid

Bob requests the cash to be transferred to his account. Alice then accepts the request.

You notice that here we make explicit use of the fact that Alice can readAs the public party. This is

needed as, in order to complete the transfer, visibility on the receiving account’s holding factory is

required.

Frequently Asked Questions

How does the Transferworkflow work?

If you look at the implementation of the Transfer workflow, you will notice the following lines:

let transferableCid = coerceInterfaceContractId @Transferable.I holdingCid

newTransferableCid <­ exercise transferableCid Transferable.Transfer with

actors = fromList [currentOwner, receiverAccount.owner]

newOwnerAccount = receiverAccount

pure $ toInterfaceContractId @Holding.I newTransferableCid

The first line converts the holding contract id (of type ContractId Holding.I) to the Transferable.I interface

using coerceInterfaceContractId.

Then, the Transfer choice, defined as part of the Transferable interface, is invoked.

Finally, the new holding is converted back to a Holding.I before it is returned. This is done using

toInterfaceContractId.

In order to fully understand these instructions, we need to keep inmind the interface hierarchy used

by our holding implementation.

1.21. Tutorials 625

Daml SDK Documentation, 2.7.3

We use coerceInterfaceContractId to convert the Holding.I to a Transferable. The success of this

operation is not guaranteed and will result in a run-time error if the holding implementation at hand

does not implement Transferable.

We use toInterfaceContractId to convert back to a Holding. This is because all Transferables

implement the Holding.I interface, so the validity of this operation is guaranteed at compile-time.

Why is Alice an observer on Bob’s account?

You might have noticed that Alice is an observer of Bob’s account and you might be wondering why

this is the case.

This is because the party exercising the Transfer choice, which in this case is Alice, needs to fetch

Bob’s account in order to verify that it has not been archived.

If we wanted to avoid Bob’s account contract ever being disclosed to Alice, we would need a third

party (in this case the Bank) to execute the Transfer.

Exercises

There are a couple of improvements to the code that can be implemented as an exercise. They will

help you familiarize yourself with the library and with Daml interfaces.

Split the Holding to Transfer the Right Amount

In the example, Bob requests USD 1000 from Alice and Alice allocates a holding for exactly the right

amount, because the transfer would otherwise fail. Wewant the transfer to be successful also if Alice

allocates a holding for a larger amount e.g., USD 1500.

We can leverage the fact that the holding implements the Fungible interface, which makes it pos-

sible to Split it into a holding of USD 1000 and one of USD 500. In the implementation of the

CashTransferRequest_Accept choice:

• cast the allocated holding to the Fungible interface

• use the Split choice to split the larger holding into two holdings

• execute the transfer, allocating the holding with the correct amount

In the last step, you will need to cast the Fungible to a Transferable using toInterfaceContractId.

626 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Temporary Account Disclosure

There is no reason for Alice to be an observer on Bob’s account before the transfer is initiated by Bob

(and after the transfer is executed).

Modify the original code, such that:

• Bob’s account is disclosed to Alice once the transfer is initiated

• When the Transfer is executed, Alice removes herself from the account observers

In order to do that, you can leverage the fact that Account implements the Disclosure interface. This

interface exposes the AddObservers and RemoveObservers choices, which can be used to dis-

close / undisclose Bob’s account contract to Alice. In order to exercise these choices, you can use

the Account.exerciseInterfaceByKey utility function.

Summary

You now learned how to perform a simple transfer. The key concepts to take away are:

• Holdings represent the ownership of a financial instrument at a custodian.

• Transfers change ownership of a holding.

Ownership transfers typically happen as part of a larger financial transaction. The next tutorial will

show you how to create such a transaction and how to settle it atomically.

1.21.1.6 Settlement

This tutorial introduces the settlement features of the library througha simple example. The purpose

is to demonstrate how multiple holding transfers can be executed atomically.

We are going to:

1. create a new TOKEN instrument

2. credit a TOKEN holding to Alice’s account

3. setup a delivery-vs-payment (DvP) transaction to give Alice’sTOKENholding to Bob in exchange

for a USD holding

4. settle this transaction atomically

This example builds on the previous Transfer tutorial script in the sense that the same accounts and

the existing holdings are used.

Overview of the Process

We first give a quick outline of the settlement process:

1.21. Tutorials 627

Daml SDK Documentation, 2.7.3

1. Define steps to be settled
Two (ormore) parties need to first agree on a set

of steps to be settled.

2. Generate settlement instructions
Instructions are generated for each step.

An instruction is a contract where the sender

can specify its Allocation preference for the in-

struction (e.g., the matching holding they wish

to send). The receiver can specify its Approval

preference for the instruction (e.g., the account

they wish to receive the holding to).

The creation of Instructions is done by first us-

ing a Route Provider and then applying a Settle-

ment Factory.

3. Allocate and approve instructions
For every instruction, the sender and the re-

ceiver specify their allocation and approval

preferences, respectively.

4. Settle the batch
ABatch contract is used to settle all instructions

atomically according to the specified prefer-

ences (e.g. by transferring all allocatedholdings

to the corresponding receiving accounts).

This batch contract is created in step 2, to-

gether with the settlement instructions.

Run the Script

The code for this tutorial can be executed via the runSettlement function in the Settlement.

damlmodule.

The first part executes the script from the previous Transfer tutorial to arrive at the initial state for

this scenario. We then create an additional TOKEN instrument and credit Alice’s account with it.

The interesting part begins once Alice proposes the DvP trade to Bob. Before creating the DvP pro-

posal, we need to instantiate two contracts:

1. Route Provider

routeProviderCid <­ toInterfaceContractId @RouteProvider.I <$> submit bank␣

↪→do

createCmd SingleCustodian with

provider = bank; observers = S.fromList [alice, bob]; custodian = bank

This is used to discover a settlement route, i.e., routed steps, for each settlement step. In this

example, the route provider simply converts each step to a routed step using a single custodian

(the bank).

2. Settlement Factory

settlementFactoryCid <­ toInterfaceContractId @Settlement.F <$> submit bank␣

↪→do

createCmd Settlement.Factory with

provider = bank

observers = S.fromList [alice, bob]

This is used to generate the settlement batch and instructions from the routed steps.

628 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Bob creates a Dvp.Proposal template to propose the exchange of the TOKEN against USD.

dvpProposalCid <­ submit bob do

createCmd DvP.Proposal with

id = "xccy trade"

recQuantity = qty 10.0 tokenInstrument

payQuantity = qty 1000.0 usdInstrument

proposer = bob

counterparty = alice

routeProviderCid ­­ This is equivalent to writing routeProviderCid =␣

↪→routeProviderCid

settlementFactoryCid

Alice then accepts the proposal, agreeing to the terms of the trade.

(batchCid, recSettleInstructionCid, paySettleInstructionCid) <­ submit alice do

exerciseCmd dvpProposalCid DvP.Accept

Once the proposal is accepted, three contracts are created:

• an instruction to transfer 10 TOKEN from Alice to Bob

• an instruction to transfer USD 1000 from Bob to Alice

• a batch contract to settle the two instructions atomically

The workflow to create these contracts makes use of the route provider and the settlement factory.

(containerCid, [recInstructionCid, payInstructionCid]) <­

exercise settlementFactoryCid Settlement.Instruct with

instructors = fromList [proposer, counterparty]

settlers = singleton proposer

id = Id id

description = "Settlement for " <> id

contextId = None

routedSteps

settlementTime = None ­­ i.e., immediate settlement

Asanext step, Alice allocatesherTOKENholding to the corresponding instruction. Bob thenapproves

the instruction specifying the receiving account.

(allocatedRecSettleInstructionCid, _) <­ submit alice do

exerciseCmd recSettleInstructionCid Instruction.Allocate with

actors = S.singleton alice

allocation = Pledge aliceHoldingCid

approvedRecSettleInstructionCid <­ submit bob do

exerciseCmd allocatedRecSettleInstructionCid Instruction.Approve with

actors = S.singleton bob

approval = TakeDelivery bobAccount

The samehappens in the second instruction (where Bob allocates his USD holding and Alice provides

the receiving account).

Now that all instructions are fully allocated and approved, they can finally be settled.

[bobHoldingCid, aliceHoldingCid] <­ submit bob do

exerciseCmd batchCid Batch.Settle with

actors = singleton bob

1.21. Tutorials 629

Daml SDK Documentation, 2.7.3

Within the same transaction, Alice receives a USD holding fromBob in exchange for a TOKEN holding.

Frequently Asked Questions

Why do we need a route provider?

Consider a real-world example where Alice instructs a bank transfer to send USD 100 to Bob. The

following happens:

• USD 100 are debited from Alice’s account at her bank

• USD 100are transferred fromAlice’s bank toBob’s bank (via their accountsat the central bank)

• USD 100 are credited to Bob’s account at his bank

A single settlement Step requires three RoutedSteps to settle.

The same dynamics can be reproduced in Daml with a Route Provider implementation, allowing for

on-ledger intermediated settlement. For example, see the Intermediated Lifecycling tutorial.

Why do we need a settlement factory?

A settlement factory contract is used to generate settlement Instructions from RoutedSteps. It also

generates a Batch contract, which is used to settle instructions atomically.

The reasonwhy the factory is needed has already been introduced in the previous tutorial: it provides

an interface abstraction, so that your workflow does not need to depend on concrete implementa-

tions of Batch or Instructions.

Can we use a different settler?

In our example, Alice triggers the final settlement of the transaction (by exercising theSettle choice

on the Batch contract).

In principle, a different settler could be chosen. The choice of a settler is usually quite delicate, as

this party acquires visibility on the entire transaction and hence needs to be trusted.

What if one party wants to cancel the settlement?

The parties who sign the Batch contract (the requestors) can exercise the Cancel choice of the Batch

to cancel all associated Instructions atomically.

630 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Summary

You know how to define complex transactions and settle them atomically. The main points to take

away are:

• A route provider is used to discover settlement routes, i.e., routed steps, for each settlement

step.

• A settlement factory is used to instruct settlement for an arbitrary list of routed steps.

• Instructions are used to collect authorizations, assets to be moved, and means of settlement.

• Batches group together instructions to be settled atomically.

In the next tutorial, we will introduce the lifecycling framework of the library, which is used to model

the evolution of instruments. The concepts introduced in this tutorial will be used to settle payments

arising from lifecycle events.

1.21.1.7 Lifecycling

This tutorial introduces the lifecycling framework of the library with a simple example. The purpose

is to demonstrate how lifecycle rules and events can be used to process a dividend payment.

We are going to:

1. create a new version of the token instrument

2. create the required lifecycle rules

3. create a distribution event

4. process the event to produce the effects from the distribution

5. instruct settlement by presenting a token holding

6. settling the resulting batch atomically

This example builds on the previous Settlement tutorial script in the sense that the same accounts

and the existing holdings are used.

Overview of the Process

We first give a high-level outline of the lifecycle process:

1.21. Tutorials 631

Daml SDK Documentation, 2.7.3

1. Create a lifecycle rule
A lifecycle rule implements the logic to calcu-

late effects for a given lifecycle event. In our

example we create a distribution rule to handle

the dividend event on our token.

2. Create a lifecycle event
The lifecycle event refers to the target instrument

the event applies to. Holdings on this instru-

ment can then be used to claim the resulting

lifecycle effect.

3. Process the event through the lifecycle

rule

The lifecycle rule contains the business logic to

derive the lifecycle effects resulting from a con-

crete event. The effect describes the per-unit

holding transfers that are to be settled between

a custodian and the owner of a holding.

4. Claim the effect using a holding
The claim rule is used to claim the effects re-

sulting from a lifecycle event using a holding

on the target instrument. The result is a set

of settlement instructions and a corresponding

batch to be settled between the custodian and

the owner of the holding.

Run the Script

The code for this tutorial can be executed via the runLifecycling function in the Lifecycling.

damlmodule.

The first part executes the script from the previous Settlement tutorial to arrive at the initial state for

this scenario.

Then we create a new version of the token instrument, which is required for defining the distribution

event. This is what the instrument holders will receive when processing the lifecycle event later in

the tutorial.

let newTokenInstrument = tokenInstrument with version = "1"

now <­ getTime

submit bank do

exerciseCmd tokenFactoryCid Token.Create with

token = Token with

instrument = newTokenInstrument

description = "Instrument representing units of a generic token after the␣

↪→distribution event"

validAsOf = now

observers = M.empty

Next, we create two lifecycle rules:

distributionRuleCid <­ toInterfaceContractId @Lifecycle.I <$> submit bank do

createCmd Distribution.Rule with

providers = S.singleton bank

lifecycler = bank

observers = S.singleton bob

id = Id "Lifecycle rule for distribution"

description = "Rule contract to lifecycle an instrument following a␣

↪→distribution event" (continues on next page)

632 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

lifecycleClaimRuleCid <­ toInterfaceContractId @Claim.I <$> submitMulti [bank,␣

↪→bob] [] do

createCmd Claim.Rule with

providers = S.fromList [bank, bob]

claimers = S.singleton bob

settlers = S.singleton bob

routeProviderCid

settlementFactoryCid

netInstructions = False

• The Distribution Rule defines the business logic to calculate the resulting lifecycle effect from a

given distribution event. It is signed by the Bank as a provider.

• The Claim Rule allows a holder of the target instrument to claim the effect resulting from the

distribution event. By presenting their holding they can instruct the settlement of the holding

transfers described in the effect.

We then create a distribution event describing the terms of the dividend to be paid.

distributionEventCid <­ toInterfaceContractId @Event.I <$> submit bank do

createCmd Distribution.Event with

providers = S.singleton bank

id = Id "DISTRIBUTION"

description = "Profit distribution"

effectiveTime = now

targetInstrument = tokenInstrument

newInstrument = newTokenInstrument

perUnitDistribution = [qty 0.02 usdInstrument]

observers = S.empty

Now we can process the distribution event using the distribution rule.

(_, [effectCid]) <­ submit bank do

exerciseCmd distributionRuleCid Lifecycle.Evolve with

eventCid = distributionEventCid

observableCids = []

instrument = tokenInstrument

The result of this is an effect describing the per-unit asset movements to be executed for token

holders. Each holder can now present their holding to claim the effect and instruct settlement of the

associated entitlements.

result <­ submit bob do

exerciseCmd lifecycleClaimRuleCid Claim.ClaimEffect with

claimer = bob

holdingCids = [bobHoldingCid]

effectCid ­­ This is equivalent to writing effectCid = effectCid

batchId = Id "DistributionSettlement"

let [bobInstructionCid, bankInstructionCid, couponInstructionCid] = result.

↪→instructionCids

As a side-effect of settling the entitlements, the presented holding is exchanged for a holding of the

new token version. This is to prevent a holder from benefiting from a given effect twice.

In our example of a cash dividend, only a single instruction is generated: the movement of cash

from the bank to the token holder. This instruction along with its batch is settled the usual way, as

1.21. Tutorials 633

Daml SDK Documentation, 2.7.3

described in the previous Settlement tutorial.

­­ Allocate instruction

(bobInstructionCid, _) <­ submit bob do

exerciseCmd bobInstructionCid Instruction.Allocate with

actors = S.singleton bob

allocation = Pledge bobHoldingCid

(bankInstructionCid, _) <­ submit bank do

exerciseCmd bankInstructionCid Instruction.Allocate with

actors = S.singleton bank

allocation = CreditReceiver

(couponInstructionCid, _) <­ submit bank do

exerciseCmd couponInstructionCid Instruction.Allocate with

actors = S.singleton bank

allocation = CreditReceiver

­­ Approve instruction

bobInstructionCid <­ submit bank do

exerciseCmd bobInstructionCid Instruction.Approve with

actors = S.singleton bank

approval = DebitSender

bankInstructionCid <­ submit bob do

exerciseCmd bankInstructionCid Instruction.Approve with

actors = S.singleton bob

approval = TakeDelivery bobAccount

couponInstructionCid <­ submit bob do

exerciseCmd couponInstructionCid Instruction.Approve with

actors = S.singleton bob

approval = TakeDelivery bobAccount

­­ Settle batch

submit bob do

exerciseCmd result.batchCid Batch.Settle with actors = S.singleton bob

Note that the bank in this case does not actually transfer the cash from another account, but sim-

ply credits Bob’s account by using the CreditReceiver allocation type. In a real-world dividend

scenario one would additionally model the flow of funds from the issuer to the bank using the same

lifecycle process as described above.

Frequently Asked Questions

Which party should create and sign the lifecycle rules and events?

In the simplified scenario for this tutorial, we have used the bank as both the issuer and depository for

the instruments involved. In a real-world case, instruments and their corresponding lifecycle rules

and events would be maintained by an actual issuer, with the depository acting as a 3rd-party trust

anchor.

634 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Which parties typically take which actions in the lifecycle workflow?

The lifecycle interfaces governing the process leave the controllers of the various choices in the pro-

cess up to the implementation.

• Typically, we would expect the issuer of an instrument to be responsible to generate lifecycle

events (for example, announcing dividends or stock splits).

• Lifecycle rules on the other hand are often controlled by 3rd-party calculation agents.

• The claiming of lifecycle effects is by default the responsibility of the owner of a holding. If

instead the owner wants to delegate this responsibility to their custodian they can do so via a

delegation contract.

• The party executing settlement can be chosen as well, as described in the previous tutorial on

Settlement.

Which party should take the role as lifecycler?

From a design perspective, a lifecycler is often the party that defines the lifecycle events happening

on an instrument (although they can be different). In the simplified example above, it is the bank.

In a more realistic example, it would probably be the issuer. In some special cases, if we really need

the owner to be the lifecycler, we can use a delegation contract.

The lifecycler is currently trusted with:

• Timely and complete Event processing

• Providing accurate Observations

Which party is the provider of the Effect?

Most of the time the provider of the Effect is the lifecycler. However, in some cases we may want

to avoid disclosing the claimed holdings to the lifecycler. The provider of the Effect gets to see all

holdings claimed against that one Effect contract. If we wish to avoid that, we then need a different

effect provider.

Can an instrument act as its own lifecycle rule?

Yes, an instrument can implement the Lifecycle interface directly such that the lifecycle rules are

contained within the instrument itself. There are, however, advantages to separating this logic out

into rule contracts:

• Keeping lifecycle rules in a different package from your instruments allows you to indepen-

dently upgrade or patch them without affecting your live instruments.

• Having separate rules allows to change the lifecycle properties of an instrument dynamically

at runtime. For example, an instrument can initially be created without support for doing asset

distributions. Then, at a later point, the issuermight decide to start paying dividends. They can

now simply add a distribution rule to the running system to enable this new lifecycle event for

their instrument without affecting the actual live instrument itself (or any holdings on it).

1.21. Tutorials 635

Daml SDK Documentation, 2.7.3

Can I integrate a holding ownership change (of the target instrument) within lifecycling?

Lifecycling will not change the ownership of the target instrument. You should use the Transfer pat-

tern to do a delivery-versus-payment as a separate step from the lifecycling.

However, there usually is a change of ownership of the other consumed/produced instruments when

lifecycling (e.g. when paying out a dividend cash is moved from one party to another).

Summary

You have learned how to use lifecycle rules and events to describe the behavior of an instrument. The

key concepts to take away are:

• Lifecycle events represent different ways of how an instrument can evolve.

• A lifecycle rule contains logic to calculate the effects an event has on an instrument and its

holdings.

• A claim rule is used to instruct settlement for a given effect using a holding.

1.21.2 Settlement tutorials

This section explains how the settlement processes of Daml Finance work in detail. It combines a

step by step description of different workflows with supporting code.

The following tutorials are available:

• The Enhanced Transfers tutorial builds upon the basic Transfer tutorial from the Getting Started

section. Specifically, we explore how to configure the controllers that need to authorize incom-

ing transfers (credits) and outgoing transfers (debits) to and from an account, respectively.

• The Internal Settlement tutorial, an extension of the basic Settlement Getting Started tutorial,

illustrates how holdings can be transferred within a single custodian through a settlement

workflow involving batches and related instructions. The allocation process of such instruc-

tions involves methods for committing a pre-existing holding (Pledge), a newly created hold-

ing (CreditReceiver), and a holding received simultaneously (PassThroughFrom). The ap-

proval methods include taking delivery of a holding to an account (TakeDelivery), immedi-

ately nullifying the holding (DebitSender), and passing the holding through (as allocation)

to another instruction (PassThroughTo).

• The Intermediated Settlement tutorial builds upon the Internal Settlement tutorial and shows how

to make use of a RouteProvider to settle instructions across account hierarchies involving

more than one custodian.

1.21.2.1 Download the code for the tutorials

As a prerequisite, make sure that the Daml SDK is installed on your machine.

Open a terminal and run:

daml new finance­settlement ­­template=finance­settlement

This creates a new folder with contents from our template. Navigate to the finance­settlement

folder and then run the following to download the required Daml Finance packages:

636 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

./get­dependencies.sh

or, if you are using Windows

./get­dependencies.bat

Finally, you can start Daml Studio to inspect the code and run the project’s scripts:

daml studio

1.21.2.2 Enhanced Transfers

In this tutorial, we delve deeper into the concepts that were introduced in our getting-started tutori-

als. In particular, we will extend on the transfer tutorial.

We begin by understanding the simple formof settlement. It transpires when a customer’s funds are

transferred to another account within the same bank. Consequently, the sender’s account is debited

(balance decreases), and the recipient’s account is credited (balance increases). This process is

internally managed within the bank’s systems and usually occurs instantly, as it doesn’t require

interaction with external systems or institutions.

In Daml Finance, such fund transfers are not necessarily represented by a settlement workflow that

involves allocating and approving instructions. Instead, a “direct” transfer of funds can occur be-

tween two parties, such as Alice and Bob. This transfer debits the sending account and atomically

credits the receiving account.

Next, we will explore how to configure the controllers responsible for authorizing incoming transfers

(credits) and outgoing transfers (debits) of holdings to an account.

Configuring Account Controllers

The Controllersdata type specifies the parties that need to authorize incoming and outgoing transfers

to an account.

For this tutorial, we provide four example scripts illustrating various incoming and outgoing con-

troller settings:

Script Incoming Con-

trollers

Outgoing Controllers

runDualControlTransfer

runDiscretionaryTransfer

runSovereignTransfer

runUnilateralTransfer

Anyone

Custodian

Owner

Anyone

Both (owner and custo-

dian)

Custodian

Owner

Owner

Each script begins by running a setup script runSetupTransferRequestWith that requests a

transfer of a holding from Alice to Bob at the Bank. The setup script takes a configuration as in-

put to set up Alice’s and Bob’s account controllers, as outlined in the table above.

The last step of the setup script creates a transfer request of a holding from Alice to Bob:

1.21. Tutorials 637

Daml SDK Documentation, 2.7.3

let

transferRequest = Transfer.Request with

requestor

receiverAccount = bobAccount

transferableCid = aliceHoldingCid

accepted = S.fromList []

observers = S.fromList [alice, bob, bank]

transferRequestCid <­ submit requestor do createCmd transferRequest

The transfer Request template is designed for the stepwise collection of the necessary authoriza-

tions for transferring a holding to a new owner:

template Request

with

requestor : Party

­­ ^ The requestor.

receiverAccount : AccountKey

­­ ^ The account to which the holding is sent.

transferableCid : ContractId Transferable.I

­­ ^ The holding instance to be sent.

accepted : Set Party

­­ ^ Current set of parties that accept the transfer.

observers : Set Party

­­ ^ Observers.

where

signatory requestor, accepted

observer observers

choice Accept : ContractId Request

with

actors : Set Party

controller actors

do

create this with accepted = actors `union` this.accepted

choice Effectuate : ContractId Transferable.I

with

actors : Set Party

controller actors

do

exercise transferableCid Transferable.Transfer with

actors = actors `union` this.accepted

newOwnerAccount = receiverAccount

Dual Control

In the runDualControlTransfer script, both the custodian and the owner of an account must

authorize outgoing transfers (debits), while incoming transfers (credits) require no authorization.

This script begins by setting up accounts accordingly and creating a transfer request instance:

let

dualControl = AccountControllers

with

(continues on next page)

638 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

incoming = Anyone

outgoing = Both

SetupTransferRequest{bank; alice; bob; requestor; transferRequestCid} <­

runSetupTransferRequestWith dualControl

To execute the transfer, both the Bank and Alice must authorize:

transferRequestCid <­ submit bank do

exerciseCmd transferRequestCid Transfer.Accept with actors = S.singleton bank

submit alice do

exerciseCmd transferRequestCid Transfer.Effectuate with actors = S.singleton␣

↪→alice

Discretionary

The runDiscretionaryTransfer script specifies that the custodian controls both incoming and

outgoing transfers:

let

discretionary = AccountControllers

with

incoming = Custodian

outgoing = Custodian

setupState@SetupTransferRequest{bank, alice, bob, requestor, transferRequestCid}

↪→ <­

runSetupTransferRequestWith discretionary

Following the setup, the Bank can execute the transfer single-handedly:

submit bank do

exerciseCmd transferRequestCid Transfer.Effectuate with actors = S.singleton␣

↪→bank

Sovereign

In the runSovereignTransfer script, the owner controls both incoming and outgoing transfers:

let

sovereign = AccountControllers

with

incoming = Owner

outgoing = Owner

SetupTransferRequest{bank; alice; bob; requestor; transferRequestCid} <­

runSetupTransferRequestWith sovereign

As Alice is the outgoing controller of the sending account, and Bob is the incoming controller of the

receiving account, both need to authorize the transfer:

transferRequestCid <­ submit bob do

exerciseCmd transferRequestCid Transfer.Accept with actors = S.singleton bob

(continues on next page)

1.21. Tutorials 639

Daml SDK Documentation, 2.7.3

(continued from previous page)

submit alice do

exerciseCmd transferRequestCid Transfer.Effectuate with actors = S.singleton␣

↪→alice

Unilateral

In our final example script, runUnilateralTransfer, the owner controls outgoing transfers, while incom-

ing transfers require no additional authorization:

let

unilateral = AccountControllers

with

incoming = Anyone

outgoing = Owner

SetupTransferRequest{bank; alice; bob; requestor; transferRequestCid} <­

runSetupTransferRequestWith unilateral

Once the setup is complete, Alice can independently execute the transfer to Bob:

transferRequestCid <­ submit alice do

exerciseCmd transferRequestCid Transfer.Effectuate with actors = S.singleton␣

↪→alice

Summary

By now, you should understand how to configure incoming and outgoing controllers for accounts

based on your requirements. Key concepts to remember include:

• To execute a transfer between a sender and a receiver, the outgoing controllers of the sending

account and the incoming controllers of the receiving account need to authorize it.

• The required authorization can be provided by a generalized propose-accept template, which

allows more than one party to accept.

Ownership transfers usually occur as part of a larger financial transaction. The next tutorials will

guide you on how to create such a transaction and how to settle it atomically.

1.21.2.3 Internal Settlement

This tutorial builds upon the concepts introduced in the Settlement getting-started tutorial. Com-

pared to our previous Enhanced Transfers tutorial, which demonstrated the “direct” transfer of a hold-

ing from sender to receiver (at a single custodian), it delves further into the settlement mechanism

with a batch and related instructions. This process enables the adjustment of record books across

multiple entities and instrument holdings simultaneously.

In this tutorial, we will limit the complexity by focusing on a single custodian and the transfer of a

single instrument. The next tutorial will explore the broader scenario involving multiple custodians.

Eager learners are encouraged to extend this tutorial and the following one by incorporating more

than one instrument as an exercise.

640 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Understanding Internal Settlement with Examples

To start, let us briefly revisit the settlement process which was explained in the Settlement section.

A Batch consists of one or more Instructions. Each instruction signifies a RoutedStep, delineating the

quantity of an instrument to be transferred froma sender to a receiver at a specific custodian. For an

instruction to be prepared for settlement (or execution), the sender-side must furnish an Allocation,

and the receiver-side must provide an Approval.

This tutorial will walk you through three example scripts for settling instructions at a sin-

gle custodian: runWrappedTransferSettlement, runCreditDebitSettlement, and run­

PassThroughSettlement.

The allocation processes in these scripts involve methods to commit a pre-existing holding

(Pledge), a newly created holding (CreditReceiver), and a holding received concurrently

(PassThroughFrom).

The approval methods entail taking delivery of a holding to an account (TakeDelivery), imme-

diately nullifying the holding (DebitSender), and passing the holding through (as allocation) to

another instruction (PassThroughTo).

Each script kicks off with runSetupInternalSettlement which initiates parties, a cash instru-

ment issued by the Central Bank, accounts for Alice, Bob, and Charlie at a Bank, and a settlement

factory:

SetupInternalSettlement

{ instrument

, bank

, alice, aliceAccount, aliceHoldingCid

, bob, bobAccount

, charlie, charlieAccount

, requestor

, settlementFactoryCid

} <­ runSetupInternalSettlement

The settlement factory is employed by a party, known as the requestor, to create a batch and instruc-

tions froma list of routed steps. In the scripts, the requestor is also responsible for settling the batch

once all instructions have been allocated and approved.

Wrapped Transfer

The first example encapsulates a transfer from Alice to Bob, from our previous Enhanced Transfers

tutorial, by creating a batch and a single instruction:

let

routedStep = RoutedStep with

custodian = bank

sender = alice

receiver = bob

quantity = qty 1000.0 instrument

­­ Generate settlement instructions from a list of `RoutedStep`s.

(batchCid, [instructionCid]) <­

submit requestor do

exerciseCmd settlementFactoryCid Settlement.Instruct with

(continues on next page)

1.21. Tutorials 641

Daml SDK Documentation, 2.7.3

(continued from previous page)

instructors = fromList [requestor]

settlers = singleton requestor

id = Id "1"

description = "Transfer from Alice to Bob"

contextId = None

routedSteps = [routedStep]

settlementTime = None ­­ i.e., immediate settlement

Here, Alice allocates by pledging a holding, Bob approves by taking delivery to his account at the

Bank, and the requestor finally settles the batch:

­­ i. Alice allocates.

(instructionCid, _) <­ submit alice do

exerciseCmd instructionCid Instruction.Allocate with

actors = S.singleton alice

allocation = Pledge $ toInterfaceContractId aliceHoldingCid

­­ ii. Bob approves.

instructionCid <­ submit bob do

exerciseCmd instructionCid Instruction.Approve with

actors = S.singleton bob

approval = TakeDelivery bobAccount

­­ iii. Requestor executes the settlement.

[bobHoldingCid] <­ submit requestor do

exerciseCmd batchCid Batch.Settle with

actors = singleton requestor

Note that this occurs without involving the Bank, and either Alice or Bob could also take the role as

the requestor. As a result of running this script, Alice’s holding is transferred to Bob.

Credit and Debit

An alternative approach to transfer the holding from Alice to Bob includes the Bank as an interme-

diary.

let

routedStep1 = RoutedStep with

custodian = bank

sender = alice

receiver = bank

quantity = qty 1000.0 instrument

routedStep2 = routedStep1 with

sender = bank

receiver = bob

­­ Generate settlement instructions from a list of `RoutedStep`s.

(batchCid, [instructionCid1, instructionCid2]) <­

submit requestor do

exerciseCmd settlementFactoryCid Settlement.Instruct with

instructors = fromList [requestor]

settlers = fromList [requestor]

id = Id "1"

(continues on next page)

642 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

description = "Movement of holding from Alice to Bob through debit and␣

↪→credit"

contextId = None

routedSteps = [routedStep1, routedStep2]

settlementTime = None ­­ i.e., immediate settlement

Similar to the previous scenario, Alice allocates by pledging a holding, and Bob approves by taking

delivery to his account. However, in this case, the Bank plays an intermediary role by allocating and

approving, debiting the sender and crediting the receiver, respectively:

­­ i. Alice allocates.

(instructionCid1, _) <­ submit alice do

exerciseCmd instructionCid1 Instruction.Allocate with

actors = S.singleton alice

allocation = Pledge $ toInterfaceContractId aliceHoldingCid

­­ ii. Bob approves.

instructionCid2 <­ submit bob do

exerciseCmd instructionCid2 Instruction.Approve with

actors = S.singleton bob

approval = TakeDelivery bobAccount

­­ iii. Bank approves and allocates.

instructionCid1 <­ submit bank do

exerciseCmd instructionCid1 Instruction.Approve with

actors = S.singleton bank

approval = DebitSender

(instructionCid2, _) <­ submit bank do

exerciseCmd instructionCid2 Instruction.Allocate with

actors = S.singleton bank

allocation = CreditReceiver

­­ iv. Requestor executes the settlement.

[bobHoldingCid] <­ submit requestor do

exerciseCmd batchCid Batch.Settle with

actors = singleton requestor

Wecouldhavemade theBankapprove andallocate its instructionsby takingdelivery to anaccount it

owns and pledging a holdingwhere it acts as the custodian. However, this would require the creation

of “dummy” accounts and holdings, which can be avoided using the DebitSender and CreditRe­

ceivermethods. Thesemethods can only be used when the receiver (resp. the sender) corresponds

to the custodian.

Pass Through

The final script of this tutorial demonstrates how holdings received as part of the same settlement

process can be allocated to a subsequent instruction. We again use two instructions, instruc­

tion1 and instruction2, but now with Charlie as the intermediary:

let

routedStep1 = RoutedStep with

custodian = bank

sender = alice

(continues on next page)

1.21. Tutorials 643

Daml SDK Documentation, 2.7.3

(continued from previous page)

receiver = charlie

quantity = qty 1000.0 instrument

routedStep2 = routedStep1 with

sender = charlie

receiver = bob

­­ Generate settlement instructions from a list of `RoutedStep`s.

(batchCid, [instructionCid1, instructionCid2]) <­

submit requestor do

exerciseCmd settlementFactoryCid Settlement.Instruct with

instructors = fromList [requestor]

settlers = singleton requestor

id = Id "1"

description = "Transfer from Alice to Bob via Charlie"

contextId = None

routedSteps = [routedStep1, routedStep2]

settlementTime = None ­­ i.e., immediate settlement

Like in the previous examples, Alice allocates by pledging a holding, and Bob ap-

proves by taking delivery to his account. The intermediary, Charlie, allocates using

PassThroughTo (charlieAccount, instruction2) and approves with PassThrough­

From (charlieAccount, instruction1), essentially enabling the holding Charlie receives

from Alice to pass-through to Bob:

­­ i. Alice allocates.

(instructionCid1, _) <­ submit alice do

exerciseCmd instructionCid1 Instruction.Allocate with

actors = S.singleton alice

allocation = Pledge $ toInterfaceContractId aliceHoldingCid

­­ ii. Bob approves.

instructionCid2 <­ submit bob do

exerciseCmd instructionCid2 Instruction.Approve with

actors = S.singleton bob

approval = TakeDelivery bobAccount

­­ iii. Charlie approves and allocates ﴾with pass­through﴿.

instructionKey2 <­ retrieveKey charlie instructionCid2

instructionCid1 <­ submit charlie do

exerciseCmd instructionCid1 Instruction.Approve with

actors = S.singleton charlie

approval = PassThroughTo (charlieAccount, instructionKey2)

instructionKey1 <­ retrieveKey charlie instructionCid1

instructionCid2 <­ submit charlie do

exerciseCmd instructionCid2 Instruction.Allocate with

actors = S.singleton charlie

allocation = PassThroughFrom (charlieAccount, instructionKey1)

­­ iv. Requestor executes the settlement.

[bobHoldingCid] <­ submit requestor do

exerciseCmd batchCid Batch.Settle with

actors = singleton requestor

The significant advantage of the pass-through method is that Charlie doesn’t need any holdings

upfront as he’s at a net zero position for incoming and outgoing holdings in this settlement process.

644 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Note that the Bank could have utilized the pass-through approach to achieve the same result in the

previous script, but it would still require a “dummy” account.

Summary

By the end of this tutorial, you should have a good grasp on how to apply various allocation and

approval methods to instructions. The key points are:

• A custodian can utilize the DebitSender and CreditReceivermethods to bypass the need

for “dummy” accounts and holdingswhen approving and allocating instructions, respectively.

• A holding settled via an intermediary at the same custodian can be passed through, thus elim-

inating the requirement for the intermediary to possess the holding upfront.

In the forthcoming tutorial, we will delve into more complex settlement transactions involving a

transfer across multiple custodians.

1.21.2.4 Intermediated Settlement

This tutorial expands upon the principles discussed in our previous Internal Settlement tutorial, pro-

viding an in-depth exploration of intermediated settlement involving amulti-level account hierarchy

across different custodians.

Understanding Intermediated Settlement with Examples

This tutorial features two example scripts, runWrappedTransfersSettlement and run­

RouteProviderSettlement, illustrating how to settle a batch withmultiple instructions and cus-

todians.

Each script commences with runSetupIntermediatedSettlement, initiating parties, establish-

ing an instrument issued by the Central Bank, and setting up an account hierarchy rooted at the

Central Bank. This hierarchy includes two custodian banks, Bank1 and Bank2, and their respective

clients Alice, Bob, and Charlie. Holdings are created for Alice@Bank1, Bank1@CentralBank, and Char-

lie@Bank2:

SetupIntermediatedSettlement

{ instrument

; bank1; bank2

; alice; aliceAccount; aliceHoldingCid

; bob; bobAccount2

; charlie; charlieAccount; charlieAccount2; charlieHoldingCid

; requestor

; settlementFactoryCid

} <­ runSetupIntermediatedSettlement

The below diagram illustrates the setup, where edges represent accounts and stars (*) denote hold-

ings:

Central Bank

*/ \

Bank1 Bank2

*/ \ */ \

Alice Charlie Bob

1.21. Tutorials 645

mailto:Alice@Bank1
mailto:Bank1@CentralBank
mailto:Charlie@Bank2
mailto:Charlie@Bank2

Daml SDK Documentation, 2.7.3

Wrapped Transfers: A Detailed Analysis

Our first example elucidates how two transfers at separate custodians can be consolidated into a

single batch. The routed steps are as follows:

let

routedStep1 = RoutedStep with

custodian = bank1

sender = alice

receiver = charlie

quantity = qty 1000.0 instrument

routedStep2 = routedStep1 with

custodian = bank2

sender = charlie

receiver = bob

These steps are converted into a batch and instructions:

(batchCid, [instructionCid1, instructionCid2]) <­

submit requestor do

exerciseCmd settlementFactoryCid Settlement.Instruct with

instructors = fromList [requestor]

settlers = singleton requestor

id = Id "1"

description = "Transfer from Alice to Bob via Charlie"

contextId = None

routedSteps = [routedStep1, routedStep2]

settlementTime = None ­­ i.e., immediate settlement

The following diagram visualizes this pre- and post-settlement of the batch, where > signifies set-

tlement instructions, and stars (*) represents the holdings:

Central Bank Central Bank

*/ \ */ \

Bank1 Bank2 "Settle" Bank1 Bank2

*/ \ */ \ => / * / *

Alice > Charlie > Bob Alice Charlie Bob

T1 T2

Similar to the Internal Settlement tutorial, Alice allocates her Bank1 holding through a pledge, while

Bob approves its instruction by taking delivery at his account at Bank2. The intermediary, Charlie,

approves by taking delivery to his Bank1 account and allocates by pledging his pre-existing holding

at Bank2:

­­ i. Alice allocates.

(instructionCid1, _) <­ submit alice do

exerciseCmd instructionCid1 Instruction.Allocate with

actors = S.singleton alice

allocation = Pledge $ toInterfaceContractId aliceHoldingCid

­­ ii. Bob approves.

instructionCid2 <­ submit bob do

exerciseCmd instructionCid2 Instruction.Approve with

actors = S.singleton bob

approval = TakeDelivery bobAccount2

(continues on next page)

646 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

­­ iii. Charlie approves and allocates ﴾with pass­through﴿.

instructionCid1 <­ submit charlie do

exerciseCmd instructionCid1 Instruction.Approve with

actors = S.singleton charlie

approval = TakeDelivery charlieAccount

instructionCid2 <­ submit charlie do

exerciseCmd instructionCid2 Instruction.Allocate with

actors = S.singleton charlie

allocation = Pledge $ toInterfaceContractId charlieHoldingCid

­­ iii. Requestor executes the settlement.

[charlieHoldingCid, bobHoldingCid] <­ submit requestor do

exerciseCmd batchCid Batch.Settle with

actors = singleton requestor

Important to note, Charlie cannot pass-through Alice’s holding to Bob, as in the Internal Settlement

tutorial, due to the holdings having different custodians. Therefore, for settlement to occur, Charlie

needs a holding at Bank2. The settlement alters Charlie’s counterparty risk, shifting it from Bank1 to

Bank2. This is a situation Charlie might wish to avoid. The upcoming example shows how to involve

a route provider, eliminating the need for Charlie to hold any upfront holdings, thus preserving his

counterparty exposure.

Route Provider: An Alternative Approach

Our second example follows a similar setup to the first, involving a settlement step between Alice

and Charlie (S1), and another between Charlie and Bob (S2). However, these steps do not specify a

custodian, unlike the routed steps.

To convert the settlement steps S1 and S2 into routed steps, we engage a route provider. The provider

suggests preferable routes to the Central Bank for each client. During the “Discover” action, each

step is transformed into a sequence of routed steps

• S1 -> (T1)

• S2 -> (D, T2, C)

where T1 and T2 denote settlements by transfers, D represents a Debit, and C signifies a Credit. The

diagram below depicts the effects of the discovery and settlement process:

Central Bank Central Bank

"Discover" */ T2 \ "Settle" / *\

=> Bank1 > Bank2 => Bank1 > Bank2

/ D^ / C\ / \ / *\

Alice > Charlie > Bob */ \ / v Alice Charlie ␣

↪→Bob

S1 S2 Alice > Charlie Bob

T1

Let’s begin with the “Discover” action:

let

quantity = qty 1000.0 instrument

­­ Alice to Charlie step.

step1 = Step with sender = alice; receiver = charlie; quantity

(continues on next page)

1.21. Tutorials 647

Daml SDK Documentation, 2.7.3

(continued from previous page)

­­ Charlie to Bob step.

step2 = Step with sender = charlie; receiver = bob; quantity

­­ Using a route provider to discover settlement route, with intermediaries,␣

↪→from Alice to Bob for

­­ the instrument.

let

paths = M.fromList

[(show instrument.id

, Hierarchy with

rootCustodian = cb

pathsToRootCustodian = [[alice, bank1], [charlie, bank1], [bob,␣

↪→bank2]]

)

]

routeProviderCid <­ toInterfaceContractId @RouteProvider.I <$> submit requestor␣

↪→do

createCmd IntermediatedStatic with provider = requestor; paths; observers = S.

↪→empty

routedSteps <­ submit requestor do

exerciseCmd routeProviderCid RouteProvider.Discover with

discoverors = S.singleton requestor; contextId = None; steps = [step1,␣

↪→step2]

­­ Sanity check.

let

routedStep1' = RoutedStep with custodian = bank1; sender = alice; receiver =␣

↪→charlie; quantity

routedStep2' = RoutedStep with custodian = bank1; sender = charlie; receiver␣

↪→= bank1; quantity

routedStep3' = RoutedStep with custodian = cb; sender = bank1; receiver =␣

↪→bank2; quantity

routedStep4' = RoutedStep with custodian = bank2; sender = bank2; receiver =␣

↪→bob; quantity

routedSteps === [routedStep1', routedStep2', routedStep3', routedStep4']

Followed by the creation of the batch and instructions:

(batchCid, [instructionCid1, instructionCid2, instructionCid3,␣

↪→instructionCid4]) <­

submit requestor do

exerciseCmd settlementFactoryCid Settlement.Instruct with

instructors = fromList [requestor]

settlers = singleton requestor

id = Id "1"

description = "Transfer from Alice to Bob via intermediaries"

contextId = None

routedSteps = routedSteps

settlementTime = None ­­ i.e., immediate settlement

Finally, Alice, Charlie, Bank1, Bank2, and Bob allocate and approve their instructions accordingly:

­­ i. Alice allocates

(instructionCid1, _) <­ submit alice do

exerciseCmd instructionCid1 Instruction.Allocate with

actors = S.singleton alice

(continues on next page)

648 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

allocation = Pledge $ toInterfaceContractId aliceHoldingCid

­­ ii. Bob approves.

instructionCid4 <­ submit bob do

exerciseCmd instructionCid4 Instruction.Approve with

actors = S.singleton bob

approval = TakeDelivery bobAccount2

­­ iii. Charlie approves and allocates.

instruction2 <­ retrieveKey charlie instructionCid2

instructionCid1 <­ submit charlie do

exerciseCmd instructionCid1 Instruction.Approve with

actors = S.singleton charlie

approval = PassThroughTo (charlieAccount, instruction2)

instruction1 <­ retrieveKey charlie instructionCid1

(instructionCid2, _) <­ submit charlie do

exerciseCmd instructionCid2 Instruction.Allocate with

actors = S.singleton charlie

allocation = PassThroughFrom (charlieAccount, instruction1)

­­ iv. Bank1 approves and allocates.

instructionCid2 <­ submit bank1 do

exerciseCmd instructionCid2 Instruction.Approve with

actors = S.singleton bank1

approval = DebitSender

(instructionCid3, _) <­ submit bank1 do

exerciseCmd instructionCid3 Instruction.Allocate with

actors = S.singleton bank1

allocation = Pledge $ toInterfaceContractId bank1HoldingCid

­­ v. Bank2 approves and allocates.

instructionCid3 <­ submit bank2 do

exerciseCmd instructionCid3 Instruction.Approve with

actors = S.singleton bank2

approval = TakeDelivery bank2Account

(instructionCid4, _) <­ submit bank2 do

exerciseCmd instructionCid4 Instruction.Allocate with

actors = S.singleton bank2

allocation = CreditReceiver

­­ vi. Requestor executes the settlement.

[charlierHoldingCid, bobHoldingCid] <­ submit requestor do

exerciseCmd batchCid Batch.Settle with

actors = singleton requestor

Once the batch is settled, all instructions are executed atomically, causing a coordinated change in

the account hierarchy’s holdings. Importantly, Charlie acted as an intermediary, providing a route

from Alice to Bob, without having to use any holdings upfront.

1.21. Tutorials 649

Daml SDK Documentation, 2.7.3

Summary

You know how to define complex transactions and settle them atomically. Crucial points to remem-

ber are:

• A route provider serves the purpose of discovering settlement routes or routed steps for each

settlement step.

• Viewing the account hierarchy as a tree — with the Central Bank at the root, custodians on

the second level, and clients as leaves — transfers occur on horizontally directed routed steps,

debits on upwards directed routed steps, and credits on downward directed routed steps.

As a challenge for the curious reader, try extending these examples to settle two instruments using

settlement routes across two different account hierarchies.

1.21.3 Lifecycling tutorials

This section explains how to lifecycle instruments in Daml Finance. Each tutorial combines a step

by step description of different workflows with supporting code.

The following tutorials are available:

• The Time-based lifecycling tutorial uses a fixed rate bond as an example to demonstrate

time-based lifecycling.

• The Observations tutorial uses a floating rate bond as a sample instrument to show how Ob­

servations work. This applies to instruments whose payoff depends on an underlying asset.

• The Election-based lifecycling tutorial uses a callable bond to explain how to create and process

elections. This applies to instruments that require an active choice by one of the stakeholders.

Each tutorial builds on top of the previous ones, so they should ideally be followed in order.

1.21.3.1 Download the code for the tutorials

As a prerequisite, make sure that the Daml SDK is installed on your machine.

Open a terminal and run:

daml new finance­lifecycling ­­template=finance­lifecycling

This creates a new folder with contents from our template. Navigate to the finance­lifecycling

folder and then run the following to download the required Daml Finance packages:

./get­dependencies.sh

or, if you are using Windows

./get­dependencies.bat

Finally, you can start Daml Studio to inspect the code and run the project’s scripts:

daml studio

650 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.21.3.2 Time-based lifecycling (using a fixed rate bond)

This tutorial describes how to lifecycle instrumentswith pre-definedpayments, e.g. a fixed rate bond.

It is similar to the Lifecycling tutorial, in that it describes how lifecycle rules and events can be used

to evolve instruments over time. However, there is one main difference:

• The Lifecycling tutorial describes a dividend event, which is something that the issuer defines on

an ongoing basis. Only once the date and amount of a dividend payment has been defined, the

issuer creates a distribution event accordingly.

• This tutorial describes a fixed rate bond, where all coupon payments are defined in advance.

They are all encoded in the instrument definition. Hence, the issuer does not need to create

distribution events on an ongoing bases. Instead, one lifecycle rule in combination with time

events (a date clock) are used to lifecycle the bond.

Check out the Lifecycling concepts for a more in-depth description of the evolution of financial instru-

ments over their lifetime.

In this tutorial, we are going to:

1. create a fixed rate bond instrument and book a holding on it

2. create a lifecycle rule

3. create a lifecycle event (time event: DateClockUpdate)

4. process the event to produce the effects of a coupon payment

5. instruct settlement by presenting a bond holding

6. settle the resulting batch atomically

This example builds on the previous Settlement tutorial script. Some required concepts are explained

there, so please check out that tutorial before you continue below.

Run the Script

The code for this tutorial can be executed via the runFixedRateBond script in the

FixedRateBond.damlmodule.

Instrument and Holding

For the purpose of showcasing time-based lifecycling, we need a suitable sample instrument. Fixed

rate bonds pay a constant coupon rate at the end of each coupon period. The Bond Instrument pack-

ages page describes this instrument in more detail. Here, we briefly show how to create the bond

instrument using a factory:

­­ Create a fixed rate bond factory

fixedRateBondFactoryCid <­ toInterfaceContractId @FixedRate.F <$> submit bank do

createCmd FixedRate.Factory with

provider = bank

observers = M.empty

­­ Define an instrument key for the bond

let

bondInstrument = InstrumentKey with

issuer = bank

depository = bank

id = Id "FixedRateBond"

(continues on next page)

1.21. Tutorials 651

Daml SDK Documentation, 2.7.3

(continued from previous page)

version = "0"

initialTimestamp = dateToDateClockTime issueDate

­­ Bank creates the bond instrument

fixedRateBondCid <­ submit bank do

exerciseCmd fixedRateBondFactoryCid FixedRate.Create with

fixedRate = FixedRate with

instrument = bondInstrument

description = "Instrument representing units of a fixed rate bond"

couponRate

periodicSchedule

holidayCalendarIds

calendarDataProvider = bank

dayCountConvention

currency = usdInstrument

notional

lastEventTimestamp = initialTimestamp

observers = M.fromList pp

We also create a bond holding in Bob’s account:

­­ Credit Bob's account with a bond holding

bobRequestCid <­ submit bob do

createCmd CreditAccount.Request with

account = bobAccount

instrument = bondInstrument

amount = 100000.0

bobBondHoldingCid <­ submit bank do exerciseCmd bobRequestCid CreditAccount.

↪→Accept

A holding represents the ownership of a certain amount of an instrument by an owner at a custodian.

Check out the Holdings tutorial for more details.

Now, we have both an instrument definition and a holding. Let us proceed to lifecycle the bond, which

is the main purpose of this tutorial.

Lifecycle Events and Rule

As mentioned earlier, we only need one single lifecycle rule to process all time events (since all

coupon payments are pre-defined in the instrument terms):

­­ Create a lifecycle rule

lifecycleRuleCid <­ toInterfaceContractId @Lifecycle.I <$> submit bank do

createCmd Rule with

providers = S.singleton bank

observers = M.empty

lifecycler = bank

id = Id "LifecycleRule"

description = "Rule to lifecycle an instrument"

In order to lifecycle a coupon payment, we create a time event corresponding to the date of the first

coupon:

652 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

­­ Create a clock update event

firstCouponClockEventCid <­ createClockUpdateEvent bank firstCouponDate S.empty

Note that it is the bank that actively creates a DateClockUpdateEvent. This results in more control

when to actually process the coupon payment. One could also use LedgerTime, but that could cause

problems in some scenarios, for example:

• The system is down when the coupon should be processed. Processing it the next day is diffi-

cult if ledger time is automatically used, because the date returned from the ledger no longer

matches the intended lifecycling date.

• A global ledger containing trades from regions in different time zones may require flexibility

regarding when, in relation to ledger time, to process coupons and other events.

• The coupon payment depends on market data, which the data provider occasionally provides

with a delay. Retroactively processing this is simpler if the lifecycler can provide the today date.

Now, we have what we need to actually lifecycle the bond. The Evolve choice of the lifecycle rule is

exercised to process the time event:

­­ Try to lifecycle the instrument

(lifecycleCid, [effectCid]) <­ submit bank do

exerciseCmd lifecycleRuleCid Lifecycle.Evolve with

eventCid = firstCouponClockEventCid

observableCids = []

instrument = bondInstrument

Both the LedgerTime and the DateClock implement the TimeObservable interface, which is used by

Evolve to specify the current time for the lifecycling.

The result of this is an effect describing the per-unit asset movements to be executed for bond hold-

ers. Each holder can now present their holding to claim the effect and instruct settlement of the

associated entitlements.

A ClaimRule allows a holder of the target instrument to claim the effect resulting from the time event:

­­ Create the claim rule

lifecycleClaimRuleCid <­ toInterfaceContractId @Claim.I <$> submit bank do

createCmd Claim.Rule with

providers = S.fromList [bank]

claimers = S.singleton bob

settlers = S.singleton bob

routeProviderCid

settlementFactoryCid

netInstructions = False

By presenting their holding they can instruct the settlement of the holding transfers described in

the effect:

result <­ submitMulti [bob] [public] do

exerciseCmd lifecycleClaimRuleCid Claim.ClaimEffect with

claimer = bob

holdingCids = [bobBondHoldingCid]

effectCid ­­ This is equivalent to writing effectCid = effectCid

batchId = Id "BondSettlement"

let [bobInstructionCid, bankInstructionCid, couponInstructionCid] = result.

↪→instructionCids

1.21. Tutorials 653

Daml SDK Documentation, 2.7.3

As a side-effect of settling the entitlements, the presented holding is exchanged for a holding of a

new bond version. This is to prevent a holder from benefiting from a given effect twice (in our case:

receiving the same coupon twice).

In our example of a bond coupon, only a single instruction is generated: the movement of cash from

the bank to the bond holder. This instruction along with its batch is settled the usual way, as de-

scribed in the previous Settlement tutorial.

­­ Allocate instruction

(bobInstructionCid, _) <­ submit bob do

exerciseCmd bobInstructionCid Instruction.Allocate with

actors = S.singleton bob

allocation = Pledge bobBondHoldingCid

(bankInstructionCid, _) <­ submit bank do

exerciseCmd bankInstructionCid Instruction.Allocate with

actors = S.singleton bank

allocation = CreditReceiver

(couponInstructionCid, _) <­ submit bank do

exerciseCmd couponInstructionCid Instruction.Allocate with

actors = S.singleton bank

allocation = CreditReceiver

­­ Approve instruction

bobInstructionCid <­ submit bank do

exerciseCmd bobInstructionCid Instruction.Approve with

actors = S.singleton bank

approval = DebitSender

bankInstructionCid <­ submit bob do

exerciseCmd bankInstructionCid Instruction.Approve with

actors = S.singleton bob

approval = TakeDelivery bobAccount

couponInstructionCid <­ submit bob do

exerciseCmd couponInstructionCid Instruction.Approve with

actors = S.singleton bob

approval = TakeDelivery bobAccount

­­ Settle batch

submitMulti [bob] [public] do

exerciseCmd result.batchCid Batch.Settle with actors = S.singleton bob

Note that the bank in this case does not actually transfer the cash from another account, but simply

credits Bob’s account by using the CreditReceiver allocation type. In a real-world bond coupon

scenario one would additionally model the flow of funds from the issuer to the bank using the same

lifecycle process as described above.

Check out the Settlement concepts for a more in-depth description of the different steps in the settle-

ment process and the settlement modes supported by the library.

Note that the lifecycling process above is not limited to fixed coupon bonds. It also works for other

instruments with pre-defined payments, for example:

654 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Instrument Pre-defined variable

Foreign exchange swaps FX rate

Currency swaps Interest rates (on both legs)

Frequently Asked Questions

Which party should create and sign the lifecycle rules and events?

In the simplified scenario for this tutorial, we have used the bank as both the issuer and depository for

the instruments involved. In a real-world case, instruments and their corresponding lifecycle rules

and events would be maintained by an actual issuer, with the depository acting as a 3rd-party trust

anchor.

Which parties typically take which actions in the lifecycle workflow?

The lifecycle interfaces governing the process leave the controllers of the various choices in the pro-

cess up to the implementation.

• Typically, we would expect the issuer of an instrument to define the instrument terms, which

in our example above govern the date and amount of each bond coupon.

• Lifecycle rules on the other hand are often controlled by 3rd-party calculation agents.

• The claiming of lifecycle effects is by default the responsibility of the owner of a holding. If

instead the owner wants to delegate this responsibility to their custodian they can do so via a

delegation contract.

• The party executing settlement can be chosen as well, as described in the previous tutorial on

Settlement.

Summary

You have learned how to create a fixed coupon bond and how to use a lifecycle rule and events to

process the payments pre-defined by the instrument. The key concepts to take away are:

• Lifecycle events cause the bond instrument to evolve over time.

• A lifecycle rule contains logic to calculate the effects an event has on an instrument and its

holdings.

• A claim rule is used to instruct settlement for a given effect using a holding.

1.21.3.3 Observations (using a floating rate bond)

This tutorial describes how to define observations. It builds on the previous Time-based Lifecycling

tutorial, which uses a fixed rate bondwhere all coupons are pre-defined using a constant annualized

rate. In contrast, the coupons of a floating rate bond depend on the value of a reference rate for each

coupon period. Hence, the lifecycling framework requires the future values of the reference rate. This

is referred to as Observations, which is the main topic of this tutorial.

In this tutorial, we are going to:

1. create a floating rate bond instrument and book a holding on it

1.21. Tutorials 655

Daml SDK Documentation, 2.7.3

2. create an observation of the floating rate, which is used to define the coupon payment

3. reuse the lifecycle rule and lifecycle event from the fixed rate bond tutorial

4. process the event to produce the effects of a coupon payment

5. instruct settlement by presenting a bond holding

6. settle the resulting batch atomically

Run the Script

The code for this tutorial can be executed via the runFloatingRateBond script in the

FloatingRateBond.damlmodule.

Instrument and Holding

For the purpose of showcasing the Observation concept, we need a suitable sample instrument. Float-

ing rate bonds pay a couponwhich is determined by a reference rate, e.g. 3M Libor. The Bond Instrument

packages page describes this instrument inmore detail. Here, we briefly show how to create the bond

instrument using a factory:

­­ Create a floating rate bond factory

floatingRateBondFactoryCid <­ toInterfaceContractId @FloatingRate.F <$> submit␣

↪→bank do

createCmd FloatingRate.Factory with

provider = bank

observers = M.empty

­­ Define an instrument key for the bond

let

bondInstrument = InstrumentKey with

issuer = bank

depository = bank

id = Id "FloatingRateBond"

version = "0"

­­ Bank creates the bond instrument

floatingRateBondCid <­ submit bank do

exerciseCmd floatingRateBondFactoryCid FloatingRate.Create with

floatingRate = FloatingRate with

instrument = bondInstrument

description = "Instrument representing units of a floating rate bond"

referenceRateId

couponSpread

periodicSchedule

holidayCalendarIds

calendarDataProvider = bank

dayCountConvention

currency = usdInstrument

notional

lastEventTimestamp = initialTimestamp

observers = M.fromList pp

Compared to the fixed rate bond, notice that this floating rate instrument also has a referenceR­

ateId, that specifies which Observations to use in the lifecycling section below.

We also create a bond holding in Bob’s account:

656 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

­­ Credit Bob's account with a bond holding

bobRequestCid <­ submit bob do

createCmd CreditAccount.Request with

account = bobAccount

instrument = bondInstrument

amount = 100000.0

bobBondHoldingCid <­ submit bank do exerciseCmd bobRequestCid CreditAccount.

↪→Accept

Now, we have both an instrument definition and a holding. Let us proceed to lifecycle the bond using

Observations, which is the main purpose of this tutorial.

Lifecycle Events and Rule

An Observation of a reference rate contains two pieces of information: the interest rate level and the

date to which it applies. The rate level can be positive or negative. In our example, we have a negative

interest rate:

let observations = M.fromList [(dateToDateClockTime $ date 2019 Jan 16, ­0.

↪→00311)]

observableCid <­ toInterfaceContractId <$> submit bank do

createCmd Observation with

provider = bank; id = Id referenceRateId; observations; observers = M.empty

In our case, the bank then creates the observation on the ledger. The Observation implements the

NumericObservable interface, which is used during lifecycling.

In order to lifecycle a coupon payment, we need a lifecycle rule that defines how to process all time

events. We also need a time event corresponding to the date of the first coupon. Both of these are

the same as in the previous tutorial using a fixed rate bond, so we will reuse them from there.

Now, we have what we need to actually lifecycle the bond:

­­ Try to lifecycle the instrument

(lifecycleCid, [effectCid]) <­ submit bank do

exerciseCmd lifecycleRuleCid Lifecycle.Evolve with

eventCid = firstCouponClockEventCid

observableCids = [observableCid]

instrument = bondInstrument

The difference compared to the previous tutorial is that here we also pass in the observables to the

Evolve choice. They are used to evaluate the reference rate on the relevant fixing date of the coupon

payment currently being lifecycled.

The result of this is an effect describing the per-unit asset movements to be executed for bond hold-

ers. Each holder can now present their holding to claim the effect and instruct settlement of the

associated entitlements.

The remaining steps (define a claim rule, claim the effect and settle the entitlements) are identical

to the previous tutorial.

Note that the lifecycling process above is not limited to floating rate bonds, which have a reference

rate as observable. It also works for other instruments that depend on an underlying asset, for ex-

ample:

1.21. Tutorials 657

Daml SDK Documentation, 2.7.3

Instrument Observed variable

Inflation linked bond Inflation index

Interest rate swap Reference rate (similar to a floating rate bond)

Asset swap Reference asset

Credit default swap Default probability & Recovery rate (two observables)

Vanilla option Reference asset (often end of day fixing)

Barrier option Reference asset (often intraday observations)

Frequently Asked Questions

Which party should create the observations?

In the simplified scenario for this tutorial, the bank created the observation. In a real-world case, it

would probably be the issuer (or a 3rd-party reference data agent) that creates the observations.

Summary

You have learned how to create a floating rate bond and how to define observations that define the

amount of the coupon payments. The key concepts to take away are:

• Observations are required in order to lifecycle some instruments.

• Observations are a general concept that can be used to model different kind of payoffs, using

various types of underlyings.

• Lifecycling instruments with observations works in a very similar manner compared to those

without.

1.21.3.4 Election-based lifecycling (using a callable bond)

This tutorial describes how to define and process Elections. It builds on the previous Time-based

Lifecycling tutorial, which uses a fixed rate bond where all coupons are pre-defined and are paid out

as time passes. In contrast, the coupons of a callable bond depend on whether the issuer has called

the bond. Hence, a simple time event is not sufficient to define the next state of the instrument.

Instead, the lifecycling framework requires an active Election to be made on each call date. This

Election is the main topic of the tutorial. Check out the Lifecycling concepts for more details on time

based vs election based evolution of instruments.

In this tutorial, we are going to:

1. create a callable bond instrument and book a holding on it

2. reuse the lifecycle rule and settlement factory from the fixed rate bond tutorial

3. create the election not to call the bond

4. process the election event to produce the effects of a coupon payment

5. instruct settlement by presenting a bond holding

6. settle the resulting batch atomically

658 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Run the Script

The code for this tutorial can be executed via the runCallableBond script in the CallableBond.

damlmodule.

Instrument and Holding

In order to demonstrate the Election concept, we need a suitable sample instrument. Callable bonds

pay coupons as long as the bond has not been called by the issuer. The Bond Instrument packages page

describes this instrument in more detail. Here, we briefly show how to create the bond instrument

using a factory:

­­ Create a callable bond factory

callableBondFactoryCid <­ toInterfaceContractId @Callable.F <$> submit bank do

createCmd Callable.Factory with

provider = bank

observers = M.empty

­­ Define an instrument key for the bond

let

bondInstrument = InstrumentKey with

issuer = bank

depository = bank

id = Id "CallableBond"

version = "0"

­­ Bank creates the bond instrument

callableBondCid <­ submit bank do

exerciseCmd callableBondFactoryCid Callable.Create with

callable = Callable with

instrument = bondInstrument

description = "Instrument representing units of a callable bond"

floatingRate

couponRate

capRate

floorRate

couponSchedule = periodicSchedule

noticeDays

callSchedule = periodicSchedule

holidayCalendarIds

calendarDataProvider = bank

dayCountConvention

useAdjustedDatesForDcf

currency = usdInstrument

notional

lastEventTimestamp = initialTimestamp

prevElections = []

observers = M.fromList pp

Compared to the fixed rate bond, notice that this callable instrument also has a callSchedule,

that specifies the dates on which the issuer can call the bond.

We also create a bond holding in Bob’s account:

1.21. Tutorials 659

Daml SDK Documentation, 2.7.3

­­ Credit Bob's account with a bond holding

bobRequestCid <­ submit bob do

createCmd CreditAccount.Request with

account = bobAccount

instrument = bondInstrument

amount = 100000.0

bobBondHoldingCid <­ submit bank do exerciseCmd bobRequestCid CreditAccount.

↪→Accept

Now, we have both an instrument definition and a holding. Let us proceed to lifecycle the bond using

Elections, which is the main purpose of this tutorial.

Lifecycle Events and Rule

We start by creating an Election factory, which can be used to create elections:

­­ Create election factory to allow holders to create elections

electionFactoryCid <­ submit bank do

toInterfaceContractId @Election.F <$> createCmd Election.Factory with

provider = bank

observers = M.fromList [("Observers", S.fromList [bob, bank])]

An Election contains three main pieces of information:

• the election tag (e.g. “CALLED”)

• who is making the election (e.g. the bank)

• the date to which it applies.

In our example, the bank chooses not to call the bond:

­­ Create an Election for the first coupon date: do not call the bond.

electionCid <­ submit bank do

exerciseCmd electionFactoryCid Election.Create with

actors = S.singleton bank

id = Id "election id"

description = "election for a callable bond"

claim = "NOT CALLED"

electionTime = dateToDateClockTime $ date 2019 May 15

electorIsOwner = False

elector = bank

counterparty = bank

instrument = bondInstrument

amount = 100000.0

observers = M.fromList [("Holders", S.fromList [bank, bob])]

provider = bank

Note the flag electorIsOwner above. Since the bank is not the owner of the bond holding, this flag is

False in our example. On the other hand, if an investor Alice would have had a holding in a puttable

bond, the election whether or not to put would have belonged to Alice (the holding owner), so this

flag would have been True.

Also, note that there is an amount in the election above. This allows the elector to create an election

for a specific number of holding units.

Now, we have what we need to actually lifecycle the bond. The Apply choice is exercised in order to

process the election:

660 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

­­ Apply election to generate new instrument version + effects

(newInstrumentKey, [effectCid]) <­ submit bank do

exerciseCmd electionCid Election.Apply with

observableCids = []

exercisableCid = coerceInterfaceContractId @Election.Exercisable␣

↪→lifecycleRuleCid

In order to lifecycle the couponpayment above, we need a lifecycle rule that defines how to process all

election events. The lifecycle rule from the previous tutorial can be reused for this, if we first convert

it to an Election.Exercisable, as described above.

A Claim Rule allows the elector to claim the effect resulting from the election event:

­­ Create a new claim rule with the bank as claimer, since it is the bank that␣

↪→does the election.

lifecycleClaimRuleCid <­ toInterfaceContractId @Claim.I <$> submit bank do

createCmd Claim.Rule with

providers = S.fromList [bank]

claimers = S.singleton bank

settlers = S.singleton bob

routeProviderCid

settlementFactoryCid

netInstructions = False

Note that even though we already had a claim rule in the previous example, we could not reuse it

because that one was for the holding owner to claim the results, whereas in the case of Election based

lifecycling it is the elector that should claim them:

­­ Claim effect

result <­ submit bank do

exerciseCmd lifecycleClaimRuleCid Claim.ClaimEffect with

claimer = bank

holdingCids = [bobBondHoldingCid]

effectCid

batchId = Id "BondSettlement"

let [bobInstructionCid, bankInstructionCid, couponInstructionCid] = result.

↪→instructionCids

The result of this is an effect describing the per-unit asset movements to be executed for bond hold-

ers.

The remaining steps (settling the entitlements) are identical to the previous tutorial.

Note that the election process above is not limited to callable bonds. It also works for other instru-

ments that require a manual decision, such as a physically settled option with a manual exercise

decision.

1.21. Tutorials 661

Daml SDK Documentation, 2.7.3

Frequently Asked Questions

Which party should create the elections?

This depends on the economics of the instrument. For example, in a callable bond, it is the issuer

of the bond that has the right to choose whether or not to call the bond on the call dates. On the

other hand, in the case of a puttable bond, it would be the investor that can elect to demand early

repayment of the bond.

What if a bond can only be called on some coupon dates?

Some instruments can require both time based and election based lifecycling. For example, consider

a callable bond that has a quarterly coupon but a call schedule that only allows the bond to be called

once a year. In this case, an Election has to be created on the call dates to lifecycle the bond. On the

other coupon dates, regular time based lifecycling is required to process the coupon payments.

Summary

You have learned how to create a callable bond and how to define Elections to choose whether or not

to call the bond. The key concepts to take away are:

• Elections are required in order to lifecycle some instruments that require an active choice by

one of the stakeholders.

• Depending on the economics of the instrument, either the holding owner or the issuer should

create the election.

• Some instruments require both time based and election based lifecycling.

1.21.4 Payoff Modeling tutorials

This section contains an introduction to the Daml Finance Generic Instrument, which provides a flex-

ible framework to structure custom payoffs and lifecycle them on the ledger.

The Generic Instrument encapsulates the Contingent Claims library, which models the economic

terms of an instrument based on its future cashflows.

The tutorials introduce the Contingent Claims modeling framework in a practical way and give you

the tools to

• structure financial instruments such as bonds, swaps, options, and other derivatives

• lifecycle the instruments on-ledger to calculate pending payments

The following tutorials are available:

• The Basic Builders tutorial introduces the basic Contingent Claims builders.

• The Observations tutorial shows how to model market observables, such as interest rates or

equity spot prices.

662 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.21.4.1 Download the code for the tutorials

As a prerequisite, make sure that the Daml SDK is installed on your machine.

Open a terminal and run:

daml new finance­payoff­modeling ­­template=finance­payoff­modeling

This creates a new folder with contents from our template. Navigate to the

finance­payoff­modeling folder and then run the following to download the required Daml

Finance packages:

./get­dependencies.sh

or, if you are using Windows

./get­dependencies.bat

Finally, you can start Daml Studio to inspect the code and run the project’s scripts:

daml studio

1.21.4.2 Basic builders

This tutorial introduces the basic claimconstructors and showshow touse them todescribe a payoff

in terms of the future cashflows between the claim’s owner and their counterparty. At the end of this

section, you should be able to model payoffs such as fixed rate bonds and FX forwards.

You can use the PayoffBuildermodule to follow along and test the claims described below. When

you run the runCreateAndLifecycle script, it will

• create a Daml Finance Generic instrument wrapping your input claim

• lifecycle the instrument at the specified dates

• print out pending cashflows

Builders

Zero

The zero constructor is used to indicate the absence of cashflows. We can setup this very simple

initial payoff as follows

c = zero

acquisitionDate = date 2023 Aug 01

The acquisition date is used to track the date at which two parties enter the contract and it is a

required input to each claim.

1.21. Tutorials 663

Daml SDK Documentation, 2.7.3

One

The one constructor is used to deliver to the owner of the contract one unit of a specified instrument.

For instance, the claim

c = one "USD"

acquisitionDate = date 2023 Aug 01

gives the owner an “immediate” right to receive one unit of the USD instrument.

We can verify that by lifecycling the claim: we define a set of lifecycle dates

lifecycleDates =

[

date 2023 Aug 01

, date 2023 Aug 03

]

and run the script to obtain

"­­­ EFFECT on 2023­08­01 ­­­"

"TARGET INSTRUMENT : MyClaim version 0"

"RECEIVING"

" => 1.0 USD"

"GIVING"

Whenwe lifecycle as of 01 Aug 2023 a payment of 1 USD is received by the owner. This is recorded in

the corresponding Effect contract. The claim then becomesworthless (it becomes the zero claim)

and any subsequent lifecycling yields no additional effects.

Scale

The scale constructor is used to multiply a claim’s cashflows by a certain factor.

c = scale (Const 100.0) $ one "USD"

acquisitionDate = date 2023 Aug 01

As expected, lifecycling now yields

"­­­ EFFECT on 2023­08­01 ­­­"

"TARGET INSTRUMENT : MyClaim version 0"

"RECEIVING"

" => 100.0 USD"

"GIVING"

664 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Give, And

The and constructor is used to sum cashflows frommultiple sub-claims.

give is used to exchange rights and obligations, flipping the direction of cashflows.

We can define a very simple FX trade as follows, where the owner receives EUR in exchange for USD.

c1 = scale (Const 90.0) $ one "EUR"

c2 = scale (Const 100.0) $ one "USD"

c = c1 `and` (give c2)

acquisitionDate = date 2023 Aug 01

When the claim is lifecycled, we obtain

"­­­ EFFECT on 2023­08­01 ­­­"

"TARGET INSTRUMENT : MyClaim version 0"

"RECEIVING"

" => 90.0 EUR"

"GIVING"

" => 100.0 USD"

When you want to additively combine more than two claims, you can use the andList constructor.

When

The when constructor is used to introduce a time shift, delaying the acquisition of another claim to

a point in the future when a certain predicate is met. For instance, the claim

maturity = date 2023 Aug 31

c = when (at maturity) $ one "USD"

acquisitionDate = date 2023 Aug 01

pays one USD once the maturity date is reached, but not before.

When this is lifecycled before maturity, no effect is generated. On the other hand, once we reach

maturity we observe

"­­­ EFFECT on 2023­08­31 ­­­"

"TARGET INSTRUMENT : MyClaim version 0"

"RECEIVING"

" => 1.0 USD"

"GIVING"

The at function is used to construct a predicate which becomes True exactly at the input date,

triggering the acquisition of the sub-claim one "USD".

1.21. Tutorials 665

Daml SDK Documentation, 2.7.3

Structuring financial instruments

Equipped with these basic claim builders, we can already structure a variety of real-world financial

instruments.

Fixed Rate Bond

A fixed rate bond pays a fixed interest rate over its term and repays the principal amount atmaturity.

This can be represented as follows

interestAmount = Const 50.0

principal = Const 100000.0

c = andList [

when (at d1) $ scale interestAmount $ one "USD"

, when (at d2) $ scale interestAmount $ one "USD"

, when (at maturity) $ scale (interestAmount + principal) $ one "USD"

]

for d1 ≤ d2 ≤ maturity.

FX Forward

As an exercise, try to model an FX Forward, which is a contractual agreement between two parties to

exchange a pair of currencies at a set rate on a future date.

Summary

You have learned the basic claim constructors and are now able to structure some real-world fi-

nancial instruments. The next tutorial will introduce Observations, which are used to model

time-dependent market observables, such as stock prices and interest rates fixings.

1.21.4.3 Observations

Equity forward payoff

The payoff of financial derivatives depends on the performance of a certain underlying in the future.

As an example, consider an equity forward contract where a party agrees to purchase one stock of

Apple at a predetermined date and price in the future. The contract buyer will make a profit if the

market price of the stock is greater than the purchase price they pay (and make a loss otherwise).

This payoff can be written as follows

maturity = date 2023 Aug 31

c = when (at maturity) $ scale (Observe "AAPL" ­ Const 195.0) $ one "USD"

acquisitionDate = date 2023 Aug 01

In this example, the predetermined purchase price (strike price) is 195 USD.

666 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Observe "AAPL" is used to represent the time-dependentmarket price of Apple, which is unknown

at trade inception.

When lifecycling the claimatmaturity, wemustprovide the observedmarket value for the observable

AAPL in order to resolve the claim’s cashflows.

observations =

[

("AAPL", [(date 2023 Aug 31, 200.0)])

]

This yields the expected payoff

"­­­ EFFECT on 2023­08­31 ­­­"

"TARGET INSTRUMENT : MyClaim version 0"

"RECEIVING"

" => 5.0 USD"

"GIVING"

You can change the stock’s observed value in the script and see how this impacts the generated

cashflows.

As you might have realised, the multiplying factor within a scale builder does not have to be a

constant or deterministic quantity. It is a generic Observation, which is a combination of known

amounts (built with Const) and market observables (built with Observe). These building blocks

can be combined together using standard algebraic operations (+, ­, * , /).

In the example above, once the maturity date is reached the sub-claim scale (Observe "AAPL"

­ Const 195.0) $ one "USD" is acquired and the value of the observation is looked up in the

table for that maturity date.

Floating Rate Note

There are cases where we want to explicitly specify the date at which a market observable is evalu-

ated. Take for example the case of a Floating Rate Note, which is a financial instrument that pays a

floating coupon based on an interest rate value observed a few days earlier.

An example of such payoff is the following

maturity = date 2023 Aug 31

observation = ObserveAt "USD_LIBOR_3M" (date 2023 Aug 10) * Const 1000000.0

c = when (at maturity) $ scale observation $ one "USD"

acquisitionDate = date 2023 Aug 01

where

• we observe the value of the 3 month US Dollar LIBOR rate on 10 Aug 2023

• we pay a coupon for that rate on 31 Aug 2023

The ObserveAt observation builder is used to specify when the rate should be observed. In order to

lifecycle the claim at maturity we must include the rate observation in the table

observations =

[

(continues on next page)

1.21. Tutorials 667

Daml SDK Documentation, 2.7.3

(continued from previous page)

("USD_LIBOR_3M", [(date 2023 Aug 10, 0.0563)])

]

which then yields to the expected payout

"­­­ EFFECT on 2023­08­31 ­­­"

"TARGET INSTRUMENT : MyClaim version 0"

"RECEIVING"

" => 56300.0 USD"

"GIVING"

Interest Rate Swap

As an exercise, try to model

• a fixed-for-floating interest rate swap, where the claim owner receives coupons based on a

floating rate in exchange for fixed rate coupons.

• a basis rate swap, where the owner receives coupons based on 3 month US Dollar LIBOR and

pays coupons based on 6 month US Dollar LIBOR to their counterparty

Summary

You now know how to setup payoffs containing complex time-dependent market observables. You

have the tools to model a large set of financial products, such as forwards and most interest rate

swap variations.

1.21.5 Advanced Topics

This section covers some advanced Daml Finance topics, helping youmodel complex use-cases and

scenarios.

The following tutorials are available:

• The Intermediated Lifecycling tutorial demonstrates how to lifecycle an instrument with an inter-

mediary party between the issuer and the investor.

• The Contingent Claims Instrument tutorial describes how to leverage the Contingent Claims li-

brary to lifecycle custom instrument implementations.

1.21.5.1 Intermediated Lifecycling of an Instrument

This tutorial describes the lifecycling flow of an instrument with an intermediary party between the

issuer and the investor. We will use the a Generic Instrument, but the same concepts apply to other

instrument types as well.

We will illustrate the following steps:

1. Creating a Generic Instrument modeling a fixed rate bond

2. Defining an intermediated settlement route

3. Defining a suitable lifecycle event

4. Lifecycling the instrument

668 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

5. Non-atomic settlement of the lifecycle effects

6. Atomic settlement of the lifecycle effects

To follow the script used in this tutorial, you can clone the Daml Finance repository. In particular, the

file Instrument/Generic/Test/Intermediated/BondCoupon.daml is the starting point of this tutorial.

It contains an example for both non-atomic and atomic settlement of lifecycle effects. In this tutorial

we will focus on the non-atomic settlement, but we will mention atomic settlement towards the end.

Create the Instrument

We start by using a Generic Instrument to model a fixed rate bond paying a 4% p.a. coupon with a 6M

coupon period.

Define an Intermediated Settlement Route

In the case of intermediated lifecycling, weneed to define a settlement route for the bond instrument,

which depends on the account structure:

{­

Bond ﴾security﴿ account structure :

Issuer

|

CSD

|

Investor

­}

let

route =

(bondLabel

, Hierarchy with

rootCustodian = issuer

pathsToRootCustodian = [[investor, csd]]

)

Similarly, we define a settlement route for the cash instrument instrument:

{­

Cash account structure :

Central Bank

/ | \

CSD Issuer Bank

\

Investor

­}

route =

(label

, Hierarchy with

rootCustodian = centralBank

pathsToRootCustodian = [[investor, bank], [csd], [issuer]]

)

1.21. Tutorials 669

https://github.com/digital-asset/daml-finance
https://github.com/digital-asset/daml-finance/blob/main/src/test/daml/Daml/Finance/Instrument/Generic/Test/Intermediated/BondCoupon.daml

Daml SDK Documentation, 2.7.3

Define a Lifecycle Event

Since the bond pays a coupon twice a year, payment is a time-based event. The requirement to pay

the coupon is governed by actual time. However, in a trading and settlement system, it is useful to

be able to control the time variable, in order to simulate previous/future payments, or to have some

flexibility regarding when to process events.

Because of this, the issuer defines a clock update event contract, which signals that a certain time

has been reached:

­­ create clock update event

clockEventCid <­ createClockUpdateEvent (S.singleton issuer) today S.empty

Lifecycle the Bond Instrument

Using the Lifecycle interface, the CSD creates a lifecycle rule contract:

­­ Create a lifecycle rule

lifecycleRuleCid <­ toInterfaceContractId @Lifecycle.I <$> submit csd do

createCmd Lifecycle.Rule with

providers = S.singleton csd

observers= M.empty

lifecycler = issuer

id = Id "LifecycleRule"

description = "Rule to lifecycle a generic instrument"

The issuer of the bond is responsible for initiating the lifecycling of the coupon payment, by exercis-

ing the Evolve choice on the coupon date:

­­ Try to lifecycle the instrument

(_, [effectCid]) <­ submit issuer do

exerciseCmd lifecycleRuleCid Lifecycle.Evolve with

eventCid = clockEventCid

observableCids = []

instrument = bondInstrument

This internally uses the Event interface. In our case, the event is a clock update event, since the

coupon payment is triggered by the passage of time.

The return type of effectCid is an Effect interface. It will contain the effect(s) of the lifecycling, in

this case a coupon payment. If there is nothing to lifecycle, for example because there is no coupon

to be paid today, this would be empty.

Non-atomic Settlement

In order to process the effect(s) of the lifecycling (in this case: pay the coupon), we need to create

settlement instructions. In the non-atomic case, this is done in two steps.

First, there is the settlement between the issuer and the CSD. By using the EffectSettlementSer­

vice template, the issuer can claim and settle the lifecycling effects in one step by exercising the

ClaimAndSettle choice:

670 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

­­ Setup settlement contract between issuer and CSD

­­ In order for the workflow to be successful, we need to disclose the CSD's␣

↪→cash account to the

­­ Issuer.

Account.submitExerciseInterfaceByKeyCmd @Disclosure.I [csd] [] csdCashAccount

Disclosure.AddObservers with

disclosers = S.singleton csd; observersToAdd = ("Issuer", S.singleton␣

↪→issuer)

settle1Cid <­ submitMulti [csd, issuer] [] do

createCmd EffectSettlementService with

csd

issuer

instrumentId = bondInstrument.id

securitiesAccount = csdAccountAtIssuer

issuerCashAccount

csdCashAccount

settlementRoutes = routes

­­ CSD claims and settles effect against issuer

(effectCid, newInstrumentHoldingCid, [cashHolding]) <­ submitMulti [issuer]␣

↪→[publicParty] do

exerciseCmd settle1Cid ClaimAndSettle with

instrumentHoldingCid = csdBondHoldingCid; cashHoldingCid =␣

↪→issuerCashHoldingCid; effectCid

Then, there is the settlement between the CSD and the investor. We start by creating a settlement

factory:

­­ investor claims effect against CSD

routeProviderCid <­ toInterfaceContractId <$> submit csd do

createCmd IntermediatedStatic with

provider = csd; observers = S.singleton investor; paths = routes

settlementFactoryCid <­ submit csd do

toInterfaceContractId <$> createCmd Factory with

provider = csd; observers = S.singleton investor

Settlement instructions are created by using the Claim interface and exercising the ClaimEffect

choice:

lifecycleClaimRuleCid <­ toInterfaceContractId @Claim.I <$> submit csd do

createCmd Claim.Rule with

providers = S.singleton csd

claimers = S.fromList [csd, investor]

settlers

routeProviderCid

settlementFactoryCid

netInstructions = False

result <­ submit csd do

exerciseCmd lifecycleClaimRuleCid Claim.ClaimEffect with

claimer = csd

holdingCids = [investorBondHoldingCid]

effectCid

batchId = Id "CouponSettlement"

1.21. Tutorials 671

Daml SDK Documentation, 2.7.3

Claiming the effect has two consequences:

• the investor’s holding is upgraded to a new instrument version (where the coupon has been

paid)

• settlement instructions are generated in order to process the coupon payment

Finally, the settlement instructions are allocated, approved and then settled.

let

[investorBondInstructionCid, csdBondInstructionCid, csdCashInstructionCid,

bankCashInstructionCid] = result.instructionCids

­­ Allocate instructions

(investorBondInstructionCid, _) <­ submit investor do

exerciseCmd investorBondInstructionCid Instruction.Allocate with

actors = S.singleton investor; allocation = Pledge investorBondHoldingCid

(csdBondInstructionCid, _) <­ submit csd do

exerciseCmd csdBondInstructionCid Instruction.Allocate with

actors = S.singleton csd; allocation = CreditReceiver

(csdCashInstructionCid, _) <­ submit csd do

exerciseCmd csdCashInstructionCid Instruction.Allocate with

actors = S.singleton csd; allocation = Pledge cashHolding

(bankCashInstructionCid, _) <­ submit bank do

exerciseCmd bankCashInstructionCid Instruction.Allocate with

actors = S.singleton bank; allocation = CreditReceiver

­­ Approve instructions

investorBondInstructionCid <­ submit csd do

exerciseCmd investorBondInstructionCid Instruction.Approve with

actors = S.singleton csd; approval = DebitSender

csdBondInstructionCid <­ submit investor do

exerciseCmd csdBondInstructionCid Instruction.Approve with

actors = S.singleton investor; approval = TakeDelivery␣

↪→investorSecuritiesAccount

csdCashInstructionCid <­ submit bank do

exerciseCmd csdCashInstructionCid Instruction.Approve with

actors = S.singleton bank; approval = TakeDelivery bankCashAccount

bankCashInstructionCid <­ submit investor do

exerciseCmd bankCashInstructionCid Instruction.Approve with

actors = S.singleton investor; approval = TakeDelivery investorCashAccount

­­ Settle batch

[investorCashHoldingCid, bankCashHoldingCid, investorBondHoldingCid] <­

submitMulti (S.toList settlers) [publicParty] do

exerciseCmd result.batchCid Batch.Settle with actors = settlers

Following settlement, the investor receives a cash holding for the due coupon amount.

672 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Atomic Settlement

In the non-atomic settlement case above, settlement was done in two steps: first from issuer to CSD

and then from CSD to investor. In atomic settlement, this is done in on step.

The first part of the process is very similar. The first important difference is when the CSD exercises

the ClaimEffect choice, where the bond holdings of both the CSD and the investor are provided:

result <­ submit csd do

exerciseCmd lifecycleClaimRuleCid Claim.ClaimEffect with

claimer = csd

holdingCids = [csdBondHoldingCid, investorBondHoldingCid]

effectCid

batchId = Id "CouponSettlement"

There are now more settlement instructions (both from CSD to issuer and from issuer to CSD):

let

[csdBondInstructionCid1 ­­ old bond from CSD to issuer

, investorBondInstructionCid ­­ old bond from investor to CSD

, issuerBondInstructionCid ­­ new bond from issuer to CSD

, csdBondInstructionCid2 ­­ new bond from CSD to investor

, issuerCashInstructionCid ­­ coupon payment from issuer to CSD

, csdCashInstructionCid ­­ coupon payment from CSD to investor's bank

, bankCashInstructionCid ­­ coupon payment from investor's bank to␣

↪→investor

] = result.instructionCids

These will have to be allocated, approved and settled similarly to the non-atomic case above. See the

file Instrument/Generic/Test/Intermediated/BondCoupon.daml for full details.

Frequently Asked Questions

What if one party wants to cancel the settlement?

The parties who sign the Batch contract (the requestors) can exercise the Cancel choice of the Batch

to cancel all associated Instructions atomically.

Parties who are not a requestor can prevent settlement by not approving / allocating their instruc-

tions (since a batch is only successful if the settlement instructions are fully allocated and ap-

proved).

1.21.5.2 How to leverage Contingent Claims in custom instrument implementations

They PayoffModeling tutorial introduces the Contingent Claimsmodeling framework in the context of the

Generic Instrument. In this chapter, we will see how the library can instead be used to lifecycle custom

instrument implementations. The Bond and Swap instruments, for example, leverage Contingent

Claims behind the scenes to calculate pending coupon payments.

Let us explore in detail how the fixed rate bond instrument is implemented in Daml Finance. The goal

is for you to learn how to implement and lifecycle your own instrument template, should you need

an instrument type that is not already implemented in the library.

1.21. Tutorials 673

https://github.com/digital-asset/daml-finance/blob/main/src/test/daml/Daml/Finance/Instrument/Generic/Test/Intermediated/BondCoupon.daml

Daml SDK Documentation, 2.7.3

To follow the code snippets used in this tutorial in Daml Studio, you can clone the Daml Finance

repository and take a look at how the Bond Instrument template is implemented. In order to see how

lifecycling is performed, you can run the script in the Instrument/Bond/Test/FixedRate.daml file.

Template Definition

We start by defining a new template for the instrument. Here are the fields used for the fixed rate

instrument:

­­ | This template models a fixed rate bond.

­­ It pays a fixed coupon rate at the end of every coupon period.

template Instrument

with

depository : Party

­­ ^ The depository of the instrument.

issuer : Party

­­ ^ The issuer of the instrument.

id : Id

­­ ^ The identifier of the instrument.

version : Text

­­ ^ The instrument's version.

description : Text

­­ ^ A description of the instrument.

couponRate : Decimal

­­ ^ The fixed coupon rate, per annum. For example, in case of a "3.5% p.a␣

↪→coupon" this should

­­ be 0.035.

periodicSchedule : PeriodicSchedule

­­ ^ The schedule for the periodic coupon payments.

holidayCalendarIds : [Text]

­­ ^ The identifiers of the holiday calendars to be used for the coupon␣

↪→schedule.

calendarDataProvider : Party

­­ ^ The reference data provider to use for the holiday calendar.

dayCountConvention : DayCountConventionEnum

­­ ^ The day count convention used to calculate day count fractions. For␣

↪→example: Act360.

currency : InstrumentKey

­­ ^ The currency of the bond. For example, if the bond pays in USD this␣

↪→should be a USD cash

­­ instrument.

notional : Decimal

­­ ^ The notional of the bond. This is the face value corresponding to one␣

↪→unit of the bond

­­ instrument. For example, if one bond unit corresponds to 1000 USD,␣

↪→this should be 1000.0.

observers : PartiesMap

­­ ^ The observers of the instrument.

lastEventTimestamp : Time

­­ ^ ﴾Market﴿ time of the last recorded lifecycle event. If no event has␣

↪→occurred yet, the

­­ time of creation should be used.

These template variables describe the economic terms of a fixed rate bond.

674 Chapter 1. Canton References

https://github.com/digital-asset/daml-finance
https://github.com/digital-asset/daml-finance
https://github.com/digital-asset/daml-finance/blob/main/src/test/daml/Daml/Finance/Instrument/Bond/Test/FixedRate.daml

Daml SDK Documentation, 2.7.3

The Claims Interface

Wenowneed tomap the template variables to a Contingent Claims tree, the internal representationwe

wish to use for lifecycling. Note that the Contingent Claims tree is not a part of the template above,

instead it will be created dynamically upon request.

In order do that, we implement the Claims interface. This interface provides access to a genericmech-

anism to process coupon payments and redemptions. It will work in a similar way for the majority

of instrument types, regardless of their specific economic terms.

Here is a high level implementation of the Claims interface:

interface instance Claim.I for Instrument where

view = Claim.View with acquisitionTime = dateToDateClockTime $␣

↪→daysSinceEpochToDate 0

getClaims Claim.GetClaims{actor} = do

­­ get the initial claims tree ﴾as of the bond's acquisition time﴿

let getCalendars = getHolidayCalendars actor calendarDataProvider

(schedule, _) <­ rollSchedule getCalendars periodicSchedule␣

↪→holidayCalendarIds

let

useAdjustedDatesForDcf = True

ownerReceives = True

fxAdjustment = 1.0

couponClaims = createFixRatePaymentClaims dateToDateClockTime schedule␣

↪→periodicSchedule

useAdjustedDatesForDcf couponRate ownerReceives dayCountConvention␣

↪→notional currency

redemptionClaim = createFxAdjustedPrincipalClaim dateToDateClockTime␣

↪→ownerReceives

fxAdjustment notional currency periodicSchedule.terminationDate

pure [couponClaims, redemptionClaim]

The getClaims function is where we define the payoff of the instrument.

• First, we calculate the coupon payment dates by rolling out a periodic coupon schedule.

• The payment dates are then used to build claim sub-tree for the coupon payments.

• A claim sub-tree for the final redemption is also created.

• Finally, the coupon and redemption sub-trees are joined. Together, they yield the desired eco-

nomic terms for the bond.

How to define the redemption claim

The the redemption claim depends on the currency and the maturity date of the bond.

­­ | Create an FX adjusted principal claim.

­­ This can be used for both FX swaps ﴾using the appropriate FX rate﴿ and single␣

↪→currency bonds

­­ ﴾setting the FX rate to 1.0﴿.

createFxAdjustedPrincipalClaim : (Date ­> Time) ­> Bool ­> Decimal ­> Decimal ­>␣

↪→Deliverable ­>

Date ­> TaggedClaim

createFxAdjustedPrincipalClaim dateToTime ownerReceives fxRateMultiplier notional

cashInstrument valueDate =

let

(continues on next page)

1.21. Tutorials 675

Daml SDK Documentation, 2.7.3

(continued from previous page)

fxLegClaimAmount = when (TimeGte valueDate)

$ scale (Const fxRateMultiplier)

$ scale (Const notional)

$ one cashInstrument

fxLegClaim = if ownerReceives then fxLegClaimAmount else give fxLegClaimAmount

in

prepareAndTagClaims dateToTime [fxLegClaim] "Principal payment"

Keywords like when, scale, one and give should be familiar from the Payoff Modeling tutorial. TimeGte is

just a synonym for at.

The ownerReceives flag is used to indicate whether the owner of a holding on the bond ismeant to

receive the redemption payment. When this is set to false, the holding custodian will be entitled

to the payment.

How to define the coupon claims

The coupon claims are a bit more complicated to define. We need to take a schedule of adjusted

coupon dates and the day count convention into account.

createFixRatePaymentClaimsList : Schedule ­> PeriodicSchedule ­> Bool ­> Decimal ­

↪→> Bool ­>

DayCountConventionEnum ­> Decimal ­> Deliverable ­> [C]

createFixRatePaymentClaimsList schedule periodicSchedule useAdjustedDatesForDcf␣

↪→couponRate

ownerReceives dayCountConvention notional cashInstrument =

let

couponDatesAdjusted = map (.adjustedEndDate) schedule

couponAmounts = map (\p ­>

couponRate *

(calcPeriodDcf dayCountConvention p useAdjustedDatesForDcf

periodicSchedule.terminationDate periodicSchedule.frequency)

) schedule

couponClaimAmounts = andList $

zipWith

(\d a ­>

when (TimeGte d) $ scale (Const a) $ scale (Const notional) $ one␣

↪→cashInstrument

) couponDatesAdjusted couponAmounts

in

[if ownerReceives then couponClaimAmounts else give couponClaimAmounts]

For each coupon period, we calculate the adjusted end date and the actual coupon amount. We then

create each coupon claim in a way similar to the redemption claim above.

676 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Evolving the Instrument over time

The bond instrument gives the holder the right to receive future coupons and the redemption

amount. At issuance, all coupons are due. However, after the first coupon is paid, the holder of the

instrument is no longer entitled to receive it again. the lastEventTimestamp field in our template

is used to keep track of the latest executed coupon payment.

Evolution of the instrument over time (and calculation of the corresponding lifecycle effects) can be

performed using the Lifecycle.Rule template provided in the Daml.Finance.Claims package. This rule is

very generic and can be used for all instruments that implement the Claims interface.

Let us break its implementation apart to describe what happens in more detail:

• First, we retrieve the claim tree corresponding to the initial state of the instrument. We do so

by fetching the Claims interface we defined for the template.

claimInstrument <­ fetchInterfaceByKey @BaseInstrument.R instrument

• By using the lastEventTimestamp (in our case: the last time a couponwas paid), we can now

“fast forward” the claim tree to the current instrument state.

­­ Recover claims tree as of the lastEventTimestamp. For a bond, this just␣

↪→requires

­­ lifecycling as of the lastEventTimestamp.

dynInstrView <­ BaseInstrument.exerciseInterfaceByKey @DynamicInstrument.I␣

↪→instrument lifecycler

DynamicInstrument.GetView with viewer = lifecycler

let

prevElections = map (\e ­>

case e.election of

None ­> error "election missing"

Some (electorIsOwner, tag) ­> electionEvent e.t electorIsOwner tag)

dynInstrView.prevElections

prevEvents = prevElections <> [timeEvent dynInstrView.lastEventTimestamp]

­­ fast­forward the claims tree to the current version by replaying the␣

↪→previous events

­­ ﴾the previous elections + the lastEventTimestamp﴿

claims <­ fst <$> lifecycle lifecycler observableCids claimInstrument␣

↪→prevEvents

• Finally, we lifecycle the current instrument state to calculate pending cashflows. If there are

such cashflows (for example when a coupon payment is due), we create a Lifecycle Effect for it,

which can then be claimed and settled.

evolve Lifecycle.Evolve{eventCid; observableCids; instrument} = do

v <­ view <$> fetch eventCid

­­ Fast­forward the instrument from inception to the timestamp of the␣

↪→last event.

­­ Then, perform a time­based lifecycling according to the current␣

↪→event.

(remaining, pending, claims, claimInstrument, dynInstrView) <­

fastForwardAndLifecycle instrument observableCids v.eventTime␣

↪→lifecycler

let

(continues on next page)

1.21. Tutorials 677

Daml SDK Documentation, 2.7.3

(continued from previous page)

pendingAfterNetting = netOnTag pending

(otherConsumed, otherProduced) = splitPending pendingAfterNetting

if remaining == claims && null pendingAfterNetting then

pure (None, [])

else do

let

currentKey = BaseInstrument.getKey $ toInterface claimInstrument

newKey = currentKey with version = sha256 $ mconcat [show v.

↪→eventTime, show remaining]

producedInstrument = if isZero' remaining then None else Some␣

↪→newKey

tryCreateNewInstrument lifecycler dynInstrView.prevElections v.

↪→eventTime None instrument

newKey

effectCid <­ toInterfaceContractId <$> create Effect with

providers = singleton currentKey.issuer

id = v.id

description = v.description

targetInstrument = currentKey

producedInstrument

otherConsumed

otherProduced

settlementTime = Some v.eventTime

observers = (.observers) . view $ toInterface @Disclosure.I␣

↪→claimInstrument

pure (Some newKey, [effectCid])

Including market observables

In our fixed rate bond example above, the coupon amount is pre-determined at the inception of the

instrument. In contrast, a floating rate coupon is defined by the value of a reference rate during the

lifetime of the bond. Since we do not know this value when the instrument is created, we need to

define the coupon based on a future observation of the reference rate.

In the instrument definition, we need an identifier for the reference rate:

­­ | This template models a floating rate bond.

­­ It pays a floating coupon rate at the end of every coupon period.

­­ This consists of a reference rate ﴾observed at the beginning of the coupon␣

↪→period﴿ plus a coupon

­­ spread. For example, 3M Euribor + 0.5%.

template Instrument

with

depository : Party

­­ ^ The depository of the instrument.

issuer : Party

­­ ^ The issuer of the instrument.

id : Id

­­ ^ An identifier of the instrument.

version : Text

­­ ^ The instrument's version.

description : Text

­­ ^ A description of the instrument.

referenceRateId : Text

(continues on next page)

678 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

­­ ^ The floating rate reference ID. For example, in case of "3M Euribor +␣

↪→0.5%" this should

­­ be a valid reference to the "3M Euribor" reference rate.

When we create the claims for the coupon payments, we can then use ObserveAt to refer to the value

of the reference rate:

­­ | Calculate a floating rate amount for each payment date and create claims.

­­ The floating rate is always observed on the first day of each payment period␣

↪→and used for the

­­ corresponding payment on the last day of that payment period. This means that␣

↪→the calculation

­­ agent needs to provide such an Observable, irrespective of the kind of␣

↪→reference rate used ﴾e.g.

­­ a forward looking LIBOR or a backward looking SOFR­COMPOUND﴿.

createFloatingRatePaymentClaims : (Date ­> Time) ­> Schedule ­> PeriodicSchedule ­

↪→> Bool ­>

Decimal ­> Bool ­> DayCountConventionEnum ­> Decimal ­> Deliverable ­>␣

↪→Observable ­> TaggedClaim

createFloatingRatePaymentClaims dateToTime schedule periodicSchedule␣

↪→useAdjustedDatesForDcf

floatingRateSpread ownerReceives dayCountConvention notional cashInstrument␣

↪→referenceRateId =

let

couponClaimAmounts = andList $ map (\p ­>

when (TimeGte p.adjustedEndDate)

$ scale (

(ObserveAt referenceRateId p.adjustedStartDate + Const␣

↪→floatingRateSpread) *

(Const (calcPeriodDcf dayCountConvention p useAdjustedDatesForDcf

periodicSchedule.terminationDate periodicSchedule.frequency)

))

$ scale (Const notional)

$ one cashInstrument

) schedule

couponClaims = if ownerReceives then couponClaimAmounts else give␣

↪→couponClaimAmounts

in prepareAndTagClaims dateToTime [couponClaims] "Floating rate payment"

In this example, the observable is a reference interest rate. Other instrument types can require other

types of observables, such as an FX rate or a stock price.

Different ways to create and store the Contingent Claims tree

To summarize what we have seen so far, there are two different ways of using Contingent Claims in a

Daml Finance instrument.

When using the Generic Instrument, we create the claim tree at instrument inception and store this

representation explicitly on the ledger. After a lifecycle event, for example a coupon payment, a new

version of the instrument (with a different claim tree) supersedes the previous version.

In contrast, the approach used in this tutorial only stores the key economic terms of the bond on

the ledger. The claim tree is not stored on-ledger, but it is created “on-the-fly” when needed (for

example, when lifecycling).

1.21. Tutorials 679

Daml SDK Documentation, 2.7.3

Which approach is preferred?

The latter approach has the advantage that the claim tree can adapt to changes in reference data.

A change to e.g. a holiday calendar would automatically impact the claim tree the next time it is

dynamically created. This is not the case for the first approach, where the tree is static.

Also, if the economic terms of the instrument result in a very large claim tree, it could be desirable

not to store it on the ledger for performance reasons.

Finally, the “dynamic” approach allows for the terms of the template to be very descriptive to anyone

familiar with the payoff at hand.

On the other hand, if you need to quickly create a one-off instrument, the on-ledger approach allows

you to create the claims directly from a script, without first having to define a dedicated template.

Also, if you need to explicitly access Contingent Claims representations of older versions of the in-

strument on the ledger, for example for auditing reasons, that would be achieved out of the box with

the first approach.

1.22 Reference

This reference section contains code patterns, a glossary, as well as code-level documentation for

each Daml Finance package.

1.22.1 Glossary

This page defines some of the terminology used in the Daml Finance library.

We strive to use descriptive names and stay as close as possible to the traditional financialmeaning

of familiar terms.

1.22.1.1 Account

An account contract is a relationship between two parties: a custodian (or account provider) and an

owner.

An account is referenced by holdings and it is used to control who is entitled to instruct and receive

holding transfers.

1.22.1.2 Instrument

An instrument describes the economic terms (rights and obligations) of one unit of a financial con-

tract.

An instrument is referenced by holdings. It can be as simple as an ISIN code referencing real-world

(off-ledger) security, or it can encode specific on-ledger lifecycling logic.

680 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.22.1.3 Holding

A holding contract represents the ownership of a certain amount of an Instrument by an owner at a

custodian.

1.22.1.4 Fungibility

Fungibility refers to the ability of an Instrument to be interchanged with other individual instruments

of the same type. Fungible holdings can be split and merged.

1.22.1.5 Transferability

Transferability refers to the ability to transfer ownership of units of an Instrument to a new owner at

the same custodian.

1.22.1.6 Locking

Locking is amechanism that adds a third-party authorization requirement to any interaction with a

Holding (archive, transfer, split, merge, etc.).

It is used to ensure that holdings committed to a certain workflow are not consumed by other work-

flows.

1.22.1.7 Crediting / Debiting

Crediting is the process of creating new Holdings for a given instrument and debiting, conversely, is

removing existing ones.

1.22.1.8 Disclosure

Disclosure is the ability to reveal a contract to a third party by adding them as an observer.

1.22.1.9 Settlement

Settlement is the (possibly simultaneous) execution of ownership transfers according to predefined

instructions.

Many financial transactions are traditionally settled a few days after execution.

1.22. Reference 681

Daml SDK Documentation, 2.7.3

1.22.1.10 Lifecycling

Lifecycling refers to the evolution of Instruments over their lifetime.

Lifecycling can deal with intrinsic events, like contractual cash flows, and/or extrinsic events like

corporate actions or elections.

1.22.2 Patterns

This page explains some common design patterns used in the Daml Finance library.

1.22.2.1 Factory pattern

Factories are helper contracts that are used to create instruments, holdings, and other contracts.

The reason why using factories is a recommended pattern when using Daml Finance has to do with

application decoupling / upgradeability of your application.

For example, suppose that you are writing Daml code to issue equity instruments. Your workflow

references the version 0.2.1 of the Equity implementation package and at some point creates an in-

strument as follows.

create Equity.Instrument with

issuer = myParty

id = Id "MyCompany"

..

If the equity package gets updated to version 0.2.2 and a new field is added to the instrument (or

a choice is changed, or a new lifecycle event is added, …) then you are forced to upgrade your Daml

code in order to use the new feature and will have to deal with upgrading multiple templates on the

ledger.

A safer approach is for your Daml code to only reference the Equity interface package, which contains

interface definitions and is updated less frequently.

However, you would now need a way to create equity instruments without referencing Daml.

Finance.Instrument.Equity in your main Daml workflow. To do this, you can setup a Script

to run during ledger initialisation that will create a factory contract and cast it to the corresponding

interface. You can then use the factory in your main workflow code to create the instruments.

When an upgraded instrument comes along, you would need to write code to archive the old factory

and create the new one, in order to issue the new instruments. However, the Daml code for your

workflow could in principle stay untouched.

For an example where the Factory pattern is used, check out the Holdings tutorial.

682 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.22.2.2 Reference pattern

The Reference pattern is used to leverage the functionalities of Contract Keys when working with in-

terfaces. This is required as there is currently no built-in support at the language level for interface

keys.

Wewant for instance to use an InstrumentKey to identify instruments across a number of implement-

ing templates.

To do that, we define a Reference template that

• is keyed by the InstrumentKey

• contains the interface contract id of the target instrument

We can then fetch an interface “by key” by

• fetching the Reference template by key (fetchByKey)

• reading and fetch-ing the stored contract id

Similarly, this pattern also lets us exercise a choice on an interface “by key”.

The Reference pattern is currently used in Daml Finance for instruments and accounts, where we en-

sure that a template and its companion Reference template are kept in sync. It is however important

to understand this pattern should you implement custom instruments or accounts.

1.22.2.3 View of an interface contract and the GetView choice

There are different ways to access the data of a contract, for example the terms of an instrument:

1. fetch the interface contract using its contract ID (this requires the submitting party to be a

stakeholder of the contract). It is then possible to use the view built-in method to get the

interface view.

2. GetView: by calling this choice on the interface, for example on a callable bond, a party can

get the view of a contract, without necessarily being a stakeholder of the contract. This can

be useful in situations where someone needs access to reference data, but should not be a

stakeholder of the contract. Specifically, if publicParty is an observer of an instrumentCid, a

party would only require readAs rights of publicParty in order to exercise GetView. In the Daml

Finance library, this choice has been implemented not only for instruments but also for other

types of contracts, e.g. Holdings and lifecycle related contracts like Rule and Effect.

1.22. Reference 683

Daml SDK Documentation, 2.7.3

1.22.3 Daml Finance

Here is a complete list of modules in the financial library:

1.22.3.1 ContingentClaims.Core.Builders

Functions

unrollDates : Int -> Int -> [Month] -> Int -> [Date]

Helper function to generate a series of fixing dates, e.g. for coupon payments in fixed. This

assumes fixingMonths and fixingDates are ordered. The Daml Finance library(https://

github.com/digital-asset/daml-finance) has more feature-complete date handling functions.

forward : t -> Observation t x o -> Claim t x a o -> Claim t x a o

Forward agreement. Discounted by (potentially stochastic) interest rate r.

fra : t -> t -> Observation t x o -> Observation t x o -> Claim t x a o -> Claim t x a o

Forward rate agreement.

zcb : t -> x -> ccy -> Claim t x ccy o

Zero Coupon Bond.

floating : Observation t x o -> Observation t x o -> ccy -> [t] -> Claim t x ccy o

A floating rate bond.

fixed : x -> x -> ccy -> [t] -> Claim t x ccy o

A (fixed rate) coupon paying bond.

european : t -> Claim t x a o -> Claim t x a o

European option on the input claim. At maturity, the holder must EXERCISE or EXPIRE the

claim. e.g. call option on S&P 500:

european (date 2021 05 14) (observe "SPX" ­ pure 4200)

bermudan : [t] -> Claim t x a o -> Claim t x a o

Bermudan option on the input claim. Given a pre-defined set of times {t_1, t_2, .., t_N}, it allows

the holder to acquire the underlying claim on atmost one of these times. At each election time

before maturity, the holder must EXERCISE the option or POSTPONE. At maturity, the holder

must EXERCISE or EXPIRE.

american : t -> t -> Claim t x a o -> Claim t x a o

American option (knock-in). The lead parameter is the first possible acquisition date.

swap : ([t] -> Claim t x a o) -> ([t] -> Claim t x a o) -> [t] -> Claim t x a o

Asset swap on specific fixing dates [t]. For example:

fixedUsdVsFloatingEur : [t] ­> Serializable.Claim Text

fixedUsdVsFloatingEur =

fixed 100.0 0.02 "USD" `swap` floating (observe "USDEUR" * pure 100.0)␣

↪→(observe "EUR1M") "EUR"

684 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-int-37261
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-int-37261
https://docs.daml.com/daml/stdlib/DA-Date.html#type-da-date-types-month-22803
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-int-37261
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://github.com/digital-asset/daml-finance
https://github.com/digital-asset/daml-finance

Daml SDK Documentation, 2.7.3

1.22.3.2 ContingentClaims.Core.Claim

Functions

zero : Claim t x a o

Constructs a claim without rights or obligations.

one : a -> Claim t x a o

Constructs a claim that delivers one unit of a immediately to the bearer.

give : Claim t x a o -> Claim t x a o

Constructs a claim that reverses the obligations of the bearer and their counterparty.

and : Claim t x a o -> Claim t x a o -> Claim t x a o

Used to additively combine two claims together. In order to use this, you must import this

module qualified or hide the and operator from Prelude.

or : Electable t x a o -> Electable t x a o -> Claim t x a o

Gives the bearer the right to choose between the input claims. In order to use this, you must

import this module qualified or hide the or operator from Prelude.

andList : [Claim t x a o] -> Claim t x a o

Used to additively combine a list of claims together. It is equivalent to applying the and builder

recursively.

orList : [Electable t x a o] -> Claim t x a o

Gives the bearer the right to choose between the input claims. It is equivalent to applying the

or builder recursively.

cond : Inequality t x o -> Claim t x a o -> Claim t x a o -> Claim t x a o

Gives the bearer the right to the first claim if predicate is true, else the second claim.

scale : Observation t x o -> Claim t x a o -> Claim t x a o

Multiplies the input claim by a scaling factor (which can be non-deterministic).

when : Inequality t x o -> Claim t x a o -> Claim t x a o

Acquires the input claim on the first instant that predicate is true.

anytime : Inequality t x o -> Text -> Claim t x a o -> Claim t x a o

Gives the bearer the right to enter a claim at any time predicate is true.

until : Inequality t x o -> Claim t x a o -> Claim t x a o

Expires the input claim on the first instant that predicate is true.

mapParams : (t -> i) -> (i -> t) -> (a -> a’) -> (o -> o’) -> (x -> x’) -> Claim i x a o -> Claim t x’ a’ o’

Replaces parameters in a claims using the input mapping functions. This can be used to e.g.

map the time parameter in a claim from Date to Time, or to map the asset type parameter

from an abstract Text to a concrete InstrumentKey.

at : t -> Inequality t x o

Given t, constructs a predicate that is True for time ≥ t, False otherwise.

upTo : t -> Inequality t x a

Given t, constructs a predicate that is True for time ≤ t, False otherwise.

(<=) : Observation t x o -> Observation t x o -> Inequality t x o

Given observationso1 ando2, constructs the predicateo1 ≤ o2. In order to use this, youmust

import this module qualified or hide the (<=) operator from Prelude.

1.22. Reference 685

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952

Daml SDK Documentation, 2.7.3

compare : (Ord t, Ord x, Number x, Divisible x, CanAbort m) => (o -> t -> m x) -> Inequality t x o -> t -> m

Bool

Reify the Inequality into an observation function. This function is used to convert an ab-

stract predicate, e.g. S ≤ 50.0 to the actual boolean observation function t ­> m Bool.

1.22.3.3 ContingentClaims.Core.Internal.Claim

Data Types

data Claim t x a o

Core data type used to model cashflows of instruments. In the reference paper from

Peyton-Jones this is called ‘Contract’. We renamed it to avoid ambiguity.

• t corresponds to the time parameter.

• x corresponds to the Observation output type. An observation is a function from

t to x. A common choice is to use Time and Decimal, respectively.

• a is the representation of a deliverable asset, e.g. a Text ISIN code or an Instru­

mentKey.

• o is the representation of an observable, e.g. a Text.

You shouldbuild theClaimusing the smart constructors (e.g. zero,and) insteadof using

the data constructors directly (Zero, And).

Zero

Represents an absence of claims. Monoid And identity.

One a

The bearer acquires one unit of a immediately.

Give (Claim t x a o)

The obligations of the bearer and the counterparty are reversed.

And

Used to combine multiple rights together.

Field Type Description

a1 Claim t x a o

a2 Claim t x a o

as [Claim t x a

o]

Or

Gives the bearer the right to choose between several claims.

686 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-ord-6395
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-ord-6395
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-num-number-53664
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-num-divisible-86689
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-lf-canabort-29060
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265

Daml SDK Documentation, 2.7.3

Field Type Description

or1 Electable t x

a o

or2 Electable t x

a o

ors [Electable t x

a o]

Cond

Gives the bearer the right to the first claim if predicate is true, else the second

claim.

Field Type Description

predicate Inequality t x

o

success Claim t x a o

failure Claim t x a o

Scale

Multiplies the claim by k (which can be non-deterministic).

Field Type Description

k Observation

t x o

claim Claim t x a o

When

Defers the acquisition of claim until the first instant that predicate is true.

Field Type Description

predicate Inequality t x

o

claim Claim t x a o

Anytime

Gives the bearer the right to enter a claim at any time the predicate is true.

Field Type Description

predicate Inequality t x

o

electable Electable t x

a o

Until

Expires said claim on the first instant that predicate is true.

1.22. Reference 687

Daml SDK Documentation, 2.7.3

Field Type Description

predicate Inequality t x

o

claim Claim t x a o

instance Corecursive (Claim t x a o) (ClaimF t x a o)

instance Recursive (Claim t x a o) (ClaimF t x a o)

instance (Eq a, Eq x, Eq o, Eq t) => Eq (Claim t x a o)

instance (Show t, Show x, Show a, Show o) => Show (Claim t x a o)

instanceMonoid (Claim t x a o)

instance Semigroup (Claim t x a o)

type Electable t x a o = (Text, Claim t x a o)

Type synonym for sub-trees that can be elected in an Or or Anytime node. The textual tag is

used to identify each sub-tree when an election is made.

data Inequality t x o

Data type for boolean predicates supported by the library. A boolean predicate is a generic

functionwith signaturet ­> Bool. However, a limited set of predicates is currently sup-

ported.

TimeGte t

True when time ≥ t, False otherwise.

TimeLte t

True when time ≤ t, False otherwise.

Lte (Observation t x o, Observation t x o)

True when o(t) ≤ o'(t), False otherwise, for a pair of observations o, o'.

instance (Eq t, Eq x, Eq o) => Eq (Inequality t x o)

instance (Show t, Show x, Show o) => Show (Inequality t x o)

1.22.3.4 ContingentClaims.Core.Observation

Data Types

data Observation t x o

Implementation of market observables. Conceptually it is helpful to think of this as the

type t ­> x, or t ­> Update x.

Const

A numerical constant, e.g. 10.0.

Field Type Description

value x

688 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-prelude-monoid-6742
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-prelude-semigroup-78998
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

Observe

A named parameter, e.g. "LIBOR 3M".

Field Type Description

key o

ObserveAt

A named parameter, e.g. "LIBOR 3M", observed at an explicit point in time.

Field Type Description

key o

t t

Add (Observation t x o, Observation t x o)

Sum of two observations.

Neg (Observation t x o)

Opposite of an observation.

Mul (Observation t x o, Observation t x o)

Product of two observations.

Div (Observation t x o, Observation t x o)

Division of two observations.

instance Corecursive (Observation t x o) (ObservationF t x o)

instance Recursive (Observation t x o) (ObservationF t x o)

instance Functor (Observation t x)

instance (Eq x, Eq o, Eq t) => Eq (Observation t x o)

instance Additive x => Additive (Observation t x o)

instanceMultiplicative x => Divisible (Observation t x o)

instanceMultiplicative x => Multiplicative (Observation t x o)

instance (Additive x, Multiplicative x) => Number (Observation t x o)

instance (Show t, Show x, Show o) => Show (Observation t x o)

Functions

pure : x -> Observation t x o

Smart constructor for Const. Lifts a constant to an observation.

observe : o -> Observation t x o

Smart constructor for Observe. Looks up the value of o.

1.22. Reference 689

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-base-functor-31205
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-num-additive-25881
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-num-additive-25881
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-num-multiplicative-10593
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-num-divisible-86689
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-num-multiplicative-10593
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-num-multiplicative-10593
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-num-additive-25881
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-num-multiplicative-10593
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-num-number-53664
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

eval : (Ord t, Number x, Divisible x, CanAbort m) => (o -> t -> m x) -> Observation t x o -> t -> m x

Reify the Observation into an observation function. This function is used to convert an ab-

stract observation, e.g. LIBOR 3M + 0.005 to the actual observation function t ­> m x.

mapParams : (i -> t) -> (o -> o’) -> (x -> x’) -> Observation i x o -> Observation t x’ o’

The functor map operation and also map any parameters to keys. For example, could map the

param "spot" to an ISIN code "GB123456789". Also contra-maps time parameter, i.e. from rela-

tive time values to absolute ones.

@ mapParams identity = bimap

1.22.3.5 ContingentClaims.Core.Util.Recursion

This module collects a set of utilities used to execute recursion schemes. The morphisms ending in

‘M’ are monadic variants, allowing to interleave, e.g., Update or Script. cataM after Tim Williams’

talk, https://www.youtube.com/watch?v=Zw9KeP3OzpU.

Functions

paraM : (Monad m, Traversable f, Recursive b f) => (f (b, a) -> m a) -> b -> m a

Monadic paramorphism.

anaM : (Monad m, Traversable f, Corecursive b f) => (a -> m (f a)) -> a -> m b

Monadic anamorphism.

apoM : (Monad m, Traversable f, Corecursive b f) => (a -> m (f (Either b a))) -> a -> m b

Monadic apomorphism.

futuM : (Monad m, Traversable f, Corecursive b f) => (a -> m (f (Free f a))) -> a -> m b

Monadic futumorphism.

apoCataM : (Monad m, Traversable f, Corecursive b f) => (f b -> b) -> (a -> m (f (Either b a))) -> a -> m b

Monadic lazy unfold (apoM) followed by a fold (cata). This Specialised lazy re-fold is used by

lifecycle.

hyloM : (Traversable f, Monad n) => (f b -> b) -> (a -> n (f a)) -> a -> n b

A modified hylo (refold), whith an interleaved monad effect (typically Update).

ghyloM : (Comonad w, Traversable f, Monad m, Traversable m, Monad n) => (f (w c) -> w (f c)) -> (m (f

d) -> f (m d)) -> (f (w b) -> b) -> (a -> n (f (m a))) -> a -> n b

Generalised hylomorphism (with monadic unfold).

funzip : Functor f => f (a, b) -> (f a, f b)

Functor unzip.

synthesize : (Functor f, Recursive b f) => (f attr -> attr) -> b -> Cofree f attr

Annotate a recursive type bottom-up.

inherit : (Functor f, Corecursive b f, Recursive b f) => (b -> attr -> attr) -> attr -> b -> Cofree f attr

Annotate a recursive type top-down.

690 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-ord-6395
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-num-number-53664
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-num-divisible-86689
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-lf-canabort-29060
https://docs.daml.com/daml/stdlib/DA-Traversable.html#class-da-traversable-traversable-18144
https://docs.daml.com/daml/stdlib/DA-Traversable.html#class-da-traversable-traversable-18144
https://docs.daml.com/daml/stdlib/DA-Traversable.html#class-da-traversable-traversable-18144
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-types-either-56020
https://docs.daml.com/daml/stdlib/DA-Traversable.html#class-da-traversable-traversable-18144
https://docs.daml.com/daml/stdlib/DA-Traversable.html#class-da-traversable-traversable-18144
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-types-either-56020
https://docs.daml.com/daml/stdlib/DA-Traversable.html#class-da-traversable-traversable-18144
https://docs.daml.com/daml/stdlib/DA-Traversable.html#class-da-traversable-traversable-18144
https://docs.daml.com/daml/stdlib/DA-Traversable.html#class-da-traversable-traversable-18144
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-base-functor-31205
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-base-functor-31205
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-base-functor-31205

Daml SDK Documentation, 2.7.3

1.22.3.6 ContingentClaims.Lifecycle.Lifecycle

Data Types

data Pending t a

Used to specify pending payments.

Pending

Field Type Description

t t Payment time.

amount Decimal Amount of asset to be paid.

asset a Asset in which the payment is denomi-

nated.

instance (Eq t, Eq a) => Eq (Pending t a)

instance (Show t, Show a) => Show (Pending t a)

data Result t a o

Returned from a lifecycle operation.

Result

Field Type Description

pending [Pending t a] Payments requiring settlement.

remaining C t a o The tree after lifecycled branches have

been pruned.

instance (Eq a, Eq o, Eq t) => Eq (Result t a o)

instance (Show t, Show a, Show o) => Show (Result t a o)

Functions

lifecycle : (Ord t, Eq a, CanAbort m) => (o -> t -> m Decimal) -> C t a o -> t -> t -> m (Result t a o)

Collect claims falling due into a list, and return the treewith those nodes pruned. mwill typically

be Update. It is parametrised so it can be run in a Script. The first argument is used to

lookup the value of any Observables. Returns the pruned tree + pending settlements up to

the provided market time.

exercise : (Ord t, Eq a, Eq o, CanAbort m) => (o -> t -> m Decimal) -> (Bool, Text) -> C t a o -> t -> t -> m (C

t a o)

Acquire Anytime and Or nodes, by making an election. Import this qualified to avoid

clashes with Prelude.exercise.

1.22. Reference 691

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-ord-6395
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-lf-canabort-29060
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-ord-6395
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-lf-canabort-29060
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952

Daml SDK Documentation, 2.7.3

1.22.3.7 ContingentClaims.Lifecycle.Util

This module defines a set of utility functions to extract information from claim trees.

Functions

fixings : Claim t x a o -> [t]

Return the fixingdates of a claim. This doesnot discriminate betweenoptional dateswhichmay

result from a condition, and outright fixings. It also does not correctly account for malformed

trees, where subtrees are orphaned due to impossible When statements, e.g., When (t > 1)

((When t < 1) _).

expiry : Ord t => Claim t x a o -> Optional t

Return the time after which the claim is worthless, i.e., value = 0, if such a time exists. Also

known as ‘maturity’ or ‘horizon’ in the Eber/Jones paper.

payoffs : (Eq t, Eq x, Eq o, Multiplicative x) => Claim t x a o -> [(Observation t x o, a)]

Return a list of possible scale-factor/payoff pairs. This does not discriminate between condi-

tional and outright payoffs.

pruneZeros : Claim t x a o -> Claim t x a o

Prunes sub-trees which are Zero.

isZero : Claim t x a o -> Bool

Checks if a claim is the Zero claim. This avoids requiring the equality type constraint on a.

1.22.3.8 ContingentClaims.Valuation.MathML

Typeclasses

class ToXml a where

Renders an Expr into MathML presentation format.

presentation : a -> Xml

instance ToXml t => ToXml (Expr t)

instance ToXml Decimal

instance ToXml Text

instance ToXml Date

1.22.3.9 ContingentClaims.Valuation.Stochastic

Typeclasses

class IsIdentifier t where

localVar : Int -> t

Produce a local identifier of type t, subindexed by i.

692 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-ord-6395
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-num-multiplicative-10593
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-int-37261

Daml SDK Documentation, 2.7.3

Data Types

data Expr t

Represents an expression of t-adapted stochastic processes.

Const Decimal

Ident t

Proc

Field Type Description

name Text

process Process t

filtration t

Sup

Field Type Description

lowerBound t

tau t

rv Expr t

Sum [Expr t]

Neg (Expr t)

Mul (Expr t, Expr t)

Pow (Expr t, Expr t)

I (Expr t, Expr t)

E

Field Type Description

rv Expr t

filtration t

instance ToXml t => ToXml (Expr t)

instance Corecursive (Expr t) (ExprF t)

instance Recursive (Expr t) (ExprF t)

instance Eq t => Eq (Expr t)

instance Show t => Show (Expr t)

data ExprF t x

1.22. Reference 693

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

Base functor for Expr. Note that this is ADT is re-used in a couple of places, e.g., Process,

where however not every choice is legal and will lead to a partial evaluator.

ConstF Decimal

IdentF t

ProcF

Field Type Description

name Text

process Process t

filtration t

SupF

Field Type Description

lowerBound t

tau t

rv x

SumF [x]

NegF x

MulF

Field Type Description

lhs x

rhs x

PowF

Field Type Description

lhs x

rhs x

I_F

Field Type Description

lhs x

rhs x

E_F

694 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952

Daml SDK Documentation, 2.7.3

Field Type Description

rv x

filtration t

instance Corecursive (Expr t) (ExprF t)

instance Recursive (Expr t) (ExprF t)

instance Functor (ExprF t)

instance Foldable (ExprF t)

instance Traversable (ExprF t)

data Process t

A stochastic processes. Currently this represents a Geometric Browniam Motion, i.e., dX

/ X = α dt + β dW. Eventually, we wish to support other processes such as Levy.

Process

Field Type Description

dt Expr t

dW Expr t

instance Eq t => Eq (Process t)

instance Show t => Show (Process t)

Functions

riskless : t -> Process t

Helper function to create a riskless process dS = r dt.

gbm : t -> t -> Process t

Helper function to create a geometric BM dS = μ dt + σ dW.

fapf : (Eq a, Show a, Show o, IsIdentifier t) => a -> (a -> Process t) -> (a -> a -> Process t) -> (o -> Process t)

-> t -> Claim t Decimal a o -> Expr t

Converts a Claim into the Fundamental Asset Pricing Formula. The ϵ expressions are defined

as E1-E10 in the Eber/Peyton-Jones paper. This is still an experimental feature.

simplify : Expr t -> Expr t

This is meant to be a function that algebraically simplifies the FAPF by

1. using simple identities and ring laws

2. change of numeraire technique. This is still an experimental feature.

1.22. Reference 695

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-base-functor-31205
https://docs.daml.com/daml/stdlib/DA-Foldable.html#class-da-foldable-foldable-25994
https://docs.daml.com/daml/stdlib/DA-Traversable.html#class-da-traversable-traversable-18144
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135

Daml SDK Documentation, 2.7.3

1.22.3.10 Daml.Finance.Account.Account

Templates

template Account

A relationship between a custodian and an asset owner. It is referenced by holdings.

Signatory: custodian, owner

Field Type Description

custodian Party The account provider.

owner Party The account owner.

controllers Controllers Controllers of transfers.

id Id Identifier of the account.

description Text Description of the account.

holdingFactoryCid ContractId F Associated holding factory.

observers PartiesMap Observers.

• Choice Archive

Controller: custodian, owner

Returns: ()

(no fields)

• interface instance I for Account

• interface instance I for Account

template Factory

Template used to create accounts.

Signatory: provider

Field Type Description

provider Party The factory’s provider.

observers PartiesMap The factory’s observers.

• Choice Archive

Controller: provider

Returns: ()

(no fields)

• interface instance F for Factory

• interface instance I for Factory

696 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932

Daml SDK Documentation, 2.7.3

Data Types

type T = Account

Type synonym for Account.

1.22.3.11 Daml.Finance.Claims.Lifecycle.Rule

Templates

template Rule

Rule to process an event for instruments that are modelled using "on-the-fly" claims (the

tree is not stored on-ledger but generated dynamically). This rule supports both time

update events and election events.

Signatory: providers

Field Type Description

providers Parties Providers of the lifecycling rule.

lifecycler Party Party performing the lifecycling.

observers PartiesMap Observers of the rule.

id Id Identifier for the rule contract.

description Text Textual description.

• Choice Archive

Controller: providers

Returns: ()

(no fields)

• interface instance Exercisable for Rule

• interface instance I for Rule

• interface instance I for Rule

1.22.3.12 Daml.Finance.Claims.Util

Functions

isZero : Party -> I -> Update Bool

Checks if all input claims are zero.

isZero’ : [TaggedClaim] -> Bool

Checks if all input claims are zero.

toTime : (t -> Time) -> Claim t x a o -> Claim Time x a o

Maps the time parameter in a Claim to Time. As Time is generally understood to express UTC

time, we recommend mapping to UTC time.

1.22. Reference 697

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886

Daml SDK Documentation, 2.7.3

1.22.3.13 Daml.Finance.Claims.Util.Builders

This module includes utility functions used to build contingent claim trees that represent specific

payoffs. A Schedule is usually used as an input to these utility functions. Given that schedules

are defined in terms of dates, a claim where the time parameter is Date is returned. These are then

mapped to claims where the time parameter is Time using a (user-provided) conversion function.

Data Types

type C = Claim Date Decimal Deliverable Observable

type O = Observation Date Decimal Observable

Functions

prepareAndTagClaims : (Date -> Time) -> [C] -> Text -> TaggedClaim

Convert the claims to UTCTime and tag them.

createFixRatePaymentClaimsList : Schedule -> PeriodicSchedule -> Bool -> Decimal -> Bool -> DayCount-

ConventionEnum -> Decimal -> Deliverable -> [C]

createFixRatePaymentClaims : (Date -> Time) -> Schedule -> PeriodicSchedule -> Bool -> Decimal -> Bool

-> DayCountConventionEnum -> Decimal -> Deliverable -> TaggedClaim

Calculate a fix rate amount for each payment date and create claims.

createConditionalCreditFixRatePaymentClaims : (Date -> Time) -> Schedule -> PeriodicSchedule -> Bool ->

Decimal -> Bool -> DayCountConventionEnum -> Decimal -> Deliverable -> Observable -> TaggedClaim

Calculate a fix rate amount (if a credit event has not yet happened) for each payment date and

create claims.

createCreditEventPaymentClaims : (Date -> Time) -> Bool -> Decimal -> Deliverable -> Observable -> Ob-

servable -> PeriodicSchedule -> TaggedClaim

Calculate a (1-recoveryRate) payment if a credit event just happened and create claims.

createFloatingRatePaymentClaims : (Date -> Time) -> Schedule -> PeriodicSchedule -> Bool -> Decimal ->

Bool -> DayCountConventionEnum -> Decimal -> Deliverable -> Observable -> TaggedClaim

Calculate a floating rate amount for each payment date and create claims. The floating rate

is always observed on the first day of each payment period and used for the corresponding

payment on the last day of that payment period. This means that the calculation agent needs

to provide such an Observable, irrespective of the kind of reference rate used (e.g. a forward

looking LIBOR or a backward looking SOFR-COMPOUND).

createAssetPerformancePaymentClaims : (Date -> Time) -> Schedule -> PeriodicSchedule -> Bool -> Bool

-> DayCountConventionEnum -> Decimal -> Deliverable -> Observable -> TaggedClaim

Calculate the asset performance for each payment date and create claims. The performance

is calculated using the reference asset from the start date to the end date of each payment

period. The reference asset Observable needs to contain the appropriate type of fixings:

• unadjusted fixings in case of a price return asset swap

• adjusted fixings in case of a total return asset swap

createFxAdjustedPrincipalClaim : (Date -> Time) -> Bool -> Decimal -> Decimal -> Deliverable -> Date ->

TaggedClaim

698 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253

Daml SDK Documentation, 2.7.3

Create an FX adjusted principal claim. This can be used for both FX swaps (using the appro-

priate FX rate) and single currency bonds (setting the FX rate to 1.0).

createVanillaOptionClaim : (Date -> Time) -> Decimal -> Observable -> Deliverable -> Date -> Bool -> C

Create the claim for a long vanilla option (cash-settled, automatically exercised).

createEuropeanCashClaim : (Date -> Time) -> Bool -> Decimal -> Observable -> Deliverable -> Date -> Bool

-> TaggedClaim

Create the claim for a cash-settled, automatically exercised option (long or short).

createBarrierEuropeanCashClaim : (Date -> Time) -> Bool -> Decimal -> Observable -> Deliverable -> Date

-> Bool -> Decimal -> Date -> Bool -> Bool -> TaggedClaim

Create the claim for a barrier option (automatically exercised, cash-settled).

createEuropeanPhysicalClaim : (Date -> Time) -> Bool -> Decimal -> Deliverable -> Deliverable -> Date ->

Bool -> TaggedClaim

Create the claim for a physically settled European option.

createDividendOptionClaim : (Date -> Time) -> Date -> InstrumentQuantity -> Optional InstrumentQuantity

-> Optional InstrumentQuantity -> TaggedClaim

Create the claim for a physically settled Dividend option.

1.22.3.14 Daml.Finance.Claims.Util.Date

Data Types

type O = Observation Date Decimal Observable

Functions

convertImplicitDcfToActualDcf : O -> SchedulePeriod -> Bool -> PeriodicSchedule -> DayCountConventio-

nEnum -> O

Calculate a conversion factor if the dcf used for a floating rate compounded index does not

match the dcf used for an instrument.

1.22.3.15 Daml.Finance.Claims.Util.Lifecycle

Functions

timeEvent : Time -> EventData

Constructor for a time event.

electionEvent : Time -> Bool -> Text -> EventData

Constructor for an election event.

lifecycleClaims : [ContractId I] -> Time -> [TaggedClaim] -> [EventData] -> Update ([TaggedClaim], [Pend-

ing])

Lifecycle a set of claims at specified events.

netOnTag : [Pending] -> [Pending]

Net pending payments on the same instrument, which also have the same tag.

1.22. Reference 699

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072

Daml SDK Documentation, 2.7.3

lifecycle : Party -> [ContractId I] -> I -> [EventData] -> Update ([TaggedClaim], [Pending])

Lifecycle a claim instrument at specified events.

splitPending : [Pending] -> ([InstrumentQuantity], [InstrumentQuantity])

Map pending settlements into corresponding instrument quantities and split them into con-

sumed and produced. Pending items with an amount of 0.0 are discarded.

1.22.3.16 Daml.Finance.Data.Numeric.Observation

Templates

template Factory

Implementation of the corresponding Observation Factory.

Signatory: provider

Field Type Description

provider Party The factory’s provider.

observers PartiesMap The factory’s observers.

• Choice Archive

Controller: provider

Returns: ()

(no fields)

• interface instance F for Factory

• interface instance I for Factory

template Observation

An implementation of NumericObservable that explicitly stores time-dependent nu-

merical values. For example, it can be used for equity or rate fixings.

Signatory: provider

Field Type Description

provider Party The reference data provider.

id Id A textual identifier.

observations Map Time

Decimal

The time-dependent values.

observers PartiesMap Observers.

• Choice Archive

Controller: provider

Returns: ()

(no fields)

• interface instance I for Observation

• interface instance I for Observation

• interface instance I for Observation

700 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-map-90052
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135

Daml SDK Documentation, 2.7.3

Data Types

type T = Observation

Type synonym for Observation.

1.22.3.17 Daml.Finance.Data.Reference.HolidayCalendar

Templates

template Factory

Implementation of the corresponding HolidayCalendar Factory.

Signatory: provider

Field Type Description

provider Party The factory’s provider.

observers PartiesMap The factory’s observers.

• Choice Archive

Controller: provider

Returns: ()

(no fields)

• interface instance F for Factory

• interface instance I for Factory

template HolidayCalendar

Holiday calendar of an entity (typically an exchange or a currency). It is maintained by a

reference data provider.

Signatory: provider

Field Type Description

calendar HolidayCalen-

darData

Holiday Calendar Data used to define holidays.

observers PartiesMap Observers.

provider Party The party maintaining the HolidayCalen­

dar.

• Choice Archive

Controller: provider

Returns: ()

(no fields)

• Choice GetCalendar

Returns the calendar’s HolidayCalendarData.

Controller: viewer

Returns: HolidayCalendarData

Field Type Description

viewer Party The party fetching the calendar.

• interface instance I for HolidayCalendar

1.22. Reference 701

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932

Daml SDK Documentation, 2.7.3

• interface instance I for HolidayCalendar

Data Types

data HolidayCalendarKey

Key used to look up the holiday calendar of an entity, as defined by a reference data

provider.

HolidayCalendarKey

Field Type Description

provider Party The party maintaining the Holiday­

Calendar.

id Text A textual label identifying the calendar

(e.g. "NYSE" for the New York Stock Ex-

change holiday calendar).

instance Eq HolidayCalendarKey

instance Show HolidayCalendarKey

instance HasExerciseByKey HolidayCalendar HolidayCalendarKey GetCalendar HolidayCalen-

darData

instance HasExerciseByKey HolidayCalendar HolidayCalendarKey Archive ()

instance HasFetchByKey HolidayCalendar HolidayCalendarKey

instance HasFromAnyContractKey HolidayCalendar HolidayCalendarKey

instance HasKey HolidayCalendar HolidayCalendarKey

instance HasLookupByKey HolidayCalendar HolidayCalendarKey

instance HasMaintainer HolidayCalendar HolidayCalendarKey

instance HasToAnyContractKey HolidayCalendar HolidayCalendarKey

Functions

getHolidayCalendars : Party -> Party -> [Text] -> Update [HolidayCalendarData]

Retrieve holiday calendar(s) from the ledger.

rollSchedule : ([Text] -> Update [HolidayCalendarData]) -> PeriodicSchedule -> [Text] -> Update (Schedule,

[HolidayCalendarData])

Retrieveholiday calendar(s) from the ledger and roll out a schedule. Returns the rolled schedule

and the required calendars.

702 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasexercisebykey-36549
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasexercisebykey-36549
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-archive-15178
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasfetchbykey-54638
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasfromanycontractkey-95587
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-haskey-87616
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-haslookupbykey-92299
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasmaintainer-28932
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hastoanycontractkey-35010
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072

Daml SDK Documentation, 2.7.3

1.22.3.18 Daml.Finance.Data.Time.DateClock

Templates

template DateClock

ADateClock is a template used to keep track of the current date. It implements theTime

rule interface to be able to advance and rewind business time. It also implements the

TimeObservable interface. Specifically, each date D is mapped to D 00:00:00 UTC.

If your use-case involves working across multiple time zones, you may need to define

multiple DateClock templates with specific time conversions.

Signatory: providers

Field Type Description

providers Parties The clock’s providers.

date Unit The clock’s date.

id Id The clock’s identifier.

description Text The clock’s description.

observers Parties Observers.

• Choice Archive

Controller: providers

Returns: ()

(no fields)

• interface instance I for DateClock

• interface instance I for DateClock

Data Types

type T = DateClock

Type synonym for DateClock.

Functions

dateToDateClockTime : Date -> Time

Maps a Date to Time using the rule in the DateClock.

1.22.3.19 Daml.Finance.Data.Time.DateClock.Types

Data Types

data Unit

A Date which can be converted to Time. Specifically, each date D is mapped to D

00:00:00 UTC.

Unit Date

instance HasUTCTimeConversion Unit

1.22. Reference 703

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253

Daml SDK Documentation, 2.7.3

instance Eq Unit

instance Ord Unit

instance Show Unit

1.22.3.20 Daml.Finance.Data.Time.DateClockUpdate

Templates

template DateClockUpdateEvent

Event signalling the update of a DateClock. It can trigger the execution of lifecycle rules

for some instruments.

Signatory: providers

Field Type Description

providers Parties Providers of the event.

date Date The updated clock data.

eventTime Time The event time.

id Id Event identifier.

description Text Event description.

observers Parties The clock’s observers.

• Choice Archive

Controller: providers

Returns: ()

(no fields)

• interface instance I for DateClockUpdateEvent

• interface instance I for DateClockUpdateEvent

Data Types

type T = DateClockUpdateEvent

Type synonym for DateClockUpdateEvent.

1.22.3.21 Daml.Finance.Data.Time.LedgerTime

Templates

template LedgerTime

A LedgerTime is a template used to retrieve current ledger time as a TimeObservable.

Signatory: providers

704 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-ord-6395
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952

Daml SDK Documentation, 2.7.3

Field Type Description

providers Parties The time providers.

id Id The ledger time identifier.

description Text The ledger time description.

observers Parties Observers.

• Choice Archive

Controller: providers

Returns: ()

(no fields)

• interface instance I for LedgerTime

Data Types

type T = LedgerTime

Type synonym for LedgerTime.

1.22.3.22 Daml.Finance.Holding.Fungible

Templates

template Factory

Implementation of a factory template for fungible holdings.

Signatory: provider

Field Type Description

provider Party The factory’s provider.

observers PartiesMap The factory’s observers.

• Choice Archive

Controller: provider

Returns: ()

(no fields)

• interface instance F for Factory

• interface instance I for Factory

template Fungible

Implementation of a fungible holding. The Fungible template implements the interface

Fungible.I (which requires Transferable.I, Base.I and Disclosure.I to be im-

plemented).

Signatory: (DA.Internal.Record.getField @"custodian" account), (DA.Internal.Record.get-

Field @"owner" account), getLockers this

1.22. Reference 705

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932

Daml SDK Documentation, 2.7.3

Field Type Description

instrument InstrumentKey The instrument of which units are held.

account AccountKey The account at which the holding is held. De-

fines the holding’s owner and custodian.

amount Decimal Number of units.

lock Optional Lock An optional lock of a holding.

observers PartiesMap Observers.

• Choice Archive

Controller: (DA.Internal.Record.getField @"custodian" account), (DA.Inter-

nal.Record.getField @"owner" account), getLockers this

Returns: ()

(no fields)

• interface instance I for Fungible

• interface instance I for Fungible

• interface instance I for Fungible

• interface instance I for Fungible

Data Types

type F = Factory

Type synonym for Factory.

type T = Fungible

Type synonym for Fungible.

1.22.3.23 Daml.Finance.Holding.NonFungible

Templates

template Factory

Implementation of a factory template for non-fungible holdings.

Signatory: provider

Field Type Description

provider Party The factory’s provider.

observers PartiesMap The factory’s observers.

• Choice Archive

Controller: provider

Returns: ()

(no fields)

• interface instance F for Factory

• interface instance I for Factory

template NonFungible

Implementation of a non-fungible holding. NonFungible implements the interface

Transferable.I (which requires Base.I and Disclosure.I to be implemented).

706 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932

Daml SDK Documentation, 2.7.3

Signatory: (DA.Internal.Record.getField @"custodian" account), (DA.Internal.Record.get-

Field @"owner" account), getLockers this

Field Type Description

instrument InstrumentKey The instrument of which units are held.

account AccountKey The account at which the holding is held. De-

fines the holding’s owner and custodian.

amount Decimal Number of units.

lock Optional Lock An optional lock of a holding.

observers PartiesMap Observers.

• Choice Archive

Controller: (DA.Internal.Record.getField @"custodian" account), (DA.Inter-

nal.Record.getField @"owner" account), getLockers this

Returns: ()

(no fields)

• interface instance I for NonFungible

• interface instance I for NonFungible

• interface instance I for NonFungible

Data Types

type F = Factory

Type synonym for Factory.

type T = NonFungible

Type synonym for NonFungible.

1.22.3.24 Daml.Finance.Holding.NonTransferable

Templates

template Factory

Implementation of a factory template for non-transferable holdings.

Signatory: provider

Field Type Description

provider Party The factory’s provider.

observers PartiesMap The factory’s observers.

• Choice Archive

Controller: provider

Returns: ()

(no fields)

• interface instance F for Factory

• interface instance I for Factory

template NonTransferable

1.22. Reference 707

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932

Daml SDK Documentation, 2.7.3

Implementation of a non-transferable holding. NonTransferable implements the in-

terface Base.I (which requires Disclosure.I to be implemented).

Signatory: (DA.Internal.Record.getField @"custodian" account), (DA.Internal.Record.get-

Field @"owner" account), getLockers this

Field Type Description

instrument InstrumentKey The instrument of which units are held.

account AccountKey The account at which the holding is held. De-

fines the holding’s owner and custodian.

amount Decimal Number of units.

lock Optional Lock An optional lock of a holding.

observers PartiesMap Observers.

• Choice Archive

Controller: (DA.Internal.Record.getField @"custodian" account), (DA.Inter-

nal.Record.getField @"owner" account), getLockers this

Returns: ()

(no fields)

• interface instance I for NonTransferable

• interface instance I for NonTransferable

Data Types

type F = Factory

Type synonym for Factory.

type T = NonTransferable

Type synonym for NonTransferable.

1.22.3.25 Daml.Finance.Holding.Util

Functions

transferImpl : I -> ContractId I -> Transfer -> Update (ContractId I)

Default implementation of transfer for the Transferable interface.

acquireImpl : (HasCreate t, HasSignatory t, HasFromInterface t I, HasToInterface t I) => Optional Lock

-> (Optional Lock -> t) -> Acquire -> Update (ContractId I)

Default implementation of acquire from the Base interface.

releaseImpl : (HasCreate t, HasFromInterface t I, HasToInterface t I) => Optional Lock -> (Optional Lock

-> t) -> Release -> Update (ContractId I)

Default implementation of release from the Base interface.

splitImpl : (HasCreate t, HasToInterface t I) => Decimal -> (Decimal -> t) -> Split -> Update SplitResult

Default implementation of split from the Fungible interface.

mergeImpl : (HasCreate t, HasArchive t, HasSignatory t, HasFromInterface t I, HasToInterface t I) =>

Decimal -> (t -> Decimal) -> (Decimal -> t) -> Merge -> Update (ContractId I)

Default implementation of merge from the Fungible interface.

708 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hascreate-45738
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hassignatory-17507
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hasfrominterface-43863
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hastointerface-68104
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hascreate-45738
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hasfrominterface-43863
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hastointerface-68104
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hascreate-45738
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hastointerface-68104
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hascreate-45738
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasarchive-7071
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hassignatory-17507
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hasfrominterface-43863
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hastointerface-68104
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282

Daml SDK Documentation, 2.7.3

1.22.3.26 Daml.Finance.Instrument.Bond.Callable.Factory

Templates

template Factory

Factory template for instrument creation.

Signatory: provider

Field Type Description

provider Party The factory’s provider.

observers PartiesMap The factory’s observers.

• Choice Archive

Controller: provider

Returns: ()

(no fields)

• interface instance Factory for Factory

• interface instance I for Factory

Data Types

type F = Factory

Type synonym for Factory.

1.22.3.27 Daml.Finance.Instrument.Bond.Callable.Instrument

Templates

template Instrument

This template models a callable bond. It pays a fixed or a floating coupon rate at the end

of every coupon period (unless the bond has been called). Callability is restricted to some

(or all) of the coupon dates. This is specified by a separate schedule.

Signatory: depository, issuer

1.22. Reference 709

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932

Daml SDK Documentation, 2.7.3

Field Type Description

depository Party The depository of the instrument.

issuer Party The issuer of the instrument.

id Id The identifier of the instrument.

version Text The instrument’s version.

description Text A description of the instrument.

floatingRate Optional

FloatingRate

A description of the floating rate to be used

(if applicable). This supports both Libor and

SOFR style reference rates.

couponRate Decimal The fixed coupon rate, per annum. For exam-

ple, in case of a "3.5% p.a coupon" this should

be 0.035. This can also used as a floating

coupon spread. For example, in case of "3M Li-

bor + 0.5%" this should be 0.005.

capRate Optional Dec-

imal

The maximum coupon rate possible. For ex-

ample, if "3M Libor + 0.5%" would result in a

rate of 2.5%, but capRate is 2.0%, the coupon

rate used would be 2.0%.

floorRate Optional Dec-

imal

The minimum coupon rate possible. For ex-

ample, if "3M Libor + 0.5%" would result in a

rate of -0.2%, but floorRate is 0.0%, the coupon

rate used would be 0.0%.

couponSchedule Periodic-

Schedule

The schedule for the periodic coupon pay-

ments. The coupon is paid on the last date

of each schedule period. In case of a float-

ing rate, the reference rate will be fixed in rela-

tion to this schedule (in case of a Libor rate:

at the start/end of each period, as specified

by FloatingRate). This is the main schedule of

the instrument, which drives both the calcu-

lation and the payment of coupons. It also de-

fines the issue date and the maturity date of

the bond.

callSchedule Periodic-

Schedule

The bond is callable on the last date of each

schedule period. For example, if this schedule

is the same as the couponSchedule, it means

that the bond can be called on each coupon

payment date.

noticeDays Int The number of business days in advance of

the coupon date that the issuer must give no-

tice if it wants to call the bond. The election

whether to call or not to call must be done by

this date.

holidayCalendarIds [Text] The identifiers of the holiday calendars to be

used for the coupon schedule.

calendarDat-

aProvider

Party The reference data provider to use for the hol-

iday calendar.

dayCountConvention DayCountCon-

ventionEnum

The day count convention used to calculate

day count fractions. For example: Act360.

useAdjustedDates-

ForDcf

Bool Configure whether to use adjusted dates

(as specified in businessDayAdjustment of the

couponSchedule) for day count fractions.

currency InstrumentKey The currency of the bond. For example, if the

bond pays in USD this should be a USD cash

instrument.

notional Decimal The notional of the bond. This is the face value

corresponding to one unit of the bond instru-

ment. For example, if one bond unit corre-

sponds to 1000 USD, this should be 1000.0.

observers PartiesMap The observers of the instrument.

lastEventTimestamp Time (Market) time of the last recorded lifecycle

event. If no event has occurred yet, the time

of creation should be used.

prevElections [EventData] A list of previous elections that have

been lifecycled on this instrument so far.

CALLABLE_BOND_TEMPLATE_END

710 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-int-37261
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886

Daml SDK Documentation, 2.7.3

• Choice Archive

Controller: depository, issuer

Returns: ()

(no fields)

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

Data Types

type T = Instrument

Type synonym for Instrument.

1.22.3.28 Daml.Finance.Instrument.Bond.FixedRate.Factory

Templates

template Factory

Factory template for instrument creation.

Signatory: provider

Field Type Description

provider Party The factory’s provider.

observers PartiesMap The factory’s observers.

• Choice Archive

Controller: provider

Returns: ()

(no fields)

• interface instance Factory for Factory

• interface instance I for Factory

Data Types

type F = Factory

Type synonym for Factory.

1.22. Reference 711

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932

Daml SDK Documentation, 2.7.3

1.22.3.29 Daml.Finance.Instrument.Bond.FixedRate.Instrument

Templates

template Instrument

This template models a fixed rate bond. It pays a fixed coupon rate at the end of every

coupon period.

Signatory: depository, issuer

Field Type Description

depository Party The depository of the instrument.

issuer Party The issuer of the instrument.

id Id The identifier of the instrument.

version Text The instrument’s version.

description Text A description of the instrument.

couponRate Decimal The fixed coupon rate, per annum. For exam-

ple, in case of a "3.5% p.a coupon" this should

be 0.035.

periodicSchedule Periodic-

Schedule

The schedule for the periodic coupon pay-

ments.

holidayCalendarIds [Text] The identifiers of the holiday calendars to be

used for the coupon schedule.

calendarDat-

aProvider

Party The reference data provider to use for the hol-

iday calendar.

dayCountConvention DayCountCon-

ventionEnum

The day count convention used to calculate

day count fractions. For example: Act360.

currency InstrumentKey The currency of the bond. For example, if the

bond pays in USD this should be a USD cash

instrument.

notional Decimal The notional of the bond. This is the face value

corresponding to one unit of the bond instru-

ment. For example, if one bond unit corre-

sponds to 1000 USD, this should be 1000.0.

observers PartiesMap The observers of the instrument.

lastEventTimestamp Time (Market) time of the last recorded life-

cycle event. If no event has occurred

yet, the time of creation should be used.

FIXED_RATE_BOND_TEMPLATE_END

• Choice Archive

Controller: depository, issuer

Returns: ()

(no fields)

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

712 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886

Daml SDK Documentation, 2.7.3

Data Types

type T = Instrument

Type synonym for Instrument.

1.22.3.30 Daml.Finance.Instrument.Bond.FloatingRate.Factory

Templates

template Factory

Factory template for instrument creation.

Signatory: provider

Field Type Description

provider Party The factory’s provider.

observers PartiesMap The factory’s observers.

• Choice Archive

Controller: provider

Returns: ()

(no fields)

• interface instance Factory for Factory

• interface instance I for Factory

1.22.3.31 Daml.Finance.Instrument.Bond.FloatingRate.Instrument

Templates

template Instrument

This template models a floating rate bond. It pays a floating coupon rate at the end of

every coupon period. This consists of a reference rate (observed at the beginning of the

coupon period) plus a coupon spread. For example, 3M Euribor + 0.5%.

Signatory: depository, issuer

1.22. Reference 713

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932

Daml SDK Documentation, 2.7.3

Field Type Description

depository Party The depository of the instrument.

issuer Party The issuer of the instrument.

id Id An identifier of the instrument.

version Text The instrument’s version.

description Text A description of the instrument.

referenceRateId Text The floating rate reference ID. For example, in

case of "3M Euribor + 0.5%" this should be a

valid reference to the "3M Euribor" reference

rate. FLOATING_RATE_BOND_TEMPLATE_UN-

TIL_REFRATE_END

couponSpread Decimal The floating rate coupon spread. For example,

in case of "3M Euribor + 0.5%" this should be

0.005.

periodicSchedule Periodic-

Schedule

The schedule for the periodic coupon pay-

ments.

holidayCalendarIds [Text] The identifiers of the holiday calendars to be

used for the coupon schedule.

calendarDat-

aProvider

Party The reference data provider to use for the hol-

iday calendar.

dayCountConvention DayCountCon-

ventionEnum

The day count convention used to calculate

day count fractions. For example: Act360.

currency InstrumentKey The currency of the bond. For example, if the

bond pays in USD this should be a USD cash

instrument.

notional Decimal The notional of the bond. This is the face value

corresponding to one unit of the bond instru-

ment. For example, if one bond unit corre-

sponds to 1000 USD, this should be 1000.0.

observers PartiesMap The observers of the instrument.

lastEventTimestamp Time (Market) time of the last recorded lifecycle

event. If no event has occurred yet, the time

of creation should be used.

• Choice Archive

Controller: depository, issuer

Returns: ()

(no fields)

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

714 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886

Daml SDK Documentation, 2.7.3

Data Types

type T = Instrument

Type synonym for Instrument.

1.22.3.32 Daml.Finance.Instrument.Bond.InflationLinked.Factory

Templates

template Factory

Factory template for instrument creation.

Signatory: provider

Field Type Description

provider Party The factory’s provider.

observers PartiesMap The factory’s observers.

• Choice Archive

Controller: provider

Returns: ()

(no fields)

• interface instance Factory for Factory

• interface instance I for Factory

Data Types

type F = Factory

Type synonym for Factory.

1.22.3.33 Daml.Finance.Instrument.Bond.InflationLinked.Instrument

Templates

template Instrument

This template models an inflation linked bond. It pays an inflation adjusted coupon at

the end of every coupon period. The coupon is based on a fixed rate, which is applied to a

principal that is adjusted according to an inflation index, for example the Consumer Price

Index (CPI) in the U.S. For example: 0.5% p.a. coupon, CPI adjusted principal: At maturity,

the greater of the adjusted principal and the original principal is redeemed. For clarity,

this only applies to the redemption amount. The coupons are always calculated based on

the adjusted principal.

Signatory: depository, issuer

1.22. Reference 715

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932

Daml SDK Documentation, 2.7.3

Field Type Description

depository Party The depository of the instrument.

issuer Party The issuer of the instrument.

id Id An identifier of the instrument.

version Text The instrument’s version.

description Text A description of the instrument.

inflationIndexId Text The inflation index reference ID. For example,

in case of "0.5% p.a. coupon, CPI adjusted prin-

cipal" this should be a valid reference to the

"CPI" index.

inflationIndexBase-

Value

Decimal The value of the inflation index on the first ref-

erence date of this bond (called "dated date"

on US TIPS). This is used as the base value for

the principal adjustment.

couponRate Decimal The fixed coupon rate, per annum. For exam-

ple, in case of a "0.5% p.a. coupon, CPI adjusted

principal" this should be 0.005.

periodicSchedule Periodic-

Schedule

The schedule for the periodic coupon pay-

ments.

holidayCalendarIds [Text] The identifiers of the holiday calendars to be

used for the coupon schedule.

calendarDat-

aProvider

Party The reference data provider to use for the hol-

iday calendar.

dayCountConvention DayCountCon-

ventionEnum

The day count convention used to calculate

day count fractions. For example: Act360.

currency InstrumentKey The currency of the bond. For example, if the

bond pays in USD this should be a USD cash

instrument.

notional Decimal The notional of the bond. This is the face value

corresponding to one unit of the bond instru-

ment. For example, if one bond unit corre-

sponds to 1000 USD, this should be 1000.0.

observers PartiesMap The observers of the instrument.

lastEventTimestamp Time (Market) time of the last recorded lifecycle

event. If no event has occurred yet, the time

of creation should be used.

• Choice Archive

Controller: depository, issuer

Returns: ()

(no fields)

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

716 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886

Daml SDK Documentation, 2.7.3

Data Types

type T = Instrument

Type synonym for Instrument.

1.22.3.34 Daml.Finance.Instrument.Bond.Util

Data Types

type C = Claim Date Decimal Deliverable Observable

type O = Observation Date Decimal Observable

Functions

includes : Schedule -> Schedule -> [Bool]

Find out which schedule periods of scheduleA exist in scheduleB.

createCallableBondClaims : (Date -> Time) -> Schedule -> Schedule -> PeriodicSchedule -> Bool -> Decimal

-> DayCountConventionEnum -> Decimal -> Deliverable -> Optional FloatingRate -> Optional Decimal

-> Optional Decimal -> Int -> HolidayCalendarData -> TaggedClaim

Calculate the claims for a callable bond with a fixed and/or floating coupon on each payment

date and a redemption amount at the end (unless called by the issuer).

1.22.3.35 Daml.Finance.Instrument.Bond.ZeroCoupon.Factory

Templates

template Factory

Factory template for instrument creation.

Signatory: provider

Field Type Description

provider Party The factory’s provider.

observers PartiesMap The factory’s observers.

• Choice Archive

Controller: provider

Returns: ()

(no fields)

• interface instance Factory for Factory

• interface instance I for Factory

1.22. Reference 717

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-int-37261
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932

Daml SDK Documentation, 2.7.3

Data Types

type F = Factory

Type synonym for Factory.

1.22.3.36 Daml.Finance.Instrument.Bond.ZeroCoupon.Instrument

Templates

template Instrument

This template models a zero coupon bond. It does not pay any coupons, only the redemp-

tion amount at maturity.

Signatory: depository, issuer

Field Type Description

depository Party The depository of the instrument.

issuer Party The issuer of the instrument.

id Id An identifier of the instrument.

version Text The instrument’s version.

description Text A description of the instrument.

issueDate Date The date when the bond was issued.

maturityDate Date The redemption date of the bond.

currency InstrumentKey The currency of the bond. For example, if the

bond pays in USD this should be a USD cash

instrument.

notional Decimal The notional of the bond. This is the face value

corresponding to one unit of the bond instru-

ment. For example, if one bond unit corre-

sponds to 1000 USD, this should be 1000.0.

observers PartiesMap The observers of the instrument.

lastEventTimestamp Time (Market) time of the last recorded lifecycle

event. If no event has occurred yet, the time

of creation should be used.

• Choice Archive

Controller: depository, issuer

Returns: ()

(no fields)

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

718 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886

Daml SDK Documentation, 2.7.3

Data Types

type T = Instrument

Type synonym for Instrument.

1.22.3.37 Daml.Finance.Instrument.Equity.Factory

Templates

template Factory

Factory template for instrument creation.

Signatory: provider

Field Type Description

provider Party The factory’s provider.

observers PartiesMap The factory’s observers.

• Choice Archive

Controller: provider

Returns: ()

(no fields)

• interface instance F for Factory

• interface instance I for Factory

Data Types

type F = Factory

Type synonym for Factory.

1.22.3.38 Daml.Finance.Instrument.Equity.Instrument

Templates

template Instrument

An Instrument representing a common stock.

Signatory: depository, issuer

1.22. Reference 719

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932

Daml SDK Documentation, 2.7.3

Field Type Description

issuer Party Issuer.

depository Party Depository.

id Id A textual identifier.

version Text The instrument’s version.

description Text A description of the instrument.

observers PartiesMap Observers.

validAsOf Time Timestamp as of which the instrument is

valid. This usually coincides with the times-

tamp of the event that creates the instrument.

It usually does not coincide with ledger time.

• Choice Archive

Controller: depository, issuer

Returns: ()

(no fields)

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

Data Types

type T = Instrument

Type synonym for Instrument.

1.22.3.39 Daml.Finance.Instrument.Generic.Factory

Templates

template Factory

Factory template for generic instrument creation.

Signatory: provider

Field Type Description

provider Party The factory’s provider.

observers PartiesMap The factory’s observers.

• Choice Archive

Controller: provider

Returns: ()

(no fields)

• interface instance F for Factory

• interface instance I for Factory

720 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932

Daml SDK Documentation, 2.7.3

Data Types

type F = Factory

Type synonym for Factory.

1.22.3.40 Daml.Finance.Instrument.Generic.Instrument

Templates

template Instrument

An instrument representing a generic payoff, modelled using the Contingent Claims li-

brary. The responsibility for processing lifecycle events as well as elections is delegated

to the issuer, who is hence responsible for providing the correct Observable\s.

Signatory: depository, issuer

Field Type Description

depository Party The instrument depository.

issuer Party The instrument issuer.

id Id The identifier with corresponding version.

version Text The instrument’s version.

description Text A human readable description of the instru-

ment.

claims C The claim tree.

acquisitionTime Time The claim’s acquisition time. This usually cor-

responds to the start date of the contract.

observers PartiesMap Observers.

lastEventTimestamp Time (Market) time of the last recorded lifecycle

event. If no event has occurred yet, the time

of creation should be used.

• Choice Archive

Controller: depository, issuer

Returns: ()

(no fields)

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

1.22. Reference 721

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886

Daml SDK Documentation, 2.7.3

Data Types

type T = Instrument

Type synonym for Instrument.

1.22.3.41 Daml.Finance.Instrument.Generic.Lifecycle.Rule

Templates

template Rule

Rule to process a lifecycle event. This rule supports both time update events and election

events.

Signatory: providers

Field Type Description

providers Parties Providers of the distribution rule.

lifecycler Party Party performing the lifecycling.

observers PartiesMap Observers of the distribution rule.

id Id Identifier for the rule contract.

description Text Textual description.

• Choice Archive

Controller: providers

Returns: ()

(no fields)

1.22.3.42 Daml.Finance.Instrument.Option.BarrierEuropeanCash.Factory

Templates

template Factory

Factory template for instrument creation.

Signatory: provider

Field Type Description

provider Party The factory’s provider.

observers PartiesMap The factory’s observers.

• Choice Archive

Controller: provider

Returns: ()

(no fields)

• interface instance Factory for Factory

• interface instance I for Factory

722 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932

Daml SDK Documentation, 2.7.3

Data Types

type F = Factory

Type synonym for Factory.

1.22.3.43 Daml.Finance.Instrument.Option.BarrierEuropeanCash.Instrument

Templates

template Instrument

This template models a cash settled, automatically excercised barrier option with Euro-

pean exercise.

Signatory: depository, issuer

Field Type Description

depository Party The depository of the instrument.

issuer Party The issuer of the instrument.

id Id An identifier of the instrument.

version Text The instrument’s version.

description Text A description of the instrument.

referenceAssetId Text The reference asset ID. For example, in case of

an option on AAPL this should be a valid ref-

erence to the AAPL fixings to be used for the

payoff calculation.

ownerReceives Bool Indicate whether a holding owner of this in-

strument receives option payoff.

optionType OptionType-

Enum

Indicate whether the option is a call or a put.

strike Decimal The strike price of the option.

barrier Decimal The barrier price of the option.

barrierType BarrierType-

Enum

The type of barrier.

barrierStartDate Date The start date for barrier observations.

expiryDate Date The expiry date of the option.

currency InstrumentKey The currency of the option. For example, if the

option pays in USD this should be a USD cash

instrument.

observers PartiesMap The observers of the instrument.

lastEventTimestamp Time (Market) time of the last recorded lifecycle

event. If no event has occurred yet, the time

of creation should be used.

• Choice Archive

Controller: depository, issuer

Returns: ()

(no fields)

• interface instance I for Instrument

• interface instance I for Instrument

1.22. Reference 723

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886

Daml SDK Documentation, 2.7.3

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

Data Types

type T = Instrument

Type synonym for Instrument.

1.22.3.44 Daml.Finance.Instrument.Option.Dividend.Factory

Templates

template Factory

Factory template for instrument creation.

Signatory: provider

Field Type Description

provider Party The factory’s provider.

observers PartiesMap The factory’s observers.

• Choice Archive

Controller: provider

Returns: ()

(no fields)

• interface instance Factory for Factory

• interface instance I for Factory

Data Types

type F = Factory

Type synonym for Factory.

1.22.3.45 Daml.Finance.Instrument.Option.Dividend.Instrument

Templates

template Instrument

This template models a physically settled Dividend option. The holder gets to choose to

receive the dividend in cash or in a different form (in shares and/or in a foreign currency).

Signatory: depository, issuer

724 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932

Daml SDK Documentation, 2.7.3

Field Type Description

depository Party The depository of the instrument.

issuer Party The issuer of the instrument.

id Id An identifier of the instrument.

version Text The instrument’s version.

description Text A description of the instrument.

expiryDate Date The expiry date of the option.

cashQuantity Instrumen-

tQuantity

Dividend paid in cash

sharesQuantity Optional

Instrumen-

tQuantity

Dividend paid in shares (if applicable)

fxQuantity Optional

Instrumen-

tQuantity

Dividend paid in a foreign currency (if applica-

ble)

observers PartiesMap The observers of the instrument.

lastEventTimestamp Time (Market) time of the last recorded lifecycle

event. If no event has occurred yet, the time

of creation should be used.

prevElections [EventData] A list of previous elections that have been life-

cycled on this instrument so far.

• Choice Archive

Controller: depository, issuer

Returns: ()

(no fields)

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

Data Types

type T = Instrument

Type synonym for Instrument.

1.22.3.46 Daml.Finance.Instrument.Option.Dividend.Election

Templates

template Factory

Factory template to create an Election.

Signatory: provider

1.22. Reference 725

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886

Daml SDK Documentation, 2.7.3

Field Type Description

provider Party The provider of the Factory.

observers PartiesMap A set of observers.

• Choice Archive

Controller: provider

Returns: ()

(no fields)

• interface instance F for Factory

• interface instance I for Factory

1.22.3.47 Daml.Finance.Instrument.Option.EuropeanCash.Factory

Templates

template Factory

Factory template for instrument creation.

Signatory: provider

Field Type Description

provider Party The factory’s provider.

observers PartiesMap The factory’s observers.

• Choice Archive

Controller: provider

Returns: ()

(no fields)

• interface instance Factory for Factory

• interface instance I for Factory

Data Types

type F = Factory

Type synonym for Factory.

1.22.3.48 Daml.Finance.Instrument.Option.EuropeanCash.Instrument

Templates

template Instrument

This template models a cash settled, automatically excercised European option.

Signatory: depository, issuer

726 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932

Daml SDK Documentation, 2.7.3

Field Type Description

depository Party The depository of the instrument.

issuer Party The issuer of the instrument.

id Id An identifier of the instrument.

version Text The instrument’s version.

description Text A description of the instrument.

referenceAssetId Text The reference asset ID. For example, in case of

an option on AAPL this should be a valid ref-

erence to the AAPL fixings to be used for the

payoff calculation.

ownerReceives Bool Indicate whether a holding owner of this in-

strument receives option payoff.

optionType OptionType-

Enum

Indicate whether the option is a call or a put.

strike Decimal The strike price of the option.

expiryDate Date The expiry date of the option.

currency InstrumentKey The currency of the option. For example, if the

option pays in USD this should be a USD cash

instrument.

observers PartiesMap The observers of the instrument.

lastEventTimestamp Time (Market) time of the last recorded lifecycle

event. If no event has occurred yet, the time

of creation should be used.

• Choice Archive

Controller: depository, issuer

Returns: ()

(no fields)

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

Data Types

type T = Instrument

Type synonym for Instrument.

1.22.3.49 Daml.Finance.Instrument.Option.EuropeanPhysical.Factory

Templates

template Factory

Factory template for instrument creation.

Signatory: provider

1.22. Reference 727

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886

Daml SDK Documentation, 2.7.3

Field Type Description

provider Party The factory’s provider.

observers PartiesMap The factory’s observers.

• Choice Archive

Controller: provider

Returns: ()

(no fields)

• interface instance Factory for Factory

• interface instance I for Factory

Data Types

type F = Factory

Type synonym for Factory.

1.22.3.50 Daml.Finance.Instrument.Option.EuropeanPhysical.Instrument

Templates

template Instrument

This template models a physically settled European option.

Signatory: depository, issuer

728 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932

Daml SDK Documentation, 2.7.3

Field Type Description

depository Party The depository of the instrument.

issuer Party The issuer of the instrument.

id Id An identifier of the instrument.

version Text The instrument’s version.

description Text A description of the instrument.

referenceAsset InstrumentKey The reference asset. For example, in case of an

option on AAPL this should be an AAPL instru-

ment.

ownerReceives Bool Indicate whether a holding owner of this in-

strument receives option payoff.

optionType OptionType-

Enum

Indicate whether the option is a call or a put.

strike Decimal The strike price of the option.

expiryDate Date The expiry date of the option.

currency InstrumentKey The currency of the option. For example, if the

option pays in USD this should be a USD cash

instrument.

observers PartiesMap The observers of the instrument.

lastEventTimestamp Time (Market) time of the last recorded lifecycle

event. If no event has occurred yet, the time

of creation should be used.

prevElections [EventData] A list of previous elections that have been life-

cycled on this instrument so far.

• Choice Archive

Controller: depository, issuer

Returns: ()

(no fields)

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

Data Types

type T = Instrument

Type synonym for Instrument.

1.22. Reference 729

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886

Daml SDK Documentation, 2.7.3

1.22.3.51 Daml.Finance.Instrument.Option.Util

Functions

dateToDateClockTime : Date -> Time

Maps a Date to Time using the rule in the DateClock.

1.22.3.52 Daml.Finance.Instrument.Swap.Asset.Factory

Templates

template Factory

Factory template for instrument creation.

Signatory: provider

Field Type Description

provider Party The factory’s provider.

observers PartiesMap The factory’s observers.

• Choice Archive

Controller: provider

Returns: ()

(no fields)

• interface instance Factory for Factory

• interface instance I for Factory

Data Types

type F = Factory

Type synonym for Factory.

1.22.3.53 Daml.Finance.Instrument.Swap.Asset.Instrument

Templates

template Instrument

This template models an asset swap. It pays an asset performance vs a fix interest rate

at the end of every payment period. It can be used to model equity swaps, some types

of commodity swaps (of the form performance vs rate) and swaps with the same payoff

on other asset types. The asset leg is described by an observable containing either un-

adjusted or adjusted fixings (for a price return or a total return swap, respectively). The

template calculates the performance for each payment period using this observable. For

example: AAPL total return vs 2.5% fix.

Signatory: depository, issuer

730 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932

Daml SDK Documentation, 2.7.3

Field Type Description

depository Party The depository of the instrument.

issuer Party The issuer of the instrument.

id Id An identifier of the instrument.

version Text The instrument’s version.

description Text A description of the instrument.

referenceAssetId Text The reference asset ID. For example, in case

of "AAPL total return vs 2.5% fix" this should

be a valid reference to the AAPL fixings

to be used for the total return calculation

(dividend-adjusted fixings).

ownerReceivesFix Bool Indicate whether a holding owner of this in-

strument receives the fix or theasset leg of the

swap.

fixRate Decimal The interest rate of the fix leg. For example,

in case of "AAPL total return vs 2.5% fix" this

should be 0.025.

periodicSchedule Periodic-

Schedule

The schedule for the periodic swap payments.

holidayCalendarIds [Text] The identifiers of the holiday calendars to be

used for the swap payment schedule.

calendarDat-

aProvider

Party The reference data provider to use for the hol-

iday calendar.

dayCountConvention DayCountCon-

ventionEnum

The day count convention used to calculate

day count fractions. For example: Act360.

currency InstrumentKey The currency of the swap. For example, if the

swap pays in USD this should be a USD cash

instrument.

observers PartiesMap The observers of the instrument.

lastEventTimestamp Time (Market) time of the last recorded lifecycle

event. If no event has occurred yet, the time

of creation should be used.

• Choice Archive

Controller: depository, issuer

Returns: ()

(no fields)

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

1.22. Reference 731

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886

Daml SDK Documentation, 2.7.3

Data Types

type T = Instrument

Type synonym for Instrument.

1.22.3.54 Daml.Finance.Instrument.Swap.CreditDefault.Factory

Templates

template Factory

Factory template for instrument creation.

Signatory: provider

Field Type Description

provider Party The factory’s provider.

observers PartiesMap The factory’s observers.

• Choice Archive

Controller: provider

Returns: ()

(no fields)

• interface instance Factory for Factory

• interface instance I for Factory

1.22.3.55 Daml.Finance.Instrument.Swap.CreditDefault.Instrument

Templates

template Instrument

This template models a cash-settled credit default swap. In case of a credit default event

it pays (1-recoveryRate), in exchange for a fix rate at the end of every payment period. For

example: 2.5% fix vs (1-recoveryRate) if TSLA defaults on a bond payment

Signatory: depository, issuer

732 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932

Daml SDK Documentation, 2.7.3

Field Type Description

depository Party The depository of the instrument.

issuer Party The issuer of the instrument.

id Id An identifier of the instrument.

version Text The instrument’s version.

description Text A description of the instrument.

defaultProbabili-

tyReferenceId

Text The reference ID of the default probability ob-

servable. For example, in case of protection

against a "TSLA bond payment default" this

should be a valid reference to the "TSLA default

probability".

recoveryRateReferen-

ceId

Text The reference ID of the recovery rate observ-

able. For example, in case of a "TSLA bond pay-

ment default with a 60% recovery rate" this

should be a valid reference to the "TSLA bond

recovery rate".

ownerReceivesFix Bool Indicate whether a holding owner of this in-

strument receives the fix or thedefault protec-

tion leg of the swap.

fixRate Decimal The interest rate of the fix leg. For example, in

case of "2.5% fix" this should be 0.025.

periodicSchedule Periodic-

Schedule

The schedule for the periodic swap payments.

holidayCalendarIds [Text] The identifiers of the holiday calendars to be

used for the swap payment schedule.

calendarDat-

aProvider

Party The reference data provider to use for the hol-

iday calendar.

dayCountConvention DayCountCon-

ventionEnum

The day count convention used to calculate

day count fractions. For example: Act360.

currency InstrumentKey The currency of the swap. For example, if the

swap pays in USD this should be a USD cash

instrument.

observers PartiesMap The observers of the instrument.

lastEventTimestamp Time (Market) time of the last recorded lifecycle

event. If no event has occurred yet, the time

of creation should be used.

• Choice Archive

Controller: depository, issuer

Returns: ()

(no fields)

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

1.22. Reference 733

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886

Daml SDK Documentation, 2.7.3

Data Types

type T = Instrument

Type synonym for Instrument.

1.22.3.56 Daml.Finance.Instrument.Swap.Currency.Factory

Templates

template Factory

Factory template for instrument creation.

Signatory: provider

Field Type Description

provider Party The factory’s provider.

observers PartiesMap The factory’s observers.

• Choice Archive

Controller: provider

Returns: ()

(no fields)

• interface instance Factory for Factory

• interface instance I for Factory

Data Types

type F = Factory

Type synonym for Factory.

1.22.3.57 Daml.Finance.Instrument.Swap.Currency.Instrument

Templates

template Instrument

This template models a currency swap. It pays a fix vs fix rate (in different currencies) at

the end of every payment period. The principal in the foreign currency is calculated using

an fx rate and the principal amount in the base currency. The principal is not exchanged.

For example: USD 1000k principal, fx rate 1.10 -> EUR 1100k principal 3% fix rate on USD

1000k vs 2% fix rate on EUR 1100k

Signatory: depository, issuer

734 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932

Daml SDK Documentation, 2.7.3

Field Type Description

depository Party The depository of the instrument.

issuer Party The issuer of the instrument.

id Id An identifier of the instrument.

version Text The instrument’s version.

description Text A description of the instrument.

ownerReceivesBase Bool Indicate whether a holding owner of this in-

strument receives the base currency leg or the

foreign currency leg of the swap.

baseRate Decimal The interest rate of the base currency. For ex-

ample, in case of "3% in USD" this should be

0.03.

foreignRate Decimal The interest rate of the foreign currency. For

example, in case of "2% in EUR" this should be

0.02.

periodicSchedule Periodic-

Schedule

The schedule for the periodic swap payments.

holidayCalendarIds [Text] The identifiers of the holiday calendars to be

used for the swap payment schedule.

calendarDat-

aProvider

Party The reference data provider to use for the hol-

iday calendar.

dayCountConvention DayCountCon-

ventionEnum

The day count convention used to calculate

day count fractions. For example: Act360.

baseCurrency InstrumentKey The base currency of the swap. For example,

in the case of USD this should be a USD cash

instrument.

foreignCurrency InstrumentKey The foreign currency of the swap. For exam-

ple, in case of EUR this should be a EUR cash

instrument.

fxRate Decimal The fx rate used to convert from the base

currency principal amount to the foreign cur-

rency principal amount.

observers PartiesMap The observers of the instrument.

lastEventTimestamp Time (Market) time of the last recorded lifecycle

event. If no event has occurred yet, the time

of creation should be used.

• Choice Archive

Controller: depository, issuer

Returns: ()

(no fields)

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

1.22. Reference 735

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886

Daml SDK Documentation, 2.7.3

Data Types

type T = Instrument

Type synonym for Instrument.

1.22.3.58 Daml.Finance.Instrument.Swap.ForeignExchange.Factory

Templates

template Factory

Factory template for instrument creation.

Signatory: provider

Field Type Description

provider Party The factory’s provider.

observers PartiesMap The factory’s observers.

• Choice Archive

Controller: provider

Returns: ()

(no fields)

• interface instance Factory for Factory

• interface instance I for Factory

Data Types

type F = Factory

Type synonym for Factory.

1.22.3.59 Daml.Finance.Instrument.Swap.ForeignExchange.Instrument

Templates

template Instrument

This template models a foreign exchange swap (FX Swap). It has two legs: an initial FX

transaction and a final FX transaction. The instrument has a base currency and a foreign

currency. The convention is that a holding owner receives the foreign currency in the

initial transaction (and pays it in the final transaction). Both FX rates and transaction

dates are predetermined between the counterparties. For example: USD 1000k vs EUR

1100k (fx rate: 1.10) today USD 1000k vs EUR 1200k (fx rate: 1.20) in 6 months

Signatory: depository, issuer

736 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932

Daml SDK Documentation, 2.7.3

Field Type Description

depository Party The depository of the instrument.

issuer Party The issuer of the instrument.

id Id An identifier of the instrument.

version Text The instrument’s version.

description Text A description of the instrument.

firstFxRate Decimal The fx rate used for the first swap payment.

finalFxRate Decimal The fx rate used for the final swap payment.

issueDate Date The date when the swap was issued.

firstPaymentDate Date The first payment date of the swap.

maturityDate Date The final payment date of the swap.

baseCurrency InstrumentKey The base currency of the swap, which will be

exchanged to another (foreign) currency on

the first payment date. For example, in case

of USD this should be a USD cash instrument.

foreignCurrency InstrumentKey The foreign currency of the swap. For exam-

ple, in case of EUR this should be a EUR cash

instrument.

observers PartiesMap The observers of the instrument.

lastEventTimestamp Time (Market) time of the last recorded lifecycle

event. If no event has occurred yet, the time

of creation should be used.

• Choice Archive

Controller: depository, issuer

Returns: ()

(no fields)

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

Data Types

type T = Instrument

Type synonym for Instrument.

1.22.3.60 Daml.Finance.Instrument.Swap.Fpml.Factory

Templates

template Factory

Factory template for instrument creation.

Signatory: provider

1.22. Reference 737

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886

Daml SDK Documentation, 2.7.3

Field Type Description

provider Party The factory’s provider.

observers PartiesMap The factory’s observers.

• Choice Archive

Controller: provider

Returns: ()

(no fields)

• interface instance Factory for Factory

• interface instance I for Factory

Data Types

type F = Factory

Type synonym for Factory.

1.22.3.61 Daml.Finance.Instrument.Swap.Fpml.Instrument

Templates

template Instrument

This templatemodels a swap specified by FpML swapStreammodules. It can contain one

or several legs of different types: fix or floating rates

Signatory: depository, issuer

Field Type Description

depository Party The depository of the instrument.

issuer Party The issuer of the instrument.

id Id An identifier of the instrument.

version Text The instrument’s version.

description Text A description of the instrument.

swapStreams [SwapStream] Each element describes a streamof swap pay-

ments, for example a regular fixed or floating

rate.

issuerPartyRef Text Used to the identify which counterparty is the

issuer in the swapStream.

calendarDat-

aProvider

Party The reference data provider to use for the hol-

iday calendar.

currencies [Instrumen-

tKey]

The currencies of the different swap legs, one

for each swapStream. For example, if one leg

pays in USD this should be a USD cash instru-

ment.

observers PartiesMap The observers of the instrument.

lastEventTimestamp Time (Market) time of the last recorded lifecycle

event. If no event has occurred yet, the time

of creation should be used.

738 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886

Daml SDK Documentation, 2.7.3

• Choice Archive

Controller: depository, issuer

Returns: ()

(no fields)

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

Data Types

type T = Instrument

Type synonym for Instrument.

1.22.3.62 Daml.Finance.Instrument.Swap.Fpml.Util

Data Types

type C = Claim Date Decimal Deliverable Observable

type O = Observation Date Decimal Observable

Functions

createCalculationPeriodicSchedule : CalculationPeriodDates -> PeriodicSchedule

Create a schedule for calculation periods.

createPaymentPeriodicSchedule : SwapStream -> PeriodicSchedule

Create a schedule for payment periods.

getCalendarsAndAdjust : Date -> BusinessDayAdjustments -> Party -> Party -> Update Date

Retrieve holiday calendars and adjust a date as specified in a BusinessDayAdjustments FpML

element

adjustDateAccordingToBusinessDayAdjustments : Date -> BusinessDayAdjustments -> Party -> Party ->

Update Date

Adjust a date as specified in a BusinessDayAdjustments FpML element (or not at all if NoAd-

justment)

applyPaymentDaysOffset : [SchedulePeriod] -> PaymentDates -> [HolidayCalendarData] -> [SchedulePeriod]

Adjust payment schedule according to paymentDaysOffset (if available).

getSingleStubRate : StubFloatingRate -> Date -> Optional O

Define observable part of claim when one specific floating rate is provided for a stub period.

getInterpolatedStubRate : StubFloatingRate -> StubFloatingRate -> SchedulePeriod -> HolidayCalendarData

-> BusinessDayConventionEnum -> Date -> Optional O

Linearly interpolates two rates within a period, as specified in

https://www.isda.org/a/aWkgE/Linear-interpolation-04022022.pdf

1.22. Reference 739

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153

Daml SDK Documentation, 2.7.3

getStubRateFloating : [StubFloatingRate] -> SchedulePeriod -> HolidayCalendarData -> BusinessDayConven-

tionEnum -> Date -> Optional O

Get the floating stub rate to be used for a stub period.

getStubRate : StubCalculationPeriodAmount -> Bool -> SchedulePeriod -> HolidayCalendarData -> Business-

DayConventionEnum -> Bool -> Date -> Optional O

Get the stub rate to be used for a stub period. Currently, three main options from the FpML

schema are supported:

1. A fix stubRate.

2. One or two floating rates for the stub.

3. No specific stub rate defined -> use the same rate as is used for regular periods.

alignPaymentSchedule : [SchedulePeriod] -> [SchedulePeriod] -> Update [SchedulePeriod]

Align the payment schedule with the calculation schedule.

verifyFxScheduleAndGetId : [SchedulePeriod] -> SwapStream -> Party -> Party -> FxLinkedNotionalSchedule

-> Update (Optional Text, Optional Decimal, Optional [Date])

getFxRateId : [SchedulePeriod] -> SwapStream -> Party -> Party -> Update (Optional Text, Optional Deci-

mal, Optional [Date])

getRateFixingsAndCalendars : SwapStream -> ResetDates -> [SchedulePeriod] -> Party -> Party -> Update

([Date], HolidayCalendarData)

calculateFixPaymentClaimsFromSwapStream : FixedRateSchedule -> SwapStream -> PeriodicSchedule ->

[SchedulePeriod] -> [SchedulePeriod] -> Bool -> Bool -> Deliverable -> Party -> Party -> Optional Text ->

Optional [Date] -> [(Decimal, Bool)] -> Update [TaggedClaim]

Create claims from swapStream that describes a fixed coupon stream.

calculatePrincipalExchangePaymentClaims : [SchedulePeriod] -> Bool -> Deliverable -> Optional Text ->

[(Decimal, Bool)] -> [Date] -> PrincipalExchanges -> TaggedClaim

Create principal exchange claims.

roundRate : Decimal -> Rounding -> Decimal

Apply rounding convention to the rate used in a calcula-

tion period. Takes a Rounding FpML object as an input:

https://www.fpml.org/spec/fpml-5-11-3-lcwd-1/html/confirmation/schemaDocumentation/schemas/fpml-shared-5-11_xsd/complexTypes/FloatingRateCalculation/finalRateRounding.html

checkRefRateCompounding : FloatingRateCalculation -> (Bool, Optional DayCountConventionEnum)

Check whether a FloatingRateCalculation uses a reference rate that needs to be compounded.

Seems there is no FpML element that specificies this, but that it is implicit in the rate name, for

example "USD-SOFR-COMPOUND" If it is a compounded reference rate, also return the daycount

convention that was used for the corresponding reference index, e.g. Act360 in the case of the

SOFR Index.

calculateFloatingPaymentClaimsFromSwapStream : FloatingRateCalculation -> SwapStream -> Periodic-

Schedule -> [SchedulePeriod] -> [SchedulePeriod] -> Bool -> Bool -> Deliverable -> Party -> Party ->

Optional Text -> Optional [Date] -> [(Decimal, Bool)] -> Update [TaggedClaim]

Create claims from swapStream that describes a floating coupon stream.

calculateClaimsFromSwapStream : SwapStream -> PeriodicSchedule -> [SchedulePeriod] -> [SchedulePe-

riod] -> Optional SwapStream -> Bool -> Bool -> Deliverable -> Party -> Party -> Update [TaggedClaim]

Create claims from swapStream that describes a fixed or floating coupon stream.

740 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072

Daml SDK Documentation, 2.7.3

1.22.3.63 Daml.Finance.Instrument.Swap.InterestRate.Factory

Templates

template Factory

Factory template for instrument creation.

Signatory: provider

Field Type Description

provider Party The factory’s provider.

observers PartiesMap The factory’s observers.

• Choice Archive

Controller: provider

Returns: ()

(no fields)

• interface instance Factory for Factory

• interface instance I for Factory

Data Types

type F = Factory

Type synonym for Factory.

1.22.3.64 Daml.Finance.Instrument.Swap.InterestRate.Instrument

Templates

template Instrument

This templatemodels an interest rate swap. It pays a fix vs floating rate at the end of every

payment period. The floating leg depends on a reference rate (observed at the beginning

of the swap payment period). For example: 3M Euribor vs 2.5% fix.

Signatory: depository, issuer

1.22. Reference 741

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932

Daml SDK Documentation, 2.7.3

Field Type Description

depository Party The depository of the instrument.

issuer Party The issuer of the instrument.

id Id An identifier of the instrument.

version Text The instrument’s version.

description Text A description of the instrument.

referenceRateId Text The floating rate reference ID. For example, in

case of "3M Euribor vs 2.5% fix" this should be

a valid reference to the "3M Euribor" reference

rate.

ownerReceivesFix Bool Indicate whether a holding owner of this in-

strument receives the fix or the floating leg of

the swap.

fixRate Decimal The interest rate of the fix leg. For example, in

case of "3M Euribor vs 2.5% fix" this should be

0.025.

periodicSchedule Periodic-

Schedule

The schedule for the periodic swap payments.

holidayCalendarIds [Text] The identifiers of the holiday calendars to be

used for the swap payment schedule.

calendarDat-

aProvider

Party The reference data provider to use for the hol-

iday calendar.

dayCountConvention DayCountCon-

ventionEnum

The day count convention used to calculate

day count fractions. For example: Act360.

currency InstrumentKey The currency of the swap. For example, if the

swap pays in USD this should be a USD cash

instrument.

observers PartiesMap The observers of the instrument.

lastEventTimestamp Time (Market) time of the last recorded lifecycle

event. If no event has occurred yet, the time

of creation should be used.

• Choice Archive

Controller: depository, issuer

Returns: ()

(no fields)

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

742 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886

Daml SDK Documentation, 2.7.3

Data Types

type T = Instrument

Type synonym for Instrument.

1.22.3.65 Daml.Finance.Instrument.Token.Factory

Templates

template Factory

Factory template for instrument creation.

Signatory: provider

Field Type Description

provider Party The factory’s provider.

observers PartiesMap The factory’s observers.

• Choice Archive

Controller: provider

Returns: ()

(no fields)

• interface instance Factory for Factory

• interface instance I for Factory

Data Types

type F = Factory

Type synonym for Factory.

1.22.3.66 Daml.Finance.Instrument.Token.Instrument

Templates

template Instrument

Implementation of a Token Instrument, which is a simple instrument whose economic

terms on the ledger are represented by an id and a textual description.

Signatory: depository, issuer

1.22. Reference 743

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932

Daml SDK Documentation, 2.7.3

Field Type Description

depository Party The instrument’s depository.

issuer Party The instrument’s issuer.

id Id The intrument’s identifier.

version Text A textual instrument version.

description Text A description of the instrument.

validAsOf Time Timestamp as of which the instrument is

valid. This usually coincides with the times-

tamp of the event that creates the instrument.

It usually does not coincide with ledger time.

observers PartiesMap Observers.

• Choice Archive

Controller: depository, issuer

Returns: ()

(no fields)

• interface instance I for Instrument

• interface instance I for Instrument

• interface instance I for Instrument

Data Types

type T = Instrument

Type synonym for Instrument.

1.22.3.67 Daml.Finance.Interface.Account.Account

We recommend to import this module qualified.

Interfaces

interface Account

An interface which represents an established relationship between a provider and an

owner.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice Credit

Creates a new Holding in the corresponding Account.

Controller: (DA.Internal.Record.getField @"custodian" (view this)), (DA.Inter-

nal.Record.getField @"incoming" (DA.Internal.Record.getField @"controllers" (view

this)))

Returns: ContractId I

744 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282

Daml SDK Documentation, 2.7.3

Field Type Description

quantity Quantity In-

strumentKey

Decimal

The target Instrument and corresponding

amount.

• Choice Debit

Removes an existing Holding.

Controller: (DA.Internal.Record.getField @"custodian" (view this)), (DA.Inter-

nal.Record.getField @"outgoing" (DA.Internal.Record.getField @"controllers" (view

this)))

Returns: ()

Field Type Description

holdingCid ContractId I The Holding’s contract id.

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: View

Field Type Description

viewer Party The party fetching the view.

• Method credit : Credit -> Update (ContractId I)

Implementation of the Credit choice.

• Method debit : Debit -> Update ()

Implementation of the Debit choice.

• Method getKey : AccountKey

Get the unique key of the Account.

Data Types

data Controllers

Controllers of the account (related to transfers).

Controllers

Field Type Description

outgoing Parties Parties instructing a transfer (outgoing).

incoming Parties Parties approving a transfer (incoming).

instance Eq Controllers

instance Show Controllers

type I = Account

Type synonym for Account.

instance HasMethod Factory "create’" (Create -> Update (ContractId I))

type R = Reference

1.22. Reference 745

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282

Daml SDK Documentation, 2.7.3

Type synonym for Reference. This type is currently used as a work-around given the lack of

interface keys.

type V = View

Type synonym for View.

instance HasFromAnyView Account V

data View

View for Account.

View

Field Type Description

custodian Party Party providing accounting services.

owner Party Party owning this account.

id Id Identifier for the account.

description Text Human readable description of the ac-

count.

holdingFactoryCid ContractId

F

Associated holding factory.

controllers Controllers Parties controlling transfers.

instance Eq View

instance Show View

Functions

toKey : View -> AccountKey

Convert the account’s ‘View’ to its key.

getKey : Account -> AccountKey

credit : Account -> Credit -> Update (ContractId I)

debit : Account -> Debit -> Update ()

exerciseInterfaceByKey : (HasInterfaceTypeRep i, HasExercise i d r) => AccountKey -> Party -> d -> Update

r

Exercise interface by key. This method can be used to exercise a choice on an Account given

its AccountKey. Requires as input the AccountKey, the actor fetching the account and the

choice arguments. For example:

exerciseInterfaceByKey @Account.I accountKey actor Account.Debit with␣

↪→holdingCid

disclose : (Text, Parties) -> Party -> Parties -> AccountKey -> Update (ContractId I)

Disclose account.

undisclose : (Text, Parties) -> Party -> Parties -> AccountKey -> Update (Optional (ContractId I))

Undisclose account.

746 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hasinterfacetyperep-84221
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasexercise-70422
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282

Daml SDK Documentation, 2.7.3

1.22.3.68 Daml.Finance.Interface.Account.Factory

Interfaces

interface Factory

Interface that allows implementing templates to create accounts.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice Create

Create a new account.

Controller: (DA.Internal.Record.getField @"custodian" account), (DA.Inter-

nal.Record.getField @"owner" account)

Returns: ContractId I

Field Type Description

account AccountKey The account’s key.

holdingFactoryCid ContractId F Associated holding factory for the account.

controllers Controllers Controllers of the account.

description Text Human readable description of the ac-

count.

observers PartiesMap The account’s observers.

• Choice Remove

Archive an account.

Controller: (DA.Internal.Record.getField @"custodian" account), (DA.Inter-

nal.Record.getField @"owner" account)

Returns: ()

Field Type Description

account AccountKey The account’s key.

• Method create’ : Create -> Update (ContractId I)

Implementation of Create choice.

• Method remove : Remove -> Update ()

Implementation of Remove choice.

Data Types

type F = Factory

Type synonym for Factory.

type V = View

Type synonym for View.

instance HasFromAnyView Factory V

data View

View

1.22. Reference 747

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108

Daml SDK Documentation, 2.7.3

Field Type Description

provider Party The provider of the Factory.

instance Eq View

instance Show View

Functions

create’ : Factory -> Create -> Update (ContractId I)

remove : Factory -> Remove -> Update ()

1.22.3.69 Daml.Finance.Interface.Account.Util

Functions

fetchAccount : HasToInterface t I => t -> Update I

Fetch the account of a holding.

getAccount : HasToInterface t I => t -> AccountKey

Get the account key of a holding.

getCustodian : HasToInterface t I => t -> Party

Get the custodian of a holding.

getOwner : HasToInterface t I => t -> Party

Get the owner of a holding.

1.22.3.70 Daml.Finance.Interface.Claims.Claim

Interfaces

interface Claim

Interface implemented by templates that can be represented as Contingent Claims.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice GetClaims

Retrieves the list of claims representing the instrument. Thismight involve fetching

reference data, such as calendars, on which the actor must have visibility.

Controller: actor

Returns: [TaggedClaim]

Field Type Description

actor Party The party retrieving the claims.

748 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hastointerface-68104
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hastointerface-68104
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hastointerface-68104
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hastointerface-68104
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932

Daml SDK Documentation, 2.7.3

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: View

Field Type Description

viewer Party The party retrieving the view.

• Method getClaims : GetClaims -> Update [TaggedClaim]

The list of claims representing the instrument.

Data Types

type I = Claim

Type synonym for Claim.

type V = View

Type synonym for View.

instance HasFromAnyView Claim V

data View

View for Claim.

View

Field Type Description

acquisitionTime Time The claim’s acquisition time.

instance Eq View

instance Show View

Functions

getClaims : Claim -> GetClaims -> Update [TaggedClaim]

getClaim : Party -> Claim -> Update C

Retrieves the single claim representing the template. An error is thrown if there are zero or

more than one claims.

getAcquisitionTime : Claim -> Time

Retrieves the claim’s acquisition time.

1.22. Reference 749

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886

Daml SDK Documentation, 2.7.3

1.22.3.71 Daml.Finance.Interface.Claims.Dynamic.Instrument

Interfaces

interface Instrument

Interface implementedby instruments that create Contingent Claims trees on-the-fly (i.e.,

the tree is not stored on disk as part of a contract, but created and processed in-memory).

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice CreateNewVersion

Create a new version of an instrument, using a new lastEventTimestamp and a list

of previous elections (if applicable).

Controller: (DA.Internal.Record.getField @"lifecycler" (view this))

Returns: ContractId Instrument

Field Type Description

version Text The new version of the instrument.

lastEventTimes-

tamp

Time The new lastEventTimestamp of the instru-

ment.

prevElections [EventData] A list of previous elections that have been

lifecycled on this instrument so far.

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: View

Field Type Description

viewer Party The party retrieving the view.

• Method createNewVersion : CreateNewVersion -> Update (ContractId Instrument)

Data Types

type I = Instrument

Type synonym for Instrument.

type V = View

Type synonym for View.

instance HasFromAnyView Instrument V

data View

View for Instrument.

View

750 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108

Daml SDK Documentation, 2.7.3

Field Type Description

lifecycler Party Party performing the lifecycling.

lastEventTimes-

tamp

Time (Market) time of the last recorded lifecy-

cle event. If no event has occurred yet,

the time of creation should be used.

prevElections [EventData] A list of previous elections that have

been lifecycled on this instrument so far.

instance Eq View

instance Show View

Functions

createNewVersion : Instrument -> CreateNewVersion -> Update (ContractId Instrument)

1.22.3.72 Daml.Finance.Interface.Claims.Types

Data Types

type C = Claim Time Decimal Deliverable Observable

The specialized claim type.

type Deliverable = InstrumentKey

Type used to reference assets in the claim tree.

type Observable = Text

Type used to reference observables in the claim tree.

data Pending

Type used to record pending payments.

Pending

Field Type Description

t Time

tag Text

instrument Deliverable

amount Decimal

instance Eq Pending

instance Show Pending

data TaggedClaim

A claim and a textual tag.

TaggedClaim

1.22. Reference 751

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

Field Type Description

claim C

tag Text

instance Eq TaggedClaim

instance Show TaggedClaim

instance HasMethod Claim "getClaims" (GetClaims -> Update [TaggedClaim])

1.22.3.73 Daml.Finance.Interface.Data.Numeric.Observation

Interfaces

interface Observation

Interface for a time-dependent numeric Observation, where the values are explicitly

stored on-ledger.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: View

Field Type Description

viewer Party The party fetching the view.

Data Types

type I = Observation

Type synonym for Observation.

instance HasMethod Factory "create’" (Create -> Update (ContractId I))

type V = View

Type synonym for View.

instance HasFromAnyView Observation V

data View

View for Observation.

View

752 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108

Daml SDK Documentation, 2.7.3

Field Type Description

provider Party The reference data provider.

id Id A textual identifier.

observations Map Time

Decimal

The time-dependent values.

observers PartiesMap Observers.

1.22.3.74 Daml.Finance.Interface.Data.Numeric.Observation.Factory

Interfaces

interface Factory

Factory contract used to create, remove and view a Numeric.Observation.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice Create

Create an Observation.

Controller: provider

Returns: ContractId I

Field Type Description

provider Party The reference data provider.

id Id A textual identifier.

observations Map Time

Decimal

The time-dependent values.

observers PartiesMap Observers.

• Method create’ : Create -> Update (ContractId I)

Implementation of Create choice.

Data Types

type F = Factory

Type synonym for Factory.

type V = View

Type synonym for View.

instance HasFromAnyView Factory V

data View

View

1.22. Reference 753

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-map-90052
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-map-90052
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108

Daml SDK Documentation, 2.7.3

Field Type Description

provider Party The provider of the Factory.

observers PartiesMap The observers of the Factory.

instance Eq View

instance Show View

Functions

create’ : Factory -> Create -> Update (ContractId I)

1.22.3.75 Daml.Finance.Interface.Data.Reference.HolidayCalendar

Interfaces

interface HolidayCalendar

Interface for contracts storing holiday calendar data on the ledger.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: View

Field Type Description

viewer Party The party fetching the view.

• Choice UpdateCalendar

Updates the holiday calendar.

Controller: (DA.Internal.Record.getField @"provider" (view this))

Returns: ContractId HolidayCalendar

Field Type Description

newCalendar HolidayCalen-

darData

The new HolidayCalendarData.

• Method updateCalendar : UpdateCalendar -> Update (ContractId HolidayCalendar)

Updates the holiday calendar.

754 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282

Daml SDK Documentation, 2.7.3

Data Types

type I = HolidayCalendar

Type synonym for HolidayCalendar.

instance HasMethod Factory "create’" (Create -> Update (ContractId I))

type V = View

Type synonym for View.

instance HasFromAnyView HolidayCalendar V

data View

View for HolidayCalendar.

View

Field Type Description

provider Party The parties providing the HolidayCal­

endar.

calendar HolidayCal-

endarData

Holiday Calendar Data used to define

holidays.

Functions

updateCalendar : HolidayCalendar -> UpdateCalendar -> Update (ContractId HolidayCalendar)

1.22.3.76 Daml.Finance.Interface.Data.Reference.HolidayCalendar.Factory

Interfaces

interface Factory

Interface that allows implementing templates to create holiday calendars.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice Create

Create a new Holiday Calendar.

Controller: provider

Returns: ContractId I

Field Type Description

calendar HolidayCalen-

darData

Holiday Calendar Data used to define holi-

days.

observers PartiesMap Observers.

provider Party The calendar’s provider.

1.22. Reference 755

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932

Daml SDK Documentation, 2.7.3

• Method create’ : Create -> Update (ContractId I)

Implementation of Create choice.

Data Types

type F = Factory

Type synonym for Factory.

type V = View

Type synonym for View.

instance HasFromAnyView Factory V

data View

View

Field Type Description

provider Party The provider of the Factory.

instance Eq View

instance Show View

Functions

create’ : Factory -> Create -> Update (ContractId I)

1.22.3.77 Daml.Finance.Interface.Data.Reference.Time

This module defines an interface for BusinessTime rules, which are contracts to control and keep

track of business time.

Interfaces

interface Time

An interface to manage and control business time. Controlled time rules (i.e. clocks)

are managed by entities that have control certain business time events. These can be

trading-open / -close on an exchange, start-of-day / end-of-day events of a trading desk,

or just a daily clock tick to signal the passing of aticking. Intervals in which the clock

"ticks" don’t have to be regular, and can e.g. consider business days only.

viewtype V

• Choice Advance

Advance time to its next state.

Controller: (DA.Internal.Record.getField @"providers" (view this))

Returns: (ContractId Time, ContractId Event)

756 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282

Daml SDK Documentation, 2.7.3

Field Type Description

eventId Id Event identifier.

eventDescription Text Event description.

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: View

Field Type Description

viewer Party The party retrieving the view.

• Choice Rewind

Rewind time to its previous state.

Controller: (DA.Internal.Record.getField @"providers" (view this))

Returns: (ContractId Time, ContractId Event)

Field Type Description

eventId Id Event identifier.

eventDescription Text Event description.

• Method advance : ContractId Time -> Advance -> Update (ContractId Time, ContractId

Event)

Implementation of the Advance choice.

• Method rewind : ContractId Time -> Rewind -> Update (ContractId Time, ContractId

Event)

Implementation of the Rewind choice.

Data Types

type I = Time

Type synonym for Time.

type V = View

Type synonym for View.

instance HasFromAnyView Time V

data View

View for Time.

View

Field Type Description

providers Parties Parties controlling time.

id Id Textual identifier for the time rule.

1.22. Reference 757

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108

Daml SDK Documentation, 2.7.3

instance Eq View

instance Show View

Functions

advance : Time -> ContractId Time -> Advance -> Update (ContractId Time, ContractId Event)

rewind : Time -> ContractId Time -> Rewind -> Update (ContractId Time, ContractId Event)

1.22.3.78 Daml.Finance.Interface.Holding.Base

Interfaces

interface Base

Base interface for a holding.

viewtype V

• Choice Acquire

Lock a contract.

Controller: (DA.Internal.Record.getField @"owner" (DA.Internal.Record.getField @"ac-

count" (view this))), newLockers

Returns: ContractId Base

Field Type Description

newLockers Parties Parties which restrain the contract’s ability

to perform specified actions.

context Text Reason for acquiring a lock.

lockType LockType Type of lock to acquire

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: V

Field Type Description

viewer Party The party retrieving the view.

• Choice Release

Unlock a locked contract.

Controller: getLockers this

Returns: ContractId Base

Field Type Description

context Text

• Method acquire : Acquire -> Update (ContractId Base)

Implementation of the Acquire choice.

758 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282

Daml SDK Documentation, 2.7.3

• Method release : Release -> Update (ContractId Base)

Implementation of the Release choice.

Data Types

type I = Base

Type synonym for Base.

instance HasMethod Account "credit" (Credit -> Update (ContractId I))

instance HasMethod Factory "create’" (Create -> Update (ContractId I))

instance HasMethod Batch "cancel" (Cancel -> Update [ContractId I])

instance HasMethod Batch "settle" (Settle -> Update [ContractId I])

instance HasMethod Instruction "allocate" (Allocate -> Update (ContractId Instruction, Optional

(ContractId I)))

instance HasMethod Instruction "cancel" (Cancel -> Update (Optional (ContractId I)))

instance HasMethod Instruction "execute" (Execute -> Update (Optional (ContractId I)))

data Lock

Locking details.

Lock

Field Type Description

lockers Parties Parties which are locking the contract.

context Set Text Why this lock is held by the locking par-

ties.

lockType LockType The type of lock applied.

instance Eq Lock

instance Show Lock

data LockType

Type of lock held.

Semaphore

A one time only lock.

Reentrant

A mutual exclusion lock where the same lockers may lock a contract multiple

times.

instance Eq LockType

instance Show LockType

type V = View

Type synonym for View.

instance HasFromAnyView Base V

data View

1.22. Reference 759

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Set.html#type-da-set-types-set-90436
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108

Daml SDK Documentation, 2.7.3

View for Base.

View

Field Type Description

instrument Instrumen-

tKey

Instrument being held.

account AccountKey Key of the account holding the assets.

amount Decimal Size of the holding.

lock Optional

Lock

When a contract is locked, contains the

locking details.

instance Eq View

instance Show View

Functions

acquire : Base -> Acquire -> Update (ContractId Base)

release : Base -> Release -> Update (ContractId Base)

getLockers : HasToInterface t Base => t -> Parties

Get the lockers of a holding.

1.22.3.79 Daml.Finance.Interface.Holding.Factory

Interfaces

interface Factory

Holding factory contract used to create (credit) holdings.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice Create

Create a holding on the instrument in the corresponding account.

Controller: (DA.Internal.Record.getField @"custodian" account), (DA.Inter-

nal.Record.getField @"owner" account)

Returns: ContractId I

Field Type Description

instrument Instrumen-

tKey

The instrument of which units are held.

account AccountKey The account at which the holding is held.

Defines the holding’s owner and custodian.

amount Decimal Number of units.

observers PartiesMap Observers of the holding to be credited.

760 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hastointerface-68104
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135

Daml SDK Documentation, 2.7.3

• Method create’ : Create -> Update (ContractId I)

Implementation of Create choice.

Data Types

type F = Factory

Type synonym for Factory.

type V = View

Type synonym for View.

instance HasFromAnyView Factory V

data View

View

Field Type Description

provider Party The provider of the Factory.

instance Eq View

instance Show View

Functions

create’ : Factory -> Create -> Update (ContractId I)

1.22.3.80 Daml.Finance.Interface.Holding.Fungible

Interfaces

interface Fungible

Interface for a fungible holding.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: View

Field Type Description

viewer Party The party fetching the view.

1.22. Reference 761

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932

Daml SDK Documentation, 2.7.3

• Choice Merge

Merge multiple fungible contracts into a single fungible contract.

Controller: (DA.Internal.Record.getField @"modifiers" (view this)), getLockers this

Returns: ContractId Fungible

Field Type Description

fungibleCids [ContractId

Fungible]

The fungible contracts to merge which will

get consumed.

• Choice Split

Split a fungible contract into multiple contracts by amount.

Controller: (DA.Internal.Record.getField @"modifiers" (view this)), getLockers this

Returns: SplitResult

Field Type Description

amounts [Decimal] The quantities to split the fungible asset by,

creating a new contract per amount.

• Method merge : Merge -> Update (ContractId Fungible)

Implementation of the Merge choice.

• Method split : Split -> Update SplitResult

Implementation of the Split choice.

Data Types

type I = Fungible

Type synonym for Fungible.

data SplitResult

Result of a call to Split.

SplitResult

Field Type Description

splitCids [ContractId

Fungible]

The contract ids for the split holdings.

rest Optional

(ContractId

Fungible)

Contract id for the holding on the re-

maining amount. It is None when the

split is exact.

instance Eq SplitResult

instance Show SplitResult

instance HasMethod Fungible "split" (Split -> Update SplitResult)

type V = View

Type synonym for View.

instance HasFromAnyView Fungible V

data View

762 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108

Daml SDK Documentation, 2.7.3

View for Fungible.

View

Field Type Description

modifiers Parties Parties which have the authorization to

modify a fungible asset.

instance Eq View

instance Show View

Functions

split : Fungible -> Split -> Update SplitResult

merge : Fungible -> Merge -> Update (ContractId Fungible)

1.22.3.81 Daml.Finance.Interface.Holding.Transferable

Interfaces

interface Transferable

An interface respresenting a contractwhere ownership canbe transferred to other parties.

viewtype View

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: View

Field Type Description

viewer Party The party retrieving the view.

• Choice Transfer

Transfer a contract to a new owner.

Controller: actors, getLockers this

Returns: ContractId Transferable

Field Type Description

actors Parties Parties authorizing the transfer.

newOwnerAccount AccountKey The new owner’s account.

• Method transfer : ContractId I -> Transfer -> Update (ContractId Transferable)

Implementation of the Transfer choice.

1.22. Reference 763

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282

Daml SDK Documentation, 2.7.3

Data Types

type I = Transferable

Type synonym for Transferable.

instance HasMethod Transferable "transfer" (ContractId I -> Transfer -> Update (ContractId Trans-

ferable))

type V = View

Type synonym for View.

data View

View for Transferable.

View

(no fields)

instance Eq View

instance Show View

instance HasFromAnyView Transferable View

Functions

transfer : Transferable -> ContractId I -> Transfer -> Update (ContractId Transferable)

1.22.3.82 Daml.Finance.Interface.Holding.Util

Functions

getInstrument : HasToInterface t I => t -> InstrumentKey

Get the key of a holding.

getAmount : HasToInterface t I => t -> Decimal

Get the amount of a holding.

disclose : (HasInterfaceTypeRep i, HasToInterface i I, HasFromInterface i I) => (Text, Parties) -> Parties

-> ContractId i -> Update (ContractId i)

Disclose a holding.

undisclose : (HasInterfaceTypeRep i, HasToInterface i I, HasFromInterface i I) => (Text, Parties) -> Parties

-> ContractId i -> Update (Optional (ContractId i))

Undisclose a holding.

764 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hastointerface-68104
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hastointerface-68104
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hasinterfacetyperep-84221
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hastointerface-68104
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hasfrominterface-43863
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hasinterfacetyperep-84221
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hastointerface-68104
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hasfrominterface-43863
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282

Daml SDK Documentation, 2.7.3

1.22.3.83 Daml.Finance.Interface.Instrument.Base.Instrument

Interfaces

interface Instrument

Base interface for all instruments. This interface does not define any lifecycling logic.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: V

Field Type Description

viewer Party The party retrieving the view.

• Method getKey : InstrumentKey

Get the unique key for the Instrument.

Data Types

type I = Instrument

Type synonym for Instrument.

instance HasExerciseByKey Reference InstrumentKey GetCid (ContractId I)

type Q = Quantity InstrumentKey Decimal

Instrument quantity.

type R = Reference

Type synonym for Reference. This type is currently used as a work-around given the lack of

interface keys.

instance HasExerciseByKey Reference InstrumentKey SetCid (ContractId R)

instance HasExerciseByKey Reference InstrumentKey SetObservers (ContractId R)

type V = View

Type synonym for View.

instance HasFromAnyView Instrument V

data View

View for Instrument.

View

1.22. Reference 765

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasexercisebykey-36549
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasexercisebykey-36549
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasexercisebykey-36549
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108

Daml SDK Documentation, 2.7.3

Field Type Description

issuer Party The instrument’s issuer.

depository Party The instrument’s depository.

id Id The instrument’s identifier.

version Text A textual instrument version.

description Text A human readable description of the in-

strument.

validAsOf Time Timestamp as of which the instrument

is valid. This usually coincides with the

timestamp of the event that creates the

instrument. It usually does not coincide

with ledger time. This is required for life-

cycling of some instruments, in order to

keep track of the last time the instru-

ment was lifecycled. For instruments

where this is not applicable, it can be set

to the current time.

instance Eq View

instance Show View

Functions

getKey : Instrument -> InstrumentKey

exerciseInterfaceByKey : (HasInterfaceTypeRep i, HasExercise i d r) => InstrumentKey -> Party -> d ->

Update r

Exercise interface by key. This method can be used to exercise a choice on an Instrument

given its InstrumentKey. Requires as input the InstrumentKey, the actor fetching the in-

strument and the choice arguments. For example:

toKey : V -> InstrumentKey

Convert the instrument’s View to its key.

fetchInstrument : HasToInterface t I => t -> Update I

Fetch instrument from holding.

qty : Decimal -> InstrumentKey -> Q

Wraps an amount and an instrument key into an instrument quantity.

scale : Decimal -> Q -> Q

Scale Quantity by the provided factor.

766 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hasinterfacetyperep-84221
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasexercise-70422
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hastointerface-68104
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135

Daml SDK Documentation, 2.7.3

1.22.3.84 Daml.Finance.Interface.Instrument.Bond.Callable.Factory

Interfaces

interface Factory

Factory interface to instantiate callable bond instruments.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice Create

Create a new instrument.

Controller: (DA.Internal.Record.getField @"depository" (DA.Internal.Record.get-

Field @"instrument" callable)), (DA.Internal.Record.getField @"issuer" (DA.Inter-

nal.Record.getField @"instrument" callable))

Returns: ContractId I

Field Type Description

callable Callable Attributes to create a callable rate bond.

observers PartiesMap The instrument’s observers.

• Choice Remove

Archive an instrument.

Controller: (DA.Internal.Record.getField @"depository" instrument), (DA.Inter-

nal.Record.getField @"issuer" instrument)

Returns: ()

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

• Method create’ : Create -> Update (ContractId I)

Implementation of Create choice.

• Method remove : Remove -> Update ()

Implementation of Remove choice.

Data Types

type F = Factory

Type synonym for Factory.

type V = View

Type synonym for View.

instance HasFromAnyView Factory V

data View

View of Factory.

View

1.22. Reference 767

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108

Daml SDK Documentation, 2.7.3

Field Type Description

provider Party The provider of the Factory.

instance Eq View

instance Show View

Functions

create’ : Factory -> Create -> Update (ContractId I)

remove : Factory -> Remove -> Update ()

1.22.3.85 Daml.Finance.Interface.Instrument.Bond.Callable.Instrument

Interfaces

interface Instrument

Instrument interface representing a callable bond.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: V

Field Type Description

viewer Party The party retrieving the view.

Data Types

type I = Instrument

Type synonym for Instrument.

instance HasMethod Factory "create’" (Create -> Update (ContractId I))

type V = View

Type synonym for View.

instance HasFromAnyView Instrument V

data View

View of Instrument.

View

768 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108

Daml SDK Documentation, 2.7.3

Field Type Description

callable Callable Attributes of a callable bond.

instance Eq View

instance Show View

1.22.3.86 Daml.Finance.Interface.Instrument.Bond.Callable.Types

Data Types

data Callable

Describes the attributes of a Callable Bond.

Callable

1.22. Reference 769

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

description Text The description of the bond.

floatingRate Optional

FloatingRate

A description of the floating rate to be

used (if applicable).

couponRate Decimal The fixed coupon rate, per annum. For ex-

ample, in case of a "3.5% p.a coupon" this

should be 0.035. This can also used as a

floating coupon spread. For example, in

case of "3M Libor + 0.5%" this should be

0.005.

capRate Optional

Decimal

The maximum coupon rate possible. For

example, if "3M Libor + 0.5%" would result

in a rate of 2.5%, but capRate is 2.0%, the

coupon rate used would be 2.0%.

floorRate Optional

Decimal

The minimum coupon rate possible. For

example, if "3M Libor + 0.5%" would result

in a rate of -0.2%, but floorRate is 0.0%,

the coupon rate used would be 0.0%.

couponSchedule Periodic-

Schedule

The schedule for the periodic coupon

payments. The coupon is paid on the last

date of each schedule period. In case of

a floating rate, the reference rate will be

fixed in relation to this schedule (at the

start/end of each period, as specified by

FloatingRate). This is the main schedule

of the instrument, which drives both the

calculation and the payment of coupons.

It also defines the issue date and thema-

turity date of the bond.

callSchedule Periodic-

Schedule

The bond is callable on the last date of

each schedule period. For example, if

this schedule is the same as the period-

icSchedule, it means that the bond can

be called on each coupon payment date.

noticeDays Int The number of business days in advance

of the coupon date that the issuer must

give notice if it wants to call the bond.

The election whether to call or not to call

must be done by this date.

holidayCalen-

darIds

[Text] The identifiers of the holiday calendars

to be used for the coupon schedule.

calendarDat-

aProvider

Party The reference data provider to use for the

holiday calendar.

dayCountConven-

tion

DayCount-

Conventio-

nEnum

The day count convention used to calcu-

late day count fractions. For example:

Act360.

useAdjusted-

DatesForDcf

Bool Configure whether to use adjusted dates

(as specified in businessDayAdjustment of

the couponSchedule) for day count frac-

tions.

currency Instrumen-

tKey

The currency of the bond. For example,

if the bond pays in USD this should be a

USD cash instrument.

notional Decimal The notional of the bond. This is the face

value corresponding to one unit of the

bond instrument. For example, if one

bond unit corresponds to 1000 USD, this

should be 1000.0.

lastEventTimes-

tamp

Time (Market) time of the last recorded lifecy-

cle event. If no event has occurred yet,

the time of creation should be used.

prevElections [EventData] A list of previous elections that have

been lifecycled on this instrument so far.

770 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-int-37261
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886

Daml SDK Documentation, 2.7.3

instance Eq Callable

instance Show Callable

1.22.3.87 Daml.Finance.Interface.Instrument.Bond.FixedRate.Factory

Interfaces

interface Factory

Factory interface to instantiate fixed-rate bond instruments.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice Create

Create a new instrument.

Controller: (DA.Internal.Record.getField @"depository" (DA.Internal.Record.get-

Field @"instrument" fixedRate)), (DA.Internal.Record.getField @"issuer" (DA.Inter-

nal.Record.getField @"instrument" fixedRate))

Returns: ContractId I

Field Type Description

fixedRate FixedRate Attributes to create a fixed rate bond.

observers PartiesMap The instrument’s observers.

• Choice Remove

Archive an instrument.

Controller: (DA.Internal.Record.getField @"depository" instrument), (DA.Inter-

nal.Record.getField @"issuer" instrument)

Returns: ()

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

• Method create’ : Create -> Update (ContractId I)

Implementation of Create choice.

• Method remove : Remove -> Update ()

Implementation of Remove choice.

1.22. Reference 771

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072

Daml SDK Documentation, 2.7.3

Data Types

type F = Factory

Type synonym for Factory.

type V = View

Type synonym for View.

instance HasFromAnyView Factory V

data View

View of Factory.

View

Field Type Description

provider Party The provider of the Factory.

instance Eq View

instance Show View

Functions

create’ : Factory -> Create -> Update (ContractId I)

remove : Factory -> Remove -> Update ()

1.22.3.88 Daml.Finance.Interface.Instrument.Bond.FixedRate.Instrument

Interfaces

interface Instrument

Instrument interface representing a fixed rate bond.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: V

Field Type Description

viewer Party The party retrieving the view.

772 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932

Daml SDK Documentation, 2.7.3

Data Types

type I = Instrument

Type synonym for Instrument.

instance HasMethod Factory "create’" (Create -> Update (ContractId I))

type V = View

Type synonym for View.

instance HasFromAnyView Instrument V

data View

View of Instrument.

View

Field Type Description

fixedRate FixedRate Attributes of a fixed rate bond.

instance Eq View

instance Show View

1.22.3.89 Daml.Finance.Interface.Instrument.Bond.FixedRate.Types

Data Types

data FixedRate

Describes the attributes of a Fixed Rate Bond.

FixedRate

1.22. Reference 773

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

description Text The description of the bond.

couponRate Decimal The fixed coupon rate, per annum. For ex-

ample, in case of a "3.5%p.a. coupon" this

should be 0.035.

periodicSchedule Periodic-

Schedule

The schedule for the periodic coupon

payments.

holidayCalen-

darIds

[Text] The identifiers of the holiday calendars

to be used for the coupon schedule.

calendarDat-

aProvider

Party The reference data provider to use for the

holiday calendar.

dayCountConven-

tion

DayCount-

Conventio-

nEnum

The day count convention used to calcu-

late day count fractions. For example:

Act360.

currency Instrumen-

tKey

The currency of the bond. For example,

if the bond pays in USD this should be a

USD cash instrument.

notional Decimal The notional of the bond. This is the face

value corresponding to one unit of the

bond instrument. For example, if one

bond unit corresponds to 1000 USD, this

should be 1000.0.

lastEventTimes-

tamp

Time (Market) time of the last recorded lifecy-

cle event. If no event has occurred yet,

the time of creation should be used.

instance Eq FixedRate

instance Show FixedRate

1.22.3.90 Daml.Finance.Interface.Instrument.Bond.FloatingRate.Factory

Interfaces

interface Factory

Factory interface to instantiate floating-rate bond instruments.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice Create

Create a new instrument.

Controller: (DA.Internal.Record.getField @"depository" (DA.Internal.Record.getField

@"instrument" floatingRate)), (DA.Internal.Record.getField @"issuer" (DA.Inter-

nal.Record.getField @"instrument" floatingRate))

774 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

Returns: ContractId I

Field Type Description

floatingRate FloatingRate Attributes to create a floating rate bond.

observers PartiesMap The instrument’s observers.

• Choice Remove

Archive an instrument.

Controller: (DA.Internal.Record.getField @"depository" instrument), (DA.Inter-

nal.Record.getField @"issuer" instrument)

Returns: ()

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

• Method create’ : Create -> Update (ContractId I)

Implementation of Create choice.

• Method remove : Remove -> Update ()

Implementation of Remove choice.

Data Types

type F = Factory

Type synonym for Factory.

type V = View

Type synonym for View.

instance HasFromAnyView Factory V

data View

View of Factory.

View

Field Type Description

provider Party The provider of the Factory.

instance Eq View

instance Show View

1.22. Reference 775

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

Functions

create’ : Factory -> Create -> Update (ContractId I)

remove : Factory -> Remove -> Update ()

1.22.3.91 Daml.Finance.Interface.Instrument.Bond.FloatingRate.Instrument

Interfaces

interface Instrument

Instrument interface representing a floating rate bond.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: V

Field Type Description

viewer Party The party retrieving the view.

Data Types

type I = Instrument

Type synonym for Instrument.

instance HasMethod Factory "create’" (Create -> Update (ContractId I))

type V = View

Type synonym for View.

instance HasFromAnyView Instrument V

data View

View of Instrument.

View

Field Type Description

floatingRate FloatingRate Attributes of a floating rate bond.

instance Eq View

instance Show View

776 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

1.22.3.92 Daml.Finance.Interface.Instrument.Bond.FloatingRate.Types

Data Types

data FloatingRate

Describes the attributes representing a floating rate bond.

FloatingRate

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

description Text The description of the bond.

referenceRateId Text The floating rate reference ID. For exam-

ple, in case of "3M Euribor + 0.5%" this

should be a valid reference to the "3MEu-

ribor" reference rate.

couponSpread Decimal The floating rate coupon spread. For ex-

ample, in case of "3M Euribor + 0.5%" this

should be 0.005.

periodicSchedule Periodic-

Schedule

The schedule for the periodic coupon

payments.

holidayCalen-

darIds

[Text] The identifiers of the holiday calendars

to be used for the coupon schedule.

calendarDat-

aProvider

Party The reference data provider to use for the

holiday calendar.

dayCountConven-

tion

DayCount-

Conventio-

nEnum

The day count convention used to calcu-

late day count fractions. For example:

Act360.

currency Instrumen-

tKey

The currency of the bond. For example,

if the bond pays in USD this should be a

USD cash instrument.

notional Decimal The notional of the bond. This is the face

value corresponding to one unit of the

bond instrument. For example, if one

bond unit corresponds to 1000 USD, this

should be 1000.0.

lastEventTimes-

tamp

Time (Market) time of the last recorded lifecy-

cle event. If no event has occurred yet,

the time of creation should be used.

instance Eq FloatingRate

instance Show FloatingRate

1.22. Reference 777

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

1.22.3.93 Daml.Finance.Interface.Instrument.Bond.InflationLinked.Factory

Interfaces

interface Factory

Factory interface to instantiate inflation-linked bond instruments.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice Create

Create a new instrument.

Controller: (DA.Internal.Record.getField @"depository" (DA.Internal.Record.getField

@"instrument" inflationLinked)), (DA.Internal.Record.getField @"issuer" (DA.Inter-

nal.Record.getField @"instrument" inflationLinked))

Returns: ContractId I

Field Type Description

inflationLinked Inflation-

Linked

Attributes to create an inflation linked

bond.

observers PartiesMap The instrument’s observers.

• Choice Remove

Archive an instrument.

Controller: (DA.Internal.Record.getField @"depository" instrument), (DA.Inter-

nal.Record.getField @"issuer" instrument)

Returns: ()

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

• Method create’ : Create -> Update (ContractId I)

Implementation of Create choice.

• Method remove : Remove -> Update ()

Implementation of Remove choice.

Data Types

type F = Factory

Type synonym for Factory.

type V = View

Type synonym for View.

instance HasFromAnyView Factory V

data View

View of Factory.

View

778 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108

Daml SDK Documentation, 2.7.3

Field Type Description

provider Party The provider of the Factory.

instance Eq View

instance Show View

Functions

create’ : Factory -> Create -> Update (ContractId I)

remove : Factory -> Remove -> Update ()

1.22.3.94 Daml.Finance.Interface.Instrument.Bond.InflationLinked.Instrument

Interfaces

interface Instrument

Instrument interface representing an inflation linked bond.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: V

Field Type Description

viewer Party The party retrieving the view.

Data Types

type I = Instrument

Type synonym for Instrument.

instance HasMethod Factory "create’" (Create -> Update (ContractId I))

type V = View

Type synonym for View.

instance HasFromAnyView Instrument V

data View

View of Instrument.

View

1.22. Reference 779

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108

Daml SDK Documentation, 2.7.3

Field Type Description

inflationLinked Inflation-

Linked

Attributes of an inflation linked bond.

instance Eq View

instance Show View

1.22.3.95 Daml.Finance.Interface.Instrument.Bond.InflationLinked.Types

Data Types

data InflationLinked

Describes the attributes of an Inflation Linked Bond.

InflationLinked

780 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

description Text The description of the bond.

inflationIndexId Text The inflation index reference ID. For ex-

ample, in case of "0.5% p.a. coupon, CPI

adjusted principal" this should be a valid

reference to the "CPI" index.

inflationIndexBa-

seValue

Decimal The value of the inflation index on the

first reference date of this bond (called

"dated date" on US TIPS). This is used as

the base value for the principal adjust-

ment.

couponRate Decimal The fixed coupon rate, per annum. For ex-

ample, in case of a "0.5% p.a. coupon, CPI

adjusted principal" this should be 0.005.

periodicSchedule Periodic-

Schedule

The schedule for the periodic coupon

payments.

holidayCalen-

darIds

[Text] The identifiers of the holiday calendars

to be used for the coupon schedule.

calendarDat-

aProvider

Party The reference data provider to use for the

holiday calendar.

dayCountConven-

tion

DayCount-

Conventio-

nEnum

The day count convention used to calcu-

late day count fractions. For example:

Act360.

currency Instrumen-

tKey

The currency of the bond. For example,

if the bond pays in USD this should be a

USD cash instrument.

notional Decimal The notional of the bond. This is the face

value corresponding to one unit of the

bond instrument. For example, if one

bond unit corresponds to 1000 USD, this

should be 1000.0.

lastEventTimes-

tamp

Time (Market) time of the last recorded lifecy-

cle event. If no event has occurred yet,

the time of creation should be used.

instance Eq InflationLinked

instance Show InflationLinked

1.22. Reference 781

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

1.22.3.96 Daml.Finance.Interface.Instrument.Bond.ZeroCoupon.Factory

Interfaces

interface Factory

Factory interface to instantiate zero-coupon bond instruments.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice Create

Create a new instrument.

Controller: (DA.Internal.Record.getField @"depository" (DA.Internal.Record.getField

@"instrument" zeroCoupon)), (DA.Internal.Record.getField @"issuer" (DA.Inter-

nal.Record.getField @"instrument" zeroCoupon))

Returns: ContractId I

Field Type Description

zeroCoupon ZeroCoupon Attributes to create a zero coupon bond.

observers PartiesMap The instrument’s observers.

• Choice Remove

Archive an instrument.

Controller: (DA.Internal.Record.getField @"depository" instrument), (DA.Inter-

nal.Record.getField @"issuer" instrument)

Returns: ()

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

• Method create’ : Create -> Update (ContractId I)

Implementation of Create choice.

• Method remove : Remove -> Update ()

Implementation of Remove choice.

Data Types

type F = Factory

Type synonym for Factory.

type V = View

Type synonym for View.

instance HasFromAnyView Factory V

data View

View of Factory.

View

782 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108

Daml SDK Documentation, 2.7.3

Field Type Description

provider Party The provider of the Factory.

instance Eq View

instance Show View

Functions

create’ : Factory -> Create -> Update (ContractId I)

remove : Factory -> Remove -> Update ()

1.22.3.97 Daml.Finance.Interface.Instrument.Bond.ZeroCoupon.Instrument

Interfaces

interface Instrument

Instrument interface representing a zero coupon bond.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: V

Field Type Description

viewer Party The party retrieving the view.

Data Types

type I = Instrument

Type synonym for Instrument.

instance HasMethod Factory "create’" (Create -> Update (ContractId I))

type V = View

Type synonym for View.

instance HasFromAnyView Instrument V

data View

View of Instrument.

View

1.22. Reference 783

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108

Daml SDK Documentation, 2.7.3

Field Type Description

zeroCoupon ZeroCoupon Attributes of a zero coupon bond.

instance Eq View

instance Show View

1.22.3.98 Daml.Finance.Interface.Instrument.Bond.ZeroCoupon.Types

Data Types

data ZeroCoupon

Describes the attributes of a Zero Coupon bond.

ZeroCoupon

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

description Text The description of the bond.

issueDate Date The date when the bond was issued.

maturityDate Date The redemption date of the bond.

currency Instrumen-

tKey

The currency of the bond. For example,

if the bond pays in USD this should be a

USD cash instrument.

notional Decimal The notional of the bond. This is the face

value corresponding to one unit of the

bond instrument. For example, if one

bond unit corresponds to 1000 USD, this

should be 1000.0.

lastEventTimes-

tamp

Time (Market) time of the last recorded lifecy-

cle event. If no event has occurred yet,

the time of creation should be used.

instance Eq ZeroCoupon

instance Show ZeroCoupon

784 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

1.22.3.99 Daml.Finance.Interface.Instrument.Bond.Types

Data Types

data DateRelativeToEnum

The specification of whether payments/resets occur relative to the first or last day of a

calculation period.

CalculationPeriodStartDate

Payments/Resets will occur relative to the first day of each calculation period.

CalculationPeriodEndDate

Payments/Resets will occur relative to the last day of each calculation period.

instance Eq DateRelativeToEnum

instance Show DateRelativeToEnum

data DayTypeEnum

A day type classification used in counting the number of days between two dates.

Business

When calculating the number of days between two dates the count includes

only business days.

Calendar

When calculating the number of days between two dates the count includes all

calendar days.

instance Eq DayTypeEnum

instance Show DayTypeEnum

data FixingDates

Specifies the fixing date relative to the reset date in terms of a business days offset and

an associated set of financial business centers.

FixingDates

1.22. Reference 785

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

Field Type Description

period PeriodEnum The unit of the date offset, e.g. D means

that the date offset is specified in days.

periodMultiplier Int The number of days (if period is D) be-

fore or after the base date the fixing is

observed.

dayType Optional

DayType-

Enum

Indicate whether the date offset is given

in Business days or Calendar days.

businessDayCon-

vention

Business-

DayConven-

tionEnum

Business day convention that describes

how a non-business day is adjusted.

businessCenters [Text] The identifiers of the holiday calendars

to be used for date adjustment (if any).

instance Eq FixingDates

instance Show FixingDates

data FloatingRate

Specifies the data required for a floating rate coupon.

FloatingRate

Field Type Description

referenceRateId Text The identifier of the reference rate to be

used for the coupon, e.g. Libor-3M.

referenceRateType ReferenceR-

ateType-

Enum

The type of reference rate, which defines

how the reference rate is calcuated.

fixingDates FixingDates Specifies the fixing dates as an offset

of the calculation date, e.g. -2 business

days.

instance Eq FloatingRate

instance Show FloatingRate

data ReferenceRateTypeEnum

The type of reference rate, which defines how the reference rate is calcuated.

SingleFixing DateRelativeToEnum

The reference rate is fixed on one observation date. This is usually the case for

Libor and similar reference rates. A DateRelativeToEnum is required to indicate

whether the reference rate will reset relative to the first or the last day of the

calculation period.

CompoundedIndex DayCountConventionEnum

The reference rate is a regularly (e.g. daily) compounded reference rate, e.g. com-

pounded SOFR, calculated via an index that is continuously compounded since

786 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-int-37261
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

a specified start date. This enables efficient calculation using only the index

values at the start and at the end of the calculation period: SOFR_INDEX_END

/ SOFR_INDEX_START - 1, as described here: https://www.newyorkfed.org/mar-

kets/reference-rates/additional-information-about-reference-rates#tgcr_bgcr_sofr_calculation_methodology

The day count convention used for the index calculation (by the index provider)

is also required. For example, in the case of SOFR this is Act360, which is

implied by the 360/dc factor in the formula in the "Calculation Methodology for

the SOFR Averages and Index" section in the link above.

instance Eq ReferenceRateTypeEnum

instance Show ReferenceRateTypeEnum

1.22.3.100 Daml.Finance.Interface.Instrument.Equity.Factory

Interfaces

interface Factory

Factory interface to instantiate equities.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice Create

Create a new instrument.

Controller: (DA.Internal.Record.getField @"depository" instrument), (DA.Inter-

nal.Record.getField @"issuer" instrument)

Returns: ContractId I

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

description Text A description of the instrument.

validAsOf Time (Market) time of the last recorded lifecycle

event. If no event has occurred yet, the time

of creation should be used.

observers PartiesMap The instrument’s observers.

• Choice Remove

Archive an instrument.

Controller: (DA.Internal.Record.getField @"depository" instrument), (DA.Inter-

nal.Record.getField @"issuer" instrument)

Returns: ()

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

• Method create’ : Create -> Update (ContractId I)

Implementation of Create choice.

1.22. Reference 787

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282

Daml SDK Documentation, 2.7.3

• Method remove : Remove -> Update ()

Implementation of Remove choice.

Data Types

type F = Factory

Type synonym for Factory.

type V = View

Type synonym for View.

instance HasFromAnyView Factory V

data View

View

Field Type Description

provider Party The provider of the Factory.

instance Eq View

instance Show View

Functions

create’ : Factory -> Create -> Update (ContractId I)

remove : Factory -> Remove -> Update ()

1.22.3.101 Daml.Finance.Interface.Instrument.Equity.Instrument

Interfaces

interface Instrument

An interface for a generic equity instrument.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice DeclareDistribution

Declare a distribution (e.g. a dividend or a rights issue) to shareholders.

Controller: (DA.Internal.Record.getField @"issuer" (view $ toInterface @BaseInstru-

ment.I this))

Returns: ContractId I

788 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282

Daml SDK Documentation, 2.7.3

Field Type Description

id Id Event identifier of thedividenddistribution.

description Text Description of the dividend event.

effectiveTime Time Time at which the dividend is distributed.

newInstrument Instrumen-

tKey

Instrument held after the dividend distri-

bution (i.e. "ex-dividend" stock).

perUnitDistribution [Instrumen-

tQuantity]

Distributed quantities per unit held.

• Choice DeclareReplacement

Declare a replacement event, where units of the instrument are replaced by a basket

of other instruments.

Controller: (DA.Internal.Record.getField @"issuer" (view $ toInterface @BaseInstru-

ment.I this))

Returns: ContractId I

Field Type Description

id Id Distribution Id.

description Text Description of the replacement event.

effectiveTime Time Time the replacement is to be executed.

perUnitReplace-

ment

[Instrumen-

tQuantity]

Payout offered to shareholders per held

share.

• Choice DeclareStockSplit

Declare a stock split.

Controller: (DA.Internal.Record.getField @"issuer" (view $ toInterface @BaseInstru-

ment.I this))

Returns: ContractId I

Field Type Description

id Id Event identifier of the stock split.

description Text Description of the stock split event.

effectiveTime Time Time at which the stock split is effective.

newInstrument Instrumen-

tKey

Instrument to be held after the stock split

is executed.

adjustmentFactor Decimal Adjustment factor for the stock split.

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: View

Field Type Description

viewer Party The party retrieving the view.

• Method declareDistribution : DeclareDistribution -> Update (ContractId I)

Implementation for the DeclareDistribution choice.

• Method declareReplacement : DeclareReplacement -> Update (ContractId I)

Implementation for the DeclareReplacement choice.

• Method declareStockSplit : DeclareStockSplit -> Update (ContractId I)

Implementation for the DeclareStockSplit choice.

1.22. Reference 789

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282

Daml SDK Documentation, 2.7.3

Data Types

type I = Instrument

Type synonym for Instrument.

instance HasMethod Factory "create’" (Create -> Update (ContractId I))

type V = View

Type synonym for View.

instance HasFromAnyView Instrument V

data View

View for Instrument.

View

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

instance Eq View

instance Show View

Functions

declareDistribution : Instrument -> DeclareDistribution -> Update (ContractId I)

declareStockSplit : Instrument -> DeclareStockSplit -> Update (ContractId I)

declareReplacement : Instrument -> DeclareReplacement -> Update (ContractId I)

1.22.3.102 Daml.Finance.Interface.Instrument.Generic.Factory

Interfaces

interface Factory

Factory interface to instantiate generic instruments using Contingent Claims.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice Create

Create a new generic instrument.

Controller: (DA.Internal.Record.getField @"depository" instrument), (DA.Inter-

nal.Record.getField @"issuer" instrument)

Returns: ContractId I

790 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282

Daml SDK Documentation, 2.7.3

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

description Text A description of the instrument.

claims C The claim tree.

acquisitionTime Time The claim’s acquisition time. This usually

corresponds to the start date of the con-

tract.

lastEventTimes-

tamp

Time (Market) time of the last recorded lifecycle

event. If no event has occurred yet, the time

of creation should be used.

observers PartiesMap The instrument’s observers.

• Choice Remove

Archive a generic instrument.

Controller: (DA.Internal.Record.getField @"depository" instrument), (DA.Inter-

nal.Record.getField @"issuer" instrument)

Returns: ()

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

• Method create’ : Create -> Update (ContractId I)

Implementation of Create choice.

• Method remove : Remove -> Update ()

Implementation of Remove choice.

Data Types

type F = Factory

Type synonym for Factory.

type V = View

Type synonym for View.

instance HasFromAnyView Factory V

data View

View

Field Type Description

provider Party The provider of the Factory.

instance Eq View

instance Show View

1.22. Reference 791

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

Functions

create’ : Factory -> Create -> Update (ContractId I)

remove : Factory -> Remove -> Update ()

1.22.3.103 Daml.Finance.Interface.Instrument.Generic.Instrument

Interfaces

interface Instrument

Interface for generic instruments utilizing Contingent Claims.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: V

Field Type Description

viewer Party The party retrieving the view.

Data Types

type I = Instrument

Type synonym for Instrument.

instance HasMethod Factory "create’" (Create -> Update (ContractId I))

type V = View

Type synonym for View.

instance HasFromAnyView Instrument V

data View

View

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

claims C The claim tree.

instance Eq View

instance Show View

792 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

1.22.3.104 Daml.Finance.Interface.Instrument.Option.BarrierEuropeanCash.Factory

Interfaces

interface Factory

Factory interface to instantiate barrier options.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice Create

Create a new instrument.

Controller: (DA.Internal.Record.getField @"depository" (DA.Internal.Record.getField

@"instrument" barrierEuropean)), (DA.Internal.Record.getField @"issuer" (DA.Inter-

nal.Record.getField @"instrument" barrierEuropean))

Returns: ContractId I

Field Type Description

barrierEuropean BarrierEuro-

pean

Attributes to create a barrier option.

observers PartiesMap The instrument’s observers.

• Choice Remove

Archive an instrument.

Controller: (DA.Internal.Record.getField @"depository" instrument), (DA.Inter-

nal.Record.getField @"issuer" instrument)

Returns: ()

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

• Method create’ : Create -> Update (ContractId I)

Implementation of Create choice.

• Method remove : Remove -> Update ()

Implementation of Remove choice.

Data Types

type F = Factory

Type synonym for Factory.

type V = View

Type synonym for View.

instance HasFromAnyView Factory V

data View

View of Factory.

View

1.22. Reference 793

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108

Daml SDK Documentation, 2.7.3

Field Type Description

provider Party The provider of the Factory.

instance Eq View

instance Show View

Functions

create’ : Factory -> Create -> Update (ContractId I)

remove : Factory -> Remove -> Update ()

1.22.3.105 Daml.Finance.Interface.Instrument.Option.BarrierEuropeanCash.Instrument

Interfaces

interface Instrument

Instrument interface representing a barrier option.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: V

Field Type Description

viewer Party The party retrieving the view.

Data Types

type I = Instrument

Type synonym for Instrument.

instance HasMethod Factory "create’" (Create -> Update (ContractId I))

type V = View

Type synonym for View.

instance HasFromAnyView Instrument V

data View

View of Instrument.

View

794 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108

Daml SDK Documentation, 2.7.3

Field Type Description

barrierEuropean BarrierEuro-

pean

Attributes of a barrier option.

instance Eq View

instance Show View

1.22.3.106 Daml.Finance.Interface.Instrument.Option.BarrierEuropeanCash.Types

Data Types

data BarrierEuropean

Describes the attributes of a cash-settled barrier option with European exercise.

BarrierEuropean

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

description Text The description of the option.

referenceAssetId Text The reference asset ID. For example, in

case of an option on AAPL this should be

a valid reference to the AAPL fixings to be

used for the payoff calculation.

ownerReceives Bool Indicate whether a holding owner of this

instrument receives the option payoff.

optionType OptionType-

Enum

Indicate whether the option is a call or a

put.

strike Decimal The strike price of the option.

barrier Decimal The barrier price of the option.

barrierType BarrierType-

Enum

The type of barrier.

barrierStartDate Date The start date for barrier observations.

expiryDate Date The expiry date of the option.

currency Instrumen-

tKey

The currency of the option. For example,

if the option pays in USD this should be

a USD cash instrument.

lastEventTimes-

tamp

Time (Market) time of the last recorded lifecy-

cle event. If no event has occurred yet,

the time of creation should be used.

instance Eq BarrierEuropean

instance Show BarrierEuropean

1.22. Reference 795

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

1.22.3.107 Daml.Finance.Interface.Instrument.Option.Dividend.Factory

Interfaces

interface Factory

Factory interface to instantiate Dividend options.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice Create

Create a new instrument.

Controller: (DA.Internal.Record.getField @"depository" (DA.Internal.Record.get-

Field @"instrument" dividend)), (DA.Internal.Record.getField @"issuer" (DA.Inter-

nal.Record.getField @"instrument" dividend))

Returns: ContractId I

Field Type Description

dividend Dividend Attributes to create a Dividend option.

observers PartiesMap The instrument’s observers.

• Choice Remove

Archive an instrument.

Controller: (DA.Internal.Record.getField @"depository" instrument), (DA.Inter-

nal.Record.getField @"issuer" instrument)

Returns: ()

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

• Method create’ : Create -> Update (ContractId I)

Implementation of Create choice.

• Method remove : Remove -> Update ()

Implementation of Remove choice.

Data Types

type F = Factory

Type synonym for Factory.

type V = View

Type synonym for View.

instance HasFromAnyView Factory V

data View

View of Factory.

View

796 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108

Daml SDK Documentation, 2.7.3

Field Type Description

provider Party The provider of the Factory.

instance Eq View

instance Show View

Functions

create’ : Factory -> Create -> Update (ContractId I)

remove : Factory -> Remove -> Update ()

1.22.3.108 Daml.Finance.Interface.Instrument.Option.Dividend.Instrument

Interfaces

interface Instrument

Instrument interface representing a physically settled Dividend option.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: V

Field Type Description

viewer Party The party retrieving the view.

Data Types

type I = Instrument

Type synonym for Instrument.

instance HasMethod Factory "create’" (Create -> Update (ContractId I))

type V = View

Type synonym for View.

instance HasFromAnyView Instrument V

data View

View of Instrument.

View

1.22. Reference 797

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108

Daml SDK Documentation, 2.7.3

Field Type Description

dividend Dividend Attributes of a Dividend option.

instance Eq View

instance Show View

1.22.3.109 Daml.Finance.Interface.Instrument.Option.Dividend.Types

Data Types

data Dividend

Describes the attributes of a physically settled Dividend option.

Dividend

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

description Text The description of the option.

expiryDate Date The expiry date of the option.

cashQuantity Instrumen-

tQuantity

Dividend paid in cash

sharesQuantity Optional

Instrumen-

tQuantity

Dividend paid in shares (if applicable)

fxQuantity Optional

Instrumen-

tQuantity

Dividendpaid ina foreign currency (if ap-

plicable)

lastEventTimes-

tamp

Time (Market) time of the last recorded lifecy-

cle event. If no event has occurred yet,

the time of creation should be used.

prevElections [EventData] A list of previous elections that have

been lifecycled on this instrument so far.

instance Eq Dividend

instance Show Dividend

data ElectionTypeEnum

An election type classification.

Shares

Shares dividend.

Cash

Cash dividend.

798 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

CashFx

Foreign currency cash dividend.

instance Eq ElectionTypeEnum

instance Show ElectionTypeEnum

1.22.3.110 Daml.Finance.Interface.Instrument.Option.Dividend.Election.Factory

Interfaces

interface Factory

Factory interface to instantiate elections on generic instruments.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice Create

Create a new Election.

Controller: actors

Returns: ContractId I

Field Type Description

actors Parties Parties calling the Create choice.

elector Party Parties on behalf of which the election is

made.

counterparty Party Faces the elector in the Holding.

provider Party Party that signs the election (together with

the elector).

id Id The identifier for an election.

description Text A description of the instrument.

claimType ElectionType-

Enum

The election type corresponding to the

elected sub-tree.

electorIsOwner Bool True if election is on behalf of the owner of

the holding, False otherwise.

electionTime Time Time at which the election is put forward.

observers PartiesMap Observers of the election.

amount Decimal Number of instrument units to which the

election applies.

instrument Instrumen-

tKey

The instrument to which the election ap-

plies.

• Choice Remove

Archive an Election.

Controller: actors

Returns: ()

1.22. Reference 799

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135

Daml SDK Documentation, 2.7.3

Field Type Description

actors Parties Parties executing the Remove choice.

electionCid ContractId I The election’s contract id.

• Method create’ : Create -> Update (ContractId I)

Implementation of Create choice.

• Method remove : Remove -> Update ()

Implementation of Remove choice.

Data Types

type F = Factory

Type synonym for Factory.

type V = View

Type synonym for View.

instance HasFromAnyView Factory V

data View

View

Field Type Description

provider Party The provider of the Factory.

instance Eq View

instance Show View

Functions

create’ : Factory -> Create -> Update (ContractId I)

remove : Factory -> Remove -> Update ()

1.22.3.111 Daml.Finance.Interface.Instrument.Option.EuropeanCash.Factory

Interfaces

interface Factory

Factory interface to instantiate European options.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

800 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072

Daml SDK Documentation, 2.7.3

• Choice Create

Create a new instrument.

Controller: (DA.Internal.Record.getField @"depository" (DA.Internal.Record.get-

Field @"instrument" european)), (DA.Internal.Record.getField @"issuer" (DA.Inter-

nal.Record.getField @"instrument" european))

Returns: ContractId I

Field Type Description

european European Attributes to create a European option.

observers PartiesMap The instrument’s observers.

• Choice Remove

Archive an instrument.

Controller: (DA.Internal.Record.getField @"depository" instrument), (DA.Inter-

nal.Record.getField @"issuer" instrument)

Returns: ()

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

• Method create’ : Create -> Update (ContractId I)

Implementation of Create choice.

• Method remove : Remove -> Update ()

Implementation of Remove choice.

Data Types

type F = Factory

Type synonym for Factory.

type V = View

Type synonym for View.

instance HasFromAnyView Factory V

data View

View of Factory.

View

Field Type Description

provider Party The provider of the Factory.

instance Eq View

instance Show View

1.22. Reference 801

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

Functions

create’ : Factory -> Create -> Update (ContractId I)

remove : Factory -> Remove -> Update ()

1.22.3.112 Daml.Finance.Interface.Instrument.Option.EuropeanCash.Instrument

Interfaces

interface Instrument

Instrument interface representing a European option.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: V

Field Type Description

viewer Party The party retrieving the view.

Data Types

type I = Instrument

Type synonym for Instrument.

instance HasMethod Factory "create’" (Create -> Update (ContractId I))

type V = View

Type synonym for View.

instance HasFromAnyView Instrument V

data View

View of Instrument.

View

Field Type Description

european European Attributes of a European option.

instance Eq View

instance Show View

802 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

1.22.3.113 Daml.Finance.Interface.Instrument.Option.EuropeanCash.Types

Data Types

data European

Describes the attributes of a cash-settled European option.

European

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

description Text The description of the option.

referenceAssetId Text The reference asset ID. For example, in

case of an option on AAPL this should be

a valid reference to the AAPL fixings to be

used for the payoff calculation.

ownerReceives Bool Indicate whether a holding owner of this

instrument receives the option payoff.

optionType OptionType-

Enum

Indicate whether the option is a call or a

put.

strike Decimal The strike price of the option.

expiryDate Date The expiry date of the option.

currency Instrumen-

tKey

The currency of the option. For example,

if the option pays in USD this should be

a USD cash instrument.

lastEventTimes-

tamp

Time (Market) time of the last recorded lifecy-

cle event. If no event has occurred yet,

the time of creation should be used.

instance Eq European

instance Show European

1.22.3.114 Daml.Finance.Interface.Instrument.Option.EuropeanPhysical.Factory

Interfaces

interface Factory

Factory interface to instantiate European options.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice Create

Create a new instrument.

1.22. Reference 803

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

Controller: (DA.Internal.Record.getField @"depository" (DA.Internal.Record.get-

Field @"instrument" european)), (DA.Internal.Record.getField @"issuer" (DA.Inter-

nal.Record.getField @"instrument" european))

Returns: ContractId I

Field Type Description

european European Attributes to create a European option.

observers PartiesMap The instrument’s observers.

• Choice Remove

Archive an instrument.

Controller: (DA.Internal.Record.getField @"depository" instrument), (DA.Inter-

nal.Record.getField @"issuer" instrument)

Returns: ()

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

• Method create’ : Create -> Update (ContractId I)

Implementation of Create choice.

• Method remove : Remove -> Update ()

Implementation of Remove choice.

Data Types

type F = Factory

Type synonym for Factory.

type V = View

Type synonym for View.

instance HasFromAnyView Factory V

data View

View of Factory.

View

Field Type Description

provider Party The provider of the Factory.

instance Eq View

instance Show View

804 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

Functions

create’ : Factory -> Create -> Update (ContractId I)

remove : Factory -> Remove -> Update ()

1.22.3.115 Daml.Finance.Interface.Instrument.Option.EuropeanPhysical.Instrument

Interfaces

interface Instrument

Instrument interface representing a physically settled European option.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: V

Field Type Description

viewer Party The party retrieving the view.

Data Types

type I = Instrument

Type synonym for Instrument.

instance HasMethod Factory "create’" (Create -> Update (ContractId I))

type V = View

Type synonym for View.

instance HasFromAnyView Instrument V

data View

View of Instrument.

View

Field Type Description

european European Attributes of a European option.

instance Eq View

instance Show View

1.22. Reference 805

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

1.22.3.116 Daml.Finance.Interface.Instrument.Option.EuropeanPhysical.Types

Data Types

data European

Describes the attributes of a physically settled European option.

European

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

description Text The description of the option.

referenceAsset Instrumen-

tKey

The reference asset. For example, in case

of an option on AAPL this should be an

AAPL instrument.

ownerReceives Bool Indicate whether a holding owner of this

instrument receives the option payoff.

optionType OptionType-

Enum

Indicate whether the option is a call or a

put.

strike Decimal The strike price of the option.

expiryDate Date The expiry date of the option.

currency Instrumen-

tKey

The currency of the option. For example,

if the option pays in USD this should be

a USD cash instrument.

lastEventTimes-

tamp

Time (Market) time of the last recorded lifecy-

cle event. If no event has occurred yet,

the time of creation should be used.

prevElections [EventData] A list of previous elections that have

been lifecycled on this instrument so far.

instance Eq European

instance Show European

1.22.3.117 Daml.Finance.Interface.Instrument.Option.Types

Data Types

data BarrierTypeEnum

A barrier type classification.

UpAndOut

The option is knocked out if the underlying trades at or above the barrier.

DownAndOut

The option is knocked out if the underlying trades at or below the barrier.

UpAndIn

806 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

The option is activated if the underlying trades at or above the barrier.

DownAndIn

The option is activated if the underlying trades at or below the barrier.

instance Eq BarrierTypeEnum

instance Show BarrierTypeEnum

data OptionTypeEnum

An option type classification.

Call

Call option.

Put

Put option.

instance Eq OptionTypeEnum

instance Show OptionTypeEnum

1.22.3.118 Daml.Finance.Interface.Instrument.Swap.Asset.Factory

Interfaces

interface Factory

Factory interface to instantiate asset swaps.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice Create

Create a new instrument.

Controller: (DA.Internal.Record.getField @"depository" (DA.Internal.Record.get-

Field @"instrument" asset)), (DA.Internal.Record.getField @"issuer" (DA.Inter-

nal.Record.getField @"instrument" asset))

Returns: ContractId I

Field Type Description

asset Asset Attributes to create an asset swap.

observers PartiesMap The instrument’s observers.

• Choice Remove

Archive an instrument.

Controller: (DA.Internal.Record.getField @"depository" instrument), (DA.Inter-

nal.Record.getField @"issuer" instrument)

Returns: ()

1.22. Reference 807

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282

Daml SDK Documentation, 2.7.3

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

• Method create’ : Create -> Update (ContractId I)

Implementation of Create choice.

• Method remove : Remove -> Update ()

Implementation of Remove choice.

Data Types

type F = Factory

Type synonym for Factory.

type V = View

Type synonym for View.

instance HasFromAnyView Factory V

data View

View of Factory.

View

Field Type Description

provider Party The provider of the Factory.

instance Eq View

instance Show View

Functions

create’ : Factory -> Create -> Update (ContractId I)

remove : Factory -> Remove -> Update ()

1.22.3.119 Daml.Finance.Interface.Instrument.Swap.Asset.Instrument

Interfaces

interface Instrument

Instrument interface representing an asset swap.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

808 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072

Daml SDK Documentation, 2.7.3

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: V

Field Type Description

viewer Party The party retrieving the view.

Data Types

type I = Instrument

Type synonym for Instrument.

instance HasMethod Factory "create’" (Create -> Update (ContractId I))

type V = View

Type synonym for View.

instance HasFromAnyView Instrument V

data View

View of Instrument.

View

Field Type Description

asset Asset Attributes of an asset swap.

instance Eq View

instance Show View

1.22.3.120 Daml.Finance.Interface.Instrument.Swap.Asset.Types

Data Types

data Asset

Describes the attributes of an Asset swap.

Asset

1.22. Reference 809

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

description Text The description of the swap.

referenceAssetId Text The reference asset ID. For example, in

case of "AAPL total return vs 2.5% fix" this

should be a valid reference to the AAPL

fixings to be used for the total return cal-

culation (dividend-adjusted fixings).

ownerReceivesFix Bool Indicate whether a holding owner of this

instrument receives the fix or the asset

leg of the swap.

fixRate Decimal The interest rate of the fix leg. For exam-

ple, in case of "AAPL total return vs 2.5%

fix" this should be 0.025.

periodicSchedule Periodic-

Schedule

The schedule for the periodic swap pay-

ments.

holidayCalen-

darIds

[Text] The identifiers of the holiday calendars

to be used for the swap payment sched-

ule.

calendarDat-

aProvider

Party The reference data provider to use for the

holiday calendar.

dayCountConven-

tion

DayCount-

Conventio-

nEnum

The day count convention used to calcu-

late day count fractions. For example:

Act360.

currency Instrumen-

tKey

The currency of the swap. For example,

if the swap pays in USD this should be a

USD cash instrument.

lastEventTimes-

tamp

Time (Market) time of the last recorded lifecy-

cle event. If no event has occurred yet,

the time of creation should be used.

instance Eq Asset

instance Show Asset

1.22.3.121 Daml.Finance.Interface.Instrument.Swap.CreditDefault.Factory

Interfaces

interface Factory

Factory interface to instantiate credit default swaps.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

810 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

• Choice Create

Create a new instrument.

Controller: (DA.Internal.Record.getField @"depository" (DA.Internal.Record.getField

@"instrument" creditDefault)), (DA.Internal.Record.getField @"issuer" (DA.Inter-

nal.Record.getField @"instrument" creditDefault))

Returns: ContractId I

Field Type Description

creditDefault CreditDefault Attributes to create a credit default swap.

observers PartiesMap The instrument’s observers.

• Choice Remove

Archive an instrument.

Controller: (DA.Internal.Record.getField @"depository" instrument), (DA.Inter-

nal.Record.getField @"issuer" instrument)

Returns: ()

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

• Method create’ : Create -> Update (ContractId I)

Implementation of Create choice.

• Method remove : Remove -> Update ()

Implementation of Remove choice.

Data Types

type F = Factory

Type synonym for Factory.

type V = View

Type synonym for View.

instance HasFromAnyView Factory V

data View

View of Factory.

View

Field Type Description

provider Party The provider of the Factory.

instance Eq View

instance Show View

1.22. Reference 811

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

Functions

create’ : Factory -> Create -> Update (ContractId I)

remove : Factory -> Remove -> Update ()

1.22.3.122 Daml.Finance.Interface.Instrument.Swap.CreditDefault.Instrument

Interfaces

interface Instrument

Instrument interface representing a credit default swap.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: V

Field Type Description

viewer Party The party retrieving the view.

Data Types

type I = Instrument

Type synonym for Instrument.

instance HasMethod Factory "create’" (Create -> Update (ContractId I))

type V = View

Type synonym for View.

instance HasFromAnyView Instrument V

data View

View of Instrument.

View

Field Type Description

creditDefault CreditDe-

fault

Attributes of a credit default swap.

instance Eq View

instance Show View

812 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

1.22.3.123 Daml.Finance.Interface.Instrument.Swap.CreditDefault.Types

Data Types

data CreditDefault

Describes the attributes of a Credit Default swap.

CreditDefault

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

description Text The description of the swap.

defaultProbabili-

tyReferenceId

Text The reference ID of the default probabil-

ity observable. For example, in case of

protectionagainst a "TSLAbondpayment

default" this should be a valid reference

to the "TSLA default probability".

recoveryRateRefer-

enceId

Text The reference ID of the recovery rate ob-

servable. For example, in case of a "TSLA

bond payment default with a 60% recov-

ery rate" this should be a valid reference

to the "TSLA bond recovery rate".

ownerReceivesFix Bool Indicate whether a holding owner of this

instrument receives the fix or the default

protection leg of the swap.

fixRate Decimal The interest rate of the fix leg. For exam-

ple, in case of "2.5% fix" this should be

0.025.

periodicSchedule Periodic-

Schedule

The schedule for the periodic swap pay-

ments.

holidayCalen-

darIds

[Text] The identifiers of the holiday calendars

to be used for the swap payment sched-

ule.

calendarDat-

aProvider

Party The reference data provider to use for the

holiday calendar.

dayCountConven-

tion

DayCount-

Conventio-

nEnum

The day count convention used to calcu-

late day count fractions. For example:

Act360.

currency Instrumen-

tKey

The currency of the swap. For example,

if the swap pays in USD this should be a

USD cash instrument.

lastEventTimes-

tamp

Time (Market) time of the last recorded lifecy-

cle event. If no event has occurred yet,

the time of creation should be used.

instance Eq CreditDefault

instance Show CreditDefault

1.22. Reference 813

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

1.22.3.124 Daml.Finance.Interface.Instrument.Swap.Currency.Factory

Interfaces

interface Factory

Factory interface to instantiate currency swaps.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice Create

Create a new instrument.

Controller: (DA.Internal.Record.getField @"depository" (DA.Internal.Record.getField

@"instrument" currencySwap)), (DA.Internal.Record.getField @"issuer" (DA.Inter-

nal.Record.getField @"instrument" currencySwap))

Returns: ContractId I

Field Type Description

currencySwap Curren-

cySwap

Attributes to create a currency swap.

observers PartiesMap The instrument’s observers.

• Choice Remove

Archive an instrument.

Controller: (DA.Internal.Record.getField @"depository" instrument), (DA.Inter-

nal.Record.getField @"issuer" instrument)

Returns: ()

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

• Method create’ : Create -> Update (ContractId I)

Implementation of Create choice.

• Method remove : Remove -> Update ()

Implementation of Remove choice.

Data Types

type F = Factory

Type synonym for Factory.

type V = View

Type synonym for View.

instance HasFromAnyView Factory V

data View

View of Factory.

View

814 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108

Daml SDK Documentation, 2.7.3

Field Type Description

provider Party The provider of the Factory.

instance Eq View

instance Show View

Functions

create’ : Factory -> Create -> Update (ContractId I)

remove : Factory -> Remove -> Update ()

1.22.3.125 Daml.Finance.Interface.Instrument.Swap.Currency.Instrument

Interfaces

interface Instrument

Instrument interface representing a currency swap.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: V

Field Type Description

viewer Party The party retrieving the view.

Data Types

type I = Instrument

Type synonym for Instrument.

instance HasMethod Factory "create’" (Create -> Update (ContractId I))

type V = View

Type synonym for View.

instance HasFromAnyView Instrument V

data View

View of Instrument.

View

1.22. Reference 815

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108

Daml SDK Documentation, 2.7.3

Field Type Description

currencySwap Curren-

cySwap

Attributes of a currency swap.

instance Eq View

instance Show View

1.22.3.126 Daml.Finance.Interface.Instrument.Swap.Currency.Types

Data Types

data CurrencySwap

Describes the attributes of a Currency swap.

CurrencySwap

816 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

description Text The description of the swap.

ownerReceives-

Base

Bool Indicate whether a holding owner of this

instrument receives the base currency

leg or the foreign currency leg of the

swap.

baseRate Decimal The interest rate of the base currency.

For example, in case of "3% in USD" this

should be 0.03.

foreignRate Decimal The interest rate of the foreign currency.

For example, in case of "2% in EUR" this

should be 0.02.

periodicSchedule Periodic-

Schedule

The schedule for the periodic swap pay-

ments.

holidayCalen-

darIds

[Text] The identifiers of the holiday calendars

to be used for the swap payment sched-

ule.

calendarDat-

aProvider

Party The reference data provider to use for the

holiday calendar.

dayCountConven-

tion

DayCount-

Conventio-

nEnum

The day count convention used to calcu-

late day count fractions. For example:

Act360.

baseCurrency Instrumen-

tKey

The base currency of the swap. For exam-

ple, in the case of USD this should be a

USD cash instrument.

foreignCurrency Instrumen-

tKey

The foreign currency of the swap. For ex-

ample, in case of EUR this should be a

EUR cash instrument.

fxRate Decimal The fx rate used to convert from the base

currency principal amount to the foreign

currency principal amount.

lastEventTimes-

tamp

Time (Market) time of the last recorded lifecy-

cle event. If no event has occurred yet,

the time of creation should be used.

instance Eq CurrencySwap

instance Show CurrencySwap

1.22. Reference 817

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

1.22.3.127 Daml.Finance.Interface.Instrument.Swap.ForeignExchange.Factory

Interfaces

interface Factory

Factory interface to instantiate foreign exchange swaps.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice Create

Create a new instrument.

Controller: (DA.Internal.Record.getField @"depository" (DA.Internal.Record.getField

@"instrument" foreignExchange)), (DA.Internal.Record.getField @"issuer" (DA.Inter-

nal.Record.getField @"instrument" foreignExchange))

Returns: ContractId I

Field Type Description

foreignExchange ForeignEx-

change

Attributes to create an FX swap.

observers PartiesMap The instrument’s observers.

• Choice Remove

Archive an instrument.

Controller: (DA.Internal.Record.getField @"depository" instrument), (DA.Inter-

nal.Record.getField @"issuer" instrument)

Returns: ()

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

• Method create’ : Create -> Update (ContractId I)

Implementation of Create choice.

• Method remove : Remove -> Update ()

Implementation of Remove choice.

Data Types

type F = Factory

Type synonym for Factory.

type V = View

Type synonym for View.

instance HasFromAnyView Factory V

data View

View of Factory.

View

818 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108

Daml SDK Documentation, 2.7.3

Field Type Description

provider Party The provider of the Factory.

instance Eq View

instance Show View

Functions

create’ : Factory -> Create -> Update (ContractId I)

remove : Factory -> Remove -> Update ()

1.22.3.128 Daml.Finance.Interface.Instrument.Swap.ForeignExchange.Instrument

Interfaces

interface Instrument

Instrument interface representing an FX swap.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: V

Field Type Description

viewer Party The party retrieving the view.

Data Types

type I = Instrument

Type synonym for Instrument.

instance HasMethod Factory "create’" (Create -> Update (ContractId I))

type V = View

Type synonym for View.

instance HasFromAnyView Instrument V

data View

View of Instrument.

View

1.22. Reference 819

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108

Daml SDK Documentation, 2.7.3

Field Type Description

foreignExchange ForeignEx-

change

Attributes of an FX swap.

instance Eq View

instance Show View

1.22.3.129 Daml.Finance.Interface.Instrument.Swap.ForeignExchange.Types

Data Types

data ForeignExchange

Describes the attributes of a Foreign Exchange swap.

ForeignExchange

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

description Text The description of the swap.

firstFxRate Decimal The fx rate used for the first swap pay-

ment.

finalFxRate Decimal The fx rate used for the final swap pay-

ment.

issueDate Date The date when the swap was issued.

firstPaymentDate Date The first payment date of the swap.

maturityDate Date The final payment date of the swap.

baseCurrency Instrumen-

tKey

The base currency of the swap, whichwill

be exchanged to another (foreign) cur-

rency on the first payment date. For ex-

ample, in case of USD this should be a

USD cash instrument.

foreignCurrency Instrumen-

tKey

The foreign currency of the swap. For ex-

ample, in case of EUR this should be a

EUR cash instrument.

lastEventTimes-

tamp

Time (Market) time of the last recorded lifecy-

cle event. If no event has occurred yet,

the time of creation should be used.

instance Eq ForeignExchange

instance Show ForeignExchange

820 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

1.22.3.130 Daml.Finance.Interface.Instrument.Swap.Fpml.Factory

Interfaces

interface Factory

Factory interface to instantiate FpML swaps.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice Create

Create a new instrument.

Controller: (DA.Internal.Record.getField @"depository" (DA.Internal.Record.get-

Field @"instrument" fpml)), (DA.Internal.Record.getField @"issuer" (DA.Inter-

nal.Record.getField @"instrument" fpml))

Returns: ContractId I

Field Type Description

fpml Fpml Attributes to create a swap specified as

FpML swapStreams.

observers PartiesMap The instrument’s observers.

• Choice Remove

Archive an instrument.

Controller: (DA.Internal.Record.getField @"depository" instrument), (DA.Inter-

nal.Record.getField @"issuer" instrument)

Returns: ()

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

• Method create’ : Create -> Update (ContractId I)

Implementation of Create choice.

• Method remove : Remove -> Update ()

Implementation of Remove choice.

Data Types

type F = Factory

Type synonym for Factory.

type V = View

Type synonym for View.

instance HasFromAnyView Factory V

data View

View of Factory.

View

1.22. Reference 821

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108

Daml SDK Documentation, 2.7.3

Field Type Description

provider Party The provider of the Factory.

instance Eq View

instance Show View

Functions

create’ : Factory -> Create -> Update (ContractId I)

remove : Factory -> Remove -> Update ()

1.22.3.131 Daml.Finance.Interface.Instrument.Swap.Fpml.FpmlTypes

Data Types

data AdjustableDate

A type for defining a date that shall be subject to adjustment if it would otherwise fall

on a day that is not a business day in the specified business centers, together with the

convention for adjusting the date.

AdjustableDate

Field Type Description

unadjustedDate Date A date subject to adjustment.

dateAdjustments Business-

DayAdjust-

ments

The business day convention and finan-

cial business centers used for adjust-

ing the date if it would otherwise fall

on a day that is not a business date

in the specified business centers. ad-

justedDate : Optional IdentifiedDate ^

The date once the adjustment has been

performed. (Note that this date may

change if the business center holidays

change).

instance Eq AdjustableDate

instance Show AdjustableDate

data BusinessCenterTime

A type for defining a time with respect to a business day calendar location. For example,

11:00am London time.

BusinessCenterTime

822 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

Field Type Description

hourMinuteTime HourMinute-

Time

A time specified in hh:mm:ss format

where the second component must be

‘00’, e.g., 11am would be represented as

11:00:00.

businessCenter Text

instance Eq BusinessCenterTime

instance Show BusinessCenterTime

data BusinessDayAdjustments

A type defining the business day convention and financial business centers used for ad-

justing any relevant date if it would otherwise fall on a day that is not a business day in

the specified business centers.

BusinessDayAdjustments

Field Type Description

businessDayCon-

vention

Business-

DayConven-

tionEnum

The convention for adjusting a date if it

would otherwise fall on a day that is not

a business day.

businessCenters [Text]

instance Eq BusinessDayAdjustments

instance Show BusinessDayAdjustments

data Calculation

The parameters used in the calculation of fixed or floating rate period amounts.

Calculation

Field Type Description

notionalSchedule-

Value

Notion-

alSchedule-

Value

rateTypeValue RateType-

Value

dayCountFraction DayCount-

Conventio-

nEnum

compounding-

MethodEnum

Optional

Compound-

ingMethodE-

num

instance Eq Calculation

1.22. Reference 823

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713

Daml SDK Documentation, 2.7.3

instance Show Calculation

data CalculationPeriodAmount

The calculation period amount parameters.

CalculationPeriodAmount

Field Type Description

calculation Calculation

instance Eq CalculationPeriodAmount

instance Show CalculationPeriodAmount

data CalculationPeriodDates

The calculation periods dates schedule.

CalculationPeriodDates

Field Type Description

id Text

effectiveDate Adjustable-

Date

terminationDate Adjustable-

Date

calculationPeriod-

DatesAdjustments

Calculation-

PeriodDate-

sAdjust-

ments

firstPeriodStart-

Date

Optional

Adjustable-

Date

firstRegularPeri-

odStartDate

Optional

Date

lastRegularPerio-

dEndDate

Optional

Date

calculationPeriod-

Frequency

Calculation-

PeriodFre-

quency

instance Eq CalculationPeriodDates

instance Show CalculationPeriodDates

data CalculationPeriodDatesAdjustments

The business day convention to apply to each calculation period end date if it would oth-

erwise fall on a day that is not a business day in the specified financial business centers.

CalculationPeriodDatesAdjustments

824 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

Field Type Description

businessDayCon-

vention

Business-

DayConven-

tionEnum

businessCenters [Text]

instance Eq CalculationPeriodDatesAdjustments

instance Show CalculationPeriodDatesAdjustments

data CalculationPeriodFrequency

A type defining the frequency at which calculation period end dates occur within the reg-

ular part of the calculation period schedule and thier roll date convention. In case the cal-

culation frequency is of value T (term), the period is definedby the swap\swapStream\cal-

culationPerioDates\effectiveDate and the swap\swapStream\calculationPerioDates\ter-

minationDate.

CalculationPeriodFrequency

Field Type Description

periodMultiplier Int A time period multiplier, e.g., 1, 2 or 3 etc.

If the period value is T (Term) then peri-

odMultiplier must contain the value 1.

period PeriodEx-

tendedEnum

A time period, e.g., a day, week, month,

year or term of the stream.

rollConvention RollConven-

tionEnum

Used in conjunction with a frequency

and the regular period start date of a cal-

culation period, determines each calcu-

lation period end date within the regular

part of a c alculation period schedule.

instance Eq CalculationPeriodFrequency

instance Show CalculationPeriodFrequency

data CompoundingMethodEnum

The compounding calculation method

Flat

Flat compounding. Compounding excludes the spread. Note that the first com-

pounding period has it’s interest calculated including any spread then subse-

quent periods compound this at a rate excluding the spread.

NoCompounding

No compounding is to be applied.

Straight

Straight compounding. Compounding includes the spread.

SpreadExclusive

1.22. Reference 825

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-int-37261
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

Spread Exclusive compounding.

instance Eq CompoundingMethodEnum

instance Show CompoundingMethodEnum

data DateOffset

A type defining an offset used in calculating a date when this date is defined in reference

to another date through a date offset. The type includes the convention for adjusting the

date and an optional sequence element to indicate the order in a sequence of multiple

date offsets.

DateOffset

Field Type Description

periodMultiplier Int A time period multiplier, e.g. 1, 2 or 3 etc.

A negative value can be used when spec-

ifying an offset relative to another date,

e.g. -2 days.

period PeriodEnum A time period, e.g. a day, week, month or

year of the stream. If the periodMultiplier

value is 0 (zero) then period must con-

tain the value D (day).

dayType Optional

DayType-

Enum

In the case of an offset specified as a

number of days, this element defines

whether consideration is given as to

whether a day is a good business day or

not. If a day type of business days is

specified then non-business days are ig-

nored when calculating the offset. The fi-

nancial business centers to use for de-

termination of business days are im-

plied by the context in which this ele-

ment is used. This element must only be

includedwhen the offset is specified as a

number of days. If the offset is zero days

then the dayType element should not be

included.

instance Eq DateOffset

instance Show DateOffset

data DateRelativeToEnum

The specification of whether payments/resets occur relative to the first or last day of a

calculation period.

CalculationPeriodStartDate

Payments/Resets will occur relative to the first day of each calculation period.

CalculationPeriodEndDate

Payments/Resets will occur relative to the last day of each calculation period.

826 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-int-37261
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

instance Eq DateRelativeToEnum

instance Show DateRelativeToEnum

data DayTypeEnum

A day type classification used in counting the number of days between two dates.

Business

When calculating the number of days between two dates the count includes

only business days.

Calendar

When calculating the number of days between two dates the count includes all

calendar days.

CommodityBusiness

When calculating the number of days between two dates the count includes

only commodity business days.

CurrencyBusiness

When calculating the number of days between two dates the count includes

only currency business days.

ExchangeBusiness

When calculating the number of days between two dates the count includes

only stock exchange business days.

ScheduledTradingDay

When calculating the number of days between two dates the count includes

only scheduled trading days.

instance Eq DayTypeEnum

instance Show DayTypeEnum

data FixedRateSchedule

Specify the fixed rate

FixedRateSchedule

1.22. Reference 827

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

Field Type Description

initialValue Decimal The initial rate or amount, as the case

maybe. An initial rate of 5%wouldbe rep-

resented as 0.05.

step [Step] The schedule of step date and value

pairs. On each step date the associated

step value becomes effective. A list of

stepsmaybe ordered in thedocument by

ascending step date. An FpML document

containing an unordered list of steps

is still regarded as a conformant docu-

ment. type_ : Optional SpreadSchedule-

Type

instance Eq FixedRateSchedule

instance Show FixedRateSchedule

data FixingDates

Specifies the fixing date relative to the reset date in terms of a business days offset and

an associated set of financial business centers.

FixingDates

Field Type Description

periodMultiplier Int

period PeriodEnum

dayType Optional

DayType-

Enum

businessDayCon-

vention

Business-

DayConven-

tionEnum

businessCenters [Text]

instance Eq FixingDates

instance Show FixingDates

data FloatingRateCalculation

A type defining the floating rate and definitions relating to the calculation of floating rate

amounts.

FloatingRateCalculation

828 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-int-37261
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

Field Type Description

floatingRateIndex Text

indexTenor Optional Pe-

riod

The ISDA Designated Maturity, i.e., the

tenor of the floating rate. floatingRate-

MultiplierSchedule : Optional Schedule ^

A rate multiplier or multiplier schedule

to apply to the floating rate. A multiplier

schedule is expressed as explicit multi-

pliers and dates. In the case of a sched-

ule, the step dates may be subject to ad-

justment in accordance with any adjust-

ments specified in the calculationPeri-

odDatesAdjustments. Themultiplier can

be a positive or negative decimal. This

element should only be included if the

multiplier is not equal to 1 (one) for the

term of the stream.

spreadSchedule [Spread-

Schedule]

The ISDA Spread or a Spread sched-

ule expressed as explicit spreads and

dates. In the case of a schedule, the

step datesmaybe subject to adjustment

in accordance with any adjustments

specified in calculationPeriodDatesAd-

justments. The spread is a per annum

rate, expressed as a decimal. For pur-

poses of determining a calculation pe-

riod amount, if positive the spread will

be added to the floating rate and if neg-

ative the spread will be subtracted from

the floating rate. A positive 10 basis

point (0.1%) spreadwould be represented

as 0.001. rateTreatment : Optional Rate-

TreatmentEnum ^ The specification of

any rate conversion which needs to be

applied to the observed rate before be-

ing used in any calculations. The two

common conversions are for securities

quoted on a bank discount basis which

will need to be converted to either a

Money Market Yield or Bond Equivalent

Yield. See the Annex to the 2000 ISDA

Definitions, Section 7.3. Certain General

Definitions Relating to Floating Rate Op-

tions, paragraphs (g) and (h) for defini-

tions of these terms. capRateSchedule

: [StrikeSchedule] ^ The cap rate or cap

rate schedule, if any, which applies to

the floating rate. The cap rate (strike)

is only required where the floating rate

on a swap stream is capped at a cer-

tain level. A cap rate schedule is ex-

pressed as explicit cap rates and dates

and the step dates may be subject to

adjustment in accordance with any ad-

justments specified in calculationPeri-

odDatesAdjustments. The cap rate is

assumed to be exclusive of any spread

and is a per annum rate, expressed as

a decimal. A cap rate of 5% would be

represented as 0.05. floorRateSchedule :

[StrikeSchedule] ^ The floor rate or floor

rate schedule, if any, which applies to

the floating rate. The floor rate (strike)

is only required where the floating rate

on a swap stream is floored at a certain

strike level. A floor rate schedule is ex-

pressed as explicit floor rates and dates

and the step dates may be subject to

adjustment in accordance with any ad-

justments specified in calculationPeri-

odDatesAdjustments. The floor rate is

assumed to be exclusive of any spread

and is a per annum rate, expressed as a

decimal. A floor rate of 5% would be rep-

resented as 0.05. initialRate : Optional

Decimal ^ The initial floating rate reset

agreed between the principal parties in-

volved in the trade. This is assumed to be

the first required reset rate for the first

regular calculation period. It should only

be included when the rate is not equal to

the rate published on the source implied

by the floating rate index. An initial rate

of 5% would be represented as 0.05.

finalRateRounding Optional

Rounding

The rounding convention to apply to

the final rate used in determination

of a calculation period amount. av-

eragingMethod : Optional Averaging-

MethodEnum ^ If averaging is applica-

ble, this component specifies whether a

weighted or unweighted averagemethod

of calculation is to be used. The compo-

nentmust only be includedwhenaverag-

ing applies. negativeInterestRateTreat-

ment : Optional NegativeInterestRate-

TreatmentEnum ^ The specification of

any provisions for calculating payment

obligations when a floating rate is neg-

ative (either due to a quoted negative

floating rate or by operation of a spread

that is subtracted from the floating rate).

1.22. Reference 829

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153

Daml SDK Documentation, 2.7.3

instance Eq FloatingRateCalculation

instance Show FloatingRateCalculation

data FxLinkedNotionalSchedule

The notional amount or notional amount schedule (FX linked).

FxLinkedNotionalSchedule

Field Type Description

constantNotion-

alScheduleRefer-

ence

Text

initialValue Optional

Decimal

varyingNotional-

Currency

Text

varyingNotional-

FixingDates

FixingDates

fxSpotRateSource FxSpotRate-

Source

instance Eq FxLinkedNotionalSchedule

instance Show FxLinkedNotionalSchedule

data FxSpotRateSource

A type defining the rate source and fixing time for an fx rate.

FxSpotRateSource

Field Type Description

primaryRate-

Source

Information-

Source

The primary source for where the rate

observation will occur. Will typically be

either a page or a reference bank pub-

lished rate. secondaryRateSource : Op-

tional InformationSource ^ An alterna-

tive, or secondary, source for where the

rate observation will occur. Will typically

be either a page or a reference bank pub-

lished rate.

fixingTime Optional

Business-

CenterTime

The time at which the spot currency ex-

change rate will be observed. It is speci-

fied as a time in a business day calendar

location, e.g., 11:00am London time.

instance Eq FxSpotRateSource

instance Show FxSpotRateSource

type HourMinuteTime = Text

830 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952

Daml SDK Documentation, 2.7.3

A type defining a time specified in hh:mm:ss format where the second componentmust be ‘00’,

e.g., 11am would be represented as 11:00:00.

data InformationSource

A type defining the source for a piece of information (e.g. a rate refix or an fx fixing).

InformationSource

Field Type Description

rateSource Text An information source for obtaining a

market rate. For example, Bloomberg,

Reuters, Telerate etc. rateSourcePage :

Optional RateSourcePage

rateSourcePage Text A specific page for the rate source for ob-

taining a market rate. rateSourcePage-

Heading : Optional String ^ The heading

for the rate source on a given rate source

page.

instance Eq InformationSource

instance Show InformationSource

data NotionalSchedule

The notional amount or notional amount schedule.

NotionalSchedule

Field Type Description

id Text

notionalStep-

Schedule

Notional-

StepSched-

ule

instance Eq NotionalSchedule

instance Show NotionalSchedule

data NotionalScheduleValue

Specifies how the notional schedule is defined: either regular or fx linked.

NotionalSchedule_Regular NotionalSchedule

Regular notional schedule.

NotionalSchedule_FxLinked FxLinkedNotionalSchedule

FX linked notional schedule.

instance Eq NotionalScheduleValue

instance Show NotionalScheduleValue

data NotionalStepSchedule

1.22. Reference 831

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

The notional amount or notional amount schedule expressed as explicit outstanding no-

tional amounts and dates.

NotionalStepSchedule

Field Type Description

initialValue Decimal

step [Step]

currency Text

instance Eq NotionalStepSchedule

instance Show NotionalStepSchedule

data PaymentDates

The payment dates schedule.

PaymentDates

Field Type Description

calculationPeriod-

DatesReference

Text

paymentFre-

quency

PaymentFre-

quency

firstPaymentDate Optional

Date

lastRegularPay-

mentDate

Optional

Date

payRelativeTo DateRela-

tiveToEnum

paymentDaysOff-

set

Optional

DateOffset

paymentDatesAd-

justments

Business-

DayAdjust-

ments

instance Eq PaymentDates

instance Show PaymentDates

data PaymentFrequency

The frequency at which regular payment dates occur. If the payment frequency is equal

to the frequency defined in the calculation period dates component then one calcula-

tion period contributes to each payment amount. If the payment frequency is less fre-

quent than the frequency defined in the calculation period dates component then more

than one calculation period will contribute to the payment amount. A payment frequency

more frequent than the calculation period frequency or one that is not a multiple of the

calculation period frequency is invalid. If the payment frequency is of value T (term), the

period is defined by the swap\swapStream\calculationPerioDates\effectiveDate and the

swap\swapStream\calculationPerioDates\terminationDate.

832 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

PaymentFrequency

Field Type Description

periodMultiplier Int

period PeriodEx-

tendedEnum

instance Eq PaymentFrequency

instance Show PaymentFrequency

data PeriodExtendedEnum

The period of a schedule, for example the calculation schedule.

Regular PeriodEnum

T

instance Eq PeriodExtendedEnum

instance Show PeriodExtendedEnum

data PrincipalExchanges

A type defining which principal exchanges occur for the stream.

PrincipalExchanges

Field Type Description

initialExchange Bool A true/false flag to indicate whether

there is an initial exchange of principal

on the effective date.

finalExchange Bool A true/false flag to indicate whether

there is a final exchange of principal on

the termination date.

intermediateEx-

change

Bool A true/false flag to indicate whether

there are intermediate or interim ex-

changes of principal during the term of

the swap.

instance Eq PrincipalExchanges

instance Show PrincipalExchanges

data RateTypeValue

Specifies whether the swapStream has a fixed or a floating rate.

RateType_Fixed FixedRateSchedule

Fixed rate.

RateType_Floating FloatingRateCalculation

Floating rate.

1.22. Reference 833

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-int-37261
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

instance Eq RateTypeValue

instance Show RateTypeValue

data ResetDates

The reset dates schedule. This only applies for a floating rate stream.

ResetDates

Field Type Description

calculationPeriod-

DatesReference

Text

resetRelativeTo DateRela-

tiveToEnum

fixingDates FixingDates

resetFrequency ResetFre-

quency

resetDatesAdjust-

ments

ResetDate-

sAdjust-

ments

instance Eq ResetDates

instance Show ResetDates

data ResetDatesAdjustments

The business day convention to apply to each reset date if it would otherwise fall on a day

that is not a business day in the specified financial business centers.

ResetDatesAdjustments

Field Type Description

businessDayCon-

vention

Business-

DayConven-

tionEnum

businessCenters [Text]

instance Eq ResetDatesAdjustments

instance Show ResetDatesAdjustments

data ResetFrequency

The frequency at which reset dates occur.

ResetFrequency

Field Type Description

periodMultiplier Int

period PeriodEx-

tendedEnum

834 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-int-37261

Daml SDK Documentation, 2.7.3

instance Eq ResetFrequency

instance Show ResetFrequency

data Rounding

A type defining a rounding direction and precision to be used in the rounding of a rate.

Rounding

Field Type Description

roundingDirection RoundingDi-

rectionEnum

Specifies the rounding direction.

precision Int Specifies the rounding precision in

terms of a number of decimal places.

Note how a percentage rate rounding

of 5 decimal places is expressed as

a rounding precision of 7 in the FpML

document since the percentage is ex-

pressed as a decimal, e.g. 9.876543%

(or 0.09876543) being rounded to the

nearest 5 decimal places is 9.87654% (or

0.0987654).

instance Eq Rounding

instance Show Rounding

data RoundingDirectionEnum

The method of rounding a fractional number.

Up

A fractional number will be rounded up to the specified number of decimal

places (the precision). For example, 5.21 and 5.25 rounded up to 1 decimal place

are 5.3 and 5.3 respectively.

Down

A fractional number will be rounded down to the specified number of decimal

places (the precision). For example, 5.29 and 5.25 rounded down to 1 decimal

place are 5.2 and 5.2 respectively.

Nearest

A fractional numberwill be rounded either up or down to the specifiednumber of

decimal places (the precision) depending on its value. For example, 5.24 would

be rounded down to 5.2 and 5.25 would be rounded up to 5.3 if a precision of 1

decimal place were specified.

instance Eq RoundingDirectionEnum

instance Show RoundingDirectionEnum

data SpreadSchedule

1.22. Reference 835

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-int-37261
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

Adds an optional spread type element to the Schedule to identify a long or short spread

value.

SpreadSchedule

Field Type Description

initialValue Decimal The initial rate or amount, as the case

may be. An initial rate of 5% would be

represented as 0.05. step : [Step] ^ The

schedule of step date and value pairs.

On each step date the associated step

value becomes effective. A list of steps

may be ordered in the document by as-

cending step date. An FpML document

containing an unordered list of steps

is still regarded as a conformant docu-

ment. type_ : Optional SpreadSchedule-

Type

instance Eq SpreadSchedule

instance Show SpreadSchedule

data Step

The schedule of step date and non-negative value pairs. On each step date the associated

step valuebecomes effective. A list of stepsmaybe ordered in thedocument by ascending

step date. An FpML document containing an unordered list of steps is still regarded as a

conformant document.

Step

Field Type Description

stepDate Date

stepValue Decimal

instance Eq Step

instance Show Step

data StubCalculationPeriodAmount

The stub calculation period amount parameters. This element must only be included if

there is an initial or final stub calculation period. Even then, it must only be included if

either the stub references a different floating rate tenor to the regular calculation periods,

or if the stub is calculated as a linear interpolation of two different floating rate tenors,

or if a specific stub rate or stub amount has been negotiated.

StubCalculationPeriodAmount

836 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

Field Type Description

calculationPeriod-

DatesReference

Text

initialStub Optional

StubValue

finalStub Optional

StubValue

instance Eq StubCalculationPeriodAmount

instance Show StubCalculationPeriodAmount

data StubFloatingRate

The rates to be applied to the initial or final stub may be the linear interpolation of two

different rates.

StubFloatingRate

Field Type Description

floatingRateIndex Text

indexTenor Optional Pe-

riod

instance Eq StubFloatingRate

instance Show StubFloatingRate

data StubValue

Specifies how the stub amount is calculated. A single floating rate tenor different to that

used for the regular part of the calculation periods schedule may be specified, or two

floating tenors may be specified. If two floating rate tenors are specified then Linear In-

terpolation (in accordance with the 2000 ISDA Definitions, Section 8.3. Interpolation) is

assumed to apply. Alternatively, an actual known stub rate or stub amount may be spec-

ified.

StubValue_FloatingRate [StubFloatingRate]

The rates to be applied to the initial or final stubmay be the linear interpolation

of two different rates. While themajority of the time, the rate indices will be the

same as that specified in the stream and only the tenor itself will be different,

it is possible to specift two different rates. For example, a 2 month stub period

may use the linear interpolation of a 1 month and 3 month rate. The different

rates would be specified in this component. Note that a maximum of two rates

can be specified. If a stub period uses the same floating rate index, including

tenor, as the regular calculation periods then this should not be specified again

within this component, i.e., the stub calculation period amount componentmay

not need to be specified even if there is an initial or final stub period. If a stub

period uses a different floating rate index compared to the regular calculation

periods then this should be specified within this component. If specified here,

they are likely to have id attributes, allowing them to be referenced from within

the cashflows component.

1.22. Reference 837

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

StubValue_StubRate Decimal

An actual rate to apply for the initial or final stub period may have been agreed

between the principal parties (in a similar way to how an initial rate may have

been agreed for the first regular period). If an actual stub rate has been agreed

then it would be included in this component. It will be a per annum rate, ex-

pressed as a decimal. A stub rate of 5% would be represented as 0.05. | Stub-

Value_StubAmount Money ^ An actual amount to apply for the initial or final

stub period may have been agreed between the two parties. If an actual stub

amount has been agreed then it would be included in this component.

instance Eq StubValue

instance Show StubValue

data SwapStream

The swap streams, describing each leg of the swap.

SwapStream

Field Type Description

payerPartyRefer-

ence

Text

receiverPartyRef-

erence

Text

calculationPeriod-

Dates

Calculation-

PeriodDates

paymentDates Payment-

Dates

resetDates OptionalRe-

setDates

calculationPerio-

dAmount

Calcula-

tionPerio-

dAmount

stubCalculation-

PeriodAmount

Optional

StubCalcu-

lationPerio-

dAmount

principalEx-

changes

Optional

PrincipalEx-

changes

instance Eq SwapStream

instance Show SwapStream

838 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

1.22.3.132 Daml.Finance.Interface.Instrument.Swap.Fpml.Instrument

Interfaces

interface Instrument

Instrument interface representing a swap specified as FpML swapStreams.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: V

Field Type Description

viewer Party The party retrieving the view.

Data Types

type I = Instrument

Type synonym for Instrument.

instance HasMethod Factory "create’" (Create -> Update (ContractId I))

type V = View

Type synonym for View.

instance HasFromAnyView Instrument V

data View

View of Instrument.

View

Field Type Description

fpml Fpml Attributes of a swap specified as FpML

swapStreams.

instance Eq View

instance Show View

1.22. Reference 839

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

1.22.3.133 Daml.Finance.Interface.Instrument.Swap.Fpml.Types

Data Types

data Fpml

Fpml

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

description Text The description of the swap.

swapStreams [Swap-

Stream]

Each element describes a stream of

swap payments, for example a regular

fixed or floating rate.

issuerPartyRef Text Used to the identify which counterparty

is the issuer in the swapStream.

calendarDat-

aProvider

Party The reference data provider to use for the

holiday calendar.

currencies [Instrumen-

tKey]

The currencies of the different swap legs,

one for each swapStream. For example, if

one leg pays in USD this should be a USD

cash instrument.

lastEventTimes-

tamp

Time (Market) time of the last recorded lifecy-

cle event. If no event has occurred yet,

the time of creation should be used.

instance Eq Fpml

instance Show Fpml

1.22.3.134 Daml.Finance.Interface.Instrument.Swap.InterestRate.Factory

Interfaces

interface Factory

Factory interface to instantiate interest rate swaps.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice Create

Create a new instrument.

Controller: (DA.Internal.Record.getField @"depository" (DA.Internal.Record.getField

@"instrument" interestRate)), (DA.Internal.Record.getField @"issuer" (DA.Inter-

nal.Record.getField @"instrument" interestRate))

Returns: ContractId I

840 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282

Daml SDK Documentation, 2.7.3

Field Type Description

interestRate InterestRate Attributes to create an interest rate swap.

observers PartiesMap The instrument’s observers.

• Choice Remove

Archive an instrument.

Controller: (DA.Internal.Record.getField @"depository" instrument), (DA.Inter-

nal.Record.getField @"issuer" instrument)

Returns: ()

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

• Method create’ : Create -> Update (ContractId I)

Implementation of Create choice.

• Method remove : Remove -> Update ()

Implementation of Remove choice.

Data Types

type F = Factory

Type synonym for Factory.

type V = View

Type synonym for View.

instance HasFromAnyView Factory V

data View

View of Factory.

View

Field Type Description

provider Party The provider of the Factory.

instance Eq View

instance Show View

Functions

create’ : Factory -> Create -> Update (ContractId I)

remove : Factory -> Remove -> Update ()

1.22. Reference 841

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072

Daml SDK Documentation, 2.7.3

1.22.3.135 Daml.Finance.Interface.Instrument.Swap.InterestRate.Instrument

Interfaces

interface Instrument

Instrument interface representing an interest rate swap.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: V

Field Type Description

viewer Party The party retrieving the view.

Data Types

type I = Instrument

Type synonym for Instrument.

instance HasMethod Factory "create’" (Create -> Update (ContractId I))

type V = View

Type synonym for View.

instance HasFromAnyView Instrument V

data View

View of Instrument.

View

Field Type Description

interestRate InterestRate Attributes of an interest rate swap.

instance Eq View

instance Show View

842 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

1.22.3.136 Daml.Finance.Interface.Instrument.Swap.InterestRate.Types

Data Types

data InterestRate

InterestRate

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

description Text The description of the swap.

referenceRateId Text The floating rate reference ID. For exam-

ple, in case of "3MEuribor vs 2.5% fix" this

should be a valid reference to the "3MEu-

ribor" reference rate.

ownerReceivesFix Bool Indicate whether a holding owner of this

instrument receives the fix or the float-

ing leg of the swap.

fixRate Decimal The interest rate of the fix leg. For exam-

ple, in case of "3MEuribor vs 2.5% fix" this

should be 0.025.

periodicSchedule Periodic-

Schedule

The schedule for the periodic swap pay-

ments.

holidayCalen-

darIds

[Text] The identifiers of the holiday calendars

to be used for the swap payment sched-

ule.

calendarDat-

aProvider

Party The reference data provider to use for the

holiday calendar.

dayCountConven-

tion

DayCount-

Conventio-

nEnum

The day count convention used to calcu-

late day count fractions. For example:

Act360.

currency Instrumen-

tKey

The currency of the swap. For example,

if the swap pays in USD this should be a

USD cash instrument.

lastEventTimes-

tamp

Time (Market) time of the last recorded lifecy-

cle event. If no event has occurred yet,

the time of creation should be used.

instance Eq InterestRate

instance Show InterestRate

1.22. Reference 843

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

1.22.3.137 Daml.Finance.Interface.Instrument.Token.Factory

Interfaces

interface Factory

Factory interface to instantiate simple tokens.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice Create

Create a new token.

Controller: (DA.Internal.Record.getField @"depository" (DA.Internal.Record.get-

Field @"instrument" token)), (DA.Internal.Record.getField @"issuer" (DA.Inter-

nal.Record.getField @"instrument" token))

Returns: ContractId I

Field Type Description

token Token Attributes to create a token.

observers PartiesMap The instrument’s observers.

• Choice Remove

Archive a token.

Controller: (DA.Internal.Record.getField @"depository" instrument), (DA.Inter-

nal.Record.getField @"issuer" instrument)

Returns: ()

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

• Method create’ : Create -> Update (ContractId I)

Implementation of Create choice.

• Method remove : Remove -> Update ()

Implementation of Remove choice.

Data Types

type F = Factory

Type synonym for Factory.

type V = View

Type synonym for View.

instance HasFromAnyView Factory V

data View

View

844 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108

Daml SDK Documentation, 2.7.3

Field Type Description

provider Party The provider of the Factory.

instance Eq View

instance Show View

Functions

create’ : Factory -> Create -> Update (ContractId I)

remove : Factory -> Remove -> Update ()

1.22.3.138 Daml.Finance.Interface.Instrument.Token.Instrument

Interfaces

interface Instrument

Interface for a Token, an instrument whose economic terms on the ledger are represented

by an id and a textual description.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: V

Field Type Description

viewer Party The party retrieving the view.

Data Types

type I = Instrument

Type synonym for Instrument.

instance HasMethod Factory "create’" (Create -> Update (ContractId I))

type V = View

Type synonym for View.

instance HasFromAnyView Instrument V

data View

View of Instrument.

View

1.22. Reference 845

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108

Daml SDK Documentation, 2.7.3

Field Type Description

token Token Attributes of a Token Instrument.

instance Eq View

instance Show View

1.22.3.139 Daml.Finance.Interface.Instrument.Token.Types

Data Types

data Token

Describes the attributes of a Token Instrument.

Token

Field Type Description

instrument Instrumen-

tKey

The instrument’s key.

description Text A description of the instrument.

validAsOf Time Timestamp as of which the instrument

is valid.

instance Eq Token

instance Show Token

1.22.3.140 Daml.Finance.Interface.Lifecycle.Effect

Interfaces

interface Effect

Interface for contracts exposing effects of lifecycling processes.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice Calculate

Given a holding, it calculates the instrument quantities to settle.

Controller: actor

Returns: CalculationResult

846 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

Field Type Description

actor Party The party calculating the quantities to set-

tle.

holdingCid ContractId I The holding being targeted.

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: View

Field Type Description

viewer Party The party retrieving the view.

• Choice SetProviders

Set the provider of the effect. The provider has visibility on all sub-transactions trig-

gered by Claim\ing an effect.

Controller: (DA.Internal.Record.getField @"providers" (view this)), newProviders

Returns: ContractId Effect

Field Type Description

newProviders Parties The new provider.

• Method calculate : Calculate -> ContractId Effect -> Update CalculationResult

Implementation of the Calculate choice.

• Method setProviders : SetProviders -> Update (ContractId Effect)

Implementation of the SetProviders choice.

Data Types

data CalculationResult

Data type encapsulating the effect’s calculation result.

CalculationResult

Field Type Description

consumed [Instrumen-

tQuantity]

Consumed quantities.

produced [Instrumen-

tQuantity]

Produced quantities.

instance Eq CalculationResult

instance Show CalculationResult

instance HasMethod Effect "calculate" (Calculate -> ContractId Effect -> Update Calculation-

Result)

type I = Effect

Type synonym for Effect.

instance HasMethod Election "apply" (ContractId Election -> Apply -> Update (Optional Instrumen-

tKey, [ContractId I]))

1.22. Reference 847

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282

Daml SDK Documentation, 2.7.3

instance HasMethod Exercisable "applyElection" (ApplyElection -> Update (Optional Instrumen-

tKey, [ContractId I]))

instance HasMethod Lifecycle "evolve" (Evolve -> Update (Optional InstrumentKey, [ContractId I]))

type V = View

Type synonym for View.

instance HasFromAnyView Effect V

data View

View for Effect.

View

Field Type Description

providers Parties The parties providing the claim process-

ing.

targetInstrument Instrumen-

tKey

The target instrument. A holding on this

instrument is required to claim the ef-

fect. For example, in the case of a swap

instrument, this would be the original in-

strument version before lifecycling, that

contains the current swap payment.

producedInstru-

ment

Optional In-

strumentKey

The produced instrument, if it exists. For

example, in the case of a swap instru-

ment, this would be the new instrument

version after lifecycling, that does not

contain the current swap payment. If

there are no more claims remaining af-

ter the current lifecycling, this would be

None.

id Id A textual identifier.

description Text A human readable description of the Ef-

fect.

settlementTime Optional

Time

The effect’s settlement time (if any).

otherConsumed [Instrumen-

tQuantity]

Consumed quantities (in addition to the

target instrument). For example, in the

case of a fix vs floating rate swap, this

could be a 2.5% fix payment.

otherProduced [Instrumen-

tQuantity]

Produced quantities (in additon to the

produced instrument). For example, in

the case of a fix vs floating rate swap,

this could be a 3M Euribor floating pay-

ment.

instance Eq View

instance Show View

848 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

Functions

setProviders : Effect -> SetProviders -> Update (ContractId Effect)

calculate : Effect -> Calculate -> ContractId Effect -> Update CalculationResult

1.22.3.141 Daml.Finance.Interface.Lifecycle.Election

Interfaces

interface Election

Interface implemented by templates that represents a claim-based election. This inter-

face requires the Event interface implementation.

viewtype V

• Choice Apply

Applies the election to the instrument, returning the new instrument as well as the

corresponding effects. The election is archived as part of this choice.

Controller: (DA.Internal.Record.getField @"provider" (view this))

Returns: (Optional InstrumentKey, [ContractId I])

Field Type Description

observableCids [ContractId

I]

Set of observables.

exercisableCid ContractId

Exercisable

The contract that is used to apply an elec-

tion to the instrument.

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: View

Field Type Description

viewer Party The party retrieving the view.

• Method apply : ContractId Election -> Apply -> Update (Optional InstrumentKey, [Con-

tractId I])

Implementation of the Apply choice.

interface Exercisable

Interface implemented by instruments that admit (claim-based) elections.

viewtype ExercisableView

• Choice ApplyElection

Applies an election to the instrument.

Controller: (DA.Internal.Record.getField @"lifecycler" (view this))

Returns: (Optional InstrumentKey, [ContractId I])

1.22. Reference 849

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282

Daml SDK Documentation, 2.7.3

Field Type Description

electionCid ContractId

Election

The election.

observableCids [ContractId

I]

Set of observables.

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice Exercisable_GetView

Retrieves the interface view.

Controller: viewer

Returns: ExercisableView

Field Type Description

viewer Party The party retrieving the view.

• Method applyElection : ApplyElection -> Update (Optional InstrumentKey, [ContractId

I])

Implementation of the ApplyElection choice.

Data Types

data ExercisableView

View for Exercisable.

ExercisableView

Field Type Description

lifecycler Party Party processing the election.

instance Eq ExercisableView

instance Show ExercisableView

instance HasFromAnyView Exercisable ExercisableView

type I = Election

Type synonym for Election.

instance HasMethod Factory "create’" (Create -> Update (ContractId I))

instance HasMethod Factory "create’" (Create -> Update (ContractId I))

type V = View

Type synonym for View.

instance HasFromAnyView Election V

data View

View for Election.

View

850 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108

Daml SDK Documentation, 2.7.3

Field Type Description

id Id The identifier for an election.

description Text A description of the instrument.

claim Text The tag corresponding to the elected

sub-tree.

elector Party Parties on behalf of which the election is

made.

counterparty Party Faces the elector in the Holding.

electorIsOwner Bool True if election is on behalf of the owner

of the holding, False otherwise.

observers PartiesMap Observers of the election.

amount Decimal Number of instrument units towhich the

election applies.

provider Party Party that is authorized to process the

election and generate the new instru-

ment version and effects.

instrument Instrumen-

tKey

The instrument to which the election ap-

plies.

instance Eq View

instance Show View

Functions

apply : Election -> ContractId Election -> Apply -> Update (Optional InstrumentKey, [ContractId I])

getElectionTime : Election -> Time

Retrieves the election’s time.

applyElection : Exercisable -> ApplyElection -> Update (Optional InstrumentKey, [ContractId I])

1.22.3.142 Daml.Finance.Interface.Lifecycle.Election.Factory

Interfaces

interface Factory

Factory interface to instantiate elections on generic instruments.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice Create

Create a new Election.

Controller: actors

Returns: ContractId I

1.22. Reference 851

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282

Daml SDK Documentation, 2.7.3

Field Type Description

actors Parties Parties calling the Create choice.

elector Party Parties on behalf of which the election is

made.

counterparty Party Faces the elector in the Holding.

provider Party Party that signs the election (together with

the elector).

id Id The identifier for an election.

description Text A description of the instrument.

claim Text The tag corresponding to the elected

sub-tree.

electorIsOwner Bool True if election is on behalf of the owner of

the holding, False otherwise.

electionTime Time Time at which the election is put forward.

observers PartiesMap Observers of the election.

amount Decimal Number of instrument units to which the

election applies.

instrument Instrumen-

tKey

The instrument to which the election ap-

plies.

• Method create’ : Create -> Update (ContractId I)

Implementation of Create choice.

Data Types

type F = Factory

Type synonym for Factory.

type V = View

Type synonym for View.

instance HasFromAnyView Factory V

data View

View

Field Type Description

provider Party The provider of the Factory.

instance Eq View

instance Show View

852 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

Functions

create’ : Factory -> Create -> Update (ContractId I)

1.22.3.143 Daml.Finance.Interface.Lifecycle.Event

Interfaces

interface Event

A lifecycle event. These events are ordered based on the corresponding event time.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: View

Field Type Description

viewer Party The party retrieving the view.

Data Types

type I = Event

Type synonym for Event.

instance HasMethod Instrument "declareDistribution" (DeclareDistribution -> Update (ContractId

I))

instance HasMethod Instrument "declareReplacement" (DeclareReplacement -> Update (Contrac-

tId I))

instance HasMethod Instrument "declareStockSplit" (DeclareStockSplit -> Update (ContractId I))

type V = View

Type synonym for View.

instance HasFromAnyView Event V

data View

View for Event.

View

1.22. Reference 853

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108

Daml SDK Documentation, 2.7.3

Field Type Description

providers Parties Providers of the event.

id Id Identifier for the event.

description Text A human readable description of the

event.

eventTime Time The time of the event. This allows order-

ing of events.

instance Eq View

instance Show View

Functions

getEventTime : Event -> Time

Given an event, retrieves the event time.

1.22.3.144 Daml.Finance.Interface.Lifecycle.Event.Distribution

Interfaces

interface Event

Event interface for the distribution of units of an instrument for each unit of a target

instrument (e.g. share or cash dividends).

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice GetView

Retrieves the event view.

Controller: viewer

Returns: View

Field Type Description

viewer Party The party retrieving the view.

Data Types

type I = Event

Type synonym for Event.

type V = View

Type synonym for View.

instance HasFromAnyView Event V

data View

854 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108

Daml SDK Documentation, 2.7.3

View for Event.

View

Field Type Description

effectiveTime Time Time on which the distribution is effec-

tuated.

targetInstrument Instrumen-

tKey

Instrument the distribution event ap-

plies to.

newInstrument Instrumen-

tKey

Instrument after the distribution has

been claimed.

perUnitDistribu-

tion

[Instrumen-

tQuantity]

Distributed quantities per unit held.

instance Eq View

instance Show View

1.22.3.145 Daml.Finance.Interface.Lifecycle.Event.Replacement

Interfaces

interface Event

Event interface for the replacement of units of an instrument with a basket of other in-

struments (e.g. stock merger).

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice GetView

Retrieves the event view.

Controller: viewer

Returns: View

Field Type Description

viewer Party The party retrieving the view.

Data Types

type I = Event

Type synonym for Event.

type V = View

Type synonym for View.

instance HasFromAnyView Event V

data View

1.22. Reference 855

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108

Daml SDK Documentation, 2.7.3

View for Event.

View

Field Type Description

effectiveTime Time Time on which the replacement is effec-

tuated.

targetInstrument Instrumen-

tKey

Instrument the replacement event ap-

plies to.

perUnitReplace-

ment

[Instrumen-

tQuantity]

Instrument quantities the target instru-

ment is replaced with.

instance Eq View

instance Show View

1.22.3.146 Daml.Finance.Interface.Lifecycle.Event.Time

Interfaces

interface Event

Event interface for events that signal the passing of (business) time.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice GetView

Retrieves the event view. The event’s time can be retrieved from the generic Event

interface.

Controller: viewer

Returns: View

Field Type Description

viewer Party The party retrieving the view.

• Method advance : ContractId Time -> Advance -> Update (ContractId Time, ContractId

Event)

Implementation of the Advance choice.

• Method rewind : ContractId Time -> Rewind -> Update (ContractId Time, ContractId

Event)

Implementation of the Rewind choice.

856 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282

Daml SDK Documentation, 2.7.3

Data Types

type I = Event

Type synonym for Event.

type V = View

Type synonym for View.

instance HasFromAnyView Event V

data View

View for Event.

View

(no fields)

instance Eq View

instance Show View

1.22.3.147 Daml.Finance.Interface.Lifecycle.Observable.NumericObservable

This module defines an interface for a NumericObservable, which is used to inspect

time-dependent numerical values.

Interfaces

interface NumericObservable

An interface to inspect some (time-dependent) numerical values (e.g. a stock price or an

interest rate fixing) required when processing a lifecycle rule.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: View

Field Type Description

viewer Party The party retrieving the view.

• Choice Observe

Observe the Observable.

Controller: actors

Returns: Decimal

Field Type Description

actors Parties Parties calling this ‘Observe’ choice.

t Time Time at which the value is observed.

1.22. Reference 857

https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886

Daml SDK Documentation, 2.7.3

• Method observe : Time -> Update Decimal

Implementation of the Observe choice.

Data Types

type I = NumericObservable

Type synonym for Observable.

type V = View

Type synonym for View.

instance HasFromAnyView NumericObservable V

data View

View for Observable.

View

Field Type Description

provider Party Party providing the observations.

id Id Textual reference to the observable.

instance Eq View

instance Show View

Functions

observe : NumericObservable -> Time -> Update Decimal

1.22.3.148 Daml.Finance.Interface.Lifecycle.Observable.TimeObservable

This module defines an interface for a TimeObservable, which is implemented by templates ex-

posing time information.

Interfaces

interface TimeObservable

An interface to inspect a time value.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice GetTime

Retrieves the current time.

Controller: actors

858 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135

Daml SDK Documentation, 2.7.3

Returns: Time

Field Type Description

actors Parties The party retrieving the current time.

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: View

Field Type Description

viewer Party The party retrieving the view.

• Method getTime : Update Time

Implementation of the GetTime choice.

Data Types

type I = TimeObservable

Type synonym for TimeObservable.

type V = View

Type synonym for View.

instance HasFromAnyView TimeObservable V

data View

View for TimeObservable.

View

Field Type Description

providers Parties Parties providing the observation.

id Id Textual reference to the observable.

instance Eq View

instance Show View

Functions

getTime : TimeObservable -> Update Time

1.22. Reference 859

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886

Daml SDK Documentation, 2.7.3

1.22.3.149 Daml.Finance.Interface.Lifecycle.Rule.Claim

Interfaces

interface Claim

Interface for contracts that allow holders to claim an Effect and generate Settle­

mentInstruction\s.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice ClaimEffect

Claim an effect and generate corresponding settlement instructions.

Controller: claimer

Returns: ClaimResult

Field Type Description

claimer Party The party claiming the effect.

holdingCids [ContractId

I]

The holdings to process.

effectCid ContractId I The effect to process.

batchId Id Identifier used for the generated settle-

ment batch.

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: View

Field Type Description

viewer Party The party retrieving the view.

• Method claimEffect : ClaimEffect -> Update ClaimResult

Implementation of the ClaimEffect choice.

Data Types

data ClaimResult

Data type wrapping the results of Claim``ing an ``Effect.

ClaimResult

Field Type Description

batchCid ContractId I Batch used to batch-settle settlement

instructions.

instructionCids [ContractId

I]

Settlement instructions to settle all ef-

fect consequences.

860 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282

Daml SDK Documentation, 2.7.3

instance Eq ClaimResult

instance Show ClaimResult

instance HasMethod Claim "claimEffect" (ClaimEffect -> Update ClaimResult)

type I = Claim

Type synonym for Claim.

type V = View

Type synonym for View.

instance HasFromAnyView Claim V

data View

View for Settlement.

View

Field Type Description

providers Parties Providers of the claim rule. Together with

the actors of the ClaimEffect choice

the authorization requirements to up-

grade the holdings being claimed have

to be met.

claimers Parties Any of the parties can claim an effect.

settlers Parties Any of the parties can trigger settlement

of the resulting batch.

routeProviderCid ContractId I RouteProvider contract used to discover

settlement routes.

settlementFacto-

ryCid

ContractId

F

Settlement factory contract used to cre-

ate a Batch of Instruction\s.

instance Eq View

instance Show View

Functions

claimEffect : Claim -> ClaimEffect -> Update ClaimResult

1.22.3.150 Daml.Finance.Interface.Lifecycle.Rule.Lifecycle

Interfaces

interface Lifecycle

Interface implemented by instruments that can be lifecycled (either by the instrument

itself or by a separate rule contract).

viewtype V

1.22. Reference 861

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072

Daml SDK Documentation, 2.7.3

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice Evolve

Process an event. It returns a tuple of the lifecycled instrument (or the original in-

strument when the former does not exist) and the effects.

Controller: (DA.Internal.Record.getField @"lifecycler" (view this))

Returns: (Optional InstrumentKey, [ContractId I])

Field Type Description

eventCid ContractId I The event.

instrument Instrumen-

tKey

The target instrument.

observableCids [ContractId

I]

Set of numerical time-dependent observ-

ables.

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: View

Field Type Description

viewer Party The party retrieving the view.

• Method evolve : Evolve -> Update (Optional InstrumentKey, [ContractId I])

Implementation of the Evolve choice.

Data Types

type I = Lifecycle

Type synonym for Lifecycle.

type V = View

Type synonym for View.

instance HasFromAnyView Lifecycle V

data View

View for Lifecycle.

View

Field Type Description

id Id Identifier for the rule contract.

description Text Textual description.

lifecycler Party Party performing the lifecycling.

instance Eq View

instance Show View

862 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

Functions

evolve : Lifecycle -> Evolve -> Update (Optional InstrumentKey, [ContractId I])

1.22.3.151 Daml.Finance.Interface.Settlement.Batch

Interfaces

interface Batch

An interface for atomically settling a batch of Instruction\s. The corresponding In-

structions are referenced by key.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice Cancel

Cancels the batch.

Controller: actors

Returns: [ContractId I]

Field Type Description

actors Parties The parties canceling the batch.

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: View

Field Type Description

viewer Party The party retrieving the view.

• Choice Settle

Settles the batch.

Controller: actors

Returns: [ContractId I]

Field Type Description

actors Parties The parties settling the batch.

• Method cancel : Cancel -> Update [ContractId I]

Implementation of the Cancel choice.

• Method settle : Settle -> Update [ContractId I]

Implementation of the Settle choice.

1.22. Reference 863

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282

Daml SDK Documentation, 2.7.3

Data Types

type I = Batch

Type synonym for Batch.

instance HasMethod Factory "instruct" (Instruct -> Update (ContractId I, [ContractId I]))

type V = View

Type synonym for View.

instance HasFromAnyView Batch V

data View

View for Batch.

View

Field Type Description

requestors Parties Parties requesting the settlement.

settlers Parties Parties that can trigger the final settle-

ment.

id Id Batch identifier.

description Text Batch description.

contextId Optional Id Identifier to link a batch to a context (e.g.

the Effect it originated from).

routedSteps [Routed-

Step]

Routed settlement steps.

settlementTime Optional

Time

Settlement time (if any).

instance Eq View

instance Show View

Functions

settle : Batch -> Settle -> Update [ContractId I]

cancel : Batch -> Cancel -> Update [ContractId I]

1.22.3.152 Daml.Finance.Interface.Settlement.Factory

Interfaces

interface Factory

An interface used to generate settlement instructions.

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

864 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282

Daml SDK Documentation, 2.7.3

(no fields)

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: View

Field Type Description

viewer Party The party retrieving the view.

• Choice Instruct

Generate settlement instructions, and a batch for settling them.

Controller: instructors

Returns: (ContractId I, [ContractId I])

Field Type Description

instructors Parties Parties requesting to instruct a settlement.

settlers Parties Any of the parties can trigger the final set-

tlement.

id Id Batch identifier.

description Text Batch description.

contextId Optional Id Identifier to link a batch to a context (e.g.

the Effect it originated from).

routedSteps [RoutedStep] Routed settlement steps to instruct.

settlementTime Optional

Time

Settlement time (if any).

• Method instruct : Instruct -> Update (ContractId I, [ContractId I])

Implementation of the Instruct choice.

Data Types

type F = Factory

Type synonym for Factory.

type I = Factory

Type synonym for Factory.

type V = View

Type synonym for View.

instance HasFromAnyView Factory V

data View

View for Factory.

View

Field Type Description

provider Party Party providing the facility.

observers Parties Observers.

instance Eq View

1.22. Reference 865

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713

Daml SDK Documentation, 2.7.3

instance Show View

Functions

instruct : Factory -> Instruct -> Update (ContractId I, [ContractId I])

1.22.3.153 Daml.Finance.Interface.Settlement.Instruction

Interfaces

interface Instruction

An interface for providing a single instruction to transfer an asset.

viewtype V

• Choice Allocate

Allocates this instruction and optionally returns a previously allocated (mutated)

asset.

Controller: actors

Returns: (ContractId Instruction, Optional (ContractId I))

Field Type Description

actors Parties The parties allocating the instruction.

allocation Allocation Allocation of an instruction.

• Choice Approve

Approves this instruction.

Controller: actors

Returns: ContractId Instruction

Field Type Description

actors Parties The parties approving the instruction.

approval Approval Approval of an instruction.

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice Cancel

Cancels this instruction.

Controller: actors

Returns: Optional (ContractId I)

Field Type Description

actors Parties The parties canceling the instruction.

• Choice Execute

Executes this instruction.

Controller: actors

Returns: Optional (ContractId I)

866 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282

Daml SDK Documentation, 2.7.3

Field Type Description

actors Parties The parties executing the instruction.

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: View

Field Type Description

viewer Party The party retrieving the view.

• Method allocate : Allocate -> Update (ContractId Instruction, Optional (ContractId I))

Implementation of the Allocate choice.

• Method approve : Approve -> Update (ContractId Instruction)

Implementation of the Approve choice.

• Method cancel : Cancel -> Update (Optional (ContractId I))

Implementation of the Cancel choice.

• Method execute : Execute -> Update (Optional (ContractId I))

Implementation of the Execute choice.

Data Types

type I = Instruction

Type synonym for Instruction.

instance HasMethod Factory "instruct" (Instruct -> Update (ContractId I, [ContractId I]))

type V = View

Type synonym for View.

instance HasFromAnyView Instruction V

data View

View for Instruction.

View

Field Type Description

requestors Parties Parties that instructed settlement.

settlers Parties Parties that can execute the Instruction.

batchId Id Batch identifier.

id Id Instruction identifier.

routedStep RoutedStep Instruction details to execute.

settlementTime Optional

Time

Settlement time (if any).

allocation Allocation Allocation from the sender.

approval Approval Approval from the receiver.

signedSenders Parties Additional signatories, used to collect

authorization (on sending side).

signedReceivers Parties Additional signatories, used to collect

authorization (on receiving side).

1.22. Reference 867

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886

Daml SDK Documentation, 2.7.3

instance Eq View

instance Show View

Functions

allocate : Instruction -> Allocate -> Update (ContractId Instruction, Optional (ContractId I))

approve : Instruction -> Approve -> Update (ContractId Instruction)

execute : Instruction -> Execute -> Update (Optional (ContractId I))

cancel : Instruction -> Cancel -> Update (Optional (ContractId I))

1.22.3.154 Daml.Finance.Interface.Settlement.RouteProvider

Interfaces

interface RouteProvider

An interface used to discover the settlement route for each Step, i.e., [RoutedStep].

viewtype V

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice Discover

Discover the settlement route for each Step.

Controller: discoverors

Returns: [RoutedStep]

Field Type Description

discoverors Parties Parties requesting to discover.

contextId Optional Id Context for the discovery.

steps [Step] Settlement steps to route.

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: View

Field Type Description

viewer Party The party retrieving the view.

• Method discover : Discover -> Update [RoutedStep]

Implementation of the Discover choice.

868 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072

Daml SDK Documentation, 2.7.3

Data Types

type I = RouteProvider

Type synonym for RouteProvider.

type V = View

Type synonym for View.

instance HasFromAnyView RouteProvider V

data View

View for RouteProvider.

View

Field Type Description

provider Party Party providing the RouteProvider fa-

cility.

observers Parties Observers.

instance Eq View

instance Show View

Functions

discover : RouteProvider -> Discover -> Update [RoutedStep]

1.22.3.155 Daml.Finance.Interface.Settlement.Types

Data Types

data Allocation

Describes an allocation of an Instruction.

Unallocated

An unallocated instruction.

Pledge (ContractId I)

Settle the instruction with the pledged asset.

CreditReceiver

Settle the instruction by crediting the receiver account (where the sender is cus-

todian).

SettleOffledger

Settle the instruction off-ledger.

PassThroughFrom (AccountKey, InstructionKey)

1.22. Reference 869

https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282

Daml SDK Documentation, 2.7.3

Settle the instruction with the holding coming from the specified instruction

and account.

instance Eq Allocation

instance Show Allocation

data Approval

Describes an approval of an Instruction.

Unapproved

An unapproved instruction.

TakeDelivery AccountKey

Take delivery to the specified account.

DebitSender

Debit the sender account with the provided asset (where the receiver is custo-

dian).

SettleOffledgerAcknowledge

Acknowledge settlement of the instruction off-ledger.

PassThroughTo (AccountKey, InstructionKey)

Take delivery to the specified account. The holding is then immediately allo-

cated to the specified instruction.

instance Eq Approval

instance Show Approval

data InstructionKey

A unique key for Instructions.

InstructionKey

Field Type Description

requestors Parties Parties requesting settlement of the in-

struction.

batchId Id Id of the batch the instruction belongs to.

id Id A unique identifier for an instruction.

instance Eq InstructionKey

instance Ord InstructionKey

instance Show InstructionKey

instance HasExerciseByKey Instruction InstructionKey Archive ()

instance HasFetchByKey Instruction InstructionKey

instance HasFromAnyContractKey Instruction InstructionKey

instance HasKey Instruction InstructionKey

870 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-ord-6395
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasexercisebykey-36549
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-archive-15178
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasfetchbykey-54638
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasfromanycontractkey-95587
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-haskey-87616

Daml SDK Documentation, 2.7.3

instance HasLookupByKey Instruction InstructionKey

instance HasMaintainer Instruction InstructionKey

instance HasToAnyContractKey Instruction InstructionKey

data RoutedStep

Describes a transfer of a position between two parties. The custodian at which the posi-

tion is held is also specified.

RoutedStep

Field Type Description

sender Party Party transferring the asset.

receiver Party Party receiving the asset.

custodian Party The custodian at which the asset is held.

quantity Instrumen-

tQuantity

The instrument and amount to be trans-

ferred.

instance Eq RoutedStep

instance Ord RoutedStep

instance Show RoutedStep

instance HasMethod RouteProvider "discover" (Discover -> Update [RoutedStep])

data Step

Describes a transfer of a position between two parties.

Step

Field Type Description

sender Party Party transferring the asset.

receiver Party Party receiving the asset.

quantity Instrumen-

tQuantity

The instrument and amount to be trans-

ferred.

instance Eq Step

instance Ord Step

instance Show Step

1.22. Reference 871

https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-haslookupbykey-92299
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasmaintainer-28932
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hastoanycontractkey-35010
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-ord-6395
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-ord-6395
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

1.22.3.156 Daml.Finance.Interface.Types.Common.Types

Data Types

data AccountKey

A unique key for Accounts.

AccountKey

Field Type Description

custodian Party Account provider.

owner Party Account owner.

id Id Unique identifier for an account.

instance Eq AccountKey

instance Ord AccountKey

instance Show AccountKey

instance HasMethod Account "getKey" AccountKey

instance HasExerciseByKey Reference AccountKey GetCid (ContractId Account)

instance HasExerciseByKey Reference AccountKey SetCid (ContractId Reference)

instance HasExerciseByKey Reference AccountKey SetObservers (ContractId Reference)

instance HasExerciseByKey Reference AccountKey Archive ()

instance HasFetchByKey Reference AccountKey

instance HasFromAnyContractKey Reference AccountKey

instance HasKey Reference AccountKey

instance HasLookupByKey Reference AccountKey

instance HasMaintainer Reference AccountKey

instance HasToAnyContractKey Reference AccountKey

data Id

Id Text

instance Eq Id

instance Ord Id

instance Show Id

instance HasExerciseByKey LedgerTime (Parties, Id) Archive ()

instance HasFetchByKey LedgerTime (Parties, Id)

instance HasFromAnyContractKey LedgerTime (Parties, Id)

instance HasKey LedgerTime (Parties, Id)

instance HasLookupByKey LedgerTime (Parties, Id)

872 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-ord-6395
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasexercisebykey-36549
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasexercisebykey-36549
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasexercisebykey-36549
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasexercisebykey-36549
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-archive-15178
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasfetchbykey-54638
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasfromanycontractkey-95587
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-haskey-87616
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-haslookupbykey-92299
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasmaintainer-28932
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hastoanycontractkey-35010
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-ord-6395
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasexercisebykey-36549
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-archive-15178
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasfetchbykey-54638
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasfromanycontractkey-95587
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-haskey-87616
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-haslookupbykey-92299

Daml SDK Documentation, 2.7.3

instance HasMaintainer LedgerTime (Parties, Id)

instance HasToAnyContractKey LedgerTime (Parties, Id)

data InstrumentKey

A unique key for Instruments.

InstrumentKey

Field Type Description

depository Party Party providing depository services.

issuer Party Issuer of instrument.

id Id A unique identifier for an instrument.

version Text A textual instrument version.

instance Eq InstrumentKey

instance Ord InstrumentKey

instance Show InstrumentKey

instance HasMethod Instrument "getKey" InstrumentKey

instance HasMethod Election "apply" (ContractId Election -> Apply -> Update (Optional In-

strumentKey, [ContractId I]))

instance HasMethod Exercisable "applyElection" (ApplyElection -> Update (Optional Instru-

mentKey, [ContractId I]))

instance HasMethod Lifecycle "evolve" (Evolve -> Update (Optional InstrumentKey, [Contrac-

tId I]))

instance HasExerciseByKey Reference InstrumentKey GetCid (ContractId I)

instance HasExerciseByKey Reference InstrumentKey SetCid (ContractId R)

instance HasExerciseByKey Reference InstrumentKey SetObservers (ContractId R)

instance HasExerciseByKey Reference InstrumentKey Archive ()

instance HasFetchByKey Reference InstrumentKey

instance HasFromAnyContractKey Reference InstrumentKey

instance HasKey Reference InstrumentKey

instance HasLookupByKey Reference InstrumentKey

instance HasMaintainer Reference InstrumentKey

instance HasToAnyContractKey Reference InstrumentKey

type InstrumentQuantity = Quantity InstrumentKey Decimal

type Parties = Set Party

A set of parties.

instance HasExerciseByKey LedgerTime (Parties, Id) Archive ()

instance HasFetchByKey LedgerTime (Parties, Id)

instance HasFromAnyContractKey LedgerTime (Parties, Id)

instance HasKey LedgerTime (Parties, Id)

1.22. Reference 873

https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasmaintainer-28932
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hastoanycontractkey-35010
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-ord-6395
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasexercisebykey-36549
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasexercisebykey-36549
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasexercisebykey-36549
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasexercisebykey-36549
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-archive-15178
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasfetchbykey-54638
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasfromanycontractkey-95587
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-haskey-87616
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-haslookupbykey-92299
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasmaintainer-28932
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hastoanycontractkey-35010
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/DA-Set.html#type-da-set-types-set-90436
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasexercisebykey-36549
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-archive-15178
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasfetchbykey-54638
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasfromanycontractkey-95587
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-haskey-87616

Daml SDK Documentation, 2.7.3

instance HasLookupByKey LedgerTime (Parties, Id)

instance HasMaintainer LedgerTime (Parties, Id)

instance HasToAnyContractKey LedgerTime (Parties, Id)

type PartiesMap = Map Text Parties

Parties mapped by a specific key (or context). The textual key is the "context" which describes

the value set of parties. This allows processes to add/remove parties for their specific purpose,

without affecting others.

data Quantity u a

A dimensioned quantity.

Quantity

Field Type Description

unit u The quantity’s unit.

amount a A numerical amount.

instance (Eq u, Eq a) => Eq (Quantity u a)

instance (Ord u, Ord a) => Ord (Quantity u a)

instance (Show u, Show a) => Show (Quantity u a)

1.22.3.157 Daml.Finance.Interface.Types.Date.Calendar

Data Types

data BusinessDayAdjustment

A data type to define how non-business days are adjusted.

BusinessDayAdjustment

Field Type Description

calendarIds [Text] A list of calendar ids to define holidays.

convention Business-

DayConven-

tionEnum

The business day convention used for

the adjustment.

instance Eq BusinessDayAdjustment

instance Show BusinessDayAdjustment

data BusinessDayConventionEnum

An enum type to specify how a non-business day is adjusted.

Following

Adjust a non-business day to the next business day.

ModifiedFollowing

874 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-haslookupbykey-92299
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasmaintainer-28932
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hastoanycontractkey-35010
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-map-90052
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-ord-6395
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-ord-6395
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-ord-6395
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

Adjust a non-business day to the next business day unless it is not in the same

month. In this case use the previous business day.

ModifiedPreceding

Adjust a non-business day to the previous business day unless it is not in the

same month. In this case use the next business day.

NoAdjustment

Non-business days are not adjusted.

Preceding

Adjust a non-business day to the previous business day.

instance Eq BusinessDayConventionEnum

instance Show BusinessDayConventionEnum

data HolidayCalendarData

Holiday Calendar Data used to define holidays (non-business days).

HolidayCalendarData

Field Type Description

id Text The id of the holiday calendar.

weekend [Day-

OfWeek]

A list of week days defining the weekend.

holidays [Date] A list of dates defining holidays.

instance Eq HolidayCalendarData

instance Show HolidayCalendarData

instance HasExerciseByKey HolidayCalendar HolidayCalendarKey GetCalendar HolidayCalen-

darData

1.22.3.158 Daml.Finance.Interface.Types.Date.Classes

Typeclasses

class HasUTCTimeConversion a where

Types that can be converted to UTC time.

toUTCTime : a -> Time

instance HasUTCTimeConversion DateClock

instance HasUTCTimeConversion Unit

1.22. Reference 875

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/DA-Date.html#type-da-date-types-dayofweek-18120
https://docs.daml.com/daml/stdlib/DA-Date.html#type-da-date-types-dayofweek-18120
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasexercisebykey-36549
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886

Daml SDK Documentation, 2.7.3

1.22.3.159 Daml.Finance.Interface.Types.Date.DayCount

Data Types

data DayCountConventionEnum

An enum type to specify a day count convention used to calculate day count fractions. For

a detailed definition of each convention, we refer to the "Method of Interest Computation

Indicator" definitions in the context of the ISO-20022 standard. Where useful, we provide

disambiguation comments.

Act360

Actual 360. In CDM it is called DayCountFractionEnum_ACT_360. In ISO20022 it is

called A004.

Act365Fixed

Actual 365 fixed. In CDM it is called DayCountFractionEnum_ACT_365_FIXED. In

ISO20022 it is called A005.

Act365L

Actual 365L. In CDM it is called DayCountFractionEnum_ACT_365L. In ISO20022 it

is called A009.

ActActAFB

Actual Actual AFB. In CDM it is called DayCountFractionEnum_ACT_ACT_AFB. In

ISO20022 it is called A010.

ActActISDA

Actual Actual ISDA. In CDM it is called DayCountFractionEnum_ACT_ACT_ISDA. In

ISO20022 it is called A008.

ActActICMA

Actual Actual ICMA. In CDM it is called DayCountFractionEnum_ACT_ACT_ICMA

and DayCountFractionEnum_ACT_ACT_ISMA (they are identical:

https://www.isda.org/2011/01/07/act-act-icma/). In ISO20022 it is called

A006. Also called ISMA in the 1998 ISDA paper.

Basis1

1/1. In CDM it is called DayCountFractionEnum__1_1. Currently not included in

ISO20022.

Basis30360

30/360. In CDM it is called DayCountFractionEnum__30_360. In ISO20022 it is

called A001. Also called 30/360 ISDA or American Basic rule.

Basis30360ICMA

30/360 ICMA. In CDM it is called DayCountFractionEnum__30E_360. In ISO20022

it is called A011. Also called Basic Rule. This corresponds to "30E/360" of the

2006 ISDA definitions.

Basis30E360

876 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

30E/360. In CDM it is calledDayCountFractionEnum__30E_360_ISDA. In ISO20022

it is called A007. Also calledEurobondbasis. This corresponds to "30E360 (ISDA)"

of the 2006 ISDA definitions.

Basis30E3360

30E3/360. Currently not included in CDM. In ISO20022 it is called A013. Also

called Eurobond basis model 3.

instance Eq DayCountConventionEnum

instance Show DayCountConventionEnum

1.22.3.160 Daml.Finance.Interface.Types.Date.RollConvention

Data Types

data Period

A data type to define periods.

Period

Field Type Description

period PeriodEnum A period, e.g., a day, week, month or year.

periodMultiplier Int A period multiplier, e.g., 1, 2 or 3 etc.

instance Eq Period

instance Show Period

data PeriodEnum

An enum type to specify a period, e.g., day or week.

D

Day

M

Month

W

Week

Y

Year

instance Eq PeriodEnum

instance Show PeriodEnum

data RollConventionEnum

An enum type to specify how to roll dates.

EOM

1.22. Reference 877

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-int-37261
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

Rolls on month end.

DOM Int

Rolls on the corresponding day of the month.

NoRollConvention

No roll convention is specified. This is for e.g. when date roll is not required (D

or W tenors, single-period schedules).

instance Eq RollConventionEnum

instance Show RollConventionEnum

1.22.3.161 Daml.Finance.Interface.Types.Date.Schedule

Data Types

data Frequency

Frequency of a periodic schedule.

Frequency

Field Type Description

period Period The period (e.g., 1D, 3M, 1Y).

rollConvention RollConven-

tionEnum

The roll convention.

instance Eq Frequency

instance Show Frequency

data PeriodicSchedule

A periodic schedule.

PeriodicSchedule

878 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-int-37261
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

Field Type Description

effectiveDate Date Effective date, i.e., the (unadjusted) start

date of the first period.

terminationDate Date Termination date, i.e., the (unadjusted)

end date of the last period.

firstRegularPeri-

odStartDate

Optional

Date

The (unadjusted) start date of the first

regular period (optional).

lastRegularPerio-

dEndDate

Optional

Date

The (unadjusted) enddate of the last reg-

ular period (optional).

frequency Schedule-

Frequency

The frequency of the periodic schedule.

businessDayAd-

justment

Business-

DayAdjust-

ment

The business day adjustment to deter-

mine adjusted dates.

effectiveDateBusi-

nessDayAdjust-

ment

Optional

Business-

DayAdjust-

ment

The (optional) business day adjustment

of the effective date

terminationDate-

BusinessDayAd-

justment

Optional

Business-

DayAdjust-

ment

The (optional) business day adjustment

of the termination date

stubPeriodType Optional

StubPeriod-

TypeEnum

An optional stub to define a stub implic-

itly and not via firstRegularPeri­

odStartDate or lastRegularPerio­

dEndDate.

instance Eq PeriodicSchedule

instance Show PeriodicSchedule

type Schedule = [SchedulePeriod]

A schedule defined by a list of periods.

data ScheduleFrequency

Frequency of a schedule. It can be specified as a regular frequency or as SinglePeriod.

Periodic Frequency

Periodic frequency (e.g. 1D, 3M, 1Y).

SinglePeriod

Used for schedules that have exactly one regular period covering their full term

(from effectiveDate to terminationDate).

instance Eq ScheduleFrequency

instance Show ScheduleFrequency

data SchedulePeriod

A single period in a schedule.

SchedulePeriod

1.22. Reference 879

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

Field Type Description

adjustedEndDate Date Adjusted end date.

adjustedStartDate Date Adjusted start date.

unadjustedEnd-

Date

Date Unadjusted end date.

unadjustedStart-

Date

Date Unadjusted start date.

stubType Optional

StubPeriod-

TypeEnum

Indicates whether this period is a stub

(and if so, what type of stub it is)

instance Eq SchedulePeriod

instance Show SchedulePeriod

data StubPeriodTypeEnum

An enum type to specify a stub.

LongFinal

A long (more than one period) final stub.

LongInitial

A long (more than one period) initial stub.

ShortFinal

A short (less than one period) final stub.

ShortInitial

A short (less than one period) initial stub.

instance Eq StubPeriodTypeEnum

instance Show StubPeriodTypeEnum

1.22.3.162 Daml.Finance.Interface.Util.Common

Functions

verify : CanAssert m => Bool -> Text -> m ()

Verify is assertMsg with its arguments flipped.

fetchInterfaceByKey : (HasInterfaceTypeRep i, HasInterfaceTypeRep i2, HasFetchByKey t k, HasField

"cid" t (ContractId i), HasFetch i2) => k -> Update i2

Fetch an interface by key.

qty : Decimal -> InstrumentKey -> InstrumentQuantity

Wraps an amount and an instrument key into an instrument quantity.

scale : Decimal -> InstrumentQuantity -> InstrumentQuantity

Scale quantity by the provided factor.

880 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-assert-canassert-67323
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hasinterfacetyperep-84221
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hasinterfacetyperep-84221
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasfetchbykey-54638
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasfetch-52387
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135

Daml SDK Documentation, 2.7.3

1.22.3.163 Daml.Finance.Interface.Util.Disclosure

Interfaces

interface Disclosure

An interface for managing the visibility of contracts for non-authorizing parties.

viewtype V

• Choice AddObservers

Add a single new observer context to the existing observers.

Controller: disclosers

Returns: ContractId Disclosure

Field Type Description

disclosers Parties Party calling this choice.

observersToAdd (Text, Par-

ties)

Parties to add as observers to the contract

and the corresponding observer context. If

the observer context already exists, the new

set of parties is added to the old one.

• Choice Archive

Controller: Signatories of implementing template

Returns: ()

(no fields)

• Choice GetView

Retrieves the interface view.

Controller: viewer

Returns: View

Field Type Description

viewer Party The party retrieving the view.

• Choice RemoveObservers

Remove observers from a context. None is returned if no update is needed. Parties

for a context can be removed if any of the disclosers are part of the observers to be

removed or the disclosureControllers.

Controller: disclosers

Returns: Optional (ContractId Disclosure)

Field Type Description

disclosers Parties Parties calling this choice.

observersToRemove (Text, Par-

ties)

Parties to be removed from the contract

observers and the corresponding observer

context.

• Choice SetObservers

Set the observers for a contract.

Controller: disclosers

Returns: ContractId Disclosure

1.22. Reference 881

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282

Daml SDK Documentation, 2.7.3

Field Type Description

disclosers Parties Party calling this choice.

newObservers PartiesMap Observers to set for this contract. This over-

rides the existing observers. The parties are

mapped by a specific key. The textual key is

the "observation context" of the disclosure.

This allows processes to add/remove par-

ties for their specific purpose, without af-

fecting others.

• Method addObservers : AddObservers -> Update (ContractId Disclosure)

Implementation of the AddObservers choice.

• Method removeObservers : ContractId Disclosure -> RemoveObservers -> Update (Op-

tional (ContractId Disclosure))

Implementation of the RemoveObservers choice.

• Method setObservers : SetObservers -> Update (ContractId Disclosure)

Implementation of the SetObservers choice.

Data Types

type I = Disclosure

Type synonym for Disclosure.

type V = View

Type synonym for View.

instance HasFromAnyView Disclosure V

data View

View for Disclosure.

View

Field Type Description

disclosureCon-

trollers

Parties Disjunction choice controllers.

observers PartiesMap Observers with context. The parties are

mappedbya specific key. The textual key

is the "observation context" of the disclo-

sure. This allows processes to add/re-

move parties for their specific purpose,

without affecting others.

instance Eq View

instance Show View

882 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Internal-Interface-AnyView.html#class-da-internal-interface-anyview-hasfromanyview-30108
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

Functions

setObservers : Disclosure -> SetObservers -> Update (ContractId Disclosure)

addObservers : Disclosure -> AddObservers -> Update (ContractId Disclosure)

removeObservers : Disclosure -> ContractId Disclosure -> RemoveObservers -> Update (Optional (Contrac-

tId Disclosure))

flattenObservers : PartiesMap -> Parties

Flattens observers which use the PartiesMap into a Set Party for usage in template defini-

tions. For example:

observer $ flattenObservers observers

1.22.3.164 Daml.Finance.Lifecycle.Effect

Templates

template Effect

A contract encoding the consequences of a lifecycle event for one unit of the target in-

strument.

Signatory: providers

1.22. Reference 883

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282

Daml SDK Documentation, 2.7.3

Field Type Description

providers Parties The effect provider.

id Id The effect’s identifier.

description Text The effect’s description.

targetInstrument InstrumentKey The target instrument. A holding on this in-

strument is required to claim the effect. For

example, in the case of a swap instrument,

this would be the original instrument version

before lifecycling, that contains the current

swap payment.

producedInstrument Optional In-

strumentKey

The produced instrument, if it exists. For ex-

ample, in the case of a swap instrument, this

would be the new instrument version after

lifecycling, that does not contain the current

swap payment. If there are no more claims

remaining after the current lifecycling, this

would be None.

otherConsumed [Instrumen-

tQuantity]

Consumed quantities (in addition to the tar-

get instrument). For example, in the case of a

fix vs floating rate swap, this could be a 2.5%

fix payment.

otherProduced [Instrumen-

tQuantity]

Produced quantities (in additon to the pro-

duced instrument). For example, in the case

of a fix vs floating rate swap, this could be a

3M Euribor floating payment.

settlementTime Optional

Time

The effect’s settlement time (if any).

observers PartiesMap Observers.

• Choice Archive

Controller: providers

Returns: ()

(no fields)

• interface instance I for Effect

• interface instance I for Effect

Data Types

type T = Effect

Type synonym for Effect.

884 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886

Daml SDK Documentation, 2.7.3

1.22.3.165 Daml.Finance.Lifecycle.Election

Templates

template Election

An election, such as the exercise of an option.

Signatory: elector, provider

Field Type Description

elector Party Entity making the election.

counterparty Party Faces the elector in the Holding.

provider Party The provider of the election is an entity that

has the authority to process the election and

create a new instrument version.

id Id Election identifier.

description Text A human readable description of the election.

instrument InstrumentKey The instrument to which the election applies.

amount Decimal Number of units of instrument to which the

election applies.

claim Text The tag corresponding to the elected sub-tree.

electorIsOwner Bool True if the elector is the owner of a claim,

False otherwise.

electionTime Time Time at which the election is put forward.

observers PartiesMap A set of observers.

• Choice Archive

Controller: elector, provider

Returns: ()

(no fields)

• interface instance I for Election

• interface instance I for Election

• interface instance I for Election

template Factory

Factory template to create an Election.

Signatory: provider

Field Type Description

provider Party The provider of the Factory.

observers PartiesMap A set of observers.

• Choice Archive

Controller: provider

Returns: ()

(no fields)

• interface instance F for Factory

• interface instance I for Factory

1.22. Reference 885

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932

Daml SDK Documentation, 2.7.3

Data Types

type T = Election

Type synonym for Election.

1.22.3.166 Daml.Finance.Lifecycle.ElectionEffect

Templates

template ElectionEffect

A contract encoding the consequences of an election for one unit of the target instrument.

It needs to be claimedwith a holding of the right amount and is consumed after claiming.

Signatory: providers

Field Type Description

providers Parties The effect provider.

custodian Party The custodian of the holding put forward for

election.

owner Party The owner of the holding put forward for elec-

tion.

id Id The effect’s identifier.

description Text The effect’s description.

targetInstrument InstrumentKey The target instrument.

producedInstrument Optional In-

strumentKey

The produced instrument, when it exists.

amount Decimal The elected amount.

otherConsumed [Instrumen-

tQuantity]

Consumed quantities (not including the tar-

get instrument).

otherProduced [Instrumen-

tQuantity]

Produced quantities (not including the pro-

duced instrument).

settlementTime Optional

Time

The effect’s settlement time (if any).

observers PartiesMap Observers.

• Choice Archive

Controller: providers

Returns: ()

(no fields)

• interface instance I for ElectionEffect

• interface instance I for ElectionEffect

886 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886

Daml SDK Documentation, 2.7.3

Data Types

type T = ElectionEffect

Type synonym for ElectionEffect.

1.22.3.167 Daml.Finance.Lifecycle.Event.Distribution

Templates

template Event

Event contract for the distribution of units of an instrument for each unit of a target in-

strument (e.g. share or cash dividends).

Signatory: providers

Field Type Description

providers Parties Providers of the distribution event.

id Id Event Identifier.

description Text Event description.

effectiveTime Time Time on which the distribution is effectuated.

targetInstrument InstrumentKey Instrument the distribution event applies to.

newInstrument InstrumentKey Instrument after the distribution has been

claimed.

perUnitDistribution [Instrumen-

tQuantity]

Distributed quantities per unit held.

observers Parties Observers.

• Choice Archive

Controller: providers

Returns: ()

(no fields)

• interface instance I for Event

• interface instance I for Event

1.22. Reference 887

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886

Daml SDK Documentation, 2.7.3

Data Types

type T = Event

Type synonym for Event.

1.22.3.168 Daml.Finance.Lifecycle.Event.Replacement

Templates

template Event

Event contract for the replacement of units of an instrument with a basket of other in-

struments, e.g., a stock merger.

Signatory: providers

Field Type Description

providers Parties Providers of the distribution event.

id Id Event identifier.

description Text Event description.

effectiveTime Time Time onwhich the replacement is effectuated.

targetInstrument InstrumentKey Instrument the replacement event applies to.

perUnitReplacement [Instrumen-

tQuantity]

Instrument quantities the target instrument

is replaced with.

observers Parties Observers.

• Choice Archive

Controller: providers

Returns: ()

(no fields)

• interface instance I for Event

• interface instance I for Event

Data Types

type T = Event

Type synonym for Event.

1.22.3.169 Daml.Finance.Lifecycle.Rule.Claim

Templates

template Rule

Rule contract that allows an actor to claim effects, returning settlement instructions.

Signatory: providers

888 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886

Daml SDK Documentation, 2.7.3

Field Type Description

providers Parties Providers of the claim rule. Together with the

actors of the ClaimEffect choice the autho-

rization requirements toupgrade theholdings

being claimed have to be met.

claimers Parties Any of the parties can claim an effect.

settlers Parties Any of the parties can trigger settlement of the

resulting batch.

routeProviderCid ContractId I RouteProvider used to discover settlement

routes.

settlementFacto-

ryCid

ContractId F Settlement factory contract used to create a

Batch of Instruction\s.

netInstructions Bool Configure whether netting should be enabled

for quantities having the same (instrument,

sender, receiver).

• Choice Archive

Controller: providers

Returns: ()

(no fields)

• interface instance I for Rule

Data Types

type T = Rule

Type synonym for Rule.

1.22.3.170 Daml.Finance.Lifecycle.Rule.Distribution

Templates

template Rule

Rule contract that defines the distribution of units of an instrument for each unit of a

target instrument (e.g. share or cash dividends).

Signatory: providers

Field Type Description

providers Parties Providers of the distribution rule.

lifecycler Party Party performing the lifecycling.

observers Parties Observers of the distribution rule.

id Id Identifier for the rule contract.

description Text Textual description.

• Choice Archive

Controller: providers

Returns: ()

(no fields)

1.22. Reference 889

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952

Daml SDK Documentation, 2.7.3

• interface instance I for Rule

Data Types

type T = Rule

Type synonym for Rule.

1.22.3.171 Daml.Finance.Lifecycle.Rule.Replacement

Templates

template Rule

Rule contract that defines the replacement of units of an instrument with a basket of

other instruments (e.g. stock merger).

Signatory: providers

Field Type Description

providers Parties Providers of the replacement rule.

lifecycler Party Party performing the lifecycling.

observers Parties Observers.

id Id Identifier for the rule contract.

description Text Textual description.

• Choice Archive

Controller: providers

Returns: ()

(no fields)

• interface instance I for Rule

Data Types

type T = Rule

Type synonym for Rule.

1.22.3.172 Daml.Finance.Lifecycle.Rule.Util

Data Types

data Pending

Type used to record pending payments.

Pending

890 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952

Daml SDK Documentation, 2.7.3

Field Type Description

instrument Instrumen-

tKey

amount Decimal

instance Eq Pending

instance Show Pending

Functions

mergeConsumedAndProduced : [InstrumentQuantity] -> [InstrumentQuantity] -> [Pending]

Merge consumed and produced instruments into a list of pending settlements. This will only

reproduce instrument and quantity, not tag or time.

splitPending : [Pending] -> ([InstrumentQuantity], [InstrumentQuantity])

Map pending settlements into corresponding instrument quantities and split them into con-

sumed and produced. Pending items with an amount of 0.0 are discarded.

net : [Pending] -> [Pending]

Net pending payments on the same instrument (regardless of tags).

1.22.3.173 Daml.Finance.Settlement.Batch

Templates

template Batch

Allows you to atomically settle a set of settlement Step.

Signatory: requestors

Field Type Description

requestors Parties Parties requesting the settlement.

settlers Parties Any of the parties can trigger the settlement.

id Id Batch identifier.

description Text Batch description.

contextId Optional Id Identifier to link a batch to a context (e.g. the

Effect it originated from).

routedStepsWithIn-

structionId

[(RoutedStep,

Id)]

The settlement RoutedStep\s and the identi-

fiers of the corresponding Instruction\s.

settlementTime Optional

Time

Settlement time (if any).

• Choice Archive

Controller: requestors

Returns: ()

(no fields)

• interface instance I for Batch

1.22. Reference 891

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886

Daml SDK Documentation, 2.7.3

Data Types

type T = Batch

Type synonym for Batch.

1.22.3.174 Daml.Finance.Settlement.Factory

Templates

template Factory

Factory template that implements the Factory interface. It is used to create a set of

settlement Instruction\s, and a Batch to atomically settle them.

Signatory: provider

Field Type Description

provider Party Party providing the facility.

observers Parties Observers.

• Choice Archive

Controller: provider

Returns: ()

(no fields)

• interface instance F for Factory

1.22.3.175 Daml.Finance.Settlement.Hierarchy

Data Types

data Hierarchy

Data type that describes a hierarchical account structure among multiple parties for

holdings on an instrument.

Hierarchy

Field Type Description

rootCustodian Party Root custodian of the instrument.

pathsToRootCusto-

dian

[[Party]] Paths from "leaf" owners to the root cus-

todian of the instrument.

instance Eq Hierarchy

instance Show Hierarchy

892 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360

Daml SDK Documentation, 2.7.3

Functions

unfoldStep : Hierarchy -> Step -> Optional [RoutedStep]

1.22.3.176 Daml.Finance.Settlement.Instruction

Templates

template Instruction

Instruction is used to settle a single settlement Step. In order to settle the instruction,

• the sender must allocate a suitable holding

• the receiver must define the receiving account

Signatory: requestors, signedSenders, signedReceivers

Field Type Description

requestors Parties Parties requesting the settlement.

settlers Parties Any of the parties can trigger the settlement.

batchId Id Trade identifier.

id Id Instruction identifier.

routedStep RoutedStep Routed settlement step.

settlementTime Optional

Time

Settlement time (if any).

allocation Allocation Allocation from the sender.

approval Approval Approval from the receiver.

signedSenders Parties Additional signatories, used to collect autho-

rization.

signedReceivers Parties Additional signatories, used to collect autho-

rization.

observers PartiesMap Observers.

• Choice Archive

Controller: requestors, signedSenders, signedReceivers

Returns: ()

(no fields)

• interface instance I for Instruction

• interface instance I for Instruction

Data Types

type T = Instruction

Type synonym for Instruction.

1.22. Reference 893

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886

Daml SDK Documentation, 2.7.3

1.22.3.177 Daml.Finance.Settlement.RouteProvider.IntermediatedStatic

Templates

template IntermediatedStatic

Template which implements the RouteProvider interface. It is used to discover the

settlement route for each settlement Step, i.e., RoutedSteps\s. For each instrument

to settle as part of the batch, a hierarchy of intermediaries is specified in paths. This

hierarchy is used to generate the RoutedStep\s.

Signatory: provider

Field Type Description

provider Party Party providing the facility.

observers Parties Observers.

paths Map Text Hier-

archy

Hierarchical paths used to settle holding

transfers. A path is specified for each instru-

ment label.

• Choice Archive

Controller: provider

Returns: ()

(no fields)

• interface instance I for IntermediatedStatic

1.22.3.178 Daml.Finance.Settlement.RouteProvider.SingleCustodian

Templates

template SingleCustodian

Template which implements the RouteProvider interface. It is used to transform each

settlement Step into a RoutedStep using a single custodian.

Signatory: provider

Field Type Description

provider Party Party providing the facility.

observers Parties Observers.

custodian Party The custodian to be used to route each Step.

• Choice Archive

Controller: provider

Returns: ()

(no fields)

• interface instance I for SingleCustodian

894 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-map-90052
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932

Daml SDK Documentation, 2.7.3

1.22.3.179 Daml.Finance.Util.Common

Functions

notNull : [a] -> Bool

Checks if the input list is not empty.

sortAndGroupOn : Ord k => (a -> k) -> [a] -> [[a]]

Like List.groupOn, but sorts the list first.

1.22.3.180 Daml.Finance.Util.Date.Calendar

Functions

merge : [HolidayCalendarData] -> HolidayCalendarData

Merge multiple holiday calendars into a single one. id\s are concatenated by ,.

isHoliday : HolidayCalendarData -> Date -> Bool

Check if Date is a holiday.

isBusinessDay : HolidayCalendarData -> Date -> Bool

Check if Date is a business day.

nextBusinessDay : HolidayCalendarData -> Date -> Date

Get next business day.

previousBusinessDay : HolidayCalendarData -> Date -> Date

Get previous business day.

nextOrSameBusinessDay : HolidayCalendarData -> Date -> Date

Get next or same business day.

previousOrSameBusinessDay : HolidayCalendarData -> Date -> Date

Get previous or same business day.

nextSameOrLastInMonthBusinessDay : HolidayCalendarData -> Date -> Date

Get next or samebusinessday if before endofmonth. Otherwise get last businessday inmonth.

previousSameOrFirstInMonthBusinessDay : HolidayCalendarData -> Date -> Date

Get previous or same business day if before end of month. Otherwise get first business day in

month.

addBusinessDays : HolidayCalendarData -> Int -> Date -> Date

Add business days to a Date.

adjustDate : HolidayCalendarData -> BusinessDayConventionEnum -> Date -> Date

Adjust date according to the given business day convention.

1.22. Reference 895

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-ord-6395
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-int-37261
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253

Daml SDK Documentation, 2.7.3

1.22.3.181 Daml.Finance.Util.Date.DayCount

Functions

calcDcf : DayCountConventionEnum -> Date -> Date -> Decimal

Calculates the day count fraction given the correponding convention. Currently 30E360 is not

supported as we do not want to expose the maturity date of the product as an additional pa-

rameter.

calcPeriodDcf : DayCountConventionEnum -> SchedulePeriod -> Bool -> Date -> ScheduleFrequency -> Deci-

mal

Calculate day count fraction for a schedule period. It takes the following parameters:

• DayCountConventionEnum: to specify which day count convention should be used

• SchedulePeriod: the schedule period for which the day count fraction should be calculated

• Bool: Whether day count fraction should be calculated on adjusted dates (if False: unad-

justed dates)

• Date: The maturity date of the instrument

• Frequency: the frequency of the schedule period

calcPeriodDcfActActIsda : SchedulePeriod -> Bool -> Date -> Decimal

Calculate Actual Actual day count fraction according to the ISDA method.

calcPeriodDcfActActIsma : SchedulePeriod -> Bool -> Date -> ScheduleFrequency -> Decimal

Calculate Actual Actual day count fraction according to the ISMA method.

calcDcfActActAfb : Date -> Date -> Decimal

calcDcfAct360 : Date -> Date -> Decimal

calcDcfAct365Fixed : Date -> Date -> Decimal

calcDcfAct365L : Date -> Date -> Decimal

calcDcf30360 : Date -> Date -> Decimal

calcDcf30360Icma : Date -> Date -> Decimal

calcDcf30E360 : Bool -> Date -> Date -> Decimal

Calculate 30E/360 day count fraction.

1.22.3.182 Daml.Finance.Util.Date.RollConvention

Functions

next : Date -> Period -> RollConventionEnum -> Date

Get next periodic (daily D andweekly W not supported) date according to a given roll convention.

previous : Date -> Period -> RollConventionEnum -> Date

Get previous periodic (daily D and weekly W not supported) date according to a given roll con-

vention.

addPeriod : Date -> Period -> Date

Add period to given date.

896 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-decimal-18135
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-date-32253

Daml SDK Documentation, 2.7.3

1.22.3.183 Daml.Finance.Util.Date.Schedule

Functions

createSchedule : [HolidayCalendarData] -> PeriodicSchedule -> Schedule

Generate schedule from a periodic schedule.

1.22.3.184 Daml.Finance.Util.Disclosure

Thismodule contains default implementations for themethods of the Disclosure interface. These

are used across multiple templates in the library.

Functions

setObserversImpl : (HasCreate t, HasField "observers" t PartiesMap, HasFromInterface t I, HasToInter-

face t I, HasInterfaceTypeRep i, HasToInterface i I, HasToInterface t i) => t -> Optional (PartiesMap

-> ContractId i -> Update (ContractId I)) -> SetObservers -> Update (ContractId I)

Default implementation for setObservers. The refUpdate argument is used to update the

corresponding contract Reference and can be set to None if your template does not have an

accompanying Reference contract.

addObserversImpl : (HasCreate t, HasField "observers" t PartiesMap, HasFromInterface t I, HasToInter-

face t I, HasInterfaceTypeRep i, HasToInterface i I, HasToInterface t i) => t -> Optional (PartiesMap

-> ContractId i -> Update (ContractId I)) -> AddObservers -> Update (ContractId I)

Default implementation for addObservers. The refUpdate argument is used to update the

corresponding contract Reference and can be set to None if your template does not have an

accompanying Reference contract.

removeObserversImpl : (HasCreate t, HasField "observers" t PartiesMap, HasFromInterface t I, HasToInt-

erface t I, HasInterfaceTypeRep i, HasToInterface i I, HasToInterface t i) => t -> Optional (PartiesMap

-> ContractId i -> Update (ContractId I)) -> ContractId I -> RemoveObservers -> Update (Optional

(ContractId I))

Default implementation for removeObservers. The refUpdate argument is used to update

the corresponding contract Reference and can be set to None if your template does not have

an accompanying Reference contract.

1.23 Intro

1.23.1 Introduction to Canton

Canton is a Daml ledger interoperability protocol. Parties which are hosted on different participant

nodes can transact using smart-contracts written in Daml and the Canton protocol. The Canton

protocol allows to connect different Daml ledgers into a single virtual global ledger. Daml, as the

smart contract language, defines who is entitled to see and who is authorized to change any given

contract. The Canton synchronization protocol enforces these visibility and authorization rules, and

ensures that the data is shared reliably with very high levels of privacy, even in the presence of ma-

licious actors. The Canton network can be extended without friction with new parties, ledgers, and

applications building on other applications. Extensions require neither a central managing entity

nor consensus within the global network.

1.23. Intro 897

https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hascreate-45738
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hasfrominterface-43863
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hastointerface-68104
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hastointerface-68104
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hasinterfacetyperep-84221
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hastointerface-68104
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hastointerface-68104
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hascreate-45738
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hasfrominterface-43863
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hastointerface-68104
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hastointerface-68104
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hasinterfacetyperep-84221
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hastointerface-68104
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hastointerface-68104
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hascreate-45738
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hasfrominterface-43863
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hastointerface-68104
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hastointerface-68104
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hasinterfacetyperep-84221
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hastointerface-68104
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hastointerface-68104
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-update-68072
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282

Daml SDK Documentation, 2.7.3

Canton faithfully implements the authorization and privacy requirements set out by Daml for its

transactions.

Fig. 9: Parties are hosted on participant nodes. Applications connect as parties to their participant

node using the Ledger API. The participant node runs the Daml interpreter for the locally installed

Daml smart contract code and stores the smart contracts in the private contract store (PCS). The par-

ticipants connect to domains and synchronise their state with other participants by exchanging

Canton protocol messages with other participants leveraging the domain services. The use of the

Canton protocol creates a virtual global ledger.

Canton iswritten in Scala and runs as a Java process against a database (currently H2 and Postgres).

Canton is easy to set up, easy to develop on and is easy to operate safe and securely.

1.23.2 Overview and Assumptions

In this section, we provide an overview of the Canton architecture, illustrate the high-level flows,

entities (defining trust domains) and components. We then state the trust assumptions we make

on the different entities, and the assumptions on communication links.

Canton is designed to fulfill its high-level requirements and we assume that the reader is familiar with

the Daml language and the hierarchical transactions of the DA ledger model.

898 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.23.2.1 Canton 101

A Basic Example

We will use a simple delivery-versus-payment (DvP) example to provide some background on how

Canton works. Alice and Bob want to exchange an IOU given to Alice by a bank for some shares that

Bob owns. We have four parties: Alice (aka A), Bob (aka B), a Bank and a share registry SR. There are

also three types of contracts:

1. an Iou contract, always with Bank as the backer

2. a Share contract, always with SR as the registry

3. a DvP contract between Alice and Bob

Assume that Alice has a “swap” choice on a DvP contract instance that exchanges an Iou she owns

for a Share that Bob has. We assume that the Iou and Share contract instances have already been al-

located in the DvP. Alice wishes to commit a transaction executing this swap choice; the transaction

has the following structure:

Transaction Processing in Canton

In Canton, committing the example transaction consists of two steps:

1. Alice’s participant prepares a confirmation request for the transaction. The request provides

different views on the transaction; participants see only the subtransactions exercising, fetch-

ing or creating contracts onwhich their parties are stakeholders (more precisely, the subtrans-

actionswhere theseparties are informees). The views for theDvP, and their recipients, are shown

in the figure below. Alice’s participant submits the request to a sequencer, who orders all con-

firmation requests on a Canton domain; whenever two participants see the same two requests,

they will see them according to this sequencer order. The sequencer has only two functions:

ordering messages and delivering them to their stated recipients. The message contents are

encrypted and not visible to the sequencer.

2. The recipients then check the validity of the views that they receive. The validity checks cover

three aspects:

1. validity as defined in the DA ledger model: consistency, (mainly: no double spends), confor-

mance (the view is a result of a valid Daml interpretation) and authorization (guaranteeing

1.23. Intro 899

Daml SDK Documentation, 2.7.3

Fig. 10: Views in the transaction; each box represents a transaction part visible to the participants

in its bottom-right corner. A participant might receive several views, some of which can be nested.

that the actors and submitters are allowed to perform the view’s action)

2. authenticity (guaranteeing that the actors and submitters are who they claim to be).

3. transparency (guaranteeing that participants who should be notified get notified).

Conformance, authorization, authenticity and transparency problems only arise due to sub-

mitter malice. Consistency problems can arise with no malice. For example, the Iou that is

to be transferred to Bob might simply have already been spent (assuming that we do not use

the “locking” technique in Daml). Based on the check’s result, a subset of recipients, called

confirmers then prepares a (positive or negative) confirmation response for each view sep-

arately. A confirmation policy associated with the request specifies which participants are

confirmers, given the transaction’s informees.

The confirmers send their responses to amediator, another special entity that aggregates the

responses into a single decision for the entire confirmation request. The mediator serves to

hide the participants’ identities from each other (so that Bank and SR do not need to know

that they are part of the same transaction). Like the sequencer, the mediator does not learn

the transactions’ contents. Instead, Alice’s participant, in addition to sending the request, also

simultaneously notifies the mediator about the informees of each view. The mediator receives

a version of the transaction where only the informees of a view are visible and the contents

blinded, as conceptually visualized in the diagram below.

From this, themediator deriveswhich (positive) confirmation responses are necessary in order

to decide the confirmation request as approved.

Requests submitted by malicious participants can contain bogus views. As participants can

see only parts of requests (due to privacy reasons), upon receiving an approval for a request,

each participant locally filters out the bogus views that are visible to it, and accepts all remain-

ing valid views of an approved confirmation request. Under the confirmation policy’s trust as-

sumptions, the protocol ensures that the local decisions of honest participants match for all

views that they jointly see. The protocol thus provides a virtual shared ledger between the par-

ticipants, whose transactions consist of such valid views. Once approved, the accepted views

900 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Fig. 11: In the informee tree for the mediator, all transaction contents are blinded.

are final, i.e., they will never be removed from the participants’ records or the virtual ledger.

We can represent the confirmation workflow described above by the following message sequence

diagram, assuming that each party in the example runs their own participant node.

The sequencer and the mediator, together with a so-called topology manager (described shortly),

constitute a Canton domain. All messages within the domain are exchanged over the sequencer,

which ensures a total order between all messages exchanged within a domain.

The total ordering ensures that participants see all confirmation requests and responses in the same

order. The Canton protocol additionally ensures that all non-Byzantine (i.e. notmalicious or compro-

mised) participants see their shared views (such as the exercise of the Iou transfer, shared between

the participants of Bank and A) in the same order, even with Byzantine submitters. This has the

following implications:

1. The correct confirmation response for each view is always uniquely determined, because Daml

is deterministic. However, for performance reasons, we allow occasional incorrect negative re-

sponses, when participants start behaving in a Byzantine fashion or under contention. The

system provides the honest participants with evidence of either the correctness of their re-

sponses or the reason for the incorrect rejections.

2. The global ordering creates a (virtual)global timewithin adomain,measured at the sequencer;

participants learn that time has progressed whenever they receive a message from the se-

quencer. This global time is used for detecting and resolving conflicts and determining when

timeouts occur. Conceptually, we can therefore speak of a step happening at several partici-

pants simultaneously with respect to this global time, although each participant performs this

step at a different physical time. For example, in the above message sequence diagram, Alice,

Bob, the Bank, and the share registry’s participants receive the confirmation request at differ-

ent physical times, but conceptually this happens at the timestamp ts1 of the global time, and

similarly for the result message at timestamp ts6.

1.23. Intro 901

Daml SDK Documentation, 2.7.3

902 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

In this document, we focus on the basic version of Canton, with just a single domain. Canton also

supports connecting a participant tomultiple domains and transferring contracts betweendomains

(see composability).

As mentioned in the introduction, the main challenges for Canton are reconciling integrity and pri-

vacy concernswhile ensuring progresswith the confirmation-based design, given that partiesmight

be overloaded, offline, or simply refusing to respond. The main ways we cope with this problem are

as follows:

• We use timeouts: if a transaction’s validity cannot be determined after a timeout (which is a

domain-wide constant), the transaction is rejected.

• If a confirmation request times out, the system informs the participant submitting the request

on which participants have failed to send a confirmation response. This allows the submitting

participant to take out of band actions against misbehaviour.

• Flexible confirmation policies: To offer a trade-off between trust, integrity, and liveness, we al-

low Canton domains to choose their confirmation policies. Confirmation policies specify which

participants need to confirm which views. This enables the mediator to determine the suf-

ficient conditions to declare a request approved. Of particular interest is the VIP confirmation

policy, applicable to transactions which involve a trusted (VIP) party as an informee on every

action. An example of a VIP party is a market operator. The policy ensures ledger validity as-

suming the VIP party’s participants behave correctly; incorrect behavior can still be detected

and proven in this case, but the fallout must be handled outside of the system. Another impor-

tant policy is the signatory confirmation policy, in which all signatories and actors are required

to confirm. This requires a lower level of trust compared to the VIP confirmation policy sacrific-

ing liveness when participants hosting signatories or actors are unresponsive. Another policy

(being deprecated) is the full confirmation policy, in which all informees are required to confirm.

This requires the lowest level of trust, but sacrifices liveness when some of the involved par-

ticipants are unresponsive.

• In the future, we will support attestators, which can be thought of as on-demand VIP partici-

pants. Instead of constructing Daml models so that VIP parties are informees on every action,

attestators are only used on-demand. The participants who wish to have the transaction com-

mitted must disclose sufficient amount of history to provide the attestator with unequivocal

evidence of a subtransaction’s validity. The attestator’s statement then substitutes the con-

firmations of the unresponsive participants.

The following image shows the state transition diagram of a confirmation request; all states except

for Submitted are final.

1.23. Intro 903

Daml SDK Documentation, 2.7.3

A confirmation request can be rejected for several reasons:

Multiple domains The transaction tried to use contracts created on different Canton domains.

Multi-domain transactions are currently not supported.

Timeout Insufficient confirmations have been received within the timeout window to declare the

transaction as accepted according to the confirmation policy. This happens due to one of the

involved participants being unresponsive. The request then times out and is aborted. In the

future, we will add a feature where aborts can be triggered by the submitting party, or anyone

else who controls a contract in the submitted transaction. The aborts still have to happen

after the timeout, but are not mandatory. Additionally, attestators can be used to supplant the

confirmations from the unresponsive participants.

Inconsistency It conflicts with an earlier pending request, i.e., a request that has neither been ap-

proved nor rejected yet. Canton currently implements a simple pessimistic conflict resolution

policy, which always fails the later request, even if the earlier request itself gets rejected at some

later point.

Conflicting responses Conflicting responses were received. In Canton, this only happens when one

of the participants is Byzantine.

Conflict Detection

Participants detect conflicts between concurrent transactions by locking the contracts that a trans-

action consumes. The participant locks a contract when it receives the confirmation request of a

transaction that archives the contract. The lock indicates that the contract is possibly archived.

When the mediator’s decision arrives later, the contract is unlocked again - and archived if the

transaction was approved. When a transaction wants to use a possibly archived contract, then this

transaction will be rejected in the current version of Canton. This design decision is based on the op-

timistic assumption that transactions are typically accepted; the later conflicting transaction can

therefore be pessimistically rejected.

904 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

The next three diagrams illustrate locking and pessimistic rejections using the counteroffer example

from the DA ledger model. There are two transactions and three parties and every party runs their

own participant node.

• The painter P accepts A‘s Counteroffer in transaction tx1. This transaction consumes two con-

tracts:

– The Iou between A and the Bank, referred to as c1.

– The Counteroffer with stakeholders A and P, referred to as c2.

The created contracts (the new Iou and the PaintAgreement) are irrelevant for this example.

• Suppose that the Counteroffer contains an additional consuming choice controlled by A, e.g.,

Alice can retract her Counteroffer. In transaction tx2, A exercises this choice to consume the

Counteroffer c2.

Since the messages from the sequencer synchronize all participants on the (virtual) global time, we

may think of all participants performing the locking, unlocking, and archiving simultaneously.

In the first diagram, the sequencer sequences tx1 before tx2. Consequently, A and the Bank lock c1

when they receive the confirmation request, and so do A and P for c2. So when tx2 later arrives at A

and P, the contract c2 is locked. Thus, A and P respond with a rejection and themediator follows suit.

In contrast, all stakeholders approve tx1; when the mediator’s approval arrives at the participants,

each participant archives the appropriate contracts: A archives c1 and c2, the Bank archives c1, and P

archives c2.

Fig. 12: When two transactions conflictwhile they are in flight, the later transaction is always rejected.

The second diagram shows the scenario where A‘s retraction is sequenced before P‘s acceptance

of the Counteroffer. So A and P lock c2 when they receive the confirmation request for tx2 from the

sequencer and later approve it. For tx1, A and P notice that c2 is possibly archived and therefore reject

tx1, whereas everything looks fine for the Bank. Consequently, the Bank and, for consistency, A lock c1

until the mediator sends the rejection for tx1.

Note: In reality, participants approve each view individually rather than the transaction as a whole.

So A sends two responses for tx1: An approval for c1‘s archival and a rejection for c2‘s archival. The

diagrams omit this technicality.

The third diagram shows how locking and pessimistic rejections can lead to incorrect negative re-

sponses. Now, the painter’s acceptance of tx1 is sequenced before Alice’s retraction like in the first

diagram, but the Iou between A and the Bank has already been archived earlier. The painter receives

only the view for c2, since P is not a stakeholder of the Iou c1. Since everything looks fine, P locks c2

when the confirmation request for tx1 arrives. For consistency, A does the same, although A already

knows that the transaction will fail because c1 is archived. Hence, both P and A reject tx2 because it

1.23. Intro 905

Daml SDK Documentation, 2.7.3

Fig. 13: Transaction tx2 is now submitted before tx1. The consumed contract c1 remains locked by the

rejected transaction until the mediator sends the result message.

tries to consume the locked contract c2. Later, when tx1‘s rejection arrives, c2 becomes active again,

but the transaction tx2 remains rejected.

Fig. 14: Even if the earlier transaction tx1 is rejected later, the later conflicting transaction tx2 remains

rejected and the contract remains locked until the result message.

Time in Canton

The connection between time in Daml transactions and the time defined in Canton is explained in

the respective ledger model section on time.

The respective section introduces ledger time and record time. The ledger time is the time the partic-

ipant (or the application) chooses when computing the transaction prior to submission. We need

the participant to choose this time as the transaction is pre-computed by the submitting partici-

pant and this transaction depends on the chosen time. The record time is assigned by the sequencer

when registering the confirmation request (initial submission of the transaction).

There is only a bounded relationship between these times, ensuring that the ledger time must be in

a pre-defined bound around the record time. The tolerance (max_skew) is defined on the domain as

a domain parameter, known to all participants

canton.domains.mydomain.parameters.ledger­time­record­time­tolerance

The bounds are symmetric in Canton, so min_skew equals max_skew, equal to above parameter.

Note: Canton does not support querying the time model parameters via the ledger API, as the time

model is a per domain property and this cannot be properly exposed on the respective ledger API

906 Chapter 1. Canton References

https://docs.daml.com/concepts/time.html#time

Daml SDK Documentation, 2.7.3

endpoint.

Checking that the record time is within the required bounds is done by the validating participants and

is visible to everyone. The sequencer does not know what was timestamped and therefore doesn’t

perform this validation.

Therefore, a submitting participant cannot control the output of a transaction depending on record

time, as the submitting participant does not know exactly the point in timewhen the transaction will

be timestamped by the sequencer. But the participant can guarantee that a transaction will either

be registered before a certain record time, or the transaction will fail.

Subtransaction privacy

Canton splits a Daml transaction into views, as described above under transaction processing. The

submitting participant sends these views via the domain’s sequencer to all involved participants

on a need-to-know basis. This section explains how the views are encrypted, distributed, and stored

so that only the intended recipients learn the contents of the transaction.

In the above DvP example, Canton creates a view for each node, as indicated by the boxes with the dif-

ferent colors. Canton captures this hierarchical view structure in aMerkle-like tree. For example, the

view for exercising the “xfer” choice conceptually looks as follows, where the hashes 0x... commit

to the contents of the hidden nodes and subtrees without revealing the content. In particular, the

second leg’s structure, contents, and recipients are completely hidden in the hash 0x1210....

Fig. 15: Idealized Merkle tree for the view that exercises the “xfer” choice on Alice’s Iou.

The subview that creates the transferred Iou has a similar structure, except that the hash 0x738f.

.. is now unblinded into the view content and the parent view’s Exercise action is represented by

its hash 0x8912...

1.23. Intro 907

Daml SDK Documentation, 2.7.3

Fig. 16: Idealized Merkle tree for the view that creates Bob’s new Iou.

Using the hashes, every recipient can correctly reconstruct their projection of the transaction from

the views they receive.

As illustrated in the confirmation workflow, the submitting participant sends the views to the partici-

pants hosting an informee or witness of a view’s actions. This ensures subtransaction privacy as a

participant receives only the data for the witnesses it hosts, not all of the transaction. Each Canton

participant persists all messages it receives from the sequencer, including the views.

Moreover, Canton hides the transaction contents from the domain too. To that end, the submitting

participant encrypts the views using the following hybrid encryption scheme:

1. It generates cryptographic randomness for the transaction, the transaction seed. From the

transaction seed, a view seed is derived for each view following the hierarchical view structure,

using a pseudo-random function. In the DvP example, a view seed seed0 for the action at the

top is derived from the transaction seed. The seed seed1 for the view that exercises the “xfer”

choice is derived from the parent view’s seed seed0, and similarly the seed seed2 for the view

that creates Bob’s IOU is derived from seed1.

2. For each view, it derives a symmetric encryption key from the view seed using a key deriva-

tion function. For example, the symmetric key for the view that creates Bob’s IOU is derived

from seed2. Since the transaction seed is fresh for every submission and all derivations are

cryptographically secure, each such symmetric key is used only once.

3. It encrypts the serialization of each view’s Merkle tree with the symmetric key derived for this

view. The view seed itself is encrypted with the public key of each participant hosting an in-

formee of the view. The encrypted Merkle tree and the encryptions of the view seed form the

data that is sent via the sequencer to the recipients.

Note: The view seed is encrypted only with the public key of the participants that host an

informee, while the encrypted Merkle tree itself is also sent to participants hosting only wit-

908 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

nesses. The latter participants can nevertheless decrypt the Merkle tree because they receive

the view seed of a parent view and can derive the symmetric key of the witnessed view using

the derivation functions.

Even though the sequencer persists the encrypted views for a limited period, the domain cannot ac-

cess the symmetric keysunless it knows the secret key of oneof the informeeparticipants. Therefore,

the transaction contents remain confidential with respect to the domain.

1.23.2.2 Domain Entities

A Canton domain consists of three entities:

• the sequencer

• the mediator

• and the topology manager, providing a PKI infrastructure, and party to participant mappings.

We call these the domain entities. The high-level communication channels between the domain

entities are depicted below.

In general, every domain entity can run in a separate trust domain (i.e., can be operated by an inde-

pendent organization). In practice, we assume that all domain entities are run by a single organiza-

tion, and that the domain entities belong to a single trust domain.

Furthermore, each participant node runs in its own trust domain. Additionally, the participant may

outsource a part of its identitymanagement infrastructure, for example to a certificate authority. We

assume that the participant trusts this infrastructure, that is, that the participant and its identity

management belong to the same trust domain. Some participant nodes can be designated as VIP

nodes, meaning that they are operated by trusted parties. Such nodes are important for the VIP

confirmation policy.

The generic termmember will refer to either a domain entity or a participant node.

1.23. Intro 909

Daml SDK Documentation, 2.7.3

Sequencer

We now list the high-level requirements on the sequencer.

Ordering: The sequencer provides a global total-order multicast where messages are uniquely

time-stamped and the global ordering is derived from the timestamps. Instead of delivering a sin-

gle message, the sequencer provides message batching, that is, a list of individual messages are

submitted. All thesemessages get the timestamp of the batch they are contained in. Eachmessage

may have a different set of recipients; the messages in each recipient’s batch are in the same order

as in the sent batch.

Evidence: The sequencer provides the recipients with a cryptographic proof of authenticity for every

message batch it delivers, including evidence on the order of batches.

Sender and Recipient Privacy: The recipients do not learn the identity of the submitting participant.

A recipient only learns the identities of recipients on a particular message from a batch if it is itself

a recipient of that message.

Mediator

The mediator’s purpose is to compute the final result for a confirmation request and distribute it

to the participants, ensuring that transactions are atomically committed across participants, while

preserving the participants’ privacy, by not revealing their identities to each other. At a high level,

the mediator:

• collects confirmation responses from participants,

• validates them according to the Canton protocol,

• computes the conclusions (approve / reject / timed out) according to the confirmation policy,

and

• sends the result message.

Additionally, for auditability, the mediator persists every received message (containing informee

information or confirmation responses) in long term storage and allows an auditor to retrieve mes-

sages from this storage.

910 Chapter 1. Canton References

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.3282&rep=rep1&type=pdf

Daml SDK Documentation, 2.7.3

Topology Manager

The topology manager allows participants to join and leave the Canton domain, and to register, re-

voke and rotate public keys. It knows the parties hosted by a given participant. It defines the trust

level of each participant. The trust level is either ordinary or VIP. A VIP trust level indicates that the

participant is trusted to act honestly. A canonical example is a participant run by a trusted market

operator.

1.23.2.3 Participant-internal Canton Components

Canton uses the Daml-on-X architecture, to promote code reuse. In this architecture, the participant

node is broken down into a set of services, all but one of which are reused among ledger implementa-

tions. This ledger-specific service is called the Ledger Synchronization Service (LSS), which Canton

implements using its protocol. This implementation is further broken down into multiple compo-

nents. We now describe the interface and properties of each component. The following figure shows

the interaction between the different components and the relation to the existing Ledger API’s com-

mand and event services.

We next explain each component in turn.

1.23. Intro 911

Daml SDK Documentation, 2.7.3

Transactions

This is the central component of LSS within Canton. We describe the main tasks below.

Submission and Segregation: A Daml transaction has a tree-like structure. The ledger privacy model

defines which parts of a transaction are visible to which party, and thus participant. Each recipi-

ent obtains only the subtransaction (projection) it is entitled to see; other parts of the transaction

are never shared with the participant, not even in an encrypted form. Furthermore, depending on the

confirmation policy, some informees aremarked as confirmers. In addition to distributing the trans-

action projections amongparticipants, the submitter informs themediator about the informees and

confirmers of the transaction.

Validity and Confirmations Responses: Each informee of a requested transaction performs local

checks on the validity of its visible subtransaction. The informees check that their provided projec-

tion conforms to the Daml semantics, and the ledger authorization model. Additionally, they check

whether the request conflicts with an earlier request that is accepted or is not yet decided. Based on

this, they send their responses (one for each of their views), together with the informee information

for their projection, to the mediator. When the other participants or domain entities do not behave

according to the protocol (for example, not sending timely confirmation responses, or sending mal-

formed requests), the transaction processing component raises alarms.

Confirmation Result Processing. Based on the result message from the mediator, the transaction

component commits or aborts the requested transaction.

Sequencer Client

The sequencer client handles the connection to the sequencer, ensures in-order delivery and stores

the cryptographic proofs of authenticity for the messages from the sequencer.

Identity Client

The identity client handles the messages coming from the domain topology manager, and verifies

the validity of the received identity information changes (for example, the validity of public key del-

egations).

1.23.2.4 System Model And Trust Assumptions

The different sets of rules that Canton domains specify affect the security and liveness properties in

different ways. In this section, we summarize the systemmodel that we assume, as well as the trust

assumptions. Some trust assumptions are dependent on the domain rules, which we indicate in

the text. As specified in the high-level requirements, the system provides guarantees only to honestly

represented parties. Hence, every party must fully trust its participant (but no other participants)

to execute the protocol correctly. In particular, signatures by participant nodes may be deemed as

evidence of the party’s action in the transaction protocol.

912 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

System Model

We assume that pairwise communication is possible between any two system members. The links

connecting the participant nodes to the sequencers and the referees are assumed to bemostly timely:

there exists a known bound 𝛅 on the delay such that the overwhelming majority of messages ex-

changed between the participant and the sequencer are delivered within 𝛅. Domain entities are as-

sumed to have clocks that are closely synchronized (up to some known bound) for an overwhelming

majority of time. Finally, we assume that the participants know a probability distribution over the

message latencies within the system.

General Trust Assumptions

These assumptions are relevant for all system properties, except for privacy.

• The sequencer is trusted to correctly provide a global total-order multicast service, with evi-

dence and ensuring the sender and recipient privacy.

• The mediator is trusted to produce and distribute all results correctly.

• The topologymanagers of honest participants (including the underlying public key infrastruc-

ture, if any) are operating correctly.

When a transaction is submitted with the VIP confirmation policy (in which case every action in the

transaction must have at least one VIP informee), there exist an additional integrity assumption:

• All VIP stakeholdersmust be hosted by honest participants, i.e., participants that run the trans-

action protocol correctly.

We note that the assumptions can be weakened by replicating the trusted entities among multiple

organization with a Byzantine fault tolerant replication protocol, if the assumptions are deemed too

strong. Furthermore, webelieve thatwith someextensions to theprotocolwe canmake the violations

of one of the above assumptions detectable by at least one participant inmost cases, and often also

provable to other participants or external entities. Thiswould require direct communication between

the participants, which we leave as future work.

Assumptions Relevant for Privacy

The following common assumptions are relevant for privacy:

• The private keys of honest participants are not compromised, and all certificate authorities

that the honest participants use are trusted.

• The sequencer is privy to:

1. the submitters and recipients of all messages

2. the view structure of a transaction in a confirmation request, including informees and

confirming parties

3. the confirmation responses (approve / reject / ill-formed) of confirmers.

4. encrypted transaction views

5. timestamps of all messages

• The sequencer is trusted with not storing messages for longer than necessary for operational

procedures (e.g., delivering messages to offline parties or for crash recovery).

• The mediator is privy to:

1. the view structure of a transaction including informees and confirming parties, and the

submitting party

1.23. Intro 913

Daml SDK Documentation, 2.7.3

2. the confirmation responses (approve / reject / ill-formed) of confirmers

3. timestamps of messages

• The informees of a part of a transaction are trusted with not violating the privacy of the other

stakeholders in that same part. In particular, the submitter is trusted with choosing strong

randomness for transaction and contract IDs. Note that this assumption is not relevant for

integrity, as Canton ensures the uniqueness of these IDs.

When a transaction is submitted with the VIP confirmation policy, every action in the transaction

must have at least one VIP informee. Thus, the VIP informee is automatically privy to the entire con-

tents of the transaction, according to the ledger privacy model.

Assumptions Relevant for Liveness

In addition to the general trust assumptions, the following additional assumptions are relevant for

liveness and bounded liveness functional requirements on the system: bounded decision time, and

no unnecessary rejections:

• All the domain entities in Canton (the sequencer, the mediator, and the topology manager) are

highly available.

• The sequencer is trusted to deliver the messages timely and fairly (as measured by the proba-

bility distribution over the latencies).

• The domain topology manager forwards all identity updates correctly.

• Participants hosting confirming parties according to the confirmation policy are assumed to

be highly available and responding correctly. For example in the VIP confirmation policy, only

the VIP participant needs to be available whereas in the signatory policy, liveness depends on

the availability of all participants that host signatories and actors.

1.23.3 Canton Demo

The Canton demo is used to demonstrate the unique Canton capabilities:

• Application Composability - Add new workflows at any time to a running system

• Network Interoperability - Create workflows spanning across domains

• Privacy - Canton uses data minimization and only shares data on a need to know basis.

• Regulatory compliance - Canton can be used to even integrate personal sensitive information

directly in workflows without fear of failing to be GDPR compliant.

The demo is a thin application running on top of a setup with 5 participant nodes and 2 domains.

You can run it by downloading the release package from github. Then, unpack and start it, using the

following commands (or the zip equivalent)

tar zxvf canton­open­source­x.y.z.tar.gz

cd canton­open­source­x.y.z

bash start­demo.command

You need to replace x.y.z with the appropriate version number of the release you’ve downloaded.

On Windows, you can just double-click the start­demo­win.cmd script in Windows explorer.

Note: The demo requires JavaFX. Please use a Java runtime of version 11 or greater.

If you don’t want to run it yourself, you can also watch our recording.

914 Chapter 1. Canton References

https://github.com/digital-asset/daml/releases

Daml SDK Documentation, 2.7.3

The entire code base of the demo is included in the release package as demo.

1.23.4 Getting Started

Interested in Canton? This is the right place to start! You don’t need any prerequisite knowledge,

and you will learn:

• how to install Canton and get it up and running in a simple test configuration

• the main concepts of Canton

• the main configuration options

• some simple diagnostic commands on Canton

• the basics of Canton identity management

• how to upload and execute new smart contract code

1.23.4.1 Installation

Canton is a JVM application. To run it natively you need Java 11 or higher installed on your system.

Alternatively Canton is available as a docker image (see Canton docker instructions).

Canton is platform-agnostic. For development purposes, it runs on macOS, Linux, and Windows.

Linux is the supported platform for production.

Note: Windows garbles the Canton console output unless you are running Windows 10 and you en-

able terminal colors (e.g., by running cmd.exe and then executing reg add HKCU\Console /v

VirtualTerminalLevel /t REG_DWORD /d 1).

To start, download the open source community edition latest release and extract the archive, or use

the enterprise edition if you have access to it.

The extracted archive has the following structure:

.

├── bin

├── daml

├── dars

├── demo

├── drivers (enterprise)

├── examples

├── lib

└── ...

• bin: contains the scripts for running Canton (canton under Unix-like systems and canton.

bat under Windows)

• daml: contains the source code for some sample smart contracts

• dars: contains the compiled and packaged code of the above contracts

• demo: contains everything needed to run the interactive Canton demo

• examples: contains sample configuration and script files for the Canton console

• lib: contains the Java executables (JARs) needed to run Canton

This tutorial assumes you are running a Unix-like shell.

1.23. Intro 915

https://hub.docker.com/r/digitalasset/canton-open-source
https://github.com/digital-asset/daml/releases

Daml SDK Documentation, 2.7.3

1.23.4.2 Starting Canton

While Canton supports a daemonmode for production purposes, in this tutorial we will use its con-

sole, a built-in interactive read-evaluate-print loop (REPL). The REPL gives you an out-of-the-box in-

terface to all Canton features. In addition, as it’s built using Ammonite, you also have the full power

of Scala if you need to extend it with new scripts. As such, any valid Scala expression can be typed

inside the console:

@ Seq(1,2,3).map(_ * 2)

res1: Seq[Int] = List(2, 4, 6)

Navigate your shell to the directory where you extracted Canton. Then, run

bin/canton ­­help

to see the command line options that Canton supports. Alternatively to bin/canton, you can also

start Canton directly with java ­jar lib/canton­*.jar, assuming all other jar dependencies

are in the lib folder, too.

Next, run

bin/canton ­c examples/01­simple­topology/simple­topology.conf

This starts the console using the configuration file examples/01­simple­topology/

simple­topology.conf. You will see the banner on your screen

_____ _

/ ____| | |

| | __ _ _ __ | |_ ___ _ __

| | / _` | '_ \| __/ _ \| '_ \

| |___| (_| | | | | || (_) | | | |

_______,_|_| |_|_____/|_| |_|

Welcome to Canton!

Type `help` to get started. `exit` to leave.

Type help to see the available commands in the console:

@ help

Top­level Commands

­­­­­­­­­­­­­­­­­­

exit ­ Leave the console

help ­ Help with console commands; type help("<command>") for detailed help for

↪→<command>

Generic Node References

­­­­­­­­­­­­­­­­­­­­­­­

domainManagers ­ All domain manager nodes (.all, .local, .remote)

..

You can also get help for specific Canton objects and commands:

@ help("participant1")

participant1

Manage participant 'participant1'; type 'participant1 help' or 'participant1 help(

↪→"<methodName>")' for more help (continues on next page)

916 Chapter 1. Canton References

https://ammonite.io/

Daml SDK Documentation, 2.7.3

(continued from previous page)

@ participant1.help("start")

start

Start the instance

1.23.4.3 The Example Topology

To understand the basic elements of Canton, let’s briefly look at this starting configuration. It is

written in the HOCON format as shown below. It specifies that you wish to run two participant nodes,

whose local aliases areparticipant1andparticipant2, anda single synchronizationdomain, with

the local alias mydomain. It also specifies the storage backend that each node should use (in this

tutorial we’re using in-memory storage), and the network ports for various services, which we will

describe shortly.

canton {

participants {

participant1 {

storage.type = memory

admin­api.port = 5012

ledger­api.port = 5011

}

participant2 {

storage.type = memory

admin­api.port = 5022

ledger­api.port = 5021

}

}

domains {

mydomain {

storage.type = memory

public­api.port = 5018

admin­api.port = 5019

}

}

// enable ledger_api commands for our getting started guide

features.enable­testing­commands = yes

}

To run the protocol, the participants must connect to one or more synchronization domains (do-

mains for short). To execute a transaction (a change that updates the shared contracts of several

parties), all the parties’ participant nodesmust be connected to the same domain. In the remainder

of this tutorial, you will construct a network topology that will enable the three parties Alice, Bob, and

Bank to transact with each other, as shown here:

The participant nodes provide their parties with a Ledger API as a means to access the ledger. The

parties can interact with the Ledger API manually using the console, but in practice these parties

use applications to handle the interactions and display the data in a user-friendly interface.

In addition to the Ledger API, each participant node also exposes an Admin API. The Admin API allows

the administrator (that is, you) to:

• manage the participant node’s connections to domains

• add or remove parties to be hosted at the participant node

1.23. Intro 917

https://github.com/lightbend/config/blob/master/HOCON.md
https://docs.daml.com/app-dev/ledger-api.html

Daml SDK Documentation, 2.7.3

918 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

• upload new Daml archives

• configure the operational data of the participant, such as cryptographic keys

• run diagnostic commands

The domain node exposes a Public API that is used by participant nodes to communicate with the

synchronization domain. This must be accessible from where the participant nodes are hosted.

Similar to the participant node, a domain node also exposes an Admin API for administration ser-

vices. You can use these to manage keys, set domain parameters and enable or disable participant

nodeswithin a domain, for example. The console provides access to the Admin APIs of the configured

participants and domains.

Note: Canton’s Admin APIs must not be confused with the admin package of the Ledger API. The

admin package of the Ledger API provides services for managing parties and packages on any Daml

participant. Canton’s Admin APIs allows you to administrate Canton-based nodes. Both the partici­

pant and the domain nodes expose an Admin API with partially overlapping functionality.

Furthermore, participant and domain nodes communicate with each other through the Public API.

The participants do not communicate with each other directly, but are free to connect to as many

domains as they desire.

As you can see, nothing in the configuration specifies that our participant1 and participant2

should connect to mydomain. Canton connections are not statically configured – they are added

dynamically. So first, let’s connect the participants to the domain.

1.23.4.4 Connecting The Nodes

Using the console we can run commands on each of the configured (participant or domain) nodes.

As such, we can check the health of a node using the health.status command:

@ health.status

res5: EnterpriseCantonStatus = Status for Domain 'mydomain':

Domain id:␣

↪→mydomain::1220b4e9b0f09429d18bb4f197864468b713b28d5334e7581e82e6b9f129cf5c0e15

Uptime: 7.494604s

Ports:

admin: 30103

public: 30102

Connected Participants: None

Sequencer: SequencerHealthStatus(active = true)

Components:

sequencer : Ok()

memory_storage : Ok()

domain­topology­sender : Ok()

Status for Participant 'participant1':

Participant id:␣

↪→PAR::participant1::1220e92602e979f678f3b64664f2599a03ebccdd3e914d24c3695d7e4bcfdc77734a

Uptime: 5.181514s

Ports:

ledger: 30098

admin: 30099

Connected domains: None

(continues on next page)

1.23. Intro 919

Daml SDK Documentation, 2.7.3

(continued from previous page)

Unhealthy domains: None

Active: true

Components:

memory_storage : Ok()

sync­domain : Not Initialized

sync­domain­ephemeral : Not Initialized

sequencer­client : Not Initialized

Status for Participant 'participant2':

Participant id:␣

↪→PAR::participant2::12207f6b1097871943e7f365a3f57d388d635561284143441aed3d1abda119c7b57e

Uptime: 3.406213s

Ports:

ledger: 30100

admin: 30101

Connected domains: None

Unhealthy domains: None

Active: true

Components:

memory_storage : Ok()

sync­domain : Not Initialized

sync­domain­ephemeral : Not Initialized

sequencer­client : Not Initialized

We can do this also individually on each node. As an example, to query the status of participant1:

@ participant1.health.status

res6: com.digitalasset.canton.health.admin.data.NodeStatus[com.digitalasset.

↪→canton.health.admin.data.ParticipantStatus] = Participant id:␣

↪→PAR::participant1::1220e92602e979f678f3b64664f2599a03ebccdd3e914d24c3695d7e4bcfdc77734a

Uptime: 5.349261s

Ports:

ledger: 30098

admin: 30099

Connected domains: None

Unhealthy domains: None

Active: true

Components:

memory_storage : Ok()

sync­domain : Not Initialized

sync­domain­ephemeral : Not Initialized

sequencer­client : Not Initialized

or for the domain:

@ mydomain.health.status

res7: com.digitalasset.canton.health.admin.data.NodeStatus[mydomain.Status] =␣

↪→Domain id:␣

↪→mydomain::1220b4e9b0f09429d18bb4f197864468b713b28d5334e7581e82e6b9f129cf5c0e15

Uptime: 7.854944s

Ports:

admin: 30103

public: 30102

Connected Participants: None

Sequencer: SequencerHealthStatus(active = true)

(continues on next page)

920 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

Components:

sequencer : Ok()

memory_storage : Ok()

domain­topology­sender : Ok()

Recall that the aliases mydomain, participant1 and participant2 come from the configura-

tion file. By default, Canton will start and initialize the nodes automatically. This behavior can be

overridden using the ­­manual­start command line flag or appropriate configuration settings.

For the moment, ignore the long hexadecimal strings that follow the node aliases; these have to

do with Canton’s identities, which we will explain shortly. As you see, the domain doesn’t have any

connected participants, and the participants are also not connected to any domains.

To connect the participants to the domain:

@ participant1.domains.connect_local(mydomain)

@ participant2.domains.connect_local(mydomain)

Now, check the status again:

@ health.status

res10: EnterpriseCantonStatus = Status for Domain 'mydomain':

Domain id:␣

↪→mydomain::1220b4e9b0f09429d18bb4f197864468b713b28d5334e7581e82e6b9f129cf5c0e15

Uptime: 10.87264s

Ports:

admin: 30103

public: 30102

Connected Participants:

PAR::participant1::1220e92602e9...

PAR::participant2::12207f6b1097...

Sequencer: SequencerHealthStatus(active = true)

Components:

sequencer : Ok()

memory_storage : Ok()

domain­topology­sender : Ok()

..

As you can read from the status, both participants are now connected to the domain. You can test

the connection with the following diagnostic command, inspired by the ICMP ping:

@ participant1.health.ping(participant2)

res11: Duration = 613 milliseconds

If everything is set up correctly, this will report the “roundtrip time” between the Ledger APIs of the

two participants. On the first attempt, this time will probably be several seconds, as the JVM is

warming up. This will decrease significantly on the next attempt, and decrease again after JVM’s

just-in-time compilation kicks in (by default this is after 10000 iterations).

You have just executed your first smart contract transaction over Canton. Every participant node has

an associated built-in party that can take part in smart contract interactions. The ping command

uses a particular smart contract that is by default pre-installed on every Canton participant. In fact,

1.23. Intro 921

Daml SDK Documentation, 2.7.3

the command uses the Admin API to access a pre-installed application, which then issues Ledger

API commands operating on this smart contract.

In theory, you coulduse your participant node’s built-in party for all your application’s smart contract

interactions, but it’s often useful to have more parties than participants. For example, you might

want to run a single participant node within a company, with each employee being a separate party.

For this, you need to be able to provision parties.

1.23.4.5 Canton Identities and Provisioning Parties

In Canton, the identity of each party, participant, or domain is represented by a unique identifier. A

unique identifier consists of two components: a human-readable string and the fingerprint of a

public key. When displayed in Canton the components are separated by a double colon. You can see

the identifiers of the participants and the domains by running the following in the console:

@ mydomain.id

res12: DomainId = mydomain::1220b4e9b0f0...

@ participant1.id

res13: ParticipantId = PAR::participant1::1220e92602e9...

@ participant2.id

res14: ParticipantId = PAR::participant2::12207f6b1097...

The human-readable strings in these unique identifiers are derived from the local aliases by default,

but can be set to any string of your choice. The public key, which is called a namespace, is the root

of trust for this identifier. This means that in Canton, any action taken in the name of this identity

must be either:

• signed by this namespace key, or

• signed by a key that is authorized by the namespace key to speak in the name of this identity,

either directly or indirectly (e.g., if k1 can speak in the name of k2 and k2 can speak in the name

of k3, then k1 can also speak in the name of k3).

In Canton, it’s possible to have several unique identifiers that share the same namespace - you’ll

see examples of that shortly. However, if you look at the identities resulting from your last console

commands, you will see that they belong to different namespaces. By default, each Canton node

generates a fresh asymmetric key pair (the secret and public keys) for its own namespace when

first started. The key is then stored in the storage, and reused later in case the storage is persistent

(recall that simple­topology.conf uses memory storage, which is not persistent).

1.23.4.6 Creating Parties

Youwill next create twoparties, Alice andBob. Alicewill be hosted atparticipant1, and her identity

will use the namespace of participant1. Similarly, Bob will use participant2. Canton provides

a handy macro for this:

@ val alice = participant1.parties.enable("Alice")

alice : PartyId = Alice::1220e92602e9...

@ val bob = participant2.parties.enable("Bob")

bob : PartyId = Bob::12207f6b1097...

922 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

This creates the new parties in the participants’ respective namespaces. It also notifies the domain

of the new parties and allows the participants to submit commands on behalf of those parties. The

domain allows this since, e.g., Alice’s unique identifier uses the same namespace as participant1

and participant1 holds the secret key of this namespace. You can check that the parties are now

known to mydomain by running the following:

@ mydomain.parties.list("Alice")

res17: Seq[ListPartiesResult] = Vector(

ListPartiesResult(

party = Alice::1220e92602e9...,

participants = Vector(

ParticipantDomains(

participant = PAR::participant1::1220e92602e9...,

domains = Vector(

DomainPermission(domain = mydomain::1220b4e9b0f0..., permission =␣

↪→Submission)

)

)

)

)

)

and the same for Bob:

@ mydomain.parties.list("Bob")

res18: Seq[ListPartiesResult] = Vector(

ListPartiesResult(

party = Bob::12207f6b1097...,

participants = Vector(

ParticipantDomains(

participant = PAR::participant2::12207f6b1097...,

domains = Vector(

DomainPermission(domain = mydomain::1220b4e9b0f0..., permission =␣

↪→Submission)

)

)

)

)

)

1.23.4.7 Extracting Identifiers

Canton identifiers can be long strings. They are normally truncated for convenience. However, in

some cases we do have to extract these identifiers so they can be shared through other channels. As

an example, if you have two participants that run in completely different locations, without a shared

console, then you can’t ping as we did before:

@ participant1.health.ping(participant2)

..

Instead, extract the participant id of one node:

@ val extractedId = participant2.id.toProtoPrimitive

extractedId : String =

↪→"PAR::participant2::12207f6b1097871943e7f365a3f57d388d635561284143441aed3d1abda119c7b57e

↪→" (continues on next page)

1.23. Intro 923

Daml SDK Documentation, 2.7.3

(continued from previous page)

This id can then be shared with the other participant, who in turn can parse the id back into an

appropriate object:

@ val p2Id = ParticipantId.tryFromProtoPrimitive(extractedId)

p2Id : ParticipantId = PAR::participant2::12207f6b1097...

And subsequently, this id can be used to ping as well:

@ participant1.health.ping(p2Id)

res22: Duration = 576 milliseconds

This also works for party identifiers:

@ val aliceAsStr = alice.toProtoPrimitive

aliceAsStr : String =

↪→"Alice::1220e92602e979f678f3b64664f2599a03ebccdd3e914d24c3695d7e4bcfdc77734a"

@ val aliceParsed = PartyId.tryFromProtoPrimitive(aliceAsStr)

aliceParsed : PartyId = Alice::1220e92602e9...

Generally, a Canton identity boils down to a UniqueIdentifier and the context in which this iden-

tifier is used. This allows you to directly access the identifier serialization:

@ val p2UidString = participant2.id.uid.toProtoPrimitive

p2UidString : String =

↪→"participant2::12207f6b1097871943e7f365a3f57d388d635561284143441aed3d1abda119c7b57e

↪→"

@ val p2FromUid = ParticipantId(UniqueIdentifier.

↪→tryFromProtoPrimitive(p2UidString))

p2FromUid : ParticipantId = PAR::participant2::12207f6b1097...

1.23.4.8 Provisioning Smart Contract Code

To create a contract between Alice and Bob, you must first provision the contract’s code to both of

their hosting participants. Canton supports smart contracts written in Daml. A Daml contract’s

code is specified using a Daml contract template; an actual contract is then a template instance. Daml

templates are packaged into Daml archives, or DARs for short. For this tutorial, use the pre-packaged

dars/CantonExamples.dar file. To provision it to both participant1 and participant2, you

can use the participants.all bulk operator:

@ participants.all.dars.upload("dars/CantonExamples.dar")

res27: Map[com.digitalasset.canton.console.ParticipantReference, String] = Map(

Participant 'participant1' ­>

↪→"1220c783022e36adf132a905711d40850477d4b817e39f1b44d62af0f4a7a3c05476",

Participant 'participant2' ­>

↪→"1220c783022e36adf132a905711d40850477d4b817e39f1b44d62af0f4a7a3c05476"

)

The bulk operator allows you to run certain commands on a series of nodes. Canton supports the

bulk operators on the generic nodes:

924 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

@ nodes.local

res28: Seq[com.digitalasset.canton.console.LocalInstanceReferenceCommon] =␣

↪→ArraySeq(Participant 'participant1', Participant 'participant2', Domain

↪→'mydomain')

or on the specific node type:

@ participants.all

res29: Seq[com.digitalasset.canton.console.ParticipantReference] =␣

↪→List(Participant 'participant1', Participant 'participant2')

Allowed suffixes are .local, .all or .remote, where the remote refers to remote nodes, which we

won’t use here.

To validate that the DAR has been uploaded, run:

@ participant1.dars.list()

res30: Seq[com.digitalasset.canton.participant.admin.v0.DarDescription] = Vector(

DarDescription(

hash = "1220c783022e36adf132a905711d40850477d4b817e39f1b44d62af0f4a7a3c05476",

name = "CantonExamples"

),

DarDescription(

hash = "122012a6f2b7c0b666e7541ce6f5d4273ab8d00da671b4d3bbb9bebb6a5120ec02c5",

name = "AdminWorkflowsWithVacuuming"

)

)

and on the second participant, run:

@ participant2.dars.list()

res31: Seq[com.digitalasset.canton.participant.admin.v0.DarDescription] = Vector(

DarDescription(

hash = "1220c783022e36adf132a905711d40850477d4b817e39f1b44d62af0f4a7a3c05476",

name = "CantonExamples"

),

DarDescription(

hash = "122012a6f2b7c0b666e7541ce6f5d4273ab8d00da671b4d3bbb9bebb6a5120ec02c5",

name = "AdminWorkflowsWithVacuuming"

)

)

One important observation is that you cannot list the uploaded DARs on the domain mydomain. You

will simply get an error if you run mydomain.dars.list(). This is due the fact that the domain

does not know anything about Daml or smart contracts. All the contract code is only executed by the

involved participants on a need to know basis and needs to be explicitly enabled by them.

Now you are ready to actually start running smart contracts using Canton.

1.23. Intro 925

Daml SDK Documentation, 2.7.3

1.23.4.9 Executing Smart Contracts

Let’s start by looking at some smart contract code. In our example, we’ll have three parties, Alice, Bob

and the Bank. In the scenario, Alice and Bob will agree that Bob has to paint her house. In exchange,

Bob will get a digital bank note (I-Owe-You, IOU) from Alice, issued by a bank.

First, we need to add the Bank as a party:

@ val bank = participant2.parties.enable("Bank", waitForDomain = DomainChoice.All)

bank : PartyId = Bank::12207f6b1097...

You might have noticed that we’ve added a waitForDomain argument here. This is necessary to

force some synchronisation between the nodes to ensure that the new party is known within the

distributed system before it is used.

Note: Canton alleviatesmost synchronization issues when interacting with Daml contracts. Never-

theless, Canton is a concurrent, distributed system. All operations happen asynchronously. Creating

the Bank party is an operation local to participant2, and mydomain becomes aware of the party

with a delay (see Topology Transactions for more detail). Processing and network delays also exist for

all other operations that affect multiple nodes, though everyone sees the operations on the domain

in the same order. When you execute commands interactively, the delays are usually too small to

notice. However, if you’re programming Canton scripts or applications that talk to multiple nodes,

youmight need some form of manual synchronization. Most Canton console commands have some

form of synchronisation to simplify your life and sometimes, using utils.retry_until_true(.

..) is a handy solution.

The corresponding Daml contracts that we are going to use for this example are:

module Iou where

import Daml.Script

data Amount = Amount {value: Decimal; currency: Text} deriving (Eq, Ord, Show)

amountAsText (amount : Amount) : Text = show amount.value <> amount.currency

template Iou

with

payer: Party

owner: Party

amount: Amount

viewers: [Party]

where

ensure (amount.value >= 0.0)

signatory payer

observer owner

observer viewers

choice Call : ContractId GetCash

controller owner

do

create GetCash with payer; owner; amount

(continues on next page)

926 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

choice Transfer : ContractId Iou

with

newOwner: Party

controller owner

do

create this with owner = newOwner; viewers = []

choice Share : ContractId Iou

with

viewer : Party

controller owner

do

create this with viewers = (viewer :: viewers)

module Paint where

import Daml.Script

import Iou

template PaintHouse

with

painter: Party

houseOwner: Party

where

signatory painter, houseOwner

agreement

show painter <> " will paint the house of " <> show houseOwner

template OfferToPaintHouseByPainter

with

houseOwner: Party

painter: Party

bank: Party

amount: Amount

where

signatory painter

observer houseOwner

choice AcceptByOwner : ContractId Iou

with

iouId : ContractId Iou

controller houseOwner

do

iouId2 <­ exercise iouId Transfer with newOwner = painter

paint <­ create $ PaintHouse with painter; houseOwner

return iouId2

Wewon’t dive into the details of Daml, as this is explained elsewhere. But one key observation is that

the contracts themselves are passive. The contract instances represent the ledger and only encode

the rules according to which the ledger state can be changed. Any change requires you to trigger

some Daml contract execution by sending the appropriate commands over the Ledger API.

The Canton console gives you interactive access to this API, together with some utilities that can be

useful for experimentation. The Ledger API uses gRPC.

1.23. Intro 927

https://docs.daml.com/daml/intro/0_Intro.html
http://grpc.io

Daml SDK Documentation, 2.7.3

In theory, we would need to compile the Daml code into a DAR and then upload it to the participant

nodes. We actually did this already by uploading the CantonExamples.dar, which includes the

contracts. Now we can create our first contract using the template Iou.Iou. The name of the tem-

plate is not enough to uniquely identify it. We also need the package id, which is just the sha256 hash

of the binary module containing the respective template.

Find that package by running:

@ val pkgIou = participant1.packages.find("Iou").head

pkgIou : com.digitalasset.canton.participant.admin.v0.PackageDescription =␣

↪→PackageDescription(

packageId = "9d65f326a67a0dc9a723dbaa3abb1b67831858940cfe6376475d7959120fe6d0",

sourceDescription = "CantonExamples"

)

Using this package-id, we can create the IOU:

@ val createIouCmd = ledger_api_utils.create(pkgIou.packageId,"Iou","Iou",Map(

↪→"payer" ­> bank,"owner" ­> alice,"amount" ­> Map("value" ­> 100.0, "currency" ­>

↪→ "EUR"),"viewers" ­> List()))

createIouCmd : com.daml.ledger.api.v1.commands.Command = Command(

command = Create(

value = CreateCommand(

templateId = Some(

value = Identifier(

packageId =

↪→"9d65f326a67a0dc9a723dbaa3abb1b67831858940cfe6376475d7959120fe6d0",

..

and then send that command to the Ledger API:

@ participant2.ledger_api.commands.submit(Seq(bank), Seq(createIouCmd))

res35: com.daml.ledger.api.v1.transaction.TransactionTree = TransactionTree(

transactionId =

↪→"122016dfb107997decae572917a0cca323f3d71a99d808c55c821fc84921bee57bbc",

commandId = "66d0c0bd­5a2f­4a46­a933­31dbb65bb856",

workflowId = "",

effectiveAt = Some(

value = Timestamp(

seconds = 1686572349L,

nanos = 575851000,

unknownFields = UnknownFieldSet(fields = Map())

)

),

offset = "000000000000000015",

..

Here, we’ve submitted this command as party Bank on participant2. Interestingly, we can test here

the Daml authorization logic. As the signatory of the contract is Bank, we can’t have Alice submitting

the contract:

@ participant1.ledger_api.commands.submit(Seq(alice), Seq(createIouCmd))

ERROR com.digitalasset.canton.integration.EnterpriseEnvironmentDefinition$$anon$3␣

↪→­ Request failed for participant1.

GrpcClientError: INVALID_ARGUMENT/DAML_AUTHORIZATION_ERROR(8,9d7c7884):␣

↪→Interpretation error: Error: node NodeId(0)␣

↪→(9d65f326a67a0dc9a723dbaa3abb1b67831858940cfe6376475d7959120fe6d0:Iou:Iou)␣

↪→requires authorizers␣

↪→Bank::12207f6b1097871943e7f365a3f57d388d635561284143441aed3d1abda119c7b57e, but␣

↪→only␣

↪→Alice::1220e92602e979f678f3b64664f2599a03ebccdd3e914d24c3695d7e4bcfdc77734a␣

↪→were given

(continues on next page)

928 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

Request: SubmitAndWaitTransactionTree(actAs = Alice::1220e92602e9..., readAs =␣

↪→Seq(), commandId = '', workflowId = '', submissionId = '', deduplicationPeriod␣

↪→= None(), commands = ...)

CorrelationId: 9d7c7884­6e76­41c2­b70b­665c49bd097f

..

And Alice cannot impersonate the Bank by pretending to be it (on her participant):

@ participant1.ledger_api.commands.submit(Seq(bank), Seq(createIouCmd))

ERROR com.digitalasset.canton.integration.EnterpriseEnvironmentDefinition$$anon$3␣

↪→­ Request failed for participant1.

GrpcRequestRefusedByServer: NOT_FOUND/NO_DOMAIN_ON_WHICH_ALL_SUBMITTERS_CAN_

↪→SUBMIT(11,89c4dc65): This participant can not submit as the given submitter on␣

↪→any connected domain

Request: SubmitAndWaitTransactionTree(actAs = Bank::12207f6b1097..., readAs =␣

↪→Seq(), commandId = '', workflowId = '', submissionId = '', deduplicationPeriod␣

↪→= None(), commands = ...)

CorrelationId: 89c4dc654bf60571a516aa17b36abeb8

..

Alice can, however, observe the contract on her participant by searching her Active Contract Set (ACS)

for it:

@ val aliceIou = participant1.ledger_api.acs.find_generic(alice, _.templateId.

↪→isModuleEntity("Iou", "Iou"))

aliceIou : com.digitalasset.canton.admin.api.client.commands.

↪→LedgerApiTypeWrappers.WrappedCreatedEvent = WrappedCreatedEvent(

event = CreatedEvent(

eventId = "

↪→#122016dfb107997decae572917a0cca323f3d71a99d808c55c821fc84921bee57bbc:0",

contractId =

↪→"0064eace0d06c962a4141372442e1b64b4655383df07f1ea191a90094ed3df35dcca01122098f4a7f6a3945b66fc3ab524b2bb5731ace8c8fb5e429eae64db616bf8c89a53

↪→",

..

We can check Alice’s ACS, which will show us all the contracts Alice knows about:

@ participant1.ledger_api.acs.of_party(alice)

res37: Seq[com.digitalasset.canton.admin.api.client.commands.

↪→LedgerApiTypeWrappers.WrappedCreatedEvent] = List(

WrappedCreatedEvent(

event = CreatedEvent(

eventId = "

↪→#122016dfb107997decae572917a0cca323f3d71a99d808c55c821fc84921bee57bbc:0",

contractId =

↪→"0064eace0d06c962a4141372442e1b64b4655383df07f1ea191a90094ed3df35dcca01122098f4a7f6a3945b66fc3ab524b2bb5731ace8c8fb5e429eae64db616bf8c89a53

↪→",

templateId = Some(

value = Identifier(

packageId =

↪→"9d65f326a67a0dc9a723dbaa3abb1b67831858940cfe6376475d7959120fe6d0",

..

As expected, Alice does see exactly the contract that the Bank previously created. The command

returns a sequence of wrapped CreatedEvent’s. This Ledger API data type represents the event of a

contract’s creation. The output is a bit verbose, but the wrapper provides convenient functions to

1.23. Intro 929

https://docs.daml.com/app-dev/grpc/proto-docs.html#com-daml-ledger-api-v1-createdevent

Daml SDK Documentation, 2.7.3

manipulate the CreatedEvents in the Canton console:

@ participant1.ledger_api.acs.of_party(alice).map(x => (x.templateId, x.

↪→arguments))

res38: Seq[(TemplateId, Map[String, Any])] = List(

(

TemplateId(

packageId =

↪→"9d65f326a67a0dc9a723dbaa3abb1b67831858940cfe6376475d7959120fe6d0",

moduleName = "Iou",

entityName = "Iou"

),

HashMap(

"payer" ­>

↪→"Bank::12207f6b1097871943e7f365a3f57d388d635561284143441aed3d1abda119c7b57e",

"viewers" ­> List(elements = Vector()),

"owner" ­>

↪→"Alice::1220e92602e979f678f3b64664f2599a03ebccdd3e914d24c3695d7e4bcfdc77734a",

"amount.currency" ­> "EUR",

"amount.value" ­> "100.0000000000"

)

)

)

Going back to our story, Bob now wants to offer to paint Alice’s house in exchange for money. Again,

we need to grab the package id, as the Paint contract is in a different module:

@ val pkgPaint = participant1.packages.find("Paint").head

pkgPaint : com.digitalasset.canton.participant.admin.v0.PackageDescription =␣

↪→PackageDescription(

packageId = "9d65f326a67a0dc9a723dbaa3abb1b67831858940cfe6376475d7959120fe6d0",

sourceDescription = "CantonExamples"

)

Note that themodules are compositional. The Ioumodule is not aware of the Paintmodule, but the

Paintmodule is using the Ioumodule within its workflow. This is how we can extend any workflow

in Daml and build on top of it. In particular, the Bank does not need to know about the Paintmodule

at all, but can still participate in the transaction without any adverse effect. As a result, everybody

can extend the system with their own functionality. Let’s create and submit the offer now:

@ val createOfferCmd = ledger_api_utils.create(pkgPaint.packageId, "Paint",

↪→"OfferToPaintHouseByPainter", Map("bank" ­> bank, "houseOwner" ­> alice,

↪→"painter" ­> bob, "amount" ­> Map("value" ­> 100.0, "currency" ­> "EUR")))

createOfferCmd : com.daml.ledger.api.v1.commands.Command = Command(

command = Create(

value = CreateCommand(

templateId = Some(

value = Identifier(

packageId =

↪→"9d65f326a67a0dc9a723dbaa3abb1b67831858940cfe6376475d7959120fe6d0",

..

@ participant2.ledger_api.commands.submit_flat(Seq(bob), Seq(createOfferCmd))

res41: com.daml.ledger.api.v1.transaction.Transaction = Transaction(

transactionId =

↪→"1220ab0b25094769ffd759d1e4c33fd2924212abe93c4f1f997ce3e619643ec63d42",

(continues on next page)

930 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

commandId = "b63e26ee­7c29­4ea7­849c­79796a7b5e5b",

workflowId = "",

effectiveAt = Some(

value = Timestamp(

..

Alice will observe this offer on her node:

@ val paintOffer = participant1.ledger_api.acs.find_generic(alice, _.templateId.

↪→isModuleEntity("Paint", "OfferToPaintHouseByPainter"))

paintOffer : com.digitalasset.canton.admin.api.client.commands.

↪→LedgerApiTypeWrappers.WrappedCreatedEvent = WrappedCreatedEvent(

event = CreatedEvent(

eventId = "

↪→#1220ab0b25094769ffd759d1e4c33fd2924212abe93c4f1f997ce3e619643ec63d42:0",

contractId =

↪→"0021ae8b91a08ed8f073d0331cb370b6ce0f61417478731ca6a4488cb248f21ba6ca01122016b5004bb68ae2e4bf42e79b6e67a469b6fbe090d34cf7d3400367ac3299381a

↪→",

templateId = Some(

value = Identifier(

..

1.23.4.10 Privacy

Looking at the ACS of Alice, Bob and the Bank, we note that Bob sees only the paint offer:

@ participant2.ledger_api.acs.of_party(bob).map(x => (x.templateId, x.arguments))

res43: Seq[(TemplateId, Map[String, Any])] = List(

(

TemplateId(

packageId =

↪→"9d65f326a67a0dc9a723dbaa3abb1b67831858940cfe6376475d7959120fe6d0",

moduleName = "Paint",

entityName = "OfferToPaintHouseByPainter"

),

HashMap(

"painter" ­>

↪→"Bob::12207f6b1097871943e7f365a3f57d388d635561284143441aed3d1abda119c7b57e",

"houseOwner" ­>

↪→"Alice::1220e92602e979f678f3b64664f2599a03ebccdd3e914d24c3695d7e4bcfdc77734a",

"bank" ­>

↪→"Bank::12207f6b1097871943e7f365a3f57d388d635561284143441aed3d1abda119c7b57e",

"amount.currency" ­> "EUR",

"amount.value" ­> "100.0000000000"

)

)

)

while the Bank sees the Iou contract:

@ participant2.ledger_api.acs.of_party(bank).map(x => (x.templateId, x.arguments))

res44: Seq[(TemplateId, Map[String, Any])] = List(

(

TemplateId(

(continues on next page)

1.23. Intro 931

Daml SDK Documentation, 2.7.3

(continued from previous page)

packageId =

↪→"9d65f326a67a0dc9a723dbaa3abb1b67831858940cfe6376475d7959120fe6d0",

moduleName = "Iou",

entityName = "Iou"

),

HashMap(

"payer" ­>

↪→"Bank::12207f6b1097871943e7f365a3f57d388d635561284143441aed3d1abda119c7b57e",

"viewers" ­> List(elements = Vector()),

"owner" ­>

↪→"Alice::1220e92602e979f678f3b64664f2599a03ebccdd3e914d24c3695d7e4bcfdc77734a",

"amount.currency" ­> "EUR",

"amount.value" ­> "100.0000000000"

)

)

)

But Alice sees both on her participant node:

@ participant1.ledger_api.acs.of_party(alice).map(x => (x.templateId, x.

↪→arguments))

res45: Seq[(TemplateId, Map[String, Any])] = List(

(

TemplateId(

packageId =

↪→"9d65f326a67a0dc9a723dbaa3abb1b67831858940cfe6376475d7959120fe6d0",

moduleName = "Iou",

entityName = "Iou"

),

HashMap(

"payer" ­>

↪→"Bank::12207f6b1097871943e7f365a3f57d388d635561284143441aed3d1abda119c7b57e",

"viewers" ­> List(elements = Vector()),

"owner" ­>

↪→"Alice::1220e92602e979f678f3b64664f2599a03ebccdd3e914d24c3695d7e4bcfdc77734a",

"amount.currency" ­> "EUR",

"amount.value" ­> "100.0000000000"

)

),

(

TemplateId(

packageId =

↪→"9d65f326a67a0dc9a723dbaa3abb1b67831858940cfe6376475d7959120fe6d0",

moduleName = "Paint",

entityName = "OfferToPaintHouseByPainter"

),

HashMap(

"painter" ­>

↪→"Bob::12207f6b1097871943e7f365a3f57d388d635561284143441aed3d1abda119c7b57e",

"houseOwner" ­>

↪→"Alice::1220e92602e979f678f3b64664f2599a03ebccdd3e914d24c3695d7e4bcfdc77734a",

"bank" ­>

↪→"Bank::12207f6b1097871943e7f365a3f57d388d635561284143441aed3d1abda119c7b57e",

"amount.currency" ­> "EUR",

"amount.value" ­> "100.0000000000"

)

(continues on next page)

932 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

)

)

If there were a third participant node, it wouldn’t have even noticed that there was anything happen-

ing, let alone have received any contract data. Or if we had deployed the Bank on that third node,

that node would not have been informed about the Paint offer. This privacy feature goes so far in

Canton that not even everybody within a single atomic transaction is aware of each other. This is

a property unique to the Canton synchronization protocol, which we call sub-transaction privacy. The

protocol ensures that only eligible participants will receive any data. Furthermore, while the node

running mydomain does receive this data, the data is encrypted and mydomain cannot read it.

We can run such a step with sub-transaction privacy by accepting the offer, which will lead to the

transfer of the Bank Iou, without the Bank actually learning about the Paint agreement:

@ import com.digitalasset.canton.protocol.LfContractId

@ val acceptOffer = ledger_api_utils.exercise("AcceptByOwner", Map("iouId" ­>␣

↪→LfContractId.assertFromString(aliceIou.event.contractId)),paintOffer.event)

acceptOffer : com.daml.ledger.api.v1.commands.Command = Command(

command = Exercise(

value = ExerciseCommand(

templateId = Some(

value = Identifier(

packageId =

↪→"9d65f326a67a0dc9a723dbaa3abb1b67831858940cfe6376475d7959120fe6d0",

..

@ participant1.ledger_api.commands.submit_flat(Seq(alice), Seq(acceptOffer))

res48: com.daml.ledger.api.v1.transaction.Transaction = Transaction(

transactionId =

↪→"1220ced37b240eefc96341fa42245989e4750f8b777121d445dfb3d2688ee625c08c",

commandId = "7b231bb3­aa08­4f6e­a4e4­d34160e893d0",

workflowId = "",

effectiveAt = Some(

value = Timestamp(

..

Note that the conversion to LfContractIdwas required to pass in the Iou contract id as the correct

type.

1.23.4.11 Your Development Choices

While the ledger_api functions in the Console can be handy for educational purposes, the Daml

SDK provides you with much more convenient tools to inspect and manipulate the ledger content:

• The browser based Navigator

• The console version Navigator

• Daml script for scripting

• Daml triggers for reactive operations

• Daml REPL for interactive manipulations

• Json API for browser based UIs

• Bindings in a variety of languages to build your own applications

1.23. Intro 933

https://docs.daml.com/tools/navigator/index.html
https://docs.daml.com/tools/navigator/console.html
https://docs.daml.com/daml-script
https://docs.daml.com/triggers
https://docs.daml.com/daml-repl
https://docs.daml.com/json-api
https://docs.daml.com/app-dev/ledger-api.html

Daml SDK Documentation, 2.7.3

All these tools work against the Ledger API.

1.23.4.12 Automation using bootstrap scripts

You can configure a bootstrap script to avoid having to manually complete routine tasks such as

starting nodes or provisioning parties each time Canton is started. Bootstrap scripts are automati-

cally run after Canton has started and can contain any valid Canton Console commands. A bootstrap

script is passed via the ­­bootstrap CLI argument when starting Canton. By convention, we use a

.canton file ending.

For example, the bootstrap script to connect the participant nodes to the local domain and ping

participant1 from participant2 (see Starting and Connecting The Nodes) is:

// start all local instances defined in the configuration file

nodes.local.start()

// Connect participant1 to mydomain using the connect macro.

// The connect macro will inspect the domain configuration to find the correct␣

↪→URL and Port.

// The macro is convenient for local testing, but obviously doesn't work in a␣

↪→distributed setup.

participant1.domains.connect_local(mydomain)

val mydomainPort = Option(System.getProperty("canton­examples.mydomain­port")).

↪→getOrElse("5018")

// Connect participant2 to mydomain using just the target URL and a local name we␣

↪→use to refer to this particular

// connection. This is actually everything Canton requires and this second type␣

↪→of connect call can be used

// in order to connect to a remote Canton domain.

//

// The connect call is just a wrapper that invokes the `domains.register`,␣

↪→`domains.get_agreement` and `domains.accept_agreement` calls.

//

// The address can be either HTTP or HTTPS. From a security perspective, we do␣

↪→assume that we either trust TLS to

// initially introduce the domain. If we don't trust TLS for that, we can also␣

↪→optionally include a so called

// EssentialState that establishes the trust of the participant to the domain.

// Whether a domain will let a participant connect or not is at the discretion of␣

↪→the domain and can be configured

// there. While Canton establishes the connection, we perform a handshake,␣

↪→exchanging keys, authorizing the connection

// and verifying version compatibility.

participant2.domains.connect("mydomain", s"http://localhost:$mydomainPort")

// The above connect operation is asynchronous. It is generally at the discretion␣

↪→of the domain

// to decide if a participant can join and when. Therefore, we need to␣

↪→asynchronously wait here

// until the participant observes its activation on the domain. As the domain is␣

↪→configured to be

// permissionless in this example, the approval will be granted immediately.

utils.retry_until_true {

(continues on next page)

934 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

participant2.domains.active("mydomain")

}

participant2.health.ping(participant1)

Note how we again use retry_until_true to add a manual synchronization point, making sure

that participant2 is registered, before proceeding to ping participant1.

1.23.4.13 What Next?

You are now ready to start using Canton for serious tasks. If you want to develop a Daml application

and run it on Canton, we recommend the following resources:

1. Install the Daml SDK to get access to the Daml IDE and other tools, such as the Navigator.

2. Run through the Daml SDK getting-started example to learn how to build your own Daml applica-

tions on Canton.

3. Follow the Daml documentation to learn how to program new contracts, or check out the Daml

Examples to find existing ones for your needs.

4. Use the Navigator for easy Web-based access and manipulation of your contracts.

If you want to understand more about Canton:

1. Read the requirements that Cantonwas built for to find outmore about the properties of Canton.

2. Read the architectural overview for more understanding of Canton concepts and internals.

If you want to deploy your own Canton nodes, consult the installation guide.

1.23.5 Daml SDK and Canton

This tutorial shows how to run an application on a distributed setup using Canton instead of running

it on theDaml sandbox. This comeswith a fewknownproblemsand this section explainshow towork

around them.

In this tutorial, you will learn how to run the Create Daml App example on Canton. This guide will

teach you:

1. The main concepts of Daml

2. How to compile your own Daml Archive (DAR)

3. How to run the Create Daml App example on Canton

4. How to write your own Daml code

5. How to integrate a conventional application with Canton

If you haven’t yet done so, please run through the “Getting Started with Canton” and the original Daml

getting started guide to familiarise yourself with the example application. Then come back here to

get the same example running on Canton.

1.23. Intro 935

https://docs.daml.com/getting-started/installation.html
https://docs.daml.com/
https://daml.com/examples/
https://daml.com/examples/
https://docs.daml.com/tools/navigator/index.html
https://docs.daml.com/tools/sandbox.html
https://docs.daml.com/getting-started/index.html
https://docs.daml.com/getting-started/index.html
https://docs.daml.com/getting-started/index.html

Daml SDK Documentation, 2.7.3

1.23.5.1 Starting Canton

Follow the Daml SDK installation guide to get the SDK locally installed.

This guide has been tested with the SDK version 2.5.1. Set the environment variable DAML_SDK_VER­

SION to 2.5.1 so that subsequent daml commands use this version.

export DAML_SDK_VERSION=2.5.1

Starting from the location where you unpacked the Canton distribution, fetch the create-daml-app

example into a directory named create­daml­app (as the example configuration files of

examples/04­create­daml­app expect the files to be there):

daml new create­daml­app ­­template create­daml­app

Next, compile the Daml code into a DAR file (this will create the file .daml/dist/

create­daml­app­0.1.0.dar), and run the code generation step used by the UI:

cd create­daml­app

daml build

daml codegen js .daml/dist/create­daml­app­0.1.0.dar ­o ui/daml.js

You will also need to install the dependencies for the UI:

cd ui

npm install

Next, the original tutorial would ask you to start the Sandbox and the HTTP JSON API

with daml start. We will instead start Canton using the distributed setup in examples/

04­create­daml­app, and will later start the HTTP JSON API in a separate step.

Return to the directory where you unpacked the Canton distribution and start Canton with:

cd ../..

bin/canton ­c examples/04­create­daml­app/canton.conf ­­bootstrap examples/04­

↪→create­daml­app/init.canton

Note: If you get an Compilation Failed error, you may have to make the Canton binary exe-

cutable with chmod +x bin/canton

Thiswill start twoparticipant nodes, allocate theparties Alice, BobandPublic and create correspond-

ing users alice and bob. Each participant node will expose its own ledger API:

1. Alice will be hosted by participant1, with its ledger API on port 12011

2. Bob will be hosted by participant2, with its ledger API on port 12021

Note that the examples/04­create­daml­app/init.canton script performs a few setup steps

to permission the parties and upload the DAR.

Leave Canton running and switch to a new terminal window.

936 Chapter 1. Canton References

https://docs.daml.com/getting-started/installation.html
https://docs.daml.com/json-api/index.html

Daml SDK Documentation, 2.7.3

1.23.5.2 Running the Create Daml App Example

Once Canton is running, start the HTTP JSON API:

• Connected to the ledger API on port 12011 (corresponding to Alice’s participant)

• And connected to the UI on the default expected port 7575

DAML_SDK_VERSION=2.5.1 daml json­api \

­­ledger­host localhost \

­­ledger­port 12011 \

­­http­port 7575 \

­­allow­insecure­tokens

Leave this running. The UI can then be started from a third terminal window with:

cd create­daml­app/ui

REACT_APP_LEDGER_ID=participant1 npm start

Note that we have to configure the ledger ID used by the UI tomatch the name of the participant that

we’re running against. This is done using the environment variable REACT_APP_LEDGER_ID.

We can now log in as alice.

Connecting to participant2

You can log in as Bob using participant2 by following essentially the same process as for partic-

ipant1, adjusting the ports to correspond to participant2.

First, start another instance of the HTTP JSON API, this time using the options ­­

ledger­port=12021 and ­­http­port 7576. 12021 corresponds to participant2’s ledger

port, and 7576 is a new port for another instance of the HTTP JSON API:

DAML_SDK_VERSION=2.5.1 daml json­api \

­­ledger­host localhost \

­­ledger­port 12021 \

­­http­port 7576 \

­­allow­insecure­tokens

Then start another instance of the UI for Bob, running on port 3001 and connected to the HTTP JSON

API on port 7576:

cd create­daml­app/ui

PORT=3001 REACT_APP_HTTP_JSON=http://localhost:7576 REACT_APP_LEDGER_

↪→ID=participant2 npm start

You can then log in with the user id bob.

Now that both parties have logged in, you can select Bob in the dropdown fromAlice’s view and follow

him and the other way around.

After both parties have followed each other, the resulting view from Alice’s side will look as follows.

1.23. Intro 937

Daml SDK Documentation, 2.7.3

Note that create-daml-app sets up human-readable aliases for party ids, which is why we can use

those names to follow other parties instead of their party id.

1.23.5.3 What Next?

Now that you have started to become familiar with Daml and what a full Daml-based solution looks

like, you can build your own first Daml application.

1. Use the Daml language reference docs to master Daml and build your own Daml model.

2. Test your model using Daml scripts.

3. Create a simple UI following the example of the Create Daml App template used in this tutorial.

4. See how to compose workflows across multiple Canton domains.

5. Showcase your application on the forum.

Composability is currently an Early Access Feature in Alpha status.

Note: The example in this tutorial uses unsupported Scala bindings and codegen.

1.23.6 Composability

In this tutorial, you will learn how to build workflows that span several Canton domains. Compos-

ability turns those several Canton domains into one conceptual ledger at the application level.

The tutorial assumes the following prerequisites:

• You have worked through the Getting started tutorial and know how to interact with the Canton

console.

• You know the Daml concepts that are covered in the Daml introduction.

• The running example uses the ledger API, the Scala codegen (no longer supported by Daml) for

Daml, and Canton’s identity management. If you want to understand the example code in full,

please refer to the above documentation.

938 Chapter 1. Canton References

https://docs.daml.com/daml/reference/index.html
https://docs.daml.com/daml-script/index.html
https://docs.daml.com/getting-started/index.html
https://discuss.daml.com/
https://docs.daml.com/getting-started/installation.html

Daml SDK Documentation, 2.7.3

The tutorial consists of two parts:

1. The first part illustrates how to design a workflow that spans multiple domains.

2. The second part shows how to compose existing workflows on different domains into a single

workflow and the benefits this brings.

The Daml models are shipped with the Canton release in the daml/CantonExamples folder in

the modules Iou and Paint. The configuration and the steps are available in the examples/

05­composability folder of the Canton release. To run the workflow, start Canton from the re-

lease’s root folder as follows:

./bin/canton ­c examples/05­composability/composability.conf

You can copy-paste the console commands from the tutorial in the given order into the Canton con-

sole to run them interactively. All console commands are also summarized in the bootstrap scripts

composability1.canton, composability­auto­transfer.canton, and composability2.

canton.

Note: Note that to use composability, we do have to turn off contract key uniqueness, as uniqueness

cannot be provided across multiple domains. Therefore, composability is just a preview feature and

explained here to demonstrate an early version of it that is not yet suitable for production use.

1.23.6.1 Part 1: A multi-domain workflow

We consider the paint agreement scenario from the Getting started tutorial. The house owner and the

painter want to enter a paint agreement that obliges the painter to paint the house owner’s house.

To enter such an agreement, the house owner proposes a paint offer to the painter and the painter

accepts. Upon acceptance, the paint agreement shall be created atomically with changing the own-

ership of the money, which we represent by an IOU backed by the bank.

Atomicity guarantees that no party can scam the other: The painter enters the obligation of painting

thehouseonly if house owner pays, and thehouseowner pays only if thepainter enters the obligation.

This avoid bad scenarios such as the following, which would have to be resolved out of band, e.g.,

using legal processes:

• The house owner spends the IOU on something else and does not pay the painter, even though

the painter has entered the obligation to paint the house. The painter then needs to convince

the house owner to pay with another IOU or to revoke the paint agreement.

• The house owner wires the money to the painter, but the painter refuses to enter the paint

agreement. The house owner then begs the painter to return the money.

Setting up the topology

In this example, we assume a topology with two domains, iou and paint. The house owner’s and

the painter’s participants are connected to both domains, as illustrated in the following diagram.

The configuration file composability.conf configures the two domains iou and paint and three

participants.

1.23. Intro 939

Daml SDK Documentation, 2.7.3

940 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

canton {

features {

enable­preview­commands = yes

enable­testing­commands = yes

}

monitoring {

tracing.propagation = enabled

logging.api.message­payloads = true

}

domains {

iou {

public­api.port = 13018

admin­api.port = 13019

storage.type = memory

init.domain­parameters.unique­contract­keys = false

}

paint {

public­api.port = 13028

admin­api.port = 13029

storage.type = memory

init.domain­parameters.unique­contract­keys = false

}

}

participants {

participant1 {

ledger­api.port = 13011

admin­api.port = 13012

storage.type = memory

init.parameters.unique­contract­keys = false

}

participant2 {

ledger­api.port = 13021

admin­api.port = 13022

storage.type = memory

init.parameters.unique­contract­keys = false

}

participant3 {

ledger­api.port = 13031

admin­api.port = 13032

storage.type = memory

init.parameters.unique­contract­keys = false

}

}

}

As the first step, some domain parameters are changed (setting

transfer­exclusivity­timeout will be explained in the second part of this tutorial). Then,

all the nodes are started and the parties for the bank (hosted on participant 1), the house owner

(hosted on participant 2), and the painter (hosted on participant 3) are created. The details of the

party onboarding are not relevant for show-casing cross-domain workflows.

1.23. Intro 941

Daml SDK Documentation, 2.7.3

// update parameters

iou.service.update_dynamic_domain_parameters(

_.update(transferExclusivityTimeout = Duration.Zero)

) // disable automatic transfer­in

paint.service.update_dynamic_domain_parameters(

_.update(transferExclusivityTimeout = 2.seconds)

)

// connect participants to the domain

participant1.domains.connect_local(iou)

participant2.domains.connect_local(iou)

participant3.domains.connect_local(iou)

participant2.domains.connect_local(paint)

participant3.domains.connect_local(paint)

// the connect call will use the configured domain name as an alias. the␣

↪→configured

// name is the one used in the configuration file.

// in reality, all participants pick the alias names they want, which means that

// aliases are not unique, whereas a `DomainId` is. However, the

// alias is convenient, while the DomainId is a rather long string including a␣

↪→hash.

// therefore, for commands, we prefer to use a short alias instead.

val paintAlias = paint.name

val iouAlias = iou.name

// create the parties

val Bank = participant1.parties.enable("Bank")

val HouseOwner = participant2.parties.enable("House Owner")

val Painter = participant3.parties.enable("Painter")

// Wait until the party enabling has taken effect and has been observed at the␣

↪→participants

val partyAssignment = Set(Bank ­> participant1, HouseOwner ­> participant2,␣

↪→Painter ­> participant3)

participant2.parties.await_topology_observed(partyAssignment)

participant3.parties.await_topology_observed(partyAssignment)

// upload the Daml model to all participants

val darPath = Option(System.getProperty("canton­examples.dar­path")).getOrElse(

↪→"dars/CantonExamples.dar")

participants.all.dars.upload(darPath)

Creating the IOU and the paint offer

To initialize the ledger, the Bank creates an IOU for the house owner and the house owner creates

a paint offer for the painter. These steps are implemented below using the Scala bindings (no

longer supported by Daml) generated from the Daml model. The generated Scala classes are dis-

tributed with the Canton release in the package com.digitalasset.canton.examples. The rel-

evant classes are imported as follows:

import com.digitalasset.canton.examples.Iou.{Amount, Iou}

import com.digitalasset.canton.examples.Paint.{OfferToPaintHouseByOwner,␣

↪→PaintHouse} (continues on next page)

942 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

import com.digitalasset.canton.participant.ledger.api.client.DecodeUtil.

↪→decodeAllCreated

import com.digitalasset.canton.protocol.ContractIdSyntax._

Bank creates an IOU of USD 100 for the house owner on the iou domain, by submitting the command

through the ledger API command service of participant 1. The house owner then shares the IOU con-

tract with the painter such that the painter can effect the ownership change when they accept the

offer. The share operation adds the painter as an observer on the IOU contract so that the painter

can see the IOU contract. Both of these commands run over the iou domain because the Bank’s

participant 1 is only connected to the iou domain.

// Bank creates IOU for the house owner

val createIouCmd = Iou(

payer = Bank.toPrim,

owner = HouseOwner.toPrim,

amount = Amount(value = 100.0, currency = "USD"),

viewers = List.empty

).create.command

val Seq(iouContractUnshared) = decodeAllCreated(Iou)(

participant1.ledger_api.commands.submit_flat(Seq(Bank), Seq(createIouCmd)))

// Wait until the house owner sees the IOU in the active contract store

participant2.ledger_api.acs.await_active_contract(HouseOwner, iouContractUnshared.

↪→contractId.toLf)

// The house owner adds the Painter as an observer on the IOU

val shareIouCmd = iouContractUnshared.contractId.exerciseShare(actor = HouseOwner.

↪→toPrim, viewer = Painter.toPrim).command

val Seq(iouContract) = decodeAllCreated(Iou)(participant2.ledger_api.commands.

↪→submit_flat(Seq(HouseOwner), Seq(shareIouCmd)))

Similarly, the house owner creates a paint offer on the paint domain via participant 2. In the

ledger_api.commands.submit_flat command, we set the workflow id to the paint domain so

that the participant submits the commands to this domain. If no domain was specified, the partic-

ipant automatically determines a suitable domain. In this case, both domains are eligible because

on each domain, every stakeholder (the house owner and the painter) is hosted on a connected par-

ticipant.

// The house owner creates a paint offer using participant 2 and the Paint domain

val paintOfferCmd = OfferToPaintHouseByOwner(

painter = Painter.toPrim,

houseOwner = HouseOwner.toPrim,

bank = Bank.toPrim,

iouId = iouContract.contractId

).create.command

val Seq(paintOffer) = decodeAllCreated(OfferToPaintHouseByOwner)(

participant2.ledger_api.commands.submit_flat(Seq(HouseOwner),␣

↪→Seq(paintOfferCmd), workflowId = paint.name))

1.23. Intro 943

Daml SDK Documentation, 2.7.3

Contracts and Their Domains

In Canton, each contract is only known to the participants involved in that contract. The involved par-

ticipants are the only ones that have unencrypteded copies of the contract, which they store in their

respective private contract stores. No other participant has access to that data, even in encrypted

form. The domain, in particular the sequencer that facilitates synchronization, will only store en-

crypted messages that only the receiving participant can decrypt.

In our terminology, the residence domain of a contract is the current agreement between the stake-

holders of the contract where changes to the contract are to be communicated and where the se-

quence of actions on a contract is to be determined. A contract can reside on at most one domain at

any point in time. However, the contract is never stored by the domain in such a way that the domain

learns about its existence or content.

Transferring a contract

For example, the IOU contract resides on the iou domain because it has been created by a command

that was submitted to the iou domain. Similarly, the paint offer resides on the paint domain. In

the current version of Canton, the execution of a transaction can only use contracts that reside on a

single domain. Therefore, before the painter can accept the offer and thereby become the owner of

the IOU contract, both contracts must be brought to a common domain.

In this example, the house owner and the painter are hosted on participants that are connected to

both domains, whereas the Bank is only connected to the iou domain. The IOU contract cannot

be moved to the paint domain because all stakeholders of a contract must be connected to the

contract’s domain of residence. Conversely, the paint offer can be transferred to the iou domain, so

that the painter can accept the offer on the iou domain.

Stakeholders can change the residence domain of a contract using the transfer.execute com-

mand. In the example, the painter transfers the paint offer from the paint domain to the iou do-

main.

// Wait until the painter sees the paint offer in the active contract store

participant3.ledger_api.acs.await_active_contract(Painter, paintOffer.contractId.

↪→toLf)

// Painter transfers the paint offer to the IOU domain

participant3.transfer.execute(

Painter, // Initiator of the transfer

paintOffer.contractId.toLf, // Contract to be transferred

paintAlias, // Source domain

iouAlias // Target domain

)

The transfer of a contract effectively changes the residence domain of the contract, in other words,

the consensus among the stakeholders on which domain should be used to sequence actions on a

contract. The contract itself is still stored only on the involved participants.

944 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Atomic acceptance

The paint offer and the IOU contract both reside on the iou domain now. Accordingly, the painter

can complete the workflow by accepting the offer.

// Painter accepts the paint offer on the IOU domain

val acceptCmd = paintOffer.contractId.exerciseAcceptByPainter(Painter.toPrim).

↪→command

val acceptTx = participant3.ledger_api.commands.submit_flat(Seq(Painter),␣

↪→Seq(acceptCmd))

val Seq(painterIou) = decodeAllCreated(Iou)(acceptTx)

val Seq(paintHouse) = decodeAllCreated(PaintHouse)(acceptTx)

This transaction executes on the iou domain because the input contracts (the paint offer and the

IOU) reside there. It atomically creates two contracts on the iou domain: the painter’s new IOU

and the agreement to paint the house. The unhappy scenarios needing out-of-band resolution are

avoided.

Completing the workflow

Finally, the paint agreement can be transferred back to the paint domain, where it actually belongs.

// Wait until the house owner sees the PaintHouse agreement

participant2.ledger_api.acs.await_active_contract(HouseOwner, paintHouse.

↪→contractId.toLf)

// The house owner moves the PaintHouse agreement back to the Paint domain

participant2.transfer.execute(

HouseOwner,

paintHouse.contractId.toLf,

iouAlias,

paintAlias

)

Note that the painter’s IOU remains on the iou domain. The painter can therefore call the IOU and

cash it out.

// Painter converts the Iou into cash

participant3.ledger_api.commands.submit_flat(

Seq(Painter),

Seq(painterIou.contractId.exerciseCall(Painter.toPrim).command),

iou.name

)

1.23. Intro 945

Daml SDK Documentation, 2.7.3

Performing transfers automatically

Canton also supports automatic transfers for commands performing transactions that use con-

tracts residing on several domains. When such a command is submitted, Canton can automatically

infer a common domain that the used contracts can be transferred to. Once all the used contracts

have been transferred into the common domain the transaction is performed on this single domain.

However, this simply performs the required transfers followed by the transaction processing as dis-

tinct non-atomic steps.

We can therefore run the above script without specifying any transfers at all, and relying on the auto-

matic transfers. Simply delete all the transfer commands from the example above and the example

will still run successfully. A modified version of the above example that uses automatic transfers

instead of manual transfers is given below.

The setup code and contract creation is unchanged:

// Bank creates IOU for the house owner

val createIouCmd = Iou(

payer = Bank.toPrim,

owner = HouseOwner.toPrim,

amount = Amount(value = 100.0, currency = "USD"),

viewers = List.empty

).create.command

val Seq(iouContractUnshared) = decodeAllCreated(Iou)(

participant1.ledger_api.commands.submit_flat(Seq(Bank), Seq(createIouCmd)))

// Wait until the house owner sees the IOU in the active contract store

participant2.ledger_api.acs.await_active_contract(HouseOwner, iouContractUnshared.

↪→contractId.toLf)

// The house owner adds the Painter as an observer on the IOU

val showIouCmd = iouContractUnshared.contractId.exerciseShare(actor = HouseOwner.

↪→toPrim, viewer = Painter.toPrim).command

val Seq(iouContract) = decodeAllCreated(Iou)(participant2.ledger_api.commands.

↪→submit_flat(Seq(HouseOwner), Seq(showIouCmd)))

// The house owner creates a paint offer using participant 2 and the Paint domain

val paintOfferCmd = OfferToPaintHouseByOwner(

painter = Painter.toPrim,

houseOwner = HouseOwner.toPrim,

bank = Bank.toPrim,

iouId = iouContract.contractId

).create.command

val Seq(paintOffer) = decodeAllCreated(OfferToPaintHouseByOwner)(

participant2.ledger_api.commands.submit_flat(Seq(HouseOwner),␣

↪→Seq(paintOfferCmd), workflowId = paint.name))

In the following section, the painter accepts the paint offer. The transaction that accepts the paint

offer uses two contracts: the paint offer contract, and the IOU contract. These contracts were cre-

ated on two different domains in the previous step: the paint offer contract was created on the paint

domain, and the IOU contract was created on the IOU domain. The paint offer contractmust be trans-

ferred to the IOU domain for the accepting transaction to be successfully applied, as was doneman-

ually in the example above. It would not be possible to instead transfer the IOU contract to the paint

domain because the stakeholder Bank on the IOU contract is not represented on the paint domain.

When using automatic-transfer transactions, Canton infers a suitable domain for the transaction

946 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

and transfers all used contracts to this domain before applying the transaction. In this case, the

only suitable domain for the painter to accept the paint offer is the IOU domain. This is how the

painter is able to accept the paint offer below without any explicit transfers being performed.

// Wait until the painter sees the paint offer in the active contract store

participant3.ledger_api.acs.await_active_contract(Painter, paintOffer.contractId.

↪→toLf)

// Painter accepts the paint offer on the IOU domain

val acceptCmd = paintOffer.contractId.exerciseAcceptByPainter(Painter.toPrim).

↪→command

val acceptTx = participant3.ledger_api.commands.submit_flat(Seq(Painter),␣

↪→Seq(acceptCmd))

val Seq(painterIou) = decodeAllCreated(Iou)(acceptTx)

val Seq(paintHouse) = decodeAllCreated(PaintHouse)(acceptTx)

The painter can then cash in the IOU. This happens exactly as before, since the IOU contract never

leaves the IOU domain.

// Painter converts the Iou into cash

participant3.ledger_api.commands.submit_flat(

Seq(Painter),

Seq(painterIou.contractId.exerciseCall(Painter.toPrim).command),

iou.name

)

Note that towards the end of the previous example with explicit transfers, the paint offer contract

was transferred back to the paint domain. This doesn’t happen in the automatic transfer version:

the paint offer is not transferred out of the IOU domain as part of the script shown. However, the

paint offer contract will be automatically transferred back to the paint domain once it is used in a

transaction that must happen on the paint domain.

Details of the automatic-transfer transactions

In the previous section, the automatic-transfer transactions were explained using an example. The

details are presented here.

The automatic-transfer transactions enable submission of a transaction using contracts on multi-

ple domains, by transferring contracts into a chosen target domain and thenperforming the transac-

tion. However, using an automatic-transfer transaction does not provide any atomicity guarantees

beyond using several primitive transfer-in and transfer-out operations (these operations make up

the transfer.execute command, and are explained in the next section).

The domain for a transaction is chosen using the following criteria:

• Minimise the number of transfers needed.

• Break ties by choosing domains with higher priority first.

• Break ties by choosing domains with alphabetically smaller domain IDs first.

As for ordinary transactions, youmay force the choice of domain for an automatic-transfer transac-

tion by setting the workflow ID to name of the domain.

The automatic-transfer transactions are only enabled when all of the following are true:

• The local canton console enables preview commands (see the configuration section).

1.23. Intro 947

Daml SDK Documentation, 2.7.3

• The submitting participant is connected to all domains that contracts used by the transaction

live on.

• All contracts used by the transaction must have at least one stakeholder that is also a trans-

action submitter.

Take aways

• A contract resides on a domain. This means that the current agreement of the stakeholders

is to communicate and sequence all access and changes to a given contract on a particular

domain. The contract itself is only stored at the stakeholder participants.

• Stakeholders can move contracts from one domain to another using transfer.execute. All

stakeholders must be connected to the source and the target domain.

• You can submit transactions using contracts that reside on several domains. Automatic trans-

fers will pick a suitable domain, and perform the transfers into it before performing the trans-

action.

1.23.6.2 Part 2: Composing existing workflows

This part shows how existing workflows can be composed even if they work on separate domains.

The running example is a variation of the paint example from the first part with amore complicated

topology. We therefore assume that you have gone through the first part of this tutorial. Technically,

this tutorial runs through the same steps as the first part, butmore details are exposed. The console

commands assume that you start with a fresh Canton console.

Existing workflows

Consider a situation where the two domains iou and paint have evolved separately:

• The iou domain for managing IOUs,

• The paint domain for managing paint agreements.

Accordingly, there are separate applications for managing IOUs (issuing, changing ownership, call-

ing) and paint agreements, and the house owner and the painter have connected their applications

to different participants. The situation is illustrated in the following picture.

To enter in a paint agreement in this setting, the house owner and the painter need to perform the

following steps:

1. The house owner creates a paint offer through participant 2 on the paint domain.

2. The painter accepts the paint offer through participant 3 on the paint domain. As a conse-

quence, a paint agreement is created.

3. The painter sets a reminder that he needs to receive an IOU from the house owner on the iou

domain.

4. When the house owner observes a new paint agreement through participant 2 on the paint

domain, she changes the IOU ownership to the painter through participant 5 on the iou do-

main.

5. The painter observes a new IOU throughparticipant 4 on theioudomain and therefore removes

the reminder.

948 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.23. Intro 949

Daml SDK Documentation, 2.7.3

Overall, a non-trivial amount of out-of-band coordination is required to keep the paint ledger con-

sistent with the iou ledger. If this coordination breaks down, the unhappy scenarios from the first part

can happen.

Required changes

Wenowshowhow thehouse owner and the painter can avoid need for out-of-band coordinationwhen

entering in paint agreements. The goal is to reuse the existing infrastructure formanaging IOUs and

paint agreements as much as possible. The following changes are needed:

1. The house owner and the painter connect their participants for paint agreements to the iou

domain:

The Canton configuration is accordingly extended with the two participants 4 and 5. (The con-

nections themselves are set up in the next section.)

950 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

canton {

participants {

participant4 {

ledger­api.port = 13041

admin­api.port = 13042

storage.type = memory

init.parameters.unique­contract­keys = false

}

participant5 {

ledger­api.port = 13051

admin­api.port = 13052

storage.type = memory

init.parameters.unique­contract­keys = false

}

}

}

2. They replace their Daml model for paint offers such that the house owner must specify an IOU

in the offer and its accept choice makes the painter the new owner of the IOU.

3. They create a new application for the paint offer-accept workflow.

The Daml models for IOUs and paint agreements themselves remain unchanged, and so do the ap-

plications that deal with them.

Preparation using the existing workflows

We extend the topology from the first part as described. The commands are explained in detail in

Canton’s identity management manual.

// update parameters

iou.service.update_dynamic_domain_parameters(

_.update(transferExclusivityTimeout = Duration.Zero)

) // disable automatic transfer­in

paint.service.update_dynamic_domain_parameters(

_.update(transferExclusivityTimeout = 2.seconds)

)

// connect participants to the domain

participant1.domains.connect_local(iou)

participant2.domains.connect_local(iou)

participant3.domains.connect_local(iou)

participant2.domains.connect_local(paint)

participant3.domains.connect_local(paint)

participant4.domains.connect_local(iou)

participant5.domains.connect_local(iou)

val iouAlias = iou.name

val paintAlias = paint.name

// create the parties

val Bank = participant1.parties.enable("Bank")

val HouseOwner = participant2.parties.enable("House Owner")

val Painter = participant3.parties.enable("Painter", waitForDomain = DomainChoice.

↪→All)
(continues on next page)

1.23. Intro 951

Daml SDK Documentation, 2.7.3

(continued from previous page)

// enable the house owner on participant 5 and the painter on participant 4

// as explained in the identity management documentation at

// https://docs.daml.com/canton/usermanual/identity_management.html#party­on­two­

↪→nodes

import com.digitalasset.canton.console.ParticipantReference

def authorizePartyParticipant(partyId: PartyId, createdAt: ParticipantReference,␣

↪→to: ParticipantReference): Unit = {

val createdAtP = createdAt.id

val toP = to.id

createdAt.topology.party_to_participant_mappings.authorize(TopologyChangeOp.Add,

↪→ partyId, toP, RequestSide.From)

to.topology.party_to_participant_mappings.authorize(TopologyChangeOp.Add,␣

↪→partyId, toP, RequestSide.To)

}

authorizePartyParticipant(HouseOwner, participant2, participant5)

authorizePartyParticipant(Painter, participant3, participant4)

// Wait until the party enabling has taken effect and has been observed at the␣

↪→participants

val partyAssignment = Set(HouseOwner ­> participant2, HouseOwner ­> participant5,␣

↪→Painter ­> participant3, Painter ­> participant4)

participant2.parties.await_topology_observed(partyAssignment)

participant3.parties.await_topology_observed(partyAssignment)

// upload the Daml model to all participants

val darPath = Option(System.getProperty("canton­examples.dar­path")).getOrElse(

↪→"dars/CantonExamples.dar")

participants.all.dars.upload(darPath)

As before, the Bank creates an IOU and the house owner shares it with the painter on the iou domain,

using their existing applications for IOUs.

import com.digitalasset.canton.examples.Iou.{Amount, Iou}

import com.digitalasset.canton.examples.Paint.{OfferToPaintHouseByOwner,␣

↪→PaintHouse}

import com.digitalasset.canton.participant.ledger.api.client.DecodeUtil.

↪→decodeAllCreated

import com.digitalasset.canton.protocol.ContractIdSyntax._

val createIouCmd = Iou(

payer = Bank.toPrim,

owner = HouseOwner.toPrim,

amount = Amount(value = 100.0, currency = "USD"),

viewers = List.empty

).create.command

val Seq(iouContractUnshared) = decodeAllCreated(Iou)(

participant1.ledger_api.commands.submit_flat(Seq(Bank), Seq(createIouCmd)))

// Wait until the house owner sees the IOU in the active contract store

participant2.ledger_api.acs.await_active_contract(HouseOwner, iouContractUnshared.

↪→contractId.toLf)

// The house owner adds the Painter as an observer on the IOU

val shareIouCmd = iouContractUnshared.contractId.exerciseShare(actor = HouseOwner.

↪→toPrim, viewer = Painter.toPrim).command
(continues on next page)

952 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

val Seq(iouContract) = decodeAllCreated(Iou)(participant2.ledger_api.commands.

↪→submit_flat(Seq(HouseOwner), Seq(shareIouCmd)))

The paint offer-accept workflow

The new paint offer-accept workflow happens in four steps:

1. Create the offer on the paint domain.

2. Transfer the contract to the iou domain.

3. Accept the offer.

4. Transfer the paint agreement to the paint domain.

Making the offer

The house owner creates a paint offer on the paint domain.

// The house owner creates a paint offer using participant 2 and the Paint domain

val paintOfferCmd = OfferToPaintHouseByOwner(

painter = Painter.toPrim,

houseOwner = HouseOwner.toPrim,

bank = Bank.toPrim,

iouId = iouContract.contractId

).create.command

val Seq(paintOffer) = decodeAllCreated(OfferToPaintHouseByOwner)(

participant2.ledger_api.commands.submit_flat(Seq(HouseOwner),␣

↪→Seq(paintOfferCmd), workflowId = paint.name))

Transfers are not atomic

In the first part, we have used transfer.execute to move the offer to the iou domain. Now, we

look a bit behind the scenes. A contract transfer happens in two atomic steps: transfer-out and

transfer-in. transfer.execute is merely a shorthand for the two steps. In particular, transfer.

execute is not an atomic operation like other ledger commands.

During a transfer-out, the contract is deactivated on the source domain, in this case the paint do-

main. Any stakeholder whose participant is connected to the source domain and the target domain

can initiate a transfer-out. The transfer.out command returns a transfer Id.

// Wait until the painter sees the paint offer in the active contract store

participant3.ledger_api.acs.await_active_contract(Painter, paintOffer.contractId.

↪→toLf)

// Painter transfers the paint offer to the IOU domain

val paintOfferTransferId = participant3.transfer.out(

Painter, // Initiator of the transfer

paintOffer.contractId.toLf, // Contract to be transferred

paintAlias, // Source domain

iouAlias // Target domain

)

1.23. Intro 953

Daml SDK Documentation, 2.7.3

The transfer.in command consumes the transfer Id and activates the contract on the target do-

main.

participant3.transfer.in(Painter, paintOfferTransferId, iouAlias)

Between the transfer-out and the transfer-in, the contract does not reside on any domain and cannot

be used by commands. We say that the contract is in transit.

Accepting the paint offer

The painter accepts the offer, as before.

// Wait until the Painter sees the IOU contract on participant 3.

participant3.ledger_api.acs.await_active_contract(Painter, iouContract.contractId.

↪→toLf)

// Painter accepts the paint offer on the Iou domain

val acceptCmd = paintOffer.contractId.exerciseAcceptByPainter(Painter.toPrim).

↪→command

val acceptTx = participant3.ledger_api.commands.submit_flat(Seq(Painter),␣

↪→Seq(acceptCmd))

val Seq(painterIou) = decodeAllCreated(Iou)(acceptTx)

val Seq(paintHouse) = decodeAllCreated(PaintHouse)(acceptTx)

Automatic transfer-in

Finally, the paint agreement is transferred back to the paint domain such that the existing infras-

tructure around paint agreements can work unchanged.

// Wait until the house owner sees the PaintHouse agreement

participant2.ledger_api.acs.await_active_contract(HouseOwner, paintHouse.

↪→contractId.toLf)

val paintHouseId = paintHouse.contractId

// The house owner moves the PaintHouse agreement back to the Paint domain

participant2.transfer.out(

HouseOwner,

paintHouseId.toLf,

iouAlias,

paintAlias

)

// After the exclusivity period, which is set to 2 seconds,

// the contract is automatically transferred into the target domain

utils.retry_until_true(10.seconds) {

// in the absence of other activity, force the participants to update their␣

↪→view of the latest domain time

participant2.testing.fetch_domain_times()

participant3.testing.fetch_domain_times()

participant3.testing.acs_search(paint.name, filterId=paintHouseId.toString).

↪→nonEmpty &&

participant2.testing.acs_search(paint.name, filterId=paintHouseId.toString).

↪→nonEmpty

}

954 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Here, there is only a transfer.out command but no transfer.in command. This is be-

cause the participants of contract stakeholders automatically try to transfer-in the contract

to the target domain so that the contract becomes usable again. The domain parameter

transfer­exclusivity­timeout on the target domain specifies how long they wait before they

attempt to do so. Before the timeout, only the initiator of the transfer is allowed to transfer-in the

contract. This reduces contention for contracts with many stakeholders, as the initiator normally

completes the transfer before all other stakeholders simultaneously attempt to transfer-in the con-

tract. On the paint domain, this timeout is set to two seconds in the configuration file. Therefore, the

utils.retry_until_true normally succeeds within the allotted ten seconds.

Setting the transfer­exclusivity­timeout to 0 as on the iou domain disables automatic

transfer-in. This is why the above transfer of the paint offer had to be completed manually. Man-

ual completion is also needed if the automatic transfer-in fails, e.g., due to timeouts on the target

domain. Automatic transfer-in therefore is a safety net that reduces the risk that the contract gets

stuck in transit.

Continuing the existing workflows

The painter now owns an IOU on the iou domain and the entered paint agreement resides on the

paint domain. Accordingly, the existing workflows for IOUs and paint agreements can be used un-

changed. For example, the painter can call the IOU.

// Painter converts the Iou into cash

participant4.ledger_api.commands.submit_flat(

Seq(Painter),

Seq(painterIou.contractId.exerciseCall(Painter.toPrim).command),

iou.name

)

Take aways

• Contract transfers take two atomic steps: transfer-out and transfer-in. While the contract is

being transferred, the contract does not reside on any domain.

• Transfer-in happens under normal circumstances automatically after the

transfer­exclusivity­timeout configured on the target domain. A timeout of 0

disables automatic transfer-in. If the automatic transfer-in does not complete, the contract

can be transferred in manually.

1.23.7 Versioning

1.23.7.1 Canton release version

The Canton release version (release version for short) is the primary version assigned to a Canton

release. It is semantically versioned, i.e., breaking changes to a public API will always lead to amajor

version increase of the release version. The public APIs encompassed by the release version are the

following:

• Ledger API server (for participants)

• Error code format (machine-readable parts, see also the error code documentation)

• Canton configuration file format

1.23. Intro 955

https://github.com/digital-asset/daml/releases
https://github.com/digital-asset/daml/releases

Daml SDK Documentation, 2.7.3

• Command line arguments

• Internal storage (data continuity between non-major upgrades)

• Canton protocol version

As a result, Canton components are always safely upgradeable with respect to these APIs. In par-

ticular, the inclusion of the Canton protocol version as a Public API guarantees that any two Canton

components of the same release version can interact with each other and can be independently up-

graded within a major version without any loss of interoperability (see also the documentation on the

Canton protocol version).

1.23.7.2 For application developers and operators

Applications using Canton have the following guarantees:

• Participants can be upgraded independently of each other and of applications and domains

within a major release version.

• Domain drivers can be upgraded independently of applications and connected participants

within a major release version.

• Major versions of anything are supported for a minimum of 12 months from the release of the

next major release version.

As a result, applications written today can keep running unchanged for a minimum of 12 months

while upgrading participants and domains within a major release version. See also the versioning

as well as portability, compatibility and support duration guarantees that hold for any Daml appli-

cation.

1.23.7.3 For Canton participant and domain operators

In addition to the Canton release version, the Canton protocol version is the most important version

for participant and domain operators. It used to have 3 digits, but starting protocol version 4 it’s

represented by one digit.

Canton protocol version

The Canton protocol determines how different Canton components interact with each other. We ver-

sion it using the Canton protocol version (protocol version for short) and conceptually, two Canton

components can interact (are interoperable) if they support the same protocol version. For exam-

ple, a participant can connect to a domain if it supports the protocol version that is spoken on the

domain, and a mediator can become the mediator for a domain, if it supports the protocol version

required by the domain. If two Canton components have the same major release version, they also

share at least one protocol version and can thus interact with each other.

A Canton component advertises the protocol versions it supports and always supports all previous

protocol versions of the samemajor release line. That is, a participant or driver supporting a certain

protocol version, is able to transact with all other participants or drivers supporting a lower or equal

protocol version but may not be able to transact with participants or drivers supporting a higher

Canton protocol if they are configured to use amore recent version of the protocol. For example, a re-

lease of a participant supporting protocol version 3will be able to connect to all domains configured

to use protocol version <= 3. It won’t be able to connect to a domain configured to use protocol version

> 3. As a result, minor and patch version upgrades of Canton components can be done independently

without any loss of interoperability.

956 Chapter 1. Canton References

https://docs.daml.com/support/releases.html#support-duration
https://docs.daml.com/support/compatibility.html

Daml SDK Documentation, 2.7.3

To see the protocol versions a Canton component supports (e.g., 2 and 3), run

canton ­­version

(where canton is an alias for the path pointing to the Canton release binary bin/canton).

The list of supported protocol versions for each minor version is the following:

Release Protocol versions

2.0 2

2.1 2

2.2 2

2.3 2, 3

2.4 2, 3

2.5 2, 3, 4

2.6 3, 4

2.7 3, 4, 5

Features and protocol versions

Some Canton features are only available on domains running specific protocol versions. The follow-

ing table indicates the protocol versions required to use some features.

Protocol version Feature

4 and above Interfaces

Configuring the protocol version

A Canton driver or domain operator is able to configure the protocol version spoken on the domain

(e.g. 3). If the domain operator sets the protocol version spoken on a domain too high, they may

exclude participants that don’t support this protocol version yet.

For example, if the domain operator sets the protocol version on a domain to 3, participants that only

support protocol version 2 aren’t able to connect to the domain. They would be able to connect and

transact on the domain, if the protocol version set on the domain is set to 2 or lower. Note that if the

participant and domain come from the samemajor release line, the domain will also support using

protocol version 2. Thus, the domain could be configured such that the participant could connect to

it

Minimum protocol version

Similar to how a domain operator is able to configure the protocol version spoken on a domain, a

participant operator is able to configure a minimum protocol version for a participant. Configuring

a minimum protocol version guarantees that a participant will only connect to domain that use at

least this protocol versionor anewer one. This is especially desirable to ensure that aparticipant only

connects to domains that have certain security patches applied or that support particular protocol

features.

1.23. Intro 957

https://docs.daml.com/daml/reference/interfaces.html
https://docs.daml.com/2.7.3/canton/scaladoc/com/digitalasset/canton/domain/config/DomainParametersConfig.html
https://docs.daml.com/2.7.3/canton/scaladoc/com/digitalasset/canton/participant/config/ParticipantProtocolConfig.html

Daml SDK Documentation, 2.7.3

Support and bug fixes

Canton protocol major versions are supported for a minimum of 12 months from the release of the

next major version. Within a major version, only the latest minor version receives security and bug

fixes.

1.24 Obtaining Canton

1.24.1 Choosing Open-Source or Enterprise Edition

The Canton distributed ledger is included with Daml Enterprise edition, or available as open source.

Which role the application takes depends on the configuration. The main administration interface

of the Canton application is the embedded console, which is part of the application.

Canton releases come in two variants: Open-Source or Enterprise. Both support the full Canton pro-

tocol, but differ in terms of enterprise and non-functional capabilities:

Table 2: Differences between Enterprise and Open Source

Edition

Capability Enterprise Open-Source

Daml Synchronisation Yes Yes

Sub-Transaction Privacy Yes Yes

Transaction Processing Parallel (fast) Sequential (slow)

High Availability Yes No

High Throughput via Microservices Yes No

Resource Management Yes No

Ledger Pruning Yes No

AWS KMS support Yes No

Postgres Backend Yes Yes

Oracle Backend Yes No

Besu driver Yes No

Fabric driver Yes No

Please follow below instructions in order to obtain your copy of Canton.

1.24.2 Downloading the Open Source Edition

The Open Source release is available from Github. You can also use our Canton Docker images by

following our Docker instructions.

958 Chapter 1. Canton References

https://github.com/digital-asset/daml/releases/latest

Daml SDK Documentation, 2.7.3

1.24.3 Downloading the Enterprise Edition

Enterprise releases are available on request (sales@digitalasset.com) and can be downloaded from

the respective repository, or you can use our Canton Enterprise Docker images as described in our

Docker instructions.

1.24.4 Installing Canton

This guide will guide you through the process of setting up your Canton nodes to build a distributed

Daml ledger. You will learn

1. How to setup and configure a domain

2. How to setup and configure one or more participant nodes

Note: As no topology is the same, this guide will point out different configuration options as notes

wherever possible.

This guide uses the example configurations you can find in the release bundle under example/

03­advanced­configuration and explains you how to leverage these examples for your pur-

poses. Therefore, any file named in this guide will refer to subdirectories of the advanced config-

uration example.

If you are using Oracle JVM and testing security provider signatures, you should note that the pro-

vided Canton JAR file embeds the BouncyCastle Provider as a dependency. To enable the JVM to verify

the signature, you need to put the bcprov JAR on the classpath before the Canton Standalone JAR.

For example:

java ­cp bcprov­jdk15on­1.70.jar:canton­with­drivers­2.7.4­all.jar com.

↪→digitalasset.canton.CantonEnterpriseApp

1.24.4.1 Downloading Canton

The Canton Open Source code is available from Github. You can also use our Canton Docker images

by following our Docker instructions.

Daml Enterprise includes an enterprise version of the Canton ledger. If you have entitlement to Daml

Enterprise you can download the enterprise version of Canton by following the Installing Daml En-

terprise instructions and downloading the appropriate Canton artifact.

1.24.4.2 Your Topology

The first question we need to address is what the topology is that you are going after. The Canton

topology is made up of parties, participants and domains, as depicted in the following figure.

The Daml code will run on the participant node and expresses smart contracts between parties. Par-

ties are hosted on participant nodes. Participant nodes will synchronise their state with other par-

ticipant nodes by exchanging messages with each other through domains. Domains are nodes that

integrate with the underlying storage technology such as databases or other distributed ledgers. As

the Canton protocol is written in a way that assumes that Participant nodes don’t trust each other,

1.24. Obtaining Canton 959

mailto:sales@digitalasset.com
https://digitalasset.jfrog.io/artifactory/canton-enterprise/
https://github.com/digital-asset/daml/releases
https://docs.daml.com/getting-started/installation.html#installing-the-enterprise-edition
https://docs.daml.com/getting-started/installation.html#installing-the-enterprise-edition

Daml SDK Documentation, 2.7.3

960 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

you would normally expect that every organisation runs only one participant node, except for scaling

purposes.

If you want to build up a test-network for yourself, you need at least a participant node and a domain.

1.24.4.3 Environment Variables

For our convenience in this guide, we will use a few environment variables to refer to a set of direc-

tions. Please set the environment variable “CANTON” to point to the place where you have unpacked

the canton release bundle.

cd ./canton­X.Y.Z

export CANTON=`pwd`

And then set another variable that points to the advanced example directory

export CONF="$CANTON/examples/03­advanced­configuration"

1.24.4.4 Selecting your Storage Layer

In order to run any kind of node, you need to decide how and if you want to persist the data. You

currently have three choices: don’t persist and just use in-memory stores which will be deleted if

you restart your node or persist using Postgres or Oracle databases.

For this purpose, there are some storage mixin configurations (storage/) defined. These storage

mixins can be used with any of the node configurations. The in-memory configurations just work

out of the box without further configuration. The database based persistence will be explained in a

subsequent section, as you first need to initialise the database.

The mixins work by defining a shared variable which can be referenced by any node configuration

storage = ${_shared.storage}

storage.parameters.databaseName = "participant1"

If you ever see the following error: Could not resolve substitution to a value:

${_shared.storage}, then you forgot to add the persistence mixin configuration file.

Note: Please also consult the more detailed section on persistence configurations.

Persistence using Postgres

While in-memory is great for testing and demos, for more serious tasks, you need to use a database

as a persistence layer. Both the community version and the enterprise version support Postgres

as a persistence layer. Make sure that you have a running Postgres server and you need to create

one database per node. The recommended Postgres version to use is 11, as this is tested the most

thoroughly.

The Postgres storage mixin is provided by the file storage/postgres.conf.

If you justwant to experiment, you canuseDocker to get a Postgres database up and running quickly.

Here are a few commands that come in handy.

1.24. Obtaining Canton 961

Daml SDK Documentation, 2.7.3

First, pull Postgres and start it up.

docker pull postgres:14.8­bullseye

docker run ­­rm ­­name pg­docker ­e POSTGRES_PASSWORD=docker ­d ­p 5432:5432␣

↪→postgres:14.8­bullseye

Then, you can run psql using:

docker exec ­it pg­docker psql ­U postgres ­d postgres

This will invoke psql interactively. You can exit the prompt with Ctrl-D. If you want to just cat com-

mands, change ­it to ­i in above command.

Then, create a user for the database using the following SQL command

create user canton with encrypted password 'supersafe';

and create a new database for each node, granting the newly created user appropriate permissions

create database participant1;

grant all privileges on database participant1 to canton;

These commands create a database named participant1 and grant the user named canton ac-

cess to it using the password supersafe. Needless to say, you should use your own, secure pass-

word.

In order to use the storage mixin, you need to either write these settings into the configuration file,

or pass them using environment variables:

export POSTGRES_USER=canton

export POSTGRES_PASSWORD=supersafe

If you want to run also other nodes with Postgres, you need to create additional databases, one for

each.

You can reset the database by dropping then re-creating it:

drop database participant1;

create database participant1;

grant all privileges on database participant1 to canton;

Note: The storagemixin provides youwith an initial configuration. Please consult themore extended

documentation for further options.

If you are setting up a few nodes for a test network, you can use a little helper script to create the SQL

commands to setup users and databases:

python3 examples/03­advanced­configuration/storage/dbinit.py \

­­type=postgres ­­user=canton ­­password=<choose­wisely> ­­participants=2 ­­

↪→domains=1 ­­drop

The command will just create the SQL commands for your convenience. You can pipe the output

directly into the psql command

962 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

python3 examples/03­advanced­configuration/storage/dbinit.py ... | psql ­p 5432 ­

↪→h localhost ...

1.24.4.5 Setting up a Participant

Now that you have made your persistence choice (assuming Postgres hereafter, for Oracle refer

to Oracle Persistence), you could start your participant just by using one of the example files such

as $CONF/nodes/participant1.conf and start the Canton process using the Postgres persis-

tence mixin:

$CANTON/bin/canton ­c $CONF/storage/postgres.conf ­c $CONF/nodes/participant1.conf

While this would work, we recommend that you rename your node by changing the configuration file

appropriately.

Note: By default, the node will initialise itself automatically using the identity commands Topology

Administration. As a result, the node will create the necessary keys and topology transactions andwill

initialise itself using the name used in the configuration file. Please consult the identity management

section for further information.

This was everything necessary to startup your participant node. However, there are a few steps that

you want to take care of in order to secure the participant and make it usable.

Secure the APIs

1. By default, all APIs in Canton are only accessible from localhost. If you want to connect to your

node from other machines, you need to bind to 0.0.0.0 instead of localhost. You can do this

by setting address = 0.0.0.0 within the respective API configuration sections or include

the api/public.conf configuration mixin.

2. The participant node ismanaged through the administration API. If you use the console, almost

all requests will go through the administration API. We recommend that you setup mutual TLS

authentication as described in the TLS documentation section.

3. Applications and users will interact with the participant node using the ledger API. We recom-

mend that you secure your API by using TLS. You should also authorize your clients using either

JWT or TLS client certificates. The TLS configuration is the same as on the administration API.

4. In the example set, there are a set of additional configuration options which allow you to de-

fine various JWT based authorizations checks, enforced by the ledger API server. The settings

map exactly to the options documented as part of the Daml SDK. There are a few configuration

mix-ins defined in api/jwt for your convenience.

1.24. Obtaining Canton 963

https://jwt.io
https://docs.daml.com/tools/sandbox.html#running-with-authentication

Daml SDK Documentation, 2.7.3

Configure Applications, Users and Connection

Canton distinguishes static from dynamic configuration.

• Static configuration are items which are not supposed to change and are therefore captured in

the configuration file. An example is to which port to bind to.

• Dynamic configuration are items such as Daml archives (DARs), domain connections or par-

ties. All such changes are effected through console commands (or the administration APIs).

If you don’t know how to connect to domains, onboard parties or provision Daml code, please read

the getting started guide.

1.24.4.6 Setting up a Domain

In order to setup a domain, you need to decide what kind of domain you want to run. We provide in-

tegrations for different domain infrastructures. These integrations have different levels of maturity.

Your current options are

1. Postgres based domain (simplest choice)

2. Oracle based domain

3. Hyperledger Fabric based domain

4. Ethereum based domain (demo)

This sectionwill explain how to setup an in-process based domain using Postgres. All other domains

are a set of microservices and part of the Enterprise edition. In any case, you will need to operate

the main domain process which is the point of contact where participants connect to for the initial

handshake and parameter download. The details of how to set this up for other domains than the

in-process based Postgres domain are covered by the individual documentations.

Note: Please contact us at sales@digitalasset.com to get access to the Fabric or Ethereum based

integration.

The domain requires independent of the underlying ledger a place to store some governance data

(or also the messages in transit in the case of Postgres based domains). The configuration settings

for this storage are equivalent to the settings used for the participant node.

Once you have picked the storage type, you can start the domain using

$CANTON/bin/canton ­c $CONF/storage/postgres.conf ­c $CONF/nodes/domain1.conf

Secure the APIs

1. As with the participant node, all APIs bind by default to localhost. You need to bind to 0.0.0.0

if you want to access the APIs from other machines. Again, you can use the appropriate mixin

api/public.conf.

2. The administration API should be secured using client certificates as described in TLS documen-

tation section.

3. The public API needs to be properly secured using TLS. Please follow the corresponding instruc-

tions.

964 Chapter 1. Canton References

mailto:sales@digitalasset.com

Daml SDK Documentation, 2.7.3

Next Steps

The above configuration provides youwith an initial setup. Without going into details, the next steps

would be:

1. Configure who can join the domain by setting an appropriate permissioning strategy (default

is “everyone can join”).

2. Configure domain parameters

3. Setup a service agreements which any client connecting has to sign before using the domain.

1.24.4.7 Multi-Node Setup

If desired, you can run many nodes in the same process. This is convenient for testing and demon-

stration purposes. You can either do this by listing several node configurations in the same config-

uration file or by invoking the Canton process with several separate configuration files (which get

merged together).

$CANTON/bin/canton ­c $CONF/storage/postgres.conf ­c $CONF/nodes/domain1.conf,

↪→$CONF/nodes/participant1.conf

1.24.5 Running in Docker

1.24.5.1 Obtaining the Docker Images

The Canton Open Source edition is published to the digitalasset/canton-open-source dockerhub

repository. You can pull the Docker image using

docker pull digitalasset/canton­open­source[:version]

Here, the version is optional and by default, the latest version is used. The version dev is the the

current main build. Please note that previous versions were called canton­community, before we

renamed the artefact to canton­open­source.

If you want to use the edition included with Daml Enterprise, you can download it using

docker login digitalasset­canton­enterprise­docker.jfrog.io

docker pull digitalasset­canton­enterprise­docker.jfrog.io/digitalasset/canton­

↪→enterprise

1.24.5.2 Starting Canton

The canton executable is the default image entry point so all examples using bin/canton can sim-

ply substitute that with docker run digitalasset/canton.

For example, to run with our simple topology configuration in interactive console mode:

docker run ­­rm ­it digitalasset/canton­open­source:latest ­­config simple­

↪→topology.conf

The ­­rm option ensures that the container is removed when the canton process exits. The ­it

options start the container interactively and provide a TTY for running our console.

1.24. Obtaining Canton 965

https://hub.docker.com/r/digitalasset/canton-open-source
https://hub.docker.com/r/digitalasset/canton-open-source

Daml SDK Documentation, 2.7.3

The default working directory of the container is /canton.

By default docker will pull the latest tag containing the latest Canton release. As docker will only

automatically pull latest once, ensure you have the latest version by periodically running docker

pull digitalasset/canton­open­source.

Previous releases can be run by specifying their tag digitalasset/canton­open­source:2.4.

0.

1.24.5.3 Configuring Logging

The default convention with logging of containers is to have the process to log to stdout. There-

fore, we change the logging behaviour of Canton using appropriate command line flags, such as

­­log­profile=container.

1.24.5.4 Supplying custom configuration and DARs

To expose files to the canton container you must specify a volume mapping from the host machine

to the container.

For example, if you have the local directory my­application containing your custom canton con-

figuration and DAR:

docker run ­­rm ­it \

­­volume "$PWD/my­application:/canton/my­application" \

digitalasset/canton­open­source ­­config /canton/my­application/my­config.conf

DARs can be loaded using the same container local path.

1.24.5.5 Exposing the ledger-api to the host machine

Applications using Canton will typically need access to the ledger-api to read from and write to

the ledger. Each participant binds the ledger-api to the port specified at the configuration key:

ledger­api.port. For participant1 in the simple topology example this is set to port 5011.

To expose the ledger-api to port 5011 on the host machine, run docker with the following options:

docker run ­­rm ­it \

­p 5011:5011 \

digitalasset/canton­open­source \

­C canton.participants.participant1.ledger­api.address=0.0.0.0 \

­­config examples/01­simple­topology/simple­topology.conf \

­­bootstrap examples/01­simple­topology/simple­ping.canton

The ledger-api port for each participant will need to be mapped separately.

966 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.24.5.6 Running Postgres in Docker

Canton requires an appropriate database to persist data. For this purpose, such a database can also

be run in a docker container using the following, helpful command:

docker run ­d ­­rm ­­name canton­postgres ­­shm­size=256mb ­­publish 5432:5432 ­e␣

↪→POSTGRES_USER=test­user

­e POSTGRES_PASSWORD=test­password postgres:14.8­bullseye postgres ­c max_

↪→connections=500

Pleasenote that the­­publish commandallowsus topick the target portwhichwehave todefine in

the Canton configuration file. The ­­rm will delete the data store once the docker container is killed.

This is useful for short-term tests. The ­­shm­size 256mb is necessary as Docker will allocate only

64mb of shared memory by default which is insufficient for the way Canton uses Postgres.

Note that you also need to create the databases yourself, which for Postgres you can do using psql

PGPASSWORD=test­password psql ­h localhost ­U test­user << EOF

CREATE DATABASE participant1;

GRANT ALL ON DATABASE participant1 TO CURRENT_USER;

EOF

The tables will be managed automatically by Canton. The psql solution works also if you run multi-

ple nodes on one Postgres database which all require separate databases. If you run just one node

against one database, you can avoid using psql by adding ­­POSTGRES_DB=participant1 to

above docker command.

1.24.6 Static Configuration

Canton differentiates between static and dynamic configuration. Static configuration is immutable

and therefore has to be known from the beginning of the process start. An example for a static con-

figuration are the connectivity parameters to the local persistence store or the port the admin-apis

should bind to. On the other hand, connecting to a domain or adding parties however is not a static

configuration and therefore is not set via the config file but through console commands (or the admin-

istration APIs).

The configuration files themselves are written in HOCON format with some extensions:

• Durations are specified scala durations using a <length><unit> format. Valid units are de-

fined by scala directly, but behave as expected using ms, s, m, h, d to refer to milliseconds,

seconds, minutes, hours and days. Durations have to be non-negative in our context.

Canton does not run one node, but any number of nodes, be it domain or participant nodes in the

same process. Therefore, the root configuration allows to define several instances of domain and

participant nodes together with a set of general process parameters.

A sample configuration file for two participant nodes and a single domain can be seen below.

1.24. Obtaining Canton 967

https://github.com/lightbend/config/blob/master/HOCON.md
https://github.com/scala/scala/blob/v2.13.3/src/library/scala/concurrent/duration/Duration.scala#L82

Daml SDK Documentation, 2.7.3

canton {

participants {

participant1 {

storage.type = memory

admin­api.port = 5012

ledger­api.port = 5011

}

participant2 {

storage.type = memory

admin­api.port = 5022

ledger­api.port = 5021

}

}

domains {

mydomain {

storage.type = memory

public­api.port = 5018

admin­api.port = 5019

}

}

// enable ledger_api commands for our getting started guide

features.enable­testing­commands = yes

}

1.24.6.1 Configuration reference

The Canton configuration file for static properties is based on PureConfig. PureConfig maps Scala

case classes and their class structure into analogue configuration options (see e.g. the PureConfig

quick start for an example). Therefore, the ultimate source of truth for all available configuration

options and the configuration file syntax is given by the appropriate scaladocs of the CantonConfig

classes.

When understanding the mapping from scaladocs to configuration, please keep in mind that:

• CamelCase Scala names are mapped to lowercase-with-dashes names in configuration files,

e.g. domainParameters in the scaladocs becomes domain­parameters in a configuration

file (dash, not underscore).

• Option[<scala­class>]means that the configuration can be specified but doesn’t need to

be, e.g. you can specify a JWT token via token=token in a remote participant configuration,

but not specifying token is also valid.

1.24.6.2 Configuration Compatibility

The enterprise edition configuration files extend the community configuration. As such, any com-

munity configuration can run with an enterprise binary, whereas not every enterprise configuration

file will also work with community versions.

968 Chapter 1. Canton References

https://pureconfig.github.io/
https://pureconfig.github.io/docs/#quick-start
https://pureconfig.github.io/docs/#quick-start
https://docs.daml.com/2.7.3/canton/scaladoc/com/digitalasset/canton/config/index.html
https://docs.daml.com/2.7.3/canton/scaladoc/com/digitalasset/canton/participant/config/RemoteParticipantConfig.html#token:Option{[}String{]}

Daml SDK Documentation, 2.7.3

1.24.6.3 Advanced Configurations

Configuration files can be nested and combined together. First, using the include required di-

rective (with relative paths), a configuration file can include other configuration files.

canton {

domains {

include required(file("domain1.conf"))

}

}

The required keyword will trigger an error, if the included file does not exist; without the required

keyword, any missing files will be silently ignored. The file keyword instructs the configuration

parser to interpret its argument as a file name; without this keyword, the parser may interpret the

given name as URL or classpath resource. By using the file keyword, you will also get the most

intuitive semantics and most stable semantics of include. The precise rules for resolving relative

paths can be found here.

Second, by providing several configuration files, we can override configuration settings using ex-

plicit configuration option paths:

canton.participants.myparticipant.admin­api.port = 11234

If the same key is included in multiple configurations, then the last definition has highest prece-

dence.

Furthermore, HOCONsupports substituting environment variables for config values using the syntax

key = ${ENV_VAR_NAME} or optional substitution key = ${?ENV_VAR_NAME}, where the key will

only be set if the environment variable exists.

1.24.6.4 Configuration Mixin

Even more than multiple configuration files, we can leverage PureConfig to create shared configu-

ration items that refer to environment variables. A handy example is the following, which allows to

share database configuration settings in a setup involving several participant or domain nodes:

Postgres persistence configuration mixin

#

This file defines a shared configuration resources. You can mix it into your␣

↪→configuration by

refer to the shared storage resource and add the database name.

#

Example:

participant1 {

storage = ${_shared.storage}

storage.config.properties.databaseName = "participant1"

}

#

The user and password credentials are set to "canton" and "supersafe". As this␣

↪→is not "supersafe", you might

want to either change this configuration file or pass the settings in via␣

↪→environment variables.

#

_shared {

(continues on next page)

1.24. Obtaining Canton 969

https://github.com/lightbend/config/blob/master/HOCON.md#include-semantics-locating-resources
https://github.com/pureconfig/pureconfig

Daml SDK Documentation, 2.7.3

(continued from previous page)

storage {

type = postgres

config {

dataSourceClass = "org.postgresql.ds.PGSimpleDataSource"

properties = {

serverName = "localhost"

the next line will override above "serverName" in case the environment␣

↪→variable POSTGRES_HOST exists

serverName = ${?POSTGRES_HOST}

portNumber = "5432"

portNumber = ${?POSTGRES_PORT}

the next line will fail configuration parsing if the POSTGRES_USER␣

↪→environment variable is not set

user = ${POSTGRES_USER}

password = ${POSTGRES_PASSWORD}

}

}

// If defined, will configure the number of database connections per node.

// Please ensure that your database is setup with sufficient connections.

// If not configured explicitly, every node will create one connection per␣

↪→core on the host machine. This is

// subject to change with future improvements.

parameters.max­connections = ${?POSTGRES_NUM_CONNECTIONS}

}

}

Such a definition can subsequently be referenced in the actual node definition:

canton {

domains {

mydomain {

storage = ${_shared.storage}

storage.config.properties.databaseName = ${CANTON_DB_NAME_DOMAIN}

}

}

}

1.24.6.5 Multiple Domains

A Canton configuration allows to define multiple domains. Also, a Canton participant can connect

to multiple domains. This is however only supported as a preview feature and not yet suitable for

production use.

In particular, contract key uniqueness cannot be enforced over multiple domains. In this situation,

we need to turn contract key uniqueness off by setting

canton {

domains {

alpha {

// subsequent changes have no effect and the mode of a node can never␣

↪→be changed

init.domain­parameters.unique­contract­keys = false

}

}

(continues on next page)

970 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

participants {

participant1 {

// subsequent changes have no effect and the mode of a node can never␣

↪→be changed

init.parameters.unique­contract­keys = false

}

}

}

Please note that the setting is final and cannot be changed subsequently. Wewill provide amigration

path once multi-domain is fully implemented.

1.24.6.6 Fail Fast Mode

Be default, Canton will fail to start if it cannot access some external dependency such as the

database. This is preferable during initial deployment and development, as it provides instanta-

neous feedback, but can cause problems in production. As an example, if Canton is started with a

database in parallel, the Canton process would fail if the database is not ready before the Canton

process attempts to access it. To avoid this problem, you can configure a node to wait indefinitely

for an external dependency such as a database to start. The config option below will disable the “fail

fast” behaviour for participant1.

canton.participants.participant1.storage.parameters.fail­fast­on­startup = "no"

This option should be used with care as, by design, it can cause infinite, noisy waits.

1.24.6.7 Init Configuration

Some configuration values are only used during the first initialization of a node and cannot be

changed afterwards. These values are located under the init section of the relevant configuration

of the node. Below is an example with some init values for a participant config

participant1 {

init {

// example settings

ledger­api.max­deduplication­duration = 1 minute

parameters.unique­contract­keys = false

identity.node­identifier.type = random

}

}

The option ledger­api.max­deduplication­duration sets themaximumdeduplication dura-

tion that the participant’s ledger configuration service reports and uses for command deduplication.

Important: This feature is only available in Canton Enterprise

1.24. Obtaining Canton 971

/canton/usermanual/downloading.html

Daml SDK Documentation, 2.7.3

1.24.7 Enterprise Drivers

The Daml Enterprise edition of the Canton ledger provides the following drivers in addition to the

PostgreSQL-based domain in the open-source edition.

Important: This feature is only available in Canton Enterprise

1.24.7.1 Oracle Domain

In Daml Enterprise, you can run a Canton domain (sequencer, mediator, domain manager nodes)

based on an Oracle enterprise database.

Refer to the following section on how to setup Oracle for Canton as well as how to configure Canton

to use an Oracle database.

• Installation and Configuration of Canton on Oracle

Important: This feature is only available in Canton Enterprise

1.24.7.2 Fabric Domain

The Canton-on-Fabric integration runs a Canton domain where events are sequenced using the Hy-

perledger Fabric ledger.

Tutorial

To run the demo Canton Fabric deployment, you will need access to the following:

• a Daml Enterprise release with drivers for access to the example files and the Canton binary

• Canton Enterprise docker repository access, in order to obtain the Canton docker image

Also make sure to have docker and docker-compose installed.

The following example explains how to set up Canton on Fabric using a topology with 2 sequencer

nodes, (belonging to two different organizations) a domain manager, a mediator, and two partici-

pants nodes.

The demo can be found in the examples directory of the Canton Enterprise release. Unpack the Can-

ton Enterprise release and then cd into examples/e01­fabric­domain/canton­on­fabric.

Run the script ./run.sh full.

The script will start the following:

1. A Fabric ledger with 2 peers and one orderer node.

2. Two Canton Sequencer nodes that interact with the Fabric ledger.

3. A Canton process running a Canton domainmanager, a mediator, and 2 participants. The con-

figuration for this Canton process is in config/canton/demo.conf

972 Chapter 1. Canton References

/canton/usermanual/downloading.html
/canton/usermanual/downloading.html
https://hyperledger-fabric.readthedocs.io/en/latest/whatis.html
https://hyperledger-fabric.readthedocs.io/en/latest/whatis.html

Daml SDK Documentation, 2.7.3

Once the script has finished setting up (you should see the canton service print “Successfully ini-

tialized Canton-on-Fabric” together with the Canton console startup message), you will be able to

interact with the two participants using the config at config/remote/demo.conf.

You can start an instance of the Canton console to connect to the two remote participants (provided

you have also installed Canton):

<<canton­release>>/examples/e01­fabric­domain/canton­on­fabric$../../../bin/

↪→canton ­c config/remote/demo.conf

You can then perform various commands in the Canton console:

@ remoteParticipant1.id

res1: ParticipantId = PAR::participant1::012c7af9...

@ remoteParticipant1.domains.list_connected

res2: Seq[(com.digitalasset.canton.DomainAlias, com.digitalasset.canton.

↪→DomainId)] = List((Domain 'myDomain', myDomain::01dafa04...))

@ remoteParticipant1.health.ping(remoteParticipant2)

res3: concurrent.duration.Duration = 946 milliseconds

User Manual

The example files located at examples/e01­fabric­domain/canton­on­fabric provide you

with more flexibility than to run the basic demo just shown.

You will find in this directory ourmain script called run.sh. If you run the script, it will show you the

help instructions with all the options that you can choose to run the deployment with.

The demo deployment will by default use the Canton version from the release. If you wish to use a

different version, you can specify it with the CANTON_VERSION environment variable. For example,

export CANTON_VERSION=2.5.1 touseCanton v2.5.1. You canchoosedev for the latestmainbuild

of Canton.

Depending on which options you choose, it will run a docker-compose command using a different

subset of the following docker-compose files below:

• docker­compose­ledger.yaml: Sets up the Fabric ledger. You can see that there is a service

in it called ledger­setup that is a service responsible for creating the crypto materials, set-

ting up the channel and deploying the chaincode. It uses a customized and simplified version

of the test­network from fabric-samples inside a docker container.

• docker­compose­blockchain­explorer.yaml: Runs a blockchain explorer that allows vi-

sualizing the Fabric ledger on the browser.

• docker­compose­canton.yaml: Runs all canton components: a domain manager, a medi-

ator, the two Fabric sequencer(s) and two participants.

The bootstrapping process of the distributed domain is done by the docker­compose­canton.

yaml docker-compose file which uses the config/canton/demo.canton script. If you wish to

learn more about this process please refer to domain bootstrapping.

1.24. Obtaining Canton 973

https://github.com/hyperledger/fabric-samples/tree/v2.0.0/test-network
https://github.com/hyperledger/blockchain-explorer

Daml SDK Documentation, 2.7.3

Run with Docker Compose

The script run.sh works by running docker­compose using a different combination of the

docker­compose files shown above, depending on the arguments given to the script.

As was shown, to run Canton with two Fabric Sequencers in amulti-sequencer setup, run ./run.sh

full. That is equivalent to running the following docker-compose command:

<<canton­release>>/examples/e01­fabric­domain/canton­on­fabric$ COMPOSE_PROJECT_

↪→NAME="fabric­sequencer­demo" docker­compose ­f docker­compose­ledger.yaml ­f␣

↪→docker­compose­canton.yaml up

Note that you can at this point connect the remote participants to this setup just like in demo from

the tutorial.

Cleanup

When you’re done running the sequencer, make sure to run ./run.sh down. This will clean up all

docker resources so that the next run can happen smoothly.

Using the Canton Binary instead of docker

To run the full Canton setup separately outside of docker (with the canton binary or jar):

<<canton­release>>/examples/e01­fabric­domain/canton­on­fabric$./run.sh ledger

After a few seconds you should see the two peers and one orderer nodes are up by running docker

ps and seeing two hyperledger/fabric­peer containers exposing ports 9051 and 7051 and one

hyperledger/fabric­orderer exposing the port 7050. Next run the following:

<<canton­release>>/examples/e01­fabric­domain/canton­on­fabric$../../../bin/

↪→canton ­c config/self­contained/demo.conf ­­bootstrap config/canton/demo.canton

To run the jar file instead of the canton binary, simply replace ../../../bin/canton above with

java ­jar ../../../lib/canton­enterprise­*.jar.

Blockchain Explorer

If you wish to start the Hyperledger Blockchain Explorer to browse activity on the running Fabric

Ledger, add the ­e flag when running ./run.sh.

Alternatively you can use docker-compose as shown before and add ­f

docker­compose­blockchain­explorer.yaml.

You will then be able to see the explorer web UI in your browser if you go to http://

localhost:8080.

You can start the explorer separately after the ledger has been started by simply running the follow-

ing command:

<<canton­release>>/examples/e01­fabric­domain/canton­on­fabric$ COMPOSE_PROJECT_

↪→NAME="fabric­sequencer­demo" docker­compose ­f docker­compose­blockchain­

↪→explorer.yaml up
(continues on next page)

974 Chapter 1. Canton References

https://github.com/hyperledger/blockchain-explorer

Daml SDK Documentation, 2.7.3

(continued from previous page)

Note that even when the explorer is working perfectly, it might output some error messages like the

following which can be safely ignored:

[ERROR] FabricGateway ­ Failed to get block 0 from channel undefined : ␣

↪→TypeError: Cannot read property 'toString' of undefined

Fabric Setup

The Fabric Sequencer operates on top of the Fabric Ledger and uses it as the source of truth for the

state of the sequencer (all the messages and the order of them).

In order for The Fabric Sequencer to successfully operate on a given Fabric Ledger, that ledger must

have been set upwith at least one channelwhere theCantonSequencer chaincodehasbeen installed

and the sequencer needs to be configured properly to have access to the ledger.

As mentioned previously, for our demo setup we use a slightly modified version of the

test­network scripts from fabric-samples inside a docker container to setup a simple local

docker-based Fabric network. This script uses many of the Fabric CLI commands to set up this net-

work, such as configtxgen, peer channel, peer chaincode, and peer lifecycle. In a real-life scenario

one might use this CLI to set up the ledger or some specific UI provided by a cloud service provider

that hosts Blockchain services.

Regarding the chaincode setup, the Fabric Sequencer expects that the chaincode is initialized by

calling the function init (no arguments needed) and with the ­­isInit flag turned on. You can

find the chaincode source at /ledger­setup/chaincode/src/github.com/digital­asset/

sequencer.

In order to configure a Fabric Sequencer in Canton, make sure to set canton.sequencers.<your

sequencer>.sequencer.type = "fabric". The rest of the Fabric sequencer-specific config will

be under canton.sequencers.<your sequencer>.sequencer.config. Within this subconfig,

you’ll need to set the user key with Fabric client details so that the sequencer can invoke chaincode

functions and read from the ledger. You’ll also need to set organizations details which include

peers and orderers connection details that the sequencer will have access to. You must define at

least one peer that is from the same organization as your user.

The sequencer needs access to at least enough peers to fulfil the chaincode endorsement policy.

An endorsement policy that requires a single peer is enough and is what we recommend (more at

Endorsement Policies).

It is possible to indicate the channel name with the channel.name key and the chaincode

name with the channel.chaincode.name key (defaults to “sequencer”). This is all exempli-

fied, including extensive commentary, in the config file used for the first sequencer of the demo,

which you can find at examples/e01­fabric­domain/canton­on­fabric/config/fabric/

fabric­config­1.conf.

By default, the sequencer applicationwill start readingblocks from the ledger from thegenesis block.

We can signal a later starting point by setting channel.chaincode.start­block­height to a

specific number in case the chaincode has been deployed much later than genesis.

1.24. Obtaining Canton 975

https://github.com/hyperledger/fabric-samples/tree/v2.0.0/test-network
https://hyperledger-fabric.readthedocs.io/en/release-2.2/command_ref.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/commands/configtxgen.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/commands/peerchannel.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/commands/peerchaincode.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/commands/peerlifecycle.html
https://hyperledger-fabric.readthedocs.io/en/latest/policies/policies.html#chaincode-endorsement-policies

Daml SDK Documentation, 2.7.3

Block Cutting Parameters and Performance

It is possible to configure the block cutting parameters of the ledger by changing the file at

ledger­setup/configtx/configtx.yaml.

The relevant parameters are the following:

• Orderer.BatchTimeout: The amount of time to wait before creating a block.

• Orderer.BatchSize.MaxMessageCount: The maximum number of transactions to permit

in a block (block size).

Note: In other kinds of Fabric Ledger setups, one should be able to configure these parameters in

different ways.

If your use case operates under high traffic, you may benefit from increasing the block size in order

to increase your throughput at the expense of latency. If you caremore about latency and don’t need

to support high traffic, then decreasing block size will be of help.

Currently, we have set the values of 200ms for batch timeout and 50 for block size as it has em-

pirically shown to be a good tradeoff after some rounds of long running tests, but feel free to pick

parameters that fit your use-case best.

Note: See slide 17 of http://www.mscs.mu.edu/~mascots/Papers/blockchain.pdf for a discussion on

block size influence on throughput and latency.

Authorization

When operating the Fabric infrastructure to support the Fabric Sequencer onemaywant to authorize

only certain organizations to determine the sequencer’s behavior.

Only the organizations included in the Fabric Channel will be able to operate on the ledger.

Fabric Policies can also be used to limit how the capabilities of organizations in the channel. See

more on that under Endorsement Policies below.

Endorsement Policies

Fabric Policies can be used to define how members come to agreement on accepting or rejecting

changes to the network, a channel or a smart contract.

Versatile policies can be written using combinations of AND, OR and NOutOf (more detail here).

The most relevant kinds of policies for our purposes here are the channel configuration policy (de-

fined at the channel level) and endorsement policies (defined at the chaincode level).

See other kinds of policies here.

We recommend setting up a single peer endorsement policy.

We do not benefit from the chaincode endorsements because there is nomutable state in the chain-

code or special logic that needs to be endorsed. We caremore about correct ordering of blocks, which

is taken care of by the ordering service. Because of that, there is no point in using more complex

endorsement policies. A single peer endorsement policy also simplify configuration and increases

availability. The demo we ship is configured like this (at ledger-setup/configtx/configtx.yaml, under Ap-

plication.Policies.Endorsement.)

976 Chapter 1. Canton References

http://www.mscs.mu.edu/~mascots/Papers/blockchain.pdf
https://hyperledger-fabric.readthedocs.io/en/release-2.2/create_channel/create_channel_overview.html
https://hyperledger-fabric.readthedocs.io/en/latest/policies/policies.html
https://hyperledger-fabric.readthedocs.io/en/latest/policies/policies.html
https://hyperledger-fabric.readthedocs.io/en/latest/policies/policies.html#how-do-you-write-a-policy-in-fabric
https://hyperledger-fabric.readthedocs.io/en/latest/policies/policies.html#an-example-channel-configuration-policy
https://hyperledger-fabric.readthedocs.io/en/latest/policies/policies.html#chaincode-endorsement-policies
https://hyperledger-fabric.readthedocs.io/en/release-2.2/security_model.html#policies

Daml SDK Documentation, 2.7.3

High Availability

When configuring the Fabric sequencer, make sure to provide access to at least enough peers to

fulfill the chaincode endorsement policy that has been configured.

Access to additional peers may also be configured, to make the setup more highly available and to

avoid a scenario where the crash of one peer would cause transactions to stop going through due to

lack of enough endorsements.

If a client is connected tomore than one Fabric Sequencer and each sequencer defines a different set

of connections to Fabric peers (and orderers), the client will benefit from another level of availability.

If of the sequencers is not healthy, the client will simply fail over to the ones that are still healthy.

Important: This feature is only available in Canton Enterprise

1.24.7.3 Ethereum Domain

Introduction

Daml Enterprise includes a Canton Ethereum Sequencer integration, which interacts via an

Ethereum client with a smart contract Sequencer.sol deployed on an external Ethereum net-

work. It uses the blockchain as source-of-truth for sequenced events and is currently tested with

the Ethereum client Hyperledger Besu. The architecture document contains more details on the archi-

tecture of the integration.

The Ethereum Demo

Prerequisites

To run the demo, you will need access to a Daml Enterprise release with drivers, the Canton docker

repository, as well as having docker, docker-compose, and Hyperledger Besu (instructions here) in-

stalled.

Introduction

The demo Ethereum deployment can be found inside the examples directory of the Daml En-

terprise release with drivers. Unpack the Canton Drivers release and then cd into examples/

e03­ethereum­sequencer.

The script ./run.sh from the folder examples will create a new Besu testnet for the demo deploy-

ment and then start the demo. It has two scenarios: a simple and an advanced scenario. Both

scenarios will start several dockerised services:

• An ethereum testnet, using four Besunodeswith theQBFT consensusprotocol. This is the same

for the simple and advanced scenario.

1.24. Obtaining Canton 977

https://hyperledger-fabric.readthedocs.io/en/latest/policies/policies.html#chaincode-endorsement-policies
/canton/usermanual/downloading.html
https://www.hyperledger.org/use/besu
https://besu.hyperledger.org/en/stable/HowTo/Get-Started/Installation-Options/Install-Binaries

Daml SDK Documentation, 2.7.3

• An instance of Canton. This includes two Participants and a Domain with one Ethereum

sequencer for the simple scenario and two Ethereum sequencers for the advanced sce-

nario. The respective Canton configurations are incanton­conf/simple andcanton­conf/

advanced.

The environment variable CANTON_VERSION is used to select the version of Canton to use for the

demo deployment. This should normally be set to the version of Canton being used, but can alterna-

tively be set to a different version or dev for the latest main build of Canton.

Simple Scenario

The simple scenario uses one Canton sequencer whose corresponding Sequencer.sol contract is

deployed using a script before startup. It uses mutual TLS between Canton and Besu.

Advanced Scenario

The advanced scenario uses two Canton sequencers, mutual TLS, Ethereum wallets and uses the

same script deploying Sequencer.sol.

Running a scenario

To start the simple or advanced demo scenario run:

<<canton­driver­release>>/examples/e03­ethereum­sequencer$ CANTON_VERSION=<your␣

↪→version> ./run.sh simple

or

<<canton­driver­release>>/examples/e03­ethereum­sequencer$ CANTON_VERSION=<your␣

↪→version> ./run.sh advanced

A new Besu testnet will be created and the demo will begin running with the created testnet. Once

the demo is initialized and running, it will print out

Successfully initialized Canton­on­Ethereum

You will then be able to interact with the two participants via their ledger APIs (or their admin APIs)

respectively running on ports 5011 and 5021 (or 5012 and 5022).

For example, you can start an instance of the Canton console to connect to the two remote partici-

pants. You can find the Canton binary in bin/canton of the Canton Enterprise release artifact.

<<canton­driver­release>>/examples/e03­ethereum­sequencer$../../bin/canton ­c␣

↪→canton­conf/remote.conf

You can then perform various commands in the Canton console:

978 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

@ remoteParticipant1.id

res5: ParticipantId = ParticipantId(

UniqueIdentifier(Identifier("participant1"), Namespace(Fingerprint(

↪→"01e69a39e2c821fc98eaeb22994b47084162122a01ebcb16dfb2514ccafcedd43d")))

)

@ remoteParticipant2.id

res6: ParticipantId = ParticipantId(

UniqueIdentifier(Identifier("participant2"), Namespace(Fingerprint(

↪→"014aeb29dddff83678bc6f1194c363c6f0d18d3a6c9655927a7fb5adc84ec0532c")))

)

@ remoteParticipant1.domains.list_connected

res7: Seq[(com.digitalasset.canton.DomainAlias, com.digitalasset.canton.

↪→DomainId)] = List(

(Domain 'mydomain', mydomain::01537eb8...)

)

@ remoteParticipant1.health.ping(remoteParticipant2)

res8: concurrent.duration.Duration = 968 milliseconds

To shutdown and remove all Docker containers, you can execute stop­with­purge.sh:

<<canton­driver­release>>/examples/e03­ethereum­sequencer$./stop­with­purge.sh

Generating a Clean Testnet

The directory examples/e03­ethereum­sequencer/qbft­testnet contains the script

generate­testnet.sh. This automatically generates a clean Besu network in a testnet

directory, including new randomized private keys. generate­testnet.sh is automatically called

by run.sh but youmay want to understand and edit it to create your own custom Besu deployment.

When generate­testnet.sh is run:

• The state from any previous runs of generate­testnet.sh is deleted and a new directory

testnet is created.

• A genesis file, a set of keys for four Besu nodes and TLS certificates for Canton and Besu are au-

tomatically generated. These can be found in the folders testnet/nodei (where i has values

1 to 4) and testnet/tls. respectively.

• The four Besu nodes are started via calling start­node.sh.

If the script finds Besu keys or TLS certificates in the same directory as the script, it will attempt to

reuse them. This significantly reduces startup time if you want to test different network configura-

tions.

The generated Besu testnet has been configured largely following these tutorials:

• https://besu.hyperledger.org/en/stable/private-networks/tutorials/qbft/

• and https://besu.hyperledger.org/en/stable/HowTo/Configure/FreeGas/

Note that the RPC HTTP APIs ETH, TXPOOL, and WEB3 of Besu need to be enabled when using the Besu

driver.

1.24. Obtaining Canton 979

https://besu.hyperledger.org/en/stable/private-networks/tutorials/qbft/
https://besu.hyperledger.org/en/stable/HowTo/Configure/FreeGas/

Daml SDK Documentation, 2.7.3

Customization of the Besu network

The parameters of the generated testnet can be changed by modifying the genesis.json file de-

fined inline in generate­testnet.sh. Similarly, the CLI options with which the Besu nodes are

started can be configured by modifying start­node.sh

Customization of the Demo Configuration

You can also modify the Canton configurations and bootstrap scripts for the demo if, for example,

you want to add persistence to the participants. The Canton configurations are found in

• canton­conf/simple and

• canton­conf/advanced

for the simple and advanced scenarios, respectively. If you want to change Ethereum-specific con-

figuration options, (e.g. to configure a different wallet) please refer to the documentation section on

this page and the corresponding scaladoc configuration option.

Note that if you change port mappings in the Canton config file you may also need to update the

corresponding docker compose files in directory docker­compose/.

Error codes

The Ethereum Sequencer application auto-detects many common configuration and deployment

issues and logs them as warnings or errors with error codes. If you see such a warning or error, please

refer to the respective error code explanation and resolution.

TLS configuration

Canton supports mutual TLS between Canton and Ethereum client nodes and the demo contains an

example of how to configure this. Concretely, the TLS configuration for Canton expects a key store

and the path to the Ethereum TLS certificates:

_tls {

canton­key­store {

path="/canton/testnet­working/tls/canton_store.p12"

password="password"

}

ethereum­certificate­path = "/canton/testnet­working/tls/besu_cert.pem"

}

canton.sequencers.ethereumSequencer1.sequencer.config.tls = ${_tls}

The demo also contains the utility script qbft­testnet/generate­tls.sh which is called by

generate­testnet.sh and writes the TLS certificates to qbft­testnet/testnet/tls. These

certificates are then used by start­node.sh.

If Canton is not configured to use TLS with an Ethereum node, it will attempt to communicate via a

HTTP endpoint on the Ethereum node (and HTTPS for TLS).

980 Chapter 1. Canton References

https://docs.daml.com/2.7.3/canton/scaladoc/com/digitalasset/canton/domain/sequencing/config/EthereumLedgerNodeConfig.html

Daml SDK Documentation, 2.7.3

For more details on the Canton configuration, please see the scaladocs of the TLS configuration. For

more details on how to configure Besu to accept TLS connections (as done in the demo, see especially

file start­node.sh), please see the Besu documentation.

Ethereum accounts and wallets

Canton allows you to configure an Ethereum wallet (and therefore an Ethereum account) to be used

by an Ethereum sequencer application. The configured Ethereum account is used for all interac-

tions of the Ethereum sequencer with the Ethereum blockchain. If no Ethereum account is explicitly

configured, a random Ethereum account is used.

Note: When multiple Ethereum sequencer applications interact with the same Sequencer.sol

instance, each Ethereum Sequencer process needs to use a separate Ethereum account. Otherwise,

transactions may get stuck due to nonce mismatches.

Canton allows configuring a wallet in UTC JSON and BIP 39 format.

The Ethereum demo includes examples ofmix-in wallet configuration files for both formats; the UTC

JSON-based wallet mix-in looks as follows:

canton.sequencers.ethereumSequencer2.sequencer.config.wallet {

type = "utc­json­wallet"

password = "password"

wallet­path = "advanced/utc­wallet.json"

}

with following utc­wallet.json:

canton.sequencers.ethereumSequencer2.sequencer.config.wallet {

type = "utc­json­wallet"

password = "password"

wallet­path = "advanced/utc­wallet.json"

}

The BIP39-based wallet mix-in looks as follows:

canton.sequencers.ethereumSequencer2.sequencer.config.wallet {

type = "utc­json­wallet"

password = "password"

wallet­path = "advanced/utc­wallet.json"

}

For more details, please refer to the Canton scaladoc documentation.

1.24. Obtaining Canton 981

https://docs.daml.com/2.7.3/canton/scaladoc/com/digitalasset/canton/domain/sequencing/config/EthereumLedgerNodeConfig\protect \TU\textdollar \protect \TU\textdollar TlsConfig.html
https://besu.hyperledger.org/en/21.10.6/HowTo/Configure/TLS/Configure-TLS/#create-the-known-clients-file
https://theethereum.wiki/accounts__addresses__public_and_private_keys__and_tokens/#UTC_JSON_Keystore_File
https://en.bitcoin.it/wiki/BIP_0039
https://docs.daml.com/2.7.3/canton/scaladoc/com/digitalasset/canton/domain/sequencing/config/EthereumLedgerNodeConfig\protect \TU\textdollar \protect \TU\textdollar WalletConfig.html

Daml SDK Documentation, 2.7.3

Deployment of the sequencer contract

Manual deployment

If you want to manually deploy Sequencer.sol to your Ethereum network, the file

<<canton­drivers­release>>/examples/e03­ethereum­sequencer/qbft­testnet/

Sequencer.bin­runtime contains the compiled Solidity code you need to deploy. For Besu, for

example, you will need to specify the contents of Sequencer.bin­runtime in "code": "..."

as documented here. This can also be seen in the generate­testnet.sh script.

When a contract is deployed using the genesis.json, the constructor is never called. Therefore,

any variables initialized as part of the constructor need to be set using the "storage": "..."

configuration block.

"alloc": {

"0x0af0238112db255e1a2c8a6c1cd4e122c56bbc38": {

"code": "'"$contractCode"'",

"storage": {

"4":

↪→"0x312e302e31000a"

}

}

The above alloc block from the genesis.json deploys the contract code and initializes any fields

needed.

Requirements for the Ethereum Network

The Canton Ethereum integration is currently tested with the QBFT consensus protocol as illustrated

in the demo. Other setups are possible, but they should fulfill the following requirements:

• The Ethereum client Hyperledger Besu (version in release notes tested, but any sibling sub-

minor version should be OK) should be used and expose the RPC HTTP APIs ETH, TXPOOL, and

WEB3.

• Currently, a free gas network is required. This means setting the gas price to zero.

• The block size limit (oftenmeasured in gas, and sometimes referred to as the ‘gas limit’) must

be larger than any message to be sequenced. It is recommended to set this parameter as high

as possible.

• The contract size limit must be big enough for the Canton Ethereum Domain to store all re-

quired state for sequencing messages. It is recommended to set this parameter as high as

possible.

• Proof of authority protocols are recommended over proof of work.

• Currently, consensus protocols must have immediate finality. This means that ledger forks

should not occur with the chosen consensus protocol.

Furthermore, we also have some suggestions to improve throughput and latency irrespective of the

choice of Ethereum client.

982 Chapter 1. Canton References

https://besu.hyperledger.org/stable/private-networks/how-to/configure/contracts
https://besu.hyperledger.org/en/stable/private-networks/how-to/configure/consensus/qbft/
https://besu.hyperledger.org/en/stable
https://besu.hyperledger.org/en/stable/Concepts/Consensus-Protocols/Comparing-PoA/#immediate-finality

Daml SDK Documentation, 2.7.3

Throughput

Generally, the throughput of a Canton system using Ethereum-based sequencers is limited by the

throughput of the Ethereum client. Thus, if an Ethereum-based sequencer does not deliver the de-

sired throughput, the throughput and deployment of the Ethereum clients should be optimized in

the first instance. For Besu performance optimization, some recommendations can be found in the

Besu documentation - in particular, it is crucial to use a fast storage media.

Latency

Within a Canton transaction, there are three sequential sequencing steps, that is, a single Canton

transaction leads to at least three sequential messages sent to the sequencer. This is illustrated,

e.g., in the message sequence diagram of the Canton 101 section. As a result, a Canton transaction

also leads to at least three Ethereum transactions within three different blocks. Thus, to achieve

relatively low latencies, the Ethereum network networks must be configured with a frequent block

mining frequency (configured via blockperiodseconds in Besu) and ideally co-located with the

Canton sequencer node. A blockmining frequency of at least one block per second is recommended.

Trust Properties of the Ethereum Sequencer Integration

The demo integration uses two participants and two different EthereumSequencer nodes. Each par-

ticipant chooses its preferred Ethereum Sequencer node, and this node performs reads and writes

on behalf of the participant. Therefore, each participant must trust its chosen Ethereum Sequencer

node. Additionally, each participant must trust some proportion of the nodes in the Ethereum net-

work as determined by the consensus protocol.

High Availability

The Ethereum sequencer currently supports connecting to just one Ethereum client node. The se-

quencer node monitors its dependencies and signals to its users any potential issue that would

prevent it from operating correctly.

The health information is exposed as a Grpc Health service; sequencer clients use this in order to

determinewhether a sequencer is usable or or not. The health state is also included in the sequencer

status accessible on the Admin API. In order to benefit from higher availability, clientsmust connect

to multiple sequencers such that they can fail over automatically to healthy sequencers once some

of them become unhealthy.

The following health checks are implemented:

• Can the sequencer node connect and read from the EthereumRPC API by calling the eth_synch-

ing method and check whether a result can be obtained?

• Can the sequencer node connect to its database?

1.24. Obtaining Canton 983

https://besu.hyperledger.org/en/latest/HowTo/Use-Privacy/Performance-Best-Practices/#general-performance
https://besu.hyperledger.org/en/latest/HowTo/Use-Privacy/Performance-Best-Practices/#general-performance
https://github.com/grpc/grpc/blob/master/doc/health-checking.md
https://www.quicknode.com/docs/ethereum/eth_synching
https://www.quicknode.com/docs/ethereum/eth_synching

Daml SDK Documentation, 2.7.3

1.25 High Availability (HA)

The following sections cover how High Availability (HA) is implemented in Daml solutions.

1.25.1 Intro to HA in Canton

This section provides an overview of High Availability (HA) in Canton, howparticipant nodes are repli-

cated, and how HA is implemented on the domain.

1.25.1.1 Overview

High Availability (HA) is the elimination of single points of failure to ensure that applications con-

tinue to operate when a component they depend on, such as a server, fails.

HA for Daml solutions focuses on the following components running in separate processes:

• Participant nodes

• Domains:

– Sequencer

– Mediator

– Domain Topology Manager

984 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.25. High Availability (HA) 985

Daml SDK Documentation, 2.7.3

Participant Nodes

The availability of a participant node shouldn’t affect the availability of another participant node,

except for the following workflows:

1. Where they are both involved.

2. When they have distinct visibility configurations, i.e. they manage different parties involved in

the workflow.

For example, if they both host the same party, transactions involving the party can continue as long

as either of them is available.

Note: An application operating on behalf of a party cannot transparently failover from one partici-

pant node to another due to the difference in offsets emitted on each participant.

Domains

A participant node’s availability is not affected by the availability of the domain, except for workflows

that use the domain. This allows participant nodes and domains to take care of their HA separately.

Replication

To achieve HA, components replicate. All replicas of the same component have the same trust as-

sumptions, i.e. the operators of one replica must trust the operators of the other replicas.

Databases

In general, when a component is backed by a database/ledger, the component’s HA relies on the HA

of the database/ledger. Therefore, the component’s operator must handle the HA of the database

separately.

All database-backed components are designed to be tolerant of temporary database outages. Dur-

ing the database failover period, components halt processing until the database becomes available

again, resuming thereafter.

Transactions that involve these componentsmay timeout if the failover takes too long. Nevertheless,

they can be safely resubmitted, as command deduplication is idempotent.

Health Check

Canton components expose a health endpoint, for checking the health of the components and their

subcomponents.

Important: This feature is only available in Canton Enterprise

986 Chapter 1. Canton References

/canton/usermanual/downloading.html

Daml SDK Documentation, 2.7.3

1.25.1.2 Replicating Participant Nodes

Participant nodes are replicated in an active-passive configuration with a shared database.

The active node services requests while one or more passive replicas wait in warm-standby mode,

ready to take over if the active replica fails.

High-Level System Design

A logical participant node - shown below - contains multiple physical participant node replicas, all

using a shared database.

Each replica exposes its own Ledger API although these can be hidden by a single Ledger API endpoint

running on a highly available load balancer.

The load balancer configuration contains details of all Ledger API server addresses and the ports for

1.25. High Availability (HA) 987

Daml SDK Documentation, 2.7.3

the participant node replicas. Replicas expose their active or passive status via a health endpoint.

The load balancer can also detect when the backend port becomes unreachable, i.e. when the ledger

API server is shut down as a node goes from active to passive.

Periodically polling the health API endpoint, the load balancer identifies a replica as offline if it is

passive. Requests are then only sent to the active participant node.

Important: The health endpoint polling frequency can affect the failover duration.

During failover, requestsmay still go to the former active replica; which rejects them. The application

retries until the requests are forwarded to the new active replica.

Shared Database

The replicas require a shared database for the following reasons:

1. To share the command ID deduplication state of the Ledger API command submission service.

This prevents double submission of commands in case of failover.

2. To obtain consistent ledger offsets without which the application cannot seamlessly failover

to another replica. The database stores ledger offsets in a non-deterministic manner based on

the insertion order of publishing events in the multi-domain event log.

Leader Election

A leader election establishes the active replica. The participant node sets the chosen active replica

as the single writer to the shared database.

Exclusive, application-level database locks - tied to the database connection lifetime - enforce the

leader election and set the chosen replica as the single writer.

Note: Alternative approaches for leader election, such as Raft, are unsuitable because the leader

status can be lost between the leader check and the use of the shared resource, i.e. writing to the

database. Therefore, we cannot guarantee a single writer.

Exclusive Lock Acquisition

A participant node replica uses a write connection pool that is tied to an exclusive lock on a main

connection, and a shared lock on all pool connections. If themain lock is lost, the pool’s connections

are ramped down. The new active replicamust wait until all the passive node’s pool connections are

closed, which is done by trying to acquire the shared lock in exclusive mode.

Note: Using the same connection for writes ensures that the lock is active while writes are per-

formed.

988 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Lock ID Allocation

Exclusive application-level locks are identified by a 30-bit integer lock id which is allocated based

on a scope name and counter.

The lock counter differentiates locks used in Canton from each other, depending on their usage. The

scope name ensures the uniqueness of the lock id for a given lock counter. The allocation process

generates a unique lock id by hashing and truncating the scope and counter to 30 bits.

Note: On Oracle, the lock scope is the schema name, i.e. user name. On PostgreSQL, it is the name

of the database.

Participant replicas must allocate lock ids and counters consistently. It is, therefore, crucial that

replicas are configured with the same storage configuration, e.g. for Oracle using the correct user-

name to allocate the lock ids within the correct scope.

Prevent Passive Replica Activity

Important: Passive replicas do not hold the exclusive lock and cannot write to the shared database.

To avoid passive replicas attempting to write to the database - any such attempt fails and produces

an error - we use a coarse-grained guard on domain connectivity and API services.

To prevent the passive replica fromprocessing domain events, and ensure it rejects incoming Ledger

API requests, we keep the passive replica disconnected from the domains as coarse-grained enforce-

ment.

Lock Loss and Failover

If the active replica crashes or loses connection to the database, the lock is released and a passive

replica can claim the lock and become active. Any pending writes in the formerly active replica fail

due to losing the underlying connection and the corresponding lock.

The active replica has a grace period in which it may rebuild the connection and reclaim the lock,

due to the higher frequency of health checks on the lock in the active replica vs. the passive replica

trying to acquire the lock at a lower frequency.

The passive replicas continuously attempt to acquire the lock within a configurable interval. Once

the lock is acquired, the participant replication manager sets the state of the successful replica to

active.

When a passive replica becomes active, it connects to previously connected domains to resume

event processing. The new active replica accepts incoming requests, e.g. on the Ledger API which

starts when the node becomes active. The former active replica, which is now passive, shuts down

its Ledger API to stop accepting incoming requests.

1.25. High Availability (HA) 989

Daml SDK Documentation, 2.7.3

1.25.1.3 HA on the Domain

The diagram shows a domain containing the topology manager, mediator, and sequencer compo-

nents.

A domain is fully available only when all components are available. However, transaction processing

still runs even when only the mediator and the sequencer are available.

As all of the domain components run in separate processes, HA is architected per component. This

means that in an HA deployment, the domain is not deployed as a domain node (which would run

the mediator, sequencer, and manager in a single process).

Sequencer

Sequencer HA depends on the chosen implementation. For example, when using a ledger such as

Hyperledger Fabric, HA is already set up. Multiple sequencer nodes must be deployed.

The domain returns multiple sequenced endpoints, any of which can be used to interact with the

underlying ledger.

990 Chapter 1. Canton References

../../../../canton/usermanual/domains/fabric.html

Daml SDK Documentation, 2.7.3

Database Sequencer

The database sequencer has an active-active setup over a shared database.

The sequencer relies on the database for both HA and consistency. The database ensures that events

are sequenced in a consistent order.

Many sequencer nodes can be deployed. Each node has concurrent read andwrite componentswhen

accessing the database. The load balancer evenly distributes requests between sequencer nodes.

Note: The system stops sending requests to an unhealthy node.

Consistency and the Database Sequencer

Each node is assigned a distinct index from the total number of sequencer nodes. The index is in-

cluded in event timestamps to ensure that sequencer nodes never use duplicate event IDs/times-

tamps.

Events are written to the events table in ascending timestamp order. Readers need to know the

point at which events can be read without the risk of an earlier event being inserted by a write pro-

cess. To do this, writers regularly update a watermark table into which they publish their latest

event timestamp. Readers take the minimum timestamp from the table as the point from which

they can safely query events.

1.25. High Availability (HA) 991

Daml SDK Documentation, 2.7.3

Failing Sequencer Nodes and the Database Sequencer

If a sequencer node fails, it stops updating its watermark value and, when the value reaches the

minimum timestamp, all readers pause as they cannot read beyond this point.

When sequencer writers update their watermark, they also check that other sequencer watermarks

are updated promptly. If a sequencer node has not updated its watermark within a configurable

interval, it ismarked as offline and thewatermark is no longer included in the query for theminimum

event timestamp. Future events from the offline sequencer are ignored after this timestamp.

Note: For this process to operate optimally, the clocks of the hosts of the sequencer nodes should

be synchronized. This is considered reasonable for co-located sequencer hosts which use NTP.

Recovering Sequencer Nodes

When a failed sequencer recovers and resumes operation, it deletes all events that arrived past its

last known watermark. This avoids incorrectly re-inserting them, as readers may have seen them

already.

It is safe to do this and it does not affect events that have already been read. Any eventswritten by the

sequencer while it is offline are ignored by readers. The sequencer then replaces its old watermark

with a new timestamp and resumes normal operation.

After resuming operation, there is a short pause in reading from other sequencers due to updates

to the watermark table. However, requests to the other sequencer nodes continue successfully, and

any events written during this period are available for reading as soon as the pause is over.

The recovered sequencer has likely lost any send requests that were in process during fail-

ure. These can be safely retried, without the risk of creating duplicate events, once their

max­sequencing­time is exceeded.

Mediator

Like the participant node, the mediator is replicated and only one replica node is active.

All replicas of the samemediator node share the same database to access the state and coordinate

with the active mediator node.

1.25.2 HA for Production Systems

This section covers how to implement High Availability (HA) in production systems.

992 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.25.2.1 HA and Horizontal Scaling

Introduction

This sectiondescribeshow todeploy a completeDaml solution in anHAconfigurationwithhorizontal

scaling characteristics.

The distributed solution uses Daml v2.x Enterprise with Canton services, HTTP JSON API server, Trig-

ger services, and OAuth 2.0 middleware components. In this document we primarily discuss a SQL

domain that uses PostgreSQL as the synchronization mechanism for the sequencer backend. We

also describe a blockchain domain.

Information in this section is useful for the following:

• Production deployment planning.

• Understanding HA architectures.

• Understanding Daml application scalability.

• Building Kubernetes deployments.

• HA/scalability deployments in the cloud or on-premises.

Target audience

1. A distributed application provider who runs a domain and their own participant service.

2. Distributed application users who run a participant service.

3. Infrastructure operators or site reliability engineers (SREs).

Important: A distributed application build engineer persona acts as a combination of all three

target audiences as they need to validate that the distributed application works as part of the CI/CD

activity.

1.25.2.2 High Availability From a Business Perspective

Important: This section contains information for those unfamiliar with HA and how it is fundamen-

tal to operational efficiency. We look at how business goals drive the configuration and operational

aspects of the HA deployment.

Those familiar with these principles may skip this page.

Definition1

“High availability (HA) is a characteristic of a system which aims to ensure an agreed

level of operational performance, usually uptime, for a higher than normal period.”

…

“There are three principles of systems design in reliability engineering which can help

achieve high availability.

1 https://en.wikipedia.org/wiki/High_availability as retrieved 02/22/2023

1.25. High Availability (HA) 993

https://en.wikipedia.org/wiki/Uptime
https://en.wikipedia.org/wiki/Systems_design
https://en.wikipedia.org/wiki/Reliability_engineering
https://en.wikipedia.org/wiki/High_availability

Daml SDK Documentation, 2.7.3

1. Elimination of single points of failure. This means adding or building redundancy

into the system so that failure of a component does not mean failure of the entire

system.

2. Reliable crossover. In redundant systems, the crossover point itself tends to become

a single point of failure. Reliable systems must provide for reliable crossover.

3. Detection of failures as they occur. If the two principles above are observed, then a

user may never see a failure - but the maintenance activity must.”

Daml solution design honors these principles by:

1. Eliminating single points of failure through redundant components.

2. Executing reliable crossover throughnetworkingbest practices, in conjunctionwith theCanton

transaction consensus protocol, to eliminate partially processed requests.

3. Ensuring automated failover when a single failure is detected.

Useful External Resources

• Multi-Region fundamental 1: Understanding the requirements.

• Availability Table.

• Embracing Risk.

• What is an error budget—and why does it matter?.

• Available … or not? That is the question—CRE life lessons.

Availability

Availability defines whether a system is able to fulfill its intended function over a period of time, i.e.

the system works as intended 99.5% or 99.999% of the time.

The inverse is the percentage of time it is expected to fail, such as 0.5% or 0.001%.

Time-based availability

Availability is usually measured in whole system uptime percentage, rather than the uptime per-

centages of separate components.

A refinement of thismetric isunplanneddowntime, i.e. the amount of time that the system isunexpect-

edly unavailable. This is because well-published maintenance activities have no business impact

whereas unplanned downtime can cause lost revenue, reputational harm, customers switching to a

competitor, etc.

The general formula is:

availability = uptime/(uptime+ downtime)

This formula calculates how many minutes of downtime are allowed in a given period. For example,

a system with an availability target of 99.99% can be down for up to 52.56 minutes in an entire year

and stay within its availability level.

The table below shows estimated downtimes for a number of given availability levels.

994 Chapter 1. Canton References

https://en.wikipedia.org/wiki/Single_point_of_failure
https://en.wikipedia.org/wiki/Redundancy_(engineering)
https://docs.aws.amazon.com/whitepapers/latest/aws-multi-region-fundamentals/multi-region-fundamental-1-understanding-the-requirements.html
https://sre.google/sre-book/availability-table/
https://sre.google/sre-book/embracing-risk/#risk-management_measuring-service-risk_aggregate-availability-equation
https://www.atlassian.com/incident-management/kpis/error-budget#:~:text=An%20error%20budget%20is%20the,can%20fail%20without%20contractual%20consequences.
https://cloud.google.com/blog/products/gcp/available-or-not-that-is-the-question-cre-life-lessons

Daml SDK Documentation, 2.7.3

Avail-

ability

level

Down-

time per

year

Down-

time per

quarter

Down-

time per

month

Down-

time per

week

Downtime per day | Downtime

per hour

90% 36.52

days

9.13 days 3.04 days 16.80

hours

2.40 hours | 6.00 minutes

95% 18.26

days

4.57 days 1.52 days 8.40

hours

1.20 hours 3.00 minutes

99% 3.65 days 21.91

hours

7.30

hours

1.68hours 14.40

minutes

36.00 seconds

99.5% 1.83 days 10.96

hours

3.65

hours

50.40

minutes

7.20 min-

utes

18.00 seconds

99.9% 8.77

hours

2.19 hours 43.83

minutes

10.08

minutes

1.44 min-

utes

3.60 seconds

99.95% 4.38

hours

1.10 hours 21.91 min-

utes

5.04 min-

utes

43.20

seconds

1.80 seconds

99.99% 52.59

minutes

13.15 min-

utes

4.38 min-

utes

1.01 min-

utes

8.64 sec-

onds

0.36 seconds

99.999% 5.26 min-

utes

1.31 min-

utes

26.30

seconds

6.05 sec-

onds

0.86 sec-

onds

0.04 seconds

Note: For a custom availability percentage, use the availability calculator.

Data like this helps a business define an error budget or “themaximum amount of time that a tech-

nical system can fail without contractual consequences.”2 which may also be a KPI for SREs.

For example, over a 30 day (43,200 minutes) time-window, with an availability target of 99.9%, the

system must not be down for more than 43.2 minutes. This 43.2 minute figure is a concrete target

to plan around, and is often referred to as the error budget. If you exceed 43.2 minutes of downtime

over 30 days, you fail to meet your availability goal.

Aggregate request availability

In contrast to time-based availability, the fine-grained aggregate request availability metric consid-

ers the number of failed requests i.e. x% of total failed requests.

This metric is most useful for services that may be partially available or whose load varies over the

course of a day or week rather than remaining constant, or to monitor specific, business-critical

endpoints.

The general formula is:

availability = successfulRequests/totalRequests

Although not all requests have equal business value, thismetric is often calculated over all requests

made to the system. For example, a system that serves 2.5M requests per day, with a daily availability

target of 99.99%, can serve up to 250 errors and still hit the target.

2 https://www.atlassian.com/incident-management/kpis/error-budget

1.25. High Availability (HA) 995

https://availability.sre.xyz/
https://www.atlassian.com/incident-management/kpis/error-budget

Daml SDK Documentation, 2.7.3

Note: If a failing request retries and succeeds, it is not considered failed since the end-user sees no

failure.

Resiliency

Resiliency is related to availability. “Resiliency is the capability to handle partial failures while con-

tinuing to execute and not crash. Inmodern application architectures — whether it bemicroservices

running in containers on-premises or applications running in the cloud— failures are going to occur.

For example, applications that communicate over networks (like services talking to a database or

an API) are subject to transient failures. These temporary faults cause lesser amounts of downtime

due to timeouts, overloaded resources, networking hiccups, and other problems that come and go

and are hard to reproduce. These failures are usually self-correcting.”3

Resiliency and availability are enhanced by best practice patterns, such as the retry pattern. When a

customer submits a request and receives a success response, they expect that request to succeed.

If they receive an error response instead, then the user does not expect it to succeed and knows that

they need to retry the request.

“Retries can be an effective way to handle transient failures that occur with cross-component com-

munication in a system.”? A retry pattern is often coupled with the circuit breaker pattern, which

“effectively shuts down all retries on an operation after a set number of retries have failed. This

allows the system to recover from failed retries after hitting a known limit and gives it a chance to

react in another way, like falling back to a cached value or returning a message to the user to try

again later.”?

The Daml solution’s client application needs to add this type of resiliency to increase availability of

the overall system consisting of platform and application.

Other Common Metrics / RTO and RPO

Recovery TimeObjective (RTO) is themaximumacceptable delay between the interruption of service

and restoration of service. This value determines an acceptable duration over which the service is

impaired. It is a slice of the error budget but for a single instance of downtime.

Recovery Point Objective (RPO) is the maximum acceptable amount of time since the last data re-

covery point. This determines the acceptable data loss between the latest recovery point and a ser-

vice interruption.

Financial systems often require support for an RPO of zero.

3 https://azure.microsoft.com/en-us/blog/using-the-retry-pattern-to-make-your-cloud-application-more-resilient/

996 Chapter 1. Canton References

https://azure.microsoft.com/en-us/blog/using-the-retry-pattern-to-make-your-cloud-application-more-resilient/

Daml SDK Documentation, 2.7.3

HA Cost Trade-Offs

High availability can be costly and thus require trade-offs.

To illustrate, extreme events that are highly improbable and costly to guard against - such as an as-

teroid strike that wipes out a continent’s data centers - may not need consideration. This highlights

the trade-off between the cost of avoiding an outage, the probability of a single failure (single com-

ponent redundancy), and the probability of multiple simultaneous failures (multiple component,

integrated redundancy).

We can analyze the trade-offs by deriving the cost of loss of availability using unplanned downtime

as follows:

cost = errorBudget ∗ revenueLostPerMinuteOfDowntime

where the revenue lost per minute of downtime is a projected or measured statistic.

Use this formula in different configurations to compare increasing cost against availability to de-

termine an appropriate trade-off for your business goals.

1.25.2.3 Use Cases By Role

Distributed Application Provider

The distributed application provider is also the domain owner and the domain administrator. Their

deployment activities come first since all other activities require a domain.

Deploy a domain

The distributed application provider deploys the following components:

• The domain manager.

• The mediator.

• The sequencer.

• The HA-configured PostgreSQL managed service1 that is the sequencer’s backend.

1 The PostgreSQL managed service could also be a PostgreSQL server running on hardware that was deployed by the

user.

1.25. High Availability (HA) 997

Daml SDK Documentation, 2.7.3

Note:

• The domain manager, mediator, and sequencer all have internal databases - not shown here -

which should be HA-configured.

• Also not shown, a bastion host (e.g. Azure bastion host) can be configured for accessing the

domain components. This provides an additional layer of security by limiting access to the

domain. Additional production access controls may be needed.

The distributed application provider may choose to isolate the domain from their participant node

as a security measure using a Virtual Network Gateway as shown. If this additional isolation is not

required then the Virtual Network Gateway is not needed. A different type of networking component

may be more appropriate - e.g. HAProxy, NGINX, etc.

The figure below shows the participant node and its ledger client.

998 Chapter 1. Canton References

https://azure.microsoft.com/en-us/products/azure-bastion/#overview

Daml SDK Documentation, 2.7.3

Asmentioned, the distributed domain owner can add additional componentswhich interact with the

participant node. These components are normally deployed shortly after deploying the participant

node.

1.25. High Availability (HA) 999

Daml SDK Documentation, 2.7.3

Connect a new participant node

We expect the domain to run in permissioned mode with allow-listing2 enabled to only include par-

ticipant nodes whose identities have been registered with the domainmanager. This involves a data

exchange between the distributed application provider and the distributed application user.

The distributed application provider communicates specific information to a new distributed appli-

cation user so that the user’s participant node can join the application’s domain. The figure below

illustrates this exchange, withBob as the application provider andAlice as the new application user.

2 The default mode is an open mode which is less secure.

1000 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1. Alice deploys a participant node - not shown.

2. Alice extracts the participant node’s unique identifier into a string. The id includes the display

name for the participant plus a hash of the public identity signing key.

3. Alice makes her participant id known to Bob through an external mechanism, e.g. email.

4. Bob runs a console command which adds Alice’s participant id to the domain allowlist and

configures the appropriate node’s permissions. An example commandwhich gives default per-

missions is shown here:

domainManager1.participants.set_state(participantIdFromString,␣

↪→ParticipantPermission.Submission, TrustLevel.Ordinary)

5. Bob passes Alice the following information, which allows her to connect to the domain:

a. One, or more, sequencer endpoints - https urls.

b. Certificate root public cert, if it’s not a publicly signed CA.

6. Alice picks a unique name for the domain that is local to her participant. This will be used in

the connection command.

7. Alice enters the information into the connection command connect_multi and connects to

Bob’s domain - not shown.

participantAlise.domains.connect_multi("AliceDomainName", Seq(sequencer1,␣

↪→sequencer2))

1.25. High Availability (HA) 1001

Daml SDK Documentation, 2.7.3

Prepare domain infrastructure for adding new participant nodes

A distributed application provider expands the use of their application by allowingmore participant

nodes to join their domain. A sequencer node is the gateway to the domain for all participant nodes.

It follows that the policy on when to add a new sequencer is important and must be clearly defined.

As shown below, a domain may start with a sequencer node and then addmore sequencer nodes as

required.

There are two options for adding a new participant node.

1. Deploy a sequencer for each participant node to introduce more isolation between the events

each participant sees. For example, Coke may want to avoid cross-contamination of events

with Pepsi, and vice-versa, so each organization wants its own sequencer. The Coke sequencer

sees all the Coke and Pepsi messages through the shared database; the sequencer backend is

a broadcast. However, Coke’s sequencer node provides a multicast to Coke’s participant node

with only Coke’s events. Pepsi’s setup functions similarly.

2. Avoid the additional isolation and focus on high resource utilization of the sequencer by having

several participant nodes use the same sequencer; i.e. a single sequencer handles multiple

distributed application users. This option produces a lighter load on the joint HA PostgreSQL

database.

Distributed Application User

The distributed application user deploys their own participant node and connects to the provider’s

public sequencer endpoint. There is some similarity here with the distributed application provider.

However, the distributed application user’s DAR files (i.e. business logic) may be a subset of the DAR

files deployed by the distributed application provider.

This setup is extendable. For example, the distributed application user may be interested in several

distributed applications, and so connect their participant node to the related domains by deploying

multipleDARs for thedifferent applications’ business logic. Theymayalsowrite their ownextensions

that include additional DARs. These extensions do not impact the use cases described here.

1002 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

The simple configuration shown above, like that of the domain owner, can expand into a more ca-

pable deployment such as shown below by adding the HTTP JSON API server, trigger services, and

OAuth2 middleware.

1.25. High Availability (HA) 1003

Daml SDK Documentation, 2.7.3

Upload the distributed application DAR files

Check the documentation for information on how to upload DAR files.

Site Reliability Engineer (SRE)

Monitor systems

TheSRE’s primary use case ismonitoring. Monitoring is required onboth the domain andparticipant

nodes, although the scope is slightly different.

Monitoring normally consists of the following activities:

• Export logs.

• Expose metrics via Prometheus endpoint.

• Parse out trace IDs from the log files.

• Keep logs for audit.

Check the documentation for more information on monitoring.

1.25.2.4 Implementing HA and Scaling Deployments

Basic Daml Deployment

The diagram below illustrates the most basic multi-party Daml deployment possible.

Each logical box in the diagram containsmultiple internal components in an HA production configu-

ration. The following sections expand on each of these logical boxes to show how they are configured

for production.

1004 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

The diagram shows the following components:

• A Ledger client that uses the Ledger API; the client entry point to execute business logic.

• Participant nodes which expose the public Ledger API. They execute the Daml business logic

of the distributed application based on an API request or as part of the Canton transaction

consensus protocol.

• A Mediator which acts as a transaction manager for the Canton consensus protocol. Ensures

that either all of the parts of a transaction succeed or there is no change.

• The Domain manager whichmanages the domain with transactions that update the topology

and make public keys available.

• Sequencers expose the Canton API so that all clients see events as ordered by a guaranteed,

multicast communication mechanism. A sequencer has a backend component that is hidden

from its clients. Depending on the backend component, the solution supports either a SQL or

blockchain domain.

1.25. High Availability (HA) 1005

Daml SDK Documentation, 2.7.3

Note: The term node may refer to a logical box with multiple components or a single JVM process

depending on context.

The distributed application provider deploys several components: the domain (domain manager1,

mediator, and sequencer) and their own participant node(s).

The distributed application user only has to deploy a participant node and connect that node (from

their own private network) to the private network of the domain via communication with a se-

quencer.2

A typical Daml deployment has additional components which are shown in the figure below:

The diagram shows the following components:

1 The domain manager can also be referred to as the ‘topology manager’. For a production deployment, the domain

manager can be thought of as containing the topology manager with some additional capabilities.
2 Although there are multiple sequencers shown, this is just for illustration purpose. As little as a single sequencer is

needed. For example, Organization N’s participant node could connect to Sequencer 1 and not Sequencer N.

1006 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

• An HTTP JSON API server which supplements the gRPC API endpoints of the participant node

by providing an HTTP REST (HTTP JSON API) endpoint. It also has an internal cache so that it

can be more responsive to queries.

• Trigger services that listen to the ledger event stream for events that trigger business logic.

• OAuth2 middleware that supports a refresh of the Trigger services JWT token and manages

the background requests for a refresh token for the Trigger services.

• The Identity Provider (IDP) is the authentication entity that provides the JWT token.. The IDP is

outside of the Daml solution but nevertheless a necessary component. Different organizations

may use different IDPs for their participant nodes.

Note: We expect the domain owner to implement additional business logic for managing the dis-

tributed application in both their participant node and trigger service nodes.

Architecture for HA and Scaling

As a production system becomes busier, it is necessary to scale up the components.

Vertical scaling is the easiest way to handle more load, but there are limits to its benefits. Vertical

scaling is not discussed here since this is a well-known technique. Instead, this document focuses

on horizontal scaling where backup/redundant components are deployed to different availability

zones as part of the HA configuration.

Note: For clarity the diagrams follow these conventions:

• Solid, black boxes for individual instances, processes, and containers.

• Databases may be identified as shared and highly available with an HA in the disk figure.

• Distinguishing between a single instance and the HA variant is done by using the term service

for HA. There is also a blue dashed line around the components thatmake up an HA service. The

word service is chosen because it looks like a single endpoint which is highly available, like a

managed service in the cloud.

• For simplicity, a blue dashed box with a name is shorthand for the HA variant of that compo-

nent.

• Health signals are a dashed red line that point to the instance that is a recipient of that signal.

• Communication channels that are passive but become active upon failover are bordered by a

dashed green line.

Thus, in the figure below, the Middle service blue box encompasses all the components that make

up that service. Middle services instances are in black boxes with solid lines. The blue box Another

is short form for a service called Another. There is a load balancer between the middle and bottom

services.

1.25. High Availability (HA) 1007

Daml SDK Documentation, 2.7.3

Each component can scale using a stateless or stateful horizontal scaling pattern. In this diagram,

the bottom service has instances that are independent and considered stateless. Stateless horizon-

tal scaling is achieved by adding another bottom instance. This also increases the availability be-

cause there are more redundant instances. The middle service is stateful since the instances share

a local database so the HAmodel is active-passive. Scaling the statefulmiddle service is achieved by

replicating the entiremiddle service: i.e. add two instances connected by a PostgreSQL HA database.

HTTP JSON API and Participant Node Services

In caseswhere there is a single participant service (and correspondingHTTP JSONAPI service) that all

the client requests go to, the HTTP JSON API and participant services need to be considered together

since there are some state dependencies between the two. In particular, users and related parties

are configured on a participant node so they will be handled by a particular participant service. This

means that the HTTP JSON API service that is connected to a participant service also serves those

same users and parties.

However, if there is more than one participant service (e.g. with horizontal scaling) then it is the

application’s responsibility to understand which participant service to send a request to (and the

corresponding HTTP JSON API service), based on the user(s) or parties of the request. Another way to

describe this is that users and parties are sharded across the participant andHTTP JSONAPI services

and the application is responsible for targeting the right instance.

As shown below, an HTTP JSON API service is an endpoint that has four components. Each HTTP JSON

1008 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

API instance emits a health signal that the load balancer uses to direct traffic. The HTTP JSON API’s

database acts as a cache that is local to the instance, meaning it does not need to be HA since the

cache can be reconstructed at any time.

Note: The HTTP JSON API server does not currently support mTLS from client applications. mTLS is

supported between the load balancer and participant node.

There are a couple of important distinctions between the participant service and the HTTP JSON API

service setup:

• A single participant service canhave several HTTP JSONAPI servers. However, a givenHTTP JSON

API server should only connect to a single participant service.

• The HTTP JSON API component operates in an active-active mode while participant nodes op-

erate in an active-passive mode.

1.25. High Availability (HA) 1009

Daml SDK Documentation, 2.7.3

The deployment below shows a single HTTP JSON API service and participant service. There are some

hidden state dependencies that include:

• A ledger offset that requires the HTTP JSON API server be associated with a single participant

service.

• Command deduplication functions on a single participant service alone.

• Shared users and parties for both the HTTP JSON API service and the participant service.

1010 Chapter 1. Canton References

../../../app-dev/command-deduplication.html

Daml SDK Documentation, 2.7.3

1.25. High Availability (HA) 1011

Daml SDK Documentation, 2.7.3

Horizontal scaling is accomplished by sharding application users and parties across a joint HTTP

JSON API and participant service, and adding another HTTP JSON API and participant stack, as shown

below.

Sequencer Service

The sequencer service operates in active-activemode, whichmeans that all sequencer instances can

accept and process Canton protocol API requests. This has benefits for both scaling and availability.

Deploying a sequencer depends on business requirements which may impact deployment config-

urations such as load balancing configurations and whether the domain is fully or only partially

decentralized.

Sequencer service load balancing options

The sequencer service has several clients: participant, mediator, and domain manager. mTLS be-

tween these clients is unavailable at the time of writing.

The two available load balancing options are shown in the diagram below.

1012 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

The first option, on the left, fronts the sequencer service with a load balancer that all sequencer

clients use. This option simplifies configuration and connectivity but adds the complexity of config-

uring the load balancer.

The option on the right is a gRPC java client library providing a round-robin selection mechanism

for load balancing that automatically round-robins through multiple sequencer connections and

includes the ones that are healthy. This setup requires the distributed application provider and dis-

tributed application users tomaintain the configuration information of all the available sequencers

in the sequencer client. The sequencer client continuously monitors the health of each sequencer

endpoint when selecting a possible node in round-robin fashion.

See the Canton documentation on connection to high availability sequencers and client load balancing

for more information.

Blockchain domains

A blockchain domain has a fully decentralized data path and is used when there is no trust be-

tween the distributed application providers and users. Whereas the sequencer queries the Post-

greSQL backend directly in a SQL domain, this cannot be done in a blockchain domain. Instead, a

local database to the sequencer is added to speed things up. The sequencer backend then uses the

blockchain to provide a guaranteed ordered multicast of events.

The figure below shows a HyperLedger Fabric blockchain example. Notice that each sequencer has

an independent local cache running on a PostgreSQL database. This local cache ensures efficiency

because the sequencer avoids having to scan the entire blockchain when it starts up or reconnects

after a temporary interruption. It also reduces the performance load on the blockchain.

1.25. High Availability (HA) 1013

/canton/usermanual/ha.html#client-side-load-balancing

Daml SDK Documentation, 2.7.3

This figure has a load balancer fronting the sequencer nodes, but client side load balancing would

also work. There are several benefits to using a load balancer:

• Clients have a single endpoint that consolidates the health signals, simplifying setup and trou-

bleshooting.

• Adding a sequencer does not require updating the configuration information in each client.

• Additional security.

Since sequencer nodes are always active, horizontal scaling for a blockchain sequencer service is

achieved by adding a new sequencer along with its associated local cache database and enabling it

for client use.

1014 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

SQL domains

The SQL domain is only partially decentralized and is used when the sequencer’s backend data is

stored in a single PostgreSQL database managed by a centralized distributed application provider.

This option requires participant users to have some trust in the application provider.

A sequencer needs no local cache because it queries the backend database directly with no perfor-

mance penalty.

Since sequencer nodes are always active, horizontal scaling for the SQL domain sequencer service

is achieved by adding a new sequencer and enabling the clients to use it.

1.25. High Availability (HA) 1015

Daml SDK Documentation, 2.7.3

Mediator Service

The mediator service has no client-facing ingest. It also has no load balancing proxy or health end-

points. Instead, it uses client side load balancing based on the gRPC infrastructure. It is like the

participant node in that it has a PostgreSQL database in an HA configuration. The mediator compo-

nents, however, act in an active-passive configuration.

Horizontal scaling is achieved by adding another mediator service.

1016 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Domain Manager Service

The domain manager service also has no client-facing ingest point. Like the mediator services, the

domainmanager is in an active-passive configuration. There is, however, only a single domainman-

ager service per domain. Thismeans that there is no horizontal load balancingmodel for the domain

manager. This is feasible because the domain manager is not in the transaction processing path

path and so it manages topology transactions which are orders of magnitude less frequent than the

Daml transactions that the mediators manage.

1.25. High Availability (HA) 1017

Daml SDK Documentation, 2.7.3

As of v2.5.0, the domain manager uses PostgreSQL in an HA configuration for HA support.

Trigger Service

The trigger service includes the OAuth 2.0 middleware and trigger service nodes. As shown below, it

does not operate in an HA configuration that supports a single failure. Instead, it requires amonitor-

ing system to detect if the trigger service node or OAuth 2.0 middleware is unhealthy and mitigate

any issues by doing one of the following:

1. Restarting the failed item.

2. Stopping the unhealthy instance and then starting another instance.

A shared PostgreSQL database is needed for the trigger service node. As shown below, the OAuth 2.0

middleware connects to an OAuth provider.

1018 Chapter 1. Canton References

https://blog.digitalasset.com/developers/release-notes/2.5.0

Daml SDK Documentation, 2.7.3

Horizontal scaling is achieved by deploying additional trigger service nodes. For example, in the

figure below, there are two pairs of trigger service nodes (pink and green) which use the same OAuth

2.0 middleware node that is connected to a single OAuth provider.

Running the same trigger rule on multiple live trigger service instances is not allowed. In this ex-

ample the pink rules are running in a single live trigger service node, just like the green rules are

running in a single live trigger service node.

Remember, the box with the dashed lines indicate that the node is started when the active node is

identified as unhealthy.

1.25. High Availability (HA) 1019

Daml SDK Documentation, 2.7.3

Each trigger service node is limited to a single OAuth provider and is unable to support queries

against multiple OAuth providers. For example, the pink and green trigger services in the figure

above cannot query against both a Google OAuth provider and an Apple OAuth provider - each trigger

service must be configured to use exactly one of these providers.

If access to more than a single OAuth provider is needed, distinct pairs of trigger service nodes and

OAuth 2.0 middleware servers are configured. This is shown below. Please note running the same

trigger rule on multiple live trigger service instances is not allowed in this configuration either.

1020 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.25.2.5 HA Deployment Solution for Production

The figure below assembles the components already described using the single-endpoint load bal-

ancer option. Although this setupmay look complex, each service is independent and deployed sep-

arately.

The figure below uses client-side load balancing for the domain owner’s sequencer access. Separate

sequencer nodes are shown for the distributed application user’s connectivity.

1.25. High Availability (HA) 1021

Daml SDK Documentation, 2.7.3

The diagrams maximize the independence between components by showing them as running on

independent hosts. However, for actual deployment scenarios, some simplification and cost reduc-

tion is possible. For example, combining components on the same host is a decision that reduces

complexity and cost but may impact availability if one component impacts another (e.g. when one

component uses 100% of the CPU and starves the other components).

Distinct service instances should, in principle, run on different hosts to avoid a single point of failure

at the infrastructure level. However, businessgoals alwaysdrive theHA requirements andhow things

are deployed.

1022 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.25.2.6 HA in the Cloud

The HA deployment and horizontal scaling models already discussed are generic by design and fo-

cus on handling single component failures automatically and transparently. A cloud deployment,

along with orchestration tools, adds additional HA capabilities and options formore complex failure

modes.

The figure below shows a minimal, high-level, AWS-based HA solution. The active nodes are green

and the passive nodes are gray. Different availability zones can house different instances of the

components within a service to provide location resiliency. For example, if the active participant

node in US-EAST-1 fails then the passive node in US-EAST-2 becomes the active node.

Note: Network connectivity between the relevant components is not shown.

Having redundant components in different regions creates additional location resiliency. For exam-

ple, in the figure above, an active participant node is deployed in the USA EAST region and a passive

participant node in the USA WEST region. The redundant, passive participant may not even be run-

ning depending on how the HA solution has been architected to satisfy the business requirements,

such as:

• The entire Daml solution stack may switch over to a different region all at once with a global

load balancer redirecting the requests to the newly activated region. This can address the sit-

uation where a normally active region becomes unavailable.

• Single components may be started in different regions for a finer-grained HA approach. This

introduces additional network latency for cross-region traffic.

• Directing a switchover from one region to another is atypical and adds complexity so this may

bemanually initiated, or requiremanual approval, to avoid flapping from one region to another

when a problem is intermittent.

1.25. High Availability (HA) 1023

Daml SDK Documentation, 2.7.3

• The sequencer backend is an HA database that can work across regions. The options are

discussed below. Sequencers in an availability zone can be running since they act in an

active-active mode.

A redundant sequencer in a different region may be cold and need to be started if the PostgreSQL

database it is connected to is read-only. The sequencer backend database in the example is Post-

greSQL operating in a highly available manner with a single write node and read-only replicas. How-

ever, the read-only replicas and write nodes use synchronous replication to avoid data loss - the

sequencer backend can look like a ledger fork to participant nodes if there is data loss.

Per AWS:

Whenwrites involve synchronous replication acrossmultiple Regions tomeet strong con-

sistency requirements, write latency increases by an order of magnitude. A higher write

latency is not something that can typically be retro-fitted into an application without sig-

nificant changes.1

Synchronous replication impacts latency and throughput so tuning and testing are needed.

Although not shown in the figure above, the databases for each service may need to be highly avail-

able and shared across availability zones and regions. To illustrate this, the participant service is

expanded into three regions in the figure below. The latencies within a region are expected to be low

so synchronous replication within a region provides an RPO of zero for single failures. Asynchronous

replication for a participant node can be used across regions but it can incur some data loss as

described in the restore caveats documentation.

The initial block diagram in this section expands into the larger figure below which shows all the

services acting in HA mode. The sequencer backend, participant, mediator, and domain manager

nodes all have replicated databases ensuring no data loss.

By leveraging the elasticity of the cloud, the orchestration tool may provide possible cost reduc-

tion, at the expense of additional recovery time, by not running the passive node instances in the

background. Instead, the orchestration tool starts a passive node when it detects the active node is

unhealthy or has failed. In general, the node startup time is typically several seconds. However, ad-

ditional timemay be needed for additional data synchronization. Passive nodes can also be running

1 https://docs.aws.amazon.com/whitepapers/latest/aws-multi-region-fundamentals/multi-region-fundamental-2-understanding-the-data.

html

1024 Chapter 1. Canton References

../../../canton/usermanual/persistence.html#restore-caveats
https://docs.aws.amazon.com/whitepapers/latest/aws-multi-region-fundamentals/multi-region-fundamental-2-understanding-the-data.html
https://docs.aws.amazon.com/whitepapers/latest/aws-multi-region-fundamentals/multi-region-fundamental-2-understanding-the-data.html

Daml SDK Documentation, 2.7.3

in standby mode but this incurs the cost of running those nodes.

When there is a failover in the Daml solution, some requests may not succeed. Specifically, with

the Canton transaction consensus protocol either a request completes in its entirety or there are no

changes. This means that, although there is no cleanup required for failed requests, the application

is responsible for retrying the failed request that did not complete during a failover event. The appli-

cation needs to be designed to handle this scenario (which is a common requirement for web-based

applications).

See the documentation on the metrics RTO and RPO for more information.

Database Options

Each cloud vendor chooses from several PostgreSQL options. Selection is ultimately driven by busi-

ness requirements, which drive the HA requirements fulfilled by selecting the appropriate Post-

greSQL option. Amanageddatabase selection allows for trade-offs in availability if choosingbetween

an Aurora DB cluster or an Aurora global database. Amazon RDS for PostgreSQL is a self-managed

option which is more flexible than the managed service. Each of these options is introduced below

to explore what each can provide in an HA context.

Although the examples presented here are for AWS, other cloud vendors have similar technologies

that are compatible with PostgreSQL. Please consult the relevant cloud vendors documentation.

1.25. High Availability (HA) 1025

../ha-and-scaling/understanding-ha.html#other-common-metrics-rto-and-rpo

Daml SDK Documentation, 2.7.3

Amazon RDS for PostgreSQL, Multi-AZ with two readable standbysPage 1025, 2

This is a self-managed option for deploying:

highly available, durable MySQL or PostgreSQL databases in three AZs using Amazon RDS

Multi-AZ with two readable standbys. Gain automatic failovers in typically under 35 sec-

onds, up to 2x faster transaction commit latency compared to Amazon RDSMulti-AZ with

one standby, additional read capacity, and a choice of AWS Graviton2 - or Intel-based in-

stances for compute.Page 1025, 2

Amazon Aurora database provides RPO zero at the storage level by requiring at least four

of the six storage nodes to acknowledge receipt before confirming the transaction. Aurora

splits the six storage nodes across Availability Zones (AZs) in an AWS Region. Amazon

Relational Database Service (Amazon RDS) Multi-AZ (except SQL Server) provides close

to RPO zero at the storage level independently of the database. It writes each block syn-

chronously to two Amazon Elastic Block Storage (Amazon EBS) volumes in two different

AZs.3

Amazon Aurora DB clusterPage 1025, 4

This option:

consists of one or more DB instances and a cluster volume that manages the data for

those DB instances. An Aurora cluster volume is a virtual database storage volume that

spans multiple Availability Zones, with each Availability Zone having a copy of the DB

cluster data.Page 1025, 4

Additionally,

An Aurora Replica is an independent endpoint in an Aurora DB cluster, best used for scal-

ing read operations and increasing availability. An Aurora DB cluster can include up to 15

Aurora Replicas located throughout the Availability Zones of the Aurora DB cluster’s AWS

Region.5

Aurora global databasePage 1025, 6

This database:

consists of one primary AWS Region where your data is written, and up to five read-only

secondary AWS Regions. You issue write operations directly to the primary DB cluster in

the primary AWS Region. Aurora replicates data to the secondary AWS Regions using ded-

icated infrastructure, with latency typically under a second. … An Aurora global database

supports two different approaches to failover. …Page 1025, 6

Recovery from Region-wide outages - The secondary clusters allow you tomake an Aurora

global database available in a new primary AWSRegionmore quickly (lower RTO) andwith

less data loss (lower RPO) than traditional replication solutions.Page 1025, 6

2 https://aws.amazon.com/rds/features/multi-az/
3 https://aws.amazon.com/blogs/publicsector/a-pragmatic-approach-to-rpo-zero/
4 https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Overview.html
5 https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Replication.html
6 https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html

1026 Chapter 1. Canton References

https://aws.amazon.com/rds/features/multi-az/
https://aws.amazon.com/blogs/publicsector/a-pragmatic-approach-to-rpo-zero/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Overview.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Replication.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html

Daml SDK Documentation, 2.7.3

Important: This feature is only available in Canton Enterprise

1.25.3 High Availability Usage

This section looks at some of the components already mentioned and supplies useful Canton com-

mands.

1.25.3.1 Domain Manager

As explained in Domain Architecture and Integrations, a domain internally comprises a sequencer, a

mediator, and a topology manager. When running a simple domain node (configured with canton.

domains, as shown in most of the examples), this node will be running a topology manager, a se-

quencer and a mediator all internally.

It is possible however to run sequencer(s) andmediator(s) as standalone nodes, as will be explained

in the next topics. But to complete the domain setup, it is also necessary to run a domain manager

node (configured with canton.domain­managers), which takes care of the bootstrapping of the

distributed domain setup and runs the topology manager.

The domain bootstrapping process is explained in Setting up a Distributed DomainWith a Single Console.

The domainmanager can bemade highly available by running an active node and an arbitrary num-

ber of replicated passive nodes on hot standby, similar to the mediator HA mechanism (see below).

The only requirement is shared storage between all the domain manager instances, which must be

either Postgres or Oracle. Nodes automatically handle their state and become active/passive when-

ever the active instance fails, such that from a configuration perspective this is entirely transparent.

An example configuration of a standalone HA domainmanager node could therefore simply look like

this:

canton {

domain­managers {

domainManager1 {

admin­api.port = 5016

// The storage needs to be either Postgres or Oracle to support replicated␣

↪→domain managers nodes

// See the persistence section of the documentation for how to set these up

// https://docs.daml.com/canton/usermanual/persistence.html

storage = ${_shared.storage}

}

}

}

In a replicated setup, only the active domain manager can be used to issue topology transactions

(for instance bootstrapping a domain or onboard new mediators/sequencers). To find out if a do-

main manager is active, one can run domainManager1.health.active in the canton console (for a do-

main manager node named domainManager1). Another way to avoid this manual check is to place a

load balancer in front of the domain managers and let it pick the active instance. See Load Balancer

Configuration for more information.

Commands that indirectly use the domain manager (for instance connecting a participant to a do-

main) will automatically be picked up by the active domain manager, so this is only relevant when

1.25. High Availability (HA) 1027

/canton/usermanual/downloading.html

Daml SDK Documentation, 2.7.3

issuing commands directly against a specific domain manager.

1.25.3.2 HA Setup on Oracle

The HA approach that is used by the participant, mediator, and sequencer nodes requires additional

permissions to be granted on Oracle to the database user.

All replicas of a node must be configured with the same DB user name. The DB user must have the

following permissions granted:

GRANT EXECUTE ON SYS.DBMS_LOCK TO $username

GRANT SELECT ON V_$LOCK TO $username

GRANT SELECT ON V_$MYSTAT TO $username

In the above commands the $usernamemust be replaced with the configured DB user name. These

permissions allow the DB user to request application-level locks on Oracle, as well as to query the

state of locks and its own session information.

For a high-availability deployment the underlying Oracle store must be set up in a highly available

manner (for example, using Oracle RAC or Veritas VCS).

Oracle high availability is supported only when the database presents to the Canton nodes as a sin-

gle, logical Oracle database. There is no support for horizontal scaling through sharding or other

multi-database RAC features beyond simple HA clustering.

1.25.3.3 Mediator

The mediator service uses a hot-standby mechanism with an arbitrary number of replicas. During

a mediator fail-over, all in-flight requests get purged. As a result, these requests will timeout at the

participants. The applications need to retry the underlying commands.

Running a Stand-Alone Mediator Node

Adomainmaybe statically configuredwith a single embeddedmediator node or itmaybe configured

to work with external mediators. Once the domain has been initialized further mediators can be

added at runtime.

By default, a domain node will run an embedded mediator node itself. This is useful in simple de-

ployments where all domain functionality can be co-located on a single host. In a distributed setup

where domain services are operated overmanymachines, you can instead configure a domainman-

ager node and bootstrap the domain with mediator(s) running externally.

Mediator nodes can be defined in the same manner as Canton participants and domains.

mediators {

mediator1 {

admin­api.port = 5017

}

When the domain node starts it will automatically provide the embedded mediator information

about the domain. External mediators have to be initialized using runtime administration in order

to complete the domain initialization.

1028 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

HA Configuration

HAmediator support is only available in the Daml Enterprise version of Canton and only PostgreSQL

and Oracle-based storage are supported for HA.

Mediator node replicas are configured in the Canton configuration file as individual stand-alone

mediator nodes with two required changes for each mediator node replica:

• Using the same storage configuration to ensure access to the shared database.

• Set replication.enabled = true for each mediator node replica.

Note: Starting from canton 2.4.0, mediator replication is enabled by default when using supported

storage.

Only the activemediator node replica has to be initialized through the domain bootstrap commands.

The passive replicas observe the initialization via the shared database.

Further replicas can be started at runtime without any additional setup. They remain passive until

the current active mediator node replica fails.

1.25.3.4 Sequencer

The database-based sequencer can be horizontally scaled and placed behind a load balancer to pro-

vide high availability and performance improvements.

Deploy multiple sequencer nodes for the Domain with the following configuration:

• All sequencer nodes share the samedatabase so ensure that the storage configuration for each

sequencer matches.

• All sequencer nodes must be configured with high-availability.enabled = true.

Note: Starting from canton 2.4.0, sequencer high availability is enabled by default when using sup-

ported storage.

canton {

sequencers {

sequencer1 {

sequencer {

type = database

high­availability.enabled = true

}

The Domain node only supports embedded sequencers, so a distributed setup using a domainman-

ager node must then be configured to use these Sequencer nodes by pointing it at these external

services.

Once configured the domain must be bootstrapped with the new external sequencer using the boot-

strap_domain operational process. These sequencers share a database so just use a single instance

for bootstrapping and the replicas will come online once the shared database has sufficient state

for starting.

1.25. High Availability (HA) 1029

Daml SDK Documentation, 2.7.3

As these nodes are likely running in separate processes you could run this command entirely exter-

nally using a remote administration configuration.

canton {

remote­domains {

da {

these details are provided to other nodes to use for how they should␣

↪→connect to the embedded sequencer

public­api {

address = da­domain.local

port = 1234

}

admin­api {

address = da­domain.local

port = 1235

}

}

}

remote­sequencers {

sequencer1 {

these details are provided to other nodes to use for how they should␣

↪→connect to the sequencer

public­api {

address = sequencer1.local

port = 1235

}

the server used from running administration commands

admin­api {

address = sequencer1.local

port = 1235

}

}

}

}

There are twomethods available for exposing the horizontally scaled sequencer instances to partic-

ipants.

Total Node Count

The sequencer.high­availability.total­node­count parameter is used to divide up time

among the database sequencers. The parameter should not be changed once a set of sequencer

nodes have been deployed. Because each message sequenced must have a unique timestamp, a

sequencer node will use timestamps modulo the total­node­count plus own index in order to

create timestamps that do not conflict with other sequencer nodes while sequencing the messages

in a parallel database insertion process. Canton uses microseconds, which yields a theoretical max

throughput of 1millionmessages per secondper domain. Now, this theoretical throughput is divided

equally amongall sequencer nodes (total­node­count). Therefore, if you settotal­node­count

too high, then a sequencermight not be able to operate at themaximum theoretical throughput. We

recommend keeping the default value of 10, as all above explanations are only theoretical and we

have not yet seen a database/hard disk that can handle the theoretical throughput. Also note that a

message might contain multiple events, such that we are talking about high numbers here.

1030 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

External load balancer

Using a load balancer is recommended when you have a http2+grpc supporting load balancer avail-

able, and can’t/don’t want to expose details of the backend sequencers to clients. An advanced de-

ployment could also support elastically scaling the number of sequencers available and dynamically

reconfigure the load balancer for this updated set.

An example HAProxy configuration for exposing gRPC services without TLS looks like:

frontend domain_frontend

bind 1234 proto h2

default_backend domain_backend

backend domain_backend

option httpchk

http­check connect

http­check send meth GET uri /health

balance roundrobin

server sequencer1 sequencer1.local:1234 proto h2 check port 8080

server sequencer2 sequencer2.local:1234 proto h2 check port 8080

server sequencer3 sequencer3.local:1234 proto h2 check port 8080

Please note that for quick failover, you also need to add HTTP health checks, as otherwise, you have

to wait for the TCP timeout to occur before failover happens. The public API of the sequencer exposes

the standard gRPC health endpoints, but these are currently not supported by HAProxy, hence you

need to fall-back on the HTTP / health endpoint.

Client-side load balancing

Using client-side load balancing is recommended where an external load-balancing service is un-

available (or lacks http2+grpc support), and the set of sequencers is static and can be configured at

the client.

To simply specify multiple sequencers use the domains.connect_multi console command when

registering/connecting to the domain:

myparticipant.domains.connect_multi(

"my_domain_alias",

Seq("https://sequencer1.example.com", "https://sequencer2.example.com", "https:/

↪→/sequencer3.example.com")

)

See the sequencer connectivity documentation formoredetails onhow toaddmanysequencer urlswhen

combined with other domain connection options. The domain connection configuration can also be

changed at runtime to add or replace configured sequencer connections. Note the domain will have

to be disconnected and reconnected at the participant for the updated configuration to be used.

1.25. High Availability (HA) 1031

http://www.haproxy.org/
https://github.com/grpc/grpc/blob/master/doc/health-checking.md

Daml SDK Documentation, 2.7.3

1.25.3.5 Participant

High availability of a participant node is achieved by runningmultiple participant node replicas that

have access to a shared database.

Participant node replicas are configured in the Canton configuration file as individual participants

with two required changes for each participant node replica:

• Using the same storage configuration to ensure access to the shared database. Only Post-

greSQL andOracle-based storage is supported for HA. For Oracle it is crucial that the participant

replicas use the same username to access the shared database.

• Set replication.enabled = true for each participant node replica.

Note: Starting fromCanton2.4.0, participant replication is enabledbydefaultwhenusing supported

storage.

Domain Connectivity during Fail-over

During fail-over from one replica to another, the new active replica re-connects to all configured

domains forwhichmanualConnect = false. Thismeans if the former active replicawasmanually

connected to a domain, this domain connection is not automatically re-established during fail-over

but must be performed manually again.

Manual Trigger of a Fail-over

Fail-over from the active to a passive replica is done automatically when the active replica has a

failure, but one can also initiate a graceful fail-over with the following command:

activeParticipantReplica.replication.set_passive()

The command succeeds if there is at least another passive replica that takes over from the current

active replica, otherwise the active replica remains active.

Load Balancer Configuration

Many replicatedparticipants canbeplacedbehindanappropriately sophisticated loadbalancer that

will by health checks determinewhich participant instance is active and direct ledger and admin api

requests to that instance appropriately. This makes participant replication and failover transpar-

ent from the perspective of the ledger-api application or canton console administering the logical

participant, as they will simply be pointed at the load balancer.

Participants should be configured to expose an “IsActive” health status on our health HTTP server

using the following monitoring configuration:

canton {

monitoring {

health {

server {

address = 0.0.0.0

(continues on next page)

1032 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

port = 8000

}

check.type = is­active

}

}

}

Once running this server will report a HTTP 200 status code on a HTTP/1 GET request to /health if the

participant is currently the active replica. Otherwise, an error will be returned.

To use a load balancer it must support HTTP/1 health checks for routing requests on a separate

HTTP/2 (gRPC) server. This is possible with HAProxy using the following example configuration:

global

log stdout format raw local0

defaults

log global

mode http

option httplog

enabled so long running connections are logged immediately upon connect

option logasap

expose the admin­api and ledger­api as separate servers

frontend admin­api

bind :15001 proto h2

default_backend admin­api

backend admin­api

enable http health checks

option httpchk

required to create a separate connection to query the load balancer.

this is particularly important as the health HTTP server does not support h2

which would otherwise be the default.

http­check connect

set the health check uri

http­check send meth GET uri /health

list all participant backends

server participant1 participant1.lan:15001 proto h2 check port 8080

server participant2 participant2.lan:15001 proto h2 check port 8080

server participant3 participant3.lan:15001 proto h2 check port 8080

repeat a similar configuration to the above for the ledger­api

frontend ledger­api

bind :15000 proto h2

default_backend ledger­api

backend ledger­api

option httpchk

http­check connect

http­check send meth GET uri /health

server participant1 participant1.lan:15000 proto h2 check port 8080

server participant2 participant2.lan:15000 proto h2 check port 8080

(continues on next page)

1.25. High Availability (HA) 1033

http://www.haproxy.org/

Daml SDK Documentation, 2.7.3

(continued from previous page)

server participant3 participant3.lan:15000 proto h2 check port 8080

1.26 Disaster Recovery (DR)

Disaster recovery (DR) is the process ofmaintaining or reestablishing vital infrastructure

and systems following a natural or human-induced disaster, such as a storm or battle. It

employs policies, tools, and procedures.

Disaster recovery assumes that the primary site is not immediately recoverable and re-

stores data and services to a secondary site.1

DR is only briefly introduced here because it includes business-related recovery processes and

mechanisms that are beyond the Daml solution. The previously introducedmetrics of Recovery Point

Objective (RTO) and Recovery Time Objective (RPO) are important. Recovery from disaster is typically

measured using values for RTO and RPO.

In an Aurora global database used for DR, RTO can be in the order ofminutes whereas RPO is typically

measured in seconds. With an Aurora PostgreSQL-based global database, you can use the rds.

global_db_rpo parameter to set and track the upper bound on RPO, but doing so might affect

transaction processing on the primary cluster’s writer node.

For more information, see the AWS documentation on managing RPOs for Aurora PostgreSQL–based

global databases.

The figure below expands on the HA AWS example by adding topology which addresses DR incidents.

DR is usually more costly to architect and deploy than an HA solution. DR is expected to occur less

frequently than an HA incident so the RTO for DR is longer than HA, perhaps even allowing some data

loss in a DR incident.

There are different approaches to keeping the backup databases in a DR solution as synchronized

as possible to an active DB. One approach is to take frequent snapshots of the source and live

database(s) and send them to the remote deployment that supports DR. The AWS documentation

states the following:

1 https://en.wikipedia.org/wiki/Disaster_recovery as retrieved 02/22/2023

1034 Chapter 1. Canton References

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-disaster-recovery.html#aurora-global-database-manage-recovery
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-disaster-recovery.html#aurora-global-database-manage-recovery
https://en.wikipedia.org/wiki/Disaster_recovery

Daml SDK Documentation, 2.7.3

You can restore a snapshot of an Aurora DB cluster or from an Amazon RDS DB instance

to use as the starting point for your Aurora global database. You restore the snapshot

and create a new Aurora-provisioned DB cluster at the same time. You then add another

AWS Region to the restored DB cluster, thus turning it into an Aurora global database.

Any Aurora DB cluster that you create using a snapshot in this way becomes the primary

cluster of your Aurora global database.2

It’s important to take care during and after a failover in a DR situation. AWS advises:

Make sure that application writes are sent to the correct Aurora DB cluster before, during,

and after making these changes. Doing this avoids data inconsistencies among the DB

clusters in the Aurora global database (split-brain issues).3

Alternatively, AWS says in Managing RPOs for Aurora PostgreSQL-based global databases:

With an Aurora PostgreSQL-based global database, you can manage the recovery

point objective (RPO) for your Aurora global database by using PostgreSQL’s rds.

global_db_rpo parameter. RPO represents the maximum amount of data that can be

lost in the event of an outage.

This parameter is supported by Aurora PostgreSQL. Valid values for rds.global_db_rpo

range from 20 seconds to 2,147,483,647 seconds (68 years).4

Some additional AWS links of interest on this topic:

• Fast failover with Amazon Aurora PostgreSQL.

• Fast recovery after failover with cluster cache management for Aurora PostgreSQL.

1.27 Persistence

Participant and domain nodes both require storage configurations. Both use the same configuration

format and therefore support the same configuration options. There are three different configura-

tions available:

1. Memory - Using simple, hash-mapbacked in-memory storeswhicharedeletedwhenever anode

is stopped.

2. Postgres - To use with the open source relational database Postgres.

3. Oracle - To use with Oracle DB (Enterprise only)

In order to set a certain storage type, we have to edit the storage section of the particular node, such

as canton.participants.myparticipant.storage.type = memory. Memory storage does

not require any other setting.

For the actual database driver, Canton does not directly define how they are configured, but leverages

a third party library (slick) for it, exposing all configuration methods therein. If you need to, please

consult the respective detailed documentation to learn about all configuration options if you want

to leverage any exotic option. Here, we will only describe our default, recommended and supported

setup.

2 https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-getting-started.html#

aurora-global-database.use-snapshot
3 https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-disaster-recovery.

html#aurora-global-database-failover
4 https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-disaster-recovery.

html#aurora-global-database-manage-recovery

1.27. Persistence 1035

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.BestPractices.FastFailover.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.cluster-cache-mgmt.html
https://www.postgresql.org/
https://scala-slick.org/doc/3.3.1
https://scala-slick.org/doc/3.3.1/database.html#using-typesafe-config
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-getting-started.html#aurora-global-database.use-snapshot
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-getting-started.html#aurora-global-database.use-snapshot
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-disaster-recovery.html#aurora-global-database-failover
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-disaster-recovery.html#aurora-global-database-failover
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-disaster-recovery.html#aurora-global-database-manage-recovery
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-disaster-recovery.html#aurora-global-database-manage-recovery

Daml SDK Documentation, 2.7.3

It is recommended to use a connection pool in production environments and consciously choose the

size of the pool.

Please note that Canton will create, manage and upgrade the database schema directly. You don’t

have to create tables yourselves.

Consult the example/03­advanced­configuration directory to get a set of configuration files

to set your nodes up.

1.27.1 Postgres

Our reference driver based definition for Postgres configuration is:

Postgres persistence configuration mixin

#

This file defines a shared configuration resources. You can mix it into your␣

↪→configuration by

refer to the shared storage resource and add the database name.

#

Example:

participant1 {

storage = ${_shared.storage}

storage.config.properties.databaseName = "participant1"

}

#

The user and password credentials are set to "canton" and "supersafe". As this␣

↪→is not "supersafe", you might

want to either change this configuration file or pass the settings in via␣

↪→environment variables.

#

_shared {

storage {

type = postgres

config {

dataSourceClass = "org.postgresql.ds.PGSimpleDataSource"

properties = {

serverName = "localhost"

the next line will override above "serverName" in case the environment␣

↪→variable POSTGRES_HOST exists

serverName = ${?POSTGRES_HOST}

portNumber = "5432"

portNumber = ${?POSTGRES_PORT}

the next line will fail configuration parsing if the POSTGRES_USER␣

↪→environment variable is not set

user = ${POSTGRES_USER}

password = ${POSTGRES_PASSWORD}

}

}

// If defined, will configure the number of database connections per node.

// Please ensure that your database is setup with sufficient connections.

// If not configured explicitly, every node will create one connection per␣

↪→core on the host machine. This is

// subject to change with future improvements.

parameters.max­connections = ${?POSTGRES_NUM_CONNECTIONS}

}

}

1036 Chapter 1. Canton References

https://github.com/brettwooldridge/HikariCP/wiki/About-Pool-Sizing
https://github.com/brettwooldridge/HikariCP/wiki/About-Pool-Sizing

Daml SDK Documentation, 2.7.3

Youmay use this configuration file with environment variables or adapt it accordingly. More detailed

setup instructions and options are available in the Slick reference guide. The above configurations

are included in the examples/03­advanced­configuration/storage folder and are sufficient

to get going.

1.27.1.1 SSL

This snippet shows how ssl can be configured for Postgres. You can findmore information about the

settings in the (postgres documentation):

_shared {

storage {

type = postgres

config {

dataSourceClass = "org.postgresql.ds.PGSimpleDataSource"

properties = {

serverName = "localhost"

serverName = ${?POSTGRES_HOST}

portNumber = "5432"

portNumber = ${?POSTGRES_PORT}

user = ${POSTGRES_USER}

password = ${POSTGRES_PASSWORD}

The following settings can be used to configure an SSL connection to␣

↪→the Postgres DB

ssl = true

Will verify that the server certificate is trusted

sslmode= "verify­ca" # Other options and their meaning can be found␣

↪→https://jdbc.postgresql.org/documentation/head/ssl­client.html

Optionally set with path to root certificate. Not necessary if the␣

↪→server certificate can be verified using the JRE root certificates

sslrootcert = "path/to/root.cert"

For mTLS:

sslcert= "path/to/client­cert.pem"

sslkey= "path/to/client­key.p12"

}

}

}

}

Note that all configuration properties for the database will be propagated to the Ledger API JDBC URL.

1.27.2 Oracle

Important: This feature is only available in Canton Enterprise

An Oracle database can be used as the local persistence for the Canton nodes. The enterprise version

of Canton comes with default configuration mixins using Oracle as a database backend.

Persistence using Oracle has the following dependencies:

• Oracle Database 19c - requires version 19.11 or later

1.27. Persistence 1037

https://scala-slick.org/doc/3.3.1/api/index.html#slick.jdbc.JdbcBackend\protect \TU\textdollar DatabaseFactoryDef@forConfig(String,Config,Driver,ClassLoader):Database
https://jdbc.postgresql.org/documentation/head/ssl-client.html
/canton/usermanual/downloading.html

Daml SDK Documentation, 2.7.3

• Oracle Text 19c - a plugin schema to oracle database

• Intel x86-64 architecture

1.27.2.1 Installation and Setup of Oracle

Assuming that Oracle has already been installed, the following configuration aspects and setup

steps are required.

Default Character Set and Collations

The database must use the recommended Oracle defaults for character sets and collations:

AL32UTF8 encoding for NLS_CHARACTERSET

AL32UTF8 or AL16UTF16 for NLS_NCHAR_CHARACTERSET

BINARY for NLS_SORT and NLS_COMP

Otherwise, Canton will refuse to connect to the database and log an error message of the form

DatabaseConfigError(Oracle NLS database parameter ... is ..., but should be ...)

In addition to keeping the default database characterset and collations configurations, the Java user

language must be set to en and the user country to US (the default on most systems). This can be

forced by setting the JAVA_OPTS options via the command line additions ­Duser.language=en

­Duser.country=US (see JVM Arguments). Otherwise the node at startup may complain about ses-

sion NLS_SORT or NLS_COMP being different from BINARY by logging these strings:

• DatabaseConfigError(Oracle NLS session parameter NLS_SORT is ..., but

should be BINARY)

• DatabaseConfigError(Oracle NLS session parameter NLS_COMP is ..., but

should be BINARY)

Database Replication

To allow for recovery from data loss due to catastrophic events at data centers, database replication

should be enabled. The technical details of setting up replication are out of scope of this manual.

Canton on Oracle assumes that a database transaction is reported as committed only after it has

been persisted to all database replicas. Pleasemake sure this is the case to prevent data corruption

/ data loss in case of a data center failover.

Setup Oracle Schemas

For a simple Oracle-based Canton deployment with one domain and one participant the following

Oracle schemas (i.e., users) are required:

1038 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Compo-

nent

Schema

name

Description Authentication

Oracle Do-

main

DD4ODRUN Runtime user Password configured per 2.2.7

Site administrator may change at will (i.e.,

default password is never hardcoded or

assumed)

Participant DD4OPRUN Runtime user for Par-

ticipant Canton com-

ponent

DD4OPLEDG Runtime user for Par-

ticipant API ledger

component

The DD4ODRUN, DD4OPRUN, and DD4OPLEDG users all need the following schema privileges:

• Quota Unlimited

• Create table

• Create type

• Create session

• Create view

• Create procedure

• Create sequence

Run the following commands as the systemuser (e.g., for the runtime user (DD4OPRUN) provisioning

using Oracle SQL*Plus from the command line):

SQL> CREATE USER DD4OPRUN IDENTIFIED BY securepass;

SQL> ALTER USER DD4OPRUN QUOTA UNLIMITED ON USERS;

SQL> GRANT CREATE TABLE, CREATE TYPE, CREATE SESSION, CREATE VIEW, CREATE␣

↪→PROCEDURE, CREATE SEQUENCE, CREATE TRIGGER TO DD4OPRUN;

SQL> GRANT EXECUTE ON SYS.DBMS_LOCK TO DD4OPRUN;

SQL> GRANT SELECT ON V_$MYSTAT TO DD4OPRUN;

SQL> GRANT SELECT ON V_$LOCK TO DD4OPRUN;

SQL> GRANT SELECT ON V_$PARAMETER TO DD4OPRUN;

For additional domain or participant nodes create the corresponding schemas with one schema per

node.

If you are getting an error messages like:

ORA­65096: invalid common user or role name

you aremost likely logged into the CDB instead of the PDB. Find the right PDBand change the session:

SQL> show pdbs

SQL> alter session SET container = ORCLPDB1;

You can then test whether creating the user worked using sqlplus:

sqlplus ­L DD4OPRUN/securepass@ORCLPDB1

1.27. Persistence 1039

Daml SDK Documentation, 2.7.3

1.27.2.2 Configuring Canton Nodes for Oracle

The following is an example configuration for an Oracle-backed domain for the persistence

of its sequencer, mediator, and topology manager nodes. The placeholders <ORACLE_HOST>,

<ORACLE_PORT>, and <ORACLE_DB> will need to be replaced with the correct settings to match the

environment and <ORACLE_USER> with a unique user for each node:

_shared {

// Please note that this configuration only applies for domain nodes. Use␣

↪→oracle­participant.conf to run a participant node with Oracle storage

storage {

type = oracle

config {

driver = "oracle.jdbc.OracleDriver"

url = "jdbc:oracle:thin:@"${ORACLE_HOST}":"${ORACLE_PORT}/${ORACLE_DB}

password = ${ORACLE_PASSWORD}

user = ${ORACLE_USER}

}

}

}

The environment variable forORACLE_PASSWORDneeds to be set and exported so that it is accessible

for substitution in the configuration files.

The persistence configuration for the Participant is an extended version based on the previous con-

figuration for participant nodes with the addition of the Ledger API JDBC URL string:

include required("oracle.conf")

// note: the ledger api server (part of a canton system) requires a separate␣

↪→schema (user) in oracle

// because of that, you need to set up a second user. here, we assume the second␣

↪→user is set up on the same oracle db

// host using the same password as the participant schema

_shared.storage.parameters.ledger­api­jdbc­url = "jdbc:oracle:thin:"${ORACLE_USER_

↪→LAPI}"/"${ORACLE_PASSWORD}"@"${ORACLE_HOST}":"${ORACLE_PORT}/${ORACLE_DB}

1.27.2.3 Performance Tuning

The following configuration changes serve as an example to tune the performance of Oracle. NOTE:

The configuration changes need to be reviewed and adapted to the specific application and environ-

ment.

1040 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Operating System Modifications

Runtime Kernel Parameters

The recommended Linux kernel is version 5.10 or later. For RHEL systems, a mainline kernel can be

installed from ELRepo, as follows:

$ sudo dnf ­y install https://www.elrepo.org/elrepo­release­8.el8.elrepo.noarch.

↪→rpm

$ sudo rpm ­­import https://www.elrepo.org/RPM­GPG­KEY­elrepo.org

$ sudo dnf makecache

$ sudo dnf ­­disablerepo="*" ­­enablerepo="elrepo­kernel" install ­y kernel­ml.

↪→x86_64

By default, the Linux kernel default settings are optimized for general-purpose applications, and

as such these settings can be unsuitable or even detrimental to the performance and stability of

I/O-heavy applications, like databases.

Make the following additions to /etc/sysctl.conf

vm.swappiness = 5

vm.dirty_background_ratio = 5

vm.dirty_background_bytes = 25

vm.nr_hugepages = 200

fs.file­max = 6815744

kernel.sem = 250 32000 100 128

kernel.shmmni = 4096

kernel.shmall = 1073741824

kernel.shmmax = 4398046511104

kernel.panic_on_oops = 1

net.core.rmem_default = 262144

net.core.rmem_max = 4194304

net.core.wmem_default = 262144

net.core.wmem_max = 1048576

net.ipv4.conf.all.rp_filter = 2

net.ipv4.conf.default.rp_filter = 2

fs.aio­max­nr = 1048576

net.ipv4.ip_local_port_range = 9000 65500

Either reboot the database server host or apply the changes to a running server by running the follow-

ing command from the terminal: sudo sysctl ­p. Upon successfully applying the new settings,

sysctl will output the newly applied values to the console.

Shared Memory (SHM) Segments

Oracle database works best when it can keep as much working data in memory as possible, shared

amongst the different subsystems, running in their own distinct OS-level processes. This memory

space is used by the database SystemGlobal Area (SGA) for allocating the buffer cache pools, shared

and large pools, Java process pools and stream pools, among other functions. To allocate 80% of

total systemmemory (RAM) to the database instance, you need to allocate fractionally more system

memory to the shared memory area on the OS level.

Run this command to calculate the allocation size of the SHM:

$ printf "%.0f\n" `echo "(\`grep MemTotal /proc/meminfo | awk '{print $2}'\`/

↪→1024)*.82" | bc ­s`

105712

1.27. Persistence 1041

Daml SDK Documentation, 2.7.3

Next, update /etc/fstab to ensure the allocation:

$ grep shm /etc/fstab

tmpfs /dev/shm tmpfs rw,nosuid,nodev,size=105712m 0 0

Again, either reboot the database server host, or apply the changes to a running server by remounting

the SHM tmpfs filesystem:

$ sudo mount ­o remount /dev/shm

Verify the new settings:

$ df ­h ­BM ­P /dev/shm

Filesystem 1048576­blocks Used Available Capacity Mounted on

tmpfs 105712M 38912M 66800M 37% /dev/shm

System Container Configuration (CDB)

The System Container stores the system settings and metadata required to manage all user

databases. Now modify some of the default performance settings, in multiple stages.

After each stage restart the service from within the sqlplus client, as follows:

SQL> SHUTDOWN;

SQL> STARTUP;

SQL> ALTER PLUGGABLE DATABASE ALL OPEN;

SQL> ALTER SYSTEM REGISTER;

Stage 1: Increase Database Memory Allocation

Allocate 80% of total available system memory to the database instance. First, calculate the value

on the command line, as follows:

$ printf "%.0f\n" `echo "(\`grep MemTotal /proc/meminfo | awk '{print $2}'\`/

↪→1024)*.8" | bc ­s`

103134

From the database client connected to the CDB, set the memory cap, and restart the database:

SQL> ALTER SYSTEM SET MEMORY_TARGET = 103134M SCOPE = SPFILE;

Stage 2: Set Runtime Values

Also allocate 40% of total available systemmemory to the database’s ProgramGlobal Area (PGA). The

PGA is a non-shared memory region that is allocated to the CDB when the server starts. The PGA

regions are also allocated per-process in the user database, and you will allocate a total amount to

be used by all processes.

Again calculate the value on the command line, as follows:

$ printf "%.0f\n" `echo "(\`grep MemTotal /proc/meminfo | awk '{print $2}'\`/

↪→1024)*.4" | bc ­s`

51462

From the database client connected to the CDB, set the following and restart the database:

1042 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

SQL> ALTER SYSTEM SET PGA_AGGREGATE_TARGET = 51462M SCOPE = BOTH;

SQL> ALTER SYSTEM SET RESOURCE_LIMIT = FALSE SCOPE = BOTH;

SQL> ALTER SYSTEM SET OPEN_CURSORS = 16000 SCOPE = SPFILE;

SQL> ALTER SYSTEM SET JOB_QUEUE_PROCESSES = 2000 SCOPE = BOTH;

SQL> ALTER SYSTEM SET USE_LARGE_PAGES = TRUE SCOPE = SPFILE;

SQL> ALTER SYSTEM SET SESSION_MAX_OPEN_FILES = 50 SCOPE = SPFILE;

SQL> ALTER SYSTEM SET PARALLEL_DEGREE_POLICY = AUTO SCOPE = BOTH;

SQL> ALTER SYSTEM SET DB_BIG_TABLE_CACHE_PERCENT_TARGET = 20 SCOPE = SPFILE;

SQL> ALTER SYSTEM SET DB_CACHE_SIZE = 8G SCOPE = SPFILE;

SQL> ALTER SYSTEM SET JAVA_POOL_SIZE = 8G SCOPE = SPFILE;

SQL> ALTER SYSTEM SET OPTIMIZER_ADAPTIVE_REPORTING_ONLY = TRUE SCOPE = BOTH;

SQL> ALTER SYSTEM SET OPTIMIZER_ADAPTIVE_STATISTICS = TRUE SCOPE = BOTH;

SQL> ALTER SYSTEM SET OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES = TRUE SCOPE = BOTH;

SQL> ALTER SYSTEM SET OPTIMIZER_SESSION_TYPE = ADHOC SCOPE = SPFILE;

SQL> ALTER SYSTEM SET OPTIMIZER_USE_PENDING_STATISTICS = TRUE SCOPE = BOTH;

SQL> ALTER SYSTEM SET FILESYSTEMIO_OPTIONS = SETALL SCOPE = SPFILE;

SQL> ALTER SYSTEM SET DISK_ASYNCH_IO = TRUE SCOPE = SPFILE;

SQL> ALTER SYSTEM SET PARALLEL_THREADS_PER_CPU = 8 SCOPE = BOTH;

SQL> ALTER SYSTEM SET PARALLEL_DEGREE_LIMIT = IO SCOPE = BOTH;

NOTE: Please avoid setting explicit process and session limits. Oracle will derive intelligent limits

for you. If you still need to set explicit limits on your database, please ensure that the limits are suf-

ficiently high for the nodes that you intend to run. We recommend configuring at least 6 timesmore

connections per node than actively used to give sufficient buffer for delayed connection clean-up

by Oracle.. The max connection settings can be configured as explained in Max Connection Settings.

If your database resource limits are lower than the database connections created by the nodes, the

nodes will fail to properly start or operate. If you set the number of connections too low, the system

will not perform at peak throughput.

Stage 3: Configure Pluggable Database (PDB) Runtime Values

A Pluggable Database (PDB) is a user-created set of schemas, objects, and related structures that

appears logically to a client application as a separate database. Do some initial configuration of the

PDB to ensure it canmeet the performance requirements of the your application, after which you will

create new user schemas in the PDB.

If your application requires significantly larger tablespace, Oracle will resize tablespaces on-the-fly,

meaning persistence grows gradually over time to fit the size requirements of the application; how-

ever, this comes at the expense of performance, as the database regularly performs blocking I/O

operations to resize tablespaces, resulting in a volatile system loadprofile and overall reduced trans-

action throughput.

Overcome this limitation by pre-allocating new TEMP, USERS and UNDO tablespaces:

SQL> CREATE BIGFILE TEMPORARY TABLESPACE temp_bigfile TEMPFILE '/opt/oracle/

↪→oradata/ORCLCDB/ORCLPDB1/temp_bigfile_01.dbf' SIZE 1T AUTOEXTEND ON MAXSIZE␣

↪→UNLIMITED;

SQL> CREATE BIGFILE UNDO TABLESPACE undo_bigfile DATAFILE '/opt/oracle/oradata/

↪→ORCLCDB/ORCLPDB1/undo_bigfile_01.dbf' SIZE 1T AUTOEXTEND ON MAXSIZE UNLIMITED␣

↪→RETENTION GUARANTEE;

SQL> CREATE BIGFILE TABLESPACE users_bigfile DATAFILE '/opt/oracle/oradata/

↪→ORCLCDB/ORCLPDB1/users_bigfile_01.dbf' SIZE 6T AUTOEXTEND ON MAXSIZE UNLIMITED;

And then reconfigure the PDB to use the new tablespaces by default:

1.27. Persistence 1043

https://community.oracle.com/tech/developers/discussion/362226/tns-listener-could-not-find-available-handler-witht-matching-protocol-stackq
https://community.oracle.com/tech/developers/discussion/362226/tns-listener-could-not-find-available-handler-witht-matching-protocol-stackq

Daml SDK Documentation, 2.7.3

SQL> ALTER DATABASE SET DEFAULT BIGFILE TABLESPACE;

SQL> ALTER DATABASE DEFAULT TEMPORARY TABLESPACE TEMP_BIGFILE;

SQL> ALTER DATABASE DEFAULT TABLESPACE USERS_BIGFILE;

SQL> ALTER SYSTEM SET UNDO_TABLESPACE = UNDO_BIGFILE SCOPE = BOTH;

Change the default retention to 30 minutes, giving better transaction rollback performance, after

which you will restart the database:

SQL> ALTER SYSTEM SET UNDO_RETENTION = 1800 SCOPE = BOTH;

1.27.3 General Settings

1.27.3.1 Max Connection Settings

The storage configuration can further be tuned using the following additional setting:

canton.participants.<service­name>.storage.parameters.max­connections = X

This allows you to set the maximum number of DB connections used by a Canton node. If the value

is None or non-positive, the value will be the number of processors. The setting has no effect if the

number of connections is already set via slick options (i.e. storage.config.numThreads).

If you are unsure how to size your connection pools, this article may be a good starting point.

The number of parallel indexer connections can be configured via

canton.participants.<service­name>.parameters.ledgerApiServerParameters.indexer.

↪→ingestion­parallelism = Y

A Canton participant node will establish up to X + Y + 2 permanent connections with the

database, whereas a domain node will use up to X permanent connections, except for a sequencer

with HA setup that will allocate up to 2X connections. During startup, the node will use an additional

set of at most X temporary connections during database initialisation.

Please note that this number represents an upper bound of permanent connections and can be di-

vided internally for different purposes, depending on the implementation. Consequently, the actual

size of the write connection pool, for example, could be smaller.

1.27.3.2 Queue Size

Canton may schedule more database queries than the database can handle. As a result, these

queries will be placed into the database queue. By default, the database queue has a size of 1000

queries. Reaching the queueing limit will lead to a DB_STORAGE_DEGRADATION warning. The im-

pact of this warning is that the queuing will overflow into the asynchronous execution context and

slowly degrade the processing, which will result in less database queries being created. However, for

high performance setups, such spikes might occur more regularly. Therefore, to avoid the degrada-

tion warning appearing too frequent, the queue size can be configured using:

canton.participants.participant1.storage.config.queueSize = 10000

1044 Chapter 1. Canton References

https://github.com/brettwooldridge/HikariCP/wiki/About-Pool-Sizing

Daml SDK Documentation, 2.7.3

1.27.4 Backup and Restore

It is recommended that your database is frequently backed up so that the data can be restored in

case of a disaster.

In the case of a restore, a participant can replay missing data from the domain as long as the do-

main’s backup is more recent than that of the participant’s.

1.27.4.1 Order of Backups

It is important that the participant’s backup is not more recent than that of the domain’s, as that

would constitute a ledger fork. Therefore, if you back up both participant and domain databases,

always back up the participant database before the domain. If you are using a domain integration,

then backup the sequencer node before backing up the underlying domain storage (e.g. Besu files).

In case of a domain restore from a backup, if a participant is ahead of the domain the participant

will refuse to connect to the domain (ForkHappened) and you must either:

• restore the participant’s state to a backup before the disaster of the domain, or

• roll out a new domain as a repair strategy in order to recover from a lost domain

The state of applications that interact with participant’s ledger API must be backed up before the

participant, otherwise the application state has to be reset.

1.27.4.2 Restore Caveats

When restoring Canton nodes from a backup, the following caveats apply due to the loss of data

between the point of backup and latest state of the nodes.

Incomplete Command Deduplication State

After the restore, the participant’s in-flight submission tracking will be out of sync with what the

participant has sent to the sequencer after the backup was taken. If an application resubmits a

duplicate command it may get accepted even though it should have been deduplicated by the par-

ticipant.

This tracking will be in sync again when:

• the participant has processed all events from the sequencer, and

• no queue on the sequencer includes any submission request of a transfer/transaction request

from before the restore that could be sequenced again

Such submission requests have a max sequencing time of the ledger time plus the

ledger-time-record-time-tolerance of the domain. It should be enough to observe a timestamp

from the domain that is after the time when the participant was stopped before the restore by more

than the tolerance. Once such a timestamp is observed, the in-flight submission tracking is in

sync again and applications can resume submitting commands with full command deduplication

guarantees.

1.27. Persistence 1045

Daml SDK Documentation, 2.7.3

Application State Reset

If the application’s state is newer than the participant’s state, either because the application was

backed up after the participant or because the application is run by a different organization and

wasn’t restored from a backup, then the application state has to be reset. Otherwise the application

has already requested and processed transactions that were lost by the participant due to the gap

between when the backup was taken and when the node disaster happened.

This includes all applications that are ledger API clients of the participant, including the JSON API

server.

Private Keys

Assume a scenario in which a node needs to rotate its cryptographic private key, which is currently

stored in the database of the node. If the key rotation has been announced in the system before a

backup has been performed, the new key will not be available on a restore, but all other nodes in the

system expect the new key to be used.

To avoid this situation, perform the key rotation steps in this order:

1. Generate the new private key and store it in the database

2. Back up the database

3. Once the backup is complete, revoke the previous key

1.27.4.3 Postgres Example

If you are using Postgres to persist the participant or domain node data, you can create backups to

a file and restore it using Postgres’s utility commands pg_dump and pg_restore as shown below:

Backing up Postgres database to a file:

pg_dump ­U <user> ­h <host> ­p <port> ­w ­F tar ­f <fileName> <dbName>

Restoring Postgres database data from a file:

pg_restore ­U <user> ­h <host> ­p <port> ­w ­d <dbName> <fileName>

Although the approach shown above works for small deployments, it is not recommended in larger

deployments. For that, we suggest looking into incremental backups and refer to the resources be-

low:

• PostgreSQL Documentation: Backup and Restore

• How incremental backups work in PostgreSQL

1046 Chapter 1. Canton References

https://www.postgresql.org/docs/current/backup.html
https://kcaps.medium.com/how-incremental-backups-work-in-postgresql-and-how-to-implement-them-in-10-minutes-d3689e8414d9

Daml SDK Documentation, 2.7.3

1.27.5 Database Replication for Disaster Recovery

1.27.5.1 Synchronous Replication

We recommend that in production at least the domain should be run with offsite synchronous repli-

cation to assure that the state of the domain is always newer than the state of the participants.

However to avoid similar caveats as with backup restore <restore_caveats> the participants should ei-

ther use synchronous replication too or as part of themanual disaster recovery failure procedure the

caveats have to be addressed.

A database backup allows you to recover the ledger up to the point when the last backupwas created.

However, any command accepted after creation of the backup may be lost in case of a disaster.

Therefore, restoring a backup will likely result in data loss.

If such data loss is unacceptable, you need to run Canton against a replicated database, which repli-

cates its state to another site. If the original site is down due to a disaster, Canton can be started

in the other site based on the replicated state in the database. It is crucial that there are no writers

left in the original site to the database, because the database mechanism used in Canton to avoid

multiple writers and thus avoid data corruption does not work across sites.

For detailed instructions onhow to setupa replicateddatabase andhow toperform failovers, we refer

to the database system documentation, e.g. the high availability documentation of PostgreSQL.

It is strongly recommended to configure replication as synchronous. That means, the database

should report a database transaction as successfully committed only after it has been persisted

to all database replicas. In PostgreSQL, this corresponds to the setting synchronous_commit =

on. If you do not follow this recommendation, you may observe data loss and/or a corrupt state

after a database failover. Enabling synchronous replication may impact the performance of Canton

depending on the network latency between the primary and offsite database.

For PostgreSQL, Canton strives to validate the database replication configuration and fail with an

error, if a misconfiguration is detected. However, this validation is of a best-effort nature; so it may

fail to detect an incorrect replication configuration. For Oracle, no attempt is made to validate the

database configuration. Overall, you should not rely on Canton detecting mistakes in the database

configuration.

1.28 Canton Administration Quickstart

1.28.1 Command-line Arguments

Canton supports a variety of command line arguments. Please run bin/canton ­­help to see all

of them. Here, we explain the most relevant ones.

1.28. Canton Administration Quickstart 1047

https://www.postgresql.org/docs/11/high-availability.html

Daml SDK Documentation, 2.7.3

1.28.1.1 Selecting a Configuration

Canton requires a configuration file to run. There is no default topology configuration built in and

therefore, the user needs to at least define what kind of node (domain or participant) and howmany

theywant to run in the givenprocess. Sample configuration files canbe found in our releasepackage,

under the examples directory.

When starting Canton, configuration files can be provided using

bin/canton ­­config conf_filename ­c conf_filename2

which will start Canton by merging the content of conf_filename2 into conf_filename. Both

options ­c and ­­config are equivalent. If several configuration files assign values to the same

key, the last value is taken. The section on static configuration explains how to write a configuration

file.

You can also specify config parameters on the command line, alone or along with configuration files,

to specify missing parameters or to overwrite others. This can be useful for providing simple short

config info. Config parameters can be provided using ­C:

bin/canton ­­config conf_filename ­C canton.participants.participant1.storage.

↪→type=memory

1.28.1.2 Run Modes

Canton can run in three different modes, depending on the desired environment and task.

Interactive Console

The default method to run Canton is in the interactive mode. The process will start a command line

interface (REPL) which allows to conveniently operate, modify and inspect the Canton application.

In thismode, all errorswill be reportedasCommandExecutionException to the console, but Canton

will remain running.

The interactive console can be started together with a script, using the ­­boostrap­script=...

option. The script uses the same syntax as the console.

The interactive mode is useful for development, education and expert use.

Daemon

If the console is undesired such as in server operation, Canton can be started in daemon mode

bin/canton daemon ­­config ...

All configured entities will be automatically started and will resume operation.

A failure to connect to the database storage will lead the process to exit with a non-zero exit code.

This can be turned off using:

1048 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

canton.participants.participant1.storage.parameters.fail­fast­on­startup = "no"

Any failures encountered while running the bootstrap script will immediately shutdown the Canton

process with a non-zero exit code.

Nodes started in daemon mode can be administrated by setting up a remote console that provides

the interactive user experience, while the nodes run in a separate process.

Headless Script Mode

For testing and scripting purposes, Canton can also start in headless script mode:

bin/canton run <script­path> ­­config ...

In this case, commands are specified in a script rather than executed interactively. Any errors with

the script or during command execution should cause the Canton process to exit with a non-zero

exit code.

Interactive Server Process using Screen

In some situations, we find it convenient to run even a server process interactively. For server use

on Linux / OSX, this can be accomplished by using the screen command:

screen ­S canton ­d ­m ./bin/canton ­c ...

will start the Canton process in a screen session named canton which does not terminate on

user-logout and therefore allows to inspect the Canton process whenever necessary.

A previously started process can be joined using

screen ­r canton

and an active screen session can be detached using CTRL-A + D (in sequence). Be careful and avoid

typing CTRL-D, as it will terminate the session. The screen session will continue to run even if you

log out of the machine.

1.28.1.3 Java Virtual Machine Arguments

The bin/canton application is a convenient wrapper to start a Java virtual machine running the

Canton process. The wrapper supports providing additional JVM options using the JAVA_OPTS en-

vironment variable or using the ­D command line option.

For example, you can configure the heap size as follows:

JAVA_OPTS="­Xmx2G" ./bin/canton ­­config ...

There are several log related options that can be specified. Refer to Logging for more details.

1.28. Canton Administration Quickstart 1049

https://linux.die.net/man/1/screen

Daml SDK Documentation, 2.7.3

1.28.2 Canton Console

Canton offers a console (REPL) where entities can be dynamically started and stopped, and a variety

of administrative or debugging commands can be run.

All console commandsmust be valid Scala (the console is built on Ammonite - a Scala based script-

ing and REPL framework). Note that we also define a set of implicit type conversions to improve

the console usability: notably, whenever a console command requires a DomainAlias, Fingerprint or

Identifier, you can instead also call it with a Stringwhichwill be automatically converted to the cor-

rect type (i.e., you can, e.g., write participant1.domains.get_agreement("domain1") instead

of participant1.domains.get_agreement(DomainAlias.tryCreate("domain1"))).

The examples/ sub-directories contain some sample scripts, with the extension .canton.

Contents

• Remote Administration

• Node References

• Help

• Lifecycle Operations

• Timeouts

• Code-Generation in Console

• Canton Administration APIs

Commands are organised by thematic groups. Some commands also need to be explicitly turned on

via configuration directives to be accessible.

Someoperations are available on both types of nodes, whereas someoperations are specific to either

participant or domain nodes. For consistency, we organise the manual by node type, which means

that some commands will appear twice. However, the detailed explanations are only given within

the participant documentation.

1.28.2.1 Remote Administration

The console works in-process against local nodes. However, you can also run the console separate

from the node process, and you can use a single console to administrate many remote nodes.

As an example, you might start Canton in daemon mode using

./bin/canton daemon ­c <some config>

Assuming now that you’ve started a participant, you can access this participant using a

remote­participant configuration such as:

canton {

remote­participants {

remoteParticipant1 {

admin­api {

port = 10012

address = 127.0.0.1 // is the default value if omitted

}

ledger­api {

port = 10011

(continues on next page)

1050 Chapter 1. Canton References

http://ammonite.io
https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
https://docs.daml.com/2.7.3/canton/scaladoc/com/digitalasset/canton/console/ConsoleEnvironment\protect \TU\textdollar \protect \TU\textdollar Implicits.html
https://docs.daml.com/2.7.3/canton/scaladoc/com/digitalasset/canton/DomainAlias.html
https://docs.daml.com/2.7.3/canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
https://docs.daml.com/2.7.3/canton/scaladoc/com/digitalasset/canton/topology/Identifier.html

Daml SDK Documentation, 2.7.3

(continued from previous page)

address = 127.0.0.1 // is the default value if omitted

}

}

}

}

Naturally, you can then also use the remote configuration to run a script:

./bin/canton daemon ­c remote­participant1.conf ­­bootstrap <some­script>

Please note that a remote node will support almost all commands except a few that a local node

supports.

If you want to generate a skeleton remote configuration of a normal config file, you can use

./bin/canton generate remote­config ­c participant1.conf

However, you might have then to edit the config and adjust the hostname.

For production use cases, in particular if the Admin Api is not just bound to localhost, we recommend

to enable TLS with mutual authentication.

1.28.2.2 Node References

To issue the command on a particular node, you must refer to it via its reference, which is a Scala

variable. Named variables are created for all domain entities and participants using their configured

identifiers. For example the sample examples/01­simple­topology/simple­topology.conf

configuration file references the domain mydomain, and participants participant1 and partic­

ipant2. These are available in the console as mydomain, participant1 and participant2.

The console also provides additional generic references that allow you to consult a list of nodes by

type. The generic node reference supports three subsets of each node type: local, remote or all nodes

of that type. For the participants, you can use:

participants.local

participants.remote

participants.all

The generic node references can be used in a Scala syntactic way:

participants.all.foreach(_.dars.upload("my.dar"))

but the participant references also support some generic commands for actions that often have to be

performed for many nodes at once, such as:

participants.local.dars.upload("my.dar")

The available node references are:

<console-topic-marker: Generic Node References>

1.28. Canton Administration Quickstart 1051

Daml SDK Documentation, 2.7.3

1.28.2.3 Help

Canton can be very helpful if you ask for help. Try to type

help

or

participant1.help()

to get an overview of the commands and command groups that exist. help() works on every

level (e.g. participant1.domains.help()) or can be used to search for particular functions

(help("list")) or to get detailed help explanation for each command (participant1.parties.

help("list")).

1.28.2.4 Lifecycle Operations

These are supported by individual and sequences of domains and participants. If called on a se-

quence, operations will be called sequentially in the order of the sequence. For example:

nodes.local.start()

can be used to start all configured local domains and participants.

If the node is running with database persistence, it will support the database migration com-

mand (db.migrate). The migrations are performed automatically when the node is started for

the first time. However, new migrations added as part of new versions of the software must be

by default run manually using the command. In some rare cases, it may also be necessary to

run db.repair_migration before running db.migrate - please refer to the description of db.

repair_migration for more details. If desired, the database migrations can be performed also

automatically by enabling the “migrate-and-start” mode using the following configuration option:

canton.participants.participant1.storage.parameters.migrate­and­start = yes

Note that data continuity (and therefore database migration) is only guaranteed to work across mi-

nor and patch version updates.

The domain, sequencer and mediator nodes might need extra setup to be fully functional. Check

domain bootstrapping for more details.

1.28.2.5 Timeouts

Console command timeouts can be configured using the respective console command timeout sec-

tion in the configuration file:

canton.parameters.timeouts.console = {

bounded = 2.minutes

unbounded = Inf // infinity

ledger­command = 2.minutes

ping = 30.seconds

}

1052 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

The bounded argument is used for all commands that should finish once processing has completed,

whereas theunbounded timeout is used for commandswherewe do not control the processing time.

This is used in particular for potentially very long running commands.

Some commands have specific timeout arguments that can be passed explicitly as type Non­

NegativeDuration. For convenience, the console includes by default the implicits of scala.

concurrent.duration._ and an implicit conversion from the Scala type scala.concurrent.

duration.FiniteDuration to NonNegativeDuration. As a result, you can use normal Scala

expressions and write timeouts as

participant1.health.ping(participant1, timeout = 10.seconds)

while the implicit conversion will take care of converting it to the right types.

Generally, there is no need to re-configure the timeouts and we recommend to just use the safe

default values.

1.28.2.6 Code-Generation in Console

The Daml SDK provides code-generation utilities which create Java or Scala bindings for Damlmod-

els. These bindings are a convenient way to interact with the ledger from the console in a typed fash-

ion. The linked documentation explains how to create these bindings using the daml command. The

Scala bindings are not officially supported, so should not be used for application development.

Once you have successfully built the bindings, you can then load the resulting jar into the Canton

console using the magic Ammonite import trick within console scripts:

interp.load.cp(os.Path("codegen.jar", base = os.pwd))

@ // the at triggers the compilation such that we can use the imports subsequently

import ...

1.28.2.7 Canton Administration APIs

Canton provides the console as a builtin mode for administrative interaction. However, under the

hood, all administrative console actions are effected using the administration gRPC API. Therefore,

it is also possible to write your own administration application and connect it to the administration

gRPC endpoints.

Theprotobuf/ sub-directories in the release artifacts contain the gRPCunderlying protocol buffers.

In particular, the administrative gRPC APIs are located within the admin sub-directories.

For example, the Ping PongServicewhich implements a simpleworkflow to smoke-test a deployment

is defined with the protocol buffer */protobuf/*/admin/*/ping_pong_service.proto (where

* denotes intermediary directories). This service is then used by the console command health.ping.

The protocol buffers are also available within the repository following a similar sub-directory struc-

ture as mentioned.

1.28. Canton Administration Quickstart 1053

https://www.scala-lang.org/api/2.12.4/scala/concurrent/duration/Duration.html
https://www.scala-lang.org/api/2.12.4/scala/concurrent/duration/Duration.html
https://docs.daml.com/tools/codegen.html
https://grpc.io/
https://github.com/digital-asset/canton/tree/main/community

Daml SDK Documentation, 2.7.3

1.28.3 Console Commands

1.28.3.1 Top-level Commands

The following commands are available for convenience:

exit

• Summary: Leave the console

help

• Summary: Help with console commands; type help(“<command>”) for detailed help for

<command>

health.dump

• Summary: Generate and write a health dump of Canton’s state for a bug report

• Arguments:

– outputFile: better.files.File

– timeout: com.digitalasset.canton.config.NonNegativeDuration

– chunkSize: Option[Int]

• Return type:

– String

• Description: Gathers information about the current Canton process and/or remote nodes

if using the consolewith a remote config. The outputFile argument canbe used towrite the

health dump to a specific path. The timeout argument can be increased when retrieving

large health dumps from remote nodes. The chunkSize argument controls the size of the

byte chunks streamed back from remote nodes. This can be used if encountering errors

due to gRPC max inbound message size being too low.

health.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

console.command_timeout

• Summary: Yields the timeout for running console commands

• Return type:

– com.digitalasset.canton.config.NonNegativeDuration

• Description: Yields the timeout for running console commands. When the timeout has

elapsed, the console stops waiting for the command result. The command will continue

running in the background.

console.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

console.set_command_timeout

• Summary: Sets the timeout for running console commands.

• Arguments:

– newTimeout: com.digitalasset.canton.config.NonNegativeDuration

• Description: Sets the timeout for running console commands. When the timeout has

elapsed, the console stops waiting for the command result. The command will continue

running in the background. The new timeout must be positive.

1054 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html

Daml SDK Documentation, 2.7.3

logging.get_level

• Summary: Determine current logging level

• Arguments:

– loggerName: String

• Return type:

– Option[ch.qos.logback.classic.Level]

logging.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

logging.last_error_trace

• Summary: Returns log events for an error with the same trace-id

• Arguments:

– traceId: String

• Return type:

– Seq[String]

logging.last_errors

• Summary: Returns the last errors (trace-id -> error event) that have been logged locally

• Return type:

– Map[String,String]

logging.set_level

• Summary: Dynamically change log level (TRACE, DEBUG, INFO, WARN, ERROR, OFF, null)

• Arguments:

– loggerName: String

– level: String

utils.auto_close (Testing)

• Summary: Register AutoCloseable object to be shutdown if Canton is shut down

• Arguments:

– closeable: AutoCloseable

utils.contract_data_to_instance

• Summary: Convert contract data to a contract instance.

• Arguments:

– contractData: com.digitalasset.canton.admin.api.client.commands.LedgerApi-

TypeWrappers.ContractData

– ledgerTime: java.time.Instant

• Return type:

– com.digitalasset.canton.protocol.SerializableContract

• Description: The utils.contract_data_to_instance bridges the gap between partici-

pant.ledger_api.acs commands that return various pieces of “contract data” and the par-

ticipant.repair.add command used to add “contract instances” as part of repair workflows.

Such workflows (for example migrating contracts from other Daml ledgers to Canton

participants) typically consist of extracting contract data using participant.ledger_api.acs

commands, modifying the contract data, and then converting the contractData using this

function before finally adding the resulting contract instances to Canton participants via

participant.repair.add. Obtain the contractData by invoking .toContractData on the Wrapped-

CreatedEvent returned by the corresponding participant.ledger_api.acs.of_party or of_all

call. The ledgerTime parameter should be chosen to be a time meaningful to the domain

1.28. Canton Administration Quickstart 1055

../../canton/scaladoc/com/digitalasset/canton/admin/api/client/commands/LedgerApiTypeWrappers\protect \TU\textdollar \protect \TU\textdollar ContractData.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/commands/LedgerApiTypeWrappers\protect \TU\textdollar \protect \TU\textdollar ContractData.html
../../canton/scaladoc/com/digitalasset/canton/protocol/SerializableContract.html

Daml SDK Documentation, 2.7.3

on which you plan to subsequently invoke participant.repair.add on and will be retained

alongside the contract instance by the participant.repair.add invocation.

utils.contract_instance_to_data

• Summary: Convert a contract instance to contract data.

• Arguments:

– contract: com.digitalasset.canton.protocol.SerializableContract

• Return type:

– com.digitalasset.canton.admin.api.client.commands.LedgerApiTypeWrap-

pers.ContractData

• Description: The utils.contract_instance_to_data converts a Canton “contract instance” to

“contract data”, a formatmore amenable to inspection andmodification as part of repair

workflows. This function consumes the output of the participant.testing commands and

can thus be employed in workflows geared at verifying the contents of contracts for diag-

nostic purposes and in environments in which the “features.enable-testing-commands”

configuration can be (at least temporarily) enabled.

utils.generate_daml_script_participants_conf

• Summary: Create a participants config for Daml script

• Arguments:

– file: Option[String]

– useParticipantAlias: Boolean

– defaultParticipant: Option[com.digitalasset.canton.console.ParticipantRef-

erence]

• Return type:

– java.io.File

• Description: The generated config can be passed to daml script via the participant-config

parameter. More information about the file format can be found in the documentation: It

takes three arguments: - file (default to “participant-config.json”) - useParticipantAlias

(default to true): participant aliases are used instead of UIDs - defaultParticipant (default

to None): adds a default participant if provided

utils.generate_navigator_conf

• Summary: Create a navigator ui-backend.conf for a participant

• Arguments:

– participant: com.digitalasset.canton.console.LocalParticipantReference

– file: Option[String]

• Return type:

– java.io.File

utils.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

utils.object_args

• Summary: Reflective inspection of object arguments, handy to inspect case class objects

• Arguments:

– obj: T

• Return type:

– List[String]

• Description: Return the list field names of the given object. Helpful function when in-

specting the return result.

1056 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/protocol/SerializableContract.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/commands/LedgerApiTypeWrappers\protect \TU\textdollar \protect \TU\textdollar ContractData.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/commands/LedgerApiTypeWrappers\protect \TU\textdollar \protect \TU\textdollar ContractData.html
../../canton/scaladoc/com/digitalasset/canton/console/ParticipantReference.html
../../canton/scaladoc/com/digitalasset/canton/console/ParticipantReference.html
https://docs.daml.com/daml-script/index.html#using-daml-script-in-distributed-topologies
../../canton/scaladoc/com/digitalasset/canton/console/LocalParticipantReference.html

Daml SDK Documentation, 2.7.3

utils.read_all_messages_from_file

• Summary: Reads several Protobuf messages from a file.

• Arguments:

– fileName: String

• Return type:

– Seq[A]

• Description: Fails with an exception, if the file can’t be read or parsed.

utils.read_byte_string_from_file

• Summary: Reads a ByteString from a file.

• Arguments:

– fileName: String

• Return type:

– com.google.protobuf.ByteString

• Description: Fails with an exception, if the file can’t be read.

utils.read_first_message_from_file

• Summary: Reads a single Protobuf message from a file.

• Arguments:

– fileName: String

• Return type:

– A

• Description: Fails with an exception, if the file can’t be read or parsed.

utils.retry_until_true

• Summary: Wait for a condition to become true

• Arguments:

– timeout: com.digitalasset.canton.config.NonNegativeDuration

– maxWaitPeriod: com.digitalasset.canton.config.NonNegativeDuration

– condition: => Boolean

– failure: => String

• Return type:

– (condition: => Boolean, failure: => String): Unit

• Description: Wait timeout duration until condition becomes true. Retry evaluating condition

with an exponentially increasing back-off up to maxWaitPeriod duration between retries.

utils.retry_until_true

• Summary: Wait for a condition to become true, using default timeouts

• Arguments:

– condition: => Boolean

• Description: Wait until condition becomes true, with a timeout taken from the parame-

ters.timeouts.console.bounded configuration parameter.

utils.synchronize_topology

• Summary: Wait until all topology changes have been effected on all accessible nodes

• Arguments:

– timeoutO: Option[com.digitalasset.canton.config.NonNegativeDuration]

utils.type_args

• Summary: Reflective inspection of type arguments, handy to inspect case class types

• Return type:

– List[String]

• Description: Return the list of field names of the given type. Helpful function when creat-

ing new objects for requests.

1.28. Canton Administration Quickstart 1057

../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html

Daml SDK Documentation, 2.7.3

utils.write_to_file

• Summary: Writes a ByteString to a file.

• Arguments:

– data: com.google.protobuf.ByteString

– fileName: String

utils.write_to_file

• Summary: Writes a Protobuf message to a file.

• Arguments:

– data: scalapb.GeneratedMessage

– fileName: String

utils.write_to_file

• Summary: Writes several Protobuf messages to a file.

• Arguments:

– data: Seq[scalapb.GeneratedMessage]

– fileName: String

ledger_api_utils.create (Testing)

• Summary: Build create command

• Arguments:

– packageId: String

– module: String

– template: String

– arguments: Map[String,Any]

• Return type:

– com.daml.ledger.api.v1.commands.Command

ledger_api_utils.exercise (Testing)

• Summary: Build exercise command from CreatedEvent

• Arguments:

– choice: String

– arguments: Map[String,Any]

– event: com.daml.ledger.api.v1.event.CreatedEvent

• Return type:

– com.daml.ledger.api.v1.commands.Command

ledger_api_utils.exercise (Testing)

• Summary: Build exercise command

• Arguments:

– packageId: String

– module: String

– template: String

– choice: String

– arguments: Map[String,Any]

– contractId: String

• Return type:

– com.daml.ledger.api.v1.commands.Command

ledger_api_utils.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

1058 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.28.3.2 Participant Commands

clear_cache (Testing)

• Summary: Clear locally cached variables

• Description: Some commands cache values on the client side. Use this command to ex-

plicitly clear the caches of these values.

config

• Summary: Return participant config

• Return type:

– com.digitalasset.canton.participant.config.LocalParticipantConfig

help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

id

• Summary: Yields the globally unique id of this participant. Throws an exception, if the id

has not yet been allocated (e.g., the participant has not yet been started).

• Return type:

– com.digitalasset.canton.topology.ParticipantId

is_initialized

• Summary: Check if the local instance is running and is fully initialized

• Return type:

– Boolean

is_running

• Summary: Check if the local instance is running

• Return type:

– Boolean

start

• Summary: Start the instance

stop

• Summary: Stop the instance

testing.acs_search (Testing)

• Summary: Lookup of active contracts

• Arguments:

– domainAlias: com.digitalasset.canton.DomainAlias

– filterId: String

– filterPackage: String

– filterTemplate: String

– filterStakeholder: Option[com.digitalasset.canton.topology.PartyId]

– limit: com.digitalasset.canton.config.RequireTypes.PositiveInt

• Return type:

– List[com.digitalasset.canton.protocol.SerializableContract]

testing.await_domain_time (Testing)

• Summary: Await for the given time to be reached on the given domain

• Arguments:

– domainId: com.digitalasset.canton.topology.DomainId

1.28. Canton Administration Quickstart 1059

../../canton/scaladoc/com/digitalasset/canton/participant/config/LocalParticipantConfig.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar PositiveInt\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/protocol/SerializableContract.html
../../canton/scaladoc/com/digitalasset/canton/topology/DomainId.html

Daml SDK Documentation, 2.7.3

– time: com.digitalasset.canton.data.CantonTimestamp

– timeout: com.digitalasset.canton.config.NonNegativeDuration

testing.await_domain_time (Testing)

• Summary: Await for the given time to be reached on the given domain

• Arguments:

– domainAlias: com.digitalasset.canton.DomainAlias

– time: com.digitalasset.canton.data.CantonTimestamp

– timeout: com.digitalasset.canton.config.NonNegativeDuration

testing.bong (Testing)

• Summary: Send a bong to a set of target parties over the ledger. Levels > 0 leads to an

exploding ping with exponential number of contracts. Throw a RuntimeException in case

of failure.

• Arguments:

– targets: Set[com.digitalasset.canton.topology.ParticipantId]

– validators: Set[com.digitalasset.canton.topology.ParticipantId]

– timeout: com.digitalasset.canton.config.NonNegativeDuration

– levels: Long

– gracePeriodMillis: Long

– workflowId: String

– id: String

• Return type:

– scala.concurrent.duration.Duration

• Description: Initiates a racy ping to multiple participants, measuring the roundtrip time

of the fastest responder, with an optional timeout. Grace-period is the time the bong will

wait for a duplicate spent (which would indicate an error in the system) before exiting. If

levels > 0, the ping command will lead to a binary explosion and subsequent dilation of

contracts, where level determines the number of levels we will explode. As a result, the

system will create (2^(L+2) - 3) contracts (where L stands for level). Normally, only the

initiator is a validator. Additional validators can be added using the validators argument.

The bong command comes handy to run a burst test against the system and quickly leads

to an overloading state.

testing.crypto_api (Testing)

• Summary: Return the sync crypto api provider, which provides access to all cryptographic

methods

• Return type:

– com.digitalasset.canton.crypto.SyncCryptoApiProvider

testing.event_search (Testing)

• Summary: Lookup of events

• Arguments:

– domain: com.digitalasset.canton.DomainAlias

– from: Option[java.time.Instant]

– to: Option[java.time.Instant]

– limit: com.digitalasset.canton.config.RequireTypes.PositiveInt

• Return type:

– Seq[(String, com.digitalasset.canton.participant.sync.TimestampedEvent)]

• Description: Show the event logs. To select only events from a particular domain, use

the domain alias. Leave the domain blank to search the combined event log containing

the events of all domains. Note that if the domain is left blank, the values of from and to

cannot be set. This is because the combined event log isn’t guaranteed to have increasing

1060 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/crypto/SyncCryptoApiProvider.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar PositiveInt\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

timestamps.

testing.fetch_domain_time (Testing)

• Summary: Fetch the current time from the given domain

• Arguments:

– domainId: com.digitalasset.canton.topology.DomainId

– timeout: com.digitalasset.canton.config.NonNegativeDuration

• Return type:

– com.digitalasset.canton.data.CantonTimestamp

testing.fetch_domain_time (Testing)

• Summary: Fetch the current time from the given domain

• Arguments:

– domainAlias: com.digitalasset.canton.DomainAlias

– timeout: com.digitalasset.canton.config.NonNegativeDuration

• Return type:

– com.digitalasset.canton.data.CantonTimestamp

testing.fetch_domain_times (Testing)

• Summary: Fetch the current time from all connected domains

• Arguments:

– timeout: com.digitalasset.canton.config.NonNegativeDuration

testing.find_clean_commitments_timestamp (Testing)

• Summary: The latest timestamp before or at the given one for which no commitment is

outstanding

• Arguments:

– domain: com.digitalasset.canton.DomainAlias

– beforeOrAt: com.digitalasset.canton.data.CantonTimestamp

• Return type:

– Option[com.digitalasset.canton.data.CantonTimestamp]

• Description: The latest timestamp before or at the given one for which no commitment is

outstanding. Note that this doesn’t imply that pruning is possible at this timestamp, as

the systemmight require some additional data for crash recovery. Thus, this is useful for

testing commitments; use the commands in the pruning group for pruning. Additionally,

the result needn’t fall on a “commitment tick” as specified by the reconciliation interval.

testing.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

testing.maybe_bong (Testing)

• Summary: Like bong, but returns None in case of failure.

• Arguments:

– targets: Set[com.digitalasset.canton.topology.ParticipantId]

– validators: Set[com.digitalasset.canton.topology.ParticipantId]

– timeout: com.digitalasset.canton.config.NonNegativeDuration

– levels: Long

– gracePeriodMillis: Long

– workflowId: String

– id: String

• Return type:

1.28. Canton Administration Quickstart 1061

../../canton/scaladoc/com/digitalasset/canton/topology/DomainId.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html
../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html

Daml SDK Documentation, 2.7.3

– Option[scala.concurrent.duration.Duration]

testing.pcs_search (Testing)

• Summary: Lookup contracts in the Private Contract Store

• Arguments:

– domainAlias: com.digitalasset.canton.DomainAlias

– filterId: String

– filterPackage: String

– filterTemplate: String

– activeSet: Boolean

– limit: com.digitalasset.canton.config.RequireTypes.PositiveInt

• Return type:

– List[(Boolean, com.digitalasset.canton.protocol.SerializableContract)]

• Description: Get raw access to the PCS of the given domain sync controller. The filter

commands will check if the target value contains the given string. The arguments can

be started with ^ such that startsWith is used for comparison or ! to use equals. The

activeSet argument allows to restrict the search to the active contract set.

testing.sequencer_messages (Testing)

• Summary: Retrieve all sequencer messages

• Arguments:

– domain: com.digitalasset.canton.DomainAlias

– from: Option[java.time.Instant]

– to: Option[java.time.Instant]

– limit: com.digitalasset.canton.config.RequireTypes.PositiveInt

• Return type:

– Seq[com.digitalasset.canton.sequencing.PossiblyIgnoredProtocolEvent]

• Description: Optionally allows filtering for sequencer from a certain time span (inclusive

on both ends) and limiting the number of displayed messages. The returned messages

will be ordered on most domain ledger implementations if a time span is given. Fails if

the participant has never connected to the domain.

testing.state_inspection (Testing)

• Summary: Obtain access to the state inspection interface. Use at your own risk.

• Return type:

– com.digitalasset.canton.participant.admin.SyncStateInspection

• Description: The state inspectionmethods can fatally and permanently corrupt the state

of a participant. The API is subject to change in any way.

testing.transaction_search (Testing)

• Summary: Lookup of accepted transactions

• Arguments:

– domain: com.digitalasset.canton.DomainAlias

– from: Option[java.time.Instant]

– to: Option[java.time.Instant]

– limit: com.digitalasset.canton.config.RequireTypes.PositiveInt

• Return type:

– Seq[(String, com.digitalasset.canton.protocol.LfCommittedTransaction)]

• Description: Show the accepted transactions as they appear in the event logs. To select

only transactions fromaparticular domain, use the domain alias. Leave the domain blank

to search the combined event log containing the events of all domains. Note that if the

domain is left blank, the values of from and to cannot be set. This is because the combined

event log isn’t guaranteed to have increasing timestamps.

1062 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar PositiveInt\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar PositiveInt\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/sequencing/index.html
../../canton/scaladoc/com/digitalasset/canton/participant/admin/SyncStateInspection.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar PositiveInt\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

Database

db.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

db.migrate

• Summary: Migrates the instance’s database if using a database storage

db.repair_migration

• Summary: Only use when advised - repairs the database migration of the instance’s

database

• Arguments:

– force: Boolean

• Description: In some rare cases, we change already applied database migration files in

a new release and the repair command resets the checksums we use to ensure that in

general already applied migration files have not been changed. You should only use db.re-

pair_migration when advised and otherwise use it at your own risk - in the worst case run-

ning it may lead to data corruption when an incompatible database migration (one that

should be rejected because the already applied database migration files have changed)

is subsequently falsely applied.

Health

health.active

• Summary: Check if the node is running and is the active instance (mediator, participant)

• Return type:

– Boolean

health.dump

• Summary: Creates a zip file containing diagnostic information about the canton process

running this node

• Arguments:

– outputFile: better.files.File

– timeout: com.digitalasset.canton.config.NonNegativeDuration

– chunkSize: Option[Int]

• Return type:

– String

health.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

health.initialized

• Summary: Returns true if node has been initialized.

• Return type:

– Boolean

health.maybe_ping (Testing)

1.28. Canton Administration Quickstart 1063

../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html

Daml SDK Documentation, 2.7.3

• Summary: Sends a ping to the target participant over the ledger. Yields Some(duration)

in case of success and None in case of failure.

• Arguments:

– participantId: com.digitalasset.canton.topology.ParticipantId

– timeout: com.digitalasset.canton.config.NonNegativeDuration

– workflowId: String

– id: String

• Return type:

– Option[scala.concurrent.duration.Duration]

health.ping

• Summary: Sends a ping to the target participant over the ledger. Yields the duration in

case of success and throws a RuntimeException in case of failure.

• Arguments:

– participantId: com.digitalasset.canton.topology.ParticipantId

– timeout: com.digitalasset.canton.config.NonNegativeDuration

– workflowId: String

– id: String

• Return type:

– scala.concurrent.duration.Duration

health.running

• Summary: Check if the node is running

• Return type:

– Boolean

health.status

• Summary: Get human (and machine) readable status info

• Return type:

– com.digitalasset.canton.health.admin.data.NodeStatus[S]

health.wait_for_identity

• Summary: Wait for the node to have an identity

• Description: This is specifically useful for the DomainManager which needs its identity to

be ready for bootstrapping, but for which we can’t rely on wait_for_initialized() because

it will be initialized only after being bootstrapped.

health.wait_for_initialized

• Summary: Wait for the node to be initialized

health.wait_for_running

• Summary: Wait for the node to be running

Domain Connectivity

domains.accept_agreement

• Summary: Accept the service agreement of the given domain alias

• Arguments:

– domainAlias: com.digitalasset.canton.DomainAlias

– agreementId: String

domains.active

• Summary: Test whether a participant is connected to and permissioned on a domain ref-

erence, both from the perspective of the participant and the domain.

1064 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html

Daml SDK Documentation, 2.7.3

• Arguments:

– reference: com.digitalasset.canton.console.commands.DomainAdministration

• Return type:

– Boolean

• Description: Yields false, if the domain has not been initialized, is not connected or is not

healthy.

domains.active

• Summary: Test whether a participant is connected to and permissioned on a domain.

• Arguments:

– domainAlias: com.digitalasset.canton.DomainAlias

• Return type:

– Boolean

• Description: Yields false, if the domain is not connected or not healthy. Yields false, if the

domain is configured in the Canton configuration and the participant is not active from

the perspective of the domain.

domains.config

• Summary: Returns the current configuration of a given domain

• Arguments:

– domain: com.digitalasset.canton.DomainAlias

• Return type:

– Option[com.digitalasset.canton.participant.domain.DomainConnectionConfig]

domains.connect

• Summary: Macro to connect a participant to a domain given by connection

• Arguments:

– domainAlias: com.digitalasset.canton.DomainAlias

– connection: String

– manualConnect: Boolean

– domainId: Option[com.digitalasset.canton.topology.DomainId]

– certificatesPath: String

– priority: Int

– timeTrackerConfig: com.digitalasset.canton.config.DomainTimeTrackerConfig

– synchronize: Option[com.digitalasset.canton.config.NonNegativeDuration]

• Return type:

– com.digitalasset.canton.participant.domain.DomainConnectionConfig

• Description: The connect macro performs a series of commands in order to connect this

participant to a domain. First, register will be invoked with the given arguments, but first

registered withmanualConnect = true. If you already setmanualConnect = true, then noth-

ing else will happen and you will have to do the remaining steps yourselves. Otherwise,

if the domain requires an agreement, it is fetched and presented to the user for evalua-

tion. If the user is fine with it, the agreement is confirmed. If you want to auto-confirm,

then set the environment variable CANTON_AUTO_APPROVE_AGREEMENTS=yes. Finally,

the command will invoke reconnect to startup the connection. If the reconnect succeeded,

the registered configuration will be updated with manualStart = true. If anything fails,

the domain will remain registered with manualConnect = true and you will have to perform

these steps manually. The arguments are: domainAlias - The name you will be using to

refer to this domain. Can not be changed anymore. connection - The connection string

to connect to this domain. I.e. https://url:port manualConnect - Whether this connection

should be handled manually and also excluded from automatic re-connect. domainId -

Optionally the domainId you expect to see on this domain. certificatesPath - Path to TLS

certificate files to use as a trust anchor. priority - The priority of the domain. The higher the

1.28. Canton Administration Quickstart 1065

../../canton/scaladoc/com/digitalasset/canton/console/commands/DomainAdministration.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainConnectionConfig.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/topology/DomainId.html
../../canton/scaladoc/com/digitalasset/canton/config/DomainTimeTrackerConfig.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainConnectionConfig.html
https://url:port

Daml SDK Documentation, 2.7.3

more likely a domain will be used. timeTrackerConfig - The configuration for the domain

time tracker. synchronize - A timeout duration indicating how long to wait for all topology

changes to have been effected on all local nodes.

domains.connect

• Summary: Macro to connect a participant to a domain given by connection

• Arguments:

– config: com.digitalasset.canton.participant.domain.DomainConnectionConfig

• Description: This variant of connect expects a domain connection config. Otherwise the

behaviour is equivalent to the connect command with explicit arguments. If the domain

is already configured, the domain connection will be attempted. If however the domain is

offline, the command will fail. Generally, this macro should only be used to setup a new

domain. However, for convenience, we support idempotent invocations where subsequent

calls just ensure that the participant reconnects to the domain.

domains.connect_ha

• Summary: Deprecated macro to connect a participant to a domain that supports con-

necting via many endpoints

• Arguments:

– domainAlias: com.digitalasset.canton.DomainAlias

– firstConnection: com.digitalasset.canton.sequencing.SequencerConnection

– additionalConnections: com.digitalasset.canton.sequencing.SequencerCon-

nection*

• Return type:

– com.digitalasset.canton.participant.domain.DomainConnectionConfig

• Description: Use the command connect_ha with the updated arguments list

domains.connect_local

• Summary: Macro to connect a participant to a locally configured domain given by refer-

ence

• Arguments:

– domain: com.digitalasset.canton.console.InstanceReferenceWithSequencerCon-

nection

– manualConnect: Boolean

– alias: Option[com.digitalasset.canton.DomainAlias]

– maxRetryDelayMillis: Option[Long]

– priority: Int

– synchronize: Option[com.digitalasset.canton.config.NonNegativeDuration]

• Description: The arguments are: domain - A local domain or sequencer reference manu-

alConnect - Whether this connection should be handledmanually and also excluded from

automatic re-connect. alias - The name you will be using to refer to this domain. Can not

be changed anymore. certificatesPath - Path to TLS certificate files to use as a trust an-

chor. priority - The priority of the domain. The higher themore likely a domain will be used.

synchronize - A timeout duration indicating how long to wait for all topology changes to

have been effected on all local nodes.

domains.connect_multi

• Summary: Macro to connect a participant to a domain that supports connecting viamany

endpoints

• Arguments:

– domainAlias: com.digitalasset.canton.DomainAlias

– connections: Seq[com.digitalasset.canton.sequencing.SequencerConnection]

– synchronize: Option[com.digitalasset.canton.config.NonNegativeDuration]

1066 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainConnectionConfig.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/sequencing/SequencerConnection.html
../../canton/scaladoc/com/digitalasset/canton/sequencing/SequencerConnection.html
../../canton/scaladoc/com/digitalasset/canton/sequencing/SequencerConnection.html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainConnectionConfig.html
../../canton/scaladoc/com/digitalasset/canton/console/InstanceReferenceWithSequencerConnection.html
../../canton/scaladoc/com/digitalasset/canton/console/InstanceReferenceWithSequencerConnection.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/sequencing/SequencerConnection.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html

Daml SDK Documentation, 2.7.3

• Return type:

– com.digitalasset.canton.participant.domain.DomainConnectionConfig

• Description: Domains can provide many endpoints to connect to for availability and

performance benefits. This version of connect allows specifying multiple endpoints

for a single domain connection: connect_multi(“mydomain”, Seq(sequencer1, se-

quencer2)) or: connect_multi(“mydomain”, Seq(”https://host1.mydomain.net”, “https:

//host2.mydomain.net”, “https://host3.mydomain.net”)) To create amore advanced con-

nection config use domains.toConfig with a single host, then use config.addConnection to

add additional connections before connecting: config = myparticipaint.domains.toCon-

fig(“mydomain”, “https://host1.mydomain.net”, …otherArguments) config = config.ad-

dConnection(”https://host2.mydomain.net”, “https://host3.mydomain.net”) mypartici-

pant.domains.connect(config) The arguments are: domainAlias - The name you will be

using to refer to this domain. Can not be changed anymore. connections - The sequencer

connection definitions (can be an URL) to connect to this domain. I.e. https://url:port syn-

chronize - A timeout duration indicating how long to wait for all topology changes to have

been effected on all local nodes.

domains.disconnect

• Summary: Disconnect this participant from the given domain

• Arguments:

– domainAlias: com.digitalasset.canton.DomainAlias

domains.disconnect_all

• Summary: Disconnect this participant from all connected domains

domains.disconnect_local

• Summary: Disconnect this participant from the given local domain

• Arguments:

– domain: com.digitalasset.canton.console.DomainReference

domains.get_agreement

• Summary: Get the service agreement of the given domain alias and if it has been accepted

already.

• Arguments:

– domainAlias: com.digitalasset.canton.DomainAlias

• Return type:

– Option[(com.digitalasset.canton.participant.admin.v0.Agreement, Boolean)]

domains.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

domains.id_of

• Summary: Returns the id of the given domain alias

• Arguments:

– domainAlias: com.digitalasset.canton.DomainAlias

• Return type:

– com.digitalasset.canton.topology.DomainId

domains.is_connected

• Summary: Test whether a participant is connected to a domain reference

• Arguments:

– reference: com.digitalasset.canton.console.commands.DomainAdministration

1.28. Canton Administration Quickstart 1067

../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainConnectionConfig.html
https://host1.mydomain.net
https://host2.mydomain.net
https://host2.mydomain.net
https://host3.mydomain.net
https://host1.mydomain.net
https://host2.mydomain.net
https://host3.mydomain.net
https://url:port
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/console/DomainReference.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/topology/DomainId.html
../../canton/scaladoc/com/digitalasset/canton/console/commands/DomainAdministration.html

Daml SDK Documentation, 2.7.3

• Return type:

– Boolean

domains.is_registered

• Summary: Returns true if a domain is registered using the given alias

• Arguments:

– domain: com.digitalasset.canton.DomainAlias

• Return type:

– Boolean

domains.list_connected

• Summary: List the connected domains of this participant

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListConnectedDomainsResult]

domains.list_registered

• Summary: List the configured domains of this participant

• Return type:

– Seq[(com.digitalasset.canton.participant.domain.DomainConnectionConfig,

Boolean)]

domains.modify

• Summary: Modify existing domain connection

• Arguments:

– domain: com.digitalasset.canton.DomainAlias

– modifier: com.digitalasset.canton.participant.domain.DomainConnectionCon-

fig => com.digitalasset.canton.participant.domain.DomainConnectionConfig

domains.reconnect

• Summary: Reconnect this participant to the given domain

• Arguments:

– domainAlias: com.digitalasset.canton.DomainAlias

– retry: Boolean

– synchronize: Option[com.digitalasset.canton.config.NonNegativeDuration]

• Return type:

– Boolean

• Description: Idempotent attempts to re-establish a connection to a certain domain. If

retry is set to false, the command will throw an exception if unsuccessful. If retry is set to

true, the commandwill terminate after the first attempt with the result, but the server will

keep on retrying to connect to the domain. The arguments are: domainAlias - The name

you will be using to refer to this domain. Can not be changed anymore. retry - Whether

the reconnect should keep on retrying until it succeeded or abort noisly if the connection

attempt fails. synchronize - A timeout duration indicating how long to wait for all topology

changes to have been effected on all local nodes.

domains.reconnect_all

• Summary: Reconnect this participant to all domains which are not marked as manual

start

• Arguments:

– ignoreFailures: Boolean

– synchronize: Option[com.digitalasset.canton.config.NonNegativeDuration]

• Description: The arguments are: ignoreFailures - If set to true (default), we’ll attempt to

connect to all, ignoring any failure synchronize - A timeout duration indicating how long

to wait for all topology changes to have been effected on all local nodes.

1068 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListConnectedDomainsResult.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainConnectionConfig.html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainConnectionConfig.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html

Daml SDK Documentation, 2.7.3

domains.reconnect_local

• Summary: Reconnect this participant to the given local domain

• Arguments:

– ref: com.digitalasset.canton.console.DomainReference

– retry: Boolean

– synchronize: Option[com.digitalasset.canton.config.NonNegativeDuration]

• Return type:

– Boolean

• Description: Idempotent attempts to re-establish a connection to the given local domain.

Same behaviour as generic reconnect. The arguments are: ref - The domain reference to

connect to retry - Whether the reconnect should keep on retrying until it succeeded or

abort noisly if the connection attempt fails. synchronize - A timeout duration indicating

how long to wait for all topology changes to have been effected on all local nodes.

domains.register

• Summary: Register new domain connection

• Arguments:

– config: com.digitalasset.canton.participant.domain.DomainConnectionConfig

• Description: When connecting to a domain, we need to register the domain connection

and eventually accept the terms of service of the domain before we can connect. The reg-

istration process is therefore a subset of the operation. Therefore, register is equivalent to

connect if the domain does not require a service agreement. However, you would usually

call register only in advanced scripts.

Packages

packages.find

• Summary: Find packages that contain a module with the given name

• Arguments:

– moduleName: String

– limitPackages: com.digitalasset.canton.config.RequireTypes.PositiveInt

• Return type:

– Seq[com.digitalasset.canton.participant.admin.v0.PackageDescription]

packages.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

packages.list

• Summary: List packages stored on the participant

• Arguments:

– limit: com.digitalasset.canton.config.RequireTypes.PositiveInt

• Return type:

– Seq[com.digitalasset.canton.participant.admin.v0.PackageDescription]

• Description: Supported arguments: limit - Limit on the number of packages returned

(defaults to canton.parameters.console.default-limit)

packages.list_contents

• Summary: List package contents

• Arguments:

1.28. Canton Administration Quickstart 1069

../../canton/scaladoc/com/digitalasset/canton/console/DomainReference.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainConnectionConfig.html
../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar PositiveInt\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/admin/v0/PackageDescription.html
../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar PositiveInt\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/admin/v0/PackageDescription.html

Daml SDK Documentation, 2.7.3

– packageId: String

• Return type:

– Seq[com.digitalasset.canton.participant.admin.v0.ModuleDescription]

packages.remove (Preview)

• Summary: Remove the package from Canton’s package store.

• Arguments:

– packageId: String

– force: Boolean

• Description: The standard operation of this command checks that a package is unused

and unvetted, and if so removes the package. The force flag can be used to disable the

checks, but do not use the force flag unless you’re certain you know what you’re doing.

packages.synchronize_vetting

• Summary: Ensure that all vetting transactions issued by this participant have been ob-

served by all configured participants

• Arguments:

– timeout: com.digitalasset.canton.config.NonNegativeDuration

• Description: Sometimes, when scripting tests and demos, a dar or package is uploaded

and we need to ensure that commands are only submitted once the package vetting has

been observed by some other connected participant known to the console. This command

can be used in such cases.

DAR Management

dars.download

• Summary: Downloads the DAR file with the given hash to the given directory

• Arguments:

– darHash: String

– directory: String

dars.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

dars.list

• Summary: List installed DAR files

• Arguments:

– limit: com.digitalasset.canton.config.RequireTypes.PositiveInt

– filterName: String

• Return type:

– Seq[com.digitalasset.canton.participant.admin.v0.DarDescription]

• Description: List DARs installed on this participant The arguments are: filterName: filter

by name (source description) limit: Limit number of results (default none)

dars.list_contents

• Summary: List contents of DAR files

• Arguments:

– hash: String

• Return type:

– com.digitalasset.canton.admin.api.client.data.DarMetadata

1070 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/participant/admin/v0/ModuleDescription.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar PositiveInt\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/admin/v0/DarDescription.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/DarMetadata.html

Daml SDK Documentation, 2.7.3

dars.remove (Preview)

• Summary: Remove a DAR from the participant

• Arguments:

– darHash: String

– synchronizeVetting: Boolean

• Description: Can be used to remove a DAR from the participant, if the following conditions

are satisfied: 1. The main package of the DAR must be unused – there should be no active

contract from this package 2. All package dependencies of the DAR should either be un-

used or contained in another of the participant node’s uploaded DARs. Canton uses this

restriction to ensure that the package dependencies of the DAR don’t become “stranded”

if they’re in use. 3. Themain package of the dar should not be vetted. If it is vetted, Canton

will try to automatically revoke the vetting for themain package of the DAR, but this auto-

matic vetting revocation will only succeed if the main package vetting originates from a

standard dars.upload. Even if the automatic revocation fails, you can always manually

revoke the package vetting. If synchronizeVetting is true (default), then the command will

block until the participant has observed the vetting transactions to be registered with the

domain.

dars.upload

• Summary: Upload a Dar to Canton

• Arguments:

– path: String

– vetAllPackages: Boolean

– synchronizeVetting: Boolean

• Return type:

– String

• Description: Daml code is normally shipped as a Dar archive and must explicitly be up-

loaded to a participant. A Dar is a collection of LF-packages, the native binary represen-

tation of Daml smart contracts. In order to use Daml templates on a participant, the Dar

must first be uploaded and then vetted by the participant. Vetting will ensure that other

participants can check whether they can actually send a transaction referring to a par-

ticular Daml package and participant. Vetting is done by registering a VettedPackages

topology transaction with the topology manager. By default, vetting happens automat-

ically and this command waits for the vetting transaction to be successfully registered

on all connected domains. This is the safe default setting minimizing race conditions. If

vetAllPackages is true (default), the packages will all be vetted on all domains the partici-

pant is registered. If synchronizeVetting is true (default), then the commandwill block un-

til the participant has observed the vetting transactions to be registered with the domain.

Note that synchronize vetting might block on permissioned domains that do not just al-

lowparticipants to update the topology state. In such cases, synchronizeVetting should be

turned off. Synchronize vetting can be invokedmanually using $participant.package.syn-

chronize_vettings()

1.28. Canton Administration Quickstart 1071

Daml SDK Documentation, 2.7.3

DAR Sharing

dars.sharing.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

dars.sharing.requests.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

dars.sharing.requests.list (Preview)

• Summary: List pending requests to share a DAR with others

• Return type:

– Seq[com.digitalasset.canton.participant.admin.v0.ListShareRequestsRe-

sponse.Item]

dars.sharing.requests.propose (Preview)

• Summary: Share a DAR with other participants

• Arguments:

– darHash: String

– participantId: com.digitalasset.canton.topology.ParticipantId

dars.sharing.offers.accept (Preview)

• Summary: Accept the offer to share a DAR

• Arguments:

– shareId: String

dars.sharing.offers.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

dars.sharing.offers.list

• Summary: List received DAR sharing offers

• Return type:

– Seq[com.digitalasset.canton.participant.admin.v0.ListShareOffersRe-

sponse.Item]

dars.sharing.offers.reject (Preview)

• Summary: Reject the offer to share a DAR

• Arguments:

– shareId: String

– reason: String

dars.sharing.whitelist.add (Preview)

• Summary: Add party to my DAR sharing whitelist

• Arguments:

– partyId: com.digitalasset.canton.topology.PartyId

dars.sharing.whitelist.help

1072 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/participant/admin/v0/ListShareRequestsResponse.html
../../canton/scaladoc/com/digitalasset/canton/participant/admin/v0/ListShareRequestsResponse.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html
../../canton/scaladoc/com/digitalasset/canton/participant/admin/v0/ListShareOffersResponse.html
../../canton/scaladoc/com/digitalasset/canton/participant/admin/v0/ListShareOffersResponse.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html

Daml SDK Documentation, 2.7.3

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

dars.sharing.whitelist.list (Preview)

• Summary: List parties that are currently whitelisted to share DARs with me

dars.sharing.whitelist.remove (Preview)

• Summary: Remove party frommy DAR sharing whitelist

• Arguments:

– partyId: com.digitalasset.canton.topology.PartyId

Party Management

The party management commands allow to conveniently enable and disable parties on the local

node. Under the hood, they use the more complicated but feature-richer identity management com-

mands.

parties.await_topology_observed (Preview)

• Summary: Waits for any topology changes to be observed

• Arguments:

– partyAssignment: Set[(com.digitalasset.canton.topology.PartyId, T)]

– timeout: com.digitalasset.canton.config.NonNegativeDuration

• Description: Will throw an exception if the given topology has not been observed within

the given timeout.

parties.disable

• Summary: Disable party on participant

• Arguments:

– name: com.digitalasset.canton.topology.Identifier

– force: Boolean

parties.enable

• Summary: Enable/add party to participant

• Arguments:

– name: String

– displayName: Option[String]

– waitForDomain: com.digitalasset.canton.console.commands.DomainChoice

– synchronizeParticipants: Seq[com.digitalasset.canton.console.Partici-

pantReference]

• Return type:

– com.digitalasset.canton.topology.PartyId

• Description: This function registers a new party with the current participant within the

participants namespace. The function fails if the participant does not have appropriate

signing keys to issue the corresponding PartyToParticipant topology transaction. Option-

ally, a local display namecanbe added. This display namewill be exposed on the ledger API

party management endpoint. Specifying a set of domains via the WaitForDomain param-

eter ensures that the domains have enabled/added a party by the time the call returns,

but other participants connected to the same domains may not yet be aware of the party.

Additionally, a sequence of additional participants can be added to be synchronized to en-

sure that the party is known to these participants as well before the function terminates.

1.28. Canton Administration Quickstart 1073

../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/topology/Identifier.html
../../canton/scaladoc/com/digitalasset/canton/console/commands/DomainChoice.html
../../canton/scaladoc/com/digitalasset/canton/console/ParticipantReference.html
../../canton/scaladoc/com/digitalasset/canton/console/ParticipantReference.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html

Daml SDK Documentation, 2.7.3

parties.find

• Summary: Find a party from a filter string

• Arguments:

– filterParty: String

• Return type:

– com.digitalasset.canton.topology.PartyId

• Description: Will search for all parties that match this filter string. If it finds exactly one

party, it will return that one. Otherwise, the function will throw.

parties.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

parties.hosted

• Summary: List parties hosted by this participant

• Arguments:

– filterParty: String

– filterDomain: String

– asOf: Option[java.time.Instant]

– limit: com.digitalasset.canton.config.RequireTypes.PositiveInt

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListPartiesResult]

• Description: Inspect the parties hosted by this participant as used for synchronisation.

The response is built from the timestamped topology transactions of each domain, ex-

cluding the authorized store of the given node. The search will include all hosted parties

and is equivalent to running the list method using the participant id of the invoking par-

ticipant. filterParty: Filter by parties starting with the given string. filterDomain: Filter

by domains whose id starts with the given string. asOf: Optional timestamp to inspect

the topology state at a given point in time. limit: How many items to return (defaults

to canton.parameters.console.default-limit) Example: participant1.parties.hosted(filter-

Party=”alice”)

parties.list

• Summary: List active parties, their active participants, and the participants’ permissions

on domains.

• Arguments:

– filterParty: String

– filterParticipant: String

– filterDomain: String

– asOf: Option[java.time.Instant]

– limit: com.digitalasset.canton.config.RequireTypes.PositiveInt

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListPartiesResult]

• Description: Inspect the parties known by this participant as used for synchronisation.

The response is built from the timestamped topology transactions of each domain, ex-

cluding the authorized store of the given node. For each known party, the list of active

participants and their permission on the domain for that party is given. filterParty: Fil-

ter by parties starting with the given string. filterParticipant: Filter for parties that are

hosted by a participant with an id starting with the given string filterDomain: Filter by

domains whose id starts with the given string. asOf: Optional timestamp to inspect the

topology state at a given point in time. limit: Limit on the number of parties fetched (de-

1074 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar PositiveInt\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListPartiesResult.html
../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar PositiveInt\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListPartiesResult.html

Daml SDK Documentation, 2.7.3

faults to canton.parameters.console.default-limit). Example: participant1.parties.list(fil-

terParty=”alice”)

parties.set_display_name

• Summary: Set party display name

• Arguments:

– party: com.digitalasset.canton.topology.PartyId

– displayName: String

• Description: Locally set the party display name (shown on the ledger-api) to the given

value

parties.update

• Summary: Update participant-local party details

• Arguments:

– party: com.digitalasset.canton.topology.PartyId

– modifier: com.digitalasset.canton.admin.api.client.data.PartyDetails =>

com.digitalasset.canton.admin.api.client.data.PartyDetails

• Return type:

– com.digitalasset.canton.admin.api.client.data.PartyDetails

• Description: Currently you can update only the annotations. You cannot update other

user attributes. party: party to be updated, modifier: a function to modify the party de-

tails, e.g.: partyDetails => { partyDetails.copy(annotations = partyDetails.annotations.updated(“a”,

“b”).removed(“c”)) }

Key Administration

keys.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

keys.public.download

• Summary: Download public key

• Arguments:

– fingerprint: com.digitalasset.canton.crypto.Fingerprint

– protocolVersion: com.digitalasset.canton.version.ProtocolVersion

• Return type:

– com.google.protobuf.ByteString

keys.public.download_to

• Summary: Download public key and save it to a file

• Arguments:

– fingerprint: com.digitalasset.canton.crypto.Fingerprint

– outputFile: String

– protocolVersion: com.digitalasset.canton.version.ProtocolVersion

keys.public.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

1.28. Canton Administration Quickstart 1075

../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/PartyDetails.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/PartyDetails.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/PartyDetails.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/version/ProtocolVersion.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/version/ProtocolVersion.html

Daml SDK Documentation, 2.7.3

keys.public.list

• Summary: List public keys in registry

• Arguments:

– filterFingerprint: String

– filterContext: String

• Return type:

– Seq[com.digitalasset.canton.crypto.PublicKeyWithName]

• Description: Returns all public keys that have been added to the key registry. Optional

arguments can be used for filtering.

keys.public.list_by_owner

• Summary: List keys for given keyOwner.

• Arguments:

– keyOwner: com.digitalasset.canton.topology.KeyOwner

– filterDomain: String

– asOf: Option[java.time.Instant]

– limit: com.digitalasset.canton.config.RequireTypes.PositiveInt

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListKeyOwnersResult]

• Description: This command is a convenience wrapper for list_key_owners, taking an ex-

plicit keyOwner as search argument. The response includes the public keys.

keys.public.list_owners

• Summary: List active owners with keys for given search arguments.

• Arguments:

– filterKeyOwnerUid: String

– filterKeyOwnerType: Option[com.digitalasset.canton.topology.KeyOwner-

Code]

– filterDomain: String

– asOf: Option[java.time.Instant]

– limit: com.digitalasset.canton.config.RequireTypes.PositiveInt

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListKeyOwnersResult]

• Description: This command allows deep inspection of the topology state. The response

includes the public keys. Optional filterKeyOwnerType type can be ‘ParticipantId.Code’ ,

‘MediatorId.Code’,’SequencerId.Code’, ‘DomainTopologyManagerId.Code’.

keys.public.upload

• Summary: Upload public key

• Arguments:

– filename: String

– name: Option[String]

• Return type:

– com.digitalasset.canton.crypto.Fingerprint

keys.public.upload

• Summary: Upload public key

• Arguments:

– keyBytes: com.google.protobuf.ByteString

– name: Option[String]

• Return type:

– com.digitalasset.canton.crypto.Fingerprint

• Description: Import a public key and store it together with a name used to provide some

1076 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/crypto/PublicKeyWithName.html
../../canton/scaladoc/com/digitalasset/canton/topology/KeyOwner.html
../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar PositiveInt\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListKeyOwnersResult.html
../../canton/scaladoc/com/digitalasset/canton/topology/KeyOwnerCode.html
../../canton/scaladoc/com/digitalasset/canton/topology/KeyOwnerCode.html
../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar PositiveInt\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListKeyOwnersResult.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html

Daml SDK Documentation, 2.7.3

context to that key.

keys.secret.delete

• Summary: Delete private key

• Arguments:

– fingerprint: com.digitalasset.canton.crypto.Fingerprint

– force: Boolean

keys.secret.download

• Summary: Download key pair

• Arguments:

– fingerprint: com.digitalasset.canton.crypto.Fingerprint

– protocolVersion: com.digitalasset.canton.version.ProtocolVersion

• Return type:

– com.google.protobuf.ByteString

keys.secret.download_to

• Summary: Download key pair and save it to a file

• Arguments:

– fingerprint: com.digitalasset.canton.crypto.Fingerprint

– outputFile: String

– protocolVersion: com.digitalasset.canton.version.ProtocolVersion

keys.secret.generate_encryption_key

• Summary: Generate new public/private key pair for encryption and store it in the vault

• Arguments:

– name: String

– scheme: Option[com.digitalasset.canton.crypto.EncryptionKeyScheme]

• Return type:

– com.digitalasset.canton.crypto.EncryptionPublicKey

• Description: The optional nameargument allows you to store anassociated string for your

convenience. The scheme can be used to select a key scheme and the default scheme is

used if left unspecified.

keys.secret.generate_signing_key

• Summary: Generate new public/private key pair for signing and store it in the vault

• Arguments:

– name: String

– scheme: Option[com.digitalasset.canton.crypto.SigningKeyScheme]

• Return type:

– com.digitalasset.canton.crypto.SigningPublicKey

• Description: The optional nameargument allows you to store anassociated string for your

convenience. The scheme can be used to select a key scheme and the default scheme is

used if left unspecified.

keys.secret.get_wrapper_key_id

• Summary: Get the wrapper key id that is used for the encrypted private keys store

• Return type:

– String

keys.secret.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

1.28. Canton Administration Quickstart 1077

../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/version/ProtocolVersion.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/version/ProtocolVersion.html
../../canton/scaladoc/com/digitalasset/canton/crypto/EncryptionKeyScheme.html
../../canton/scaladoc/com/digitalasset/canton/crypto/EncryptionPublicKey.html
../../canton/scaladoc/com/digitalasset/canton/crypto/SigningKeyScheme.html
../../canton/scaladoc/com/digitalasset/canton/crypto/SigningPublicKey.html

Daml SDK Documentation, 2.7.3

keys.secret.list

• Summary: List keys in private vault

• Arguments:

– filterFingerprint: String

– filterName: String

– purpose: Set[com.digitalasset.canton.crypto.KeyPurpose]

• Return type:

– Seq[com.digitalasset.canton.crypto.admin.grpc.PrivateKeyMetadata]

• Description: Returns all public keys to the corresponding private keys in the key vault.

Optional arguments can be used for filtering.

keys.secret.register_kms_encryption_key

• Summary: Register the specified KMS encryption key in canton storing its public infor-

mation in the vault

• Arguments:

– kmsKeyId: String

– name: String

• Return type:

– com.digitalasset.canton.crypto.EncryptionPublicKey

• Description: The id for the KMS encryption key. The optional name argument allows you

to store an associated string for your convenience.

keys.secret.register_kms_signing_key

• Summary: Register the specified KMSsigning key in canton storing its public information

in the vault

• Arguments:

– kmsKeyId: String

– name: String

• Return type:

– com.digitalasset.canton.crypto.SigningPublicKey

• Description: The id for the KMS signing key. The optional name argument allows you to

store an associated string for your convenience.

keys.secret.rotate_kms_node_key

• Summary: Rotate a given node’s keypair with a new pre-generated KMS keypair

• Arguments:

– fingerprint: String

– newKmsKeyId: String

• Return type:

– com.digitalasset.canton.crypto.PublicKey

• Description: Rotates an existing encryption or signing key stored externally in a KMSwith

a pre-generated key. The fingerprint of the key we want to rotate. The id of the new KMS

key (e.g. Resource Name).

keys.secret.rotate_node_key

• Summary: Rotate a node’s public/private key pair

• Arguments:

– fingerprint: String

– name: Option[String]

• Return type:

– com.digitalasset.canton.crypto.PublicKey

• Description: Rotates an existing encryption or signing key. NOTE: A namespace root or

intermediate signing key CANNOT be rotated by this command. The fingerprint of the key

1078 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/crypto/KeyPurpose.html
../../canton/scaladoc/com/digitalasset/canton/crypto/admin/grpc/PrivateKeyMetadata.html
../../canton/scaladoc/com/digitalasset/canton/crypto/EncryptionPublicKey.html
../../canton/scaladoc/com/digitalasset/canton/crypto/SigningPublicKey.html
../../canton/scaladoc/com/digitalasset/canton/crypto/PublicKey.html
../../canton/scaladoc/com/digitalasset/canton/crypto/PublicKey.html

Daml SDK Documentation, 2.7.3

we want to rotate.

keys.secret.rotate_node_keys

• Summary: Rotate the node’s public/private key pairs

• Description: For a participant node it rotates the signing and encryption key pair. For a do-

main or domain manager node it rotates the signing key pair as those nodes do not have

an encryption key pair. For a sequencer or mediator node use rotate_node_keys with a do-

main manager reference as an argument. NOTE: Namespace root or intermediate signing

keys are NOT rotated by this command.

keys.secret.rotate_wrapper_key

• Summary: Change the wrapper key for encrypted private keys store

• Arguments:

– newWrapperKeyId: String

• Description: Change thewrapper key (e.g. AWS KMS key) being used to encrypt the private

keys in the store. newWrapperKeyId: The optional new wrapper key id to be used. If the

wrapper key id is empty Cantonwill generate a newkey based on the current configuration.

keys.secret.upload

• Summary: Upload a key pair

• Arguments:

– pairBytes: com.google.protobuf.ByteString

– name: Option[String]

keys.secret.upload

• Summary: Upload (load and import) a key pair from file

• Arguments:

– filename: String

– name: Option[String]

Topology Administration

The topology commands canbeused tomanipulate and inspect the topology state. In all commands,

we use fingerprints to refer to public keys. Internally, these fingerprints are resolved using the key

registry (which is a map of Fingerprint -> PublicKey). Any key can be added to the key registry using

the keys.public.load commands.

topology.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

topology.init_id

• Summary: Initialize the node with a unique identifier

• Arguments:

– identifier: com.digitalasset.canton.topology.Identifier

– fingerprint: com.digitalasset.canton.crypto.Fingerprint

• Return type:

– com.digitalasset.canton.topology.UniqueIdentifier

• Description: Every node in Canton is identified using a unique identifier, which is com-

posed of a user-chosen string and the fingerprint of a signing key. The signing key is the

root key defining a so-called namespace, where the signing key has the ultimate control

1.28. Canton Administration Quickstart 1079

../../canton/scaladoc/com/digitalasset/canton/topology/Identifier.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/topology/UniqueIdentifier.html

Daml SDK Documentation, 2.7.3

over issuing new identifiers. During initialisation, we have to pick such a unique identi-

fier. By default, initialisation happens automatically, but it can be turned off by setting the

auto-init option to false. Automatic node initialisation is usually turned off to preserve the

identity of a participant or domain node (duringmajor version upgrades) or if the topology

transactions are managed through a different topology manager than the one integrated

into this node.

topology.load_transaction

• Summary: Upload signed topology transaction

• Arguments:

– bytes: com.google.protobuf.ByteString

• Description: Topology transactions can be issued with any topology manager. In some

cases, such transactions need to be copiedmanually between nodes. This function allows

for uploading previously exported topology transaction into the authorized store (which

is the name of the topology managers transaction store.

topology.stores.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

topology.stores.list

• Summary: List available topology stores

• Return type:

– Seq[String]

• Description: Topology transactions are stored in these stores. There are the following

stores: “Authorized” - The authorized store is the store of a topologymanager. Updates to

the topology state are made by adding new transactions to the “Authorized” store. Both

the participant and the domain nodes topology manager have such a store. A partici-

pant node will distribute all the content in the Authorized store to the domains it is con-

nected to. The domain node will distribute the content of the Authorized store through

the sequencer to the domain members in order to create the authoritative topology state

on a domain (which is stored in the store named using the domain-id), such that every

domain member will have the same view on the topology state on a particular domain.

“<domain-id> - The domain store is the authorized topology state on a domain. A partici-

pant has one store for each domain it is connected to. The domain has exactly one store

with its domain-id. “Requested” - A domain can be configured such that when participant

tries to register a topology transaction with the domain, the transaction is placed into the

“Requested” store such that it can be analysed and processed with user defined process.

topology.namespace_delegations.authorize

• Summary: Change namespace delegation

• Arguments:

– ops: com.digitalasset.canton.topology.transaction.TopologyChangeOp

– namespace: com.digitalasset.canton.crypto.Fingerprint

– authorizedKey: com.digitalasset.canton.crypto.Fingerprint

– isRootDelegation: Boolean

– signedBy: Option[com.digitalasset.canton.crypto.Fingerprint]

– synchronize: Option[com.digitalasset.canton.config.NonNegativeDuration]

– force: Boolean

• Return type:

– com.google.protobuf.ByteString

1080 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html

Daml SDK Documentation, 2.7.3

• Description: Delegates the authority to authorize topology transactions in a certain

namespace to a certain key. The keys are referred to using their fingerprints. They need to

be either locally generated or have been previously imported. ops: Either Add or Remove

the delegation. namespace: The namespace whose authorization authority is delegated.

signedBy: Optional fingerprint of the authorizing key. The authorizing key needs to be ei-

ther the authorizedKey for root certificates. Otherwise, the signedBy key needs to refer to

a previously authorized key, whichmeans that we use the signedBy key to refer to a locally

available CA. authorizedKey: Fingerprint of the key to be authorized. If signedBy equals au-

thorizedKey, then this transaction corresponds to a self-signed root certificate. If the keys

differ, then we get an intermediate CA. isRootDelegation: If set to true (default = false), the

authorized key will be allowed to issue NamespaceDelegations. synchronize: Synchronize

timeout can be used to ensure that the state has been propagated into the node

topology.namespace_delegations.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

topology.namespace_delegations.list

• Summary: List namespace delegation transactions

• Arguments:

– filterStore: String

– useStateStore: Boolean

– timeQuery: com.digitalasset.canton.topology.store.TimeQuery

– operation: Option[com.digitalasset.canton.topology.transaction.Topology-

ChangeOp]

– filterNamespace: String

– filterSigningKey: String

– filterTargetKey: Option[com.digitalasset.canton.crypto.Fingerprint]

– protocolVersion: Option[String]

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListNamespaceDelegationRe-

sult]

• Description: List the namespace delegation transaction present in the stores. Names-

pace delegations are topology transactions that permission a key to issue topology trans-

actions within a certain namespace. filterStore: Filter for topology stores starting with the

given filter string (Authorized, <domain-id>, Requested) useStateStore: If true (default),

only properly authorized transactions that are part of the statewill be selected. timeQuery:

The timequery allows to customize the query by time. The following options are supported:

TimeQuery.HeadState (default): The most recent known state. TimeQuery.Snapshot(ts):

The state at a certain point in time. TimeQuery.Range(fromO, toO): Time-range of when

the transaction was added to the store operation: Optionally, what type of operation the

transaction should have. State store only has “Add”. filterSigningKey: Filter for transac-

tions that are authorized with a key that starts with the given filter string. filterNames-

pace: Filter for namespaces starting with the given filter string. filterTargetKey: Filter for

namespaces delegations for the given target key. protocolVersion: Export the topology

transactions in the optional protocol version.

topology.identifier_delegations.authorize

• Summary: Change identifier delegation

• Arguments:

– ops: com.digitalasset.canton.topology.transaction.TopologyChangeOp

1.28. Canton Administration Quickstart 1081

../../canton/scaladoc/com/digitalasset/canton/topology/store/TimeQuery.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListNamespaceDelegationResult.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListNamespaceDelegationResult.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html

Daml SDK Documentation, 2.7.3

– identifier: com.digitalasset.canton.topology.UniqueIdentifier

– authorizedKey: com.digitalasset.canton.crypto.Fingerprint

– signedBy: Option[com.digitalasset.canton.crypto.Fingerprint]

– synchronize: Option[com.digitalasset.canton.config.NonNegativeDuration]

• Return type:

– com.google.protobuf.ByteString

• Description: Delegates the authority of a certain identifier to a certain key. This corre-

sponds to a normal certificate which binds identifier to a key. The keys are referred to

using their fingerprints. They need to be either locally generated or have been previously

imported. ops: Either Add or Remove the delegation. signedBy: Refers to the optional fin-

gerprint of the authorizing keywhich in turn refers to a specific, locally existing certificate.

authorizedKey: Fingerprint of the key to be authorized. synchronize: Synchronize timeout

can be used to ensure that the state has been propagated into the node

topology.identifier_delegations.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

topology.identifier_delegations.list

• Summary: List identifier delegation transactions

• Arguments:

– filterStore: String

– useStateStore: Boolean

– timeQuery: com.digitalasset.canton.topology.store.TimeQuery

– operation: Option[com.digitalasset.canton.topology.transaction.Topology-

ChangeOp]

– filterUid: String

– filterSigningKey: String

– filterTargetKey: Option[com.digitalasset.canton.crypto.Fingerprint]

– protocolVersion: Option[String]

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListIdentifierDelegationRe-

sult]

• Description: List the identifier delegation transaction present in the stores. Identifier

delegations are topology transactions that permission a key to issue topology transac-

tions for a certain unique identifier. filterStore: Filter for topology stores starting with the

given filter string (Authorized, <domain-id>, Requested) useStateStore: If true (default),

only properly authorized transactions that are part of the statewill be selected. timeQuery:

The timequery allows to customize the query by time. The following options are supported:

TimeQuery.HeadState (default): The most recent known state. TimeQuery.Snapshot(ts):

The state at a certain point in time. TimeQuery.Range(fromO, toO): Time-range of when the

transactionwas added to the store operation: Optionally, what type of operation the trans-

action should have. State store only has “Add”. filterSigningKey: Filter for transactions

that are authorized with a key that starts with the given filter string. filterUid: Filter for

unique identifiers starting with the given filter string. protocolVersion: Export the topol-

ogy transactions in the optional protocol version.

topology.owner_to_key_mappings.authorize

• Summary: Change an owner to key mapping

• Arguments:

– ops: com.digitalasset.canton.topology.transaction.TopologyChangeOp

1082 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/topology/UniqueIdentifier.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/topology/store/TimeQuery.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListIdentifierDelegationResult.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListIdentifierDelegationResult.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html

Daml SDK Documentation, 2.7.3

– keyOwner: com.digitalasset.canton.topology.KeyOwner

– key: com.digitalasset.canton.crypto.Fingerprint

– purpose: com.digitalasset.canton.crypto.KeyPurpose

– signedBy: Option[com.digitalasset.canton.crypto.Fingerprint]

– synchronize: Option[com.digitalasset.canton.config.NonNegativeDuration]

– force: Boolean

• Return type:

– com.google.protobuf.ByteString

• Description: Change a owner to key mapping. A key owner is anyone in the system that

needs a key-pair known to allmembers (participants, mediator, sequencer, topologyman-

ager) of a domain. ops: Either Add or Remove the keymapping update. signedBy: Optional

fingerprint of the authorizing key which in turn refers to a specific, locally existing certifi-

cate. ownerType: Role of the following owner (Participant, Sequencer, Mediator, Domain-

TopologyManager) owner: Unique identifier of the owner. key: Fingerprint of key purposes:

The purposes of the owner to key mapping. force: removing the last key is dangerous and

must therefore be manually forced synchronize: Synchronize timeout can be used to en-

sure that the state has been propagated into the node

topology.owner_to_key_mappings.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

topology.owner_to_key_mappings.list

• Summary: List owner to key mapping transactions

• Arguments:

– filterStore: String

– useStateStore: Boolean

– timeQuery: com.digitalasset.canton.topology.store.TimeQuery

– operation: Option[com.digitalasset.canton.topology.transaction.Topology-

ChangeOp]

– filterKeyOwnerType: Option[com.digitalasset.canton.topology.KeyOwner-

Code]

– filterKeyOwnerUid: String

– filterKeyPurpose: Option[com.digitalasset.canton.crypto.KeyPurpose]

– filterSigningKey: String

– protocolVersion: Option[String]

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListOwnerToKeyMappingRe-

sult]

• Description: List the owner to key mapping transactions present in the stores. Owner to

key mappings are topology transactions defining that a certain key is used by a certain

key owner. Key owners are participants, sequencers, mediators and domains. filterStore:

Filter for topology stores starting with the given filter string (Authorized, <domain-id>, Re-

quested) useStateStore: If true (default), only properly authorized transactions that are

part of the state will be selected. timeQuery: The time query allows to customize the query

by time. The following options are supported: TimeQuery.HeadState (default): The most

recent known state. TimeQuery.Snapshot(ts): The state at a certain point in time. Time-

Query.Range(fromO, toO): Time-range of when the transactionwas added to the store oper-

ation: Optionally, what type of operation the transaction should have. State store only has

“Add”. filterSigningKey: Filter for transactions that are authorized with a key that starts

1.28. Canton Administration Quickstart 1083

../../canton/scaladoc/com/digitalasset/canton/topology/KeyOwner.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/KeyPurpose.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/topology/store/TimeQuery.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/KeyOwnerCode.html
../../canton/scaladoc/com/digitalasset/canton/topology/KeyOwnerCode.html
../../canton/scaladoc/com/digitalasset/canton/crypto/KeyPurpose.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListOwnerToKeyMappingResult.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListOwnerToKeyMappingResult.html

Daml SDK Documentation, 2.7.3

with the given filter string. filterKeyOwnerType: Filter for a particular type of key owner

(KeyOwnerCode). filterKeyOwnerUid: Filter for key owners unique identifier starting with

the given filter string. filterKeyPurpose: Filter for keys with a particular purpose (Encryp-

tion or Signing) protocolVersion: Export the topology transactions in the optional protocol

version.

topology.owner_to_key_mappings.rotate_key

• Summary: Rotate the key for an owner to key mapping

• Arguments:

– nodeInstance: com.digitalasset.canton.console.InstanceReferenceCommon

– owner: com.digitalasset.canton.topology.KeyOwner

– currentKey: com.digitalasset.canton.crypto.PublicKey

– newKey: com.digitalasset.canton.crypto.PublicKey

• Description: Rotates the key for an existing owner to keymapping by issuing a new owner

to key mapping with the new key and removing the previous owner to key mapping with

the previous key. nodeInstance: The node instance that is used to verify that both current

and new key pertain to this node. This avoids conflicts when there are different nodes with

the same uuid (i.e., multiple sequencers). owner: The owner of the owner to key mapping

currentKey: The current public key that will be rotated newKey: The new public key that

has been generated

topology.party_to_participant_mappings.authorize (Preview)

• Summary: Change party to participant mapping

• Arguments:

– ops: com.digitalasset.canton.topology.transaction.TopologyChangeOp

– party: com.digitalasset.canton.topology.PartyId

– participant: com.digitalasset.canton.topology.ParticipantId

– side: com.digitalasset.canton.topology.transaction.RequestSide

– permission: com.digitalasset.canton.topology.transaction.ParticipantPermis-

sion

– signedBy: Option[com.digitalasset.canton.crypto.Fingerprint]

– synchronize: Option[com.digitalasset.canton.config.NonNegativeDuration]

– replaceExisting: Boolean

– force: Boolean

• Return type:

– com.google.protobuf.ByteString

• Description: Change the association of a party to a participant. If both identifiers are

in the same namespace, then the request-side is Both. If they differ, then we need to say

whether the request comes from the party (RequestSide.From) or from the participant (Re-

questSide.To). And, we need the matching request of the other side. Please note that this

is a preview feature due to the fact that inhomogeneous topologies can not yet be properly

represented on the Ledger API. ops: Either Add or Remove the mapping signedBy: Refers

to the optional fingerprint of the authorizing key which in turn refers to a specific, locally

existing certificate. party: The unique identifier of the party we want to map to a partici-

pant. participant: The unique identifier of the participant to which the party is supposed

to be mapped. side: The request side (RequestSide.From if we the transaction is from the

perspective of the party, RequestSide.To from the participant.) privilege: The privilege of

the given participant which allows us to restrict an association (e.g. Confirmation or Ob-

servation). replaceExisting: If true (default), replace any existing mapping with the new

setting synchronize: Synchronize timeout can be used to ensure that the state has been

propagated into the node

topology.party_to_participant_mappings.help

1084 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/console/InstanceReferenceCommon.html
../../canton/scaladoc/com/digitalasset/canton/topology/KeyOwner.html
../../canton/scaladoc/com/digitalasset/canton/crypto/PublicKey.html
../../canton/scaladoc/com/digitalasset/canton/crypto/PublicKey.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/RequestSide.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/ParticipantPermission.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/ParticipantPermission.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html

Daml SDK Documentation, 2.7.3

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

topology.party_to_participant_mappings.list

• Summary: List party to participant mapping transactions

• Arguments:

– filterStore: String

– useStateStore: Boolean

– timeQuery: com.digitalasset.canton.topology.store.TimeQuery

– operation: Option[com.digitalasset.canton.topology.transaction.Topology-

ChangeOp]

– filterParty: String

– filterParticipant: String

– filterRequestSide: Option[com.digitalasset.canton.topology.transaction.Re-

questSide]

– filterPermission: Option[com.digitalasset.canton.topology.transaction.Par-

ticipantPermission]

– filterSigningKey: String

– protocolVersion: Option[String]

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListPartyToParticipantResult]

• Description: List the party to participant mapping transactions present in the stores.

Party to participant mappings are topology transactions used to allocate a party to a cer-

tain participant. The same party can be allocated on several participants with different

privileges. A party to participant mapping has a request-side that identifies whether the

mapping is authorized by the party, by the participant or by both. In order to have a party

be allocated to a given participant, we therefore need either two transactions (one with

RequestSide.From, one with RequestSide.To) or one with RequestSide.Both. filterStore: Fil-

ter for topology stores starting with the given filter string (Authorized, <domain-id>, Re-

quested) useStateStore: If true (default), only properly authorized transactions that are

part of the state will be selected. timeQuery: The time query allows to customize the query

by time. The following options are supported: TimeQuery.HeadState (default): The most

recent known state. TimeQuery.Snapshot(ts): The state at a certain point in time. Time-

Query.Range(fromO, toO): Time-range of when the transactionwas added to the store oper-

ation: Optionally, what type of operation the transaction should have. State store only has

“Add”. filterSigningKey: Filter for transactions that are authorized with a key that starts

with the given filter string. filterParty: Filter for parties starting with the given filter string.

filterParticipant: Filter for participants starting with the given filter string. filterRequest-

Side: Optional filter for a particular request side (Both, From, To). protocolVersion: Export

the topology transactions in the optional protocol version.

topology.participant_domain_states.active

• Summary: Returns true if the given participant is currently active on the given domain

• Arguments:

– domainId: com.digitalasset.canton.topology.DomainId

– participantId: com.digitalasset.canton.topology.ParticipantId

• Return type:

– Boolean

• Description: Active means that the participant has been granted at least observation

rights on the domain and that the participant has registered a domain trust certificate

1.28. Canton Administration Quickstart 1085

../../canton/scaladoc/com/digitalasset/canton/topology/store/TimeQuery.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/RequestSide.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/RequestSide.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/ParticipantPermission.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/ParticipantPermission.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListPartyToParticipantResult.html
../../canton/scaladoc/com/digitalasset/canton/topology/DomainId.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html

Daml SDK Documentation, 2.7.3

topology.participant_domain_states.authorize

• Summary: Change participant domain states

• Arguments:

– ops: com.digitalasset.canton.topology.transaction.TopologyChangeOp

– domain: com.digitalasset.canton.topology.DomainId

– participant: com.digitalasset.canton.topology.ParticipantId

– side: com.digitalasset.canton.topology.transaction.RequestSide

– permission: com.digitalasset.canton.topology.transaction.ParticipantPermis-

sion

– trustLevel: com.digitalasset.canton.topology.transaction.TrustLevel

– signedBy: Option[com.digitalasset.canton.crypto.Fingerprint]

– synchronize: Option[com.digitalasset.canton.config.NonNegativeDuration]

– replaceExisting: Boolean

• Return type:

– com.google.protobuf.ByteString

• Description: Change the association of a participant to a domain. In order to activate a

participant on a domain, we need both authorisation: the participant authorising its uid

to be present on a particular domain and the domain to authorise the presence of a partic-

ipant on said domain. If both identifiers are in the samenamespace, then the request-side

can be Both. If they differ, thenwe need to saywhether the request comes from the domain

(RequestSide.From) or from the participant (RequestSide.To). And, we need the matching

request of the other side. ops: Either Add or Remove the mapping signedBy: Refers to the

optional fingerprint of the authorizing key which in turn refers to a specific, locally exist-

ing certificate. domain: The unique identifier of the domain we want the participant to

join. participant: The unique identifier of the participant. side: The request side (Request-

Side.From ifwe the transaction is from the perspective of the domain, RequestSide.To from

the participant.) permission: The privilege of the given participant which allows us to re-

strict an association (e.g. Confirmation or Observation). Will use the lower of if different

between To/From. trustLevel: The trust level of the participant on the given domain. Will

use the lower of if different between To/From. replaceExisting: If true (default), replace any

existing mapping with the new setting synchronize: Synchronize timeout can be used to

ensure that the state has been propagated into the node

topology.participant_domain_states.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

topology.participant_domain_states.list

• Summary: List participant domain states

• Arguments:

– filterStore: String

– useStateStore: Boolean

– timeQuery: com.digitalasset.canton.topology.store.TimeQuery

– operation: Option[com.digitalasset.canton.topology.transaction.Topology-

ChangeOp]

– filterDomain: String

– filterParticipant: String

– filterSigningKey: String

– protocolVersion: Option[String]

• Return type:

1086 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/DomainId.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/RequestSide.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/ParticipantPermission.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/ParticipantPermission.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TrustLevel.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/topology/store/TimeQuery.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html

Daml SDK Documentation, 2.7.3

– Seq[com.digitalasset.canton.admin.api.client.data.ListParticipantDomain-

StateResult]

• Description: List the participant domain transactions present in the stores. Participant

domain states are topology transactions used to permission a participant on a given do-

main. A participant domain state has a request-side that identifies whether the mapping

is authorized by the participant (From), by the domain (To) or by both (Both). In order

to use a participant on a domain, both have to authorize such a mapping. This means

that by authorizing such a topology transaction, a participant acknowledges its presence

on a domain, whereas a domain permissions the participant on that domain. filterStore:

Filter for topology stores starting with the given filter string (Authorized, <domain-id>, Re-

quested) useStateStore: If true (default), only properly authorized transactions that are

part of the state will be selected. timeQuery: The time query allows to customize the query

by time. The following options are supported: TimeQuery.HeadState (default): The most

recent known state. TimeQuery.Snapshot(ts): The state at a certain point in time. Time-

Query.Range(fromO, toO): Time-range of when the transaction was added to the store op-

eration: Optionally, what type of operation the transaction should have. State store only

has “Add”. filterSigningKey: Filter for transactions that are authorized with a key that

starts with the given filter string. filterDomain: Filter for domains starting with the given

filter string. filterParticipant: Filter for participants starting with the given filter string.

protocolVersion: Export the topology transactions in the optional protocol version.

topology.vetted_packages.authorize

• Summary: Change package vettings

• Arguments:

– ops: com.digitalasset.canton.topology.transaction.TopologyChangeOp

– participant: com.digitalasset.canton.topology.ParticipantId

– packageIds: Seq[com.daml.lf.data.Ref.PackageId]

– signedBy: Option[com.digitalasset.canton.crypto.Fingerprint]

– synchronize: Option[com.digitalasset.canton.config.NonNegativeDuration]

– force: Boolean

• Return type:

– com.google.protobuf.ByteString

• Description: A participant will only process transactions that reference packages that all

involved participants have vetted previously. Vetting is done by registering a respective

topology transaction with the domain, which can then be used by other participants to

verify that a transaction is only using vetted packages. Note that all referenced and de-

pendent packages must exist in the package store. By default, only vetting transactions

addingnewpackages canbe issued. Removingpackage vettings and issuingpackage vet-

tings for other participants (if their identity is controlled through this participants topol-

ogy manager) or for packages that do not exist locally can only be run using the force =

true flag. However, these operations are dangerous and can lead to the situation of a par-

ticipant being unable to process transactions. ops: Either Add or Remove the vetting. par-

ticipant: The unique identifier of the participant that is vetting the package. packageIds:

The lf-package ids to be vetted. signedBy: Refers to the fingerprint of the authorizing key

which in turn must be authorized by a valid, locally existing certificate. If none is given,

a key is automatically determined. synchronize: Synchronize timeout can be used to en-

sure that the state has been propagated into the node force: Flag to enable dangerous

operations (default false). Great power requires great care.

topology.vetted_packages.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

1.28. Canton Administration Quickstart 1087

../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListParticipantDomainStateResult.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListParticipantDomainStateResult.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html

Daml SDK Documentation, 2.7.3

• Arguments:

– methodName: String

topology.vetted_packages.list

• Summary: List package vetting transactions

• Arguments:

– filterStore: String

– useStateStore: Boolean

– timeQuery: com.digitalasset.canton.topology.store.TimeQuery

– operation: Option[com.digitalasset.canton.topology.transaction.Topology-

ChangeOp]

– filterParticipant: String

– filterSigningKey: String

– protocolVersion: Option[String]

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListVettedPackagesResult]

• Description: List the package vetting transactions present in the stores. Participants

must vet Daml packages and submittersmust ensure that the receivingparticipants have

vetted the package prior to submitting a transaction (done automatically during submis-

sion and validation). Vetting is done by authorizing such topology transactions and reg-

istering with a domain. filterStore: Filter for topology stores starting with the given filter

string (Authorized, <domain-id>, Requested) useStateStore: If true (default), only prop-

erly authorized transactions that are part of the state will be selected. timeQuery: The

time query allows to customize the query by time. The following options are supported:

TimeQuery.HeadState (default): The most recent known state. TimeQuery.Snapshot(ts):

The state at a certain point in time. TimeQuery.Range(fromO, toO): Time-range of when the

transactionwas added to the store operation: Optionally, what type of operation the trans-

action should have. State store only has “Add”. filterSigningKey: Filter for transactions

that are authorizedwithakey that startswith thegiven filter string. filterParticipant: Filter

for participants starting with the given filter string. protocolVersion: Export the topology

transactions in the optional protocol version.

topology.all.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

topology.all.list

• Summary: List all transaction

• Arguments:

– filterStore: String

– useStateStore: Boolean

– timeQuery: com.digitalasset.canton.topology.store.TimeQuery

– operation: Option[com.digitalasset.canton.topology.transaction.Topology-

ChangeOp]

– filterAuthorizedKey: Option[com.digitalasset.canton.crypto.Fingerprint]

– protocolVersion: Option[String]

• Return type:

– com.digitalasset.canton.topology.store.StoredTopologyTransactions[com.digita-

lasset.canton.topology.transaction.TopologyChangeOp]

• Description: List all topology transactions in a store, independent of the particular type.

This method is useful for exporting entire states. filterStore: Filter for topology stores

1088 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/topology/store/TimeQuery.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListVettedPackagesResult.html
../../canton/scaladoc/com/digitalasset/canton/topology/store/TimeQuery.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html

Daml SDK Documentation, 2.7.3

starting with the given filter string (Authorized, <domain-id>, Requested) useStateStore:

If true (default), only properly authorized transactions that are part of the state will be se-

lected. timeQuery: The time query allows to customize the query by time. The following op-

tions are supported: TimeQuery.HeadState (default): The most recent known state. Time-

Query.Snapshot(ts): The state at a certain point in time. TimeQuery.Range(fromO, toO):

Time-range of when the transaction was added to the store operation: Optionally, what

type of operation the transaction should have. State store only has “Add”. filterAutho-

rizedKey: Filter the topology transactions by the key that has authorized the transactions.

protocolVersion: Export the topology transactions in the optional protocol version.

topology.all.renew

• Summary: Renew all topology transactions that have been authorized with a previous key

using a new key

• Arguments:

– filterAuthorizedKey: com.digitalasset.canton.crypto.Fingerprint

– authorizeWith: com.digitalasset.canton.crypto.Fingerprint

• Description: Finds all topology transactions that have been authorized by filterAuthorized-

Key and renews those topology transactions by authorizing them with the new key autho-

rizeWith. filterAuthorizedKey: Filter the topology transactions by the key that has autho-

rized the transactions. authorizeWith: The key to authorize the renewed topology trans-

actions.

Ledger API Access

The following commands on a participant reference provide access to the participant’s Ledger API

services.

ledger_api.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

ledger_api_v2.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Transaction Service

ledger_api.transactions.by_id (Testing)

• Summary: Get a (tree) transaction by its ID

• Arguments:

– parties: Set[com.digitalasset.canton.topology.PartyId]

– id: String

• Return type:

– Option[com.daml.ledger.api.v1.transaction.TransactionTree]

• Description: Get a transaction tree from the transaction stream by its ID. Returns None if

the transaction is not (yet) known at the participant or if the transaction has been pruned

via pruning.prune.

1.28. Canton Administration Quickstart 1089

../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html

Daml SDK Documentation, 2.7.3

ledger_api.transactions.domain_of (Testing)

• Summary: Get the domain that a transaction was committed over.

• Arguments:

– transactionId: String

• Return type:

– com.digitalasset.canton.topology.DomainId

• Description: Get the domain that a transaction was committed over. Throws an error if

the transaction is not (yet) known to the participant or if the transaction has been pruned

via pruning.prune.

ledger_api.transactions.end (Testing)

• Summary: Get ledger end

• Return type:

– com.daml.ledger.api.v1.ledger_offset.LedgerOffset

ledger_api.transactions.flat (Testing)

• Summary: Get flat transactions

• Arguments:

– partyIds: Set[com.digitalasset.canton.topology.PartyId]

– completeAfter: Int

– beginOffset: com.daml.ledger.api.v1.ledger_offset.LedgerOffset

– endOffset: Option[com.daml.ledger.api.v1.ledger_offset.LedgerOffset]

– verbose: Boolean

– timeout: com.digitalasset.canton.config.NonNegativeDuration

• Return type:

– Seq[com.daml.ledger.api.v1.transaction.Transaction]

• Description: This function connects to the flat transaction stream for the given parties

and collects transactions until either completeAfter transaction trees have been received

or timeout has elapsed. The returned transactions can be filtered to be between the given

offsets (default: no filtering). If the participant has been pruned via pruning.prune and if

beginOffset is lower than the pruning offset, this command fails with a NOT_FOUND error.

ledger_api.transactions.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

ledger_api.transactions.start_measuring (Testing)

• Summary: Starts measuring throughput at the transaction service

• Arguments:

– parties: Set[com.digitalasset.canton.topology.PartyId]

– metricSuffix: String

– onTransaction: com.daml.ledger.api.v1.transaction.TransactionTree => Unit

• Return type:

– AutoCloseable

• Description: This functionwill subscribe onbehalf of parties to the transaction tree stream

and notify various metrics: The metric <name>.<metricSuffix> counts the number of trans-

action trees emitted. The metric <name>.<metricSuffix>-tx-node-count tracks the number of

root events emitted as part of transaction trees. The metric <name>.<metricSuffix>-tx-size

tracks the number of bytes emitted as part of transaction trees. To stop measuring, you

need to close the returned AutoCloseable. Use the onTransaction parameter to register a call-

back that is called on every transaction tree.

1090 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/topology/DomainId.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html

Daml SDK Documentation, 2.7.3

ledger_api.transactions.subscribe_flat (Testing)

• Summary: Subscribe to the flat transaction stream

• Arguments:

– observer: io.grpc.stub.StreamObserver[com.daml.ledger.api.v1.transac-

tion.Transaction]

– filter: com.daml.ledger.api.v1.transaction_filter.TransactionFilter

– beginOffset: com.daml.ledger.api.v1.ledger_offset.LedgerOffset

– endOffset: Option[com.daml.ledger.api.v1.ledger_offset.LedgerOffset]

– verbose: Boolean

• Return type:

– AutoCloseable

• Description: This function connects to the flat transaction stream and passes transac-

tions to observer until the stream is completed. Only transactions for parties in filter.fil-

terByParty.keys will be returned. Use filter = TransactionFilter(Map(myParty.toLf -> Filters())) to

return all transactions for myParty: PartyId. The returned transactions can be filtered to be

between the given offsets (default: no filtering). If the participant has been pruned via

pruning.prune and if beginOffset is lower than the pruning offset, this command fails with a

NOT_FOUND error.

ledger_api.transactions.subscribe_trees (Testing)

• Summary: Subscribe to the transaction tree stream

• Arguments:

– observer: io.grpc.stub.StreamObserver[com.daml.ledger.api.v1.transac-

tion.TransactionTree]

– filter: com.daml.ledger.api.v1.transaction_filter.TransactionFilter

– beginOffset: com.daml.ledger.api.v1.ledger_offset.LedgerOffset

– endOffset: Option[com.daml.ledger.api.v1.ledger_offset.LedgerOffset]

– verbose: Boolean

• Return type:

– AutoCloseable

• Description: This function connects to the transaction tree stream and passes transac-

tion trees to observer until the stream is completed. Only transaction trees for parties

in filter.filterByParty.keys will be returned. Use filter = TransactionFilter(Map(myParty.toLf -> Fil-

ters())) to return all trees for myParty: PartyId. The returned transactions can be filtered to

be between the given offsets (default: no filtering). If the participant has been pruned via

pruning.prune and if beginOffset is lower than the pruning offset, this command fails with a

NOT_FOUND error.

ledger_api.transactions.trees (Testing)

• Summary: Get transaction trees

• Arguments:

– partyIds: Set[com.digitalasset.canton.topology.PartyId]

– completeAfter: Int

– beginOffset: com.daml.ledger.api.v1.ledger_offset.LedgerOffset

– endOffset: Option[com.daml.ledger.api.v1.ledger_offset.LedgerOffset]

– verbose: Boolean

– timeout: com.digitalasset.canton.config.NonNegativeDuration

• Return type:

– Seq[com.daml.ledger.api.v1.transaction.TransactionTree]

• Description: This function connects to the transaction tree stream for the given parties

and collects transaction trees until either completeAfter transaction trees have been re-

ceived or timeout has elapsed. The returned transaction trees can be filtered to be between

1.28. Canton Administration Quickstart 1091

../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html

Daml SDK Documentation, 2.7.3

the given offsets (default: no filtering). If the participant has been pruned via pruning.prune

and if beginOffset is lower than the pruning offset, this command fails with a NOT_FOUND

error.

Command Service

ledger_api.commands.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

ledger_api.commands.submit (Testing)

• Summary: Submit command and wait for the resulting transaction, returning the trans-

action tree or failing otherwise

• Arguments:

– actAs: Seq[com.digitalasset.canton.topology.PartyId]

– commands: Seq[com.daml.ledger.api.v1.commands.Command]

– workflowId: String

– commandId: String

– optTimeout: Option[com.digitalasset.canton.config.NonNegativeDuration]

– deduplicationPeriod: Option[com.digitalasset.canton.ledger.api.Deduplica-

tionPeriod]

– submissionId: String

– minLedgerTimeAbs: Option[java.time.Instant]

– readAs: Seq[com.digitalasset.canton.topology.PartyId]

– disclosedContracts: Seq[com.daml.ledger.api.v1.commands.DisclosedCon-

tract]

– applicationId: String

• Return type:

– com.daml.ledger.api.v1.transaction.TransactionTree

• Description: Submits a command on behalf of the actAs parties, waits for the resulting

transaction to commit and returns it. If the timeout is set, it also waits for the transaction

to appear at all other configured participants who were involved in the transaction. The

call blocks until the transaction commits or fails; the timeout only specifies how long

to wait at the other participants. Fails if the transaction doesn’t commit, or if it doesn’t

becomevisible to the involvedparticipants in theallotted time. Note that if the optTimeout

is set and the involved parties are concurrently enabled/disabled or their participants are

connected/disconnected, the commandmay currently result in spurious timeouts ormay

return before the transaction appears at all the involved participants.

ledger_api.commands.submit_async (Testing)

• Summary: Submit command asynchronously

• Arguments:

– actAs: Seq[com.digitalasset.canton.topology.PartyId]

– commands: Seq[com.daml.ledger.api.v1.commands.Command]

– workflowId: String

– commandId: String

– deduplicationPeriod: Option[com.digitalasset.canton.ledger.api.Deduplica-

tionPeriod]

– submissionId: String

1092 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/ledger/api/DeduplicationPeriod.html
../../canton/scaladoc/com/digitalasset/canton/ledger/api/DeduplicationPeriod.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/ledger/api/DeduplicationPeriod.html
../../canton/scaladoc/com/digitalasset/canton/ledger/api/DeduplicationPeriod.html

Daml SDK Documentation, 2.7.3

– minLedgerTimeAbs: Option[java.time.Instant]

– readAs: Seq[com.digitalasset.canton.topology.PartyId]

– disclosedContracts: Seq[com.daml.ledger.api.v1.commands.DisclosedCon-

tract]

– applicationId: String

• Description: Provides access to the command submission service of the Ledger API. See

https://docs.daml.com/app-dev/services.html for documentation of the parameters.

ledger_api.commands.submit_flat (Testing)

• Summary: Submit command and wait for the resulting transaction, returning the flat-

tened transaction or failing otherwise

• Arguments:

– actAs: Seq[com.digitalasset.canton.topology.PartyId]

– commands: Seq[com.daml.ledger.api.v1.commands.Command]

– workflowId: String

– commandId: String

– optTimeout: Option[com.digitalasset.canton.config.NonNegativeDuration]

– deduplicationPeriod: Option[com.digitalasset.canton.ledger.api.Deduplica-

tionPeriod]

– submissionId: String

– minLedgerTimeAbs: Option[java.time.Instant]

– readAs: Seq[com.digitalasset.canton.topology.PartyId]

– disclosedContracts: Seq[com.daml.ledger.api.v1.commands.DisclosedCon-

tract]

– applicationId: String

• Return type:

– com.daml.ledger.api.v1.transaction.Transaction

• Description: Submits a command on behalf of the actAs parties, waits for the resulting

transaction to commit, and returns the “flattened” transaction. If the timeout is set, it

also waits for the transaction to appear at all other configured participants who were in-

volved in the transaction. The call blocks until the transaction commits or fails; the time-

out only specifieshow long towait at the other participants. Fails if the transactiondoesn’t

commit, or if it doesn’t become visible to the involved participants in the allotted time.

Note that if the optTimeout is set and the involved parties are concurrently enabled/dis-

abled or their participants are connected/disconnected, the command may currently re-

sult in spurious timeouts or may return before the transaction appears at all the involved

participants.

ledger_api_v2.commands.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

ledger_api_v2.commands.submit (Testing)

• Summary: Submit command and wait for the resulting transaction, returning the trans-

action tree or failing otherwise

• Arguments:

– actAs: Seq[com.digitalasset.canton.topology.PartyId]

– commands: Seq[com.daml.ledger.api.v1.commands.Command]

– domainId: com.digitalasset.canton.topology.DomainId

– workflowId: String

– commandId: String

1.28. Canton Administration Quickstart 1093

../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
https://docs.daml.com/app-dev/services.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/ledger/api/DeduplicationPeriod.html
../../canton/scaladoc/com/digitalasset/canton/ledger/api/DeduplicationPeriod.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/topology/DomainId.html

Daml SDK Documentation, 2.7.3

– optTimeout: Option[com.digitalasset.canton.config.NonNegativeDuration]

– deduplicationPeriod: Option[com.digitalasset.canton.ledger.api.Deduplica-

tionPeriod]

– submissionId: String

– minLedgerTimeAbs: Option[java.time.Instant]

– readAs: Seq[com.digitalasset.canton.topology.PartyId]

– disclosedContracts: Seq[com.daml.ledger.api.v1.commands.DisclosedCon-

tract]

– applicationId: String

• Return type:

– com.daml.ledger.api.v2.transaction.TransactionTree

• Description: Submits a command on behalf of the actAs parties, waits for the resulting

transaction to commit and returns it. If the timeout is set, it also waits for the transaction

to appear at all other configured participants who were involved in the transaction. The

call blocks until the transaction commits or fails; the timeout only specifies how long

to wait at the other participants. Fails if the transaction doesn’t commit, or if it doesn’t

becomevisible to the involvedparticipants in theallotted time. Note that if the optTimeout

is set and the involved parties are concurrently enabled/disabled or their participants are

connected/disconnected, the commandmay currently result in spurious timeouts ormay

return before the transaction appears at all the involved participants.

ledger_api_v2.commands.submit_async (Testing)

• Summary: Submit command asynchronously

• Arguments:

– actAs: Seq[com.digitalasset.canton.topology.PartyId]

– commands: Seq[com.daml.ledger.api.v1.commands.Command]

– domainId: com.digitalasset.canton.topology.DomainId

– workflowId: String

– commandId: String

– deduplicationPeriod: Option[com.digitalasset.canton.ledger.api.Deduplica-

tionPeriod]

– submissionId: String

– minLedgerTimeAbs: Option[java.time.Instant]

– readAs: Seq[com.digitalasset.canton.topology.PartyId]

– disclosedContracts: Seq[com.daml.ledger.api.v1.commands.DisclosedCon-

tract]

– applicationId: String

• Description: Provides access to the command submission service of the Ledger API. See

https://docs.daml.com/app-dev/services.html for documentation of the parameters.

ledger_api_v2.commands.submit_flat (Testing)

• Summary: Submit command and wait for the resulting transaction, returning the flat-

tened transaction or failing otherwise

• Arguments:

– actAs: Seq[com.digitalasset.canton.topology.PartyId]

– commands: Seq[com.daml.ledger.api.v1.commands.Command]

– domainId: com.digitalasset.canton.topology.DomainId

– workflowId: String

– commandId: String

– optTimeout: Option[com.digitalasset.canton.config.NonNegativeDuration]

– deduplicationPeriod: Option[com.digitalasset.canton.ledger.api.Deduplica-

tionPeriod]

1094 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/ledger/api/DeduplicationPeriod.html
../../canton/scaladoc/com/digitalasset/canton/ledger/api/DeduplicationPeriod.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/topology/DomainId.html
../../canton/scaladoc/com/digitalasset/canton/ledger/api/DeduplicationPeriod.html
../../canton/scaladoc/com/digitalasset/canton/ledger/api/DeduplicationPeriod.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
https://docs.daml.com/app-dev/services.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/topology/DomainId.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/ledger/api/DeduplicationPeriod.html
../../canton/scaladoc/com/digitalasset/canton/ledger/api/DeduplicationPeriod.html

Daml SDK Documentation, 2.7.3

– submissionId: String

– minLedgerTimeAbs: Option[java.time.Instant]

– readAs: Seq[com.digitalasset.canton.topology.PartyId]

– disclosedContracts: Seq[com.daml.ledger.api.v1.commands.DisclosedCon-

tract]

– applicationId: String

• Return type:

– com.daml.ledger.api.v2.transaction.Transaction

• Description: Submits a command on behalf of the actAs parties, waits for the resulting

transaction to commit, and returns the “flattened” transaction. If the timeout is set, it

also waits for the transaction to appear at all other configured participants who were in-

volved in the transaction. The call blocks until the transaction commits or fails; the time-

out only specifieshow long towait at the other participants. Fails if the transactiondoesn’t

commit, or if it doesn’t become visible to the involved participants in the allotted time.

Note that if the optTimeout is set and the involved parties are concurrently enabled/dis-

abled or their participants are connected/disconnected, the command may currently re-

sult in spurious timeouts or may return before the transaction appears at all the involved

participants.

Command Completion Service

ledger_api.completions.end (Testing)

• Summary: Read the current command completion offset

• Return type:

– com.daml.ledger.api.v1.ledger_offset.LedgerOffset

ledger_api.completions.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

ledger_api.completions.list (Testing)

• Summary: Lists command completions following the specified offset

• Arguments:

– partyId: com.digitalasset.canton.topology.PartyId

– atLeastNumCompletions: Int

– offset: com.daml.ledger.api.v1.ledger_offset.LedgerOffset

– applicationId: String

– timeout: com.digitalasset.canton.config.NonNegativeDuration

– filter: com.daml.ledger.api.v1.completion.Completion => Boolean

• Return type:

– Seq[com.daml.ledger.api.v1.completion.Completion]

• Description: If the participant has been pruned via pruning.prune and if offset is lower than

the pruning offset, this command fails with a NOT_FOUND error.

ledger_api.completions.list_with_checkpoint (Testing)

• Summary: Lists command completions following the specified offset along with the

checkpoints included in the completions

• Arguments:

– partyId: com.digitalasset.canton.topology.PartyId

– atLeastNumCompletions: Int

1.28. Canton Administration Quickstart 1095

../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html

Daml SDK Documentation, 2.7.3

– offset: com.daml.ledger.api.v1.ledger_offset.LedgerOffset

– applicationId: String

– timeout: com.digitalasset.canton.config.NonNegativeDuration

– filter: com.daml.ledger.api.v1.completion.Completion => Boolean

• Return type:

– Seq[(com.daml.ledger.api.v1.completion.Completion, Op-

tion[com.daml.ledger.api.v1.command_completion_service.Checkpoint])]

• Description: If the participant has been pruned via pruning.prune and if offset is lower than

the pruning offset, this command fails with a NOT_FOUND error.

ledger_api.completions.subscribe (Testing)

• Summary: Subscribe to the command completion stream

• Arguments:

– observer: io.grpc.stub.StreamObserver[com.daml.ledger.api.v1.completion.Com-

pletion]

– parties: Seq[com.digitalasset.canton.topology.PartyId]

– beginOffset: com.daml.ledger.api.v1.ledger_offset.LedgerOffset

– applicationId: String

• Return type:

– AutoCloseable

• Description: This function connects to the command completion stream and passes

command completions to observer until the stream is completed. Only completions for

parties in parties will be returned. The returned completions start at beginOffset (default:

LEDGER_BEGIN). If the participant has been pruned via pruning.prune and if beginOffset is

lower than the pruning offset, this command fails with a NOT_FOUND error.

Active Contract Service

ledger_api.acs.await (Testing)

• Summary: Wait until a contract becomes available

• Arguments:

– partyId: com.digitalasset.canton.topology.PartyId

– companion: com.daml.ledger.client.binding.TemplateCompanion[T]

– predicate: com.daml.ledger.client.binding.Contract[T] => Boolean

– timeout: com.digitalasset.canton.config.NonNegativeDuration

• Return type:

– (partyId: com.digitalasset.canton.topology.PartyId, companion:

com.daml.ledger.client.binding.TemplateCompanion[T], predicate:

com.daml.ledger.client.binding.Contract[T] => Boolean, timeout: com.digita-

lasset.canton.config.NonNegativeDuration): com.daml.ledger.client.binding.Con-

tract[T]

• Description: This function can be used for contracts with a code-generated Scala model.

You can refine your search using the filter function argument. The commandwill wait until

the contract appears or throw an exception once it times out.

ledger_api.acs.await_active_contract (Testing)

• Summary: Wait until the party sees the given contract in the active contract service

• Arguments:

– party: com.digitalasset.canton.topology.PartyId

– contractId: com.digitalasset.canton.protocol.LfContractId

– timeout: com.digitalasset.canton.config.NonNegativeDuration

1096 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/protocol/index.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html

Daml SDK Documentation, 2.7.3

• Description: Will throw an exception if the contract is not found to be active within the

given timeout

ledger_api.acs.filter (Testing)

• Summary: Filter the ACS for contracts of a particular Scala code-generated template

• Arguments:

– partyId: com.digitalasset.canton.topology.PartyId

– templateCompanion: com.daml.ledger.client.binding.TemplateCompanion[T]

– predicate: com.daml.ledger.client.binding.Contract[T] => Boolean

• Return type:

– (partyId: com.digitalasset.canton.topology.PartyId, templateCom-

panion: com.daml.ledger.client.binding.TemplateCompanion[T],

predicate: com.daml.ledger.client.binding.Contract[T] => Boolean):

Seq[com.daml.ledger.client.binding.Contract[T]]

• Description: To use this function, ensure a code-generated Scalamodel for the target tem-

plate exists. You can refine your search using the predicate function argument.

ledger_api.acs.find_generic (Testing)

• Summary: Generic search for contracts

• Arguments:

– partyId: com.digitalasset.canton.topology.PartyId

– filter: com.digitalasset.canton.admin.api.client.commands.LedgerApiType-

Wrappers.WrappedCreatedEvent => Boolean

– timeout: com.digitalasset.canton.config.NonNegativeDuration

• Return type:

– com.digitalasset.canton.admin.api.client.commands.LedgerApiTypeWrap-

pers.WrappedCreatedEvent

• Description: This search function returns an untyped ledger-api event. The find will wait

until the contract appears or throw an exception once it times out.

ledger_api.acs.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

ledger_api.acs.of_all (Testing)

• Summary: List the set of active contracts for all parties hosted on this participant

• Arguments:

– limit: com.digitalasset.canton.config.RequireTypes.PositiveInt

– verbose: Boolean

– filterTemplates: Seq[com.digitalasset.canton.admin.api.client.data.Tem-

plateId]

– timeout: com.digitalasset.canton.config.NonNegativeDuration

– identityProviderId: String

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.commands.LedgerApiTypeWrap-

pers.WrappedCreatedEvent]

• Description: If the filterTemplates argument is not empty, the acs lookup will filter by the

given templates.

ledger_api.acs.of_party (Testing)

• Summary: List the set of active contracts of a given party

• Arguments:

1.28. Canton Administration Quickstart 1097

../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/commands/LedgerApiTypeWrappers\protect \TU\textdollar \protect \TU\textdollar WrappedCreatedEvent.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/commands/LedgerApiTypeWrappers\protect \TU\textdollar \protect \TU\textdollar WrappedCreatedEvent.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/commands/LedgerApiTypeWrappers\protect \TU\textdollar \protect \TU\textdollar WrappedCreatedEvent.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/commands/LedgerApiTypeWrappers\protect \TU\textdollar \protect \TU\textdollar WrappedCreatedEvent.html
../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar PositiveInt\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/TemplateId.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/TemplateId.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/commands/LedgerApiTypeWrappers\protect \TU\textdollar \protect \TU\textdollar WrappedCreatedEvent.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/commands/LedgerApiTypeWrappers\protect \TU\textdollar \protect \TU\textdollar WrappedCreatedEvent.html

Daml SDK Documentation, 2.7.3

– party: com.digitalasset.canton.topology.PartyId

– limit: com.digitalasset.canton.config.RequireTypes.PositiveInt

– verbose: Boolean

– filterTemplates: Seq[com.digitalasset.canton.admin.api.client.data.Tem-

plateId]

– timeout: com.digitalasset.canton.config.NonNegativeDuration

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.commands.LedgerApiTypeWrap-

pers.WrappedCreatedEvent]

• Description: This command will return the current set of active contracts for the given

party. Supported arguments: - party: for which party you want to load the acs - limit: limit

(default set via canton.parameter.console) - filterTemplate: list of templates ids to filter

for

Package Service

ledger_api.packages.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

ledger_api.packages.list (Testing)

• Summary: List Daml Packages

• Arguments:

– limit: com.digitalasset.canton.config.RequireTypes.PositiveInt

• Return type:

– Seq[com.daml.ledger.api.v1.admin.package_management_service.PackageDe-

tails]

ledger_api.packages.upload_dar (Testing)

• Summary: Upload packages from Dar file

• Arguments:

– darPath: String

• Description: Uploading theDar canbedone either through the ledger Api server or through

the Canton admin Api. The Ledger Api is the portable method across ledgers. The Canton

admin Api is more powerful as it allows for controlling Canton specific behaviour. In par-

ticular, a Dar uploaded using the ledger Api will not be available in the Dar store and can

not be downloaded again. Additionally, Dars uploaded using the ledger Api will be vetted,

but the system will not wait for the Dars to be successfully registered with all connected

domains. As such, if a Dar is uploaded and then used immediately thereafter, a command

might bounce due to missing package vettings.

1098 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar PositiveInt\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/TemplateId.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/TemplateId.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/commands/LedgerApiTypeWrappers\protect \TU\textdollar \protect \TU\textdollar WrappedCreatedEvent.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/commands/LedgerApiTypeWrappers\protect \TU\textdollar \protect \TU\textdollar WrappedCreatedEvent.html
../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar PositiveInt\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

Party Management Service

ledger_api.parties.allocate (Testing)

• Summary: Allocate a new party

• Arguments:

– party: String

– displayName: String

– annotations: Map[String,String]

– identityProviderId: String

• Return type:

– com.digitalasset.canton.admin.api.client.data.PartyDetails

• Description: Allocates a new party on the ledger. party: a hint for generating the party

identifier displayName: a human-readable name of this party annotations: key-value

pairs associated with this party and stored locally on this Ledger API server identi-

tyProviderId: identity provider id

ledger_api.parties.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

ledger_api.parties.list (Testing)

• Summary: List parties known by the Ledger API server

• Arguments:

– identityProviderId: String

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.PartyDetails]

• Description: Lists parties known by the Ledger API server. identityProviderId: identity

provider id

ledger_api.parties.update

• Summary: Update participant-local party details

• Arguments:

– party: com.digitalasset.canton.topology.PartyId

– modifier: com.digitalasset.canton.admin.api.client.data.PartyDetails =>

com.digitalasset.canton.admin.api.client.data.PartyDetails

– identityProviderId: String

• Return type:

– com.digitalasset.canton.admin.api.client.data.PartyDetails

• Description: Currently you can update only the annotations. You cannot update other

user attributes. party: party to be updated, modifier: a function to modify the party de-

tails, e.g.: partyDetails => { partyDetails.copy(annotations = partyDetails.annotations.updated(“a”,

“b”).removed(“c”)) } identityProviderId: identity provider id

ledger_api.parties.update_idp (Testing)

• Summary: Update party’s identity provider id

• Arguments:

– party: com.digitalasset.canton.topology.PartyId

– sourceIdentityProviderId: String

– targetIdentityProviderId: String

• Description: Updates party’s identity provider id. party: party to be updated sourceIdenti-

tyProviderId: source identity provider id targetIdentityProviderId: target identity provider

1.28. Canton Administration Quickstart 1099

../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/PartyDetails.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/PartyDetails.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/PartyDetails.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/PartyDetails.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/PartyDetails.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html

Daml SDK Documentation, 2.7.3

id

Ledger Configuration Service

ledger_api.configuration.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

ledger_api.configuration.list (Testing)

• Summary: Obtain the ledger configuration

• Arguments:

– expectedConfigs: Int

– timeout: com.digitalasset.canton.config.NonNegativeDuration

• Return type:

– Seq[com.daml.ledger.api.v1.ledger_configuration_service.LedgerConfiguration]

• Description: Returns the current ledger configuration and subsequent updates until the

expected number of configs was retrieved or the timeout is over.

Ledger Api User Management Service

ledger_api.users.create (Testing)

• Summary: Create a user with the given id

• Arguments:

– id: String

– actAs: Set[com.digitalasset.canton.topology.PartyId]

– primaryParty: Option[com.digitalasset.canton.topology.PartyId]

– readAs: Set[com.digitalasset.canton.topology.PartyId]

– participantAdmin: Boolean

– isActive: Boolean

– annotations: Map[String,String]

– identityProviderId: String

• Return type:

– com.digitalasset.canton.admin.api.client.data.User

• Description: Users are used to dynamically managing the rights given to Daml applica-

tions. They allow us to link a stable local identifier (of an application) with a set of parties.

id: the id used to identify the given user actAs: the set of parties this user is allowed to act

as primaryParty: the optional party that should be linked to this user by default readAs:

the set of parties this user is allowed to read as participantAdmin: flag (default false) in-

dicating if the user is allowed to use the admin commands of the Ledger Api isActive: flag

(default true) indicating if the user is active annotations: the set of key-value pairs linked

to this user identityProviderId: identity provider id

ledger_api.users.delete (Testing)

• Summary: Delete a user

• Arguments:

– id: String

– identityProviderId: String

• Description: Delete a user by id. id: user id identityProviderId: identity provider id

1100 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/User.html

Daml SDK Documentation, 2.7.3

ledger_api.users.get (Testing)

• Summary: Get the user data of the user with the given id

• Arguments:

– id: String

– identityProviderId: String

• Return type:

– com.digitalasset.canton.admin.api.client.data.User

• Description: Fetch the data associated with the given user id failing if there is no such

user. You will get the user’s primary party, active status and annotations. If you need the

user rights, use rights.list instead. id: user id identityProviderId: identity provider id

ledger_api.users.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

ledger_api.users.list (Testing)

• Summary: List users

• Arguments:

– filterUser: String

– pageToken: String

– pageSize: Int

– identityProviderId: String

• Return type:

– com.digitalasset.canton.admin.api.client.data.UsersPage

• Description: List users of this participant node filterUser: filter results using the given

filter string pageToken: used for pagination (the result contains a page token if there are

further pages) pageSize: default page size before the filter is applied identityProviderId:

identity provider id

ledger_api.users.update (Testing)

• Summary: Update a user

• Arguments:

– id: String

– modifier: com.digitalasset.canton.admin.api.client.data.User => com.digitalas-

set.canton.admin.api.client.data.User

– identityProviderId: String

• Return type:

– com.digitalasset.canton.admin.api.client.data.User

• Description: Currently you can update the annotations, active status and primary party.

You cannot update other user attributes. id: id of the user to be updated modifier: a func-

tion for modifying the user; e.g: user => { user.copy(isActive = false, primaryParty = None, annota-

tions = user.annotations.updated(“a”, “b”).removed(“c”)) } identityProviderId: identity provider

id

ledger_api.users.update_idp (Testing)

• Summary: Update user’s identity provider id

• Arguments:

– id: String

– sourceIdentityProviderId: String

– targetIdentityProviderId: String

• Description: Updates user’s identity provider id. id: the id used to identify the given user

1.28. Canton Administration Quickstart 1101

../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/User.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/UsersPage.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/User.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/User.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/User.html

Daml SDK Documentation, 2.7.3

sourceIdentityProviderId: source identity provider id targetIdentityProviderId: target iden-

tity provider id

ledger_api.users.rights.grant (Testing)

• Summary: Grant new rights to a user

• Arguments:

– id: String

– actAs: Set[com.digitalasset.canton.topology.PartyId]

– readAs: Set[com.digitalasset.canton.topology.PartyId]

– participantAdmin: Boolean

– identityProviderId: String

• Return type:

– com.digitalasset.canton.admin.api.client.data.UserRights

• Description: Users are used to dynamically managing the rights given to Daml applica-

tions. This function is used to grant new rights to an existing user. id: the id used to

identify the given user actAs: the set of parties this user is allowed to act as readAs: the

set of parties this user is allowed to read as participantAdmin: flag (default false) indicat-

ing if the user is allowed to use the admin commands of the Ledger Api identityProviderId:

identity provider id

ledger_api.users.rights.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

ledger_api.users.rights.list (Testing)

• Summary: List rights of a user

• Arguments:

– id: String

– identityProviderId: String

• Return type:

– com.digitalasset.canton.admin.api.client.data.UserRights

• Description: Lists the rights of a user, or the rights of the current user. id: user id identi-

tyProviderId: identity provider id

ledger_api.users.rights.revoke (Testing)

• Summary: Revoke user rights

• Arguments:

– id: String

– actAs: Set[com.digitalasset.canton.topology.PartyId]

– readAs: Set[com.digitalasset.canton.topology.PartyId]

– participantAdmin: Boolean

– identityProviderId: String

• Return type:

– com.digitalasset.canton.admin.api.client.data.UserRights

• Description: Use to revoke specific rights from a user. id: the id used to identify the given

user actAs: the set of parties this user should not be allowed to act as readAs: the set

of parties this user should not be allowed to read as participantAdmin: if set to true, the

participant admin rights will be removed identityProviderId: identity provider id

1102 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/UserRights.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/UserRights.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/UserRights.html

Daml SDK Documentation, 2.7.3

Ledger Api Metering Service

ledger_api.metering.get_report (Testing)

• Summary: Get the ledger metering report

• Arguments:

– from: com.digitalasset.canton.data.CantonTimestamp

– to: Option[com.digitalasset.canton.data.CantonTimestamp]

– applicationId: Option[String]

• Return type:

– String

• Description: Returns the current ledger metering report from: required from timestamp

(inclusive) to: optional to timestamp application_id: optional application id to which we

want to restrict the report

ledger_api.metering.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Composability

transfer.execute (Preview)

• Summary: Transfer the contract from the origin domain to the target domain

• Arguments:

– submittingParty: com.digitalasset.canton.topology.PartyId

– contractId: com.digitalasset.canton.protocol.LfContractId

– sourceDomain: com.digitalasset.canton.DomainAlias

– targetDomain: com.digitalasset.canton.DomainAlias

• Description: Macro that first calls transfer_out and then transfer_in. No error handling

is done.

transfer.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

transfer.in (Preview)

• Summary: Transfer-in a contract in transit to the target domain

• Arguments:

– submittingParty: com.digitalasset.canton.topology.PartyId

– transferId: com.digitalasset.canton.protocol.TransferId

– targetDomain: com.digitalasset.canton.DomainAlias

– applicationId: com.digitalasset.canton.LedgerApplicationId

– submissionId: String

– workflowId: String

– commandId: String

• Description: Manually transfers a contract in transit into the target domain. The com-

mand returns when the transfer-in has completed successfully. If the transferExclusivity-

Timeout in the target domain’s parameters is set to a positive value, all participants of all

1.28. Canton Administration Quickstart 1103

../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html
../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/protocol/index.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/protocol/TransferId.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html

Daml SDK Documentation, 2.7.3

stakeholders connected to both origin and target domain will attempt to transfer-in the

contract automatically after the exclusivity timeout has elapsed. An application-id can be

specified to uniquely identifies the application that have issued the transfer, otherwise

the default value will be used. An optional submission id can be set by the committer to

the value of their choice that allows an application to correlate completions to its submis-

sions.

transfer.lookup_contract_domain (Preview)

• Summary: Lookup the active domain for the provided contracts

• Arguments:

– contractIds: com.digitalasset.canton.protocol.LfContractId*

• Return type:

– Map[com.digitalasset.canton.protocol.LfContractId,String]

transfer.out (Preview)

• Summary: Transfer-out a contract from the source domain with destination target do-

main

• Arguments:

– submittingParty: com.digitalasset.canton.topology.PartyId

– contractId: com.digitalasset.canton.protocol.LfContractId

– sourceDomain: com.digitalasset.canton.DomainAlias

– targetDomain: com.digitalasset.canton.DomainAlias

– applicationId: com.digitalasset.canton.LedgerApplicationId

– submissionId: String

– workflowId: String

– commandId: String

• Return type:

– com.digitalasset.canton.protocol.TransferId

• Description: Transfers the given contract out of the source domainwith destination target

domain. The command returns the ID of the transfer when the transfer-out has completed

successfully. The contract is in transit until the transfer-in has completed on the target

domain. The submitting party must be a stakeholder of the contract and the participant

must have submission rights for the submitting party on the source domain. It must also

be connected to the target domain. An application-id can be specified to uniquely identify

the application that have issued the transfer, otherwise the default value will be used. An

optional submission id can be set by the committer to the value of their choice that allows

an application to correlate completions to its submissions.

transfer.search (Preview)

• Summary: Search the currently in-flight transfers

• Arguments:

– targetDomain: com.digitalasset.canton.DomainAlias

– filterSourceDomain: Option[com.digitalasset.canton.DomainAlias]

– filterTimestamp: Option[java.time.Instant]

– filterSubmittingParty: Option[com.digitalasset.canton.topology.PartyId]

– limit: com.digitalasset.canton.config.RequireTypes.PositiveInt

• Return type:

– Seq[com.digitalasset.canton.participant.admin.grpc.TransferSearchResult]

• Description: Returns all in-flight transfers with the given target domain that match the

filters, but no more than the limit specifies.

1104 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/protocol/index.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/protocol/index.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/protocol/TransferId.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar PositiveInt\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/admin/grpc/TransferSearchResult.html

Daml SDK Documentation, 2.7.3

Ledger Pruning

pruning.clear_schedule

• Summary: Deactivate automatic pruning.

pruning.find_safe_offset (Preview)

• Summary: Return the highest participant ledger offset whose record time is before or at

the given one (if any) at which pruning is safely possible

• Arguments:

– beforeOrAt: java.time.Instant

• Return type:

– Option[com.daml.ledger.api.v1.ledger_offset.LedgerOffset]

pruning.get_offset_by_time

• Summary: Identify the participant ledger offset to prune up to based on the specified

timestamp.

• Arguments:

– upToInclusive: java.time.Instant

• Return type:

– Option[com.daml.ledger.api.v1.ledger_offset.LedgerOffset]

• Description: Return the largest participant ledger offset that has been processed before

or at the specified timestamp. The time is measured on the participant’s local clock at

some point while the participant has processed the the event. Returns None if no such

offset exists.

pruning.get_schedule

• Summary: Inspect the automatic pruning schedule.

• Return type:

– Option[com.digitalasset.canton.admin.api.client.data.PruningSchedule]

• Description: The schedule consists of a “cron” expression and “max_duration” and “re-

tention” durations. The cron string indicates the points in time at which pruning should

begin in the GMT time zone, and themaximum duration indicates how long from the start

time pruning is allowed to run as long as pruning has not finished pruning up to the spec-

ified retention period. Returns None if no schedule has been configured via set_schedule or

if clear_schedule has been invoked.

pruning.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

pruning.locate_offset (Preview)

• Summary: Identify the participant ledger offset to prune up to.

• Arguments:

– n: Long

• Return type:

– com.daml.ledger.api.v1.ledger_offset.LedgerOffset

• Description: Return the participant ledger offset that corresponds to pruning “n” number

of transactions from the beginning of the ledger. Errors if the ledger holds less than “n”

transactions. Specifying “n” of 1 returns the offset of the first transaction (if the ledger is

non-empty).

pruning.prune

1.28. Canton Administration Quickstart 1105

../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/PruningSchedule.html

Daml SDK Documentation, 2.7.3

• Summary: Prune the ledger up to the specified offset inclusively.

• Arguments:

– pruneUpTo: com.daml.ledger.api.v1.ledger_offset.LedgerOffset

• Description: Prunes the participant ledger up to the specified offset inclusively return-

ing Unit if the ledger has been successfully pruned. Note that upon successful prun-

ing, subsequent attempts to read transactions via ledger_api.transactions.flat

or ledger_api.transactions.trees or command completions via ledger_api.

completions.list by specifying a begin offset lower than the returned pruning offset

will result in a NOT_FOUND error. In the Enterprise Edition, prune performs a “full prune”

freeing up significantly more space and also performs additional safety checks returning

a NOT_FOUND error if pruneUpTo is higher than the offset returned by find_safe_off­

set on any domain with events preceding the pruning offset.

pruning.prune_internally (Preview)

• Summary: Prune only internal ledger state up to the specified offset inclusively.

• Arguments:

– pruneUpTo: com.daml.ledger.api.v1.ledger_offset.LedgerOffset

• Description: Special-purpose variant of the prune command only available in the Enter-

prise Edition that prunesonly partial, internal participant ledger state freeingupspacenot

needed for serving ledger_api.transactions and ledger_api.completions re-

quests. In conjunction with prune, prune_internally enables pruning internal ledger

state more aggressively than externally observable data via the ledger api. In most use

cases prune should be used instead. Unlike prune, prune_internally has no visi-

ble effect on the Ledger API. The command returns Unit if the ledger has been success-

fully pruned or an error if the timestamp performs additional safety checks returning a

NOT_FOUND error if pruneUpTo is higher than the offset returned by find_safe_offset

on any domain with events preceding the pruning offset.

pruning.set_cron

• Summary: Modify the cron used by automatic pruning.

• Arguments:

– cron: String

• Description: The schedule is specified in cron format and refers to pruning start times

in the GMT time zone. This call returns an error if no schedule has been configured via

set_schedule or if automatic pruning has been disabled via clear_schedule. Additionally if

at the time of thismodification, pruning is actively running, a best effort ismade to pause

pruning and restart according to the new schedule. This allows for the case that the new

schedule no longer allows pruning at the current time.

pruning.set_max_duration

• Summary: Modify the maximum duration used by automatic pruning.

• Arguments:

– maxDuration: com.digitalasset.canton.config.PositiveDurationSeconds

• Description: The maxDuration is specified as a positive duration and has at most

per-second granularity. This call returns an error if no schedule has been configured via

set_schedule or if automatic pruning has been disabled via clear_schedule. Additionally if

at the time of thismodification, pruning is actively running, a best effort ismade to pause

pruning and restart according to the new schedule. This allows for the case that the new

schedule no longer allows pruning at the current time.

pruning.set_retention

• Summary: Update the pruning retention used by automatic pruning.

• Arguments:

1106 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/config/PositiveDurationSeconds.html

Daml SDK Documentation, 2.7.3

– retention: com.digitalasset.canton.config.PositiveDurationSeconds

• Description: The retention is specified as a positive duration and has at most per-second

granularity. This call returns an error if no schedule has been configured via set_schedule

or if automatic pruning has been disabled via clear_schedule. Additionally if at the time

of this update, pruning is actively running, a best effort is made to pause pruning and

restart with the newly specified retention. This allows for the case that the new retention

mandates retaining more data than previously.

pruning.set_schedule

• Summary: Activate automatic pruning according to the specified schedule.

• Arguments:

– cron: String

– maxDuration: com.digitalasset.canton.config.PositiveDurationSeconds

– retention: com.digitalasset.canton.config.PositiveDurationSeconds

• Description: The schedule is specified in cron format and “max_duration” and “reten-

tion”durations. The cronstring indicates thepoints in timeatwhichpruningshouldbegin

in the GMT time zone, and the maximum duration indicates how long from the start time

pruning is allowed to run as long as pruning has not finished pruning up to the specified

retention period.

Bilateral Commitments

commitments.computed

• Summary: Lookup ACS commitments locally computed as part of the reconciliation pro-

tocol

• Arguments:

– domain: com.digitalasset.canton.DomainAlias

– start: java.time.Instant

– end: java.time.Instant

– counterParticipant: Option[com.digitalasset.canton.topology.ParticipantId]

• Return type:

– Iterable[(com.digitalasset.canton.protocol.messages.CommitmentPeriod,

com.digitalasset.canton.topology.ParticipantId, com.digitalasset.canton.pro-

tocol.messages.AcsCommitment.CommitmentType)]

commitments.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

commitments.received

• Summary: Lookup ACS commitments received from other participants as part of the rec-

onciliation protocol

• Arguments:

– domain: com.digitalasset.canton.DomainAlias

– start: java.time.Instant

– end: java.time.Instant

– counterParticipant: Option[com.digitalasset.canton.topology.ParticipantId]

• Return type:

– Iterable[com.digitalasset.canton.protocol.messages.SignedProtocolMes-

sage[com.digitalasset.canton.protocol.messages.AcsCommitment]]

1.28. Canton Administration Quickstart 1107

../../canton/scaladoc/com/digitalasset/canton/config/PositiveDurationSeconds.html
../../canton/scaladoc/com/digitalasset/canton/config/PositiveDurationSeconds.html
../../canton/scaladoc/com/digitalasset/canton/config/PositiveDurationSeconds.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html

Daml SDK Documentation, 2.7.3

• Description: The arguments are: - domain: the alias of the domain - start: lowest time

exclusive - end: highest time inclusive - counterParticipant: optionally filter by counter

participant

Participant Repair

repair.add

• Summary: Add specified contracts to specific domain on local participant.

• Arguments:

– domain: com.digitalasset.canton.DomainAlias

– contractsToAdd: Seq[com.digitalasset.canton.protocol.SerializableCon-

tractWithWitnesses]

– ignoreAlreadyAdded: Boolean

– ignoreStakeholderCheck: Boolean

• Description: This is a last resort command to recover from data corruption, e.g. in sce-

narios in which participant contracts have somehow gotten out of sync and need to be

manually created. The participant needs to be disconnected from the specified “domain”

at the time of the call, and as of now the domain cannot have had any inflight requests.

For each “contractsToAdd”, specify “witnesses”, local parties, in case no local party is a

stakeholder. The “ignoreAlreadyAdded” flag makes it possible to invoke the command

multiple times with the same parameters in case an earlier command invocation has

failed. As repair commands are powerful tools to recover from unforeseen data corrup-

tion, but dangerous under normal operation, use of this command requires (temporarily)

enabling the “features.enable-repair-commands” configuration. In addition repair com-

mands can run for an unbounded time depending on the number of contracts passed in.

Be sure to not connect the participant to the domain until the call returns. The arguments

are: - domain: the alias of the domain to which to add the contract - contractsToAdd: list

of contracts to add with witness information - ignoreAlreadyAdded: (default true) if set to

true, it will ignore contracts that already exist on the target domain. - ignoreStakehold-

erCheck: (default false) if set to true, add will work for contracts that don’t have a local

party (useful for party migration).

repair.change_domain

• Summary: Move contracts with specified Contract IDs from one domain to another.

• Arguments:

– contractIds: Seq[com.digitalasset.canton.protocol.LfContractId]

– sourceDomain: com.digitalasset.canton.DomainAlias

– targetDomain: com.digitalasset.canton.DomainAlias

– skipInactive: Boolean

– batchSize: Int

• Description: This is a last resort command to recover from data corruption in scenar-

ios in which a domain is irreparably broken and formerly connected participants need to

move contracts to another, healthy domain. The participant needs to be disconnected

from both the “sourceDomain” and the “targetDomain”. Also as of now the target do-

main cannot have had any inflight requests. Contracts already present in the target do-

main will be skipped, and this makes it possible to invoke this command in an “idem-

potent” fashion in case an earlier attempt had resulted in an error. The “skipInactive”

flag makes it possible to only move active contracts in the “sourceDomain”. As repair

commands are powerful tools to recover from unforeseen data corruption, but dangerous

under normal operation, use of this command requires (temporarily) enabling the “fea-

tures.enable-repair-commands” configuration. In addition repair commands can run for

1108 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/protocol/SerializableContractWithWitnesses.html
../../canton/scaladoc/com/digitalasset/canton/protocol/SerializableContractWithWitnesses.html
../../canton/scaladoc/com/digitalasset/canton/protocol/index.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html

Daml SDK Documentation, 2.7.3

an unbounded time depending on the number of contract ids passed in. Be sure to not

connect the participant to either domain until the call returns. Arguments: - contractIds -

set of contract ids that should be moved to the new domain - sourceDomain - alias of the

source domain - targetDomain - alias of the target domain - skipInactive - (default true)

whether to skip inactive contracts mentioned in the contractIds list - batchSize - (default

100) how many contracts to write at once to the database

repair.download

• Summary: Download all contracts for the given set of parties to a file.

• Arguments:

– parties: Set[com.digitalasset.canton.topology.PartyId]

– outputFile: String

– filterDomainId: String

– timestamp: Option[java.time.Instant]

– protocolVersion: Option[com.digitalasset.canton.version.ProtocolVersion]

– chunkSize: Option[com.digitalasset.canton.config.RequireTypes.PositiveInt]

– contractDomainRenames: Map[com.digitalasset.canton.topology.Do-

mainId,com.digitalasset.canton.topology.DomainId]

• Description: This command can be used to download the current active contract set of a

given set of parties to a text file. This is mainly interesting for recovery and operational

purposes. The file will contain base64 encoded strings, one line per contract. The lines are

written sorted according to their domain and contract id. This allows to compare the con-

tracts stored by two participants using standard file comparison tools. The domain-id is

printed with the prefix domain-id before the block of contracts starts. This commandmay

take a long time to complete and may require significant resources. It will first load the

contract ids of the active contract set into memory and then subsequently load the con-

tracts in batches and inspect their stakeholders. As this operation needs to traverse the

entire datastore, it might take a long time to complete. The command will return amap of

domainId -> number of active contracts stored The arguments are: - parties: identifying

contracts having at least one stakeholder from the given set - outputFile: the output file

namewhere to store the data. Use .gz as a suffix to get a compressed file (recommended) -

filterDomainId: restrict the export to a given domain - timestamp: optionally a timestamp

for which we should take the state (useful to reconcile states of a domain) - protocolVer-

sion: optional the protocol version to use for the serialization. Defaults to the one of the

domains. - chunkSize: size of the byte chunks to stream back: default 1024 * 1024 * 2 =

(2MB) - contractDomainRenames: As part of the export, allow to rename the associated

domain id of contracts from one domain to another based on the mapping.

repair.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

repair.ignore_events

• Summary: Mark sequenced events as ignored.

• Arguments:

– domainId: com.digitalasset.canton.topology.DomainId

– from: com.digitalasset.canton.SequencerCounter

– to: com.digitalasset.canton.SequencerCounter

– force: Boolean

• Description: This is the last resort to ignore events that the participant is unable to pro-

cess. Ignoring eventsmay lead to subsequent failures, e.g., if the event creating a contract

1.28. Canton Administration Quickstart 1109

../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/version/ProtocolVersion.html
../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar PositiveInt\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/topology/DomainId.html
../../canton/scaladoc/com/digitalasset/canton/index.html
../../canton/scaladoc/com/digitalasset/canton/index.html

Daml SDK Documentation, 2.7.3

is ignored and that contract is subsequently used. It may also lead to ledger forks if other

participants still process the ignored events. It is possible to mark events as ignored that

the participant has not yet received. The command will fail, if marking events between

from and to as ignored would result in a gap in sequencer counters, namely if from <= to

and from is greater than maxSequencerCounter + 1, where maxSequencerCounter is the great-

est sequencer counter of a sequenced event stored by the underlying participant. The

command will also fail, if force == false and from is smaller than the sequencer counter of

the last event that has been marked as clean. (Ignoring such events would normally have

no effect, as they have already been processed.)

repair.migrate_domain

• Summary: Migrate contracts from one domain to another one.

• Arguments:

– source: com.digitalasset.canton.DomainAlias

– target: com.digitalasset.canton.participant.domain.DomainConnectionConfig

• Description: This method can be used to migrate all the contracts associated with a do-

main to a new domain connection. This method will register the new domain, connect to

it and then re-associate all contracts on the source domain to the target domain. Please

note that thismigration needs to be done by all participants at the same time. The domain

should only be used once all participants have finished their migration. The arguments

are: source: the domain alias of the source domain target: the configuration for the target

domain

repair.purge

• Summary: Purge contracts with specified Contract IDs from local participant.

• Arguments:

– domain: com.digitalasset.canton.DomainAlias

– contractIds: Seq[com.digitalasset.canton.protocol.LfContractId]

– ignoreAlreadyPurged: Boolean

• Description: This is a last resort command to recover from data corruption, e.g. in sce-

narios in which participant contracts have somehow gotten out of sync and need to be

manually purged, or in situations in which stakeholders are no longer available to agree

to their archival. The participant needs to be disconnected from the domain on which

the contracts with “contractIds” reside at the time of the call, and as of now the domain

cannot have had any inflight requests. The “ignoreAlreadyPurged” flag makes it possi-

ble to invoke the command multiple times with the same parameters in case an earlier

command invocation has failed. As repair commands are powerful tools to recover from

unforeseen data corruption, but dangerous under normal operation, use of this command

requires (temporarily) enabling the “features.enable-repair-commands” configuration. In

addition repair commands can run for an unbounded time depending on the number of

contract ids passed in. Be sure to not connect the participant to the domain until the call

returns.

repair.unignore_events

• Summary: Remove the ignored status from sequenced events.

• Arguments:

– domainId: com.digitalasset.canton.topology.DomainId

– from: com.digitalasset.canton.SequencerCounter

– to: com.digitalasset.canton.SequencerCounter

– force: Boolean

• Description: This command has no effect on ordinary (i.e., not ignored) events and on

events that do not exist. The command will fail, if marking events between from and to

as unignored would result in a gap in sequencer counters, namely if there is one empty

1110 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainConnectionConfig.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/protocol/index.html
../../canton/scaladoc/com/digitalasset/canton/topology/DomainId.html
../../canton/scaladoc/com/digitalasset/canton/index.html
../../canton/scaladoc/com/digitalasset/canton/index.html

Daml SDK Documentation, 2.7.3

ignored event with sequencer counter between from and to and another empty ignored

event with sequencer counter greater than to. An empty ignored event is an event that has

been marked as ignored and not yet received by the participant. The command will also

fail, if force == false and from is smaller than the sequencer counter of the last event that

has beenmarked as clean. (Unignoring such eventswould normally have no effect, as they

have already been processed.)

repair.upload

• Summary: Import ACS snapshot

• Arguments:

– inputFile: String

• Description: Uploads a binary into the participant’s ACS

Resource Management

resources.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

resources.resource_limits

• Summary: Get the resource limits of the participant.

• Return type:

– com.digitalasset.canton.participant.admin.ResourceLimits

resources.set_resource_limits

• Summary: Set resource limits for the participant.

• Arguments:

– limits: com.digitalasset.canton.participant.admin.ResourceLimits

• Description: While a resource limit is attained or exceeded, the participant will reject any

additional submission with GRPC status ABORTED. Most importantly, a submission will

be rejected before it consumes a significant amount of resources. There are three kinds

of limits: maxDirtyRequests, maxRate and maxBurstFactor. The number of dirty requests of

a participant P covers (1) requests initiated by P as well as (2) requests initiated by par-

ticipants other than P that need to be validated by P. Compared to the maximum rate, the

maximum number of dirty requests reflects the load on the participant more accurately.

However, the maximum number of dirty requests alone does not protect the system from

“bursts”: If an application submits a huge number of commands at once, the maximum

number of dirty requestswill likely be exceeded, as the system is registering dirty requests

only during validation and not already during submission. The maximum rate is a hard

limit on the rate of commands submitted to this participant through the ledger API. As the

rate of commands is checked and updated immediately after receiving a new command

submission, an application cannot exceed themaximum rate. ThemaxBurstFactor param-

eter (positive, default 0.5) allows to configure how permissive the rate limitation should

be with respect to bursts. The rate limiting will be enforced strictly after having observed

max_burst * max_rate commands. For the sake of illustration, let’s assume the config-

ured rate limit is 100 commands/swith a burst ratio of 0.5. If an application submits 100

commands within a single second, waiting exactly 10 milliseconds between consecutive

commands, then the participant will accept all commands. With a maxBurstFactor of 0.5,

the participant will accept the first 50 commands and reject the remaining 50. If the ap-

plication then waits another 500 ms, it may submit another burst of 50 commands. If it

1.28. Canton Administration Quickstart 1111

../../canton/scaladoc/com/digitalasset/canton/participant/admin/ResourceLimits.html
../../canton/scaladoc/com/digitalasset/canton/participant/admin/ResourceLimits.html

Daml SDK Documentation, 2.7.3

waits 250 ms, it may submit only a burst of 25 commands. Resource limits can only be

changed, if the server runs Canton enterprise. In the community edition, the server uses

fixed limits that cannot be changed.

Replication

replication.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

replication.set_passive

• Summary: Set the participant replica to passive

• Description: Trigger a graceful fail-over from this active replica to another passive replica.

1.28.3.3 Multiple Participants

This section lists the commands available for a sequence of participants. They can be used on the

participant references participants.all, .local or .remote as:

participants.all.dars.upload("my.dar")

dars.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

dars.upload

• Summary: Upload DARs to participants

• Arguments:

– darPath: String

– vetAllPackages: Boolean

– synchronizeVetting: Boolean

• Return type:

– Map[com.digitalasset.canton.console.ParticipantReference,String]

• Description: If vetAllPackages is true, the participants will vet the package on all domains

they are registered. If synchronizeVetting is true, the commandwill blockuntil thepackage

vetting transaction has been registered with all connected domains.

domains.connect_local

• Summary: Register and potentially connect to new local domain

• Arguments:

– domain: com.digitalasset.canton.console.InstanceReferenceWithSequencerCon-

nection

– manualConnect: Boolean

– synchronize: Option[com.digitalasset.canton.config.NonNegativeDuration]

• Description: The arguments are: domain - A local domain or sequencer reference manu-

alConnect - Whether this connection should be handledmanually and also excluded from

automatic re-connect. synchronize - A timeout duration indicating how long to wait for all

topology changes to have been effected on all local nodes.

1112 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/console/InstanceReferenceWithSequencerConnection.html
../../canton/scaladoc/com/digitalasset/canton/console/InstanceReferenceWithSequencerConnection.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html

Daml SDK Documentation, 2.7.3

domains.disconnect

• Summary: Disconnect from domain

• Arguments:

– alias: com.digitalasset.canton.DomainAlias

domains.disconnect_all

• Summary: Disconnect from all connected domains

domains.disconnect_local

• Summary: Disconnect from a local domain

• Arguments:

– domain: com.digitalasset.canton.console.LocalDomainReference

domains.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

domains.reconnect

• Summary: Reconnect to domain

• Arguments:

– alias: com.digitalasset.canton.DomainAlias

– retry: Boolean

• Description: If retry is set to true (default), the commandwill return after the first attempt,

but keep on trying in the background.

domains.reconnect_all

• Summary: Reconnect to all domains for which manualStart = false

• Arguments:

– ignoreFailures: Boolean

• Description: If ignoreFailures is set to true (default), the reconnect all will succeed even if

somedomainsare offline. Theparticipantswill continueattempting to establishadomain

connection.

domains.register

• Summary: Register and potentially connect to domain

• Arguments:

– config: com.digitalasset.canton.participant.domain.DomainConnectionConfig

1.28.3.4 Domain Administration Commands

clear_cache (Testing)

• Summary: Clear locally cached variables

• Description: Some commands cache values on the client side. Use this command to ex-

plicitly clear the caches of these values.

config

• Summary: Returns the domain configuration

• Return type:

– LocalDomainReference.this.consoleEnvironment.environment.config.Domain-

ConfigType

defaultDomainConnection

1.28. Canton Administration Quickstart 1113

../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/console/LocalDomainReference.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainConnectionConfig.html

Daml SDK Documentation, 2.7.3

• Summary: Yields a domain connection config with default values except for the domain

alias and the sequencer connection. May throw an exception if the domain alias or se-

quencer connection is misconfigured.

• Return type:

– com.digitalasset.canton.participant.domain.DomainConnectionConfig

help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

id

• Summary: Yields the globally unique id of this domain. Throws an exception, if the id has

not yet been allocated (e.g., the domain has not yet been started).

• Return type:

– com.digitalasset.canton.topology.DomainId

is_initialized

• Summary: Check if the local instance is running and is fully initialized

• Return type:

– Boolean

is_running

• Summary: Check if the local instance is running

• Return type:

– Boolean

start

• Summary: Start the instance

stop

• Summary: Stop the instance

Health

health.active

• Summary: Check if the node is running and is the active instance (mediator, participant)

• Return type:

– Boolean

health.dump

• Summary: Creates a zip file containing diagnostic information about the canton process

running this node

• Arguments:

– outputFile: better.files.File

– timeout: com.digitalasset.canton.config.NonNegativeDuration

– chunkSize: Option[Int]

• Return type:

– String

health.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

1114 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainConnectionConfig.html
../../canton/scaladoc/com/digitalasset/canton/topology/DomainId.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html

Daml SDK Documentation, 2.7.3

• Arguments:

– methodName: String

health.initialized

• Summary: Returns true if node has been initialized.

• Return type:

– Boolean

health.running

• Summary: Check if the node is running

• Return type:

– Boolean

health.status

• Summary: Get human (and machine) readable status info

• Return type:

– com.digitalasset.canton.health.admin.data.NodeStatus[S]

health.wait_for_identity

• Summary: Wait for the node to have an identity

• Description: This is specifically useful for the DomainManager which needs its identity to

be ready for bootstrapping, but for which we can’t rely on wait_for_initialized() because

it will be initialized only after being bootstrapped.

health.wait_for_initialized

• Summary: Wait for the node to be initialized

health.wait_for_running

• Summary: Wait for the node to be running

Database

db.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

db.migrate

• Summary: Migrates the instance’s database if using a database storage

db.repair_migration

• Summary: Only use when advised - repairs the database migration of the instance’s

database

• Arguments:

– force: Boolean

• Description: In some rare cases, we change already applied database migration files in

a new release and the repair command resets the checksums we use to ensure that in

general already applied migration files have not been changed. You should only use db.re-

pair_migration when advised and otherwise use it at your own risk - in the worst case run-

ning it may lead to data corruption when an incompatible database migration (one that

should be rejected because the already applied database migration files have changed)

is subsequently falsely applied.

1.28. Canton Administration Quickstart 1115

Daml SDK Documentation, 2.7.3

Participants

participants.active

• Summary: Test whether a participant is permissioned on this domain

• Arguments:

– participantId: com.digitalasset.canton.topology.ParticipantId

• Return type:

– Boolean

participants.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

participants.list

• Summary: List participant states

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListParticipantDomain-

StateResult]

• Description: This command will list the currently valid state as stored in the authorized

store. For a deep inspection of the identity management history, use the topology.partici-

pant_domain_states.list command.

participants.set_state

• Summary: Change state and trust level of participant

• Arguments:

– participant: com.digitalasset.canton.topology.ParticipantId

– permission: com.digitalasset.canton.topology.transaction.ParticipantPermis-

sion

– trustLevel: com.digitalasset.canton.topology.transaction.TrustLevel

– synchronize: Option[com.digitalasset.canton.config.NonNegativeDuration]

• Description: Set the state of the participant within the domain. Valid permissions are

‘Submission’, ‘Confirmation’, ‘Observation’ and ‘Disabled’. Valid trust levels are ‘Vip’ and

‘Ordinary’. Synchronize timeout can be used to ensure that the state has been propagated

into the node

Sequencer

sequencer.disable_member

• Summary: Disable the providedmember at the Sequencer that will allow any unread data

for them to be removed

• Arguments:

– member: com.digitalasset.canton.topology.Member

• Description: This will prevent any client for the givenmember to reconnect the Sequencer

and allow any unread/unacknowledged data they have to be removed. This should only

be used if the domain operation is confident the member will never need to reconnect

as there is no way to re-enable the member. To view members using the sequencer run

sequencer.status().”

sequencer.help

1116 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListParticipantDomainStateResult.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListParticipantDomainStateResult.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/ParticipantPermission.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/ParticipantPermission.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TrustLevel.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/topology/Member.html

Daml SDK Documentation, 2.7.3

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

sequencer.pruning.clear_schedule

• Summary: Deactivate automatic pruning.

sequencer.pruning.force_prune

• Summary: Force remove data from the Sequencer including data that may have not been

read by offline clients

• Arguments:

– dryRun: Boolean

• Return type:

– String

• Description: Will force pruning up until the default retention period by potentially dis-

abling clients that have not yet read data we would like to remove. Disabling these clients

will prevent them from ever reconnecting to the Domain so should only be used if the

Domain operator is confident they can be permanently ignored. Run with dryRun = true to

review adescription of which clientswill be disabled first. Runwith dryRun = false to disable

these clients and perform a forced pruning.

sequencer.pruning.force_prune_at

• Summary: Force removing data from the Sequencer including data that may have not

been read by offline clients up until the specified time

• Arguments:

– timestamp: com.digitalasset.canton.data.CantonTimestamp

– dryRun: Boolean

• Return type:

– String

• Description: Similar to the above force_prune command but allows specifying the exact

time at which to prune

sequencer.pruning.force_prune_with_retention_period

• Summary: Force removing data from the Sequencer including data that may have not

been read by offline clients up until a custom retention period

• Arguments:

– retentionPeriod: scala.concurrent.duration.FiniteDuration

– dryRun: Boolean

• Return type:

– String

• Description: Similar to the above force_prune command but allows specifying a custom

retention period

sequencer.pruning.get_schedule

• Summary: Inspect the automatic pruning schedule.

• Return type:

– Option[com.digitalasset.canton.admin.api.client.data.PruningSchedule]

• Description: The schedule consists of a “cron” expression and “max_duration” and “re-

tention” durations. The cron string indicates the points in time at which pruning should

begin in the GMT time zone, and themaximum duration indicates how long from the start

time pruning is allowed to run as long as pruning has not finished pruning up to the spec-

ified retention period. Returns None if no schedule has been configured via set_schedule or

if clear_schedule has been invoked.

1.28. Canton Administration Quickstart 1117

../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/PruningSchedule.html

Daml SDK Documentation, 2.7.3

sequencer.pruning.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

sequencer.pruning.locate_pruning_timestamp

• Summary: Obtain a timestamp at or near the beginning of sequencer state

• Arguments:

– index: com.digitalasset.canton.config.RequireTypes.PositiveInt

• Return type:

– Option[com.digitalasset.canton.data.CantonTimestamp]

• Description: This command provides insight into the current state of sequencer pruning

when called with the default value of index 1. When pruning the sequencer manually via

prune_at and with the intent to prune in batches, specify a value such as 1000 to obtain a

pruning timestamp that corresponds to the “end” of the batch.

sequencer.pruning.prune

• Summary: Remove unnecessary data from the Sequencer up until the default retention

point

• Return type:

– String

• Description: Removes unnecessary data from the Sequencer that is earlier than the de-

fault retention period. The default retention period is set in the configuration of the can-

ton processing running this command under parameters.retention-period-defaults.sequencer.

This pruning command requires that data is read and acknowledged by clients before con-

sidering it safe to remove. If no data is being removed it could indicate that clients are not

reading or acknowledging data in a timely fashion (typically due to nodes going offline for

long periods). You have the option of disabling the members running on these nodes to

allow removal of this data, however this will mean that they will be unable to reconnect to

the domain in the future. To do this run force_prune(dryRun = true) to return a description

of which members would be disabled in order to prune the Sequencer. If you are happy to

disable the described clients then run force_prune(dryRun = false) to permanently remove

their unread data. Once offline clients have been disabled you can continue to run prune

normally.

sequencer.pruning.prune_at

• Summary: Remove data that has been read up until the specified time

• Arguments:

– timestamp: com.digitalasset.canton.data.CantonTimestamp

• Return type:

– String

• Description: Similar to the above prune command but allows specifying the exact time at

which to prune. The command will fail if a client has not yet read and acknowledged some

data up to the specified time.

sequencer.pruning.prune_with_retention_period

• Summary: Remove data that has been read up until a custom retention period

• Arguments:

– retentionPeriod: scala.concurrent.duration.FiniteDuration

• Return type:

– String

• Description: Similar to the above prune command but allows specifying a custom reten-

1118 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar PositiveInt\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html
../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html

Daml SDK Documentation, 2.7.3

tion period

sequencer.pruning.set_cron

• Summary: Modify the cron used by automatic pruning.

• Arguments:

– cron: String

• Description: The schedule is specified in cron format and refers to pruning start times

in the GMT time zone. This call returns an error if no schedule has been configured via

set_schedule or if automatic pruning has been disabled via clear_schedule. Additionally if

at the time of thismodification, pruning is actively running, a best effort ismade to pause

pruning and restart according to the new schedule. This allows for the case that the new

schedule no longer allows pruning at the current time.

sequencer.pruning.set_max_duration

• Summary: Modify the maximum duration used by automatic pruning.

• Arguments:

– maxDuration: com.digitalasset.canton.config.PositiveDurationSeconds

• Description: The maxDuration is specified as a positive duration and has at most

per-second granularity. This call returns an error if no schedule has been configured via

set_schedule or if automatic pruning has been disabled via clear_schedule. Additionally if

at the time of thismodification, pruning is actively running, a best effort ismade to pause

pruning and restart according to the new schedule. This allows for the case that the new

schedule no longer allows pruning at the current time.

sequencer.pruning.set_retention

• Summary: Update the pruning retention used by automatic pruning.

• Arguments:

– retention: com.digitalasset.canton.config.PositiveDurationSeconds

• Description: The retention is specified as a positive duration and has at most per-second

granularity. This call returns an error if no schedule has been configured via set_schedule

or if automatic pruning has been disabled via clear_schedule. Additionally if at the time

of this update, pruning is actively running, a best effort is made to pause pruning and

restart with the newly specified retention. This allows for the case that the new retention

mandates retaining more data than previously.

sequencer.pruning.set_schedule

• Summary: Activate automatic pruning according to the specified schedule.

• Arguments:

– cron: String

– maxDuration: com.digitalasset.canton.config.PositiveDurationSeconds

– retention: com.digitalasset.canton.config.PositiveDurationSeconds

• Description: The schedule is specified in cron format and “max_duration” and “reten-

tion”durations. The cronstring indicates thepoints in timeatwhichpruningshouldbegin

in the GMT time zone, and the maximum duration indicates how long from the start time

pruning is allowed to run as long as pruning has not finished pruning up to the specified

retention period.

sequencer.pruning.status

• Summary: Status of the sequencer and its connected clients

• Return type:

– com.digitalasset.canton.domain.sequencing.sequencer.SequencerPruningStatus

• Description: Provides a detailed breakdown of information required for pruning: - the

current time according to this sequencer instance - domainmembers that the sequencer

supports - for each member when they were registered and whether they are enabled - a

1.28. Canton Administration Quickstart 1119

../../canton/scaladoc/com/digitalasset/canton/config/PositiveDurationSeconds.html
../../canton/scaladoc/com/digitalasset/canton/config/PositiveDurationSeconds.html
../../canton/scaladoc/com/digitalasset/canton/config/PositiveDurationSeconds.html
../../canton/scaladoc/com/digitalasset/canton/config/PositiveDurationSeconds.html
../../canton/scaladoc/com/digitalasset/canton/domain/sequencing/sequencer/SequencerPruningStatus.html

Daml SDK Documentation, 2.7.3

list of clients for eachmember, their last acknowledgement, andwhether they are enabled

Mediator

mediator.clear_schedule

• Summary: Deactivate automatic pruning.

mediator.get_schedule

• Summary: Inspect the automatic pruning schedule.

• Return type:

– Option[com.digitalasset.canton.admin.api.client.data.PruningSchedule]

• Description: The schedule consists of a “cron” expression and “max_duration” and “re-

tention” durations. The cron string indicates the points in time at which pruning should

begin in the GMT time zone, and themaximum duration indicates how long from the start

time pruning is allowed to run as long as pruning has not finished pruning up to the spec-

ified retention period. Returns None if no schedule has been configured via set_schedule or

if clear_schedule has been invoked.

mediator.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

mediator.locate_pruning_timestamp

• Summary: Obtain a timestamp at or near the beginning of mediator state

• Arguments:

– index: com.digitalasset.canton.config.RequireTypes.PositiveInt

• Return type:

– Option[com.digitalasset.canton.data.CantonTimestamp]

• Description: This command provides insight into the current state of mediator pruning

when called with the default value of index 1. When pruning the mediator manually via

prune_at and with the intent to prune in batches, specify a value such as 1000 to obtain a

pruning timestamp that corresponds to the “end” of the batch.

mediator.prune

• Summary: Prune the mediator of unnecessary data while keeping data for the default

retention period

• Description: Removes unnecessary data from theMediator that is earlier than the default

retention period. The default retention period is set in the configuration of the cantonnode

running this command under parameters.retention-period-defaults.mediator.

mediator.prune_at

• Summary: Prune the mediator of unnecessary data up to and including the given times-

tamp

• Arguments:

– timestamp: com.digitalasset.canton.data.CantonTimestamp

mediator.prune_with_retention_period

• Summary: Prune the mediator of unnecessary data while keeping data for the provided

retention period

• Arguments:

– retentionPeriod: scala.concurrent.duration.FiniteDuration

1120 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/PruningSchedule.html
../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar PositiveInt\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html
../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html

Daml SDK Documentation, 2.7.3

mediator.set_cron

• Summary: Modify the cron used by automatic pruning.

• Arguments:

– cron: String

• Description: The schedule is specified in cron format and refers to pruning start times

in the GMT time zone. This call returns an error if no schedule has been configured via

set_schedule or if automatic pruning has been disabled via clear_schedule. Additionally if

at the time of thismodification, pruning is actively running, a best effort ismade to pause

pruning and restart according to the new schedule. This allows for the case that the new

schedule no longer allows pruning at the current time.

mediator.set_max_duration

• Summary: Modify the maximum duration used by automatic pruning.

• Arguments:

– maxDuration: com.digitalasset.canton.config.PositiveDurationSeconds

• Description: The maxDuration is specified as a positive duration and has at most

per-second granularity. This call returns an error if no schedule has been configured via

set_schedule or if automatic pruning has been disabled via clear_schedule. Additionally if

at the time of thismodification, pruning is actively running, a best effort ismade to pause

pruning and restart according to the new schedule. This allows for the case that the new

schedule no longer allows pruning at the current time.

mediator.set_retention

• Summary: Update the pruning retention used by automatic pruning.

• Arguments:

– retention: com.digitalasset.canton.config.PositiveDurationSeconds

• Description: The retention is specified as a positive duration and has at most per-second

granularity. This call returns an error if no schedule has been configured via set_schedule

or if automatic pruning has been disabled via clear_schedule. Additionally if at the time

of this update, pruning is actively running, a best effort is made to pause pruning and

restart with the newly specified retention. This allows for the case that the new retention

mandates retaining more data than previously.

mediator.set_schedule

• Summary: Activate automatic pruning according to the specified schedule.

• Arguments:

– cron: String

– maxDuration: com.digitalasset.canton.config.PositiveDurationSeconds

– retention: com.digitalasset.canton.config.PositiveDurationSeconds

• Description: The schedule is specified in cron format and “max_duration” and “reten-

tion”durations. The cronstring indicates thepoints in timeatwhichpruningshouldbegin

in the GMT time zone, and the maximum duration indicates how long from the start time

pruning is allowed to run as long as pruning has not finished pruning up to the specified

retention period.

mediator.testing.await_domain_time (Testing)

• Summary: Await for the given time to be reached on the domain

• Arguments:

– time: com.digitalasset.canton.data.CantonTimestamp

– timeout: com.digitalasset.canton.config.NonNegativeDuration

mediator.testing.fetch_domain_time (Testing)

• Summary: Fetch the current time from the domain

• Arguments:

1.28. Canton Administration Quickstart 1121

../../canton/scaladoc/com/digitalasset/canton/config/PositiveDurationSeconds.html
../../canton/scaladoc/com/digitalasset/canton/config/PositiveDurationSeconds.html
../../canton/scaladoc/com/digitalasset/canton/config/PositiveDurationSeconds.html
../../canton/scaladoc/com/digitalasset/canton/config/PositiveDurationSeconds.html
../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html

Daml SDK Documentation, 2.7.3

– timeout: com.digitalasset.canton.config.NonNegativeDuration

• Return type:

– com.digitalasset.canton.data.CantonTimestamp

mediator.testing.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Key Administration

keys.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

keys.public.download

• Summary: Download public key

• Arguments:

– fingerprint: com.digitalasset.canton.crypto.Fingerprint

– protocolVersion: com.digitalasset.canton.version.ProtocolVersion

• Return type:

– com.google.protobuf.ByteString

keys.public.download_to

• Summary: Download public key and save it to a file

• Arguments:

– fingerprint: com.digitalasset.canton.crypto.Fingerprint

– outputFile: String

– protocolVersion: com.digitalasset.canton.version.ProtocolVersion

keys.public.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

keys.public.list

• Summary: List public keys in registry

• Arguments:

– filterFingerprint: String

– filterContext: String

• Return type:

– Seq[com.digitalasset.canton.crypto.PublicKeyWithName]

• Description: Returns all public keys that have been added to the key registry. Optional

arguments can be used for filtering.

keys.public.list_by_owner

• Summary: List keys for given keyOwner.

• Arguments:

– keyOwner: com.digitalasset.canton.topology.KeyOwner

1122 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/version/ProtocolVersion.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/version/ProtocolVersion.html
../../canton/scaladoc/com/digitalasset/canton/crypto/PublicKeyWithName.html
../../canton/scaladoc/com/digitalasset/canton/topology/KeyOwner.html

Daml SDK Documentation, 2.7.3

– filterDomain: String

– asOf: Option[java.time.Instant]

– limit: com.digitalasset.canton.config.RequireTypes.PositiveInt

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListKeyOwnersResult]

• Description: This command is a convenience wrapper for list_key_owners, taking an ex-

plicit keyOwner as search argument. The response includes the public keys.

keys.public.list_owners

• Summary: List active owners with keys for given search arguments.

• Arguments:

– filterKeyOwnerUid: String

– filterKeyOwnerType: Option[com.digitalasset.canton.topology.KeyOwner-

Code]

– filterDomain: String

– asOf: Option[java.time.Instant]

– limit: com.digitalasset.canton.config.RequireTypes.PositiveInt

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListKeyOwnersResult]

• Description: This command allows deep inspection of the topology state. The response

includes the public keys. Optional filterKeyOwnerType type can be ‘ParticipantId.Code’ ,

‘MediatorId.Code’,’SequencerId.Code’, ‘DomainTopologyManagerId.Code’.

keys.public.upload

• Summary: Upload public key

• Arguments:

– filename: String

– name: Option[String]

• Return type:

– com.digitalasset.canton.crypto.Fingerprint

keys.public.upload

• Summary: Upload public key

• Arguments:

– keyBytes: com.google.protobuf.ByteString

– name: Option[String]

• Return type:

– com.digitalasset.canton.crypto.Fingerprint

• Description: Import a public key and store it together with a name used to provide some

context to that key.

keys.secret.delete

• Summary: Delete private key

• Arguments:

– fingerprint: com.digitalasset.canton.crypto.Fingerprint

– force: Boolean

keys.secret.download

• Summary: Download key pair

• Arguments:

– fingerprint: com.digitalasset.canton.crypto.Fingerprint

– protocolVersion: com.digitalasset.canton.version.ProtocolVersion

• Return type:

– com.google.protobuf.ByteString

1.28. Canton Administration Quickstart 1123

../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar PositiveInt\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListKeyOwnersResult.html
../../canton/scaladoc/com/digitalasset/canton/topology/KeyOwnerCode.html
../../canton/scaladoc/com/digitalasset/canton/topology/KeyOwnerCode.html
../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar PositiveInt\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListKeyOwnersResult.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/version/ProtocolVersion.html

Daml SDK Documentation, 2.7.3

keys.secret.download_to

• Summary: Download key pair and save it to a file

• Arguments:

– fingerprint: com.digitalasset.canton.crypto.Fingerprint

– outputFile: String

– protocolVersion: com.digitalasset.canton.version.ProtocolVersion

keys.secret.generate_encryption_key

• Summary: Generate new public/private key pair for encryption and store it in the vault

• Arguments:

– name: String

– scheme: Option[com.digitalasset.canton.crypto.EncryptionKeyScheme]

• Return type:

– com.digitalasset.canton.crypto.EncryptionPublicKey

• Description: The optional nameargument allows you to store anassociated string for your

convenience. The scheme can be used to select a key scheme and the default scheme is

used if left unspecified.

keys.secret.generate_signing_key

• Summary: Generate new public/private key pair for signing and store it in the vault

• Arguments:

– name: String

– scheme: Option[com.digitalasset.canton.crypto.SigningKeyScheme]

• Return type:

– com.digitalasset.canton.crypto.SigningPublicKey

• Description: The optional nameargument allows you to store anassociated string for your

convenience. The scheme can be used to select a key scheme and the default scheme is

used if left unspecified.

keys.secret.get_wrapper_key_id

• Summary: Get the wrapper key id that is used for the encrypted private keys store

• Return type:

– String

keys.secret.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

keys.secret.list

• Summary: List keys in private vault

• Arguments:

– filterFingerprint: String

– filterName: String

– purpose: Set[com.digitalasset.canton.crypto.KeyPurpose]

• Return type:

– Seq[com.digitalasset.canton.crypto.admin.grpc.PrivateKeyMetadata]

• Description: Returns all public keys to the corresponding private keys in the key vault.

Optional arguments can be used for filtering.

keys.secret.register_kms_encryption_key

• Summary: Register the specified KMS encryption key in canton storing its public infor-

mation in the vault

1124 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/version/ProtocolVersion.html
../../canton/scaladoc/com/digitalasset/canton/crypto/EncryptionKeyScheme.html
../../canton/scaladoc/com/digitalasset/canton/crypto/EncryptionPublicKey.html
../../canton/scaladoc/com/digitalasset/canton/crypto/SigningKeyScheme.html
../../canton/scaladoc/com/digitalasset/canton/crypto/SigningPublicKey.html
../../canton/scaladoc/com/digitalasset/canton/crypto/KeyPurpose.html
../../canton/scaladoc/com/digitalasset/canton/crypto/admin/grpc/PrivateKeyMetadata.html

Daml SDK Documentation, 2.7.3

• Arguments:

– kmsKeyId: String

– name: String

• Return type:

– com.digitalasset.canton.crypto.EncryptionPublicKey

• Description: The id for the KMS encryption key. The optional name argument allows you

to store an associated string for your convenience.

keys.secret.register_kms_signing_key

• Summary: Register the specified KMSsigning key in canton storing its public information

in the vault

• Arguments:

– kmsKeyId: String

– name: String

• Return type:

– com.digitalasset.canton.crypto.SigningPublicKey

• Description: The id for the KMS signing key. The optional name argument allows you to

store an associated string for your convenience.

keys.secret.rotate_kms_node_key

• Summary: Rotate a given node’s keypair with a new pre-generated KMS keypair

• Arguments:

– fingerprint: String

– newKmsKeyId: String

• Return type:

– com.digitalasset.canton.crypto.PublicKey

• Description: Rotates an existing encryption or signing key stored externally in a KMSwith

a pre-generated key. The fingerprint of the key we want to rotate. The id of the new KMS

key (e.g. Resource Name).

keys.secret.rotate_node_key

• Summary: Rotate a node’s public/private key pair

• Arguments:

– fingerprint: String

– name: Option[String]

• Return type:

– com.digitalasset.canton.crypto.PublicKey

• Description: Rotates an existing encryption or signing key. NOTE: A namespace root or

intermediate signing key CANNOT be rotated by this command. The fingerprint of the key

we want to rotate.

keys.secret.rotate_node_keys

• Summary: Rotate the node’s public/private key pairs

• Description: For a participant node it rotates the signing and encryption key pair. For a do-

main or domain manager node it rotates the signing key pair as those nodes do not have

an encryption key pair. For a sequencer or mediator node use rotate_node_keys with a do-

main manager reference as an argument. NOTE: Namespace root or intermediate signing

keys are NOT rotated by this command.

keys.secret.rotate_wrapper_key

• Summary: Change the wrapper key for encrypted private keys store

• Arguments:

– newWrapperKeyId: String

• Description: Change thewrapper key (e.g. AWS KMS key) being used to encrypt the private

1.28. Canton Administration Quickstart 1125

../../canton/scaladoc/com/digitalasset/canton/crypto/EncryptionPublicKey.html
../../canton/scaladoc/com/digitalasset/canton/crypto/SigningPublicKey.html
../../canton/scaladoc/com/digitalasset/canton/crypto/PublicKey.html
../../canton/scaladoc/com/digitalasset/canton/crypto/PublicKey.html

Daml SDK Documentation, 2.7.3

keys in the store. newWrapperKeyId: The optional new wrapper key id to be used. If the

wrapper key id is empty Cantonwill generate a newkey based on the current configuration.

keys.secret.upload

• Summary: Upload a key pair

• Arguments:

– pairBytes: com.google.protobuf.ByteString

– name: Option[String]

keys.secret.upload

• Summary: Upload (load and import) a key pair from file

• Arguments:

– filename: String

– name: Option[String]

Parties

parties.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

parties.list

• Summary: List active parties, their active participants, and the participants’ permissions

on domains.

• Arguments:

– filterParty: String

– filterParticipant: String

– filterDomain: String

– asOf: Option[java.time.Instant]

– limit: com.digitalasset.canton.config.RequireTypes.PositiveInt

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListPartiesResult]

• Description: Inspect the parties known by this participant as used for synchronisation.

The response is built from the timestamped topology transactions of each domain, ex-

cluding the authorized store of the given node. For each known party, the list of active

participants and their permission on the domain for that party is given. filterParty: Fil-

ter by parties starting with the given string. filterParticipant: Filter for parties that are

hosted by a participant with an id starting with the given string filterDomain: Filter by

domains whose id starts with the given string. asOf: Optional timestamp to inspect the

topology state at a given point in time. limit: Limit on the number of parties fetched (de-

faults to canton.parameters.console.default-limit). Example: participant1.parties.list(fil-

terParty=”alice”)

1126 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar PositiveInt\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListPartiesResult.html

Daml SDK Documentation, 2.7.3

Service

service.get_dynamic_domain_parameters

• Summary: Get the Dynamic Domain Parameters configured for the domain

• Return type:

– com.digitalasset.canton.admin.api.client.data.DynamicDomainParameters

service.get_max_rate_per_participant

• Summary: Get the max rate per participant

• Return type:

– com.digitalasset.canton.config.RequireTypes.NonNegativeInt

• Description: Depending on the protocol version used on the domain, the value will be read

either from the static domain parameters or the dynamic ones.

service.get_max_request_size

• Summary: Get the max request size

• Return type:

– com.digitalasset.canton.config.RequireTypes.NonNegativeInt

• Description: Depending on the protocol version used on the domain, the value will be

read either from the static domain parameters or the dynamic ones. This value is not

necessarily the one used by the sequencer node because it requires a restart of the server

to be taken into account.

service.get_mediator_deduplication_timeout

• Summary: Get the mediator deduplication timeout

• Return type:

– com.digitalasset.canton.config.NonNegativeFiniteDuration

• Description: The method will fail, if the domain does not support the mediatorDeduplica-

tionTimeout.

service.get_reconciliation_interval

• Summary: Get the reconciliation interval configured for the domain

• Return type:

– com.digitalasset.canton.config.PositiveDurationSeconds

• Description: Depending on the protocol version used on the domain, the value will be read

either from the static domain parameters or the dynamic ones.

service.get_static_domain_parameters

• Summary: Get the Static Domain Parameters configured for the domain

• Return type:

– com.digitalasset.canton.admin.api.client.data.StaticDomainParameters

service.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

service.list_accepted_agreements

• Summary: List the accepted service agreements

• Return type:

– Seq[com.digitalasset.canton.domain.service.ServiceAgreementAcceptance]

service.set_dynamic_domain_parameters

• Summary: Set the Dynamic Domain Parameters configured for the domain

1.28. Canton Administration Quickstart 1127

../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/DynamicDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar NonNegativeInt\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar NonNegativeInt\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeFiniteDuration.html
../../canton/scaladoc/com/digitalasset/canton/config/PositiveDurationSeconds.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/StaticDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/domain/service/ServiceAgreementAcceptance.html

Daml SDK Documentation, 2.7.3

• Arguments:

– dynamicDomainParameters: com.digitalasset.canton.admin.api.client.data.Dy-

namicDomainParameters

– force: Boolean

• Description: force: Enable potentially dangerous changes. Required to increase ledger­

TimeRecordTimeTolerance. Use set_ledger_time_record_time_tolerance to

securely increase ledgerTimeRecordTimeTolerance.

service.set_ledger_time_record_time_tolerance

• Summary: Update the ledgerTimeRecordTimeTolerance in the dynamic domain parameters.

• Arguments:

– newLedgerTimeRecordTimeTolerance: com.digitalasset.canton.config.Non-

NegativeFiniteDuration

– force: Boolean

• Description: If it would be insecure to perform the change immediately, the command

will block and wait until it is secure to perform the change. The command will block for at

most twice of newLedgerTimeRecordTimeTolerance. If the domain does not support

mediatorDeduplicationTimeout, the method will update ledgerTimeRecordTime­

Tolerance immediately without blocking. The method will fail if mediatorDedupli­

cationTimeout is less than twice of newLedgerTimeRecordTimeTolerance. Do not

modify domain parameters concurrently while running this command, because the com-

mandmay override concurrent changes. force: update ledgerTimeRecordTimeToler­

ance immediately without blocking. This is safe to do during domain bootstrapping and

in test environments, but should not be done in operational production systems..

service.set_max_inbound_message_size

• Summary: Try to update the max rate per participant for the domain

• Arguments:

– maxRequestSize: com.digitalasset.canton.config.RequireTypes.NonNegativeInt

– force: Boolean

• Description: If the max request size is dynamic, update the value. The update won’t have

any effect unless the sequencer server is restarted. If themax request size is not dynamic

(i.e., if the domain is running on protocol version lower than 4), then it will throw an error.

service.set_max_rate_per_participant

• Summary: Try to update the max rate per participant for the domain

• Arguments:

– maxRatePerParticipant: com.digitalasset.canton.config.RequireTypes.Non-

NegativeInt

• Description: If the max rate per participant is dynamic, update the value. If the max rate

per participant is not dynamic (i.e., if the domain is running on protocol version lower than

4), then it will throw an error.

service.set_max_request_size

• Summary: Try to update the max rate per participant for the domain

• Arguments:

– maxRequestSize: com.digitalasset.canton.config.RequireTypes.NonNegativeInt

– force: Boolean

• Description: If the max request size is dynamic, update the value. The update won’t have

any effect unless the sequencer server is restarted. If themax request size is not dynamic

(i.e., if the domain is running on protocol version lower than 4), then it will throw an error.

service.set_mediator_deduplication_timeout

• Summary: Update the mediator deduplication timeout

1128 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/DynamicDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/DynamicDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeFiniteDuration.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeFiniteDuration.html
../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar NonNegativeInt\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar NonNegativeInt\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar NonNegativeInt\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar NonNegativeInt\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

• Arguments:

– newMediatorDeduplicationTimeout: com.digitalasset.canton.config.Non-

NegativeFiniteDuration

• Description: The method will fail: - if the domain does not support the mediatorDedu­

plicationTimeout parameter, - if the new value of mediatorDeduplicationTimeout

is less than twice the value of ledgerTimeRecordTimeTolerance.

service.set_reconciliation_interval

• Summary: Try to update the reconciliation interval for the domain

• Arguments:

– newReconciliationInterval: com.digitalasset.canton.config.PositiveDura-

tionSeconds

• Description: If the reconciliation interval is dynamic, update the value. If the reconcilia-

tion interval is not dynamic (i.e., if the domain is running on protocol version lower than

4), then it will throw an error.

service.update_dynamic_domain_parameters

• Summary: Update the Dynamic Domain Parameters for the domain

• Arguments:

– modifier: com.digitalasset.canton.admin.api.client.data.DynamicDomainPa-

rameters => com.digitalasset.canton.admin.api.client.data.DynamicDomainPa-

rameters

– force: Boolean

• Description: force: Enable potentially dangerous changes. Required to increase

ledgerTimeRecordTimeTolerance. Use set_ledger_time_record_time_toler­

ance_securely to securely increase ledgerTimeRecordTimeTolerance.

service.update_dynamic_parameters

• Summary: Update the Dynamic Domain Parameters for the domain

• Arguments:

– modifier: com.digitalasset.canton.admin.api.client.data.DynamicDomainPa-

rameters => com.digitalasset.canton.admin.api.client.data.DynamicDomainPa-

rameters

– force: Boolean

• Description: force: Enable potentially dangerous changes. Required to increase

ledgerTimeRecordTimeTolerance. Use set_ledger_time_record_time_toler­

ance_securely to securely increase ledgerTimeRecordTimeTolerance.

Topology Administration

Topology commands run on the domain topology manager immediately affect the topology state of

the domain, which means that all changes are immediately pushed to the connected participants.

topology.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

topology.init_id

• Summary: Initialize the node with a unique identifier

• Arguments:

– identifier: com.digitalasset.canton.topology.Identifier

1.28. Canton Administration Quickstart 1129

../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeFiniteDuration.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeFiniteDuration.html
../../canton/scaladoc/com/digitalasset/canton/config/PositiveDurationSeconds.html
../../canton/scaladoc/com/digitalasset/canton/config/PositiveDurationSeconds.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/DynamicDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/DynamicDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/DynamicDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/DynamicDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/DynamicDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/DynamicDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/topology/Identifier.html

Daml SDK Documentation, 2.7.3

– fingerprint: com.digitalasset.canton.crypto.Fingerprint

• Return type:

– com.digitalasset.canton.topology.UniqueIdentifier

• Description: Every node in Canton is identified using a unique identifier, which is com-

posed of a user-chosen string and the fingerprint of a signing key. The signing key is the

root key defining a so-called namespace, where the signing key has the ultimate control

over issuing new identifiers. During initialisation, we have to pick such a unique identi-

fier. By default, initialisation happens automatically, but it can be turned off by setting the

auto-init option to false. Automatic node initialisation is usually turned off to preserve the

identity of a participant or domain node (duringmajor version upgrades) or if the topology

transactions are managed through a different topology manager than the one integrated

into this node.

topology.load_transaction

• Summary: Upload signed topology transaction

• Arguments:

– bytes: com.google.protobuf.ByteString

• Description: Topology transactions can be issued with any topology manager. In some

cases, such transactions need to be copiedmanually between nodes. This function allows

for uploading previously exported topology transaction into the authorized store (which

is the name of the topology managers transaction store.

topology.stores.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

topology.stores.list

• Summary: List available topology stores

• Return type:

– Seq[String]

• Description: Topology transactions are stored in these stores. There are the following

stores: “Authorized” - The authorized store is the store of a topologymanager. Updates to

the topology state are made by adding new transactions to the “Authorized” store. Both

the participant and the domain nodes topology manager have such a store. A partici-

pant node will distribute all the content in the Authorized store to the domains it is con-

nected to. The domain node will distribute the content of the Authorized store through

the sequencer to the domain members in order to create the authoritative topology state

on a domain (which is stored in the store named using the domain-id), such that every

domain member will have the same view on the topology state on a particular domain.

“<domain-id> - The domain store is the authorized topology state on a domain. A partici-

pant has one store for each domain it is connected to. The domain has exactly one store

with its domain-id. “Requested” - A domain can be configured such that when participant

tries to register a topology transaction with the domain, the transaction is placed into the

“Requested” store such that it can be analysed and processed with user defined process.

topology.namespace_delegations.authorize

• Summary: Change namespace delegation

• Arguments:

– ops: com.digitalasset.canton.topology.transaction.TopologyChangeOp

– namespace: com.digitalasset.canton.crypto.Fingerprint

– authorizedKey: com.digitalasset.canton.crypto.Fingerprint

1130 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/topology/UniqueIdentifier.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html

Daml SDK Documentation, 2.7.3

– isRootDelegation: Boolean

– signedBy: Option[com.digitalasset.canton.crypto.Fingerprint]

– synchronize: Option[com.digitalasset.canton.config.NonNegativeDuration]

– force: Boolean

• Return type:

– com.google.protobuf.ByteString

• Description: Delegates the authority to authorize topology transactions in a certain

namespace to a certain key. The keys are referred to using their fingerprints. They need to

be either locally generated or have been previously imported. ops: Either Add or Remove

the delegation. namespace: The namespace whose authorization authority is delegated.

signedBy: Optional fingerprint of the authorizing key. The authorizing key needs to be ei-

ther the authorizedKey for root certificates. Otherwise, the signedBy key needs to refer to

a previously authorized key, whichmeans that we use the signedBy key to refer to a locally

available CA. authorizedKey: Fingerprint of the key to be authorized. If signedBy equals au-

thorizedKey, then this transaction corresponds to a self-signed root certificate. If the keys

differ, then we get an intermediate CA. isRootDelegation: If set to true (default = false), the

authorized key will be allowed to issue NamespaceDelegations. synchronize: Synchronize

timeout can be used to ensure that the state has been propagated into the node

topology.namespace_delegations.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

topology.namespace_delegations.list

• Summary: List namespace delegation transactions

• Arguments:

– filterStore: String

– useStateStore: Boolean

– timeQuery: com.digitalasset.canton.topology.store.TimeQuery

– operation: Option[com.digitalasset.canton.topology.transaction.Topology-

ChangeOp]

– filterNamespace: String

– filterSigningKey: String

– filterTargetKey: Option[com.digitalasset.canton.crypto.Fingerprint]

– protocolVersion: Option[String]

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListNamespaceDelegationRe-

sult]

• Description: List the namespace delegation transaction present in the stores. Names-

pace delegations are topology transactions that permission a key to issue topology trans-

actions within a certain namespace. filterStore: Filter for topology stores starting with the

given filter string (Authorized, <domain-id>, Requested) useStateStore: If true (default),

only properly authorized transactions that are part of the statewill be selected. timeQuery:

The timequery allows to customize the query by time. The following options are supported:

TimeQuery.HeadState (default): The most recent known state. TimeQuery.Snapshot(ts):

The state at a certain point in time. TimeQuery.Range(fromO, toO): Time-range of when

the transaction was added to the store operation: Optionally, what type of operation the

transaction should have. State store only has “Add”. filterSigningKey: Filter for transac-

tions that are authorized with a key that starts with the given filter string. filterNames-

pace: Filter for namespaces starting with the given filter string. filterTargetKey: Filter for

1.28. Canton Administration Quickstart 1131

../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/topology/store/TimeQuery.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListNamespaceDelegationResult.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListNamespaceDelegationResult.html

Daml SDK Documentation, 2.7.3

namespaces delegations for the given target key. protocolVersion: Export the topology

transactions in the optional protocol version.

topology.identifier_delegations.authorize

• Summary: Change identifier delegation

• Arguments:

– ops: com.digitalasset.canton.topology.transaction.TopologyChangeOp

– identifier: com.digitalasset.canton.topology.UniqueIdentifier

– authorizedKey: com.digitalasset.canton.crypto.Fingerprint

– signedBy: Option[com.digitalasset.canton.crypto.Fingerprint]

– synchronize: Option[com.digitalasset.canton.config.NonNegativeDuration]

• Return type:

– com.google.protobuf.ByteString

• Description: Delegates the authority of a certain identifier to a certain key. This corre-

sponds to a normal certificate which binds identifier to a key. The keys are referred to

using their fingerprints. They need to be either locally generated or have been previously

imported. ops: Either Add or Remove the delegation. signedBy: Refers to the optional fin-

gerprint of the authorizing keywhich in turn refers to a specific, locally existing certificate.

authorizedKey: Fingerprint of the key to be authorized. synchronize: Synchronize timeout

can be used to ensure that the state has been propagated into the node

topology.identifier_delegations.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

topology.identifier_delegations.list

• Summary: List identifier delegation transactions

• Arguments:

– filterStore: String

– useStateStore: Boolean

– timeQuery: com.digitalasset.canton.topology.store.TimeQuery

– operation: Option[com.digitalasset.canton.topology.transaction.Topology-

ChangeOp]

– filterUid: String

– filterSigningKey: String

– filterTargetKey: Option[com.digitalasset.canton.crypto.Fingerprint]

– protocolVersion: Option[String]

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListIdentifierDelegationRe-

sult]

• Description: List the identifier delegation transaction present in the stores. Identifier

delegations are topology transactions that permission a key to issue topology transac-

tions for a certain unique identifier. filterStore: Filter for topology stores starting with the

given filter string (Authorized, <domain-id>, Requested) useStateStore: If true (default),

only properly authorized transactions that are part of the statewill be selected. timeQuery:

The timequery allows to customize the query by time. The following options are supported:

TimeQuery.HeadState (default): The most recent known state. TimeQuery.Snapshot(ts):

The state at a certain point in time. TimeQuery.Range(fromO, toO): Time-range of when the

transactionwas added to the store operation: Optionally, what type of operation the trans-

action should have. State store only has “Add”. filterSigningKey: Filter for transactions

that are authorized with a key that starts with the given filter string. filterUid: Filter for

1132 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/UniqueIdentifier.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/topology/store/TimeQuery.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListIdentifierDelegationResult.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListIdentifierDelegationResult.html

Daml SDK Documentation, 2.7.3

unique identifiers starting with the given filter string. protocolVersion: Export the topol-

ogy transactions in the optional protocol version.

topology.owner_to_key_mappings.authorize

• Summary: Change an owner to key mapping

• Arguments:

– ops: com.digitalasset.canton.topology.transaction.TopologyChangeOp

– keyOwner: com.digitalasset.canton.topology.KeyOwner

– key: com.digitalasset.canton.crypto.Fingerprint

– purpose: com.digitalasset.canton.crypto.KeyPurpose

– signedBy: Option[com.digitalasset.canton.crypto.Fingerprint]

– synchronize: Option[com.digitalasset.canton.config.NonNegativeDuration]

– force: Boolean

• Return type:

– com.google.protobuf.ByteString

• Description: Change a owner to key mapping. A key owner is anyone in the system that

needs a key-pair known to allmembers (participants, mediator, sequencer, topologyman-

ager) of a domain. ops: Either Add or Remove the keymapping update. signedBy: Optional

fingerprint of the authorizing key which in turn refers to a specific, locally existing certifi-

cate. ownerType: Role of the following owner (Participant, Sequencer, Mediator, Domain-

TopologyManager) owner: Unique identifier of the owner. key: Fingerprint of key purposes:

The purposes of the owner to key mapping. force: removing the last key is dangerous and

must therefore be manually forced synchronize: Synchronize timeout can be used to en-

sure that the state has been propagated into the node

topology.owner_to_key_mappings.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

topology.owner_to_key_mappings.list

• Summary: List owner to key mapping transactions

• Arguments:

– filterStore: String

– useStateStore: Boolean

– timeQuery: com.digitalasset.canton.topology.store.TimeQuery

– operation: Option[com.digitalasset.canton.topology.transaction.Topology-

ChangeOp]

– filterKeyOwnerType: Option[com.digitalasset.canton.topology.KeyOwner-

Code]

– filterKeyOwnerUid: String

– filterKeyPurpose: Option[com.digitalasset.canton.crypto.KeyPurpose]

– filterSigningKey: String

– protocolVersion: Option[String]

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListOwnerToKeyMappingRe-

sult]

• Description: List the owner to key mapping transactions present in the stores. Owner to

key mappings are topology transactions defining that a certain key is used by a certain

key owner. Key owners are participants, sequencers, mediators and domains. filterStore:

Filter for topology stores starting with the given filter string (Authorized, <domain-id>, Re-

quested) useStateStore: If true (default), only properly authorized transactions that are

1.28. Canton Administration Quickstart 1133

../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/KeyOwner.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/KeyPurpose.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/topology/store/TimeQuery.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/KeyOwnerCode.html
../../canton/scaladoc/com/digitalasset/canton/topology/KeyOwnerCode.html
../../canton/scaladoc/com/digitalasset/canton/crypto/KeyPurpose.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListOwnerToKeyMappingResult.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListOwnerToKeyMappingResult.html

Daml SDK Documentation, 2.7.3

part of the state will be selected. timeQuery: The time query allows to customize the query

by time. The following options are supported: TimeQuery.HeadState (default): The most

recent known state. TimeQuery.Snapshot(ts): The state at a certain point in time. Time-

Query.Range(fromO, toO): Time-range of when the transactionwas added to the store oper-

ation: Optionally, what type of operation the transaction should have. State store only has

“Add”. filterSigningKey: Filter for transactions that are authorized with a key that starts

with the given filter string. filterKeyOwnerType: Filter for a particular type of key owner

(KeyOwnerCode). filterKeyOwnerUid: Filter for key owners unique identifier starting with

the given filter string. filterKeyPurpose: Filter for keys with a particular purpose (Encryp-

tion or Signing) protocolVersion: Export the topology transactions in the optional protocol

version.

topology.owner_to_key_mappings.rotate_key

• Summary: Rotate the key for an owner to key mapping

• Arguments:

– nodeInstance: com.digitalasset.canton.console.InstanceReferenceCommon

– owner: com.digitalasset.canton.topology.KeyOwner

– currentKey: com.digitalasset.canton.crypto.PublicKey

– newKey: com.digitalasset.canton.crypto.PublicKey

• Description: Rotates the key for an existing owner to keymapping by issuing a new owner

to key mapping with the new key and removing the previous owner to key mapping with

the previous key. nodeInstance: The node instance that is used to verify that both current

and new key pertain to this node. This avoids conflicts when there are different nodes with

the same uuid (i.e., multiple sequencers). owner: The owner of the owner to key mapping

currentKey: The current public key that will be rotated newKey: The new public key that

has been generated

topology.party_to_participant_mappings.authorize (Preview)

• Summary: Change party to participant mapping

• Arguments:

– ops: com.digitalasset.canton.topology.transaction.TopologyChangeOp

– party: com.digitalasset.canton.topology.PartyId

– participant: com.digitalasset.canton.topology.ParticipantId

– side: com.digitalasset.canton.topology.transaction.RequestSide

– permission: com.digitalasset.canton.topology.transaction.ParticipantPermis-

sion

– signedBy: Option[com.digitalasset.canton.crypto.Fingerprint]

– synchronize: Option[com.digitalasset.canton.config.NonNegativeDuration]

– replaceExisting: Boolean

– force: Boolean

• Return type:

– com.google.protobuf.ByteString

• Description: Change the association of a party to a participant. If both identifiers are

in the same namespace, then the request-side is Both. If they differ, then we need to say

whether the request comes from the party (RequestSide.From) or from the participant (Re-

questSide.To). And, we need the matching request of the other side. Please note that this

is a preview feature due to the fact that inhomogeneous topologies can not yet be properly

represented on the Ledger API. ops: Either Add or Remove the mapping signedBy: Refers

to the optional fingerprint of the authorizing key which in turn refers to a specific, locally

existing certificate. party: The unique identifier of the party we want to map to a partici-

pant. participant: The unique identifier of the participant to which the party is supposed

to be mapped. side: The request side (RequestSide.From if we the transaction is from the

1134 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/console/InstanceReferenceCommon.html
../../canton/scaladoc/com/digitalasset/canton/topology/KeyOwner.html
../../canton/scaladoc/com/digitalasset/canton/crypto/PublicKey.html
../../canton/scaladoc/com/digitalasset/canton/crypto/PublicKey.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/RequestSide.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/ParticipantPermission.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/ParticipantPermission.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html

Daml SDK Documentation, 2.7.3

perspective of the party, RequestSide.To from the participant.) privilege: The privilege of

the given participant which allows us to restrict an association (e.g. Confirmation or Ob-

servation). replaceExisting: If true (default), replace any existing mapping with the new

setting synchronize: Synchronize timeout can be used to ensure that the state has been

propagated into the node

topology.party_to_participant_mappings.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

topology.party_to_participant_mappings.list

• Summary: List party to participant mapping transactions

• Arguments:

– filterStore: String

– useStateStore: Boolean

– timeQuery: com.digitalasset.canton.topology.store.TimeQuery

– operation: Option[com.digitalasset.canton.topology.transaction.Topology-

ChangeOp]

– filterParty: String

– filterParticipant: String

– filterRequestSide: Option[com.digitalasset.canton.topology.transaction.Re-

questSide]

– filterPermission: Option[com.digitalasset.canton.topology.transaction.Par-

ticipantPermission]

– filterSigningKey: String

– protocolVersion: Option[String]

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListPartyToParticipantResult]

• Description: List the party to participant mapping transactions present in the stores.

Party to participant mappings are topology transactions used to allocate a party to a cer-

tain participant. The same party can be allocated on several participants with different

privileges. A party to participant mapping has a request-side that identifies whether the

mapping is authorized by the party, by the participant or by both. In order to have a party

be allocated to a given participant, we therefore need either two transactions (one with

RequestSide.From, one with RequestSide.To) or one with RequestSide.Both. filterStore: Fil-

ter for topology stores starting with the given filter string (Authorized, <domain-id>, Re-

quested) useStateStore: If true (default), only properly authorized transactions that are

part of the state will be selected. timeQuery: The time query allows to customize the query

by time. The following options are supported: TimeQuery.HeadState (default): The most

recent known state. TimeQuery.Snapshot(ts): The state at a certain point in time. Time-

Query.Range(fromO, toO): Time-range of when the transactionwas added to the store oper-

ation: Optionally, what type of operation the transaction should have. State store only has

“Add”. filterSigningKey: Filter for transactions that are authorized with a key that starts

with the given filter string. filterParty: Filter for parties starting with the given filter string.

filterParticipant: Filter for participants starting with the given filter string. filterRequest-

Side: Optional filter for a particular request side (Both, From, To). protocolVersion: Export

the topology transactions in the optional protocol version.

topology.participant_domain_states.active

• Summary: Returns true if the given participant is currently active on the given domain

• Arguments:

1.28. Canton Administration Quickstart 1135

../../canton/scaladoc/com/digitalasset/canton/topology/store/TimeQuery.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/RequestSide.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/RequestSide.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/ParticipantPermission.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/ParticipantPermission.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListPartyToParticipantResult.html

Daml SDK Documentation, 2.7.3

– domainId: com.digitalasset.canton.topology.DomainId

– participantId: com.digitalasset.canton.topology.ParticipantId

• Return type:

– Boolean

• Description: Active means that the participant has been granted at least observation

rights on the domain and that the participant has registered a domain trust certificate

topology.participant_domain_states.authorize

• Summary: Change participant domain states

• Arguments:

– ops: com.digitalasset.canton.topology.transaction.TopologyChangeOp

– domain: com.digitalasset.canton.topology.DomainId

– participant: com.digitalasset.canton.topology.ParticipantId

– side: com.digitalasset.canton.topology.transaction.RequestSide

– permission: com.digitalasset.canton.topology.transaction.ParticipantPermis-

sion

– trustLevel: com.digitalasset.canton.topology.transaction.TrustLevel

– signedBy: Option[com.digitalasset.canton.crypto.Fingerprint]

– synchronize: Option[com.digitalasset.canton.config.NonNegativeDuration]

– replaceExisting: Boolean

• Return type:

– com.google.protobuf.ByteString

• Description: Change the association of a participant to a domain. In order to activate a

participant on a domain, we need both authorisation: the participant authorising its uid

to be present on a particular domain and the domain to authorise the presence of a partic-

ipant on said domain. If both identifiers are in the samenamespace, then the request-side

can be Both. If they differ, thenwe need to saywhether the request comes from the domain

(RequestSide.From) or from the participant (RequestSide.To). And, we need the matching

request of the other side. ops: Either Add or Remove the mapping signedBy: Refers to the

optional fingerprint of the authorizing key which in turn refers to a specific, locally exist-

ing certificate. domain: The unique identifier of the domain we want the participant to

join. participant: The unique identifier of the participant. side: The request side (Request-

Side.From ifwe the transaction is from the perspective of the domain, RequestSide.To from

the participant.) permission: The privilege of the given participant which allows us to re-

strict an association (e.g. Confirmation or Observation). Will use the lower of if different

between To/From. trustLevel: The trust level of the participant on the given domain. Will

use the lower of if different between To/From. replaceExisting: If true (default), replace any

existing mapping with the new setting synchronize: Synchronize timeout can be used to

ensure that the state has been propagated into the node

topology.participant_domain_states.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

topology.participant_domain_states.list

• Summary: List participant domain states

• Arguments:

– filterStore: String

– useStateStore: Boolean

– timeQuery: com.digitalasset.canton.topology.store.TimeQuery

– operation: Option[com.digitalasset.canton.topology.transaction.Topology-

1136 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/topology/DomainId.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/DomainId.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/RequestSide.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/ParticipantPermission.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/ParticipantPermission.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TrustLevel.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html
../../canton/scaladoc/com/digitalasset/canton/topology/store/TimeQuery.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html

Daml SDK Documentation, 2.7.3

ChangeOp]

– filterDomain: String

– filterParticipant: String

– filterSigningKey: String

– protocolVersion: Option[String]

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListParticipantDomain-

StateResult]

• Description: List the participant domain transactions present in the stores. Participant

domain states are topology transactions used to permission a participant on a given do-

main. A participant domain state has a request-side that identifies whether the mapping

is authorized by the participant (From), by the domain (To) or by both (Both). In order

to use a participant on a domain, both have to authorize such a mapping. This means

that by authorizing such a topology transaction, a participant acknowledges its presence

on a domain, whereas a domain permissions the participant on that domain. filterStore:

Filter for topology stores starting with the given filter string (Authorized, <domain-id>, Re-

quested) useStateStore: If true (default), only properly authorized transactions that are

part of the state will be selected. timeQuery: The time query allows to customize the query

by time. The following options are supported: TimeQuery.HeadState (default): The most

recent known state. TimeQuery.Snapshot(ts): The state at a certain point in time. Time-

Query.Range(fromO, toO): Time-range of when the transaction was added to the store op-

eration: Optionally, what type of operation the transaction should have. State store only

has “Add”. filterSigningKey: Filter for transactions that are authorized with a key that

starts with the given filter string. filterDomain: Filter for domains starting with the given

filter string. filterParticipant: Filter for participants starting with the given filter string.

protocolVersion: Export the topology transactions in the optional protocol version.

topology.vetted_packages.authorize

• Summary: Change package vettings

• Arguments:

– ops: com.digitalasset.canton.topology.transaction.TopologyChangeOp

– participant: com.digitalasset.canton.topology.ParticipantId

– packageIds: Seq[com.daml.lf.data.Ref.PackageId]

– signedBy: Option[com.digitalasset.canton.crypto.Fingerprint]

– synchronize: Option[com.digitalasset.canton.config.NonNegativeDuration]

– force: Boolean

• Return type:

– com.google.protobuf.ByteString

• Description: A participant will only process transactions that reference packages that all

involved participants have vetted previously. Vetting is done by registering a respective

topology transaction with the domain, which can then be used by other participants to

verify that a transaction is only using vetted packages. Note that all referenced and de-

pendent packages must exist in the package store. By default, only vetting transactions

addingnewpackages canbe issued. Removingpackage vettings and issuingpackage vet-

tings for other participants (if their identity is controlled through this participants topol-

ogy manager) or for packages that do not exist locally can only be run using the force =

true flag. However, these operations are dangerous and can lead to the situation of a par-

ticipant being unable to process transactions. ops: Either Add or Remove the vetting. par-

ticipant: The unique identifier of the participant that is vetting the package. packageIds:

The lf-package ids to be vetted. signedBy: Refers to the fingerprint of the authorizing key

which in turn must be authorized by a valid, locally existing certificate. If none is given,

a key is automatically determined. synchronize: Synchronize timeout can be used to en-

1.28. Canton Administration Quickstart 1137

../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListParticipantDomainStateResult.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListParticipantDomainStateResult.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html

Daml SDK Documentation, 2.7.3

sure that the state has been propagated into the node force: Flag to enable dangerous

operations (default false). Great power requires great care.

topology.vetted_packages.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

topology.vetted_packages.list

• Summary: List package vetting transactions

• Arguments:

– filterStore: String

– useStateStore: Boolean

– timeQuery: com.digitalasset.canton.topology.store.TimeQuery

– operation: Option[com.digitalasset.canton.topology.transaction.Topology-

ChangeOp]

– filterParticipant: String

– filterSigningKey: String

– protocolVersion: Option[String]

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListVettedPackagesResult]

• Description: List the package vetting transactions present in the stores. Participants

must vet Daml packages and submittersmust ensure that the receivingparticipants have

vetted the package prior to submitting a transaction (done automatically during submis-

sion and validation). Vetting is done by authorizing such topology transactions and reg-

istering with a domain. filterStore: Filter for topology stores starting with the given filter

string (Authorized, <domain-id>, Requested) useStateStore: If true (default), only prop-

erly authorized transactions that are part of the state will be selected. timeQuery: The

time query allows to customize the query by time. The following options are supported:

TimeQuery.HeadState (default): The most recent known state. TimeQuery.Snapshot(ts):

The state at a certain point in time. TimeQuery.Range(fromO, toO): Time-range of when the

transactionwas added to the store operation: Optionally, what type of operation the trans-

action should have. State store only has “Add”. filterSigningKey: Filter for transactions

that are authorizedwithakey that startswith thegiven filter string. filterParticipant: Filter

for participants starting with the given filter string. protocolVersion: Export the topology

transactions in the optional protocol version.

topology.all.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

topology.all.list

• Summary: List all transaction

• Arguments:

– filterStore: String

– useStateStore: Boolean

– timeQuery: com.digitalasset.canton.topology.store.TimeQuery

– operation: Option[com.digitalasset.canton.topology.transaction.Topology-

ChangeOp]

– filterAuthorizedKey: Option[com.digitalasset.canton.crypto.Fingerprint]

1138 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/topology/store/TimeQuery.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListVettedPackagesResult.html
../../canton/scaladoc/com/digitalasset/canton/topology/store/TimeQuery.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html

Daml SDK Documentation, 2.7.3

– protocolVersion: Option[String]

• Return type:

– com.digitalasset.canton.topology.store.StoredTopologyTransactions[com.digita-

lasset.canton.topology.transaction.TopologyChangeOp]

• Description: List all topology transactions in a store, independent of the particular type.

This method is useful for exporting entire states. filterStore: Filter for topology stores

starting with the given filter string (Authorized, <domain-id>, Requested) useStateStore:

If true (default), only properly authorized transactions that are part of the state will be se-

lected. timeQuery: The time query allows to customize the query by time. The following op-

tions are supported: TimeQuery.HeadState (default): The most recent known state. Time-

Query.Snapshot(ts): The state at a certain point in time. TimeQuery.Range(fromO, toO):

Time-range of when the transaction was added to the store operation: Optionally, what

type of operation the transaction should have. State store only has “Add”. filterAutho-

rizedKey: Filter the topology transactions by the key that has authorized the transactions.

protocolVersion: Export the topology transactions in the optional protocol version.

topology.all.renew

• Summary: Renew all topology transactions that have been authorized with a previous key

using a new key

• Arguments:

– filterAuthorizedKey: com.digitalasset.canton.crypto.Fingerprint

– authorizeWith: com.digitalasset.canton.crypto.Fingerprint

• Description: Finds all topology transactions that have been authorized by filterAuthorized-

Key and renews those topology transactions by authorizing them with the new key autho-

rizeWith. filterAuthorizedKey: Filter the topology transactions by the key that has autho-

rized the transactions. authorizeWith: The key to authorize the renewed topology trans-

actions.

1.28.3.5 Domain Manager Administration Commands

clear_cache (Testing)

• Summary: Clear locally cached variables

• Description: Some commands cache values on the client side. Use this command to ex-

plicitly clear the caches of these values.

config

• Summary: Returns the domain configuration

• Return type:

– com.digitalasset.canton.domain.config.DomainManagerConfig

help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

id

• Summary: Yields the globally unique id of this domain. Throws an exception, if the id has

not yet been allocated (e.g., the domain has not yet been started).

• Return type:

– com.digitalasset.canton.topology.DomainId

is_initialized

1.28. Canton Administration Quickstart 1139

../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/domain/config/DomainManagerConfig.html
../../canton/scaladoc/com/digitalasset/canton/topology/DomainId.html

Daml SDK Documentation, 2.7.3

• Summary: Check if the local instance is running and is fully initialized

• Return type:

– Boolean

is_running

• Summary: Check if the local instance is running

• Return type:

– Boolean

start

• Summary: Start the instance

stop

• Summary: Stop the instance

Setup

setup.authorize_mediator

• Summary: Authorize external Mediator node.

• Arguments:

– mediatorId: com.digitalasset.canton.topology.MediatorId

• Description: Use this command to reinstigate an external mediator node that has been

offboarded via offboard_mediator.

setup.bootstrap_domain

• Summary: Bootstrap domain

• Arguments:

– sequencers: Seq[com.digitalasset.canton.console.SequencerNodeReference]

– mediators: Seq[com.digitalasset.canton.console.MediatorReference]

• Description: Use this command to bootstrap the domain with an initial set of external

sequencer(s) and external mediator(s). Note that you only need to call this once, however

it is safe to call it again if necessary in case something went wrong and this needs to be

retried.

setup.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

setup.init

• Summary: Initialize domain

• Arguments:

– sequencerConnection: com.digitalasset.canton.sequencing.SequencerCon-

nection

• Description: This command triggers domain initialization and should be called once the

initial topology data has been authorized and sequenced. This is called as part of the

setup.bootstrap command, so you are unlikely to need to call this directly.

setup.init

• Summary: Initialize domain

• Arguments:

– sequencerConnections: com.digitalasset.canton.sequencing.SequencerCon-

nections

1140 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/topology/MediatorId.html
../../canton/scaladoc/com/digitalasset/canton/console/SequencerNodeReference.html
../../canton/scaladoc/com/digitalasset/canton/console/MediatorReference.html
../../canton/scaladoc/com/digitalasset/canton/sequencing/SequencerConnection.html
../../canton/scaladoc/com/digitalasset/canton/sequencing/SequencerConnection.html
../../canton/scaladoc/com/digitalasset/canton/sequencing/SequencerConnections.html
../../canton/scaladoc/com/digitalasset/canton/sequencing/SequencerConnections.html

Daml SDK Documentation, 2.7.3

• Description: This command triggers domain initialization and should be called once the

initial topology data has been authorized and sequenced. This is called as part of the

setup.bootstrap command, so you are unlikely to need to call this directly.

setup.offboard_mediator

• Summary: Offboard external Mediator node.

• Arguments:

– mediatorId: com.digitalasset.canton.topology.MediatorId

– force: Boolean

• Description: Use this command to offboard an onboarded external mediator node. It re-

moves the topology transaction that authorizes the givenmediator ID to act as amediator

on the domain. If you afterwards want to authorize an offboardedmediator again, use au-

thorize_mediator. You must apply force to offboard the last mediator of a domain.

setup.onboard_mediator

• Summary: Onboard external Mediator node.

• Arguments:

– mediator: com.digitalasset.canton.console.MediatorReference

– sequencerConnections: Seq[com.digitalasset.canton.console.InstanceRefer-

enceWithSequencerConnection]

• Description: Use this command to onboard an external mediator node. If you’re boot-

strapping a domain with external sequencer(s) and this is the initial mediator, then use

setup.bootstrap_domain instead. For adding additional externalmediators or onboard an

external mediator with a domain that runs a single embedded sequencer, use this com-

mand.Note that you only need to call this once.

setup.onboard_new_sequencer

• Summary: Dynamically onboard new Sequencer node.

• Arguments:

– initialSequencer: com.digitalasset.canton.console.SequencerNodeReference

– newSequencer: com.digitalasset.canton.console.SequencerNodeReference

• Return type:

– com.digitalasset.canton.crypto.PublicKey

• Description: Use this command to dynamically onboard a new sequencer node that’s not

part of the initial set of sequencer nodes. Do not use this for database sequencers.

Health

health.active

• Summary: Check if the node is running and is the active instance (mediator, participant)

• Return type:

– Boolean

health.dump

• Summary: Creates a zip file containing diagnostic information about the canton process

running this node

• Arguments:

– outputFile: better.files.File

– timeout: com.digitalasset.canton.config.NonNegativeDuration

– chunkSize: Option[Int]

• Return type:

– String

1.28. Canton Administration Quickstart 1141

../../canton/scaladoc/com/digitalasset/canton/topology/MediatorId.html
../../canton/scaladoc/com/digitalasset/canton/console/MediatorReference.html
../../canton/scaladoc/com/digitalasset/canton/console/InstanceReferenceWithSequencerConnection.html
../../canton/scaladoc/com/digitalasset/canton/console/InstanceReferenceWithSequencerConnection.html
../../canton/scaladoc/com/digitalasset/canton/console/SequencerNodeReference.html
../../canton/scaladoc/com/digitalasset/canton/console/SequencerNodeReference.html
../../canton/scaladoc/com/digitalasset/canton/crypto/PublicKey.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html

Daml SDK Documentation, 2.7.3

health.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

health.initialized

• Summary: Returns true if node has been initialized.

• Return type:

– Boolean

health.running

• Summary: Check if the node is running

• Return type:

– Boolean

health.status

• Summary: Get human (and machine) readable status info

• Return type:

– com.digitalasset.canton.health.admin.data.NodeStatus[S]

health.wait_for_identity

• Summary: Wait for the node to have an identity

• Description: This is specifically useful for the DomainManager which needs its identity to

be ready for bootstrapping, but for which we can’t rely on wait_for_initialized() because

it will be initialized only after being bootstrapped.

health.wait_for_initialized

• Summary: Wait for the node to be initialized

health.wait_for_running

• Summary: Wait for the node to be running

Database

db.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

db.migrate

• Summary: Migrates the instance’s database if using a database storage

db.repair_migration

• Summary: Only use when advised - repairs the database migration of the instance’s

database

• Arguments:

– force: Boolean

• Description: In some rare cases, we change already applied database migration files in

a new release and the repair command resets the checksums we use to ensure that in

general already applied migration files have not been changed. You should only use db.re-

pair_migration when advised and otherwise use it at your own risk - in the worst case run-

ning it may lead to data corruption when an incompatible database migration (one that

1142 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

should be rejected because the already applied database migration files have changed)

is subsequently falsely applied.

Sequencer Connection

sequencer_connection.get

• Summary: Get Sequencer Connection

• Return type:

– Option[com.digitalasset.canton.sequencing.SequencerConnections]

• Description: Use this command to get the currently configured sequencer connection de-

tails for this sequencer client. If this node has not yet been initialized, this will return

None.

sequencer_connection.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

sequencer_connection.modify

• Summary: Modify Default Sequencer Connection

• Arguments:

– modifier: com.digitalasset.canton.sequencing.SequencerConnection =>

com.digitalasset.canton.sequencing.SequencerConnection

• Description: Modify sequencer connection details for this sequencer client node, by pass-

ing a modifier function that operates on the existing default connection.

sequencer_connection.modify_connections

• Summary: Modify Sequencer Connections

• Arguments:

– modifier: com.digitalasset.canton.sequencing.SequencerConnections =>

com.digitalasset.canton.sequencing.SequencerConnections

• Description: Modify sequencer connection details for this sequencer client node, by pass-

ing a modifier function that operates on the existing connection configuration.

sequencer_connection.set

• Summary: Set Sequencer Connection

• Arguments:

– connection: com.digitalasset.canton.sequencing.SequencerConnection

• Description: Set new sequencer connection details for this sequencer client node. This

will replace any pre-configured connection details. This command will only work after the

node has been initialized.

sequencer_connection.set

• Summary: Set Sequencer Connection

• Arguments:

– connections: com.digitalasset.canton.sequencing.SequencerConnections

• Description: Set new sequencer connection details for this sequencer client node. This

will replace any pre-configured connection details. This command will only work after the

node has been initialized.

1.28. Canton Administration Quickstart 1143

../../canton/scaladoc/com/digitalasset/canton/sequencing/SequencerConnections.html
../../canton/scaladoc/com/digitalasset/canton/sequencing/SequencerConnection.html
../../canton/scaladoc/com/digitalasset/canton/sequencing/SequencerConnection.html
../../canton/scaladoc/com/digitalasset/canton/sequencing/SequencerConnections.html
../../canton/scaladoc/com/digitalasset/canton/sequencing/SequencerConnections.html
../../canton/scaladoc/com/digitalasset/canton/sequencing/SequencerConnection.html
../../canton/scaladoc/com/digitalasset/canton/sequencing/SequencerConnections.html

Daml SDK Documentation, 2.7.3

Key Administration

keys.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

keys.public.download

• Summary: Download public key

• Arguments:

– fingerprint: com.digitalasset.canton.crypto.Fingerprint

– protocolVersion: com.digitalasset.canton.version.ProtocolVersion

• Return type:

– com.google.protobuf.ByteString

keys.public.download_to

• Summary: Download public key and save it to a file

• Arguments:

– fingerprint: com.digitalasset.canton.crypto.Fingerprint

– outputFile: String

– protocolVersion: com.digitalasset.canton.version.ProtocolVersion

keys.public.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

keys.public.list

• Summary: List public keys in registry

• Arguments:

– filterFingerprint: String

– filterContext: String

• Return type:

– Seq[com.digitalasset.canton.crypto.PublicKeyWithName]

• Description: Returns all public keys that have been added to the key registry. Optional

arguments can be used for filtering.

keys.public.list_by_owner

• Summary: List keys for given keyOwner.

• Arguments:

– keyOwner: com.digitalasset.canton.topology.KeyOwner

– filterDomain: String

– asOf: Option[java.time.Instant]

– limit: com.digitalasset.canton.config.RequireTypes.PositiveInt

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListKeyOwnersResult]

• Description: This command is a convenience wrapper for list_key_owners, taking an ex-

plicit keyOwner as search argument. The response includes the public keys.

keys.public.list_owners

• Summary: List active owners with keys for given search arguments.

• Arguments:

1144 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/version/ProtocolVersion.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/version/ProtocolVersion.html
../../canton/scaladoc/com/digitalasset/canton/crypto/PublicKeyWithName.html
../../canton/scaladoc/com/digitalasset/canton/topology/KeyOwner.html
../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar PositiveInt\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListKeyOwnersResult.html

Daml SDK Documentation, 2.7.3

– filterKeyOwnerUid: String

– filterKeyOwnerType: Option[com.digitalasset.canton.topology.KeyOwner-

Code]

– filterDomain: String

– asOf: Option[java.time.Instant]

– limit: com.digitalasset.canton.config.RequireTypes.PositiveInt

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListKeyOwnersResult]

• Description: This command allows deep inspection of the topology state. The response

includes the public keys. Optional filterKeyOwnerType type can be ‘ParticipantId.Code’ ,

‘MediatorId.Code’,’SequencerId.Code’, ‘DomainTopologyManagerId.Code’.

keys.public.upload

• Summary: Upload public key

• Arguments:

– filename: String

– name: Option[String]

• Return type:

– com.digitalasset.canton.crypto.Fingerprint

keys.public.upload

• Summary: Upload public key

• Arguments:

– keyBytes: com.google.protobuf.ByteString

– name: Option[String]

• Return type:

– com.digitalasset.canton.crypto.Fingerprint

• Description: Import a public key and store it together with a name used to provide some

context to that key.

keys.secret.delete

• Summary: Delete private key

• Arguments:

– fingerprint: com.digitalasset.canton.crypto.Fingerprint

– force: Boolean

keys.secret.download

• Summary: Download key pair

• Arguments:

– fingerprint: com.digitalasset.canton.crypto.Fingerprint

– protocolVersion: com.digitalasset.canton.version.ProtocolVersion

• Return type:

– com.google.protobuf.ByteString

keys.secret.download_to

• Summary: Download key pair and save it to a file

• Arguments:

– fingerprint: com.digitalasset.canton.crypto.Fingerprint

– outputFile: String

– protocolVersion: com.digitalasset.canton.version.ProtocolVersion

keys.secret.generate_encryption_key

• Summary: Generate new public/private key pair for encryption and store it in the vault

• Arguments:

1.28. Canton Administration Quickstart 1145

../../canton/scaladoc/com/digitalasset/canton/topology/KeyOwnerCode.html
../../canton/scaladoc/com/digitalasset/canton/topology/KeyOwnerCode.html
../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar PositiveInt\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListKeyOwnersResult.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/version/ProtocolVersion.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/version/ProtocolVersion.html

Daml SDK Documentation, 2.7.3

– name: String

– scheme: Option[com.digitalasset.canton.crypto.EncryptionKeyScheme]

• Return type:

– com.digitalasset.canton.crypto.EncryptionPublicKey

• Description: The optional nameargument allows you to store anassociated string for your

convenience. The scheme can be used to select a key scheme and the default scheme is

used if left unspecified.

keys.secret.generate_signing_key

• Summary: Generate new public/private key pair for signing and store it in the vault

• Arguments:

– name: String

– scheme: Option[com.digitalasset.canton.crypto.SigningKeyScheme]

• Return type:

– com.digitalasset.canton.crypto.SigningPublicKey

• Description: The optional nameargument allows you to store anassociated string for your

convenience. The scheme can be used to select a key scheme and the default scheme is

used if left unspecified.

keys.secret.get_wrapper_key_id

• Summary: Get the wrapper key id that is used for the encrypted private keys store

• Return type:

– String

keys.secret.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

keys.secret.list

• Summary: List keys in private vault

• Arguments:

– filterFingerprint: String

– filterName: String

– purpose: Set[com.digitalasset.canton.crypto.KeyPurpose]

• Return type:

– Seq[com.digitalasset.canton.crypto.admin.grpc.PrivateKeyMetadata]

• Description: Returns all public keys to the corresponding private keys in the key vault.

Optional arguments can be used for filtering.

keys.secret.register_kms_encryption_key

• Summary: Register the specified KMS encryption key in canton storing its public infor-

mation in the vault

• Arguments:

– kmsKeyId: String

– name: String

• Return type:

– com.digitalasset.canton.crypto.EncryptionPublicKey

• Description: The id for the KMS encryption key. The optional name argument allows you

to store an associated string for your convenience.

keys.secret.register_kms_signing_key

• Summary: Register the specified KMSsigning key in canton storing its public information

1146 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/crypto/EncryptionKeyScheme.html
../../canton/scaladoc/com/digitalasset/canton/crypto/EncryptionPublicKey.html
../../canton/scaladoc/com/digitalasset/canton/crypto/SigningKeyScheme.html
../../canton/scaladoc/com/digitalasset/canton/crypto/SigningPublicKey.html
../../canton/scaladoc/com/digitalasset/canton/crypto/KeyPurpose.html
../../canton/scaladoc/com/digitalasset/canton/crypto/admin/grpc/PrivateKeyMetadata.html
../../canton/scaladoc/com/digitalasset/canton/crypto/EncryptionPublicKey.html

Daml SDK Documentation, 2.7.3

in the vault

• Arguments:

– kmsKeyId: String

– name: String

• Return type:

– com.digitalasset.canton.crypto.SigningPublicKey

• Description: The id for the KMS signing key. The optional name argument allows you to

store an associated string for your convenience.

keys.secret.rotate_kms_node_key

• Summary: Rotate a given node’s keypair with a new pre-generated KMS keypair

• Arguments:

– fingerprint: String

– newKmsKeyId: String

• Return type:

– com.digitalasset.canton.crypto.PublicKey

• Description: Rotates an existing encryption or signing key stored externally in a KMSwith

a pre-generated key. The fingerprint of the key we want to rotate. The id of the new KMS

key (e.g. Resource Name).

keys.secret.rotate_node_key

• Summary: Rotate a node’s public/private key pair

• Arguments:

– fingerprint: String

– name: Option[String]

• Return type:

– com.digitalasset.canton.crypto.PublicKey

• Description: Rotates an existing encryption or signing key. NOTE: A namespace root or

intermediate signing key CANNOT be rotated by this command. The fingerprint of the key

we want to rotate.

keys.secret.rotate_node_keys

• Summary: Rotate the node’s public/private key pairs

• Description: For a participant node it rotates the signing and encryption key pair. For a do-

main or domain manager node it rotates the signing key pair as those nodes do not have

an encryption key pair. For a sequencer or mediator node use rotate_node_keys with a do-

main manager reference as an argument. NOTE: Namespace root or intermediate signing

keys are NOT rotated by this command.

keys.secret.rotate_wrapper_key

• Summary: Change the wrapper key for encrypted private keys store

• Arguments:

– newWrapperKeyId: String

• Description: Change thewrapper key (e.g. AWS KMS key) being used to encrypt the private

keys in the store. newWrapperKeyId: The optional new wrapper key id to be used. If the

wrapper key id is empty Cantonwill generate a newkey based on the current configuration.

keys.secret.upload

• Summary: Upload a key pair

• Arguments:

– pairBytes: com.google.protobuf.ByteString

– name: Option[String]

keys.secret.upload

1.28. Canton Administration Quickstart 1147

../../canton/scaladoc/com/digitalasset/canton/crypto/SigningPublicKey.html
../../canton/scaladoc/com/digitalasset/canton/crypto/PublicKey.html
../../canton/scaladoc/com/digitalasset/canton/crypto/PublicKey.html

Daml SDK Documentation, 2.7.3

• Summary: Upload (load and import) a key pair from file

• Arguments:

– filename: String

– name: Option[String]

Parties

parties.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

parties.list

• Summary: List active parties, their active participants, and the participants’ permissions

on domains.

• Arguments:

– filterParty: String

– filterParticipant: String

– filterDomain: String

– asOf: Option[java.time.Instant]

– limit: com.digitalasset.canton.config.RequireTypes.PositiveInt

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListPartiesResult]

• Description: Inspect the parties known by this participant as used for synchronisation.

The response is built from the timestamped topology transactions of each domain, ex-

cluding the authorized store of the given node. For each known party, the list of active

participants and their permission on the domain for that party is given. filterParty: Fil-

ter by parties starting with the given string. filterParticipant: Filter for parties that are

hosted by a participant with an id starting with the given string filterDomain: Filter by

domains whose id starts with the given string. asOf: Optional timestamp to inspect the

topology state at a given point in time. limit: Limit on the number of parties fetched (de-

faults to canton.parameters.console.default-limit). Example: participant1.parties.list(fil-

terParty=”alice”)

Service

service.get_dynamic_domain_parameters

• Summary: Get the Dynamic Domain Parameters configured for the domain

• Return type:

– com.digitalasset.canton.admin.api.client.data.DynamicDomainParameters

service.get_max_rate_per_participant

• Summary: Get the max rate per participant

• Return type:

– com.digitalasset.canton.config.RequireTypes.NonNegativeInt

• Description: Depending on the protocol version used on the domain, the value will be read

either from the static domain parameters or the dynamic ones.

service.get_max_request_size

• Summary: Get the max request size

1148 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar PositiveInt\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListPartiesResult.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/DynamicDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar NonNegativeInt\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

• Return type:

– com.digitalasset.canton.config.RequireTypes.NonNegativeInt

• Description: Depending on the protocol version used on the domain, the value will be

read either from the static domain parameters or the dynamic ones. This value is not

necessarily the one used by the sequencer node because it requires a restart of the server

to be taken into account.

service.get_mediator_deduplication_timeout

• Summary: Get the mediator deduplication timeout

• Return type:

– com.digitalasset.canton.config.NonNegativeFiniteDuration

• Description: The method will fail, if the domain does not support the mediatorDeduplica-

tionTimeout.

service.get_reconciliation_interval

• Summary: Get the reconciliation interval configured for the domain

• Return type:

– com.digitalasset.canton.config.PositiveDurationSeconds

• Description: Depending on the protocol version used on the domain, the value will be read

either from the static domain parameters or the dynamic ones.

service.get_static_domain_parameters

• Summary: Get the Static Domain Parameters configured for the domain

• Return type:

– com.digitalasset.canton.admin.api.client.data.StaticDomainParameters

service.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

service.list_accepted_agreements

• Summary: List the accepted service agreements

• Return type:

– Seq[com.digitalasset.canton.domain.service.ServiceAgreementAcceptance]

service.set_dynamic_domain_parameters

• Summary: Set the Dynamic Domain Parameters configured for the domain

• Arguments:

– dynamicDomainParameters: com.digitalasset.canton.admin.api.client.data.Dy-

namicDomainParameters

– force: Boolean

• Description: force: Enable potentially dangerous changes. Required to increase ledger­

TimeRecordTimeTolerance. Use set_ledger_time_record_time_tolerance to

securely increase ledgerTimeRecordTimeTolerance.

service.set_ledger_time_record_time_tolerance

• Summary: Update the ledgerTimeRecordTimeTolerance in the dynamic domain parameters.

• Arguments:

– newLedgerTimeRecordTimeTolerance: com.digitalasset.canton.config.Non-

NegativeFiniteDuration

– force: Boolean

• Description: If it would be insecure to perform the change immediately, the command

will block and wait until it is secure to perform the change. The command will block for at

1.28. Canton Administration Quickstart 1149

../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar NonNegativeInt\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeFiniteDuration.html
../../canton/scaladoc/com/digitalasset/canton/config/PositiveDurationSeconds.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/StaticDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/domain/service/ServiceAgreementAcceptance.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/DynamicDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/DynamicDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeFiniteDuration.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeFiniteDuration.html

Daml SDK Documentation, 2.7.3

most twice of newLedgerTimeRecordTimeTolerance. If the domain does not support

mediatorDeduplicationTimeout, the method will update ledgerTimeRecordTime­

Tolerance immediately without blocking. The method will fail if mediatorDedupli­

cationTimeout is less than twice of newLedgerTimeRecordTimeTolerance. Do not

modify domain parameters concurrently while running this command, because the com-

mandmay override concurrent changes. force: update ledgerTimeRecordTimeToler­

ance immediately without blocking. This is safe to do during domain bootstrapping and

in test environments, but should not be done in operational production systems..

service.set_max_inbound_message_size

• Summary: Try to update the max rate per participant for the domain

• Arguments:

– maxRequestSize: com.digitalasset.canton.config.RequireTypes.NonNegativeInt

– force: Boolean

• Description: If the max request size is dynamic, update the value. The update won’t have

any effect unless the sequencer server is restarted. If themax request size is not dynamic

(i.e., if the domain is running on protocol version lower than 4), then it will throw an error.

service.set_max_rate_per_participant

• Summary: Try to update the max rate per participant for the domain

• Arguments:

– maxRatePerParticipant: com.digitalasset.canton.config.RequireTypes.Non-

NegativeInt

• Description: If the max rate per participant is dynamic, update the value. If the max rate

per participant is not dynamic (i.e., if the domain is running on protocol version lower than

4), then it will throw an error.

service.set_max_request_size

• Summary: Try to update the max rate per participant for the domain

• Arguments:

– maxRequestSize: com.digitalasset.canton.config.RequireTypes.NonNegativeInt

– force: Boolean

• Description: If the max request size is dynamic, update the value. The update won’t have

any effect unless the sequencer server is restarted. If themax request size is not dynamic

(i.e., if the domain is running on protocol version lower than 4), then it will throw an error.

service.set_mediator_deduplication_timeout

• Summary: Update the mediator deduplication timeout

• Arguments:

– newMediatorDeduplicationTimeout: com.digitalasset.canton.config.Non-

NegativeFiniteDuration

• Description: The method will fail: - if the domain does not support the mediatorDedu­

plicationTimeout parameter, - if the new value of mediatorDeduplicationTimeout

is less than twice the value of ledgerTimeRecordTimeTolerance.

service.set_reconciliation_interval

• Summary: Try to update the reconciliation interval for the domain

• Arguments:

– newReconciliationInterval: com.digitalasset.canton.config.PositiveDura-

tionSeconds

• Description: If the reconciliation interval is dynamic, update the value. If the reconcilia-

tion interval is not dynamic (i.e., if the domain is running on protocol version lower than

4), then it will throw an error.

1150 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar NonNegativeInt\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar NonNegativeInt\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar NonNegativeInt\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar NonNegativeInt\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeFiniteDuration.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeFiniteDuration.html
../../canton/scaladoc/com/digitalasset/canton/config/PositiveDurationSeconds.html
../../canton/scaladoc/com/digitalasset/canton/config/PositiveDurationSeconds.html

Daml SDK Documentation, 2.7.3

service.update_dynamic_domain_parameters

• Summary: Update the Dynamic Domain Parameters for the domain

• Arguments:

– modifier: com.digitalasset.canton.admin.api.client.data.DynamicDomainPa-

rameters => com.digitalasset.canton.admin.api.client.data.DynamicDomainPa-

rameters

– force: Boolean

• Description: force: Enable potentially dangerous changes. Required to increase

ledgerTimeRecordTimeTolerance. Use set_ledger_time_record_time_toler­

ance_securely to securely increase ledgerTimeRecordTimeTolerance.

service.update_dynamic_parameters

• Summary: Update the Dynamic Domain Parameters for the domain

• Arguments:

– modifier: com.digitalasset.canton.admin.api.client.data.DynamicDomainPa-

rameters => com.digitalasset.canton.admin.api.client.data.DynamicDomainPa-

rameters

– force: Boolean

• Description: force: Enable potentially dangerous changes. Required to increase

ledgerTimeRecordTimeTolerance. Use set_ledger_time_record_time_toler­

ance_securely to securely increase ledgerTimeRecordTimeTolerance.

Topology Administration

Same as Domain Topology Administration.

1.28.3.6 Sequencer Administration Commands

clear_cache (Testing)

• Summary: Clear locally cached variables

• Description: Some commands cache values on the client side. Use this command to ex-

plicitly clear the caches of these values.

config

• Summary: Returns the sequencer configuration

• Return type:

– com.digitalasset.canton.domain.sequencing.config.SequencerNodeConfig

help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

id

• Summary: Yields the globally unique id of this sequencer. Throws an exception, if the id

has not yet been allocated (e.g., the sequencer has not yet been started).

• Return type:

– com.digitalasset.canton.topology.SequencerId

is_initialized

• Summary: Check if the local instance is running and is fully initialized

1.28. Canton Administration Quickstart 1151

../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/DynamicDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/DynamicDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/DynamicDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/DynamicDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/DynamicDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/DynamicDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/domain/sequencing/config/SequencerNodeConfig.html
../../canton/scaladoc/com/digitalasset/canton/topology/SequencerId.html

Daml SDK Documentation, 2.7.3

• Return type:

– Boolean

is_running

• Summary: Check if the local instance is running

• Return type:

– Boolean

start

• Summary: Start the instance

stop

• Summary: Stop the instance

Sequencer

sequencer.disable_member

• Summary: Disable the providedmember at the Sequencer that will allow any unread data

for them to be removed

• Arguments:

– member: com.digitalasset.canton.topology.Member

• Description: This will prevent any client for the givenmember to reconnect the Sequencer

and allow any unread/unacknowledged data they have to be removed. This should only

be used if the domain operation is confident the member will never need to reconnect

as there is no way to re-enable the member. To view members using the sequencer run

sequencer.status().”

sequencer.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

sequencer.pruning.clear_schedule

• Summary: Deactivate automatic pruning.

sequencer.pruning.force_prune

• Summary: Force remove data from the Sequencer including data that may have not been

read by offline clients

• Arguments:

– dryRun: Boolean

• Return type:

– String

• Description: Will force pruning up until the default retention period by potentially dis-

abling clients that have not yet read data we would like to remove. Disabling these clients

will prevent them from ever reconnecting to the Domain so should only be used if the

Domain operator is confident they can be permanently ignored. Run with dryRun = true to

review adescription of which clientswill be disabled first. Runwith dryRun = false to disable

these clients and perform a forced pruning.

sequencer.pruning.force_prune_at

• Summary: Force removing data from the Sequencer including data that may have not

been read by offline clients up until the specified time

• Arguments:

1152 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/topology/Member.html

Daml SDK Documentation, 2.7.3

– timestamp: com.digitalasset.canton.data.CantonTimestamp

– dryRun: Boolean

• Return type:

– String

• Description: Similar to the above force_prune command but allows specifying the exact

time at which to prune

sequencer.pruning.force_prune_with_retention_period

• Summary: Force removing data from the Sequencer including data that may have not

been read by offline clients up until a custom retention period

• Arguments:

– retentionPeriod: scala.concurrent.duration.FiniteDuration

– dryRun: Boolean

• Return type:

– String

• Description: Similar to the above force_prune command but allows specifying a custom

retention period

sequencer.pruning.get_schedule

• Summary: Inspect the automatic pruning schedule.

• Return type:

– Option[com.digitalasset.canton.admin.api.client.data.PruningSchedule]

• Description: The schedule consists of a “cron” expression and “max_duration” and “re-

tention” durations. The cron string indicates the points in time at which pruning should

begin in the GMT time zone, and themaximum duration indicates how long from the start

time pruning is allowed to run as long as pruning has not finished pruning up to the spec-

ified retention period. Returns None if no schedule has been configured via set_schedule or

if clear_schedule has been invoked.

sequencer.pruning.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

sequencer.pruning.locate_pruning_timestamp

• Summary: Obtain a timestamp at or near the beginning of sequencer state

• Arguments:

– index: com.digitalasset.canton.config.RequireTypes.PositiveInt

• Return type:

– Option[com.digitalasset.canton.data.CantonTimestamp]

• Description: This command provides insight into the current state of sequencer pruning

when called with the default value of index 1. When pruning the sequencer manually via

prune_at and with the intent to prune in batches, specify a value such as 1000 to obtain a

pruning timestamp that corresponds to the “end” of the batch.

sequencer.pruning.prune

• Summary: Remove unnecessary data from the Sequencer up until the default retention

point

• Return type:

– String

• Description: Removes unnecessary data from the Sequencer that is earlier than the de-

fault retention period. The default retention period is set in the configuration of the can-

ton processing running this command under parameters.retention-period-defaults.sequencer.

1.28. Canton Administration Quickstart 1153

../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/PruningSchedule.html
../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar PositiveInt\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html

Daml SDK Documentation, 2.7.3

This pruning command requires that data is read and acknowledged by clients before con-

sidering it safe to remove. If no data is being removed it could indicate that clients are not

reading or acknowledging data in a timely fashion (typically due to nodes going offline for

long periods). You have the option of disabling the members running on these nodes to

allow removal of this data, however this will mean that they will be unable to reconnect to

the domain in the future. To do this run force_prune(dryRun = true) to return a description

of which members would be disabled in order to prune the Sequencer. If you are happy to

disable the described clients then run force_prune(dryRun = false) to permanently remove

their unread data. Once offline clients have been disabled you can continue to run prune

normally.

sequencer.pruning.prune_at

• Summary: Remove data that has been read up until the specified time

• Arguments:

– timestamp: com.digitalasset.canton.data.CantonTimestamp

• Return type:

– String

• Description: Similar to the above prune command but allows specifying the exact time at

which to prune. The command will fail if a client has not yet read and acknowledged some

data up to the specified time.

sequencer.pruning.prune_with_retention_period

• Summary: Remove data that has been read up until a custom retention period

• Arguments:

– retentionPeriod: scala.concurrent.duration.FiniteDuration

• Return type:

– String

• Description: Similar to the above prune command but allows specifying a custom reten-

tion period

sequencer.pruning.set_cron

• Summary: Modify the cron used by automatic pruning.

• Arguments:

– cron: String

• Description: The schedule is specified in cron format and refers to pruning start times

in the GMT time zone. This call returns an error if no schedule has been configured via

set_schedule or if automatic pruning has been disabled via clear_schedule. Additionally if

at the time of thismodification, pruning is actively running, a best effort ismade to pause

pruning and restart according to the new schedule. This allows for the case that the new

schedule no longer allows pruning at the current time.

sequencer.pruning.set_max_duration

• Summary: Modify the maximum duration used by automatic pruning.

• Arguments:

– maxDuration: com.digitalasset.canton.config.PositiveDurationSeconds

• Description: The maxDuration is specified as a positive duration and has at most

per-second granularity. This call returns an error if no schedule has been configured via

set_schedule or if automatic pruning has been disabled via clear_schedule. Additionally if

at the time of thismodification, pruning is actively running, a best effort ismade to pause

pruning and restart according to the new schedule. This allows for the case that the new

schedule no longer allows pruning at the current time.

sequencer.pruning.set_retention

• Summary: Update the pruning retention used by automatic pruning.

1154 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html
../../canton/scaladoc/com/digitalasset/canton/config/PositiveDurationSeconds.html

Daml SDK Documentation, 2.7.3

• Arguments:

– retention: com.digitalasset.canton.config.PositiveDurationSeconds

• Description: The retention is specified as a positive duration and has at most per-second

granularity. This call returns an error if no schedule has been configured via set_schedule

or if automatic pruning has been disabled via clear_schedule. Additionally if at the time

of this update, pruning is actively running, a best effort is made to pause pruning and

restart with the newly specified retention. This allows for the case that the new retention

mandates retaining more data than previously.

sequencer.pruning.set_schedule

• Summary: Activate automatic pruning according to the specified schedule.

• Arguments:

– cron: String

– maxDuration: com.digitalasset.canton.config.PositiveDurationSeconds

– retention: com.digitalasset.canton.config.PositiveDurationSeconds

• Description: The schedule is specified in cron format and “max_duration” and “reten-

tion”durations. The cronstring indicates thepoints in timeatwhichpruningshouldbegin

in the GMT time zone, and the maximum duration indicates how long from the start time

pruning is allowed to run as long as pruning has not finished pruning up to the specified

retention period.

sequencer.pruning.status

• Summary: Status of the sequencer and its connected clients

• Return type:

– com.digitalasset.canton.domain.sequencing.sequencer.SequencerPruningStatus

• Description: Provides a detailed breakdown of information required for pruning: - the

current time according to this sequencer instance - domainmembers that the sequencer

supports - for each member when they were registered and whether they are enabled - a

list of clients for eachmember, their last acknowledgement, andwhether they are enabled

Health

health.active

• Summary: Check if the node is running and is the active instance (mediator, participant)

• Return type:

– Boolean

health.dump

• Summary: Creates a zip file containing diagnostic information about the canton process

running this node

• Arguments:

– outputFile: better.files.File

– timeout: com.digitalasset.canton.config.NonNegativeDuration

– chunkSize: Option[Int]

• Return type:

– String

health.has_identity

• Summary: Returns true if the node has an identity

• Return type:

– Boolean

health.help

1.28. Canton Administration Quickstart 1155

../../canton/scaladoc/com/digitalasset/canton/config/PositiveDurationSeconds.html
../../canton/scaladoc/com/digitalasset/canton/config/PositiveDurationSeconds.html
../../canton/scaladoc/com/digitalasset/canton/config/PositiveDurationSeconds.html
../../canton/scaladoc/com/digitalasset/canton/domain/sequencing/sequencer/SequencerPruningStatus.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html

Daml SDK Documentation, 2.7.3

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

health.initialized

• Summary: Returns true if node has been initialized.

• Return type:

– Boolean

health.running

• Summary: Check if the node is running

• Return type:

– Boolean

health.status

• Summary: Get human (and machine) readable status info

• Return type:

– com.digitalasset.canton.health.admin.data.NodeStatus[S]

health.wait_for_identity

• Summary: Wait for the node to have an identity

• Description: This is specifically useful for the DomainManager which needs its identity to

be ready for bootstrapping, but for which we can’t rely on wait_for_initialized() because

it will be initialized only after being bootstrapped.

health.wait_for_initialized

• Summary: Wait for the node to be initialized

health.wait_for_running

• Summary: Wait for the node to be running

Database

db.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

db.migrate

• Summary: Migrates the instance’s database if using a database storage

db.repair_migration

• Summary: Only use when advised - repairs the database migration of the instance’s

database

• Arguments:

– force: Boolean

• Description: In some rare cases, we change already applied database migration files in

a new release and the repair command resets the checksums we use to ensure that in

general already applied migration files have not been changed. You should only use db.re-

pair_migration when advised and otherwise use it at your own risk - in the worst case run-

ning it may lead to data corruption when an incompatible database migration (one that

1156 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

should be rejected because the already applied database migration files have changed)

is subsequently falsely applied.

1.28.3.7 Mediator Administration Commands

clear_cache (Testing)

• Summary: Clear locally cached variables

• Description: Some commands cache values on the client side. Use this command to ex-

plicitly clear the caches of these values.

config

• Summary: Returns the mediator configuration

• Return type:

– com.digitalasset.canton.domain.mediator.MediatorNodeConfig

help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

id

• Summary: Yields the mediator id of this mediator. Throws an exception, if the id has not

yet been allocated (e.g., the mediator has not yet been initialised).

• Return type:

– com.digitalasset.canton.topology.MediatorId

is_initialized

• Summary: Check if the local instance is running and is fully initialized

• Return type:

– Boolean

is_running

• Summary: Check if the local instance is running

• Return type:

– Boolean

start

• Summary: Start the instance

stop

• Summary: Stop the instance

Mediator

mediator.clear_schedule

• Summary: Deactivate automatic pruning.

mediator.get_schedule

• Summary: Inspect the automatic pruning schedule.

• Return type:

– Option[com.digitalasset.canton.admin.api.client.data.PruningSchedule]

1.28. Canton Administration Quickstart 1157

../../canton/scaladoc/com/digitalasset/canton/domain/mediator/MediatorNodeConfig.html
../../canton/scaladoc/com/digitalasset/canton/topology/MediatorId.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/PruningSchedule.html

Daml SDK Documentation, 2.7.3

• Description: The schedule consists of a “cron” expression and “max_duration” and “re-

tention” durations. The cron string indicates the points in time at which pruning should

begin in the GMT time zone, and themaximum duration indicates how long from the start

time pruning is allowed to run as long as pruning has not finished pruning up to the spec-

ified retention period. Returns None if no schedule has been configured via set_schedule or

if clear_schedule has been invoked.

mediator.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

mediator.initialize

• Summary: Initialize a mediator

• Arguments:

– domainId: com.digitalasset.canton.topology.DomainId

– mediatorId: com.digitalasset.canton.topology.MediatorId

– domainParameters: com.digitalasset.canton.admin.api.client.data.StaticDo-

mainParameters

– sequencerConnection: com.digitalasset.canton.sequencing.SequencerCon-

nection

– topologySnapshot: Option[com.digitalasset.canton.topology.store.Stored-

TopologyTransactions[com.digitalasset.canton.topology.transaction.Topology-

ChangeOp.Positive]]

– signingKeyFingerprint: Option[com.digitalasset.canton.crypto.Fingerprint]

• Return type:

– com.digitalasset.canton.crypto.PublicKey

mediator.initialize

• Summary: Initialize a mediator

• Arguments:

– domainId: com.digitalasset.canton.topology.DomainId

– mediatorId: com.digitalasset.canton.topology.MediatorId

– domainParameters: com.digitalasset.canton.admin.api.client.data.StaticDo-

mainParameters

– sequencerConnections: com.digitalasset.canton.sequencing.SequencerCon-

nections

– topologySnapshot: Option[com.digitalasset.canton.topology.store.Stored-

TopologyTransactions[com.digitalasset.canton.topology.transaction.Topology-

ChangeOp.Positive]]

– signingKeyFingerprint: Option[com.digitalasset.canton.crypto.Fingerprint]

• Return type:

– com.digitalasset.canton.crypto.PublicKey

mediator.locate_pruning_timestamp

• Summary: Obtain a timestamp at or near the beginning of mediator state

• Arguments:

– index: com.digitalasset.canton.config.RequireTypes.PositiveInt

• Return type:

– Option[com.digitalasset.canton.data.CantonTimestamp]

• Description: This command provides insight into the current state of mediator pruning

when called with the default value of index 1. When pruning the mediator manually via

1158 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/topology/DomainId.html
../../canton/scaladoc/com/digitalasset/canton/topology/MediatorId.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/StaticDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/StaticDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/sequencing/SequencerConnection.html
../../canton/scaladoc/com/digitalasset/canton/sequencing/SequencerConnection.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/PublicKey.html
../../canton/scaladoc/com/digitalasset/canton/topology/DomainId.html
../../canton/scaladoc/com/digitalasset/canton/topology/MediatorId.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/StaticDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/StaticDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/sequencing/SequencerConnections.html
../../canton/scaladoc/com/digitalasset/canton/sequencing/SequencerConnections.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/PublicKey.html
../../canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar PositiveInt\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html

Daml SDK Documentation, 2.7.3

prune_at and with the intent to prune in batches, specify a value such as 1000 to obtain a

pruning timestamp that corresponds to the “end” of the batch.

mediator.prune

• Summary: Prune the mediator of unnecessary data while keeping data for the default

retention period

• Description: Removes unnecessary data from theMediator that is earlier than the default

retention period. The default retention period is set in the configuration of the cantonnode

running this command under parameters.retention-period-defaults.mediator.

mediator.prune_at

• Summary: Prune the mediator of unnecessary data up to and including the given times-

tamp

• Arguments:

– timestamp: com.digitalasset.canton.data.CantonTimestamp

mediator.prune_with_retention_period

• Summary: Prune the mediator of unnecessary data while keeping data for the provided

retention period

• Arguments:

– retentionPeriod: scala.concurrent.duration.FiniteDuration

mediator.set_cron

• Summary: Modify the cron used by automatic pruning.

• Arguments:

– cron: String

• Description: The schedule is specified in cron format and refers to pruning start times

in the GMT time zone. This call returns an error if no schedule has been configured via

set_schedule or if automatic pruning has been disabled via clear_schedule. Additionally if

at the time of thismodification, pruning is actively running, a best effort ismade to pause

pruning and restart according to the new schedule. This allows for the case that the new

schedule no longer allows pruning at the current time.

mediator.set_max_duration

• Summary: Modify the maximum duration used by automatic pruning.

• Arguments:

– maxDuration: com.digitalasset.canton.config.PositiveDurationSeconds

• Description: The maxDuration is specified as a positive duration and has at most

per-second granularity. This call returns an error if no schedule has been configured via

set_schedule or if automatic pruning has been disabled via clear_schedule. Additionally if

at the time of thismodification, pruning is actively running, a best effort ismade to pause

pruning and restart according to the new schedule. This allows for the case that the new

schedule no longer allows pruning at the current time.

mediator.set_retention

• Summary: Update the pruning retention used by automatic pruning.

• Arguments:

– retention: com.digitalasset.canton.config.PositiveDurationSeconds

• Description: The retention is specified as a positive duration and has at most per-second

granularity. This call returns an error if no schedule has been configured via set_schedule

or if automatic pruning has been disabled via clear_schedule. Additionally if at the time

of this update, pruning is actively running, a best effort is made to pause pruning and

restart with the newly specified retention. This allows for the case that the new retention

mandates retaining more data than previously.

1.28. Canton Administration Quickstart 1159

../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html
../../canton/scaladoc/com/digitalasset/canton/config/PositiveDurationSeconds.html
../../canton/scaladoc/com/digitalasset/canton/config/PositiveDurationSeconds.html

Daml SDK Documentation, 2.7.3

mediator.set_schedule

• Summary: Activate automatic pruning according to the specified schedule.

• Arguments:

– cron: String

– maxDuration: com.digitalasset.canton.config.PositiveDurationSeconds

– retention: com.digitalasset.canton.config.PositiveDurationSeconds

• Description: The schedule is specified in cron format and “max_duration” and “reten-

tion”durations. The cronstring indicates thepoints in timeatwhichpruningshouldbegin

in the GMT time zone, and the maximum duration indicates how long from the start time

pruning is allowed to run as long as pruning has not finished pruning up to the specified

retention period.

Health

health.active

• Summary: Check if the node is running and is the active instance (mediator, participant)

• Return type:

– Boolean

health.dump

• Summary: Creates a zip file containing diagnostic information about the canton process

running this node

• Arguments:

– outputFile: better.files.File

– timeout: com.digitalasset.canton.config.NonNegativeDuration

– chunkSize: Option[Int]

• Return type:

– String

health.has_identity

• Summary: Returns true if the node has an identity

• Return type:

– Boolean

health.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

health.initialized

• Summary: Returns true if node has been initialized.

• Return type:

– Boolean

health.running

• Summary: Check if the node is running

• Return type:

– Boolean

health.status

• Summary: Get human (and machine) readable status info

• Return type:

1160 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/config/PositiveDurationSeconds.html
../../canton/scaladoc/com/digitalasset/canton/config/PositiveDurationSeconds.html
../../canton/scaladoc/com/digitalasset/canton/config/NonNegativeDuration.html

Daml SDK Documentation, 2.7.3

– com.digitalasset.canton.health.admin.data.NodeStatus[S]

health.wait_for_identity

• Summary: Wait for the node to have an identity

• Description: This is specifically useful for the DomainManager which needs its identity to

be ready for bootstrapping, but for which we can’t rely on wait_for_initialized() because

it will be initialized only after being bootstrapped.

health.wait_for_initialized

• Summary: Wait for the node to be initialized

health.wait_for_running

• Summary: Wait for the node to be running

Database

db.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

db.migrate

• Summary: Migrates the instance’s database if using a database storage

db.repair_migration

• Summary: Only use when advised - repairs the database migration of the instance’s

database

• Arguments:

– force: Boolean

• Description: In some rare cases, we change already applied database migration files in

a new release and the repair command resets the checksums we use to ensure that in

general already applied migration files have not been changed. You should only use db.re-

pair_migration when advised and otherwise use it at your own risk - in the worst case run-

ning it may lead to data corruption when an incompatible database migration (one that

should be rejected because the already applied database migration files have changed)

is subsequently falsely applied.

Sequencer Connection

sequencer_connection.get

• Summary: Get Sequencer Connection

• Return type:

– Option[com.digitalasset.canton.sequencing.SequencerConnections]

• Description: Use this command to get the currently configured sequencer connection de-

tails for this sequencer client. If this node has not yet been initialized, this will return

None.

sequencer_connection.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

1.28. Canton Administration Quickstart 1161

../../canton/scaladoc/com/digitalasset/canton/sequencing/SequencerConnections.html

Daml SDK Documentation, 2.7.3

– methodName: String

sequencer_connection.modify

• Summary: Modify Default Sequencer Connection

• Arguments:

– modifier: com.digitalasset.canton.sequencing.SequencerConnection =>

com.digitalasset.canton.sequencing.SequencerConnection

• Description: Modify sequencer connection details for this sequencer client node, by pass-

ing a modifier function that operates on the existing default connection.

sequencer_connection.modify_connections

• Summary: Modify Sequencer Connections

• Arguments:

– modifier: com.digitalasset.canton.sequencing.SequencerConnections =>

com.digitalasset.canton.sequencing.SequencerConnections

• Description: Modify sequencer connection details for this sequencer client node, by pass-

ing a modifier function that operates on the existing connection configuration.

sequencer_connection.set

• Summary: Set Sequencer Connection

• Arguments:

– connection: com.digitalasset.canton.sequencing.SequencerConnection

• Description: Set new sequencer connection details for this sequencer client node. This

will replace any pre-configured connection details. This command will only work after the

node has been initialized.

sequencer_connection.set

• Summary: Set Sequencer Connection

• Arguments:

– connections: com.digitalasset.canton.sequencing.SequencerConnections

• Description: Set new sequencer connection details for this sequencer client node. This

will replace any pre-configured connection details. This command will only work after the

node has been initialized.

1.29 Monitoring

1.29.1 Introduction

Observability (also known as “monitoring”) lets you determine if the Daml Enterprise solution is

healthy or not. If the state is not healthy, observability helps diagnose the root cause. There are

three parts to observability: metrics, logs, and traces. These are described in this section.

To avoid becoming overwhelmed by the number of metrics and log messages, follow these steps:

• Read the shortcut to learning what is important, which is described below in the section

Hands-On with the Daml Enterprise - Observability Example as a starting point and inspiration when

building your metric monitoring.

• For an overview of howmostmetrics are exposed, read the section Golden Signals and KeyMetrics

Quick Start below. It describes the philosophy behind metric naming and labeling.

The remaining sections provide references to more detailed information.

1162 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/sequencing/SequencerConnection.html
../../canton/scaladoc/com/digitalasset/canton/sequencing/SequencerConnection.html
../../canton/scaladoc/com/digitalasset/canton/sequencing/SequencerConnections.html
../../canton/scaladoc/com/digitalasset/canton/sequencing/SequencerConnections.html
../../canton/scaladoc/com/digitalasset/canton/sequencing/SequencerConnection.html
../../canton/scaladoc/com/digitalasset/canton/sequencing/SequencerConnections.html

Daml SDK Documentation, 2.7.3

1.29.1.1 Hands-On with the Daml Enterprise - Observability Example

The Daml Enterprise - Observability Example GitHub repository provides a complete reference exam-

ple for exploring the metrics that Daml Enterprise exposes. You can use it to explore the collection,

aggregation, filtering, and visualization of metrics. It is self-contained, with the following compo-

nents:

• An example Docker compose file to create a run-time for all the components

• Some shell scripts to generate requests to the Daml Enterprise solution

• A Prometheus config file to scrape the metrics data

• A Grafana template file(s) to visualize the metrics in a meaningful way, such as shown below

in the example dashboard

Fig. 17: Dashboard with metrics

1.29. Monitoring 1163

https://github.com/digital-asset/daml-platform-observability-example

Daml SDK Documentation, 2.7.3

1.29.2 Golden Signals and Key Metrics Quick Start

The best practice for monitoring a microservices application is an approach known as the Golden

Signals, or the REDmethod. In this approach,metricmonitoring determineswhether the application

is healthy and, if not healthy, which service is the root cause of the issue. The Golden Signals for HTTP

and gRPC endpoints are supported for all endpoints. Key metrics specific to Daml Enterprises are

also available. These are described below.

The following Golden Signal metrics for each HTTP and gRPC API are available:

• Input request rate, as a counter

• Error rate, as a counter (discussed below)

• Latency (the time to process a request), as a histogram

• Size of the payload, as a counter, following the Apache HTTP precedent

You can filter or aggregate each metric using its accompanying labels. The instrumentation labels

added to each HTTP API metric are as follows:

• http_verb: the HTTP verb (for example: GET, POST)

• http_status: the status code (for example: 200, 401, 403, 504)

• host: the host identifier

• daml_version: the Daml release number

• service: a string to identify what Daml service or Canton component is running in this pro-

cess (for example: participant, domain, json_api), as well as domain if several Canton

components run in a single process

• path: the request made to the endpoint (for example: /v1/create, /v1/exercise)

The gRPC protocol is layered on top of HTTP/2, so certain labels (such as the daml_version and

service) from the above section are included. The labels added by default to each gRPC API metric

are as follows:

• canton_version: the Canton protocol version

• grpc_code: the human readable status code for gRPC (for example: OK, CANCELLED, DEAD­

LINE_EXCEEDED)

• The type of the client/server gRPC request, under the labels grpc_client_type and

grpc_server_type

• The protobuf package and service names, under the labels grpc_service_name and

grpc_method_name

The following other key metrics are monitored:

• A binary gauge indicates whether the node is healthy or not healthy. This can also be used to

infer which node is passive in a highly available configuration because it will show as not being

healthy, while the active node is always healthy.

• A binary gauge signals whether a node is active or passive, for identifying which node is the

active node.

• A binary gauge detects when pruning is occurring.

• Each participant node measures the count of the inflight (dirty) requests so the user can see

if maxDirtyRequests limit is close to being hit. The metrics are: canton_dirty_requests

and canton_max_dirty_requests.

• Each participant node records the distribution of events (updates) received by the partici-

pant and allows drill-down by event type (package upload, party creation, or transaction), sta-

tus (success or failure), participant ID, and application ID (if available). The counter is called

daml_indexer_events_total.

1164 Chapter 1. Canton References

https://sre.google/sre-book/monitoring-distributed-systems/
https://www.blameless.com/blog/4-sre-golden-signals-what-they-are-and-why-they-matter/
https://www.blameless.com/blog/4-sre-golden-signals-what-they-are-and-why-they-matter/
https://www.weave.works/blog/the-red-method-key-metrics-for-microservices-architecture/
https://github.com/Lusitaniae/apache_exporter
https://docs.daml.com/ops/common-metrics.html#grpc-metrics
https://docs.daml.com/canton/usermanual/versioning.html#canton-protocol-version
http://www.grpc.io/docs/guides/concepts.html#rpc-life-cycle
https://docs.daml.com/ops/common-metrics.html#health-metrics
https://docs.daml.com/ops/common-metrics.html#pruning-metrics

Daml SDK Documentation, 2.7.3

• The ledger event requests are totaled in a counter called daml_indexer_me­

tered_events_total.

• Metrics are available for monitoring the usage of JVM execution services used by Daml compo-

nents.

• JVM garbage collection metrics are collected.

This list is not exhaustive. It highlights the most important metrics.

1.29.3 Set Up Metrics Scraping

1.29.3.1 Enable the Prometheus Reporter

Prometheus is recommended formetrics reporting. Other reporters (jmx, graphite, and csv) are sup-

ported, but they are deprecated. Any such reporter should be migrated to Prometheus.

Prometheus can be enabled using:

canton.monitoring.metrics.reporters = [{

type = prometheus

address = "localhost" // default

port = 9000 // default

}]

1.29.3.2 Prometheus-Only Metrics

Some metrics are available only when using the Prometheus reporter. These metrics include com-

mon gRPC and HTTP metrics (which help you to measure the four golden signals), Java Executor

Services metrics, and JVM GC and memory usage metrics (if enabled). The metrics are documented

in detail here.

Any metric marked with * is available only when using the Prometheus reporter.

1.29.3.3 Deprecated Reporters

JMX-based reporting (for testing purposes only) can be enabled using:

canton.monitoring.metrics.reporters = [{ type = jmx }]

Additionally, metrics can be written to a file:

canton.monitoring.metrics.reporters = [{

type = jmx

}, {

type = csv

directory = "metrics"

interval = 5s // default

filters = [{

contains = "canton"

}]

}]

or reported via Graphite (to Grafana) using:

1.29. Monitoring 1165

https://docs.daml.com/ops/common-metrics.html#java-execution-service-metrics
https://docs.daml.com/ops/common-metrics.html#jvm-metrics
https://prometheus.io
https://sre.google/sre-book/monitoring-distributed-systems/#xref_monitoring_golden-signals
https://docs.daml.com/ops/common-metrics.html

Daml SDK Documentation, 2.7.3

canton.monitoring.metrics.reporters = [{

type = graphite

address = "localhost" // default

port = 2003

prefix.type = hostname // default

interval = 30s // default

filters = [{

contains = "canton"

}]

}]

When using the graphite or the csv reporter, Canton periodically evaluates all metrics matching

the given filters. Filter for only those metrics that are relevant to you.

In addition to Canton metrics, the process can also report Daml metrics (of the Ledger API server).

Optionally, JVMmetrics can be included using:

canton.monitoring.metrics.report­jvm­metrics = yes // default no

1.29.4 Metrics

The following sections contain the common metrics exposed for Daml services supporting a

Prometheus metrics reporter.

For the metric types referenced below, see the relevant Prometheus documentation.

1.29.4.1 Participant Metrics

canton.<domain>.conflict-detection.sequencer-counter-queue

• Summary: Size of conflict detection sequencer counter queue

• Description: The task scheduler will work off tasks according to the timestamp order, schedul-

ing the tasks whenever a new timestamp has been observed. This metric exposes the number

of un-processed sequencer messages that will trigger a timestamp advancement.

• Type: Counter

• Qualification: Debug

canton.<domain>.conflict-detection.task-queue

• Summary: Size of conflict detection task queue

• Description: The task scheduler will schedule tasks to run at a given timestamp. This metric

exposes thenumber of tasks that arewaiting in the taskqueue for the right time topass. A huge

number does not necessarily indicate a bottleneck; it could also mean that a huge number of

tasks have not yet arrived at their execution time.

• Type: Gauge

• Qualification: Debug

1166 Chapter 1. Canton References

https://prometheus.io/docs/tutorials/understanding_metric_types/

Daml SDK Documentation, 2.7.3

canton.<domain>.dirty-requests

• Summary: Size of conflict detection task queue

• Description: The task scheduler will schedule tasks to run at a given timestamp. This metric

exposes thenumber of tasks that arewaiting in the taskqueue for the right time topass. A huge

number does not necessarily indicate a bottleneck; it could also mean that a huge number of

tasks have not yet arrived at their execution time.

• Type: Counter

• Qualification: Debug

canton.<domain>.protocol-messages.confirmation-request-creation

• Summary: Time to create a confirmation request

• Description: The time that the transaction protocol processor needs to create a confirmation

request.

• Type: Timer

• Qualification: Debug

canton.<domain>.protocol-messages.confirmation-request-size

• Summary: Confirmation request size

• Description: Records the histogram of the sizes of (transaction) confirmation requests.

• Type: Histogram

• Qualification: Debug

canton.<domain>.protocol-messages.transaction-message-receipt

• Summary: Time to parse a transaction message

• Description: The time that the transaction protocol processor needs to parse and decrypt an

incoming confirmation request.

• Type: Timer

• Qualification: Debug

canton.<domain>.request-tracker.sequencer-counter-queue

• Summary: Size of record order publisher sequencer counter queue

• Description: Same as for conflict-detection, but measuring the sequencer counter queues for

the publishing to the ledger api server according to record time.

• Type: Counter

• Qualification: Debug

1.29. Monitoring 1167

Daml SDK Documentation, 2.7.3

canton.<domain>.request-tracker.task-queue

• Summary: Size of record order publisher task queue

• Description: The task scheduler will schedule tasks to run at a given timestamp. This metric

exposes the number of tasks that are waiting in the task queue for the right time to pass.

• Type: Gauge

• Qualification: Debug

canton.<domain>.sequencer-client.application-handle

• Summary: Timermonitoring time and rate of sequentially handling the event application logic

• Description: All events are received sequentially. This handler records the the rate and time it

takes the application (participant or domain) to handle the events.

• Type: Timer

• Qualification: Debug

canton.<domain>.sequencer-client.delay

• Summary: The delay on the event processing

• Description: Every message received from the sequencer carries a timestamp that was as-

signed by the sequencer when it sequenced the message. This timestamp is called the se-

quencing timestamp. The component receiving the message on the participant, mediator or

topology manager side, is the sequencer client. Upon receiving the message, the sequencer

client compares the time difference between the sequencing time and the computers local

clockandexposes this differenceas thegivenmetric. Thedifferencewill include the clock-skew

and the processing latency between assigning the timestamp on the sequencer and receiving

the message by the recipient. If the difference is large compared to the usual latencies and if

clock skew can be ruled out, then it means that the node is still trying to catch up with events

that were sequenced by the sequencer a while ago. This can happen after having been offline

for a while or if the node is too slow to keep up with the messaging load.

• Type: Gauge

• Qualification: Debug

canton.<domain>.sequencer-client.event-handle

• Summary: Timer monitoring time and rate of entire event handling

• Description: Most event handling cost should come from the application-handle. This timer

measures the full time (which should just be marginally more than the application handle.

• Type: Timer

• Qualification: Debug

1168 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

canton.<domain>.sequencer-client.handler.actual-in-flight-event-batches

• Summary: Nodes process the events from the domain’s sequencer in batches. This metric

tracks how many such batches are processed in parallel.

• Description: Incoming messages are processed by a sequencer client, which combines them

into batches of size up to ‘event-inbox-size’ before sending them to an application handler for

processing. Depending on the system’s configuration, the rate at which event batches are sent

to the handler may be throttled to avoid overwhelming it with too many events at once. Indi-

cators that the configured upper bound may be too low: This metric constantly is closed to

the configured maximum, which is exposed via ‘max-in-flight-event-batches’, while the sys-

tem’s resources are under-utilized. Indicators that the configured upper bound may be too

high: Out-of-memory errors crashing the JVM or frequent garbage collection cycles that slow

down processing. The metric tracks how many of these batches have been sent to the appli-

cation handler but have not yet been fully processed. This metric can help identify potential

bottlenecks or issues with the application’s processing of events and provide insights into the

overall workload of the system.

• Type: Counter

• Qualification: Saturation

canton.<domain>.sequencer-client.handler.max-in-flight-event-batches

• Summary: Nodes process the events from the domain’s sequencer in batches. This metric

tracks the upper bound of such batches being processed in parallel.

• Description: Incoming messages are processed by a sequencer client, which combines them

into batches of size up to ‘event-inbox-size’ before sending them to an application handler for

processing. Depending on the system’s configuration, the rate at which event batches are sent

to the handler may be throttled to avoid overwhelming it with toomany events at once. Config-

ured by ‘maximum-in-flight-event-batches’ parameter in the sequencer-client config Themet-

ric shows the configuredupper limit onhowmanybatches theapplicationhandlermayprocess

concurrently. Themetric ‘actual-in-flight-event-batches’ tracks the actual number of currently

processed batches.

• Type: Gauge

• Qualification: Saturation

canton.<domain>.sequencer-client.load

• Summary: The load on the event subscription

• Description: The event subscription processor is a sequential process. The load is a factor be-

tween 0 and 1 describing howmuch of an existing interval has been spent in the event handler.

• Type: Gauge

• Qualification: Debug

1.29. Monitoring 1169

Daml SDK Documentation, 2.7.3

canton.<domain>.sequencer-client.submissions.dropped

• Summary: Count of send requests that did not cause an event to be sequenced

• Description: Counter of send requests we did not witness a corresponding event to be se-

quenced by the supplied max-sequencing-time. There could be many reasons for this hap-

pening: the request may have been lost before reaching the sequencer, the sequencer may be

at capacity and the the max-sequencing-time was exceeded by the time the request was pro-

cessed, or the supplied max-sequencing-time may just be too small for the sequencer to be

able to sequence the request.

• Type: Counter

• Qualification: Debug

canton.<domain>.sequencer-client.submissions.in-flight

• Summary: Number of sequencer send requests we have that are waiting for an outcome or

timeout

• Description: Incremented on every successful send to the sequencer. Decremented when the

event or an error is sequenced, or when the max-sequencing-time has elapsed.

• Type: Counter

• Qualification: Debug

canton.<domain>.sequencer-client.submissions.overloaded

• Summary: Count of send requests which receive an overloaded response

• Description: Counter that is incremented if a send request receives an overloaded response

from the sequencer.

• Type: Counter

• Qualification: Debug

canton.<domain>.sequencer-client.submissions.sends

• Summary: Rate and timings of send requests to the sequencer

• Description: Provides a rate and time of how long it takes for send requests to be accepted by

the sequencer. Note that this is just for the request to bemade and not for the requested event

to actually be sequenced.

• Type: Timer

• Qualification: Debug

canton.<domain>.sequencer-client.submissions.sequencing

• Summary: Rate and timings of sequencing requests

• Description: This timer is started when a submission ismade to the sequencer and then com-

pleted when a corresponding event is witnessed from the sequencer, so will encompass the

entire duration for the sequencer to sequence the request. If the request does not result in an

event no timing will be recorded.

• Type: Timer

• Qualification: Debug

1170 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

canton.commitments.compute

• Summary: Time spent on commitment computations.

• Description: Participant nodes compute bilateral commitments at regular intervals. Thismet-

ric exposes the time spent on each computation. If the time to compute the metrics starts to

exceed the commitment intervals, this likely indicates a problem.

• Type: Timer

• Qualification: Debug

canton.db-storage.<service>.executor.queued

• Summary: Number of database access tasks waiting in queue

• Description: Database access tasks get scheduled in this queue and get executed using one

of the existing asynchronous sessions. A large queue indicates that the database connection

is not able to deal with the large number of requests. Note that the queue has amaximum size.

Tasks that do not fit into the queue will be retried, but won’t show up in this metric.

• Type: Counter

• Qualification: Debug

• Instances: locks, write, general

canton.db-storage.<service>.executor.running

• Summary: Number of database access tasks currently running

• Description: Database access tasks run on an async executor. This metric shows the current

number of tasks running in parallel.

• Type: Counter

• Qualification: Debug

• Instances: locks, write, general

canton.db-storage.<service>.executor.waittime

• Summary: Scheduling time metric for database tasks

• Description: Every database query is scheduled using an asynchronous executor with a queue.

The time a task is waiting in this queue is monitored using this metric.

• Type: Timer

• Qualification: Debug

• Instances: locks, write, general

canton.db-storage.<storage>

• Summary: Timer monitoring duration and rate of accessing the given storage

• Description: Covers both read from and writes to the storage.

• Type: Timer

• Qualification: Debug

1.29. Monitoring 1171

Daml SDK Documentation, 2.7.3

canton.db-storage.<storage>.load

• Summary: The load on the given storage

• Description: The load is a factor between 0 and 1 describing how much of an existing interval

has been spent reading from or writing to the storage.

• Type: Gauge

• Qualification: Debug

canton.db-storage.alerts.multi-domain-event-log

• Summary: Number of failed writes to the multi-domain event log

• Description: Failed writes to the multi domain event log indicate an issue requiring user in-

tervention. In the case of domain event logs, the corresponding domain no longer emits any

subsequent events until domain recovery is initiated (e.g. by disconnecting and reconnecting

the participant from the domain). In the case of the participant event log, an operation might

need to be reissued. If this counter is larger than zero, check the canton log for errors for details.

• Type: Counter

• Qualification: Debug

canton.db-storage.alerts.single-dimension-event-log

• Summary: Number of failed writes to the event log

• Description: Failed writes to the single dimension event log indicate an issue requiring user

intervention. In the case of domain event logs, the corresponding domain no longer emits any

subsequent events until domain recovery is initiated (e.g. by disconnecting and reconnecting

the participant from the domain). In the case of the participant event log, an operation might

need to be reissued. If this counter is larger than zero, check the canton log for errors for details.

• Type: Counter

• Qualification: Debug

canton.dirty_requests*

• Summary: Number of requests being validated.

• Description: Number of requests that are currently being validated. This also covers requests

submitted by other participants.

• Type: Gauge

• Qualification: Debug

• Labels:

– participant: The id of the participant for which the value applies.

1172 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

canton.max_dirty_requests*

• Summary: Configured maximum number of requests currently being validated.

• Description: Configuration for the maximum number of requests that are currently being val-

idated. This also covers requests submitted by other participants. A negative value means no

configuration value was provided and no limit is enforced.

• Type: Gauge

• Qualification: Debug

• Labels:

– participant: The id of the participant for which the value applies.

canton.prune

• Summary: Duration of prune operations.

• Description: This timer exposes the duration of pruning requests from the Canton portion of

the ledger.

• Type: Timer

• Qualification: Debug

canton.prune.max-event-age

• Summary: Age of oldest unpruned event.

• Description: This gauge exposes the age of the oldest, unpruned event in hours as a way to

quantify the pruning backlog.

• Type: Gauge

• Qualification: Debug

canton.updates-published

• Summary: Number of updates published through the read service to the indexer

• Description: When an update is published through the read service, it has already been com-

mitted to the ledger. The indexer will subsequently store the update in a form that allows for

querying the ledger efficiently.

• Type: Meter

• Qualification: Debug

daml.cache.evicted_weight*

• Summary: The sum of weights of cache entries evicted.

• Description: The total weight of the entries evicted from the cache.

• Type: Counter

• Qualification: Debug

• Labels:

– name: The cache for which the metrics are registered.

1.29. Monitoring 1173

Daml SDK Documentation, 2.7.3

daml.cache.evictions*

• Summary: The number of the evicted cache entries.

• Description: When an entry is evicted from the cache, the counter is incremented.

• Type: Counter

• Qualification: Debug

• Labels:

– name: The cache for which the metrics are registered.

daml.cache.hits*

• Summary: The number of cache hits.

• Description: When a cache lookup encounters an existing cache entry, the counter is incre-

mented.

• Type: Counter

• Qualification: Debug

• Labels:

– name: The cache for which the metrics are registered.

daml.cache.misses*

• Summary: The number of cache misses.

• Description: When a cache lookup first encounters a missing cache entry, the counter is in-

cremented.

• Type: Counter

• Qualification: Debug

• Labels:

– name: The cache for which the metrics are registered.

daml.commands.delayed_submissions

• Summary: The number of the delayed Daml commands.

• Description: The number of Daml commands that have been delayed internally because they

have been evaluated to require the ledger time further in the future than the expected latency.

• Type: Meter

• Qualification: Debug

daml.commands.failed_command_interpretations

• Summary: The number of Daml commands that failed in interpretation.

• Description: The number of Daml commands that have been rejected by the interpreter (e.g.

badly authorized action).

• Type: Meter

• Qualification: Debug

1174 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

daml.commands.max_in_flight_capacity

• Summary: The maximum number of Daml commands that can await completion.

• Description: Themaximumnumber of Daml commands that can await completion in the Com-

mand Service.

• Type: Counter

• Qualification: Debug

daml.commands.max_in_flight_length

• Summary: The number of the Daml commands awaiting completion.

• Description: The number of the currently Daml commands awaiting completion in the Com-

mand Service.

• Type: Counter

• Qualification: Debug

daml.commands.reassignment_validation

• Summary: The time to validate a reassignment command.

• Description: The time to validate a submitted Daml command before is fed to the interpreter.

• Type: Timer

• Qualification: Debug

daml.commands.submissions

• Summary: The time to fully process a Daml command.

• Description: The time to validate and interpret a command before it is handed over to the

synchronization services to be finalized (either committed or rejected).

• Type: Timer

• Qualification: Latency

daml.commands.submissions_running

• Summary: The number of the Daml commands that are currently being handled by the ledger

api server.

• Description: The number of theDaml commands that are currently being handled by the ledger

api server (including validation, interpretation, and handing the transaction over to the syn-

chronization services).

• Type: Counter

• Qualification: Debug

1.29. Monitoring 1175

Daml SDK Documentation, 2.7.3

daml.commands.valid_submissions

• Summary: The total number of the valid Daml commands.

• Description: The total number of the Daml commands that have passed validation and were

sent to interpretation in this ledger api server process.

• Type: Meter

• Qualification: Debug

daml.commands.validation

• Summary: The time to validate a Daml command.

• Description: The time to validate a submitted Daml command before is fed to the interpreter.

• Type: Timer

• Qualification: Debug

daml.db.commit.duration.seconds*

• Summary: The time needed to perform the SQL query commit.

• Description: This metric measures the time it takes to commit an SQL transaction relating to

the <operation>. It roughly corresponds to calling commit() on a DB connection.

• Type: Timer

• Qualification: Debug

• Labels:

– name: The operation/pool for which the metric is registered.

daml.db.compression.duration.seconds*

• Summary: The time needed to decompress the SQL query result.

• Description: Some index database queries that target contracts involve a decompression step.

For such queries this metric represents the time it takes to decompress contract arguments

retrieved from the database.

• Type: Timer

• Qualification: Debug

• Labels:

– name: The operation/pool for which the metric is registered.

daml.db.exec.duration.seconds*

• Summary: The time needed to run the SQL query and read the result.

• Description: This metric encompasses the time measured by query and commit metrics. Ad-

ditionally it includes the time needed to obtain the DB connection, optionally roll it back and

close the connection at the end.

• Type: Timer

• Qualification: Debug

• Labels:

– name: The operation/pool for which the metric is registered.

1176 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

daml.db.query.duration.seconds*

• Summary: The time needed to run the SQL query.

• Description: This metric measures the time it takes to execute a block of code (on a dedicated

executor) related to the <operation> that can issue multiple SQL statements such that all run

in a single DB transaction (either committed or aborted).

• Type: Timer

• Qualification: Debug

• Labels:

– name: The operation/pool for which the metric is registered.

daml.db.translation.duration.seconds*

• Summary: The time needed to turn serialized Daml-LF values into in-memory objects.

• Description: Some index database queries that target contracts and transactions involve a

Daml-LF translation step. For such queries this metric stands for the time it takes to turn the

serialized Daml-LF values into in-memory representation.

• Type: Timer

• Qualification: Debug

• Labels:

– name: The operation/pool for which the metric is registered.

daml.db.wait.duration.seconds*

• Summary: The time needed to acquire a connection to the database.

• Description: SQL statements are run in a dedicated executor. This metric measures the time

it takes between creating the SQL statement corresponding to the <operation> and the point

when it starts running on the dedicated executor.

• Type: Timer

• Qualification: Debug

• Labels:

– name: The operation/pool for which the metric is registered.

daml.execution.cache.contract_state.register_update

• Summary: The time spent to update the cache.

• Description: The total time spent in sequential update steps of the contract state caches up-

dating logic. This metric is created with debugging purposes in mind.

• Type: Timer

• Qualification: Debug

1.29. Monitoring 1177

Daml SDK Documentation, 2.7.3

daml.execution.cache.key_state.register_update

• Summary: The time spent to update the cache.

• Description: The total time spent in sequential update steps of the contract state caches up-

dating logic. This metric is created with debugging purposes in mind.

• Type: Timer

• Qualification: Debug

daml.execution.cache.read_through_not_found

• Summary: The number of cache read-throughs resulting in not found contracts.

• Description: On cache misses, a read-through query is performed against the Index database.

When the contract is not found (as result of this query), this counter is incrmented.

• Type: Counter

• Qualification: Debug

daml.execution.cache.resolve_divulgence_lookup

• Summary: The number of lookups trying to resolve divulged contracts on active contracts

cache hits.

• Description: Divulged contracts are not cached in the contract state caches. On active contract

cache hits, where stakeholders are not within the submission readers, a contract activeness

lookup is performed against the Index database. On such lookups, this counter is incremented.

• Type: Counter

• Qualification: Debug

daml.execution.cache.resolve_full_lookup

• Summary: The number of lookups trying to resolve divulged contracts on archived contracts

cache hits.

• Description: Divulged contracts are not cached in the contract state caches. On archived con-

tract cache hits, where stakeholders are not within the submission readers, a full contract

activeness lookup (including fetching contract arguments) is performed against the Index

database. On such lookups, this counter is incremented.

• Type: Counter

• Qualification: Debug

daml.execution.engine

• Summary: The time spent executing a Daml command.

• Description: The time spent by the Daml engine executing a Daml command (excluding fetch-

ing data).

• Type: Timer

• Qualification: Debug

1178 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

daml.execution.engine_running

• Summary: The number of Daml commands currently being executed.

• Description: The number of the commands that are currently being executed by the Daml en-

gine (excluding fetching data).

• Type: Counter

• Qualification: Debug

daml.execution.get_lf_package

• Summary: The time to fetch individual Daml code packages during interpretation.

• Description: The interpretation of a command in the ledger api server might require fetching

multiple Daml packages. This metric exposes the time needed to fetch the packages that are

necessary for interpretation.

• Type: Timer

• Qualification: Debug

daml.execution.lookup_active_contract

• Summary: The time to lookup individual active contracts during interpretation.

• Description: The interpretation of a command in the ledger api server might require fetching

multiple active contracts. This metric exposes the time to lookup individual active contracts.

• Type: Timer

• Qualification: Debug

daml.execution.lookup_active_contract_count_per_execution

• Summary: The number of the active contracts looked up per Daml command.

• Description: The interpretation of a command in the ledger api server might require fetching

multiple active contracts. This metric exposes the number of active contracts that must be

looked up to process a Daml command.

• Type: Histogram

• Qualification: Debug

daml.execution.lookup_active_contract_per_execution

• Summary: The compound time to lookup all active contracts in a single Daml command.

• Description: The interpretation of a command in the ledger api server might require fetching

multiple active contracts. This metric exposes the compound time to lookup all the active

contracts in a single Daml command.

• Type: Timer

• Qualification: Debug

1.29. Monitoring 1179

Daml SDK Documentation, 2.7.3

daml.execution.lookup_contract_key

• Summary: The time to lookup individual contract keys during interpretation.

• Description: The interpretation of a command in the ledger api server might require fetching

multiple contract keys. Thismetric exposes the timeneeded to lookup individual contract keys.

• Type: Timer

• Qualification: Debug

daml.execution.lookup_contract_key_count_per_execution

• Summary: The number of contract keys looked up per Daml command.

• Description: The interpretation of a command in the ledger api server might require fetching

multiple contract keys. This metric exposes the number of contract keys that must be looked

up to process a Daml command.

• Type: Histogram

• Qualification: Debug

daml.execution.lookup_contract_key_per_execution

• Summary: The compound time to lookup all contract keys in a single Daml command.

• Description: The interpretation of a command in the ledger api server might require fetching

multiple contract keys. This metric exposes the compound time needed to lookup all the con-

tract keys in a single Daml command.

• Type: Timer

• Qualification: Debug

daml.execution.retry

• Summary: The number of the interpretation retries.

• Description: The total number of interpretation retries attempted due to mismatching ledger

effective time in this ledger api server process.

• Type: Meter

• Qualification: Debug

daml.execution.total

• Summary: The overall time spent interpreting a Daml command.

• Description: The time spent interpreting a Daml command in the ledger api server (includes

executing Daml and fetching data).

• Type: Timer

• Qualification: Debug

1180 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

daml.execution.total_running

• Summary: The number of Daml commands currently being interpreted.

• Description: The number of the commands that are currently being interpreted (includes exe-

cuting Daml code and fetching data).

• Type: Counter

• Qualification: Debug

daml.executor.runtime.completed*

• Summary: The number of tasks completed in an instrumented executor.

• Description: The number of tasks completed by this executor

• Type: Meter

• Qualification: Debug

• Labels:

– name: The name of the executor service.

– type: The type of the executor service. Can be fork_join or thread_pool.

daml.executor.runtime.duration.seconds*

• Summary: The time a task runs in an instrumented executor.

• Description: A task is considered running only after it has started execution.

• Type: Timer

• Qualification: Debug

• Labels:

– name: The name of the executor service.

– type: The type of the executor service. Can be fork_join or thread_pool.

daml.executor.runtime.idle.duration.seconds*

• Summary: The time that a task is idle in an instrumented executor.

• Description: A task is considered idle if it was submitted to the executor but it has not started

execution yet.

• Type: Timer

• Qualification: Debug

• Labels:

– name: The name of the executor service.

– type: The type of the executor service. Can be fork_join or thread_pool.

1.29. Monitoring 1181

Daml SDK Documentation, 2.7.3

daml.executor.runtime.running*

• Summary: The number of tasks running in an instrumented executor.

• Description: The number of currently running tasks.

• Type: Counter

• Qualification: Debug

• Labels:

– name: The name of the executor service.

– type: The type of the executor service. Can be fork_join or thread_pool.

daml.executor.runtime.submitted*

• Summary: The number of tasks submitted to an instrumented executor.

• Description: Number of tasks that were submitted to the executor.

• Type: Meter

• Qualification: Debug

• Labels:

– name: The name of the executor service.

– type: The type of the executor service: fork_join or thread_pool.

daml.index.active_contracts_buffer_size

• Summary: The buffer size for active contracts requests.

• Description: An Akka stream buffer is added at the end of all streaming queries, allowing to

absorb temporary downstream backpressure (e.g. when the client is slower than upstream

delivery throughput). This metric gauges the size of the buffer for queries requesting active

contracts that transactions satisfying a given predicate.

• Type: Counter

• Qualification: Saturation

daml.index.completions_buffer_size

• Summary: The buffer size for completions requests.

• Description: An Akka stream buffer is added at the end of all streaming queries, allowing to

absorb temporary downstream backpressure (e.g. when the client is slower than upstream

delivery throughput). This metric gauges the size of the buffer for queries requesting the com-

pleted commands in a specific period of time.

• Type: Counter

• Qualification: Saturation

1182 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

daml.index.db.active_contract_lookup_batch_size

• Summary: The batch sizes in the active contract lookup batch-loading Contract Service.

• Description: The number of active contract lookups contained in a batch, used in the

batch-loading Contract Service.

• Type: Histogram

• Qualification: Debug

daml.index.db.active_contract_lookup_buffer_capacity

• Summary: The capacity of the active contract lookup queue.

• Description: The maximum number of elements that can be kept in the queue of active con-

tract lookups in the batch-loading queue of the Contract Service.

• Type: Counter

• Qualification: Debug

daml.index.db.active_contract_lookup_buffer_delay

• Summary: The queuing delay for the active contract lookup queue.

• Description: The queuing delay for the pending active contract lookups in the batch-loading

queue of the Contract Service.

• Type: Timer

• Qualification: Debug

daml.index.db.active_contract_lookup_buffer_length

• Summary: The number of the currently pending active contract lookups.

• Description: The number of the currently pending active contract lookups in the batch-loading

queue of the Contract Service.

• Type: Counter

• Qualification: Debug

daml.index.db.compression.create_argument_compressed

• Summary: The size of the compressed arguments of a create event.

• Description: Event information can be compressed by the indexer before storing it in the

database. This metric collects statistics about the size of compressed arguments of a create

event.

• Type: Histogram

• Qualification: Debug

1.29. Monitoring 1183

Daml SDK Documentation, 2.7.3

daml.index.db.compression.create_argument_uncompressed

• Summary: The size of the decompressed argument of a create event.

• Description: Event information can be compressed by the indexer before storing it in the

database. Thismetric collects statistics about the size of decompressed arguments of a create

event.

• Type: Histogram

• Qualification: Debug

daml.index.db.compression.create_key_value_compressed

• Summary: The size of the compressed key value of a create event.

• Description: Event information can be compressed by the indexer before storing it in the

database. This metric collects statistics about the size of compressed key value of a create

event.

• Type: Histogram

• Qualification: Debug

daml.index.db.compression.create_key_value_uncompressed

• Summary: The size of the decompressed key value of a create event.

• Description: Event information can be compressed by the indexer before storing it in the

database. This metric collects statistics about the size of decompressed key value of a cre-

ate event.

• Type: Histogram

• Qualification: Debug

daml.index.db.compression.exercise_argument_compressed

• Summary: The size of the compressed argument of an exercise event.

• Description: Event information can be compressed by the indexer before storing it in the

database. This metric collects statistics about the size of compressed arguments of an ex-

ercise event.

• Type: Histogram

• Qualification: Debug

daml.index.db.compression.exercise_argument_uncompressed

• Summary: The size of the decompressed argument of an exercise event.

• Description: Event information can be compressed by the indexer before storing it in the

database. This metric collects statistics about the size of decompressed arguments of an ex-

ercise event.

• Type: Histogram

• Qualification: Debug

1184 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

daml.index.db.compression.exercise_result_compressed

• Summary: The size of the compressed result of an exercise event.

• Description: Event information can be compressed by the indexer before storing it in the

database. This metric collects statistics about the size of compressed result of an exercise

event.

• Type: Histogram

• Qualification: Debug

daml.index.db.compression.exercise_result_uncompressed

• Summary: The size of the decompressed result of an exercise event.

• Description: Event information can be compressed by the indexer before storing it in the

database. This metric collects statistics about the size of compressed result of an exercise

event.

• Type: Histogram

• Qualification: Debug

daml.index.db.flat_transactions_stream.translation

• Summary: The time needed to turn serialized Daml-LF values into in-memory objects.

• Description: Some index database queries that target contracts and transactions involve a

Daml-LF translation step. For such queries this metric stands for the time it takes to turn the

serialized Daml-LF values into in-memory representation.

• Type: Timer

• Qualification: Debug

daml.index.db.lookup_active_contract

• Summary: The time spent fetching a contract using its id.

• Description: Thismetric exposes the time spent fetching a contract using its id from the index

db. It is then used by the Daml interpreter when evaluating a command into a transaction.

• Type: Timer

• Qualification: Debug

daml.index.db.lookup_key

• Summary: The time spent looking up a contract using its key.

• Description: Thismetric exposes the time spent lookingupa contract using its key in the index

db. It is then used by the Daml interpreter when evaluating a command into a transaction.

• Type: Timer

• Qualification: Debug

1.29. Monitoring 1185

Daml SDK Documentation, 2.7.3

daml.index.db.reassignment_stream.translation

• Summary: The time needed to turn serialized Daml-LF values into in-memory objects.

• Description: Some index database queries that target contracts and transactions involve a

Daml-LF translation step. For such queries this metric stands for the time it takes to turn the

serialized Daml-LF values into in-memory representation.

• Type: Timer

• Qualification: Debug

daml.index.db.translation.get_lf_package

• Summary: The time needed to deserialize and decode a Daml-LF archive.

• Description: A Daml archive before it can be used in the interpretation needs to be deserial-

ized and decoded, in other words converted into the in-memory representation. This metric

represents time necessary to do that.

• Type: Timer

• Qualification: Debug

daml.index.db.tree_transactions_stream.translation

• Summary: The time needed to turn serialized Daml-LF values into in-memory objects.

• Description: Some index database queries that target contracts and transactions involve a

Daml-LF translation step. For such queries this metric stands for the time it takes to turn the

serialized Daml-LF values into in-memory representation.

• Type: Timer

• Qualification: Debug

daml.index.flat_transactions_buffer_size

• Summary: The buffer size for flat transactions requests.

• Description: An Akka stream buffer is added at the end of all streaming queries, allowing to

absorb temporary downstream backpressure (e.g. when the client is slower than upstream de-

livery throughput). This metric gauges the size of the buffer for queries requesting flat trans-

actions in a specific period of time that satisfy a given predicate.

• Type: Counter

• Qualification: Saturation

daml.index.ledger_end_sequential_id

• Summary: The sequential id of the current ledger end kept in memory.

• Description: The ledger end’s sequential id is a monotonically increasing integer value rep-

resenting the sequential id ascribed to the most recent ledger event ingested by the index

db. Please note, that only a subset of all ledger events are ingested and given a sequential

id. These are: creates, consuming exercises, non-consuming exercises and divulgence events.

This value can be treated as a counter of all such events visible to a given participant. This

metric exposes the latest ledger end’s sequential id registered in the in-memory data set.

• Type: Gauge

1186 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

• Qualification: Debug

daml.index.lf_value.compute_interface_view

• Summary: The time to compute an interface view while serving transaction streams.

• Description: Transaction API allows clients to request events by interface-id. When an event

matches the interface - an interface view is computed, which adds to the latency. This metric

represents the time for each such computation.

• Type: Timer

• Qualification: Debug

daml.index.package_metadata.decode_archive

• Summary: The time to decode a package archive to extract metadata information.

• Description: This metric represents the time spent scanning each uploaded package for new

interfaces and corresponding templates.

• Type: Timer

• Qualification: Debug

daml.index.package_metadata.view_init

• Summary: The time to initialize package metadata view.

• Description: As the mapping between interfaces and templates is not persistent - it is com-

puted for each Indexer restart by loading all packages which were ever uploaded and scanning

them to extract metadata information.

• Type: Timer

• Qualification: Debug

daml.index.transaction_trees_buffer_size

• Summary: The buffer size for transaction trees requests.

• Description: An Akka stream buffer is added at the end of all streaming queries, allowing to

absorb temporary downstream backpressure (e.g. when the client is slower than upstream de-

livery throughput). Thismetric gauges the size of the buffer for queries requesting transaction

trees.

• Type: Counter

• Qualification: Saturation

1.29. Monitoring 1187

Daml SDK Documentation, 2.7.3

daml.indexer.current_record_time_lag

• Summary: The lag between the record time of a transaction and the wall-clock time registered

at the ingestion phase to the index db (in milliseconds).

• Description: Depending on the systemic clock skew between different machines, this value

can be negative.

• Type: Gauge

• Qualification: Debug

daml.indexer.events*

• Summary: Number of transactions processed.

• Description: Represents the total number of transaction acceptance, transaction rejection,

package upload, party allocation, etc. events processed.

• Type: Meter

• Qualification: Debug

• Labels:

– participant_id: The id of the participant.

– application_id: The application generating the events.

– event_type: The type of ledger event processed (transaction, package upload, party

allocation, configuration change).

– status: Indicates if the transaction was accepted or not. Possible values accepted|re-

jected.

daml.indexer.last_received_record_time

• Summary: The time of the last event ingested by the index db (in milliseconds since EPOCH).

• Description: The last received record time is a monotonically increasing integer value that

represents the record time of the last event ingested by the index db. It is measured in mil-

liseconds since the EPOCH time.

• Type: Gauge

• Qualification: Debug

daml.indexer.ledger_end_sequential_id

• Summary: The sequential id of the current ledger end kept in the database.

• Description: The ledger end’s sequential id is a monotonically increasing integer value rep-

resenting the sequential id ascribed to the most recent ledger event ingested by the index

db. Please note, that only a subset of all ledger events are ingested and given a sequential

id. These are: creates, consuming exercises, non-consuming exercises and divulgence events.

This value can be treated as a counter of all such events visible to a given participant. This

metric exposes the latest ledger end’s sequential id registered in the database.

• Type: Gauge

• Qualification: Debug

1188 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

daml.indexer.metered_events*

• Summary: Number of ledger events that are metered.

• Description: Represents the number of events that will be included in themetering report. This

is an estimate of the total number and not a substitute for the metering report.

• Type: Meter

• Qualification: Debug

• Labels:

– participant_id: The id of the participant.

– application_id: The application generating the events.

daml.lapi.streams.acs_sent

• Summary: The number of the active contracts sent by the ledger api.

• Description: The total number of active contracts sent over the ledger api streams to all clients.

• Type: Counter

• Qualification: Traffic

daml.lapi.streams.active

• Summary: The number of the active streams served by the ledger api.

• Description: The number of ledger api streams currently being served to all clients.

• Type: Gauge

• Qualification: Debug

daml.lapi.streams.completions_sent

• Summary: The number of the command completions sent by the ledger api.

• Description: The total number of completions sent over the ledger api streams to all clients.

• Type: Counter

• Qualification: Traffic

daml.lapi.streams.transaction_trees_sent

• Summary: The number of the transaction trees sent over the ledger api.

• Description: The total number of the transaction trees sent over the ledger api streams to all

clients.

• Type: Counter

• Qualification: Traffic

1.29. Monitoring 1189

Daml SDK Documentation, 2.7.3

daml.lapi.streams.transactions_sent

• Summary: The number of the flat updates sent over the ledger api.

• Description: The total number of the flat updates sent over the ledger api streams to all clients.

• Type: Counter

• Qualification: Traffic

daml.lapi.streams.update_trees_sent

• Summary: The number of the update trees sent over the ledger api.

• Description: The total number of the update trees sent over the ledger api streams to all clients.

• Type: Counter

• Qualification: Traffic

daml.parallel_indexer.input_buffer_length

• Summary: The number of elements in the queue in front of the indexer.

• Description: The indexer has a queue in order to absorb the back pressure and facilitate batch

formation during the database ingestion.

• Type: Counter

• Qualification: Saturation

daml.parallel_indexer.inputmapping.batch_size

• Summary: The batch sizes in the indexer.

• Description: The number of state updates contained in a batch used in the indexer for

database submission.

• Type: Histogram

• Qualification: Debug

daml.parallel_indexer.output_batched_buffer_length

• Summary: The size of the queue between the indexer and the in-memory state updating flow.

• Description: This counter counts batches of updates passed to the in-memory flow. Batches

are dynamically-sized based on amount of backpressure exerted by the downstream stages of

the flow.

• Type: Counter

• Qualification: Debug

1190 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

daml.parallel_indexer.seqmapping.duration

• Summary: The duration of the seq-mapping stage.

• Description: The time that a batch of updates spends in the seq-mapping stage of the indexer.

• Type: Timer

• Qualification: Debug

daml.parallel_indexer.updates

• Summary: The number of the state updates persisted to the database.

• Description: The number of the state updates persisted to the database. There are updates

such as accepted transactions, configuration changes, package uloads, party allocations, re-

jections, etc.

• Type: Counter

• Qualification: Traffic

daml.services.index.<operation>

• Summary: The time to execute an index service operation.

• Description: The index service is an internal component responsible for access to the index db

data. Its operations are invoked whenever a client request received over the ledger api requires

access to the index db. This metric captures time statistics of such operations.

• Type: Timer

• Qualification: Debug

• Instances: get_transaction_metering, prune, configuration_entries, lookup_configura-

tion, party_entries, list_known_parties, get_parties, get_participant_id, lookup_max-

imum_ledger_time, get_events_by_contract_key, get_events_by_contract_id,

lookup_contract_key, lookup_contract_state_without_divulgence, lookup_active_con-

tract, get_active_contracts, get_transaction_tree_by_id, get_transaction_by_id, transac-

tion_trees, transactions, get_completions_limited, get_completions, latest_pruned_off-

sets, current_ledger_end, get_ledger_configuration, package_entries, get_lf_archive,

list_lf_packages

daml.services.index.in_memory_fan_out_buffer.prune

• Summary: The time to remove all elements from the in-memory fan-out buffer.

• Description: It is possible to remove the oldest entries of the in-memory fan out buffer. This

metric exposes the time needed to prune the buffer.

• Type: Timer

• Qualification: Debug

1.29. Monitoring 1191

Daml SDK Documentation, 2.7.3

daml.services.index.in_memory_fan_out_buffer.push

• Summary: The time to add a new event into the buffer.

• Description: The in-memory fan-out buffer is a buffer that stores the last ingestedmaxBuffer-

Size accepted and rejected submission updates as TransactionLogUpdate. It allows bypassing

IndexDB persistence fetches for recent updates for flat and transaction tree streams, com-

mand completion streams and by-event-id and by-transaction-id flat and transaction tree

lookups. This metric exposes the time spent on adding a new event into the buffer.

• Type: Timer

• Qualification: Debug

daml.services.index.in_memory_fan_out_buffer.size

• Summary: The size of the in-memory fan-out buffer.

• Description: The actual size of the in-memory fan-out buffer. This metric is mostly targeted

for debugging purposes.

• Type: Histogram

• Qualification: Saturation

daml.services.read.<operation>

• Summary: The time to execute a read service operation.

• Description: The read service is an internal interface for reading the events from the synchro-

nization interfaces. The metrics expose the time needed to execute each operation.

• Type: Timer

• Qualification: Debug

• Instances: incomplete_reassignment_offsets, get_connected_domains, state_updates,

get_ledger_initial_conditions

daml.services.write.<operation>

• Summary: The time to execute a write service operation.

• Description: The write service is an internal interface for changing the state through the syn-

chronization services. The methods in this interface are all methods that are supported uni-

formly across all ledger implementations. Thismetric exposes the timeneeded to execute each

operation.

• Type: Timer

• Qualification: Debug

• Instances: prune, submit_configuration, allocate_party, upload_packages, submit_reas-

signment_running, submit_reassignment, submit_transaction_running, submit_transac-

tion

1192 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

daml.services.write.submit_transaction.count

• Summary: The number of submitted transactions by the write service.

• Description: The write service is an internal interface for changing the state through the syn-

chronization services. The methods in this interface are all methods that are supported uni-

formly across all ledger implementations. Thismetric exposes the total number of the sumbit-

ted transactions.

• Type: Timer

• Qualification: Traffic

1.29.4.2 Domain Metrics

canton.<component>.sequencer-client.application-handle

• Summary: Timermonitoring time and rate of sequentially handling the event application logic

• Description: All events are received sequentially. This handler records the the rate and time it

takes the application (participant or domain) to handle the events.

• Type: Timer

• Qualification: Debug

• Instances: topology-manager, mediator, sequencer

canton.<component>.sequencer-client.delay

• Summary: The delay on the event processing

• Description: Every message received from the sequencer carries a timestamp that was as-

signed by the sequencer when it sequenced the message. This timestamp is called the se-

quencing timestamp. The component receiving the message on the participant, mediator or

topology manager side, is the sequencer client. Upon receiving the message, the sequencer

client compares the time difference between the sequencing time and the computers local

clockandexposes this differenceas thegivenmetric. Thedifferencewill include the clock-skew

and the processing latency between assigning the timestamp on the sequencer and receiving

the message by the recipient. If the difference is large compared to the usual latencies and if

clock skew can be ruled out, then it means that the node is still trying to catch up with events

that were sequenced by the sequencer a while ago. This can happen after having been offline

for a while or if the node is too slow to keep up with the messaging load.

• Type: Gauge

• Qualification: Debug

• Instances: topology-manager, mediator, sequencer

1.29. Monitoring 1193

Daml SDK Documentation, 2.7.3

canton.<component>.sequencer-client.event-handle

• Summary: Timer monitoring time and rate of entire event handling

• Description: Most event handling cost should come from the application-handle. This timer

measures the full time (which should just be marginally more than the application handle.

• Type: Timer

• Qualification: Debug

• Instances: topology-manager, mediator, sequencer

canton.<component>.sequencer-client.load

• Summary: The load on the event subscription

• Description: The event subscription processor is a sequential process. The load is a factor be-

tween 0 and 1 describing howmuch of an existing interval has been spent in the event handler.

• Type: Gauge

• Qualification: Debug

• Instances: topology-manager, mediator, sequencer

canton.db-storage.<service>.executor.queued

• Summary: Number of database access tasks waiting in queue

• Description: Database access tasks get scheduled in this queue and get executed using one

of the existing asynchronous sessions. A large queue indicates that the database connection

is not able to deal with the large number of requests. Note that the queue has amaximum size.

Tasks that do not fit into the queue will be retried, but won’t show up in this metric.

• Type: Counter

• Qualification: Debug

• Instances: locks, write, general

canton.db-storage.<service>.executor.running

• Summary: Number of database access tasks currently running

• Description: Database access tasks run on an async executor. This metric shows the current

number of tasks running in parallel.

• Type: Counter

• Qualification: Debug

• Instances: locks, write, general

canton.db-storage.<service>.executor.waittime

• Summary: Scheduling time metric for database tasks

• Description: Every database query is scheduled using an asynchronous executor with a queue.

The time a task is waiting in this queue is monitored using this metric.

• Type: Timer

• Qualification: Debug

• Instances: locks, write, general

1194 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

canton.db-storage.<storage>

• Summary: Timer monitoring duration and rate of accessing the given storage

• Description: Covers both read from and writes to the storage.

• Type: Timer

• Qualification: Debug

canton.db-storage.<storage>.load

• Summary: The load on the given storage

• Description: The load is a factor between 0 and 1 describing how much of an existing interval

has been spent reading from or writing to the storage.

• Type: Gauge

• Qualification: Debug

canton.db-storage.alerts.multi-domain-event-log

• Summary: Number of failed writes to the multi-domain event log

• Description: Failed writes to the multi domain event log indicate an issue requiring user in-

tervention. In the case of domain event logs, the corresponding domain no longer emits any

subsequent events until domain recovery is initiated (e.g. by disconnecting and reconnecting

the participant from the domain). In the case of the participant event log, an operation might

need to be reissued. If this counter is larger than zero, check the canton log for errors for details.

• Type: Counter

• Qualification: Debug

canton.db-storage.alerts.single-dimension-event-log

• Summary: Number of failed writes to the event log

• Description: Failed writes to the single dimension event log indicate an issue requiring user

intervention. In the case of domain event logs, the corresponding domain no longer emits any

subsequent events until domain recovery is initiated (e.g. by disconnecting and reconnecting

the participant from the domain). In the case of the participant event log, an operation might

need to be reissued. If this counter is larger than zero, check the canton log for errors for details.

• Type: Counter

• Qualification: Debug

canton.mediator.max-event-age

• Summary: Age of oldest unpruned mediator response.

• Description: This gauge exposes the age of the oldest, unpruned mediator response in hours

as a way to quantify the pruning backlog.

• Type: Gauge

• Qualification: Debug

1.29. Monitoring 1195

Daml SDK Documentation, 2.7.3

canton.mediator.outstanding-requests

• Summary: Number of currently outstanding requests

• Description: This metric provides the number of currently open requests registered with the

mediator.

• Type: Gauge

• Qualification: Debug

canton.mediator.requests

• Summary: Number of totally processed requests

• Description: This metric provides the number of totally processed requests since the system

has been started.

• Type: Meter

• Qualification: Debug

canton.mediator.sequencer-client.handler.actual-in-flight-event-batches

• Summary: Nodes process the events from the domain’s sequencer in batches. This metric

tracks how many such batches are processed in parallel.

• Description: Incoming messages are processed by a sequencer client, which combines them

into batches of size up to ‘event-inbox-size’ before sending them to an application handler for

processing. Depending on the system’s configuration, the rate at which event batches are sent

to the handler may be throttled to avoid overwhelming it with too many events at once. Indi-

cators that the configured upper bound may be too low: This metric constantly is closed to

the configured maximum, which is exposed via ‘max-in-flight-event-batches’, while the sys-

tem’s resources are under-utilized. Indicators that the configured upper bound may be too

high: Out-of-memory errors crashing the JVM or frequent garbage collection cycles that slow

down processing. The metric tracks how many of these batches have been sent to the appli-

cation handler but have not yet been fully processed. This metric can help identify potential

bottlenecks or issues with the application’s processing of events and provide insights into the

overall workload of the system.

• Type: Counter

• Qualification: Saturation

canton.mediator.sequencer-client.handler.max-in-flight-event-batches

• Summary: Nodes process the events from the domain’s sequencer in batches. This metric

tracks the upper bound of such batches being processed in parallel.

• Description: Incoming messages are processed by a sequencer client, which combines them

into batches of size up to ‘event-inbox-size’ before sending them to an application handler for

processing. Depending on the system’s configuration, the rate at which event batches are sent

to the handler may be throttled to avoid overwhelming it with toomany events at once. Config-

ured by ‘maximum-in-flight-event-batches’ parameter in the sequencer-client config Themet-

ric shows the configuredupper limit onhowmanybatches theapplicationhandlermayprocess

concurrently. Themetric ‘actual-in-flight-event-batches’ tracks the actual number of currently

processed batches.

• Type: Gauge

1196 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

• Qualification: Saturation

canton.mediator.sequencer-client.submissions.dropped

• Summary: Count of send requests that did not cause an event to be sequenced

• Description: Counter of send requests we did not witness a corresponding event to be se-

quenced by the supplied max-sequencing-time. There could be many reasons for this hap-

pening: the request may have been lost before reaching the sequencer, the sequencer may be

at capacity and the the max-sequencing-time was exceeded by the time the request was pro-

cessed, or the supplied max-sequencing-time may just be too small for the sequencer to be

able to sequence the request.

• Type: Counter

• Qualification: Debug

canton.mediator.sequencer-client.submissions.in-flight

• Summary: Number of sequencer send requests we have that are waiting for an outcome or

timeout

• Description: Incremented on every successful send to the sequencer. Decremented when the

event or an error is sequenced, or when the max-sequencing-time has elapsed.

• Type: Counter

• Qualification: Debug

canton.mediator.sequencer-client.submissions.overloaded

• Summary: Count of send requests which receive an overloaded response

• Description: Counter that is incremented if a send request receives an overloaded response

from the sequencer.

• Type: Counter

• Qualification: Debug

canton.mediator.sequencer-client.submissions.sends

• Summary: Rate and timings of send requests to the sequencer

• Description: Provides a rate and time of how long it takes for send requests to be accepted by

the sequencer. Note that this is just for the request to bemade and not for the requested event

to actually be sequenced.

• Type: Timer

• Qualification: Debug

1.29. Monitoring 1197

Daml SDK Documentation, 2.7.3

canton.mediator.sequencer-client.submissions.sequencing

• Summary: Rate and timings of sequencing requests

• Description: This timer is started when a submission ismade to the sequencer and then com-

pleted when a corresponding event is witnessed from the sequencer, so will encompass the

entire duration for the sequencer to sequence the request. If the request does not result in an

event no timing will be recorded.

• Type: Timer

• Qualification: Debug

canton.sequencer.db-storage.<storage>

• Summary: Timer monitoring duration and rate of accessing the given storage

• Description: Covers both read from and writes to the storage.

• Type: Timer

• Qualification: Debug

canton.sequencer.db-storage.<storage>.load

• Summary: The load on the given storage

• Description: The load is a factor between 0 and 1 describing how much of an existing interval

has been spent reading from or writing to the storage.

• Type: Gauge

• Qualification: Debug

canton.sequencer.db-storage.alerts.multi-domain-event-log

• Summary: Number of failed writes to the multi-domain event log

• Description: Failed writes to the multi domain event log indicate an issue requiring user in-

tervention. In the case of domain event logs, the corresponding domain no longer emits any

subsequent events until domain recovery is initiated (e.g. by disconnecting and reconnecting

the participant from the domain). In the case of the participant event log, an operation might

need to be reissued. If this counter is larger than zero, check the canton log for errors for details.

• Type: Counter

• Qualification: Debug

canton.sequencer.db-storage.alerts.single-dimension-event-log

• Summary: Number of failed writes to the event log

• Description: Failed writes to the single dimension event log indicate an issue requiring user

intervention. In the case of domain event logs, the corresponding domain no longer emits any

subsequent events until domain recovery is initiated (e.g. by disconnecting and reconnecting

the participant from the domain). In the case of the participant event log, an operation might

need to be reissued. If this counter is larger than zero, check the canton log for errors for details.

• Type: Counter

• Qualification: Debug

1198 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

canton.sequencer.db-storage.general.executor.queued

• Summary: Number of database access tasks waiting in queue

• Description: Database access tasks get scheduled in this queue and get executed using one

of the existing asynchronous sessions. A large queue indicates that the database connection

is not able to deal with the large number of requests. Note that the queue has amaximum size.

Tasks that do not fit into the queue will be retried, but won’t show up in this metric.

• Type: Counter

• Qualification: Debug

canton.sequencer.db-storage.general.executor.running

• Summary: Number of database access tasks currently running

• Description: Database access tasks run on an async executor. This metric shows the current

number of tasks running in parallel.

• Type: Counter

• Qualification: Debug

canton.sequencer.db-storage.general.executor.waittime

• Summary: Scheduling time metric for database tasks

• Description: Every database query is scheduled using an asynchronous executor with a queue.

The time a task is waiting in this queue is monitored using this metric.

• Type: Timer

• Qualification: Debug

canton.sequencer.db-storage.locks.executor.queued

• Summary: Number of database access tasks waiting in queue

• Description: Database access tasks get scheduled in this queue and get executed using one

of the existing asynchronous sessions. A large queue indicates that the database connection

is not able to deal with the large number of requests. Note that the queue has amaximum size.

Tasks that do not fit into the queue will be retried, but won’t show up in this metric.

• Type: Counter

• Qualification: Debug

canton.sequencer.db-storage.locks.executor.running

• Summary: Number of database access tasks currently running

• Description: Database access tasks run on an async executor. This metric shows the current

number of tasks running in parallel.

• Type: Counter

• Qualification: Debug

1.29. Monitoring 1199

Daml SDK Documentation, 2.7.3

canton.sequencer.db-storage.locks.executor.waittime

• Summary: Scheduling time metric for database tasks

• Description: Every database query is scheduled using an asynchronous executor with a queue.

The time a task is waiting in this queue is monitored using this metric.

• Type: Timer

• Qualification: Debug

canton.sequencer.db-storage.write.executor.queued

• Summary: Number of database access tasks waiting in queue

• Description: Database access tasks get scheduled in this queue and get executed using one

of the existing asynchronous sessions. A large queue indicates that the database connection

is not able to deal with the large number of requests. Note that the queue has amaximum size.

Tasks that do not fit into the queue will be retried, but won’t show up in this metric.

• Type: Counter

• Qualification: Debug

canton.sequencer.db-storage.write.executor.running

• Summary: Number of database access tasks currently running

• Description: Database access tasks run on an async executor. This metric shows the current

number of tasks running in parallel.

• Type: Counter

• Qualification: Debug

canton.sequencer.db-storage.write.executor.waittime

• Summary: Scheduling time metric for database tasks

• Description: Every database query is scheduled using an asynchronous executor with a queue.

The time a task is waiting in this queue is monitored using this metric.

• Type: Timer

• Qualification: Debug

canton.sequencer.max-event-age

• Summary: Age of oldest unpruned sequencer event.

• Description: This gauge exposes the age of the oldest, unpruned sequencer event in hours as

a way to quantify the pruning backlog.

• Type: Gauge

• Qualification: Debug

1200 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

canton.sequencer.processed

• Summary: Number of messages processed by the sequencer

• Description: Thismetric measures the number of successfully validatedmessages processed

by the sequencer since the start of this process.

• Type: Meter

• Qualification: Debug

canton.sequencer.processed-bytes

• Summary: Number of message bytes processed by the sequencer

• Description: This metric measures the total number of message bytes processed by the se-

quencer. If the message received by the sequencer contains duplicate or irrelevant fields, the

contents of these fields do not contribute to this metric.

• Type: Meter

• Qualification: Debug

canton.sequencer.sequencer-client.handler.actual-in-flight-event-batches

• Summary: Nodes process the events from the domain’s sequencer in batches. This metric

tracks how many such batches are processed in parallel.

• Description: Incoming messages are processed by a sequencer client, which combines them

into batches of size up to ‘event-inbox-size’ before sending them to an application handler for

processing. Depending on the system’s configuration, the rate at which event batches are sent

to the handler may be throttled to avoid overwhelming it with too many events at once. Indi-

cators that the configured upper bound may be too low: This metric constantly is closed to

the configured maximum, which is exposed via ‘max-in-flight-event-batches’, while the sys-

tem’s resources are under-utilized. Indicators that the configured upper bound may be too

high: Out-of-memory errors crashing the JVM or frequent garbage collection cycles that slow

down processing. The metric tracks how many of these batches have been sent to the appli-

cation handler but have not yet been fully processed. This metric can help identify potential

bottlenecks or issues with the application’s processing of events and provide insights into the

overall workload of the system.

• Type: Counter

• Qualification: Saturation

canton.sequencer.sequencer-client.handler.max-in-flight-event-batches

• Summary: Nodes process the events from the domain’s sequencer in batches. This metric

tracks the upper bound of such batches being processed in parallel.

• Description: Incoming messages are processed by a sequencer client, which combines them

into batches of size up to ‘event-inbox-size’ before sending them to an application handler for

processing. Depending on the system’s configuration, the rate at which event batches are sent

to the handler may be throttled to avoid overwhelming it with toomany events at once. Config-

ured by ‘maximum-in-flight-event-batches’ parameter in the sequencer-client config Themet-

ric shows the configuredupper limit onhowmanybatches theapplicationhandlermayprocess

concurrently. Themetric ‘actual-in-flight-event-batches’ tracks the actual number of currently

processed batches.

1.29. Monitoring 1201

Daml SDK Documentation, 2.7.3

• Type: Gauge

• Qualification: Saturation

canton.sequencer.sequencer-client.submissions.dropped

• Summary: Count of send requests that did not cause an event to be sequenced

• Description: Counter of send requests we did not witness a corresponding event to be se-

quenced by the supplied max-sequencing-time. There could be many reasons for this hap-

pening: the request may have been lost before reaching the sequencer, the sequencer may be

at capacity and the the max-sequencing-time was exceeded by the time the request was pro-

cessed, or the supplied max-sequencing-time may just be too small for the sequencer to be

able to sequence the request.

• Type: Counter

• Qualification: Debug

canton.sequencer.sequencer-client.submissions.in-flight

• Summary: Number of sequencer send requests we have that are waiting for an outcome or

timeout

• Description: Incremented on every successful send to the sequencer. Decremented when the

event or an error is sequenced, or when the max-sequencing-time has elapsed.

• Type: Counter

• Qualification: Debug

canton.sequencer.sequencer-client.submissions.overloaded

• Summary: Count of send requests which receive an overloaded response

• Description: Counter that is incremented if a send request receives an overloaded response

from the sequencer.

• Type: Counter

• Qualification: Debug

canton.sequencer.sequencer-client.submissions.sends

• Summary: Rate and timings of send requests to the sequencer

• Description: Provides a rate and time of how long it takes for send requests to be accepted by

the sequencer. Note that this is just for the request to bemade and not for the requested event

to actually be sequenced.

• Type: Timer

• Qualification: Debug

1202 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

canton.sequencer.sequencer-client.submissions.sequencing

• Summary: Rate and timings of sequencing requests

• Description: This timer is started when a submission ismade to the sequencer and then com-

pleted when a corresponding event is witnessed from the sequencer, so will encompass the

entire duration for the sequencer to sequence the request. If the request does not result in an

event no timing will be recorded.

• Type: Timer

• Qualification: Debug

canton.sequencer.subscriptions

• Summary: Number of active sequencer subscriptions

• Description: This metric indicates the number of active subscriptions currently open and ac-

tively served subscriptions at the sequencer.

• Type: Gauge

• Qualification: Debug

canton.sequencer.time-requests

• Summary: Number of time requests received by the sequencer

• Description: When a Participant needs to know the domain time it will make a request for a

timeproof to be sequenced. It wouldbenormal to see a small number of thesebeing sequenced,

however if this number becomes a significant portion of the total requests to the sequencer

it could indicate that the strategy for requesting times may need to be revised to deal with

different clock skews and latencies between the sequencer and participants.

• Type: Meter

• Qualification: Debug

canton.topology-manager.sequencer-client.handler.actual-in-flight-event-batches

• Summary: Nodes process the events from the domain’s sequencer in batches. This metric

tracks how many such batches are processed in parallel.

• Description: Incoming messages are processed by a sequencer client, which combines them

into batches of size up to ‘event-inbox-size’ before sending them to an application handler for

processing. Depending on the system’s configuration, the rate at which event batches are sent

to the handler may be throttled to avoid overwhelming it with too many events at once. Indi-

cators that the configured upper bound may be too low: This metric constantly is closed to

the configured maximum, which is exposed via ‘max-in-flight-event-batches’, while the sys-

tem’s resources are under-utilized. Indicators that the configured upper bound may be too

high: Out-of-memory errors crashing the JVM or frequent garbage collection cycles that slow

down processing. The metric tracks how many of these batches have been sent to the appli-

cation handler but have not yet been fully processed. This metric can help identify potential

bottlenecks or issues with the application’s processing of events and provide insights into the

overall workload of the system.

• Type: Counter

• Qualification: Saturation

1.29. Monitoring 1203

Daml SDK Documentation, 2.7.3

canton.topology-manager.sequencer-client.handler.max-in-flight-event-batches

• Summary: Nodes process the events from the domain’s sequencer in batches. This metric

tracks the upper bound of such batches being processed in parallel.

• Description: Incoming messages are processed by a sequencer client, which combines them

into batches of size up to ‘event-inbox-size’ before sending them to an application handler for

processing. Depending on the system’s configuration, the rate at which event batches are sent

to the handler may be throttled to avoid overwhelming it with toomany events at once. Config-

ured by ‘maximum-in-flight-event-batches’ parameter in the sequencer-client config Themet-

ric shows the configuredupper limit onhowmanybatches theapplicationhandlermayprocess

concurrently. Themetric ‘actual-in-flight-event-batches’ tracks the actual number of currently

processed batches.

• Type: Gauge

• Qualification: Saturation

canton.topology-manager.sequencer-client.submissions.dropped

• Summary: Count of send requests that did not cause an event to be sequenced

• Description: Counter of send requests we did not witness a corresponding event to be se-

quenced by the supplied max-sequencing-time. There could be many reasons for this hap-

pening: the request may have been lost before reaching the sequencer, the sequencer may be

at capacity and the the max-sequencing-time was exceeded by the time the request was pro-

cessed, or the supplied max-sequencing-time may just be too small for the sequencer to be

able to sequence the request.

• Type: Counter

• Qualification: Debug

canton.topology-manager.sequencer-client.submissions.in-flight

• Summary: Number of sequencer send requests we have that are waiting for an outcome or

timeout

• Description: Incremented on every successful send to the sequencer. Decremented when the

event or an error is sequenced, or when the max-sequencing-time has elapsed.

• Type: Counter

• Qualification: Debug

canton.topology-manager.sequencer-client.submissions.overloaded

• Summary: Count of send requests which receive an overloaded response

• Description: Counter that is incremented if a send request receives an overloaded response

from the sequencer.

• Type: Counter

• Qualification: Debug

1204 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

canton.topology-manager.sequencer-client.submissions.sends

• Summary: Rate and timings of send requests to the sequencer

• Description: Provides a rate and time of how long it takes for send requests to be accepted by

the sequencer. Note that this is just for the request to bemade and not for the requested event

to actually be sequenced.

• Type: Timer

• Qualification: Debug

canton.topology-manager.sequencer-client.submissions.sequencing

• Summary: Rate and timings of sequencing requests

• Description: This timer is started when a submission ismade to the sequencer and then com-

pleted when a corresponding event is witnessed from the sequencer, so will encompass the

entire duration for the sequencer to sequence the request. If the request does not result in an

event no timing will be recorded.

• Type: Timer

• Qualification: Debug

1.29.4.3 Health Metrics

The following metrics are exposed for all components.

daml_health_status

• Description: The status of the component

• Values:

– 0: Not healthy

– 1: Healthy

• Labels:

– component: the name of the component being monitored

• Type: Gauge

1.29.4.4 gRPC Metrics

The followingmetrics are exposed for all gRPC endpoints. Thesemetrics have the following common

labels attached:

• grpc_service_name: fully qualified name of the gRPC service (e.g. com.daml.ledger.api.

v1.ActiveContractsService)

• grpc_method_name: name of the gRPC method (e.g. GetActiveContracts)

• grpc_client_type: type of client connection (unary or streaming)

• grpc_server_type: type of server connection (unary or streaming)

• service: Canton service’s name (e.g. participant, sequencer, etc.)

1.29. Monitoring 1205

Daml SDK Documentation, 2.7.3

daml_grpc_server_duration_seconds

• Description: Distribution of the durations of serving gRPC requests

• Type: Histogram

daml_grpc_server_messages_sent_total

• Description: Total number of gRPC messages sent (on either type of connection)

• Type: Counter

daml_grpc_server_messages_received_total

• Description: Total number of gRPC messages received (on either type of connection)

• Type: Counter

daml_grpc_server_started_total

• Description: Total number of started gRPC requests (on either type of connection)

• Type: Counter

daml_grpc_server_handled_total

• Description: Total number of handled gRPC requests

• Labels:

– grpc_code: returned gRPC status code for the call (OK, CANCELLED, INVALID_ARGUMENT,

etc.)

• Type: Counter

daml_grpc_server_messages_sent_bytes

• Description: Distribution of payload sizes in gRPCmessages sent (both unary and streaming)

• Type: Histogram

daml_grpc_server_messages_received_bytes

• Description: Distribution of payload sizes in gRPCmessages received (both unary and stream-

ing)

• Type: Histogram

1206 Chapter 1. Canton References

https://grpc.github.io/grpc/core/md_doc_statuscodes.html

Daml SDK Documentation, 2.7.3

1.29.4.5 HTTP Metrics

The followingmetrics are exposed for all HTTP endpoints. Thesemetrics have the following common

labels attached:

• http_verb: HTTP verb used for a given call (e.g. GET or PUT)

• host: fully qualified hostname of the HTTP endpoint (e.g. example.com)

• path: path of the HTTP endpoint (e.g. /v1/parties/create)

• service: Daml service’s name (json_api for the HTTP JSON API Service)

daml_http_requests_duration_seconds

• Description: Distribution of the durations of serving HTTP requests

• Type: Histogram

daml_http_requests_total

• Description: Total number of HTTP requests completed

• Labels:

– http_status: returned HTTP status code for the call

• Type: Counter

daml_http_websocket_messages_received_total

• Description: Total number of WebSocket messages received

• Type: Counter

daml_http_websocket_messages_sent_total

• Description: Total number of WebSocket messages sent

• Type: Counter

daml_http_requests_payload_bytes

• Description: Distribution of payload sizes in HTTP requests received

• Type: Histogram

1.29. Monitoring 1207

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Daml SDK Documentation, 2.7.3

daml_http_responses_payload_bytes

• Description: Distribution of payload sizes in HTTP responses sent

• Type: Histogram

daml_http_websocket_messages_received_bytes

• Description: Distribution of payload sizes in WebSocket messages received

• Type: Histogram

daml_http_websocket_messages_sent_bytes

• Description: Distribution of payload sizes in WebSocket messages sent

• Type: Histogram

1.29.4.6 Java Execution Service Metrics

The following metrics are exposed for all execution services used by Daml components. These met-

rics have the following common labels attached:

• name: The name of the executor service, that identifies its internal usage

• type: The type of the execution service: fork_join and thread_pool are supported

daml_executor_pool_size

• Description: Number of worker threads present in the pool

• Type: Gauge

daml_executor_pool_core

• Description: Core number of threads

• Type: Gauge

• Observation: Only available for type = thread_pool

daml_executor_pool_max

• Description: Maximum allowed number of threads

• Type: Gauge

• Observation: Only available for type = thread_pool

1208 Chapter 1. Canton References

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ThreadPoolExecutor.html

Daml SDK Documentation, 2.7.3

daml_executor_pool_largest

• Description: Largest number of threads that have ever simultaneously been in the pool

• Type: Gauge

• Observation: Only available for type = thread_pool

daml_executor_threads_active

• Description: Estimate of the number of threads that are executing tasks

• Type: Gauge

daml_executor_threads_running

• Description: Estimate of the number of worker threads that are not blocked waiting to join

tasks or for other managed synchronization

• Type: Gauge

• Observation: Only available for type = fork_join

daml_executor_tasks_queued

• Description: Approximate number of tasks that are queued for execution

• Type: Gauge

daml_executor_tasks_executing_queued

• Description: Estimate of the total number of tasks currently held in queues by worker threads

(but not including tasks submitted to the pool that have not begun executing)

• Type: Gauge

• Observation: Only available for type = fork_join

daml_executor_tasks_stolen

• Description: Estimate of the total number of completed tasks that were executed by a thread

other than their submitter

• Type: Gauge

• Observation: Only available for type = fork_join

1.29. Monitoring 1209

Daml SDK Documentation, 2.7.3

daml_executor_tasks_submitted

• Description: Approximate total number of tasks that have ever been scheduled for execution

• Type: Gauge

• Observation: Only available for type = thread_pool

daml_executor_tasks_completed

• Description: Approximate total number of tasks that have completed execution

• Type: Gauge

• Observation: Only available for type = thread_pool

daml_executor_tasks_queue_remaining

• Description: Additional elements that this queue can ideally accept without blocking

• Type: Gauge

• Observation: Only available for type = thread_pool

1.29.4.7 Pruning Metrics

The followingmetrics are exposed for all pruning processes. Thesemetrics have the following labels:

• phase: The name of the pruning phase being monitored

daml_services_pruning_prune_started_total

• Description: Total number of started pruning processes

• Type: Counter

daml_services_pruning_prune_completed_total

• Description: Total number of completed pruning processes

• Type: Counter

1.29.4.8 JVM Metrics

The following metrics are exposed for the JVM, if enabled.

1210 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

runtime_jvm_gc_time

• Description: Time spent in a given JVM garbage collector in milliseconds

• Labels:

– gc: Garbage collector regions (eg: G1 Old Generation, G1 New Generation)

• Type: Counter

runtime_jvm_gc_count

• Description: The number of collections that have occurred for a given JVM garbage collector

• Labels:

– gc: Garbage collector regions (eg: G1 Old Generation, G1 New Generation)

• Type: Counter

runtime_jvm_memory_area

• Description: JVM memory area statistics

• Labels:

– area: Can be heap or non_heap

– type: Can be committed, used or max

runtime_jvm_memory_pool

• Description: JVM memory pool statistics

• Labels:

– pool: Defined pool name.

– type: Can be committed, used or max

1.29.5 Logging

Canton uses Logback as the logging library. All Canton logs derive from the logger com.

digitalasset.canton. By default, Canton will write a log to the file log/canton.log using the

INFO log-level and will also log WARN and ERROR to stdout.

How Canton produces log files can be configured extensively on the command line using the follow-

ing options:

• ­v (or ­­verbose) is a short option to set the Canton log level to DEBUG. This is likely themost

common log option you will use.

• ­­debug sets all log levels except stdout to DEBUG. Stdout is set to INFO. Note that DEBUG logs

of external libraries can be very noisy.

• ­­log­level­root=<level> configures the log-level of the root logger. This changes the log

level of Canton and of external libraries, but not of stdout.

• ­­log­level­canton=<level> configures the log-level of only the Canton logger.

• ­­log­level­stdout=<level> configures the log-level of stdout. This will usually be the

text displayed in the Canton console.

• ­­log­file­name=log/canton.log configures the location of the log file.

1.29. Monitoring 1211

https://logback.qos.ch

Daml SDK Documentation, 2.7.3

• ­­log­file­appender=flat|rolling|off configures if and how logging to a file should

be done. The rolling appender will roll the files according to the defined date-time pattern.

• ­­log­file­rolling­history=12 configures the number of historical files to keep when

using the rolling appender.

• ­­log­file­rolling­pattern=YYYY­mm­dd configures the rolling file suffix (and there-

fore the frequency) of how files should be rolled.

• ­­log­truncate configures whether the log file should be truncated on startup.

• ­­log­profile=container provides a default set of logging settings for a particular setup.

Only the container profile is supported, which logs to STDOUT. It turns off flat file logging to

avoid storage leaks due to log files within a container.

• ­­log­immediate­flush=false turns off immediate flushing of the log output to the log

file.

Note that if you use ­­log­profile, the order of the command line argumentsmatters. The profile

settings can be overridden on the command line by placing adjustments after the profile has been

selected.

Canton supports the normal log4j logging levels: TRACE, DEBUG, INFO, WARN, and ERROR.

For further customization, a custom logback configuration can be provided using JAVA_OPTS.

JAVA_OPTS="­Dlogback.configurationFile=./path­to­file.xml" ./bin/canton ­­config .

↪→..

If you use a custom log-file, the command line arguments for logging will not have any effect, except

that ­­log­level­canton and ­­log­level­root can still be used to adjust the log level of the

root loggers.

1.29.5.1 Viewing Logs

A log file viewer such as lnav is recommended to view Canton logs and resolve issues. Among other

features, lnav has automatic syntax highlighting, convenient filtering for specific logmessages, and

the ability to view log files of different Canton components in a single view. This makes viewing logs

and resolving issues more efficient than using standard UNIX tools such as less or grep.

The following features are especially useful when using lnav:

• Viewing log files of different Canton components in a single view, merged according to times-

tamps (lnav <log1> <log2> ...).

• Filtering specific log messages in (:filter­in <regex>) or out (:filter­out <regex>).

When filtering messages (for example, with a given trace-id), a transaction can be traced

across different components, especially when using the single-view-feature described earlier.

• Searching for specific log messages (/<regex>) and jumping between them (n and N).

• Automatic syntax highlighting of parts of log messages (such as timestamps) and log mes-

sages themselves (for example, WARN log messages are yellow).

• Jumping between error (e and E) and warn messages (w and W).

• Selectively activating and deactivating different filters and files (TAB and `` `` to activate/de-

activate a filter).

• Marking lines (m) and jumping back and forth between marked lines (u and U).

• Jumping back and forth between lines that have the same trace-id (o and O).

The custom lnav log format file for Canton logs canton.lnav.json is bundled in any Canton re-

lease. You can install it with lnav ­i canton.lnav.json. JSON-based log files (which need to

use the file suffix .clog) can be viewed using the canton­json.lnav.json format file.

1212 Chapter 1. Canton References

https://logback.qos.ch/manual/configuration.html
https://lnav.org/
https://lnav.org/features#single-log-view
https://docs.lnav.org/en/latest/usage.html#filtering
https://docs.lnav.org/en/latest/usage.html#searching
https://docs.lnav.org/en/latest/usage.html#searching
https://docs.lnav.org/en/latest/formats.html

Daml SDK Documentation, 2.7.3

1.29.5.2 Detailed Logging

By default, logging omits details to avoid writing sensitive data into log files. For debugging or edu-

cational purposes, you can turn on additional logging using the following configuration switches:

canton.monitoring.logging {

event­details = true

api {

message­payloads = true

max­method­length = 1000

max­message­lines = 10000

max­string­length = 10000

max­metadata­size = 10000

}

}

This turns on payload logging in the ApiRequestLogger, which records every gRPC API invocation,

and turns on detailed logging of the SequencerClient and the transaction trees. Please note that

all additional events are logged at DEBUG level.

Note: Note that the detailed event logging will happen within an gRPC API Interceptor. This creates a

sequential bottleneck as everymessage that is sent or received gets translated into a pretty-printed

string. You will not be able to achieve the same performance if this setting is turned on.

1.29.6 Tracing

For further debugging, Canton provides a trace-id which allows you to trace the processing of re-

quests through the system. The trace-id is exposed to logback through themapping diagnostic context

and can be included in the logback output pattern using %mdc{trace­id}.

The trace-id propagation is enabled by setting the canton.monitoring.tracing.propagation

= enabled configuration option, which is enabled by default.

You can configure the service where traces and spans are reported for observing distributed traces.

Refer to Traces for a preview.

Jaeger and Zipkin are supported. For example, Jaeger reporting can be configured as follows:

monitoring.tracing.tracer.exporter {

type = jaeger

address = ... // default: "localhost"

port = ... // default: 14250

}

This configuration connects to a running Jaeger server to report tracing information.

You can run Jaeger in a Docker container as follows:

docker run ­­rm ­it ­­name jaeger\

­p 16686:16686 \

­p 14250:14250 \

jaegertracing/all­in­one:1.22.0

1.29. Monitoring 1213

Daml SDK Documentation, 2.7.3

If you prefer not to use Docker, you can download the binary for your specific OS at Download Jaeger.

Unzip the file and then run the binary jaeger-all-in-one (no arguments are needed). By default, Jaeger

will expose port 16686 (for its UI, which can be seen in a browser window) and port 14250 (to which

Canton will report trace information). Be sure to properly expose these ports.

Make sure that all Canton nodes in the network report to the same Jaeger server to have an accurate

view of the full traces. Also, ensure that the Jaeger server is reachable by all Canton nodes.

1.29.6.1 Sampling

You can change how often spans are sampled and reported to the configured exporter. By default,

it will always report (monitoring.tracing.tracer.sampler.type = always­on). You can

configure it to never report (monitoring.tracing.tracer.sampler.type = always­off), al-

though this is less useful. Also, you can configure only a specific fraction of spans to be reported as

follows:

monitoring.tracing.tracer.sampler = {

type = trace­id­ratio

ratio = 0.5

}

You can also change the parent-based sampling property. By default, it is turned on (monitoring.

tracing.tracer.sampler.parent­based = true). When turned on, a span is sampled iff its

parent is sampled (the root span will follow the configured sampling strategy). There will never be

incomplete traces; either the full trace is sampled or it is not. If you change this property, all spans

will follow the configured sampling strategy and ignore whether the parent is sampled.

1.29.6.2 Known Limitations

Not every trace createdwhich canbe observed in logs is reported to the configured trace collector ser-

vice. Traces originated at console commands or that are part of the transaction protocol are largely

reported, while other types of traces are added to the set of reported traces as the need arises.

Also, the transaction protocol trace has a known limitation: once a command is submitted and its

trace is fully reported, a new trace is created for any resulting Daml events that are processed. This

occurs because the ledger API does not propagate any trace context information from the command

submission to the transaction subscription. As an example, when a participant creates a Ping con-

tract, you can see the full transaction processing trace of the Ping command being submitted. How-

ever, a participant that processes the Ping by exercising Respond and creating a Pong contract

creates a separate trace instead of using the same one.

This differs from a situation where a single Daml transaction results inmultiple actions at the same

time, such as archiving and creating multiple contracts. In that case, a single trace encompasses

the entire process, since it occurs as part of a single transaction rather than the result of an external

process reacting to Daml events.

1214 Chapter 1. Canton References

https://www.jaegertracing.io/download/#binaries

Daml SDK Documentation, 2.7.3

1.29.6.3 Traces

Traces contain operations that are each represented by a span. A trace is a directed acyclic graph

(DAG) of spans, where the edges between spans are defined as parent/child relationships (the defi-

nitions come from the Opentelemetry glossary).

Canton reports several types of traces. One example: every Canton console command that interacts

with the Admin API starts a trace whose initial span last for the entire duration of the command,

including the gRPC call to the specific Admin API endpoint.

Fig. 18: Graph of a Canton ping trace containing 18 spans

Traces of Daml command submissions are important. The trace illustrated in the figure resultswhen

you performaCanton ping using the console. The ping is a smoke test that sends aDaml transaction

(create Ping, exercise choice Pong, exercise choice Archive) to test a connection. It uses a particular

smart contract that is preinstalled on every Canton participant. The command uses the Admin API to

access a preinstalled application, which then issues Ledger API commands operating on this smart

contract. In this example, the trace contains 18 spans. The ping is started by participant1, and

participant2 is the target. The trace focuses on the message exchange through the sequencer

without digging deep into the message handlers or further processing of transactions.

In some cases, spansmay start later than the end of their parents, due to asynchronous processing.

This typically occurs when a new operation is placed on a queue to be handled later, which immedi-

ately frees the parent span and ends it.

The initial span (span 1) covers the duration of the ping operation. In span 2, the GrpcPingService in

the participant node handles a gRPC request made by the console. It also lasts for the duration of

the ping operation.

The Canton ping consists of three Daml commands:

1. The admin party for participant1 creates a Ping contract.

1.29. Monitoring 1215

https://opentelemetry.io/docs/concepts/glossary/

Daml SDK Documentation, 2.7.3

2. The admin party for participant2 exercises the Respond consuming choice on the contract,

which results in the creation of a Pong contract.

3. The admin party for participant1 exercises the Ack consuming choice on it.

The submission of the first of the three Daml commands (the creation of the Ping contract) starts

at span 3 in the example trace. Due to a limitation explained in the next section, the other two Daml

command submissions are not linked to this trace. It is possible to find them separately. In any

case, span 2 will only complete once the three Daml commands are completed.

At span 3, the participant node is on the client side of the ledger API. In other use cases, it could be an

application integrated with the participant. This span lasts for the duration of the gRPC call, which

is received on the server side in span 4 and handled by the CantonSyncService in span 5. The

request is then received and acknowledged, but not fully processed. It is processed asynchronously

later, which means that spans 3 through 5 will complete before the request is handled.

Missing steps from the trace (which account for part of the gap between spans 5 and 6) are:

• The domain routing where the participant decides which domain to use for the command sub-

mission.

• The preparation of the initial set of messages to be sent.

The start of the Canton transaction protocol begins at span 6. In this span, participant1 sends

a request to sequencer1 to sequence the initial set of confirmation request messages as part of

phase 1 of the transaction protocol. The transaction protocol has seven phases.

At span 7, sequencer1 receives the request and registers it. Receipt of the messages is not part of

this span. That happens asynchronously at a later point.

At span 18, as part of phase 2, mediator1 receives an informee message. It only needs to validate

and register it. Since it doesn’t need to respond, span 18 has no children.

As part of phase 3, participant2 receives a message (see span 8), and participant1 also re-

ceives amessage (see span 9). Both participants asynchronously validate themessages. partici­

pant2 does not need to respond. Since it is only an observer, span 8 has no children. participant1

responds, however, which is visible at span 10. There, it again makes a call to sequencer1, which

receives it at span 11.

At span 12, participant1 receives a successful send response message that signals that its mes-

sage to themediatorwas successfully sequenced. This occurs aspart of phase 4, where confirmation

responses are sent to themediator. Themediator receives it at span 13, and it validates themessage

(phase 5).

In spans 14 and 15, mediator1 (now at phase 6) asks sequencer1 to send the transaction result

messages to the participants.

To end this round of the transaction protocol, participant1 and participant2 receive theirmes-

sages at spans 16 and 17, respectively. The messages are asynchronously validated, and their pro-

jections of the virtual shared ledger are updated (phase 7).

As mentioned, there are two other transaction submissions that are unlinked from this ping

trace but are part of the operation. The second one starts at a span titled admin­ping.

processTransaction, which is created by participant2. The third one has the same name but

is initiated by participant1.

1216 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.29.7 Node Health Status

Each Canton node exposes rich health status information. Running:

<node>.health.status

returns a status object, which can be one of:

• Failure: if the status of the node cannot be determined, including an error message of why it

failed

• NotInitialized: if the node is not yet initialized

• Success[NodeStatus]: if the status could be determined, including the detailed status

The NodeStatus differs depending on the node type. A participant node responds with a message

containing:

• Participant id: the participant id of the node

• Uptime: the uptime of this node

• Ports: the ports on which the participant node exposes the Ledger and the Admin API.

• Connected domains: the list of domains to which the participant is properly connected

• Unhealthy domains: the list of domains to which the participant is trying to connect, but the

connection is not ready for command submission

• Active: true if this instance is the active replica (It can be false in the case of the passive

instance of a high-availability deployment.)

A domain node or a sequencer node responds with a message containing:

• Domain id: the unique identifier of the domain

• Uptime: the uptime of this node

• Ports: the ports on which the domain node exposes the Public and the Admin API

• Connected Participants: the list of connected participants

• Sequencer: a boolean flag indicating whether the embedded sequencer writer is operational

A domain topology manager or a mediator node returns:

• Node uid: the unique identifier of the node

• Uptime: the uptime of this node

• Ports: the ports on which the node hosts its APIs

• Active: true if this instance is the active replica (It can be false in the case of the passive

instance of a high-availability deployment.)

Additionally, all nodes also return acomponents field detailing thehealth state of each of its internal

runtime dependencies. The actual components differ per node and can give further insights into

the node’s current status. Example components include storage access, domain connectivity, and

sequencer backend connectivity.

1.29. Monitoring 1217

Daml SDK Documentation, 2.7.3

1.29.8 Health Checks

1.29.8.1 gRPC Health Check Service

Each Canton node can optionally be configured to start a gRPC server exposing the gRPC Health

Service. Passive nodes (see High Availability for more information on active/passive states) return

NOT_SERVING. Consider this when configuring liveness and readiness probes in a Kubernetes envi-

ronment.

The precise way the state is computed is subject to change.

Here is an example monitoring configuration to place inside a node configuration object:

monitoring.grpc­health­server {

address = "127.0.0.1"

port = 5861

}

Note: The gRPC health server is configured per Canton node, not per process, as is the case for the

HTTP health check server (see below). This means that the configuration must be inserted within a

node’s configuration object.

Note: To support usage as a Kubernetes liveness probe, the health server exposes a service named

liveness that should be targeted when configuring a gRPC probe. The latter service always returns

SERVING.

1.29.8.2 HTTP Health Check

Optionally, the canton process can expose an HTTP endpoint indicating whether the process be-

lieves it is healthy. This may be used as an uptime check or as a Kubernetes liveness probe. If

enabled, the /health endpoint will respond to a GET HTTP request with a 200 HTTP status code (if

healthy) or 500 (if unhealthy, along with a plain text description of why it is unhealthy).

To enable this health endpoint, add a monitoring section to the Canton configuration. Since this

health check is for the whole process, add it directly to the canton configuration rather than for a

specific node.

canton {

monitoring.health {

server {

port = 7000

}

check {

type = ping

participant = participant1

interval = 30s

}

}

1218 Chapter 1. Canton References

https://github.com/grpc/grpc/blob/master/doc/health-checking.md#service-definition
https://github.com/grpc/grpc/blob/master/doc/health-checking.md#service-definition
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#define-a-grpc-liveness-probe
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

Daml SDK Documentation, 2.7.3

This health check causes participant1 to “ledger ping” itself every 30 seconds. The process is

considered healthy if the ping is successful.

1.29.9 Health Dumps

You should provide as much information as possible to receive efficient support. For this purpose,

Canton implements an information-gathering facility that gathers key essential system information

for support staff. If you encounter an error where you need assistance, please ensure the following:

• Start Canton in interactive mode, with the ­v option to enable debug logging: ./bin/canton

­v ­c <myconfig>. This provides a console prompt.

• Reproduce the error by following the steps that previously caused the error. Write down these

steps so they can be provided to support staff.

• After you observe the error, type health.dump() into the Canton console to generate a ZIP file.

This creates a dump file (.zip) that stores the following information:

• The configuration you are using, with all sensitive data stripped from it (no passwords).

• An extract of the log file. Sensitive data is not logged into log files.

• A current snapshot on Canton metrics.

• A stacktrace for each running thread.

Provide the gathered information to your support contact together with the exact list of steps that

led to the issue. Providing complete information is very important to help troubleshoot issues.

1.29.9.1 Remote Health Dumps

When running a console configured to access remote nodes, thehealth.dump() commandgathers

health data from the remote nodes and packages them into resulting zip files. There is no special

action required. You can obtain the health data of a specific node by targeting it when running the

command. For example:

remoteParticipant1.health.dump()

When packaging large amounts of data, increase the default timeout of the dump command:

health.dump(timeout = 2.minutes)

1.29.10 Example Monitoring Setup

This section provides an example of how Canton can be run inside a connected network of Docker

containers. The example also shows how you canmonitor network activity. See themonitoring glos-

sary for an explanation of the terms and the Monitoring Choices section for the reasoning behind the

example monitoring setup.

1.29. Monitoring 1219

https://docs.daml.com/canton/usermanual/monitoring_glossary.html
https://docs.daml.com/canton/usermanual/monitoring_glossary.html

Daml SDK Documentation, 2.7.3

1.29.10.1 Container Setup

To configure Docker Compose to spin up the Docker container network shown in the diagram, use the

information below. See the compose documentation for detailed information concerning the struc-

ture of the configuration files.

compose allows you to provide the overall configuration acrossmultiple files. Each configuration file

is described below, followed by information on how to bring them together in a running network.

1220 Chapter 1. Canton References

https://docs.docker.com/compose/

Daml SDK Documentation, 2.7.3

1.29. Monitoring 1221

Daml SDK Documentation, 2.7.3

Intended Use

This example is intended to demonstrate how to expose, aggregate, andobservemonitoring informa-

tion from Canton. It is not suitable for production without alterations. Note the following warnings:

Warning: Ports are exposed from the Docker network that are not necessary to sup-

port the UI. For example, the network can allow low-level interaction with the underly-

ing service via a REST or similar interface. In a production system, the only ports that

should be exposed are those required for the operation of the system.

Warning: Some of the services used in the example (for example, Postgres and Elas-

ticsearch) persist data to disk. For this example, the volumes used for this persisted

data are internal to the Docker container. This means that when the Docker network

is torn down, all data is cleaned up along with the containers. In a production system,

these volumes would be mounted onto permanent storage.

Warning: Passwords are stored in plaintext in configuration files. In a production

system, passwords should be extracted from a secure keystore at runtime.

Warning: Network connections are not secured. In a production system, connections

between services should be TLS-enabled, with a certificate authority (CA) provided.

Warning: The memory use of the containers is only suitable for light demonstration

loads. In a production setup, containers need to be given sufficient memory based on

memory profiling.

Warning: The versions of the Docker images used in the example may become out-

dated. In a production system, only the latest patched versions should be used.

Network Configuration

In this compose file, define the network that will be used to connect all the running containers:

Listing 30: etc/network-docker-compose.yml

Create with `docker network create monitoring`

Note that `external: false` will fail the docker­compose execution if the␣

↪→network `monitoring` already exists

(continues on next page)

1222 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

version: "3.8"

networks:

default:

name: monitoring

external: false

Postgres Setup

Using only a single Postgres container, create databases for the domain, along with Canton and

index databases for each participant. To do this, mount postgres-init.sql into the Postgres-initialized

directory. Note that in a production environment, passwords must not be inlined inside config.

Listing 31: etc/postgres-docker-compose.yml

services:

postgres:

image: postgres:14.8­bullseye

hostname: postgres

container_name: postgres

environment:

­ POSTGRES_USER=pguser

­ POSTGRES_PASSWORD=pgpass

volumes:

­ ../etc/postgres­init.sql:/docker­entrypoint­initdb.d/init.sql

expose:

­ "5432"

ports:

­ "5432:5432"

healthcheck:

test: "pg_isready ­U postgres"

interval: 5s

timeout: 5s

retries: 5

1.29. Monitoring 1223

Daml SDK Documentation, 2.7.3

Listing 32: etc/postgres-init.sql

create database canton1db;

create database index1db;

create database domain0db;

create database canton2db;

create database index2db;

Domain Setup

Run the domain with the –log-profile container that writes plain text to standard out at debug level.

Listing 33: etc/domain0-docker-compose.yml

services:

domain0:

image: digitalasset/canton­open­source:2.5.1

container_name: domain0

hostname: domain0

volumes:

­ ./domain0.conf:/canton/etc/domain0.conf

command: daemon ­­log­profile container ­­config etc/domain0.conf

expose:

­ "10018"

­ "10019"

­ "10020"

ports:

­ "10018:10018"

­ "10019:10019"

­ "10020:10020"

Listing 34: etc/domain0.conf

canton {

domains {

domain0 {

storage {

type = postgres

config {

dataSourceClass = "org.postgresql.ds.PGSimpleDataSource"

properties = {

databaseName = "domain0db"

serverName = "postgres"

portNumber = "5432"

user = pguser

password = pgpass

}

}

}

public­api {

port = 10018

(continues on next page)

1224 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

address = "0.0.0.0"

}

admin­api {

port = 10019

address = "0.0.0.0"

}

}

}

monitoring.metrics.reporters = [{

type = prometheus

address = "0.0.0.0"

port = 10020

}]

}

Participant Setup

The participant container has two files mapped into it on container creation. The .conf file provides

details of the domain and database locations. An HTTP metrics endpoint is exposed that returns

metrics in the Prometheus Text Based Format. By default, participants do not connect to remote

domains, so a bootstrap script is provided to accomplish that.

Listing 35: etc/participant1-docker-compose.yml

services:

participant1:

image: digitalasset/canton­open­source:2.5.1

container_name: participant1

hostname: participant1

volumes:

­ ./participant1.conf:/canton/etc/participant1.conf

­ ./participant1.bootstrap:/canton/etc/participant1.bootstrap

command: daemon ­­log­profile container ­­config etc/participant1.conf ­­

↪→bootstrap etc/participant1.bootstrap

expose:

­ "10011"

­ "10012"

­ "10013"

ports:

­ "10011:10011"

­ "10012:10012"

­ "10013:10013"

Listing 36: etc/participant1.bootstrap

participant1.domains.connect(domain0.defaultDomainConnection)

Listing 37: etc/participant1.conf

canton {

participants {

(continues on next page)

1.29. Monitoring 1225

https://github.com/prometheus/docs/blob/main/content/docs/instrumenting/exposition_formats.md#text-based-format

Daml SDK Documentation, 2.7.3

(continued from previous page)

participant1 {

storage {

type = postgres

config {

dataSourceClass = "org.postgresql.ds.PGSimpleDataSource"

properties = {

databaseName = "canton1db"

serverName = "postgres"

portNumber = "5432"

user = pguser

password = pgpass

}

}

ledger­api­jdbc­url = "jdbc:postgresql://postgres:5432/index1db?

↪→user=pguser&password=pgpass"

}

ledger­api {

port = 10011

address = "0.0.0.0"

}

admin­api {

port = 10012

address = "0.0.0.0"

}

}

}

monitoring.metrics.reporters = [{

type = prometheus

address = "0.0.0.0"

port = 10013

}]

remote­domains.domain0 {

public­api {

address="domain0"

port = 10018

}

admin­api {

address = "domain0"

port = 10019

}

}

}

The setup for participant2 is identical, except that the name and ports are changed.

Listing 38: etc/participant2-docker-compose.yml

services:

participant2:

image: digitalasset/canton­open­source:2.5.1

container_name: participant2

hostname: participant2

volumes:

­ ./participant2.conf:/canton/etc/participant2.conf

(continues on next page)

1226 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

­ ./participant2.bootstrap:/canton/etc/participant2.bootstrap

command: daemon ­­log­profile container ­­config etc/participant2.conf ­­

↪→bootstrap etc/participant2.bootstrap

expose:

­ "10021"

­ "10022"

­ "10023"

ports:

­ "10021:10021"

­ "10022:10022"

­ "10023:10023"

Listing 39: etc/participant2.bootstrap

participant1.domains.connect(domain0.defaultDomainConnection)

Listing 40: etc/participant2.conf

canton {

participants {

participant1 {

storage {

type = postgres

config {

dataSourceClass = "org.postgresql.ds.PGSimpleDataSource"

properties = {

databaseName = "canton1db"

serverName = "postgres"

portNumber = "5432"

user = pguser

password = pgpass

}

}

ledger­api­jdbc­url = "jdbc:postgresql://postgres:5432/index1db?

↪→user=pguser&password=pgpass"

}

ledger­api {

port = 10011

address = "0.0.0.0"

}

admin­api {

port = 10012

address = "0.0.0.0"

}

}

}

monitoring.metrics.reporters = [{

type = prometheus

address = "0.0.0.0"

port = 10013

}]

remote­domains.domain0 {

public­api {

address="domain0"

port = 10018

(continues on next page)

1.29. Monitoring 1227

Daml SDK Documentation, 2.7.3

(continued from previous page)

}

admin­api {

address = "domain0"

port = 10019

}

}

}

Logstash

Docker containers can specify a log driver to automatically export log information from the container

to an aggregating service. The example exports log information in GELF, using Logstash as the ag-

gregation point for all GELF streams. You can use Logstash to feed many downstream logging data

stores, including Elasticsearch, Loki, and Graylog.

Listing 41: etc/logstash-docker-compose.yml

services:

logstash:

image: docker.elastic.co/logstash/logstash:8.5.1

hostname: logstash

container_name: logstash

expose:

­ 12201/udp

volumes:

­ ./pipeline.yml:/usr/share/logstash/config/pipeline.yml

­ ./logstash.yml:/usr/share/logstash/config/logstash.yml

­ ./logstash.conf:/usr/share/logstash/pipeline/logstash.conf

ports:

­ "12201:12201/udp"

Logstash reads the pipeline.yml to discover the locations of all pipelines.

Listing 42: etc/pipeline.yml

­ pipeline.id: main

path.config: "/usr/share/logstash/pipeline/logstash.conf"

The configured pipeline reads GELF-formatted input, then outputs it to an Elasticsearch index pre-

fixed with logs- and postfixed with the date.

Listing 43: etc/logstash.conf

Main logstash pipeline

input {

gelf {

use_udp => true

(continues on next page)

1228 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

use_tcp => false

port => 12201

}

}

filter {}

output {

elasticsearch {

hosts => ["http://elasticsearch:9200"]

index => "logs­%{+YYYY.MM.dd}"

}

}

The default Logstash settings are used, with the HTTP port bound to all host IP addresses.

Listing 44: etc/logstash.yml

For full set of descriptions see

https://www.elastic.co/guide/en/logstash/current/logstash­settings­file.html

http.host: "0.0.0.0"

Elasticsearch

Elasticsearch supports running in a clustered configuration with built-in resiliency. The example

runs only a single Elasticsearch node.

Listing 45: etc/elasticsearch-docker-compose.yml

services:

elasticsearch:

image: docker.elastic.co/elasticsearch/elasticsearch:8.5.2

container_name: elasticsearch

environment:

ELASTIC_PASSWORD: elastic

node.name: elasticsearch

cluster.name: elasticsearch

cluster.initial_master_nodes: elasticsearch

xpack.security.enabled: false

bootstrap.memory_lock: true

ulimits:

memlock:

soft: ­1

hard: ­1

expose:

­ 9200

ports:

­ 9200:9200

(continues on next page)

1.29. Monitoring 1229

Daml SDK Documentation, 2.7.3

(continued from previous page)

healthcheck:

test: "curl ­s ­I http://localhost:9200 | grep 'HTTP/1.1 200 OK'"

interval: 10s

timeout: 10s

retries: 10

Kibana

Kibana provides a UI that allows the Elasticsearch log index to be searched.

Listing 46: etc/kibana-docker-compose.yml

services:

kibana:

image: docker.elastic.co/kibana/kibana:8.5.2

container_name: kibana

expose:

­ 5601

ports:

­ 5601:5601

environment:

­ SERVERNAME=kibana

­ ELASTICSEARCH_HOSTS=http://elasticsearch:9200

healthcheck:

test: "curl ­s ­I http://localhost:5601 | grep 'HTTP/1.1 302 Found'"

interval: 10s

timeout: 10s

retries: 10

You must manually configure a data view to view logs. See Kibana Log Monitoring for instructions.

cAdvisor

cAdvisor exposes container systemmetrics (CPU, memory, disk, and network) to Prometheus. It also

provides a UI to view these metrics.

Listing 47: etc/cadvisor-docker-compose.yml

services:

cadvisor:

image: gcr.io/cadvisor/cadvisor:v0.45.0

container_name: cadvisor

hostname: cadvisor

privileged: true

devices:

­ /dev/kmsg:/dev/kmsg

volumes:

­ /var/run:/var/run:ro

(continues on next page)

1230 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

­ /var/run/docker.sock:/var/run/docker.sock:ro

Although the following two directories are not present on OSX removing␣

↪→them stops cAdvisor working

Maybe some internal logic checks for the existence of the directory.

­ /sys:/sys:ro

­ /var/lib/docker/:/var/lib/docker:ro

expose:

­ 8080

ports:

­ "8080:8080"

To view container metrics:

1. Navigate to http://localhost:8080/docker/.

2. Select a Docker container of interest.

You should now see a UI similar to the one shown.

Prometheus-formatted metrics are available by default at http://localhost:8080/metrics.

1.29. Monitoring 1231

http://localhost:8080/docker/
http://localhost:8080/metrics

Daml SDK Documentation, 2.7.3

Prometheus

Configure Prometheus with prometheus.yml to provide the endpoints from which metric data should

be scraped. By default, port 9090 can query the stored metric data.

Listing 48: etc/prometheus-docker-compose.yml

services:

prometheus:

image: prom/prometheus:v2.40.6

container_name: prometheus

hostname: prometheus

volumes:

­ ./prometheus.yml:/etc/prometheus/prometheus.yml

ports:

­ 9090:9090

Listing 49: etc/prometheus.yml

global:

scrape_interval: 15s

scrape_timeout: 10s

evaluation_interval: 1m

scrape_configs:

­ job_name: canton

static_configs:

­ targets:

­ domain0:10020

­ participant1:10013

­ participant2:10023

­ job_name: cadvisor

static_configs:

­ targets:

­ cadvisor:8080

Exclude container labels by default

curl cadvisor:8080/metrics to see all available labels

metric_relabel_configs:

­ regex: "container_label_.*"

action: labeldrop

1232 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Grafana

Grafana is provided with:

• The connection details for the Prometheus metric store

• The username and password required to use the web UI

• The location of any externally provided dashboards

• The actual dashboards

Note that the Metric Count dashboard referenced in the docker-compose.yml file

(grafana-message-count-dashboard.json) is not inlined below. The reason is that this is not

hand-configured but built via the web UI and then exported. See Grafana Metric Monitoring for

instructions to log into Grafana and display the dashboard.

Listing 50: etc/grafana-docker-compose.yml

services:

grafana:

image: grafana/grafana:9.3.1­ubuntu

container_name: grafana

hostname: grafana

volumes:

­ ./grafana.ini:/etc/grafana/grafana.ini

­ ./grafana­datasources.yml:/etc/grafana/provisioning/datasources/default.

↪→yml

­ ./grafana­dashboards.yml:/etc/grafana/provisioning/dashboards/default.yml

­ ./grafana­message­count­dashboard.json:/var/lib/grafana/dashboards/

↪→grafana­message­count­dashboard.json

ports:

­ 3000:3000

Listing 51: etc/grafana.ini

instance_name = "docker­compose"

[security]

admin_user = "grafana"

admin_password = "grafana"

[unified_alerting]

enabled = false

[alerting]

enabled = false

[plugins]

plugin_admin_enabled = true

Listing 52: etc/grafana-datasources.yml

­­­

apiVersion: 1

datasources:

­ name: prometheus

(continues on next page)

1.29. Monitoring 1233

Daml SDK Documentation, 2.7.3

(continued from previous page)

type: prometheus

access: proxy

orgId: 1

uid: prometheus

url: http://prometheus:9090

isDefault: true

version: 1

editable: false

Listing 53: etc/grafana-dashboards.yml

­­­

apiVersion: 1

providers:

­ name: local

orgId: 1

folder: ''

folderUid: default

type: file

disableDeletion: true

updateIntervalSeconds: 30

allowUiUpdates: true

options:

path: /var/lib/grafana/dashboards

foldersFromFilesStructure: true

Dependencies

There are startup dependencies between the Docker containers. For example, the domain needs to

be running before the participant, and the database needs to run before the domain.

The yaml anchor x-logging enabled GELF container logging and is duplicated across the containers

where you want to capture logging output. Note that the host address is the host machine, not a

network address (on OSX).

Listing 54: etc/dependency-docker-compose.yml

x­logging: &logging

driver: gelf

options:

Should be able to use "udp://logstash:12201"

gelf­address: "udp://host.docker.internal:12201"

services:

logstash:

depends_on:

elasticsearch:

condition: service_healthy

postgres:

logging:

(continues on next page)

1234 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

<<: *logging

depends_on:

logstash:

condition: service_started

domain0:

logging:

<<: *logging

depends_on:

postgres:

condition: service_healthy

logstash:

condition: service_started

participant1:

logging:

<<: *logging

depends_on:

domain0:

condition: service_started

logstash:

condition: service_started

participant2:

logging:

<<: *logging

depends_on:

domain0:

condition: service_started

logstash:

condition: service_started

kibana:

depends_on:

elasticsearch:

condition: service_healthy

grafana:

depends_on:

prometheus:

condition: service_started

Docker Images

The Docker images need to be pulled down before starting the network:

• digitalasset/canton-open-source:2.5.1

• docker.elastic.co/elasticsearch/elasticsearch:8.5.2

• docker.elastic.co/kibana/kibana:8.5.2

• docker.elastic.co/logstash/logstash:8.5.1

• gcr.io/cadvisor/cadvisor:v0.45.0

• grafana/grafana:9.3.1-ubuntu

• postgres:14.8-bullseye

• prom/prometheus:v2.40.6

1.29. Monitoring 1235

Daml SDK Documentation, 2.7.3

Running Docker Compose

Since running docker compose with all the compose files shown above creates a long command line,

a helper script dc.sh is used.

Aminimumof 12GB ofmemory is recommended for Docker. To verify that Docker is not running short

of memory, run docker stats and ensure the total MEM% is not too high.

Listing 55: dc.sh

#!/bin/bash

if [$# ­eq 0];then

echo "Usage: $0 <docker compose command>"

echo "Use '$0 up ­­force­recreate ­­renew­anon­volumes' to re­create network"␣

↪→

exit 1

fi

set ­x

docker compose \

­p monitoring \

­f etc/network­docker­compose.yml \

­f etc/cadvisor­docker­compose.yml \

­f etc/elasticsearch­docker­compose.yml \

­f etc/logstash­docker­compose.yml \

­f etc/postgres­docker­compose.yml \

­f etc/domain0­docker­compose.yml \

­f etc/participant1­docker­compose.yml \

­f etc/participant2­docker­compose.yml \

­f etc/kibana­docker­compose.yml \

­f etc/prometheus­docker­compose.yml \

­f etc/grafana­docker­compose.yml \

­f etc/dependency­docker­compose.yml \

$*

Useful commands

./dc.sh up ­d # Spins up the network and runs it in the background

./dc.sh ps # Shows the running containers

./dc.sh stop # Stops the containers

./dc.sh start # Starts the containers

./dc.sh down # Stops and tears down the network, removing any created␣

↪→containers

1236 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.29.10.2 Connecting to Nodes

To interact with the running network, a Canton console can be used with a remote configuration. For

example:

bin/canton ­c etc/remote­participant1.conf

Remote configurations

Listing 56: etc/remote-domain0.conf

canton.remote­domains.domain0 {

admin­api {

address="0.0.0.0"

port="10019"

}

public­api {

address="0.0.0.0"

port="10018"

}

}

Listing 57: etc/remote-participant1.conf

canton {

features.enable­testing­commands = yes // Needed for ledger­api

remote­participants.participant1 {

ledger­api {

address="0.0.0.0"

port="10011"

}

admin­api {

address="0.0.0.0"

port="10012"

}

}

}

Listing 58: etc/remote-participant2.conf

canton {

features.enable­testing­commands = yes // Needed for ledger­api

remote­participants.participant2 {

ledger­api {

address="0.0.0.0"

port="10021"

}

admin­api {

(continues on next page)

1.29. Monitoring 1237

Daml SDK Documentation, 2.7.3

(continued from previous page)

address="0.0.0.0"

port="10022"

}

}

}

Getting Started

Using the previous scripts, you can follow the examples provided in the Getting Started guide.

1.29.10.3 Kibana Log Monitoring

When Kibana is started for the first time, you must set up a data view to allow view the log data:

1. Navigate to http://localhost:5601/.

2. Click Explore on my own.

3. From the menu select Analytics > Discover.

4. Click Create data view.

5. Save a data view with the following properties:

• Name: Logs

• Index pattern: logs-*

• Timestamp field: @timestamp

You should now see a UI similar to the one shown here:

In the Kibana interface, you can:

• Create a view based on selected fields

• View log messages by logging timestamp

• Filter by field value

1238 Chapter 1. Canton References

http://localhost:5601/

Daml SDK Documentation, 2.7.3

• Search for text

• Query using either KSQL or Lucene query languages

For more details, see the Kibana documentation. Note that querying based on plain text for a wide

time window likely results in poor UI performance. See Logging Improvements for ideas to improve it.

1.29.10.4 Grafana Metric Monitoring

You can log into the Grafana UI and set up a dashboard. The example imports a GrafanaLabs com-

munity dashboard that has graphs for cAdvisor metrics. The cAdvisor Export dashboard imported

below has an ID of 14282.

1. Navigate to http://localhost:3000/login.

2. Enter the username/password: grafana/grafana.

3. In the side border, select Dashboards and then Import.

4. Enter the dashboard ID 14282 and click Load.

5. On the screen, select Prometheus as the data source and click Import.

You should see a container systemmetrics dashboard similar to the one shown here:

See the Grafana documentation for how to configure dashboards. For information about whichmet-

rics are available, see the Metrics documentation in the Monitoring section of this user manual.

1.29. Monitoring 1239

https://grafana.com/grafana/dashboards/
https://grafana.com/grafana/dashboards/
https://grafana.com/grafana/dashboards/14282-cadvisor-exporter/
http://localhost:3000/login
https://grafana.com/grafana/

Daml SDK Documentation, 2.7.3

1.29.10.5 Monitoring Choices

This section documents the reasoning behind the technology used in the examplemonitoring setup.

Use Docker Log Drivers

Reasons:

• Most Docker containers can be configured to log all debug output to stdout.

• Containers can be run as supplied.

• No additional dockerfile layers need to be added to install and start log scrapers.

• There is no need to worry about local file naming, log rotation, and so on.

Use GELF Docker Log Driver

Reasons:

• It is shipped with Docker.

• It has a decodable JSON payload.

• It does not have the size limitations of syslog.

• A UDP listener can be used to debug problems.

Use Logstash

Reasons:

• It is a lightweight way to bridge the GELF output provided by the containers into Elasticsearch.

• It has a simple conceptual model (pipelines consisting of input/filter/output plugins).

• It has a large ecosystem of input/filter and output plugins.

• It externalizes the logic for mapping container logging output to a structures/ECS format.

• It can be run with stdin/stdout input/output plugins for use with testing.

• It can be used to feed Elasticsearch, Loki, or Graylog.

• It has support for the Elastic Common Schema (ECS) if needed.

Use Elasticsearch/Kibana

Reasons:

• Using Logstash with Elasticsearch and Kibana, the ELK stack, is a mature way to set up a log-

ging infrastructure.

• Good defaults for these products allow a basic setup to be started with almost zero configura-

tion.

• The ELK setup acts as a good baseline as compared to other options such as Loki or Graylog.

1240 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Use Prometheus/Grafana

Reasons:

• Prometheus defines and uses the OpenTelemetry reference file format.

• Exposing metrics via an HTTP endpoint allows easy direct inspection of metric values.

• The Prometheus approach of pulling metrics from the underlying systemmeans that the run-

ning containers do not need infrastructure to store and push metric data.

• Grafana works very well with Prometheus.

1.29.10.6 Logging Improvements

This version of the example only has the logging structure provided via GELF. It is possible to improve

this by:

• Extracting data from the underlying containers as a JSON stream.

• Mapping fields in this JSON data onto the ECS so that the same name is used for commonly

used field values (for example, log level).

• Configuring Elasticsearch with a schema that allows certain fields to be quickly filtered (for

example, log level).

1.29.11 Glossary

1.29.11.1 cAdvisor

Container Advisor (cAdvisor) provides an overview of CPU, memory, disk, and network utilization for

each of the Docker containers. It works by querying the Docker Engine API to get these statistics for

each container. This lets you avoid layering the containers with a utility to perform these functions.

https://github.com/google/cadvisor

1.29.11.2 Docker Log Driver

Docker containers can be configured with a log driver that allows log output to be exported from the

Docker container. Using log drivers to export logging information makes running another process

on the Docker container for this unnecessary.

https://docs.docker.com/config/containers/logging/configure/

1.29.11.3 Docker Plugins

A Docker plugin is a way to extend Docker (for example, by adding a log driver).

https://docs.docker.com/engine/extend/

1.29. Monitoring 1241

https://docs.docker.com/engine/api/
https://github.com/google/cadvisor
https://docs.docker.com/config/containers/logging/configure/
https://docs.docker.com/engine/extend/

Daml SDK Documentation, 2.7.3

1.29.11.4 ECS

The Elastic Common Schema (ECS) defines a naming convention for fields used in Elasticsearch. For

example, use @timestamp for timestamp.

https://www.elastic.co/guide/en/ecs/current/ecs-field-reference.html

1.29.11.5 Elasticsearch

Elasticsearch is a technology that allows JSON documents to be stored, indexed, and searched in

near real time. It can be configured as a cluster with built-in resiliency.

https://www.elastic.co/guide/en/elasticsearch/reference/8.5/index.html

1.29.11.6 ELK

The ELK stack is an established way to enable capturing, indexing, and displaying log data.

https://www.elastic.co/what-is/elk-stack

1.29.11.7 GELF

TheGraylog extended logging format (GELF) improves onsyslog loggingbyproviding structuredmes-

sages that are not size-limited. GELF is one of the built-in logging drivers supported by Docker. The

message format is compressed JSON.

https://docs.graylog.org/docs/gelf

1.29.11.8 Grafana

Grafana provides a web UI that allows the construction of dashboards showing metric data. This

data can be queried against a Prometheus metric store.

https://grafana.com/grafana/

1.29.11.9 Graylog

Unlike Elasticsearch, Graylog is not a general-purpose indexing, analytics, and search tool. It is de-

signed specifically for log data. This provides a simpler, more focused option with better defaults for

logging.

https://www.graylog.org/about/

1242 Chapter 1. Canton References

https://www.elastic.co/guide/en/ecs/current/ecs-field-reference.html
https://www.elastic.co/guide/en/elasticsearch/reference/8.5/index.html
https://www.elastic.co/what-is/elk-stack
https://docs.graylog.org/docs/gelf
https://grafana.com/grafana/
https://www.graylog.org/about/

Daml SDK Documentation, 2.7.3

1.29.11.10 Logstash

Logstash is a service that allows a series of pipelines to be configured that read, filter, and manip-

ulate data before writing it out. It has support for a multitude of input, filter, and output types. The

GELF input reader and Elasticsearch output writer are of particular interest.

https://www.elastic.co/guide/en/logstash/current/introduction.html

1.29.11.11 Loki

Loki is a log aggregation system designed to store and query logs from all your applications and

infrastructure. It displays log information inside Grafana, allowing a single UI to be used for both

metric data and logs.

https://grafana.com/oss/loki/

1.29.11.12 Loki Log Driver

The Loki log driver is a Loki client that allows log information to be shipped from a Docker log file,

similar to other log drivers. The message format is gRPC protobuf.

https://grafana.com/docs/loki/latest/clients/docker-driver/

1.29.11.13 MinIO

AWS S3 Compatible Storage (used by Loki).

https://min.io/product/s3-compatibility

1.29.11.14 OpenTelemetry

OpenTelemetry is an organization that works to standardize observability (an umbrella term that

includes logging, metrics, and tracing).

https://opentelemetry.io/

1.29.11.15 Prometheus

Prometheus can be configured to scrape metric data from many endpoints. This metric data can

then be queried by metric visualization tools such as Grafana.

https://prometheus.io/

1.29. Monitoring 1243

https://www.elastic.co/guide/en/logstash/current/introduction.html
https://grafana.com/oss/loki/
https://grafana.com/docs/loki/latest/clients/docker-driver/
https://min.io/product/s3-compatibility
https://opentelemetry.io/
https://prometheus.io/

Daml SDK Documentation, 2.7.3

1.29.11.16 Syslog

Syslog is a standard for logging messages that has been around since the 1980s. Syslog is one of

the built-in logging drivers supported by Docker.

https://en.wikipedia.org/wiki/Syslog

1.30 Identity Management

On-ledger identity management focuses on the distributed aspect of identities across Canton sys-

tem entities, while user identity management focuses on individual participants managing access

of their users to their ledger APIs.

Canton comes with a built in identitymanagement system used tomanage on-ledger identities. The

technical details are explained in the architecture section, while this write up here is meant to give a

high level explanation.

The identity management system is self-contained and built without a trusted central entity or

pre-defined root certificate such that anyone can connect with anyone, without the need of some

central approval and without the danger of losing self-sovereignty.

1.30.1 Introduction

1.30.1.1 What is a Canton Identity?

When two system entities such as a participant, domain topology manager, mediator or sequencer

communicate with each other, they will use asymmetric cryptography to encryptmessages and sign

message contents such that only the recipient can decrypt the content, verify the authenticity of the

message, or prove its origin. Therefore, we need a method to uniquely identify the system entities

and a way to associate encryption and signing keys with them.

On top of that, Canton uses the contract language Daml, which represents contract ownership and

rights through parties. But parties are not primarymembers of the Canton synchronisation protocol.

They are represented by participants and therefore we need to uniquely identify parties and relate

them to participants, such that a participant can represent several parties (and in Canton, a party

can be represented by several participants).

1.30.1.2 Unique Identifier

A Canton identity is built out of two components: a random string X and a fingerprint of a public

key N. This combination, (X,N), is called a unique identifier and is assumed to be globally unique by

design. This unique identifier is used in Canton to refer to particular parties, participants or domain

entities. A system entity (such as a party) is described by the combination of role (party, participant,

mediator, sequencer, domain topology manager) and its unique identifier.

The system entities require knowledge about the keys which will be used for encryption and sign-

ing by the respective other entities. This knowledge is distributed and therefore, the system entities

require a way to verify that a certain association of an entity with a key is correct and valid. This is

the purpose of the fingerprint of a public key in the unique identifier, which is referred to as Names-

pace. And the secret key of the corresponding namespace acts as the root of trust for that particular

namespace, as explained later.

1244 Chapter 1. Canton References

https://en.wikipedia.org/wiki/Syslog
https://docs.daml.com/concepts/glossary.html#party

Daml SDK Documentation, 2.7.3

1.30.1.3 Topology Transactions

In order to remain flexible andbe able to change keys and cryptographic algorithms, we don’t identify

the entities using a single static key, but we need a way to dynamically associate participants or

domain entities with keys and parties with participants. We do this through topology transactions.

A topology transaction establishes a certain association of a unique identifier with either a key or a

relationship with another identifier. There are several different types of topology transactions. The

most general one is the OwnerToKeyMapping, which as the name says, associates a key with a unique

identifier. Such a topology transaction will inform all other system entities that a certain system

entity is using a specific key for a specific purpose, such as participant Alice of namespace 12345.. is

using the key identified through the fingerprint AABBCCDDEE.. to sign messages.

Now, this poses two questions: who authorizes these transactions, and who distributes them?

For the authorization, we need to look at the second part of the unique identifier, the Namespace. A

topology transaction that refers to a particular unique identifier operates on that namespace and

we require that such a topology transaction is authorized by the corresponding secret key through

a cryptographic signature of the serialised topology transaction. This authorization can be either

direct, if it is signed by the secret key of the namespace, or indirect, if it is signed by a delegated

key. In order to delegate the signing right to another key, there are other topology transactions of

type NamespaceDelegation or IdentifierDelegation that allow one to do that. A namespace delegation del-

egates entire namespaces to a certain key, such as saying the key identifier through the fingerprint

AABBCCDDEE… is now allowed to authorize topology transactions within the namespace of the key

VVWWXXYYZZ…. An identifier delegation delegates authority over a certain identifier to a key, which

means that the delegation key can only authorize topology transactions that act on a specific iden-

tifier and not the entire namespace.

Now, signing of topology transactions happens in a TopologyManager. Canton has many topology

managers. In fact, every participant node and every domain have topology managers with exactly

the same functional capabilities, just different impact. They can create new keys, new namespaces

and the identity of new participants, parties and even domains. And they can export these topology

transactions such that they can be imported at another topology manager. This allows to manage

Canton identities in quite a wide range of ways. A participant can operate their own topology man-

ager which allows them individually to manage their parties. Or they can associate themselves with

another topology manager and let themmanage the parties that they represent or keys they use. Or

something in between, depending on the introduced delegations and associations.

The difference between the domain topology manager and the participant topology manager is that

the domain topology manager establishes the valid topology state in a particular domain by dis-

tributing topology transactions in a way that every domainmember ends up with the same topology

state. However, the domain topology manager is just a gate keeper of the domain that decides who

is let in and who not on that particular domain, but the actual topology statements originate from

various sources. As such, the domain topology manager can only block the distribution, but cannot

fake topology transactions.

The participant topology manager only manages an isolated topology state. However, there is a dis-

patcher attached to this particular topology manager that attempts to register locally registered

identities with remote domains, by sending them to the domain topology managers, who then de-

cide on whether they want to include them or not.

The careful reader will have noted that the described identity system indeed does not have a single

root of trust or decision maker on who is part of the overall system or not. But also that the topol-

ogy state for the distributed synchronisation varies from domain to domain, allowing very flexible

topologies and setups.

1.30. Identity Management 1245

Daml SDK Documentation, 2.7.3

1.30.1.4 Legal Identities

In Canton, we separate a system identity from the legal identity. While the above mechanism al-

lows to establish a common, verified and authorized knowledge of system entities, it doesn’t guar-

antee that a certain unique identifier really corresponds to a particular legal identity. Even more

so, while the unique identifier remains stable, a legal identity might change, for example in the

case of a merger of two companies. Therefore, Canton provides an administrative command which

allows to associate a randomized system identity with a human readable display name using the

participant.parties.set_display_name command.

Note: A party display name is private to the participant. If such names should be shared among

participants, we recommend to build a corresponding Daml workflow and some automation logic,

listening to the results of the Daml workflow and updating the display name accordingly.

1.30.1.5 Life of a Party

In the tutorials, we use the participant.parties.enable("name") function to setup a party on

a participant. To understand the identitymanagement system in Canton, it helps to look at the steps

under the hood of how a new party is added:

1. The participant.parties.enable function determines the unique identifier of the partic-

ipant: participant.id.

2. The party name is built as name::<namespace>, where the namespace is the one of the par-

ticipant.

3. A newparty to participantmapping is authorized on theAdminApi: participant.topology.

party_to_participant_mappings.authorize(...)

4. The ParticipantTopologyManager gets invoked by the gRPC request, creating a new

SignedTopologyTransaction and tests whether the authorization can be added to the local

topology state. If it can, the new topology transaction is added to the store.

5. The ParticipantTopologyDispatcher picks up the new transaction and requests the ad-

dition on all domains via the RegisterTopologyTransactionRequestmessage sent to the

topology manager through the sequencer.

6. A domain receives this request andprocesses it according to the policy (open or permissioned).

The default setting is open.

7. If approved, the request service attempts to add the new topology transaction to the Domain­

TopologyManager.

8. The DomainTopologyManager checks whether the new topology transaction can be added to

the domain topology state. If yes, it gets written to the local topology store.

9. The DomainTopologyDispatcher picks up the new transaction and sends it to all partici-

pants (and back to itself) through the sequencer.

10. The sequencer timestamps the transaction and embeds it into the transaction stream.

11. The participants receive the transaction, verify the integrity and correctness against the topol-

ogy state and add it to the state with the timestamp of the sequencer, such that everyone has

a synchronous topology state.

Note that the participant.parties.enable macro only works if the participant controls their

namespace themselves, either directly by having the namespace key or through delegation (via

NamespaceDelegation).

1246 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.30.1.6 Participant Onboarding

Key to support topological flexibility is that participants can easily be added to new domains. There-

fore, the on-boarding of new participants to domains needs to be secure but convenient. Looking

at the console command, we note that in most examples, we are using the connect command to

connect a participant to a domain. The connect command just wraps a set of admin-api commands:

val certificates = OptionUtil.emptyStringAsNone(certificatesPath).map { path =>

BinaryFileUtil.readByteStringFromFile(path) match {

case Left(err) => throw new IllegalArgumentException(s"failed to load ${path}

↪→: ${err}")

case Right(bs) => bs

}

}

DomainConnectionConfig.grpc(

SequencerAlias.Default,

domainAlias,

connection,

manualConnect,

domainId,

certificates,

priority,

initialRetryDelay,

maxRetryDelay,

timeTrackerConfig,

)

// register the domain configuration

register(config.copy(manualConnect = true))

if (!config.manualConnect) {

// fetch and confirm domain agreement

if (config.sequencerConnections.nonBftSetup) { // agreement is removed with the␣

↪→introduction of BFT domain.

confirm_agreement(config.domain.unwrap)

}

reconnect(config.domain.unwrap, retry = false).discard

// now update the domain settings to auto­connect

modify(config.domain.unwrap, _.copy(manualConnect = false))

}

Wenote that fromauser perspective, all that needs to happen by default is to provide the connection

information and accepting the terms of service (if required by the domain) to set up a new domain

connection. There is no separate on-boarding step performed, no giant certificate signing exercise

happens, everything is set up during the first connection attempt. However, quite a few steps happen

behind the scenes. Therefore, we briefly summarise the process here step by step:

1. The administrator of an existing participant needs to invoke the domains.register com-

mand to add a new domain. The mandatory arguments are a domain alias (used internally to

refer to a particular connection) and the sequencer connection URL (http or https) includ-

ing an optional port http[s]://hostname[:port]/path. Optional are a certificates path for a custom

TLS certificate chain (otherwise the default jre root certificates are used) and the domain id of

a domain. The domain id is the unique identifier of the domain that can be defined to prevent

man-in-the-middle attacks (very similar to an ssh key fingerprint).

2. The participant opens a gRPC channel to the SequencerConnectService.

3. The participant contacts the SequencerConnectService and checks if using the domain

1.30. Identity Management 1247

Daml SDK Documentation, 2.7.3

requires signing specific terms of services. If required, the terms of service are displayed to the

user and an approval is locally stored at the participant for later. If approved, the participant

attempts to connect to the sequencer.

4. The participant verifies that the remote domain is running a protocol version compatible with

the participant’s version using the SequencerConnectService.handshake. If the partici-

pant runs an incompatible protocol version, the connection will fail.

5. The participant will download and verify the domain id from the domain. The domain id can be

used to verify the correct authorization of the topology transactions of the domain entities. If

the domain id has been provided previously during the domains.register call (or in a previ-

ous session), the two ids will be compared. If they are not equal, the connection will fail. If the

domain id was not provided during the domains.register call, the participant will use and

store the one downloaded. We assume here that the domain id is obtained by the participant

through a secure channel such that it is sure to be talking to the right domain. Therefore, this

secure channel can be either something happening outside of Canton or can be provided by

TLS during the first time we contact a domain.

6. The participant downloads the static domain parameters, which are the parameters used for the

transaction protocol on the particular domain, such as the cryptographic keys supported on

this domain.

7. The participant connects to the sequencer initially as anunauthenticatedmember. Suchmem-

bers can only send transactions to the domain topology manager. The participant then sends

an initial set of topology transactions required to identify the participant and define the keys

used by the participant to the DomainTopologyManagerRequestService. The request ser-

vice inspects the validity of the transactions and decides based on the configured domain

on-boarding policy. The currently supported policies are open (default) and permissioned.

While open is convenient for permissionless systems and for development, it will accept any

new participant and any topology transaction. The permissioned policy will accept the par-

ticipant’s onboarding transactions only if the participant has been added to the allow-list be-

forehand.

8. The request service forwards the transactions to the domain topology manager, who attempts

to add it to the state (and thus trigger the distribution to the other members on a domain).

The result of the onboarding request is sent to the unauthenticated member who disconnects

upon receiving the response.

9. If the onboarding request is approved, the participant now attempts to connect to the se-

quencer as the actual participant.

10. Once the participant is properly enabled on the domain and its signing key is known, the par-

ticipant can subscribe to the SequencerService with its identity. In order to do that and

in order to verify the authorisation of any action on the SequencerService, the participant

requires to obtain an authorization token from the domain. For this purpose, the participant

requests a Challenge from the domain. The domain will provide it with a nonce and the fin-

gerprint of the key to be used for authentication. The participant signs this nonce (together

with the domain id) using the corresponding private key. The reason for the fingerprint is sim-

ple: the participant needs to sign the tokenusing the participants signing key as defined by the

domain topology state. However, as the participant will learn the true domain topology state

only by reading from the SequencerService, it cannot know what the key is. Therefore, the

domain discloses this part of the domain topology state as part of the authorisation challenge.

11. Using the created authentication token, the participant starts to use the SequencerService. On

the domain side, the domain verifies the authenticity and validity of the token by verifying that

the token is the expected one and is signed by the participant’s signing key. The token is used

to authenticate every gRPC invocation and needs to be renewed regularly.

12. The participant sets up the ParticipantTopologyDispatcher, which is the process that

tries to push all topology transactions created at the participant node’s topology manager to

1248 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

the domain topology manager. If the participant is using its topology manager to manage its

identity on its own, these transactions contain all the information about the registered parties

or supported packages.

13. As mentioned above, the first set of messages received by the participant through the se-

quencer will contain the domain topology state, which includes the signing keys of the do-

main entities. These messages are signed by the sequencer and topology manager and are

self-consistent. If the participants know the domain id, they can verify that they are talking

to the expected domain and that the keys of the domain entities have been authorized by the

owner of the key governing the domain id.

14. Once the initial topology transactions have been read, the participant is ready to process trans-

actions and send commands.

15. Whenaparticipant is (re-)enabled, thedomain topologydispatcher analyses the set of topology

transactions the participant has missed before. It sends these transactions to the participant

via the sequencer, before publicly enabling the participant. Therefore, when the participant

starts to read messages from the sequencer, the initially received messages will be the topol-

ogy state of the domain.

1.30.1.7 Default Initialization

The default initialization behaviour of participant and domain nodes is to run their own topology

manager. This provides a convenient, automatic way to configure the nodes and make them usable

without manual intervention, but it can be turned off by setting the auto­init = false configu-

ration option before the first startup.

During the auto initialization, the following steps will happen:

1. On the domain, we generate four signing keys: one for the namespace and one each for the se-

quencer,mediator and topologymanager. On the participant, we generate three keys: a names-

pace key, a signing key and an encryption key.

2. Using the fingerprint of the namespace, we generate the participant identity. For understand-

ability, we use the node name used in the configuration file. This will change into a random

identifier for privacy reasons. Once we’ve generated it, we set it using the set_id admin-api

call.

3. We create a root certificate as NamespaceDelegation using the namespace key, signing with

the namespace key.

4. Then, we create an OwnerToKeyMapping for the participant or domain entities.

The init.identity object can be set to control the behavior of the auto initialization. For instance, it is

possible to control the identifier name that will be given to the node during the initialization. There

are 3 possible configurations:

1. Use the node name as the node identifier

canton.participants.participant1.init.identity.node­identifier.type = config

2. Explicitly set a name

canton.participants.participant1.init.identity.node­identifier.type = explicit

canton.participants.participant1.init.identity.node­identifier.name = MyName

3. Generate a random name

1.30. Identity Management 1249

Daml SDK Documentation, 2.7.3

canton.participants.participant1.init.identity.node­identifier.type = random

1.30.1.8 Identity Setup Guide

As explained, Canton nodes auto-initialise themselves by default, running their own topology man-

agers. This is convenient for development and prototyping. Actual deployments require more care

and therefore, this section should serve as a brief guideline.

Canton topologymanagershave one crucial task theymustnot fail at: donot lose access to or control

of the root of trust (namespace keys). Any other key problem can somehow be recovered by revoking

an old key and issuing a new owner to key association. Therefore, it is advisable that participants

and parties are associated with a namespace managed by a topology manager that has sufficient

operational setups to guarantee the security and integrity of the namespace.

Therefore, a participant or domain can

1. Run their own topology manager with their identity namespace key as part of the participant

node.

2. Run their own topology manager on a detached computer in a self-built setup that exports

topology transactions and transports them to the respective node (i.e. via burned CD roms).

3. Ask a trusted topology manager to issue a set of identifiers within the trusted topology man-

ager’s namespace as delegations and import the delegations to the local participant topology

manager.

4. Let a trusted topology manager manage all the topology state on-behalf.

Obviously, there aremore combinations and options possible, but these options here describe some

common options with different security and recoverability options.

In order to reduce the risk of losing namespace keys, additional keys can be created and allowed to

operate on a certain namespace. In fact, we recommend doing this and avoid storing the root key on

a live node.

1.30.2 User Identity Management

So far we have covered how on-ledger identities are managed.

Every participant also needs to manage access to their local Ledger API and be able to give appli-

cations permission to read or write to that API on behalf of parties. While an on-ledger identity is

represented as a party, an application on the Ledger API is represented and managed as a user. A

ledger API server manages applications’ identities through:

• authentication: recognizingwhichuser anapplication corresponds to (essentially bymatching

an application name with a user name)

• authorization: knowingwhich rights an authenticated user has and restricting their Ledger API

access according to those rights

Authentication is based on JWT and covered in the application development / authorization section

of the manual; the related Ledger API authorization configuration is covered in the Ledger API JWT

configuration section.

Authorization ismanaged by the Ledger API’s User Management Service. In essence, a user is amap-

ping from a user name to a set of parties with read or write permissions. In more detail a user con-

sists of:

1250 Chapter 1. Canton References

https://docs.daml.com/app-dev/authorization.html

Daml SDK Documentation, 2.7.3

• a user id (also called user name)

• an active/deactivated status (can be used to temporarily ban a user from accessing the Ledger

API)

• an optional primary party (indicates which party to use by default when submitting a Ledger

API command requests as this user)

• a set of user rights (describes whether a user has access to the admin portion of the Ledger API

and what parties this user can act or read as)

• a set of custom annotations (string based key-value pairs, stored locally on the Ledger API

server, that can be used to attach extra information to this party, e.g. how it relates to some

business entity)

All these properties except the user id can be modified. To learn more about annotations refer to the

Ledger API Reference documentation . For an overview of the ledger API’s UserManagementService,

see this section.

You can manage users through the Canton console user management commands, an alpha feature. See

the cookbook below for some concrete examples of how to manage users.

1.30.3 Cookbook

1.30.3.1 Manage Users

In this section, we present how you can manage participant users using the Canton console com-

mands. First, we create three parties that we’ll use in subsequent examples:

@ val Seq(alice, bob, eve) = Seq("alice", "bob", "eve").map(p => participant1.

↪→parties.enable(name = p, waitForDomain = DomainChoice.All))

Seq(alice, bob, eve) : Seq[PartyId] = List(alice::12207af325a3...,␣

↪→bob::12207af325a3..., eve::12207af325a3...)

Create

Next, create a user called myuser with act-as alice and read-as bob permissions and active user

status. This user’s primary party is alice. The user is not an administrator and has some custom

annotations.

@ val user = participant1.ledger_api.users.create(id = "myuser", actAs =␣

↪→Set(alice), readAs = Set(bob), primaryParty = Some(alice), participantAdmin =␣

↪→false, isActive = true, annotations = Map("foo" ­> "bar", "description" ­>

↪→"This is a description"))

user : User = User(

id = "myuser",

primaryParty = Some(value = alice::12207af325a3...),

isActive = true,

annotations = Map("foo" ­> "bar", "description" ­> "This is a description"),

identityProviderId = ""

)

There are some restrictions for what constitutes a valid annotation key. In contrast, the only con-

straint for annotation values is that they must not be empty. To learn more about annotations refer

to the Ledger API Reference documentation.

1.30. Identity Management 1251

https://docs.daml.com/app-dev/grpc/proto-docs.html#objectmeta
https://docs.daml.com/app-dev/services.html#user-management-service
https://docs.daml.com/app-dev/grpc/proto-docs.html#objectmeta

Daml SDK Documentation, 2.7.3

Update

You can update a user’s primary party, active/deactivated status and annotations. (You can also

change what rights a user has, but using a different method presented further below.)

In the following snippet, you change the user’s primary party to be unassigned, leave the active/de-

activated status intact, and update the annotations. In the annotations, you change the value of

the description key, remove the foo key and add the new baz key. The return value contains the

updated state of the user:

@ val updatedUser = participant1.ledger_api.users.update(id = user.id, modifier =␣

↪→user => { user.copy(primaryParty = None, annotations = user.annotations.updated(

↪→"description", "This is a new description").removed("foo").updated("baz", "bar

↪→")) })

updatedUser : User = User(

id = "myuser",

primaryParty = None,

isActive = true,

annotations = Map("baz" ­> "bar", "description" ­> "This is a new description"),

identityProviderId = ""

)

You can also update the user’s identity provider id. In the following snippets, you change the user’s

identity provider id to the newly created one. Note that originally the user belonged to the default

identity provider whose id is represented as the empty string `""`.

@ participant1.ledger_api.identity_provider_config.create("idp­id1",␣

↪→isDeactivated = false, jwksUrl = "http://someurl", issuer = "issuer1", audience␣

↪→= None)

res4: com.digitalasset.canton.ledger.api.domain.IdentityProviderConfig =␣

↪→IdentityProviderConfig(

identityProviderId = Id(value = "idp­id1"),

isDeactivated = false,

jwksUrl = JwksUrl(value = "http://someurl"),

issuer = "issuer1",

audience = None

)

@ participant1.ledger_api.users.update_idp("myuser", sourceIdentityProviderId="",␣

↪→targetIdentityProviderId="idp­id1")

@ participant1.ledger_api.users.get("myuser", identityProviderId="idp­id1")

res6: User = User(

id = "myuser",

primaryParty = None,

isActive = true,

annotations = Map("baz" ­> "bar", "description" ­> "This is a new description"),

identityProviderId = "idp­id1"

)

You can change the user’s identity provider id back to the default one:

@ participant1.ledger_api.users.update_idp("myuser", sourceIdentityProviderId=

↪→"idp­id1", targetIdentityProviderId="")

1252 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

@ participant1.ledger_api.users.get("myuser", identityProviderId="")

res8: User = User(

id = "myuser",

primaryParty = None,

isActive = true,

annotations = Map("baz" ­> "bar", "description" ­> "This is a new description"),

identityProviderId = ""

)

Inspect

You can fetch the current state of the user as follows:

@ participant1.ledger_api.users.get(user.id)

res9: User = User(

id = "myuser",

primaryParty = None,

isActive = true,

annotations = Map("baz" ­> "bar", "description" ­> "This is a new description"),

identityProviderId = ""

)

You can query what rights a user has:

@ participant1.ledger_api.users.rights.list(user.id)

res10: UserRights = UserRights(

actAs = Set(alice::12207af325a3...),

readAs = Set(bob::12207af325a3...),

participantAdmin = false,

identityProviderAdmin = false

)

You can grantmore rights. The returned value contains only newly granted rights; it does not contain

rights the user already had even if you attempted to grant them again (like the read-as alice right

in this example):

@ participant1.ledger_api.users.rights.grant(id = user.id, actAs = Set(alice,␣

↪→bob), readAs = Set(eve), participantAdmin = true)

res11: UserRights = UserRights(

actAs = Set(bob::12207af325a3...),

readAs = Set(eve::12207af325a3...),

participantAdmin = true,

identityProviderAdmin = false

)

You can revoke rights from the user. Again, the returned value contains only rights that were actually

removed:

@ participant1.ledger_api.users.rights.revoke(id = user.id, actAs = Set(bob),␣

↪→readAs = Set(alice), participantAdmin = true)

res12: UserRights = UserRights(

actAs = Set(bob::12207af325a3...),

readAs = Set(),

participantAdmin = true,

(continues on next page)

1.30. Identity Management 1253

Daml SDK Documentation, 2.7.3

(continued from previous page)

identityProviderAdmin = false

)

Now that you have granted and revoked some rights, you can fetch all of the user’s rights again and

see what they are:

@ participant1.ledger_api.users.rights.list(user.id)

res13: UserRights = UserRights(

actAs = Set(alice::12207af325a3...),

readAs = Set(bob::12207af325a3..., eve::12207af325a3...),

participantAdmin = false,

identityProviderAdmin = false

)

Also, multiple users can be fetched at the same time. In order to do that, first create another user

called myotheruser and then list all the users whose user name starts with my:

@ participant1.ledger_api.users.create(id = "myotheruser")

res14: User = User(

id = "myotheruser",

primaryParty = None,

isActive = true,

annotations = Map(),

identityProviderId = ""

)

@ participant1.ledger_api.users.list(filterUser = "my")

res15: UsersPage = UsersPage(

users = Vector(

User(

id = "myotheruser",

primaryParty = None,

isActive = true,

annotations = Map(),

identityProviderId = ""

),

User(

id = "myuser",

primaryParty = None,

isActive = true,

annotations = Map("baz" ­> "bar", "description" ­> "This is a new␣

↪→description"),

identityProviderId = ""

)

),

nextPageToken = ""

)

1254 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Decommission

You can delete a user by its id:

@ participant1.ledger_api.users.delete("myotheruser")

You can confirm it has been removed by e.g. listing it:

@ participant1.ledger_api.users.list("myotheruser")

res17: UsersPage = UsersPage(users = Vector(), nextPageToken = "")

If youwant to prevent a user fromaccessing the ledger API itmaybebetter to deactivate it rather than

deleting it. A deleted user can be recreated as if it never existed in the first place, while a deactivated

user must be explicitly reactivated to be able to access the ledger API again.

@ participant1.ledger_api.users.update("myuser", user => user.copy(isActive =␣

↪→false))

res18: User = User(

id = "myuser",

primaryParty = None,

isActive = false,

annotations = Map("baz" ­> "bar", "description" ­> "This is a new description"),

identityProviderId = ""

)

Configure a default Participant Admin

Fresh participant nodes come with a default participant admin user called participant_admin,

which can be used to bootstrap other users. Youmight prefer to have an admin user with a different

user id ready on a participant startup. For such situations, you can specify an additional participant

admin user with the user id of your choice.

Note: If a user with the specified id already exists, then no additional user will be created, even if

the preexisting user was not an admin user.

Listing 59: additional-admin.conf

canton.participants.myparticipant.ledger­api.user­management­service.additional­

↪→admin­user­id = "my­admin­id"

1.30.3.2 Adding a new Party to a Participant

The simplest operation is adding a new party to a participant. For this, we add it normally at the

topology manager of the participant, which in the default case is part of the participant node. There

is a simple macro to enable the party on a given participant if the participant is running their own

topology manager:

val name = "Gottlieb"

participant1.parties.enable(name)

1.30. Identity Management 1255

Daml SDK Documentation, 2.7.3

This will create a new party in the namespace of the participants topology manager.

And there is the corresponding disable macro:

participant1.parties.disable(name)

The macros themselves just use topology.party_to_participant_mappings.authorize to

create the new party, but add some convenience such as automatically determining the parameters

for the authorize call.

Note: Please note that the participant.parties.enablemacro will add the parties to the same

namespace as the participant is in. It only works if the participant has authority over that names-

pace either by possessing the root or a delegated key.

Important: This feature is only available in Canton Enterprise

1.30.3.3 Migrate Party to Another Participant Node

Parties are only weakly tied to participant nodes. They can be allocated in their own namespace and

then be delegated to a given participant. For simplicity and convenience, the participant creates new

parties in their own namespace by default.

The weak coupling of parties to participants allows you to migrate parties together with their active

contract set from one participant node to another. Note, the process below works only for parties

that are hosted on a single node. Also, if the party is not fully controlled by the source participant

node, you need to prepare the topology state change appropriately, disabling the party on the source

node and delegating the party to the target node.

Note: Please note that the entire system needs to be totally quiet for this process to succeed. You

currently can not migrate a party under load. If you migrate a party on a system that processes

transactions, the processing data will eventually become corrupt breaking your node.

Turn off transaction processing on the domain by setting the rate to 0 and wait for all timeouts to

have elapsed (mediator & participant reaction timeout):

mydomain.service.set_max_rate_per_participant(0)

// wait until mediator + participant reaction timeouts elapsed!

Starting with a party Alice being allocated on participant1:

@ val alice = participant1.parties.enable("Alice")

alice : PartyId = Alice::12204dc1e4c4...

To migrate Alice to participant2, we follow a four-step process. First, we need to obtain the target

participant id. In this example, we read it from the participant id:

@ val targetParticipantId = participant2.id

targetParticipantId : ParticipantId = PAR::participant2::12207334a68d...

1256 Chapter 1. Canton References

/canton/usermanual/downloading.html

Daml SDK Documentation, 2.7.3

Next, we deactivate the party on the origin participant and store the party’s active contract set in a

file by using the repair macros which are part of the enterprise edition:

@ repair.party_migration.step1_hold_and_store_acs(alice, participant1,␣

↪→targetParticipantId, "alice.acs.gz")

res3: Map[DomainId, Long] = Map()

The last argument is the name of a file which the active contract set is stored as base64 encoded

strings, ordered by domain-id and contract-id. This file then needs to be transferred offline to the

target participant. Additionally, the repair macro will disable the party on the first participant. This

is important in order to avoid breaking the consistency of the exported active contract set.

The target participant must then be disconnected from the domain before it can import data:

@ participant2.domains.disconnect("mydomain")

Once the domain is disconnected, invoke the import command:

@ repair.party_migration.step2_import_acs(participant2, "alice.acs.gz")

When importing is finished, reconnect to the domain using:

@ participant2.domains.reconnect("mydomain")

res6: Boolean = true

The last step on the target participant enables the party:

@ repair.party_migration.step3_enable_on_target(alice, participant2)

Finally, purge the active contract set on the origin participant:

@ participant1.domains.disconnect("mydomain")

@ repair.party_migration.step4_clean_up_source(alice, participant1, "alice.acs.gz

↪→")

The above commands require interactive access to the participants and are supported as an alpha

implementation. They work for parties that were allocated using standard methods on a single par-

ticipant node. Otherwise, a few more manual steps are required to properly prepare the topology

state before exporting and importing the topology state.

1.30.3.4 Party on Two Nodes

Note: this is an alpha feature only and is not supported in production.

Assuming we have party ("Alice", N1) which we want to host on two participants:

("participant1", N1) and ("participant2", N2). In this case, we have the party “Al-

ice” in namespace N1, whereas the participant2 is in namespace N2. In order to set this up, we need

to appropriately authorize the participants to act on behalf of the party and we need to correctly

copy the active contract set.

Starting with a party being allocated on participant1:

@ val alice = participant1.parties.enable("Alice")

alice : PartyId = Alice::1220df7d96ce...

1.30. Identity Management 1257

Daml SDK Documentation, 2.7.3

To add this party to participant2, participant2 must first agree to host the party. This is done by

authorizing the RequestSide.To of the party to participant mapping on the target participant:

@ participant2.topology.party_to_participant_mappings.authorize(TopologyChangeOp.

↪→Add, alice, participant2.id, RequestSide.To, ParticipantPermission.Submission)

res2: com.google.protobuf.ByteString = <ByteString@f166652 size=554 contents="\n\

↪→247\004\n\327\001\n\322\001\n\317\001\022 065F3gyr8JKybE1s2NaUZw37lRbPTwaw2...">

You can restrict the permission of the node by setting the appropriate ParticipantPermission

in the authorization call to either Observation or Confirmation instead of the default Submis­

sion. This allows setups where a party is hosted with Submission permissions on one node and

Confirmation on another to increase the liveness of the system.

Note: The distinction between Submission and Confirmation is only enforced in the participant

node. A malicious participant node with Confirmation permission for a certain party can submit

transactions in thenameof the party. This is due to Canton’s high level of privacywhere validators do

not know the identity of the submitting participant. Therefore, a party who delegatesConfirmation

permissions to a participant should trust the participant sufficiently.

Before we continue, we need to ensure that the target participant is now disconnected from the af-

fected domains, in order to avoid the target participant receiving transactions for the new party prior

to the complete transfer of the active contract store. Therefore, we disconnect the participant from

all domains:

@ participant2.domains.disconnect_all()

This is currently the reason why this feature is only supported as alpha: we can not guarantee that

a user does not damage their system by accident due to forgetting to disconnect from the domain.

Next, add the RequestSide.From transaction such that the party is activated on the target partic-

ipant:

@ participant1.topology.party_to_participant_mappings.authorize(TopologyChangeOp.

↪→Add, alice, participant2.id, RequestSide.From, ParticipantPermission.Submission)

res4: com.google.protobuf.ByteString = <ByteString@56f89b1b size=556 contents="\n\

↪→251\004\n\327\001\n\322\001\n\317\001\022 LJCGYk1KGUI0bPaSEJHCulUglzsQ3lIr2...">

Check that the party is now hosted by two participants:

@ participant1.parties.list("Alice")

res5: Seq[ListPartiesResult] = Vector(

ListPartiesResult(

party = Alice::1220df7d96ce...,

participants = Vector(

ParticipantDomains(

participant = PAR::participant2::1220a532b115...,

domains = Vector(

DomainPermission(domain = mydomain::1220a35ef9f4..., permission =␣

↪→Submission)

)

),

ParticipantDomains(

participant = PAR::participant1::1220df7d96ce...,

domains = Vector(

(continues on next page)

1258 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

DomainPermission(domain = mydomain::1220a35ef9f4..., permission =␣

↪→Submission)

)

)

)

)

)

In the next step, you store the active contract set of the party into a file.

Make sure that the participant to supply the ACS has seen some transactions after the topology

state has become active, but those transactions should not involve the migrated party. So just run

a health check:

@ participant1.health.ping(participant1.id)

res6: Duration = 635 milliseconds

If there is no traffic on the participant node and you can be sure that nothing has changed for the

party, you can just straight use the repair.download command. Otherwise, you must find the

timestamp when the party was activated. One way to find that timestamp is by looking at the topol-

ogy store of that particular domain connection:

@ val timestamp = participant1.topology.party_to_participant_mappings.

↪→list(filterStore="mydomain", filterParty="Alice").map(_.context.validFrom).max

timestamp : Instant = 2023­06­22T12:42:10.034684Z

Take the max of the two timestamps which corresponds to the RequestSide.From topology trans-

action that you added above. Use this timestamp now to export the state using:

@ participant1.repair.download(Set(alice), "alice.acs.gz", filterDomainId=

↪→"mydomain", timestamp = Some(timestamp))

Note that youneed todo this for every domainseparatelywith the correct timestampof theactivation

of the party. In our example, there is only one domain.

Subsequently, the active contract set is imported on the target participant:

@ repair.party_migration.step2_import_acs(participant2, "alice.acs.gz")

Once the entire active contract store has been imported, the target participant can reconnect to the

domain:

@ participant2.domains.reconnect_all()

Now, both participant host the party and can act on behalf of it.

1.30. Identity Management 1259

Daml SDK Documentation, 2.7.3

1.30.3.5 Manually Initializing a Node

There are situations where a node should not be automatically initialized, but where we prefer to

control each step of the initialization. For example, when a node in the setup does not control its

own identity, or when we do not want to store the identity key on the node for security reasons.

In the following, we demonstrate the basic steps how to initialise a node:

Keys Initialization

The following steps describe how to manually generate the necessary Canton keys (e.g. for a partic-

ipant):

// first, let's create a signing key that is going to control our identity.

val identityKey =

participant.keys.secret.generate_signing_key(name = participant.name + "­

↪→namespace")

// create signing and encryption keys

val signingKey =

participant.keys.secret.generate_signing_key(name = participant.name + "­signing

↪→")

val encryptionKey =

participant.keys.secret.generate_encryption_key(name = participant.name + "­

↪→encryption")

Domain Initialization

The following steps describe how to manually initialize a domain node:

// use the fingerprint of this key for our identity

val namespace = identityKey.fingerprint

// initialise the identity of this domain

val uid = mydomain.topology.init_id(identifier = "mydomain", fingerprint =␣

↪→namespace)

// create the root certificate for this namespace

mydomain.topology.namespace_delegations.authorize(

ops = TopologyChangeOp.Add,

namespace = namespace,

authorizedKey = namespace,

isRootDelegation = true,

)

// set the initial dynamic domain parameters for the domain

mydomain.topology.domain_parameters_changes

.authorize(

domainId = DomainId(uid),

newParameters =

ConsoleDynamicDomainParameters.defaultValues(protocolVersion =␣

↪→testedProtocolVersion),

protocolVersion = testedProtocolVersion,

(continues on next page)

1260 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

)

val mediatorId = MediatorId(uid)

Seq[Member](DomainTopologyManagerId(uid), SequencerId(uid), mediatorId).foreach {␣

↪→keyOwner =>

// in this case, we are using an embedded domain. therefore, we initialise all␣

↪→domain

// entities at once. in a distributed setup, the process needs to be invoked on

// the separate entities, and therefore requires a bit more coordination.

// however, the steps remain the same.

// then, create a topology transaction linking the entity to the signing key

mydomain.topology.owner_to_key_mappings.authorize(

ops = TopologyChangeOp.Add,

keyOwner = keyOwner,

key = signingKey.fingerprint,

purpose = KeyPurpose.Signing,

)

}

// Register the mediator

mydomain.topology.mediator_domain_states.authorize(

ops = TopologyChangeOp.Add,

domain = mydomain.id,

mediator = mediatorId,

side = RequestSide.Both,

)

Participant Initialization

The following steps describe how to manually initialize a participant node:

// use the fingerprint of this key for our identity

val namespace = identityKey.fingerprint

// create the root certificate ﴾self­signed﴿

participant.topology.namespace_delegations.authorize(

ops = TopologyChangeOp.Add,

namespace = namespace,

authorizedKey = namespace,

isRootDelegation = true,

)

// initialise the id: this needs to happen AFTER we created the namespace␣

↪→delegation

// ﴾on participants; for the domain, it's the other way around ... sorry for that﴿

// if we initialize the identity before we added the root certificate, then the␣

↪→system will

// complain about not being able to vet the admin workflow packages automatically.

// that would not be tragic, but would require a manual vetting step.

// in production, use a "random" identifier. for testing and development, use␣

↪→something

// helpful so you don't have to grep for hashes in your log files.

participant.topology.init_id(

(continues on next page)

1.30. Identity Management 1261

Daml SDK Documentation, 2.7.3

(continued from previous page)

identifier = Identifier.tryCreate("manualInit"),

fingerprint = namespace,

)

// assign new keys to this participant

Seq(encryptionKey, signingKey).foreach { key =>

participant.topology.owner_to_key_mappings.authorize(

ops = TopologyChangeOp.Add,

keyOwner = participant.id,

key = key.fingerprint,

purpose = key.purpose,

)

}

1.31 Common Operational Tasks

1.31.1 Manage Dars and Packages

A package is a unit of compiled Daml code corresponding to one Daml project. A DAR is a collection

of packages including a main package and all other packages from the dependencies of this Daml

project.

1.31.1.1 Uploading DARs

To use a Daml application on a participant, you need to upload it to your participant node. The ap-

plication always comes packaged as one or more DARs that need to be uploaded in the order of their

dependency. There are twoways touploadDARs to aCantonnode: either via the Ledger API, or through

Canton console command:

@ participant2.dars.upload("dars/CantonExamples.dar")

res1: String =

↪→"1220c783022e36adf132a905711d40850477d4b817e39f1b44d62af0f4a7a3c05476"

1.31.1.2 Inspecting DARs and Packages

You can get a list of uploaded DARs using:

@ participant2.dars.list()

res2: Seq[com.digitalasset.canton.participant.admin.v0.DarDescription] = Vector(

DarDescription(

hash = "1220c783022e36adf132a905711d40850477d4b817e39f1b44d62af0f4a7a3c05476",

name = "CantonExamples"

),

DarDescription(

hash = "122012a6f2b7c0b666e7541ce6f5d4273ab8d00da671b4d3bbb9bebb6a5120ec02c5",

name = "AdminWorkflowsWithVacuuming"

)

)

1262 Chapter 1. Canton References

https://docs.daml.com/app-dev/grpc/proto-docs.html#com-daml-ledger-api-v1-packageservice

Daml SDK Documentation, 2.7.3

Please note that the package “AdminWorkflows” is a package that ships with Canton. It contains

the Daml templates used by the participant.health.ping command.

In order to inspect the contents of the DAR, you need to grab the hash identifying it:

@ val dars = participant2.dars.list(filterName = "CantonExamples")

dars : Seq[com.digitalasset.canton.participant.admin.v0.DarDescription] = Vector(

DarDescription(

hash = "1220c783022e36adf132a905711d40850477d4b817e39f1b44d62af0f4a7a3c05476",

name = "CantonExamples"

)

)

@ val hash = dars.head.hash

hash : String =

↪→"1220c783022e36adf132a905711d40850477d4b817e39f1b44d62af0f4a7a3c05476"

Using that hash, you can inspect the contents of the DAR using:

@ val darContent = participant2.dars.list_contents(hash)

darContent : DarMetadata = DarMetadata(

name = "CantonExamples",

main = "9d65f326a67a0dc9a723dbaa3abb1b67831858940cfe6376475d7959120fe6d0",

packages = Vector(

"9d65f326a67a0dc9a723dbaa3abb1b67831858940cfe6376475d7959120fe6d0",

"bef3d1e9c2f8be31f80c032e930c85e336da27b64ebb1e3a31c9072e9df3a14b",

"cb0552debf219cc909f51cbb5c3b41e9981d39f8f645b1f35e2ef5be2e0b858a",

"3f4deaf145a15cdcfa762c058005e2edb9baa75bb7f95a4f8f6f937378e86415",

..

You can also directly look at the packages, using:

@ participant2.packages.list()

res6: Seq[com.digitalasset.canton.participant.admin.v0.PackageDescription] =␣

↪→Vector(

PackageDescription(

packageId = "86828b9843465f419db1ef8a8ee741d1eef645df02375ebf509cdc8c3ddd16cb

↪→",

sourceDescription = "CantonExamples"

),

PackageDescription(

packageId = "cc348d369011362a5190fe96dd1f0dfbc697fdfd10e382b9e9666f0da05961b7

↪→",

sourceDescription = "CantonExamples"

..

Pleasenote that aDAR can includepackages that are already included in other DARs. In particular the

Daml standard library are shipped with every DAR. Therefore, the sourceDescription will always

contain only one textual reference to a DAR.

You can also inspect the content of a package, using:

@ participant2.packages.list_contents(darContent.main)

res7: Seq[com.digitalasset.canton.participant.admin.v0.ModuleDescription] =␣

↪→Vector(

ModuleDescription(name = "CantonExamples"),

ModuleDescription(name = "ContractKeys"),

(continues on next page)

1.31. Common Operational Tasks 1263

Daml SDK Documentation, 2.7.3

(continued from previous page)

ModuleDescription(name = "SafePaint"),

ModuleDescription(name = "LockIou"),

ModuleDescription(name = "Iou"),

ModuleDescription(name = "Divulgence"),

ModuleDescription(name = "Paint"),

..

1.31.1.3 Understanding Package Vetting

Every participant operator uploadsDARs individually to their participant node. There is no global DAR

repository anywhere and participants do not have access to each others DAR repositories. Therefore,

for two participants to synchronise on a transaction that uses packages contained in a certain DAR,

we need both participant operators to have uploaded the same DAR before the transaction was sub-

mitted.

If one of the involved participants doesn’t know about a certain DAR, then the transactionwill bounce

with an error PACKAGE_NOT_VETTED_BY_RECIPIENTS.

This error goes back to the fact that both participants not only upload the DAR, but also publicly de-

clare towards their peers that they are ready to receive transactions referring to certain packages.

This declaration happens automatically when you upload a DAR. The package vettings can be in-

spected using (preview):

@ participant2.topology.vetted_packages.list()

res8: Seq[ListVettedPackagesResult] = Vector(

ListVettedPackagesResult(

context = BaseResult(

domain = "Authorized",

validFrom = 2023­06­12T12:18:42.142697Z,

validUntil = None,

operation = Add,

serialized = <ByteString@110816a5 size=2582 contents="\n\223\024\n\301\021\

↪→n\274\021\n\271\021\022 QJVnZH6yMsV48KljIgN1QyQ53uSqnNBtJ...">,

..

Vetting is necessary, as otherwise, a malicious participant might send a transaction referring to

package a receiver does not have, which would make it impossible for the receiver to process the

transaction, leading to a ledger fork. As transactions are valid only if all involved participants have

vetted the used packages, this attack cannot happen.

1.31.1.4 Removing Packages and DARs

Note: Note that package and DAR removal is under active development. The behaviour described

in this documentation may change in the future. Package and DAR removal is a preview feature and

should not be used in production.

Canton supports removal of both packages and DARs that are no longer in use. Removing unused

packages and DARs has the following advantages:

• Freeing up storage

1264 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

• Preventing accidental use of the old package / DAR

• Reducing the number of packages / DARs that are trusted and may potentially have to be au-

dited

Certain conditions must to be met in order to remove packages or DARs. These conditions are de-

signed to prevent removal of packages or DARs that are currently in use. The rest of this page de-

scribes the requirements.

Removing DARs

The following checks are performed before a DAR can be removed:

• The main package of the DAR must be unused – there should be no active contract from this

package

• All package dependencies of the DAR should either be unused or contained in another of the

participant node’s uploaded DARs. Canton uses this restriction to ensure that the package

dependencies of the DAR don’t become “stranded” if they’re in use.

• Themain package of the dar should not be vetted. If it is vetted, Cantonwill try to automatically

revoke the vetting for the main package of the DAR, but this automatic vetting revocation will

only succeed if the main package vetting originates from a standard dars.upload. Even if

the automatic revocation fails, you can always manually revoke the package vetting.

The following tutorial shows how to remove a DARwith the Canton console. The first step is to upload

a DAR so that we have one to remove. Additionally, store the packages that are present before the

DAR is uploaded, as these can be used to double-check that DAR removal reverts to a clean state.

@ val packagesBefore = participant1.packages.list().map(_.packageId).toSet

packagesBefore : Set[String] = HashSet(

"86828b9843465f419db1ef8a8ee741d1eef645df02375ebf509cdc8c3ddd16cb",

"5921708ce82f4255deb1b26d2c05358b548720938a5a325718dc69f381ba47ff",

"cc348d369011362a5190fe96dd1f0dfbc697fdfd10e382b9e9666f0da05961b7",

"bef3d1e9c2f8be31f80c032e930c85e336da27b64ebb1e3a31c9072e9df3a14b",

"6839a6d3d430c569b2425e9391717b44ca324b88ba621d597778811b2d05031d",

"99a2705ed38c1c26cbb8fe7acf36bbf626668e167a33335de932599219e0a235",

"e22bce619ae24ca3b8e6519281cb5a33b64b3190cc763248b4c3f9ad5087a92c",

"d58cf9939847921b2aab78eaa7b427dc4c649d25e6bee3c749ace4c3f52f5c97",

"6c2c0667393c5f92f1885163068cd31800d2264eb088eb6fc740e11241b2bf06",

..

@ val darHash = participant1.dars.upload("dars/CantonExamples.dar")

darHash : String =

↪→"1220c783022e36adf132a905711d40850477d4b817e39f1b44d62af0f4a7a3c05476"

If the DAR hash is unknown, it can be found using dars.list:

@ val darHash_ = participant1.dars.list().filter(_.name == "CantonExamples").head.

↪→hash

darHash_ : String =

↪→"1220c783022e36adf132a905711d40850477d4b817e39f1b44d62af0f4a7a3c05476"

The DAR can then be removed with the following command:

@ participant1.dars.remove(darHash)

Note that, right now, DAR removal will only remove the main packages associated with the DAR:

1.31. Common Operational Tasks 1265

Daml SDK Documentation, 2.7.3

@ val packageIds = participant1.packages.list().filter(_.sourceDescription ==

↪→"CantonExamples").map(_.packageId)

packageIds : Seq[String] = Vector(

"86828b9843465f419db1ef8a8ee741d1eef645df02375ebf509cdc8c3ddd16cb",

"cc348d369011362a5190fe96dd1f0dfbc697fdfd10e382b9e9666f0da05961b7",

"e491352788e56ca4603acc411ffe1a49fefd76ed8b163af86cf5ee5f4c38645b",

"cb0552debf219cc909f51cbb5c3b41e9981d39f8f645b1f35e2ef5be2e0b858a",

"38e6274601b21d7202bb995bc5ec147decda5a01b68d57dda422425038772af7",

"99a2705ed38c1c26cbb8fe7acf36bbf626668e167a33335de932599219e0a235",

"f20de1e4e37b92280264c08bf15eca0be0bc5babd7a7b5e574997f154c00cb78",

"283fdcf3bbbc04db4ee15ba5760dbe459aee1087f358b7e6cd4d7da2ff36e776",

"8a7806365bbd98d88b4c13832ebfa305f6abaeaf32cfa2b7dd25c4fa489b79fb",

..

It’s possible to remove each of thesemanually, using package removal. There is a complication here

that packages needed for admin workflows (e.g. the Ping command) cannot be removed, so these

are skipped.

@ packageIds.filter(id => ! packagesBefore.contains(id)).foreach(id =>␣

↪→participant1.packages.remove(id))

The following command verifies that all the packages have been removed.

@ val packages = participant1.packages.list().map(_.packageId).toSet

packages : Set[String] = HashSet(

"86828b9843465f419db1ef8a8ee741d1eef645df02375ebf509cdc8c3ddd16cb",

"5921708ce82f4255deb1b26d2c05358b548720938a5a325718dc69f381ba47ff",

"cc348d369011362a5190fe96dd1f0dfbc697fdfd10e382b9e9666f0da05961b7",

"bef3d1e9c2f8be31f80c032e930c85e336da27b64ebb1e3a31c9072e9df3a14b",

"6839a6d3d430c569b2425e9391717b44ca324b88ba621d597778811b2d05031d",

"99a2705ed38c1c26cbb8fe7acf36bbf626668e167a33335de932599219e0a235",

"e22bce619ae24ca3b8e6519281cb5a33b64b3190cc763248b4c3f9ad5087a92c",

"d58cf9939847921b2aab78eaa7b427dc4c649d25e6bee3c749ace4c3f52f5c97",

"6c2c0667393c5f92f1885163068cd31800d2264eb088eb6fc740e11241b2bf06",

..

@ assert(packages == packagesBefore)

The following sections explain what happens when the DAR removal operation goes wrong, for vari-

ous reasons.

Main package of the DAR is in use

The first step to illustrate this is to upload a DAR and create a contract using the main package of

the DAR:

@ val darHash = participant1.dars.upload("dars/CantonExamples.dar")

darHash : String =

↪→"1220c783022e36adf132a905711d40850477d4b817e39f1b44d62af0f4a7a3c05476"

@ val packageId = participant1.packages.find("Iou").head.packageId

packageId : String =

↪→"9d65f326a67a0dc9a723dbaa3abb1b67831858940cfe6376475d7959120fe6d0"

1266 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

@ participant1.domains.connect_local(mydomain)

@ val createIouCmd = ledger_api_utils.create(packageId,"Iou","Iou",Map("payer" ­>␣

↪→participant1.adminParty,"owner" ­> participant1.adminParty,"amount" ­> Map(

↪→"value" ­> 100.0, "currency" ­> "EUR"),"viewers" ­> List()))

..

@ participant1.ledger_api.commands.submit(Seq(participant1.adminParty),␣

↪→Seq(createIouCmd))

res21: com.daml.ledger.api.v1.transaction.TransactionTree = TransactionTree(

transactionId =

↪→"1220140615c40a381f9b867ceb78961bb1fbaceb82c8c52259ce4c5e83940bd4fc4e",

commandId = "09fd6428­b7a8­49eb­9972­85f1f3dd9376",

workflowId = "",

effectiveAt = Some(

..

Now that a contract exists using themain package of the DAR, a subsequent DAR removal operation

will fail:

@ participant1.dars.remove(darHash)

ERROR com.digitalasset.canton.integration.EnterpriseEnvironmentDefinition$$anon$3␣

↪→­ Request failed for participant1.

GrpcRequestRefusedByServer: FAILED_PRECONDITION/PACKAGE_OR_DAR_REMOVAL_ERROR(9,

↪→40ff158c): The DAR DarDescriptor(SHA­256:c783022e36ad...,CantonExamples) cannot␣

↪→be removed because its main package␣

↪→9d65f326a67a0dc9a723dbaa3abb1b67831858940cfe6376475d7959120fe6d0 is in­use by␣

↪→contract␣

↪→ContractId(005170f294b69a37a7ba0c30a8f0c6ea1ab81e142e74fb146f19104af801cac302ca0112203845e89891f897f3bbc66395732e4994ccd4b3e26ebc9a46ca0e272d4c284422)

on domain mydomain::1220bf7c580f....

Request:␣

↪→RemoveDar(1220c783022e36adf132a905711d40850477d4b817e39f1b44d62af0f4a7a3c05476)

CorrelationId: 40ff158cd233c870d3dcba1e95b267bb

Context: HashMap(participant ­> participant1, test ­>␣

↪→PackageDarManagementDocumentationIntegrationTest, pkg ­>␣

↪→9d65f326a67a0dc9a723dbaa3abb1b67831858940cfe6376475d7959120fe6d0, tid ­>␣

↪→40ff158cd233c870d3dcba1e95b267bb)

Command ParticipantAdministration$dars$.remove invoked from cmd10000056.sc:1

In order to remove the DAR, wemust archive this contract. Note that the contract ID for this contract

can also be found in the error message above.

@ val iou = participant1.ledger_api.acs.find_generic(participant1.adminParty, _.

↪→templateId.isModuleEntity("Iou", "Iou"))

iou : com.digitalasset.canton.admin.api.client.commands.LedgerApiTypeWrappers.

↪→WrappedCreatedEvent = WrappedCreatedEvent(

event = CreatedEvent(

eventId = "

↪→#1220140615c40a381f9b867ceb78961bb1fbaceb82c8c52259ce4c5e83940bd4fc4e:0",

contractId =

↪→"005170f294b69a37a7ba0c30a8f0c6ea1ab81e142e74fb146f19104af801cac302ca0112203845e89891f897f3bbc66395732e4994ccd4b3e26ebc9a46ca0e272d4c284422

↪→",

templateId = Some(

value = Identifier(

packageId =

↪→"9d65f326a67a0dc9a723dbaa3abb1b67831858940cfe6376475d7959120fe6d0",
(continues on next page)

1.31. Common Operational Tasks 1267

Daml SDK Documentation, 2.7.3

(continued from previous page)

moduleName = "Iou",

entityName = "Iou"

)

..

@ val archiveIouCmd = ledger_api_utils.exercise("Archive", Map.empty, iou.event)

..

@ participant1.ledger_api.commands.submit(Seq(participant1.adminParty),␣

↪→Seq(archiveIouCmd))

res24: com.daml.ledger.api.v1.transaction.TransactionTree = TransactionTree(

transactionId =

↪→"1220e94572b389df0216fefdbbd67933938779a64c789fa2a2fd01a9ad19ea34125d",

commandId = "a638b802­02b4­4fdb­a4f6­a3d59a6777f5",

workflowId = "",

effectiveAt = Some(

..

The DAR removal operation will now succeed.

@ participant1.dars.remove(darHash)

Main package of the DAR can’t be automatically removed

Similarly, DAR removal may fail because the DAR can’t be automatically removed. To illustrate this,

upload the DAR without automatic vetting and subsequently vet all the packages manually.

@ val darHash = participant1.dars.upload("dars/CantonExamples.dar",␣

↪→vetAllPackages = false)

darHash : String =

↪→"1220c783022e36adf132a905711d40850477d4b817e39f1b44d62af0f4a7a3c05476"

@ import com.daml.lf.data.Ref.IdString.PackageId

@ val packageIds = participant1.packages.list().filter(_.sourceDescription ==

↪→"CantonExamples").map(_.packageId).map(PackageId.assertFromString)

packageIds : Seq[PackageId] = Vector(

"86828b9843465f419db1ef8a8ee741d1eef645df02375ebf509cdc8c3ddd16cb",

"cc348d369011362a5190fe96dd1f0dfbc697fdfd10e382b9e9666f0da05961b7",

..

@ participant1.topology.vetted_packages.authorize(TopologyChangeOp.Add,␣

↪→participant1.id, packageIds)

res29: com.google.protobuf.ByteString = <ByteString@27db41fd size=2382 contents="\

↪→n\313\022\n\373\017\n\366\017\n\363\017\022 0SDxlEAROOtxd441yH4iwrMCwtqn7ZB2J...

↪→">

The DAR removal operation will now fail:

@ participant1.dars.remove(darHash)

ERROR com.digitalasset.canton.integration.EnterpriseEnvironmentDefinition$$anon$3␣

↪→­ Request failed for participant1.
(continues on next page)

1268 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

GrpcRequestRefusedByServer: FAILED_PRECONDITION/PACKAGE_OR_DAR_REMOVAL_ERROR(9,

↪→6d26d83c): An error was encountered whilst trying to unvet the DAR␣

↪→DarDescriptor(SHA­256:c783022e36ad...,CantonExamples) with main package␣

↪→9d65f326a67a0dc9a723dbaa3abb1b67831858940cfe6376475d7959120fe6d0 for DAR␣

↪→removal. Details: IdentityManagerParentError(Mapping(VettedPackages(

participant = participant1::12203c8338b7...,

packages = Seq(

9d65f326a67a...,

bef3d1e9c2f8...,

cb0552debf21...,

3f4deaf145a1...,

86828b984346...,

f20de1e4e37b...,

76bf0fd12bd9...,

38e6274601b2...,

d58cf...

Request:␣

↪→RemoveDar(1220c783022e36adf132a905711d40850477d4b817e39f1b44d62af0f4a7a3c05476)

CorrelationId: 6d26d83cdf69a4e4f41f56f2d3f1e28c

Context: Map(participant ­> participant1, tid ­>␣

↪→6d26d83cdf69a4e4f41f56f2d3f1e28c, test ­>␣

↪→PackageDarManagementDocumentationIntegrationTest)

Command ParticipantAdministration$dars$.remove invoked from cmd10000076.sc:1

The DAR can be successfully removed after manually revoking the vetting for the main package:

@ participant1.topology.vetted_packages.authorize(TopologyChangeOp.Remove,␣

↪→participant1.id, packageIds, force = true)

res30: com.google.protobuf.ByteString = <ByteString@237238b1 size=2384 contents="\

↪→n\315\022\n\375\017\n\370\017\n\365\017\b\001\022␣

↪→0SDxlEAROOtxd441yH4iwrMCwtqn7ZB...">

@ participant1.dars.remove(darHash)

Note that a force flag is needed used to revoke the package vetting; throughout this tutorial force

will be used whenever a package vetting is being removed. See topology.vetted_packages.authorize for

more detail.

Removing Packages

Canton also supports removing individual packages, giving the user more fine-grained control over

the system. Packages can be removed if the package satisfies the following two requirements:

• The package must be unused. This means that there shouldn’t be an active contract corre-

sponding to the package.

• The package must not be vetted. This means there shouldn’t be an active vetting transaction

corresponding to the package.

The following tutorial shows how to remove a package using the Canton console. The first step is to

upload and identify the package ID for the package to be removed.

@ val darHash = participant1.dars.upload("dars/CantonExamples.dar")

darHash : String =

↪→"1220c783022e36adf132a905711d40850477d4b817e39f1b44d62af0f4a7a3c05476"

1.31. Common Operational Tasks 1269

Daml SDK Documentation, 2.7.3

@ val packageId = participant1.packages.find("Iou").head.packageId

packageId : String =

↪→"9d65f326a67a0dc9a723dbaa3abb1b67831858940cfe6376475d7959120fe6d0"

Package removal will initially fail as, by default, uploading the DAR will add a vetting transaction for

the package:

@ participant1.packages.remove(packageId)

ERROR com.digitalasset.canton.integration.EnterpriseEnvironmentDefinition$$anon$3␣

↪→­ Request failed for participant1.

GrpcRequestRefusedByServer: FAILED_PRECONDITION/PACKAGE_OR_DAR_REMOVAL_ERROR(9,

↪→a10cdd12): Package␣

↪→9d65f326a67a0dc9a723dbaa3abb1b67831858940cfe6376475d7959120fe6d0 is currently␣

↪→vetted and available to use.

Request:␣

↪→RemovePackage(9d65f326a67a0dc9a723dbaa3abb1b67831858940cfe6376475d7959120fe6d0,

↪→false)

CorrelationId: a10cdd12ceeefbc4a17c2bc21b469371

Context: Map(participant ­> participant1, tid ­>␣

↪→a10cdd12ceeefbc4a17c2bc21b469371, test ­>␣

↪→PackageDarManagementDocumentationIntegrationTest)

Command ParticipantAdministration$packages$.remove invoked from cmd10000087.sc:1

The vetting transaction must be manually revoked:

@ val packageIds = participant1.topology.vetted_packages.list().map(_.item.

↪→packageIds).filter(_.contains(packageId)).head

packageIds : Seq[com.digitalasset.canton.package.LfPackageId] = Vector(

"9d65f326a67a0dc9a723dbaa3abb1b67831858940cfe6376475d7959120fe6d0",

"bef3d1e9c2f8be31f80c032e930c85e336da27b64ebb1e3a31c9072e9df3a14b",

..

@ participant1.topology.vetted_packages.authorize(TopologyChangeOp.Remove,␣

↪→participant1.id, packageIds, force = true)

res35: com.google.protobuf.ByteString = <ByteString@4fb290fb size=2384 contents="\

↪→n\315\022\n\375\017\n\370\017\n\365\017\b\001\022␣

↪→mpi2lnnmh4OW4bQLCDbKw64QaIc9acP...">

And then the package can be removed:

@ participant1.packages.remove(packageId)

Package is in use

The operations above will fail if the package is in use. To illustrate this, first re-upload the package

(uploading the associated DAR will work):

@ val darHash = participant1.dars.upload("dars/CantonExamples.dar")

darHash : String =

↪→"1220c783022e36adf132a905711d40850477d4b817e39f1b44d62af0f4a7a3c05476"

Then create a contract using the package:

1270 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

@ val createIouCmd = ledger_api_utils.create(packageId,"Iou","Iou",Map("payer" ­>␣

↪→participant1.adminParty,"owner" ­> participant1.adminParty,"amount" ­> Map(

↪→"value" ­> 100.0, "currency" ­> "EUR"),"viewers" ­> List()))

createIouCmd : com.daml.ledger.api.v1.commands.Command = Command(

command = Create(

value = CreateCommand(

templateId = Some(

value = Identifier(

..

@ participant1.ledger_api.commands.submit(Seq(participant1.adminParty),␣

↪→Seq(createIouCmd))

res39: com.daml.ledger.api.v1.transaction.TransactionTree = TransactionTree(

transactionId =

↪→"12204b37add31c559ac455ef8b81c5b2b4b4a9fc582aa8af26312b9fdcff5f8f0722",

commandId = "9c107e7c­e63a­46af­bfbc­7dc36d0e6a31",

workflowId = "",

effectiveAt = Some(

value = Timestamp(

seconds = 1686572343L,

nanos = 324270000,

unknownFields = UnknownFieldSet(fields = Map())

)

..

In this situation, the package cannot be removed:

@ participant1.packages.remove(packageId)

ERROR com.digitalasset.canton.integration.EnterpriseEnvironmentDefinition$$anon$3␣

↪→­ Request failed for participant1.

GrpcRequestRefusedByServer: FAILED_PRECONDITION/PACKAGE_OR_DAR_REMOVAL_ERROR(9,

↪→7f16ca92): Package␣

↪→9d65f326a67a0dc9a723dbaa3abb1b67831858940cfe6376475d7959120fe6d0 is currently␣

↪→in­use by contract␣

↪→ContractId(00f83a2f1d08029ba57a7d094db04e384e65ca77db569936e4b4ead52805993eb4ca0112209b309891c946638a730ced565114bd0a976b5df45f3a12d4f2d78d5c2fc2ce4d)␣

↪→on domain mydomain::1220bf7c580f.... It may also be in­use by other contracts.

Request:␣

↪→RemovePackage(9d65f326a67a0dc9a723dbaa3abb1b67831858940cfe6376475d7959120fe6d0,

↪→false)

CorrelationId: 7f16ca92dea13a8d2e27e2a68d3ed5fe

Context: HashMap(participant ­> participant1, test ­>␣

↪→PackageDarManagementDocumentationIntegrationTest, domain ­>␣

↪→mydomain::1220bf7c580f..., pkg ­>␣

↪→9d65f326a67a0dc9a723dbaa3abb1b67831858940cfe6376475d7959120fe6d0, tid ­>␣

↪→7f16ca92dea13a8d2e27e2a68d3ed5fe, contract ­>␣

↪→ContractId(00f83a2f1d08029ba57a7d094db04e384e65ca77db569936e4b4ead52805993eb4ca0112209b309891c946638a730ced565114bd0a976b5df45f3a12d4f2d78d5c2fc2ce4d))

Command ParticipantAdministration$packages$.remove invoked from cmd10000103.sc:1

To remove the package, first archive the contract:

@ val iou = participant1.ledger_api.acs.find_generic(participant1.adminParty, _.

↪→templateId.isModuleEntity("Iou", "Iou"))

iou : com.digitalasset.canton.admin.api.client.commands.LedgerApiTypeWrappers.

↪→WrappedCreatedEvent = WrappedCreatedEvent(

event = CreatedEvent(

eventId = "

↪→#12204b37add31c559ac455ef8b81c5b2b4b4a9fc582aa8af26312b9fdcff5f8f0722:0",(continues on next page)

1.31. Common Operational Tasks 1271

Daml SDK Documentation, 2.7.3

(continued from previous page)

contractId =

↪→"00f83a2f1d08029ba57a7d094db04e384e65ca77db569936e4b4ead52805993eb4ca0112209b309891c946638a730ced565114bd0a976b5df45f3a12d4f2d78d5c2fc2ce4d

↪→",

templateId = Some(

value = Identifier(

packageId =

↪→"9d65f326a67a0dc9a723dbaa3abb1b67831858940cfe6376475d7959120fe6d0",

moduleName = "Iou",

entityName = "Iou"

)

..

@ val archiveIouCmd = ledger_api_utils.exercise("Archive", Map.empty, iou.event)

archiveIouCmd : com.daml.ledger.api.v1.commands.Command = Command(

command = Exercise(

value = ExerciseCommand(

templateId = Some(

value = Identifier(

packageId =

↪→"9d65f326a67a0dc9a723dbaa3abb1b67831858940cfe6376475d7959120fe6d0",

moduleName = "Iou",

entityName = "Iou"

)

),

..

@ participant1.ledger_api.commands.submit(Seq(participant1.adminParty),␣

↪→Seq(archiveIouCmd))

res42: com.daml.ledger.api.v1.transaction.TransactionTree = TransactionTree(

transactionId =

↪→"1220fb7be1e400fe1f2d4506b8c5fa1c383e200150667e1feffbbe6b81f4b23695a1",

commandId = "9605fb99­b2f5­4483­aadf­82f9464041e3",

workflowId = "",

effectiveAt = Some(

value = Timestamp(

seconds = 1686572344L,

nanos = 187726000,

unknownFields = UnknownFieldSet(fields = Map())

)

),

offset = "00000000000000000c",

..

Then revoke the package vetting transaction:

@ val packageIds = participant1.topology.vetted_packages.list().map(_.item.

↪→packageIds).filter(_.contains(packageId)).head

packageIds : Seq[com.digitalasset.canton.package.LfPackageId] = Vector(

"9d65f326a67a0dc9a723dbaa3abb1b67831858940cfe6376475d7959120fe6d0",

"bef3d1e9c2f8be31f80c032e930c85e336da27b64ebb1e3a31c9072e9df3a14b",

..

@ participant1.topology.vetted_packages.authorize(TopologyChangeOp.Remove,␣

↪→participant1.id, packageIds, force = true)

(continues on next page)

1272 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

res44: com.google.protobuf.ByteString = <ByteString@6328d67d size=2384 contents="\

↪→n\315\022\n\375\017\n\370\017\n\365\017\b\001\022␣

↪→LJkyooFPhwkMj4HzoHpmsrxdXvEDWsP...">

The package removal operation should now succeed.

@ participant1.packages.remove(packageId)

Force-removing packages

Packages can also be forcibly removed, even if the conditions above are not satisfied. This is done

by setting the force flag to true.

To experiment with this, first re-upload the DAR so the package becomes available again:

@ participant1.dars.upload("dars/CantonExamples.dar")

res46: String =

↪→"1220c783022e36adf132a905711d40850477d4b817e39f1b44d62af0f4a7a3c05476"

Then force-remove the package:

@ participant1.packages.remove(packageId, force = true)

Please note, this is a dangerous operation. Forced removal of packages should be avoided whenever

possible.

1.31.2 Upgrading

This section covers the processes to upgrade Canton participant and domain nodes. Upgrading

Daml applications is covered elsewhere.

As elaborated in the versioning guide, new features, improvements and fixes are released regularly. To

benefit from these changes, the Canton-based systemmust be upgraded.

There are two key aspects that need to be addressed when upgrading a system:

• Upgrading the Canton binary that is used to run a node.

• Upgrading the protocol version (wire format and semantics of the APIs used between the

nodes).

Canton is a distributed system, where no single operator controls all nodes. Therefore, we must

support the situation where nodes are upgraded individually, providing a safe upgrade mechanism

that requires the minimal amount of synchronized actions within a network.

A Canton binary supports multiple protocol versions, and new protocol versions are introduced in a

backwards compatible way with a new binary (see version table). Therefore, any upgrade of a protocol

used in adistributedCantonnetwork is doneby individually upgradingall binaries andsubsequently

changing the protocol version used among the nodes to the desired one.

The following recipe is a general guide. Before upgrading to a specific version, please check the

individual notes for each version.

This guide also assumes that the upgrade is a minor or a patch release. Major release upgrades

might differ and will be covered separately if necessary.

1.31. Common Operational Tasks 1273

https://docs.daml.com/upgrade/upgrade.html

Daml SDK Documentation, 2.7.3

Please read the entire guide before proceeding, please backup your data before you do any upgrade,

and please test your upgrade carefully before attempting to upgrade your production system.

1.31.2.1 Upgrade Canton Binary

A Canton node consists of one or more processes, where each process is defined by

• A Java Virtual Machine application running a versioned jar of Canton.

• A set of configuration files describing the node that is being run.

• An optional bootstrap script passed via ­­boostrap, which runs on startup.

• A database (with a specific schema), holding the data of the node.

Therefore, to upgrade the node, you will need to not only replace the jar, but also test that the con-

figuration files can still be parsed by the new process, that the bootstrap script you are using is still

working, and you need to upgrade the database schema.

Generally, all changes to configuration files should be backwards compatible, and therefore not be

affected by the upgrade process. In rare cases, there might be a minor change to the configuration

file necessary in order to support the upgrade process. Sometimes, fixing a substantial bug might

require a minor breaking change to the API. The same applies to Canton scripts.

The schema in the database is versioned and managed using Flyway. Detecting and applying

changes is done by Canton using that library. Understanding this background can be helpful to

troubleshoot issues.

Preparation

First, please download the new Canton binary that you want to upgrade to and store it on the test

system where you want to test the upgrade process first.

Then, obtain a recent backup of the database of the node and deploy it to a database server of your

convenience, such that you can test the upgrade process without affecting your production sys-

tem. While we extensively test the upgrade process ourselves, we cannot exclude the eventuality

that you are using the system in a non-anticipated way. Testing is cumbersome, but breaking a

production system is worse.

If you are upgrading a participant, then we suggest that you also use an in-memory domain which

you can tear down after you’ve tested that the upgrade of the participant is working. You might do

that by adding a simple domaindefinition as a configurationmixin to your participant configuration.

Generally, if you are running an high-availability setup, please take all nodes offline before perform-

ing an upgrade. If the update requires a databasemigration (check the release notes), avoid running

older and newer binaries in a replicated setup, as the two binariesmight expect a different database

layout.

You can upgrade the binaries of a microservice-based domain in any order, as long as you upgrade

the binaries of nodes accessing the same database at the same time. For example, you could up-

grade the binary of a replicated mediator node on one weekend and an active-active database se-

quencer on another weekend.

1274 Chapter 1. Canton References

https://flywaydb.org/

Daml SDK Documentation, 2.7.3

Back Up Your Database

Before you upgrade the database and binary, please ensure that you have backed up your data, such

that you can roll back to the previous version in case of an issue. You canbackup your data by cloning

it. In Postgres, the command is:

CREATE DATABASE newdb WITH TEMPLATE originaldb OWNER dbuser;

Whendoing this, you need to change the database nameanduser name in above command tomatch

your setup.

Test your Configuration

First, let’s test that the configuration still works

./bin/canton ­v ­c storage­for­upgrade­testing.conf ­c mynode.conf ­­manual­start

Here, the files storage­for­upgrade­testing.conf and mynode.conf need to be adjusted to

match your case.

If Canton starts and shows the command prompt of the console, then the configuration was parsed

successfully.

The command line option ­­manual­start will ensure that the node is not started automatically,

as we first need to migrate the database.

Migrating the Database

Canton does not perform a database migration automatically. Migrations need to be forced. If you

start a node with that requires a database migration, you will observe the following Flyway error:

@ participant.start()

ERROR com.digitalasset.canton.integration.EnterpriseEnvironmentDefinition$$anon$3␣

↪→­ failed to initialize participant: There are 5 pending migrations to get to␣

↪→database schema version 6. Currently on version 1.1. Please run `participant.db.

↪→migrate` to apply pending migrations

Command LocalParticipantReference.start invoked from cmd10000002.sc:1

The database schema definitions are versioned and hashed. This error informs us about the current

database schema version and how many migrations need to be applied.

We can now force the migration to a new schema using:

@ participant.db.migrate()

Please note that you need to ensure that the user account the node is using to access the database

allows to change the database schema. How long the migration takes depends on the version of the

binary (see migration notes), the size of the database and the performance of the database server.

Subsequently, you can successfully start the node

@ participant.start()

1.31. Common Operational Tasks 1275

Daml SDK Documentation, 2.7.3

Please note that while we’ve used a participant node here as an example, the behaviour is the same

for all other types of nodes.

Test Your Upgrade

Once your node is up and running, you can test it by running a ping. If you are testing the upgrade of

your participant node, then you might want to connect to the test domain

@ testdomain.start()

@ participant.domains.connect_local(testdomain)

If you did the actual upgrade of the production instance, then youwould just reconnect to the current

domain before running the ping:

@ participant.domains.reconnect_all()

You can check that the domain is up and running using

@ participant.domains.list_connected()

res6: Seq[ListConnectedDomainsResult] = Vector(

ListConnectedDomainsResult(

domainAlias = Domain 'testdomain',

domainId = testdomain::122056e307f0...,

healthy = true

)

)

Finally, you can ping the participant to see if the system is operational

@ participant.health.ping(participant)

res7: Duration = 987 milliseconds

Version Specific Notes

Upgrade to Release 2.7

Version 2.7 slightly extends the database schema. Therefore, you will have to perform the database

migration steps. Alternatively, you can enable the new “migrate and start” mode in Canton, which

triggers an automatic update of the database schema when a new minor version is deployed. This

mode can be enabled by setting the appropriate storage parameter:

canton.X.Y.storage.parameters.migrate­and­start = yes

To benefit from the new security features in protocol version 5, you must upgrade the domain accord-

ingly.

1276 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Activation of unsupported features

In order to activate unsupported features, you now need to explicitly enable dev-version-support on

the domain (in addition to the non-standard config flag). More information can be found in the

documentation.

Breaking changes around console commands

Key rotation The command keys.secret.rotate_wrapper_key now returns a different error

code. An INVALID_WRAPPER_KEY_ID error has been replaced by an INVALID_KMS_KEY_ID error.

Adding sequencer connection The configuration of the sequencer client has been updated to ac-

commodate multiple sequencers and their endpoints: method addConnection has been renamed

to addEndpoints to better reflect the fact that it modifies an endpoint for the sequencer.

Hence, command to add a new sequencer connection to the mediator would be changed to:

mediator1.sequencer_connection.modifyConnections(

_.addEndpoints(SequencerAlias.Default, connection)

)

Unique contract key deprecation

The unique-contract-keys parameters for both participant and sync domain nodes are now marked

as deprecated. As of this release, the meaning and default value (true) remain unchanged. However,

contract key uniqueness will not be available in the nextmajor version, featuringmulti-domain con-

nectivity. If you are already setting this key to false explicitly (preview), this behavior will be the

default one after the configuration key is removed. If you don’t explicitly set this value to false, you

are encouraged to evaluate evolving your existing applications and services to avoid relying on this

feature. You can read more on the topic in the documentation.

Causality tracking

An obsolete early access feature to enable causality tracking, related to preview multi-domain, was

removed. If you enabled it, you need to remove the following config lines, as they will not compile

anymore:

participants.participant.init.parameters.unsafe­enable­causality­tracking = true

participants.participant.parameters.enable­causality­tracking = true

1.31. Common Operational Tasks 1277

Daml SDK Documentation, 2.7.3

Besu and Fabric drivers

In order to allow for independent updates of the different components, we have moved the drivers

into a separate jar, which needs to be loaded into a separate classpath. As a result, deployments that

use Fabric or Besu need to additionally download the jar and place it in the appropriate directory.

Please consult the installation documentation on how to obtain this additional jar.

Removal of deploy_sequencer_contract

The command deploy_sequencer_contract has been removed and exchanged with a deploy-

ment through genesis block in examples. The deploy_sequencer_contract, while convenient, is

ill-suited for any production environment and can cause more damage than harm. The deployment

of a sequencing contract should only happen once on the blockchain; however, adding deployment

as part of the bootstrapping script would cause a redeployment each time bootstrapping is done.

Ledger API error codes

The error codes andmetadata of gRPC errors returned as part of failed command interpretation from

the Ledger API have been updated to include more information. Previously, most errors from the

Daml engine would be given as either GenericInterpretationError or InvalidArgumentIn­

terpretationError. They now all have their own codes and encode relevant information in the

gRPC Status metadata. Specific error changes are as follows: * GenericInterpretationError

(Code: DAML_INTERPRETATION_ERROR)with gRPCstatusFAILED_PRECONDITION is nowsplit into:

• DisclosedContractKeyHashingError (Code: DISCLOSED_CONTRACT_KEY_HASH­

ING_ERROR) with gRPC status FAILED_PRECONDITION

• UnhandledException (Code: UNHANDLED_EXCEPTION) with gRPC status FAILED_PRECON­

DITION

• InterpretationUserError (Code: INTERPRETATION_USER_ERROR) with gRPC status

FAILED_PRECONDITION

• TemplatePreconditionViolated (Code: TEMPLATE_PRECONDITION_VIOLATED) with

gRPC status INVALID_ARGUMENT

• InvalidArgumentInterpretationError (Code: DAML_INTERPRETER_INVALID_ARGU­

MENT) with gRPC status INVALID_ARGUMENT is now split into:

– CreateEmptyContractKeyMaintainers (Code: CREATE_EMPTY_CON­

TRACT_KEY_MAINTAINERS) with gRPC status INVALID_ARGUMENT

– FetchEmptyContractKeyMaintainers (Code: FETCH_EMPTY_CONTRACT_KEY_MAIN­

TAINERS) with gRPC status INVALID_ARGUMENT

– WronglyTypedContract (Code: WRONGLY_TYPED_CONTRACT) with gRPC status

FAILED_PRECONDITION

– ContractDoesNotImplementInterface (Code: CONTRACT_DOES_NOT_IMPLE­

MENT_INTERFACE) with gRPC status INVALID_ARGUMENT

– ContractDoesNotImplementRequiringInterface (Code: CON­

TRACT_DOES_NOT_IMPLEMENT_REQUIRING_INTERFACE) with gRPC status IN­

VALID_ARGUMENT

– NonComparableValues (Code: NON_COMPARABLE_VALUES) with gRPC status IN­

VALID_ARGUMENT

– ContractIdInContractKey (Code: CONTRACT_ID_IN_CONTRACT_KEY) with gRPC sta-

tus INVALID_ARGUMENT

1278 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

– ContractIdComparability (Code: CONTRACT_ID_COMPARABILITY) with gRPC status

INVALID_ARGUMENT

– InterpretationDevError (Code: INTERPRETATION_DEV_ERROR) with gRPC status

FAILED_PRECONDITION

• The ContractKeyNotVisible error (previously encapsulated by GenericInterpreta­

tionError) is now transformed into a ContractKeyNotFound to avoid information leaking.

Upgrade to Release 2.5

Version 2.5 will slightly extend the database schema used. Therefore, you will have to perform the

database migration steps.

Some configuration arguments have changed. While rewrite rules are in-place for backwards com-

patibility, we recommend that you test your configuration prior to upgrading andupdate the settings

to avoid using deprecated flags.

IMPORTANT: Existing domains and domain managers need to be reconfigured to keep on working. It

is important that before attempting the binary upgrade, you configure the currently used protocol

version explicitly:

canton.domains.mydomain.init.domain­parameters.protocol­version = 3

Nodes persist the static domain parameters used during initialization now. Version 2.5 is the last

version that will require this explicit configuration setting during upgrading.

If you started the domain node accidentally before changing your configuration, your participants

won’t be able to reconnect to the domain, as they will fail with a message like:

DOMAIN_PARAMETERS_CHANGED(9,d5dfa5ce): The domain parameters have changed

To recover from this, you need to force a reset of the stored static domain parameters using:

canton.domains.mydomain.init.domain­parameters.protocol­version = 3

canton.domains.mydomain.init.domain­parameters.reset­stored­static­config = yes

In order to benefit from protocol version 4, you will have to upgrade the domain accordingly.

Upgrade to Release 2.4

Version 2.4 will slightly extend the database schema used. Therefore, you will have to perform the

database migration steps.

There have been a few consistency improvements to some console commands. In particular, we have

renamed a few of the arguments and changed some of their types. As we have included automatic

conversion and the change only affects special arguments (mainly timeouts), your script should still

work. However, we recommend that you test your scripts for compilation issues. Please check the

detailed release notes on the specific changes and their impact.

There was no change to the protocol. Participants / domains running 2.3 can also run 2.4, as both

versions use the same protocol version.

1.31. Common Operational Tasks 1279

Daml SDK Documentation, 2.7.3

Upgrade to Release 2.3

Version 2.3 will slightly extend the database schema used. Therefore, you will have to perform the

database migration steps.

Furthermore, the Canton binary with version 2.3 has introduced a new protocol version 3, and dep-

recated the previous protocol version 2. In order to keep a node operational that is using protocol

version 2, you need to turn on support for the deprecated protocol version.

On the participant, you need to turn on support for deprecated protocols explicitly:

canton.participants.myparticipant.parameters.minimum­protocol­version = 2.0.0

The default setting have changed to use protocol 3, while existing domains run protocol 2. There-

fore, if you upgrade the binary on domain and domain manager nodes, you need to explicitly set the

protocol version as follows:

canton.domains.mydomain.init.domain­parameters.protocol­version = 2.0.0

You cannot upgrade the protocol of a deployed domain! You need to keep it running with the ex-

isting protocol. Please follow the protocol upgrade guide to learn how to introduce a new protocol

version.

1.31.2.2 Change the Canton Protocol Version

The Canton protocol is defined by the semantics and thewire-format used by the nodes to communi-

cate to each other. In order to process transactions, all nodesmust be able to understand and speak

the same protocol.

Therefore, a new protocol can be introduced only once all nodes have been upgraded to a binary that

can run the version.

Upgrade the Domain to a new Protocol Version

A domain is tied to a protocol version. This protocol version is configured when the domain is ini-

tialized and cannot be changed afterwards. Therefore, you can not upgrade the protocol version of

a domain. Instead, you deploy a new domain side by side of the old domain process.

This applies to all domain members, be it sequencer, mediator or topology manager.

Please note that currently, the domain-id cannot be preserved during upgrades. The new domain

must have a different domain-id due to the fact that the participant internally is associating a do-

main connection with a domain-id, and that association must be unique.

Therefore, the protocol upgrade process boils down to:

• Deploy a new domain next to the old domain. Ensure that the new domain is using the desired

protocol version. Ensure that you are using different databases (or at least different schemas

in the same database), channel names, smart contract addresses etc. It must be a completely

separate domain (albeit you can reuse your DLT backend as long as you use different sequencer

contract addresses or Fabric channels).

• Instruct the participants individually using the hard domainmigration to use the new domain.

1280 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Note: to use the same database with different schemas for the old and the new domain, set the

currentSchema either in the JDBC URL or as a parameter in storage.config.properties.

Hard Domain Connection Upgrade

A hard domain connection upgrade can be performed using the respective migration command. Again,

please ensure that you have appropriate backups in place and that you have tested this procedure

before applying it to your production system. Youwill have to enable these commandsusingaspecial

config switch:

canton.features.enable­repair­commands=yes

The process of a hard migration is quite straightforward. Assuming that we have several partici-

pants, all connected to a domain named olddomain, then ensure that there are no pending trans-

actions. You can do that by either controlling your applications, or by setting the resource limits to 0

on all participants:

@ participant.resources.set_resource_limits(ResourceLimits(Some(0), Some(0)))

This will reject all commands and finish processing the pending commands. Once you are sure that

your participant node is idle, disconnect the participant node from the old domain connection:

@ participant.domains.disconnect("olddomain")

Test that the domain is disconnected by checking the list of active connections:

@ participant.domains.list_connected()

res3: Seq[ListConnectedDomainsResult] = Vector()

This is now a good time to perform a backup of the database before proceeding:

CREATE DATABASE newdb WITH TEMPLATE originaldb OWNER dbuser;

Next, wewant to run themigration step. For this, we need to run therepair.migrate_domain com-

mand. The command expects two input arguments: The alias of the source domain and a domain

connection configuration describing the new domain.

In order to build a domain connection config, we can just type

@ val config = DomainConnectionConfig("newdomain", GrpcSequencerConnection.

↪→tryCreate("https://127.0.0.1:5018"))

config : DomainConnectionConfig = DomainConnectionConfig(

domain = Domain 'newdomain',

sequencerConnections = Sequencer 'DefaultSequencer' ­> GrpcSequencerConnection(

endpoints = https://127.0.0.1:5018,

transportSecurity = true,

..

where the URL should obviously point to the correct domain. If you are testing the upgrade process

locally in a single Canton process using a target domain named newdomain (which is what we are

doing in this example here …), you can grab the connection details using

1.31. Common Operational Tasks 1281

Daml SDK Documentation, 2.7.3

@ val config = DomainConnectionConfig("newdomain", newdomain.sequencerConnection)

config : DomainConnectionConfig = DomainConnectionConfig(

domain = Domain 'newdomain',

sequencerConnections = Sequencer 'DefaultSequencer' ­> GrpcSequencerConnection(

endpoints = http://127.0.0.1:30154,

transportSecurity = false,

..

Now, using this configuration object, we can trigger the hard domain connection migration using

@ participant.repair.migrate_domain("olddomain", config)

This commandwill register the new domain and re-associate the contracts tied to olddomain to the

new domain.

Once all participants have performed the migration, they can reconnect to the domain

@ participant.domains.reconnect_all()

Now, the new domain should be connected:

@ participant.domains.list_connected()

res8: Seq[ListConnectedDomainsResult] = Vector(

ListConnectedDomainsResult(

domainAlias = Domain 'newdomain',

domainId = newdomain::1220b732056e...,

healthy = true

)

)

As we’ve previously set the resource limits to 0, we need to reset this back

@ participant.resources.set_resource_limits(ResourceLimits(None, None))

Finally, we can test that the participant can process a transaction by running a ping on the new

domain

@ participant.health.ping(participant)

res10: Duration = 890 milliseconds

Note: Note that currently, the hard migration is the only supported way to migrate a production

system. This is due to the fact that unique contract keys are restricted to a single domain.

While the domain migration command is mainly used for upgrading, it can also be used to recover

contracts associated to a broken domain. Domain migrations can be performed back and forth,

allowing to roll back in case of issues.

After the upgrade, the participants may report mismatch between commitments during the first

commitment exchange, as they might have performed the migration at slightly different times. The

warning should eventually stop once all participants are back up and connected.

1282 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Expected Performance

Performance-wise, we can note the following: when we migrate contracts, we write directly into the

respective event logs. Thismeans that on the source domain, we insert transfer-out, while we write a

transfer-in and the contract into the target domain. Writing this information is substantially faster

than any kind of transaction processing (several thousand migrations per second on a single cpu

/ 16 core test server). However, with very large datasets, the process can still take quite some time.

Therefore, we advise to measure the time the migration takes during the upgrade test in order to

understand the necessary downtime required for the migration.

Furthermore, upon reconnect, the participant needs to recompute the new set of commitments. This

can take a while for large numbers of contracts.

Soft Domain Connection Upgrade

Note: The soft domain connection upgrade is currently only supported as an alpha feature.

The hard domain connection upgrade requires coordination among all participants in a network.

The soft domain connection upgrade is operationally much simpler, and can be leveraged using

multi-domain support (which exists as a pre-alpha feature only for now). By turning off non-unique

contract keys, participants can connect to multiple domains and transfer contracts between do-

mains. This allows us to avoid using the repair.migrate_domain step.

Assuming the same setup as before, where the participant is connected to the old domain, we can

just connect it to the new domain

@ participant.domains.connect_local(newdomain)

Give the new connection precedence over the old connection by changing the priority flag of the

new domain connection:

@ participant.domains.modify("newdomain", _.copy(priority=10))

You can check the priority settings of the domains using

@ participant.domains.list_registered().map { case (c,_) => (c.domain, c.

↪→priority) }

res3: Seq[(com.digitalasset.canton.DomainAlias, Int)] = Vector((Domain 'newdomain

↪→', 10), (Domain 'olddomain', 0))

Existing contracts will not automatically move over to the new domain. The domain router will pick

the domain byminimizing the number of transfers and the priority. Therefore,most contractswill re-

main on the old domainwithout additional action. However, by using the transfer command, contracts

can be moved over to the new domain one by one, such that eventually, all contracts are associated

with the new domain, allowing the old domain to be decommissioned and turned off.

The soft upgrade path provides a smooth user experience that does not require a hard migration of

the domain connection synchronised across all participants. Instead, participants upgrade individ-

ually, whenever they are ready, allowing them to reverse the process if needed.

1.31. Common Operational Tasks 1283

Daml SDK Documentation, 2.7.3

1.31.3 Auth0 Example Configuration

This section describes a minimal example configuration of the trigger service with authorization

enabled using Auth0 as the OAuth 2.0 provider together with the OAuth 2.0 middleware included in

Daml. It uses the sandbox as the Daml ledger.

1.31.3.1 Configure Auth0

Sign up for an account on Auth0 to follow this guide.

Create an API

First, create a new API on the Auth0 API dashboard. This will represent the Daml ledger API and con-

trols properties of access tokens issued for the ledger API.

• Enter the name of the API, e.g. ex­daml­api.

• Enter the API identifier: https://daml.com/ledger­api.

• Select the signing algorithm RS256.

• Press the “create” button.

Enter the settings of the newly created API.

• Allow offline access in the access settings section to enable issuance of refresh tokens.

Create an Application

Create a new native application. This will represent the OAuth 2.0 middleware.

• Enter the name of the application, e.g. ex­daml­auth­middleware.

• Choose the application type “native”.

• Press the “create” button.

Enter the settings of the newly created application.

• Configure the allowed callback URLs: http://localhost:5000/auth/cb.

This is theURL to the callback endpoint of the authmiddleware, in this case through the reverse

proxy.

• Take note of the “Client ID” and “Client Secret” displayed in the “Basic Information” section.

• Take note of the following URLs in the “Endpoints” tab of the advanced settings:

– OAuth Authorization URL,

– OAuth Token URL, and

– JSON Web Key Set.

1284 Chapter 1. Canton References

https://auth0.com
https://auth0.com/docs/get-started/set-up-apis
https://auth0.com/docs/get-started/dashboard/api-settings
https://auth0.com/docs/applications/set-up-an-application/register-native-applications
https://auth0.com/docs/get-started/dashboard/application-settings

Daml SDK Documentation, 2.7.3

Create a Rule

Create a new rule. This will define user privileges, the mapping from scopes to ledger claims, and

construct the access token.

Note, for simplicity this rule will grant access to any claims to any user. In a real setup the rule will

need to validate whether the user is authorized to access the requested claims. Rules can be used

to implement custom authorization policies.

This rule will define a one-to-one mapping between scopes and Daml ledger claims, this is compat-

ible with the default request templates that are built into the OAuth 2.0 middleware.

• Enter the name of the rule, e.g. ex­daml­token.

• Enter the following script:

function (user, context, callback) {

// NOTE change the ledger ID to match your deployment.

const ledgerId = 'daml­auth0­example­ledger';

const apiId = 'https://daml.com/ledger­api';

const query = context.request.query;

// Only handle ledger­api audience.

const audience = query && query.audience || "";

if (audience !== apiId) {

return callback(null, user, context);

}

// Determine requested claims.

var admin = false;

var readAs = [];

var actAs = [];

var applicationId = null;

const scope = (query && query.scope || "").split(" ");

scope.forEach(s => {

if (s === "admin") {

admin = true;

} else if (s.startsWith("readAs:")) {

readAs.push(s.slice(7));

} else if (s.startsWith("actAs:")) {

actAs.push(s.slice(6));

} else if (s.startsWith("applicationId:")) {

applicationId = s.slice(14);

}

});

// Construct access token.

context.accessToken[apiId] = {

"ledgerId": ledgerId,

"actAs": actAs,

"readAs": readAs,

"admin": admin

};

if (applicationId) {

context.accessToken[apiId].applicationId = applicationId;

}

(continues on next page)

1.31. Common Operational Tasks 1285

https://auth0.com/docs/rules/create-rules
https://auth0.com/docs/authorization/sample-use-cases-rules-with-authorization

Daml SDK Documentation, 2.7.3

(continued from previous page)

return callback(null, user, context);

}

You can use the Real-timeWebtask Logs extension to view any console.log output generated

by your rule during the processing of authorization requests.

Create a User

Create a new user.

• Enter an email address, e.g. alice@example.com.

• Enter a secure password.

• Remember the credentials.

• Choose the “Username-Password-Authentication” connection.

• Press the “create” button.

Enter the details page of the newly created user.

• Edit the email address.

• Press “Set email as verified”.

• Press “save”.

1.31.3.2 Start Daml

Next, configure the relevant Daml components to use Auth0 as the IAM.

Sandbox

Start the sandbox using the following command. ReplaceJSON_Web_Key_Setby the corresponding

URL found in the application settings andmake sure that the ledger IDmatches the one in the Auth0

rule.

daml sandbox \

­­address localhost \

­­port 6865 \

­­ledgerid daml­auth0­example­ledger \

­­wall­clock­time \

­­auth­jwt­rs256­jwks "JSON_Web_Key_Set"

OAuth 2.0 Middleware

Start the authmiddleware using the following command. Replace the client identifier andURL place-

holders by the corresponding values found in the application settings and make sure that the call-

backURLmatches the allowedcallbackURL in the application settings. The­­callback flagdefines

the middleware’s callback URL as exposed through the reverse proxy.

DAML_CLIENT_ID="Client_ID" \

DAML_CLIENT_SECRET="Client_Secret" \

daml oauth2­middleware \

(continues on next page)

1286 Chapter 1. Canton References

https://auth0.com/docs/extensions/real-time-webtask-logs
https://auth0.com/docs/users/create-users
https://auth0.com/docs/users/view-user-details

Daml SDK Documentation, 2.7.3

(continued from previous page)

­­address localhost \

­­http­port 3000 \

­­oauth­auth "OAuth_Authorization_URL" \

­­oauth­token "OAuth_Token_URL" \

­­auth­jwt­rs256­jwks "JSON_Web_Key_Set" \

­­callback http://localhost:5000/auth/cb

Trigger Service

Start the trigger service using the following command. The ­­auth flag defines the middleware’s

URL prefix as exposed through the reverse proxy, similarly the ­­auth­callback flag defines the

trigger service’s callback URL as exposed through the reverse proxy.

daml trigger­service \

­­address localhost \

­­http­port 4000 \

­­ledger­host localhost \

­­ledger­port 6865 \

­­auth http://localhost:5000/auth \

­­auth­callback http://localhost:5000/trigger/cb

1.31.3.3 Configure Web Server

This guide uses Nginx as a reverse proxy and web server.

• Configure nginx using the following snippet:

http {

server {

listen 5000;

server_name localhost;

root html;

location /auth/ {

proxy_pass http://localhost:3000/;

}

location /trigger/ {

proxy_pass http://localhost:4000/;

}

}

}

This exposes the auth middleware under the URL http://localhost:3000/ and the trigger

service under the URL http://localhost:4000/.

• Add the following index.html to your web root:

<!DOCTYPE html>

<html>

<body>

<button onclick="listTriggers()">list triggers</button>

</body>

(continues on next page)

1.31. Common Operational Tasks 1287

https://www.nginx.com

Daml SDK Documentation, 2.7.3

(continued from previous page)

<script>

async function listTriggers() {

// The rule defined above accepts all claims for all users.

// So, we can always access claims to the party Alice.

const resp = await fetch("http://localhost:5000/trigger/v1/triggers?

↪→party=Alice");

if (resp.status === 401) {

const challenge = await resp.json();

console.log(`Unauthorized ${JSON.stringify(challenge)}`);

var loginUrl = new URL(challenge.login);

loginUrl.searchParams.append("redirect_uri", window.location.href);

window.location.replace(loginUrl.href);

} else {

const body = await resp.text();

console.log(`(${resp.status}) ${body}`);

}

}

</script>

</html>

This defines a very simple web site with a single button that will request the list of Alice’s

running triggers from the trigger service. If the user is authorized it will print the list to the

JavaScript console, otherwise it will redirect to auth middleware’s login endpoint to obtain au-

thorization.

1.31.3.4 Test the Setup

Use the following commands to determine if the OAuth 2.0 middleware and trigger service are run-

ning and available through the reverse proxy.

$ curl http://localhost:5000/auth/livez

{"status":"pass"}

$ curl http://localhost:5000/trigger/livez

{"status":"pass"}

Direct your web browser to the URL http://localhost:5000. It should display the test page with

the single “list triggers” button defined above.

• Open the JavaScript console.

• Press the “list triggers” button.

• An “Unauthorized” message should appear in the console and you should be redirected to the

auth0 login page.

• Login with the credentials of the auth0 user that you created before.

• The browser should be redirected to the test page.

• Click the button again. This time a message like the following should appear in the console.

(200) {"result":{"triggerIds":[]},"status":200}

1288 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.31.4 Security

1.31.4.1 Cryptographic Key Usage

This section covers the generation and usage of cryptographic keys in the Canton nodes. It assumes

that the configuration sets auto-init = truewhich leads to the generation of thedefault keys onanode’s

startup.

The scope of cryptographic keys covers all Canton-protocol specific keys, private keys for TLS, as well

as additional keys required for the domain integrations, e.g., with Besu.

Supported Cryptographic Schemes in Canton

Within Canton we use the cryptographic primitives of signing, symmetric and asymmetric encryp-

tion, and MAC with the following supported schemes (D = default, S = supported, P = partially supported

for instance just signature verification but no signing with a private key, and / = not supported):

Crypto Provider Tink JCE KMS

Signing

Ed25519 D D P

ECDSA P-256 S S D

ECDSA P-384 S S S

Symmetric Encryption

AES128-GCM D D D

Asymmetric Encryption

ECIES on P-256 with HMAC-SHA256 and AES128-GCM D D /

ECIES on P-256 with HMAC-SHA256 and AES128-CBC / S /

RSA 2048 with OAEP using SHA-256 / S D

MAC

HMAC with SHA-256 D D D

Key Generation and Storage

Keys can either be generated in the node and stored in the node’s primary storage or generated and

stored by an external keymanagement system (KMS). We currently support a version of Canton that

can use a KMS to either: (a) protect Canton’s private keys at rest or (b) generate and store the private keys

itself. This version is available only as part of Daml Enterprise.

You can find more background information on this key management feature in Secure Cryptographic

Private Key Storage. See Protect Private Keys With Envelope Encryption and a Key Management Service if you

wish to know how Canton can protect private keys whilst they remain internally stored in Canton

using a KMS, or Externalize Private Keys With a Key Management Service for more details on how Canton

can enable private keys to be generated and stored by an external KMS.

The following section Key Management Service Setup describes how to enable KMS support in Canton

and how to setup each of these two modes of operation.

1.31. Common Operational Tasks 1289

Daml SDK Documentation, 2.7.3

Public Key Distribution using Topology Management

The public keys of the corresponding key pairs that are used for signing and asymmetric encryp-

tion within Canton are distributed using Canton’s Topology Management. Specifically, signing and

asymmetric encryption public keys are distributed using OwnerToKeyMapping transactions, which as-

sociate a node with a public key for either signing or encryption, and NamespaceDelegation for names-

pace signing public keys.

See Topology Transactions for details on the specific topology transactions in use.

Common Node Keys

Each node provides an Admin API for administrative purposes, which is secured using TLS.

The node reads the private key for the TLS server certificate from a file at startup.

Participant Node Keys

Participant Namespace Signing Key

A Canton participant node spans its own identity namespace, for instance for its own id and the

Daml parties allocated on the participant node. The namespace is the hash of the public key of the

participant namespace signing key.

The private key is used to sign and thereby authorize all topology transactions for this namespace

and this participant, including the following transactions:

• Root NamespaceDelegation for the new identity namespace of the participant

• OwnerToKeyMapping for all the public keys that the participant will generate and use (these keys

will be explained in the follow-up sections)

• PartyToParticipant for the parties allocated on this participant

• VettedPackages for the packages that have been vetted by this participant

Signing Key

In addition to the topology signing key, a participant nodewill generate another signing key pair that

is used for the Canton transaction protocol in the following cases:

• Sequencer Authentication: Signing the nonce generated by the sequencer as part of its

challenge-response authentication protocol. The sequencer verifies the signature with the

public key registered for the member in the topology state.

• Transaction Protocol - The Merkle tree root hash of confirmation requests is signed for a

top-level view. - The confirmation responses sent to the mediator are signed as a whole. -

The Merkle tree root hash of transfer-in and transfer-out messages is signed.

• Pruning: Signing of ACS commitments.

1290 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Participant Encryption Key

In addition to a signing key pair, a participant node also generates a key pair for encryption based

on an asymmetric encryption scheme. A transaction payload is encrypted for a recipient based on

the recipient’s public encryption key that is part of the topology state.

See the next section on how a transaction is encrypted using an ephemeral symmetric key.

View Encryption Key

A transaction is composed of multiple views due to sub-transaction privacy. Instead of duplicat-

ing each view by directly encrypting the view for each recipient using their participant encryption

public key, Canton derives a symmetric key for each view to encrypt that view. The key is derived

using a HKDF from a secure seed that is only stored encrypted under the public encryption key of a

participants. Thereby, only the encrypted seed is duplicated but not a view.

Ledger API TLS Key

The private key for the TLS server certificate is provided as a file, which can optionally be encrypted

and the symmetric decryption key is fetched from a given URL.

Domain Topology Manager Keys

Domain Namespace Signing Key

The domain topology manager governs the namespace of the domain and has a signing key pair for

the namespace. The hash of the public key forms the namespace and all entities in the domain (me-

diator, sequencer, the topology manager itself) may have identities under the domain namespace.

The domain topology manager signs and thereby authorizes the following topology transactions:

• NamespaceDelegation to register the namespace public key for the new namespace

• OwnerToKeyMapping to register both its ownsigningpublic key (see next section) and the signing

public keys of the other domain entities as part of the domain onboarding

• ParticipantState to enable a new participant on the domain

• MediatorDomainState to enable a new mediator on the domain

Signing Key

The domain topology manager is not part of the Canton transaction protocol, but it receives topol-

ogy transactions via the sequencer. Therefore, in addition to the domain namespace, the domain

topology manager has a signing key pair, which is registered in the topology state for the topology

manager. This signing key is used to perform the challenge-response protocol of the sequencer.

1.31. Common Operational Tasks 1291

Daml SDK Documentation, 2.7.3

Sequencer Node Keys

Signing Key

The sequencer has a signing key pair that is used to sign all events the sequencer sends to a sub-

scriber.

Ethereum Sequencer

The Ethereum-based sequencer is a client of a Besu node and additional keys are used in this de-

ployment:

• TLS client certificate and private key to authenticate towards a Besu node if mutual authenti-

cation is configured.

• A Wallet (in BIP-39 or UTC / JSON format), which contains or will result in a signing key pair for

Ethereum transactions.

Fabric Sequencer

The Fabric-based sequencer is a Fabric application connecting to an organization’s peer node and

the following additional keys are required:

• TLS client certificate and private key to authenticate towards a Fabric peer node if mutual au-

thentication is required.

• The client identity’s certificate and private key.

Public API TLS Key

The private key for the TLS server certificate is provided as a file.

Mediator Node Keys

Signing Key

The mediator node is part of the Canton transaction protocol and uses a signing key pair for the

following:

• Sequencer Authentication: Signing of the challenge as part of the sequencer

challenge-response protocol.

• Signingof transaction results, transfer results, and rejections ofmalformedmediator requests.

1292 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Domain Node Keys

The domain node embeds a sequencer, mediator, and domain topology manager. The set of keys

remains the same as for the individual nodes.

Canton Console Keys

When the Canton console runs separate from the node and mutual authentication is configured on

the Admin API, then the console requires a TLS client certificate and corresponding private key as a

file.

1.31.4.2 Cryptographic Key Management

Rotating Canton Node Keys

Canton supports rotation of node keys (signing and encryption) during live operation through its

topology management. In order to ensure continuous operation, the new key is added first and then

the previous key is removed.

For participant nodes, domain nodes, and domain topology managers, the nodes can rotate their

keys directly using their own identity manager with the following command for example:

participant1.keys.secret.rotate_node_keys()

On a participant node both the signing and encryption key pairs are rotated. On a domain and do-

mainmanagernodeonly the signingkeypair, because theydonothavea encryptionkeypair. Identity

namespace root or intermediate keys are not rotated with this command, see below for commands

on namespace key management.

For sequencer and mediator nodes that are part of a domain, the domain topology manager autho-

rizes the key rotation and a reference needs to be passed in to the command, for example:

domainManager1.keys.secret.rotate_node_keys()

sequencer1.keys.secret.rotate_node_keys(domainManager1)

mediator1.keys.secret.rotate_node_keys(domainManager1)

We can also individually rotate a key by running the following command for example:

participant1.keys.secret.rotate_node_keys()

A fingerprint of a key can be retrieved from the list of public keys:

participant2.keys.secret

.list()

1.31. Common Operational Tasks 1293

Daml SDK Documentation, 2.7.3

Namespace Intermediate Key Management

Relying on the namespace root key to authorize topology transactions for the namespace is prob-

lematic because we cannot rotate the root key without losing the namespace. Instead we can create

intermediate keys for the namespace, similar to an intermediate certificate authority, in the follow-

ing way:

// create a new namespace intermediate key

val intermediateKey = identityManager.keys.secret.generate_signing_key()

// Create a namespace delegation for the intermediate key with the namespace root␣

↪→key

identityManager.topology.namespace_delegations.authorize(

TopologyChangeOp.Add,

rootKey.fingerprint,

intermediateKey.fingerprint,

)

We can rotate an intermediate key by creating a new one and renewing the existing topology trans-

actions that have been authorized with the previous intermediate key. First the new intermediate

key has to be created in the same way as the initial intermediate key. To rotate the intermediate key

and renew existing topology transactions:

// Renew all active topology transactions that have been authorized by the␣

↪→previous intermediate key with the new intermediate key

identityManager.topology.all.renew(intermediateKey.fingerprint,␣

↪→newIntermediateKey.fingerprint)

// Remove the previous intermediate key

identityManager.topology.namespace_delegations.authorize(

TopologyChangeOp.Remove,

rootKey.fingerprint,

intermediateKey.fingerprint,

)

Moving the Namespace Secret Key to Offline Storage

An identity is ultimately bound to a particular secret key. Owning that secret key gives full authority

over the entire namespace. Froma security standpoint, it is therefore critical to keep the namespace

secret key confidential. This can be achieved by moving the key off the node for offline storage. The

identity management system can still be used by creating a new key and an appropriate intermedi-

ate certificate. The following steps illustrate how:

// fingerprint of namespace giving key

val participantId = participant1.id

val namespace = participantId.uid.namespace.fingerprint

// create new key

val name = "new­identity­key"

val fingerprint = participant1.keys.secret.generate_signing_key(name = name).

↪→fingerprint

// create an intermediate certificate authority through a namespace delegation

(continues on next page)

1294 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

// we do this by adding a new namespace delegation for the newly generated key

// and we sign this using the root namespace key

participant1.topology.namespace_delegations.authorize(

TopologyChangeOp.Add,

namespace,

fingerprint,

signedBy = Some(namespace),

)

// export namespace key to file for offline storage, in this example, it's a␣

↪→temporary file

better.files.File.usingTemporaryFile("namespace", ".key") { privateKeyFile =>

participant1.keys.secret.download_to(namespace, privateKeyFile.toString)

// delete namespace key ﴾very dangerous ...﴿

participant1.keys.secret.delete(namespace, force = true)

When the root namespace key is required, it canbe imported again on the original node or onanother,

using the following steps:

// import it back wherever needed

other.keys.secret.upload(privateKeyFile.toString, Some("newly­imported­identity­

↪→key"))

Identifier Delegation Key Management

Identifier delegations work similar to namespace delegations, however a key is only allowed to op-

erate on a specific identity and not an entire namespace (cf. Topology Transactions).

Therefore the keymanagement for identifier delegations also works the sameway as for namespace

delegations, where all the topology transactions authorized by the previous identifier delegation key

have to be renewed.

Key Management Service Setup

Important: This feature is only available in Canton Enterprise

Canton supports using a Key Management Service (KMS) to increase security of stored private keys.

The first way to do this is by (1) storing Canton’s private keys in a node’s database in an encrypted

formand then (2) upon startup the KMSdecrypts these keys for use by Canton. The unencrypted keys

are stored in memory so this approach increases security without impacting performance. This is a

common approach used by KMS vendors; using a symmetric encryption key, called the KMS wrapper

key, to encrypt and decrypt the stored, private keys.

The second way is to directly use a KMS to generate and store Canton’s private keys and then use its

API to securely sign an decrypt messages. A Canton node still stores the corresponding public keys

in its stores so that it can verify signatures and encryptmessages without having to rely on the KMS.

The KMS integration is currently enabled for Amazon Web Services (AWS) KMS and Google Cloud Provider

(GCP) KMS in Canton Enterprise.

1.31. Common Operational Tasks 1295

/canton/usermanual/downloading.html

Daml SDK Documentation, 2.7.3

Running Canton with a KMS

KMS support can be enabled for a new installation (i.e., during the node bootstrap) or for an existing

deployment. When the KMS is enabled after a node has been running, the keys are (a) encrypted

and stored in this encrypted form in the Canton node’s database, or (b) transparently replaced by

external KMS keys. For scenario (a) this process is done transparently, while in (b) a node needs to be

migrated if the key schemes being used do not match the current supported keys for KMS.

Note: In scenario (a), the KMS keys used to encrypt the private keys need to live as long as the

Canton database backups, so care must be taken when deleting database backup files or KMS keys.

Otherwise, a Canton node restored from a database backup may try to decrypt the private keys with

a KMS wrapper key that was previously deleted.

Canton Configuration of a KMS

Like other Canton capabilities, KMS integration is enabled within a Canton node’s configuration file.

A KMS for AWS or GCP is configured in the following way:

• type specifies which KMS to use.

canton.participants.participant1.crypto.kms {

type = aws

region = us­east­1

multi­region­key = false # optional, default is false

audit­logging = false # optional, default is false

}

Specific to AWS:

• region specifies which region the AWS KMS is bound to.

• multi­region­key flag enables the replication of keys generated by the KMS. With replica-

tion turned on, the operator can replicate a key from one region to another (Note: replication

of a key is not done automatically by Canton) and change the region configured in Canton at

a later point in time without any other key rotation required. The standard single-region ap-

proach is applicable for most scenarios.

canton.participants.participant2.crypto.gcp {

type = gcp

location­id = us­east1,

project­id = gcp­kms­testing,

keyRing­id = canton­test­keys­2023,

}

Specific to GCP:

• location­id specifies which region the GCP KMS is bound to.

• project­id specifies which project are we binding to.

• keyRingId specifies the keyring to use. Contrary to AWS, multi region keys are enabled for

an entire keyring. Therefore, the KMS operator is responsible for setting the keyring correctly

depending on the systems’ needs.

1296 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Configure AWS Credentials and Permissions

When using a KMS to envelope encrypt the private keys stored in Canton, it needs to be configured

with the following list of authorized actions (i.e. IAM permissions):

AWS GCP

kms:CreateKey cloudkms.cryptoKeyVersions.create

kms:TagResource -

kms:Encrypt cloudkms.cryptoKeyVersions.useToEncrypt

kms:Decrypt cloudkms.cryptoKeyVersions.useToDecrypt

kms:DescribeKey cloudkms.cryptoKeys.get

When we rely on a KMS to generate, store, and manage the necessary private keys, it must be con-

figured with the following list of authorized actions:

AWS GCP

kms:CreateKey cloudkms.cryptoKeyVersions.create

kms:TagResource -

kms:Decrypt cloudkms.cryptoKeyVersions.useToDecrypt

kms:Sign cloudkms.cryptoKeyVersions.useToEncrypt

kms:DescribeKey cloudkms.cryptoKeyVersions.useToSign

kms:GetPublicKey cloudkms.cryptoKeyVersions.viewPublicKey

If you plan to use cross-account key usage then the permission for key rotation in Canton, namely

kms:CreateKey, does not have to be configured as it does not apply in that use case.

Tomake the API calls to the AWSKMS, Canton uses the standard AWS credential access. For example,

the standard environment variables of AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY can be

used. Alternatively, you canspecify anAWSprofile file (e.g. use a temporary accessprofile credentials

- sts).

For GCP, Canton uses a GCP service account. For example, the standard environment variable

GOOGLE_APPLICATION_CREDENTIALS can be used after setting up a local Application Default Creden-

tials (ADC) file for our service account.

The protection and rotation of the credentials for AWS or GCP are the responsibility of the node op-

erator.

Canton Configuration for Encrypted Private Key Storage

In the example below the encrypted private key storage integration is enabled for a participant node

(called participant1). The same applies for any other node, such as a sync domain manager, a

mediator, or a sequencer.

The most important setting that enables an encrypted private key storage using a KMS is ‘’type =

kms’’. This is shown below. If this is not specified, Canton stores the keys using its default approach,

which is in unencrypted form.

canton.participants.participant1.crypto.private­key­store.encryption.type = kms

1.31. Common Operational Tasks 1297

https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html
https://cloud.google.com/docs/authentication/provide-credentials-adc#local-user-cred

Daml SDK Documentation, 2.7.3

There are two ways to choose the KMS wrapper key: (1) use an already existing KMS key or; (2) let

Cantongenerate one. To use analready existingKMSkey, youmust specify its identifier. For example,

for AWS KMS this can be one of the following:

• Key id: “1234abcd-12ab-34cd-56ef-1234567890ab”

• KeyARN (AmazonResourceName): “arn:aws:kms:us-east-1:1234abcd-12ab-34cd-56ef-1234567890ab”

• Key alias: “alias/test-key”

Please be aware that an AWS KMS key needs to be configured with the following settings:

• Key specification: SYMMETRIC_DEFAULT

• Key usage: ENCRYPT_DECRYPT

Similarly, for GCP KMS we can use:

• Key name: test-key

• KeyRN (ResourceName): projects/gcp-kms-testing/locations/us-east1/keyRings/canton-test-keys/cryptoKeys/test-key/cryptoKeyVersions/1

And your key needs to be configured with the following settings:

• Key algorithm: GOOGLE_SYMMETRIC_ENCRYPTION

• Key purpose: ENCRYPT_DECRYPT

If no wrapper­key­id is specified, Canton creates a symmetric key in the KMS. After subsequent

restarts the operator does not need to specify the identifier for the newly created key; Canton stores

the generated wrapper key id in the database.

An example with a pre-defined AWS KMS key is shown below:

canton.participants.participant1.crypto.private­key­store.encryption.wrapper­key­

↪→id = alias/canton­kms­test­key

An example configuration that puts it all together is below:

canton.participants.participant1.crypto.private­key­store.encryption.type = kms

canton.participants.participant1.crypto.private­key­store.encryption.wrapper­key­

↪→id = alias/canton­kms­test­key

canton.participants.participant1.crypto.kms {

type = aws

region = us­east­1

multi­region­key = false

}

Revert Encrypted Private Key Storage

If you wish to change the encrypted private key store and revert back to using an unencrypted store,

you must restart the nodes with an updated configuration that includes

canton.participants.participant1.crypto.private­key­store.encryption.reverted =␣

↪→true # default is false

Warning: We strongly advise against this as it will force Canton to decrypt its private keys and

store them in clear.

1298 Chapter 1. Canton References

https://docs.aws.amazon.com/kms/latest/developerguide/asymmetric-key-specs.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#symmetric-cmks
https://cloud.google.com/kms/docs/algorithms

Daml SDK Documentation, 2.7.3

For subsequent restarts we recommend deleting all encrypted private key store configurations in-

cluding the KMS store. We have forced the manual configuration of the reverted flag to prevent any

unwanted decryption of the database (e.g. by unintentionally deleting the KMS configuration).

Manual wrapper key rotation

Currently AWSandGCPoffer automatic KMSsymmetric key rotation (yearly for AWSanduser-defined

for GCP). Canton extends this by enabling node administrators to manually rotate the KMS wrapper

key using the following command:

participant1.keys.secret.rotate_wrapper_key(newWrapperKeyId)

You can optionally pass a wrapper key id to change to or let Canton generate a new key based on the

current KMS configuration.

Note: Changing the key specification (e.g. enable multi region) during rotation is for now only pos-

sible with AWS, by updating the configuration before rotating the wrapper key.

Canton Configuration for External Key Storage and Usage

In the example below, we configure a Canton participant node (called participant1) to generate

and store private keys in an external KMS. Besides the previously presented KMS configuration (in this

example we use AWS, but GCP is set similarly) you only need to specify the correct crypto provider

kms and ensure that the remaining nodes, in particular the connected domain, runs with the correct

schemes:

canton.domains.da.crypto.provider = jce

canton.domains.da.init.domain­parameters.required­signing­key­schemes = [ec­dsa­

↪→p­256]

canton.domains.da.init.domain­parameters.required­encryption­key­schemes = [rsa­

↪→2048­oaep­sha­256]

canton.participants.participant1.crypto.provider = kms

canton.participants.participant1.crypto.kms {

type = aws

region = us­east­1

multi­region­key = false # optional, default is false

}

Therefore, a node running with a kms provider is only ever able to communicate with other nodes

running a kms or jce providers. Furthermore, the nodes have to be explicitly configured to use the

KMS supported algorithms as the required algorithms.

AWS and GCP KMSs only support the following cryptographic schemes.

Note: You cannot mix an external private key storage configuration with an encrypted private key

storage configuration. Currently if a nodestartswithaKMSas its provider it canno longer be reverted

without a full reset of the node (i.e., re-generation of node identity and all keys).

1.31. Common Operational Tasks 1299

Daml SDK Documentation, 2.7.3

Setup with Pre-Generated Keys

In the previous example, Canton creates its own keys on startup and initializes the identity of the

nodes automatically. If the keys have already been generated in the KMS, we need to manually ini-

tialize the identity of the nodes by adding the following flag in the config:

<node>.init.auto­init = false

We then need to register the keys in Canton by running the key registration command on each node.

For example for a participant we would run:

participant.keys.secret.register_kms_signing_key(namespaceKmsKeyId),

participant.keys.secret.register_kms_signing_key(signingKmsKeyId),

participant.keys.secret.register_kms_encryption_key(encryptionKmsKeyId),

where xyzKmsKeyId is theKMS identifier for a specific key (e.g. KMSKeyRN). If we are using, for example,

AWS cross account keys be aware that using the key id is not enough and we are required to register

the key using its ARN.

Finally, we need to initialize our domain and participants using the previously registered keys.

Participant Node Migration to KMS Crypto Provider

Tomigrate an existing participant node connected to a domain with a non KMS-compatible provider

and start using KMS external keys, we need to manually execute the following steps. The general

idea is to replicate the old node into a new one that uses a KMS provider and connects to a KMS-compatible

domain (e.g. running JCE with KMS supported encryption and signing keys).

First, we need to delegate the namespace of the old participant to the new participant:

val namespaceNew = participantNew.uid.namespace.fingerprint

val namespaceOld = participantOld.uid.namespace.fingerprint

val rootNamespaceDelegationOld = participantOld.topology.namespace_delegations

.list(filterNamespace = namespaceOld.toProtoPrimitive)

.head

.context

.serialized

val namespaceKeyNew = participantNew.keys.public.download(namespaceNew)

participantOld.keys.public.upload(namespaceKeyNew, Some("pNew­namespace­key"))

// Delegate namespace of old participant to new participant

val delegation = participantOld.topology.namespace_delegations.authorize(

ops = TopologyChangeOp.Add,

namespace = namespaceOld,

authorizedKey = namespaceNew,

)

participantNew.topology.load_transaction(rootNamespaceDelegationOld)

participantNew.topology.load_transaction(delegation)

Secondly, we must recreate all parties of the old participant in the new participant:

1300 Chapter 1. Canton References

https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-modifying-external-accounts.html

Daml SDK Documentation, 2.7.3

val parties = participantOld.parties.list().map(_.party)

// Disconnect from new KMS­compatible domain to prepare migration of parties and␣

↪→contracts

participantNew.domains.disconnect(kmsDomain)

parties.foreach { party =>

participantNew.topology.party_to_participant_mappings

.authorize(ops = TopologyChangeOp.Add, party = party, participant =␣

↪→participantNew.id)

}

Finally, we need to transfer the active contracts of all the parties from the old participant to the new

one and connect to the new domain:

val parties = participantOld.parties.list().map(_.party)

// Make sure domain and the old participant are quiet before exporting ACS

participantOld.domains.disconnect("acme")

acme.stop()

File.usingTemporaryFile("participantOld­acs", suffix = ".txt") { acsFile =>

val acsFileName = acsFile.toString

// Export from old participant

participantOld.repair.download(

parties = parties.toSet,

outputFile = acsFileName,

contractDomainRenames = Map(kmsDomainId ­> newDomainId),

)

// Import to new participant

participantNew.repair.upload(acsFileName)

}

// Kill/stop the old participant

participantOld.stop()

// Connect the new participant to a new domain

participantNew.domains.reconnect("da")

The end result is a new participant node with its keys stored and managed by a KMS connected to a

domain that is able to communicate using the appropriate key schemes.

Manual KMS key rotation

Canton keys can still be manually rotated even if they are externally stored in a KMS. To do that we

can use the same standard rotate key commands or, if we already have a KMS key to rotate to, run the

following command:

val newSigningKey = participant1.keys.secret

.rotate_kms_node_key(

keyFingerprint,

newKmsKeyId,

)

1.31. Common Operational Tasks 1301

Daml SDK Documentation, 2.7.3

Neither AWS or GCP offer automatic rotation of asymmetric keys so, unlike the wrapper key rotation,

the node operator needs to be responsible for periodically rotating these keys.

Auditability

AWS and GCP provide tools to monitor KMS keys. For AWS to set automatic external logging, refer to

the AWS official documentation. This includes instructions on how to set AWS Cloud Trail or Cloud

Watch Alarms to keep track of usage of KMS keys or of performed crypto operations. For GCP you can

refer to the GCP official documentation for information on logging. Errors resulting from the use of

KMS keys are logged in Canton.

Logging

For further auditability, Canton can be configured to log every call made to the AWS KMS. To en-

able this feature, set the audit­logging field of the KMS configuration to true. By default,

when using a file-based logging configuration, such logs will be written into the main canton log

file. To write them to a dedicated log file, set the KMS_LOG_FILE_NAME environment variable or

­­kms­log­file­name CLI flag to the path of the file. These and other parameters can be config-

ured using environment variables or CLI flags:

Table 3: KMS logging configuration

Environment

variable

CLI Flag Purpose Default

KMS_LOG_FILE_NAME–kms-log-file-namePath to a dedicated KMS log file not set

KMS_LOG_IM-

MEDIATE_FLUSH

–kms-log-immediate-flushWhen true, logs will be immediately

flushed to the KMS log file

true

KMS_LOG_FILE_ROLLING_PAT-

TERN

–kms-log-file-rolling-patternPattern to use when using the rolling

file strategy to roll KMS log files

yyyy-MM-dd

KMS_LOG_FILE_HIS-

TORY

–kms-log-file-historyMaximum number of KMS log files to

keep when using the rolling file strat-

egy

0 (i.e. no limit)

Sample of an AWS KMS audit log:

2023­09­12 15:44:54,426 [env­execution­context­27] INFO c.d.c.c.k.a.a.

↪→AwsRequestResponseLogger:participant=participant1␣

↪→tid:40d47592f1bd50f37e6804fbdff404dd ­ Sending request [06cc259e220da647]:␣

↪→DecryptRequest(CiphertextBlob=** Ciphertext placeholder **, KeyId=91c48ce4­ec80­

↪→44c1­a219­fdd07f12f002, EncryptionAlgorithm=RSAES_OAEP_SHA_256) to https://kms.

↪→us­east­1.amazonaws.com/

2023­09­12 15:44:54,538 [aws­java­sdk­NettyEventLoop­1­15] INFO c.d.c.c.k.a.a.

↪→AwsRequestResponseLogger:participant=participant1␣

↪→tid:40d47592f1bd50f37e6804fbdff404dd ­ Received response [06cc259e220da647]:␣

↪→[Aws­Id: 1836823c­bb8a­44bf­883d­f33d696bf84f] ­ DecryptResponse(Plaintext=**␣

↪→Redacted plaintext placeholder **, KeyId=arn:aws:kms:us­east­1:724647588434:key/

↪→91c48ce4­ec80­44c1­a219­fdd07f12f002, EncryptionAlgorithm=RSAES_OAEP_SHA_256)

2023­09­12 15:44:54,441 [env­execution­context­138] INFO c.d.c.c.k.a.a.

↪→AwsRequestResponseLogger:participant=participant1␣

↪→tid:40d47592f1bd50f37e6804fbdff404dd ­ Sending request [e28450df3a98ea23]:␣

↪→SignRequest(KeyId=f23b5b37­b4e8­494d­b2bc­1fca12308c99, Message=** Sign message␣

↪→text placeholder **, MessageType=RAW, SigningAlgorithm=ECDSA_SHA_256) to https:/

↪→/kms.us­east­1.amazonaws.com/
(continues on next page)

1302 Chapter 1. Canton References

https://docs.aws.amazon.com/kms/latest/developerguide/monitoring-overview.html
https://cloud.google.com/kms/docs/audit-logging

Daml SDK Documentation, 2.7.3

(continued from previous page)

2023­09­12 15:44:54,554 [aws­java­sdk­NettyEventLoop­1­2] INFO c.d.c.c.k.a.a.

↪→AwsRequestResponseLogger:participant=participant1␣

↪→tid:40d47592f1bd50f37e6804fbdff404dd ­ Received response [e28450df3a98ea23]:␣

↪→[Aws­Id: 7085bcf3­1a36­4048­a38b­014b441afa11] ­␣

↪→SignResponse(KeyId=arn:aws:kms:us­east­1:724647588434:key/f23b5b37­b4e8­494d­

↪→b2bc­1fca12308c99, Signature=** Signature message text placeholder **,␣

↪→SigningAlgorithm=ECDSA_SHA_256)

Note that sensitive data is removed before logging. The general log format is as follows:

tid:<canton_trace_id> ­ Sending request [<canton_kms_request_id>]:

<request details> tid:<canton_trace_id> ­ Received response

[<canton_kms_request_id>]: [Aws­Id: <aws_request_id>] ­ <response details>

1.31.4.3 Ledger-API Authorization

The Ledger API provides authorization support using JWT tokens. While the JWT token authorization

allows third party applications to be authorized properly, it poses some issues for Canton internal

services such as the PingService or the DarService, which are used to manage domain wide concerns.

Therefore Canton generates a new admin bearer token (64 bytes, randomly generated, hex-encoded)

on each startup, which is communicated to these services internally and used by these services to

authorize themselves on the Ledger API. The admin token allows to act as any party registered on

that participant node.

The admin token is only used within the same process. Therefore, in order to obtain this token, an

attacker needs to be able to either dump the memory or capture the network traffic, which typically

only a privileged user can do.

It is important to enable TLS together with JWT support in general, as otherwise tokens can be leaked

to an attacker that has the ability to inspect network traffic.

1.32 Scaling and Performance

1.32.1 Network Scaling

The scaling and performance characteristics of a Canton-based systemare determined bymany fac-

tors. The simplest approach is to deploy Canton as a simple monolith where vertical scaling would

add more CPUs, memory, etc. to the compute resource. However, the most frequent and expected

deployment of Canton is as a distributed, micro-service architecture, running in different data cen-

ters of different organizations, with many opportunities to incrementally increase throughput. This

is outlined below.

The ledger state in Canton does not exist globally so there is no single node that, by design, hosts all

contracts. Instead, participant nodes are involved in transactions that operate on the ledger state

on a strict need-to-know basis (dataminimization), only exchanging (encrypted) information on the

domains used as coordination points for the given input contracts. For example, if participants Alice

andBank transact onan i-owe-you contract ondomainA, another participant Bob, or another domain

B, does not receive a single bit related to this transaction. This is in contrast to blockchains, where

each node has to process each block regardless of how active or directly affected they are by a given

transaction. This lends itself to a micro-service approach that can scale horizontally.

1.32. Scaling and Performance 1303

https://jwt.io

Daml SDK Documentation, 2.7.3

The micro-services deployment of Canton includes the set of participant and domain nodes (here-

after, “participant” or “participants” and “domain” or “domains” respectively), as well as the ser-

vices internal to the domain (e.g., Topology Manager). In general, each Canton micro-service follows

the best practice of having its own local database which increases throughput. Deploying a service

to its own compute server increases throughput because of the additional CPU and disk capacity. A

vertical scaling approach can be used to increase throughput if a single service becomes a bottle-

neck, along with the option of horizontal scaling that is discussed next.

An initial Canton deployment can increase its scaling in multiple ways that build on each other. If

a single participant node has many parties, then throughput can be increased by migrating parties

off to a new, additional participant node (currently supported as amanual early access feature). For

example, if 100 parties are performing multi-lateral transactions with each other, then the system

can reallocate parties to 10 participants with 10 parties each, or 100 participants with 1 party each. As

most of the computation occurs on the participants, a domain can sustain a very substantial load

from multiple participants. If the domain were to be a bottleneck then the Sequencer(s), Topology

Manager, andMediator canbe runon their owncompute serverwhich increases thedomain through-

put. Therefore, new compute serverswith additional Canton nodes can be added to the networkwhen

needed, allowing the entire system to scale horizontally.

If even more throughput is needed then the multiple-domain feature of Canton can be leveraged

to increase throughput. In a large and active network where a domain reaches the capacity limit,

additional domains can be rolled out, such that the workflows can be sharded over the available

domains (early access). This is a standard technique for load balancing where the client application

does the load balancing via sharding.

If a single party is abottleneck then the throughput canbe increasedby sharding theworkflowacross

multiple parties hosted on separate participants. If a workflow is involving some large operator (i.e.

an exchange), then an option would be to shard the operator by creating two operator parties and

distribute the workflows evenly over the two operators (eventually hosted on different participants),

and by adding some intermediate steps for the few cases where the workflows would span across

the two shards.

Some anti-patterns need to be avoided for the maximum scaling opportunity. For example, having

almost all of the parties on a single participant is an anti-pattern to be avoided since that partici-

pant will be a bottleneck. Similarly, the design of the Daml model has a strong impact on the degree

to which sharding is possible. For example, having a Daml application that introduces a synchro-

nization party through which all transactions need to be validated introduces a bottleneck so it is

also an anti-pattern to avoid.

The bottom line is that a Canton system can scale out horizontally if commands involve only a small

number of participants and domains.

Important: This feature is only available in Canton Enterprise

1304 Chapter 1. Canton References

/canton/usermanual/downloading.html

Daml SDK Documentation, 2.7.3

1.32.2 Node Scaling

The Daml Enterprise edition of Canton supports the following scaling of nodes:

• The database-backed drivers (Postgres and Oracle) can run in an active-active setup with par-

allel processing, supporting multiple writer and reader processes. Thus, such nodes can scale

horizontally.

• The enterprise participant node processes transactions in parallel (except the process of con-

flict detection which by definitionmust be sequential), allowingmuch higher throughput than

the community version. The community version is processing each transaction sequentially.

Canton processes make use of multiple CPUs and will detect the number of available CPUs au-

tomatically. The number of parallel threads can be controlled by setting the JVM properties

scala.concurrent.context.numThreads to the desired value.

Generally, the performance of Canton nodes is currently storage I/O bound. Therefore, their perfor-

mancedepends on the scaling behavior and throughput performance of theunderlying storage layer,

which can be a database or a distributed ledger for some drivers. Therefore, appropriately sizing the

database is key to achieving the necessary performance.

On a related note: the Daml interpretation is a pure operation, without side-effects. Therefore, the

interpretation of each transaction can run in parallel, and only the conflict detection between trans-

actions must run sequentially.

1.32.3 Performance and Sizing

A Daml workflow can be computationally arbitrarily complex, performing lots of computation (cpu!)

or fetchingmany contracts (io!), and involve different numbers of parties, participants, anddomains.

Canton nodes store their entire data in the storage layer (database), with additional indexes. Every

workflow and topology is different, and therefore, sizing requirements depend on the Daml applica-

tion that is going to run, and on the resource requirements of the storage layer. Therefore, to obtain

sizing estimates you must measure the resource usage of dominant workflows using a representa-

tive topology and setup of your use case.

1.32.4 Batching

As every transaction comes with an overhead (signatures, symmetric encryption keys, serialization

and wrapping into messages for transport, HTTP headers, etc), we recommend designing the appli-

cations submitting commands in a way that batches smaller requests together into a single trans-

action.

Optimal batch sizes depend on theworkflow and the topology and need to be determined experimen-

tally.

1.32. Scaling and Performance 1305

Daml SDK Documentation, 2.7.3

1.32.5 Asynchronous Submissions

In order to achieve best performance, we suggest that you use asynchronous command submis-

sions. However, please note that the async submission is only partially asynchronous, as the initial

command interpretation and transaction building is included in that step, while the transaction

validation and result finalization is not. This means that an async submission takes between 50

to 1000 ms, depending on command size and complexity. In the extreme case with a single thread

submitting transactions, this would mean that you would only achieve a rate of one command per

second.

If you use synchronous command submissions, the system will wait for the entire transaction to

complete, which will require even more threads. Also, please note that the synchronous command

submission has a default upper limit of 256 in flight commands, which can be reconfigured using

canton.participants.participant1.ledger­api.command­service.max­commands­in­

↪→flight = 256 // default value

1.32.6 Storage Estimation

A priori storage estimation of a Canton installation is tricky. As explained above, storage usage de-

pends on topology, payload, Daml models used, and what type of storage layer is configured. How-

ever, the following example may help you understand the storage usage for your use case:

First, a command submitted through the ledger API is sent to the participant as a serialized gRPC

request.

This command is first interpreted and translated into a Daml-LF transaction. The inter-

preted transaction is next translated into a Canton transaction view-decomposition, which is a

privacy-preserving representation of the full transaction tree structure. A transaction typically con-

sists of several transaction views; in the worst case, every action node in the transaction tree be-

comes a separate transaction view. Each view contains the full set of arguments required by that

view, including the contract arguments of the input contracts. So the data representation can be

multiplied quite a bit. Here, we cannot estimate the resulting size without having a concrete exam-

ple. For simplicity, let us consider the simple case where a participant is exercising a simple “Trans-

fer” choice on an typical “Iou” contract to a new owner, preserving the other contract arguments.

We assume that the old and new owners of the IOU are hosted on the same participant whereas the

IOU issuer is hosted on a second participant.

The resulting Canton transaction consists of two views (one for the Exercise node of the Transfer

choice and one for the Create node of the transferred IOU). Both views contain somemetadata such

as the package and template identifiers, contract keys, stakeholders, and involved participants. The

view for the Exercise node contains the contract arguments of the input IOU, say of size Y. The view

for the Create node contains the updated contract arguments for the created contract, again of size

Y. Note that there is no fixed relation between the command size X and the size of the input contracts

Y. Typically X only contains the receiver of the transfer, but not the contract arguments that are stored

on the ledger.

Then, we observe the following storage usage:

• Two encrypted envelopes with payload Y each, one symmetric key per view and informee partic-

ipant of that view, two root hashes for each participant and the participant IDs as recipients at

the sequencer store, and the informee tree for the mediator (informees and transaction meta-

data, but no payload), together with the sequencer database indexes.

1306 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

• Two encrypted envelopes with payload Y each and the symmetric keys for the views, in the

participant events table of each participant (as both receive the data)

• Decrypted new resulting contract of size Y in the private contract store and some status infor-

mation of that contract on the active contract journal of the sync service.

• The full decrypted transaction with a payload of size Y for the created contract, in the sync

service linear event log. This transaction does not contain the input contract arguments.

• The full decrypted transaction with Y in the indexer events table, excluding input contracts, but

including newly divulged input contracts.

If we assume that payloads dominate the storage requirements, we conclude that the storage re-

quirement is given by the payloadmultiplication due to the view decomposition. In our example, the

transaction requires 5*Y storage on each participant and 2*Y on the sequencer. For the two partici-

pants and the sequencer, this makes 12*Y in total.

Additionally to this, some indexes have to be built by the database to serve the contracts and events

efficiently. The exact estimation of the size usage of such indexes for each database layer is beyond

the scope of our documentation.

Note: Please note that we do have plans to remove the storage duplication between the sync service

and the indexer. Ideally, will be able to reduce the storage on the participant for this example from 5*Y

down to 3*Y: once for the unencrypted created contract and twice for the two encrypted transaction

views.

Generally, to recover used storage, a participant and a domain can be pruned. Pruning is available on

Canton Enterprise through a set of console commands and allows removal of past events and archived

contracts based on a timestamp. The storage usage of a Canton deployment can be kept constant

by continuously removing obsolete data. Non-repudiation and auditability of the unpruned history

are preserved due to the bilateral commitments.

1.32.7 Set Up Canton to Get the Best Performance

In this section, the findings from internal performance tests are outlined to help you achieve optimal

performance for your Canton application.

1.32.7.1 System Design / Architecture

We recommend the version of Canton included in the Daml Enterprise edition, which is heavily opti-

mized when compared with the community edition.

Plan your topology such that your Daml parties can be partitioned into independent blocks. That

means most of your Daml commands involve parties of a single block only. It is ok if some com-

mands involve parties of several (or all) blocks, as long as this happens only very rarely. In par-

ticular, avoid having a single master party that is involved in every command, because that party

bottlenecks the system.

If your participants are becoming a bottleneck, add more participant nodes to your system. Make

sure that each block runs on its own participant. If your domain(s) are becoming a bottleneck, add

more domain nodes and distribute the load evenly over all domains.

Prefer sending big commands with multiple actions (creates / exercises) over sending numerous

small commands. Avoid sending unnecessary commands through the ledger API. Try to minimize

1.32. Scaling and Performance 1307

Daml SDK Documentation, 2.7.3

the payload of commands.

Further information can be found in Section Scaling and Performance.

1.32.7.2 Hardware and Database

Do not run Canton nodes with an in-memory storage or with an H2 storage in production or during

performance tests. You may observe very good performance in the beginning, but performance can

degrade substantially once the data stores fill up.

Measure memory usage, CPU usage and disk throughput and improve your hardware as needed.

For simplicity, it makes sense to start on a single machine. Once the resources of a machine are

becoming a bottleneck, distribute your nodes and databases to different machines.

Try to make sure that the latency between a Canton node and its database is very low (ideally in the

order of microseconds). The latency between Canton nodes has amuch lower impact on throughput

than the latency between a Canton node and its database.

Optimize the configuration of your database, and make sure the database has sufficient memory

and is stored on SSD disks with a very high throughput. For Postgres, this online tool is a good

starting point for finding reasonable parameters.

1.32.7.3 Configuration

In the following, we go through the parameters with known impact on performance.

Timeouts. Under high load, you may observe that commands timeout. This will negatively impact

throughput, because the commands consume resources without contributing to the number of ac-

cepted commands. To avoid this situation increase timeout parameters from the Canton console:

myDomain.service.update_dynamic_domain_parameters(

_.update(

participantResponseTimeout = 60.seconds,

mediatorReactionTimeout = 60.seconds

)

)

If timeouts keep occurring, change your setup to submit commands at a lower rate. In addition, take

the next paragraph on resource limits into account.

Tune resource limits. Resource limits are used to prevent ledger applications fromoverloading Can-

ton by sending commands at an excessive rate. While resource limits are necessary to protect the

system from denial of service attacks in a production environment, they can prevent Canton from

achievingmaximum throughput. Resource limits can be configured as follows from the Canton con-

sole:

participant1.resources.set_resource_limits(

ResourceLimits(

// Allow for submitting at most 200 commands per second

maxRate = Some(200),

// Limit the number of in­flight requests to 500.

// A "request" includes every transaction that needs to be validated by␣

↪→participant1:

(continues on next page)

1308 Chapter 1. Canton References

https://pgtune.leopard.in.ua/

Daml SDK Documentation, 2.7.3

(continued from previous page)

// ­ transactions originating from commands submitted to participant1

// ­ transaction originating from commands submitted to different␣

↪→participants.

// The chosen configuration allows for processing up to 100 requests per␣

↪→second

// with an average latency of 5 seconds.

maxDirtyRequests = Some(500),

// Allow submission bursts of up to `factor * maxRate`

maxBurstFactor = 0.5,

)

)

As a rule of thumb, configure maxDirtyRequests to be slightly larger than throughput * la­

tency, where

• throughput is the number of requests per second Canton needs to handle and

• latency is the time taken to process a single request while Canton is receiving requests at

rate throughput.

You should run performance tests to ensure that throughput and latency are actually realistic.

Otherwise, an application may overload Canton by submitting more requests than Canton can han-

dle.

Configure the maxRate parameter to be slightly higher than the expected maximal throughput.

If you need to support command bursts, configure the maxBurstFactor accordingly. Then, the

maxRate limitation will only start to enforce the rate after having received the initial burst of

maxBurstFactor * maxRate.

To find optimal resource limits you need to run performance tests. The maxDirtyRequest parame-

terwill protect Canton frombeingoverloaded, if requests are arrivingat a constant rate. ThemaxRate

parameter offers additional protection, if requests are arriving at a variable rate.

If you choose higher resource limits, youmay observe a higher throughput, at the risk of a higher la-

tency. In the extreme case however, latency grows somuch that commands will timeout; as a result,

the command processing consumes resources even though some commands are not committed to

the ledger.

If you choose lower resource limits, youmay observe a lower latency, at the cost of lower throughput

and commands getting rejected with the error code PARTICIPANT_BACKPRESSURE.

Size of connection pools. Make sure that every node uses a connection pool to communicate with

the database. This avoids the extra cost of creating a new connection on every database query. Can-

ton chooses a suitable connection pool by default. Configure the maximum number of connections

such that thedatabase is fully loaded, but not overloaded. Allocating toomanydatabase connections

will lead to resource waste (each thread costs), context switching and contention on the database

system, slowing the overall system down. You can notice this on the query latencies reported by

canton going up.

Try to observe the db­storage.queuemetrics. If they are large, then the system performance may

benefit from tuning the number of database connections. Detailed instructions can be found in the

Section Max Connection Settings.

Throttling configuration for SequencerClient. The SequencerClient is the component responsi-

ble for managing the connection of any member (participant, mediator, or topology manager) in a

1.32. Scaling and Performance 1309

Daml SDK Documentation, 2.7.3

Canton network to the domain. Each domain can have multiple sequencers, and the Sequencer­

Client connects to one of them. However, there is a possibility that the SequencerClient can

become overwhelmed and struggle to keep up with the incoming messages. To address this issue,

a configuration parameter called maximum­in­flight­event­batches is available:

domain­managers {

domainManager1 {

sequencer­client.maximum­in­flight­event­batches = 100

}

}

participants {

participant1 {

sequencer­client.maximum­in­flight­event­batches = 100

}

participant2 {

sequencer­client.maximum­in­flight­event­batches = 100

}

}

mediators {

mediator1 {

sequencer­client.maximum­in­flight­event­batches = 100

}

}

sequencers {

sequencer1 {

sequencer­client.maximum­in­flight­event­batches = 100

}

}

By setting the maximum­in­flight­event­batches parameter, you can control the maximum

number of event batches that the system processes concurrently. This configuration helps prevent

overload and ensures that the system can handle the workload effectively.

It’s important to note that the value you choose formaximum­in­flight­event­batches impacts

the SequencerClient’s performance in several ways. A higher value can potentially increase the

SequencerClient’s throughput, allowing it to handle more events simultaneously. However, this

comes at the cost of higher memory consumption and longer processing times for each batch.

On the other hand, a lower value for maximum­in­flight­event­batches might limit the

throughput, as it can process fewer events concurrently. However, this approach can result in more

stable and predictable SequencerClient behavior.

To monitor the performance of the SequencerClient and ensure it is operating

within the desired limits, you can observe the metric sequencer­client.handler.

actual­in­flight­event­batches. This metric provides the current value of the in-flight

event batches, indicating how close it is to the configured limit. Additionally, you can also reference

the metric sequencer­client.handler.max­in­flight­event­batches to determine the

configured maximum value.

By monitoring these metrics, you can gain insights into the actual workload being processed and

assess whether it is approaching the specified limit. This information is valuable for maintaining

optimal SequencerClient performance and preventing any potential bottlenecks or overload sit-

uations.

Size of database task queue. If you are seeing frequent RejectedExecutionExceptions when

Canton queries the database, increase the size of the task queue, as described in Section Database

task queue full. The rejection is otherwise harmless. It just points out that the database is overloaded.

1310 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Database Latency. Ensure that the database latency is low. The higher the database latency, the

lower the actual bandwidth and the lower the throughput of the system.

Turn on High-Throughput Sequencer. The database sequencer has a number of parameters that

can be tuned. The trade-off is low-latency or high-throughput. In the low-latency setting, every sub-

mission will be immediately processed as a single item. In the high-throughput setting, the se-

quencer will accumulate a few events before writing them together at once. While the latency added

is only a few ms, it does make a difference during development and testing of your Daml applica-

tions. Therefore, the default setting islow­latency. A productiondeploymentwithhigh throughput

demand should choose the high­throughput setting by configuring:

// example setting for domain nodes. database sequencer nodes have the exact same␣

↪→settings.

canton.domains.mydomain.sequencer {

type = database

writer = {

// choose between high­throughput or low­latency

type = high­throughput

}

}

There are additional parameters that can in theory be fine-tuned, but we recommend to leave the

defaults and use either high-throughput or low-latency. In our experience, a high-throughput se-

quencer can handle several thousand submissions per second.

JVM heap size. In case you observe OutOfMemoryErrors or high overhead of garbage collection,

you must increase the heap size of the JVM, as described in Section Java Virtual Machine Arguments.

Use tools of your JVM provider (such as VisualVM) tomonitor the garbage collector to check whether

the heap size is tight.

Size of thread pools. Every Canton process has a thread pool for executing internal tasks. By default,

the size of the thread-pool is configured as the number of (virtual) cores of the underlying (physical)

machine. If the underlying machine runs other processes (e.g., a database) or if Canton runs inside

of a container, the thread-pool may be too big, resulting in excessive context switching. To avoid

that, configure the size of the thread pool explicitly like this:

"bin/canton ­Dscala.concurrent.context.numThreads=12 ­­config examples/01­simple­

↪→topology/simple­topology.conf"

As a result, Canton will log the following line:

"INFO c.d.c.e.EnterpriseEnvironment ­ Deriving 12 as number of threads from '­

↪→Dscala.concurrent.context.numThreads'."

Asynchronous commits. If you are using a Postgres database, configure the participant’s ledger API

server to commit database transactions asynchronously by including the following line into your

Canton configuration:

canton.participants.participant1.ledger­api.postgres­data­source.synchronous­

↪→commit = off

Logging Settings. Make sure that Canton outputs log messages only at level INFO and above and

turn off immediate log flushing using the ­­log­immediate­flush=false commandline flag, at

the risk of missing log entries during a host system crash.

Replication. If (and only if) using single nodes for participant, sequencer, and/or mediator, replica-

1.32. Scaling and Performance 1311

Daml SDK Documentation, 2.7.3

tion can be turned off by setting replication.enabled = false in their respective configura-

tion.

Warning: While replication can be turned off to try to obtain performance gains, it must not be

disabled when running multiple nodes for HA.

Caching Configuration. In some cases, you might also want to tune caching configurations and

either reduce or increase them, depending on your situation. This can also be helpful if you need to

reduce the memory foot-print of Canton, which can be large, as the default cache configurations are

tailored for high-throughput, high-memory and small transaction sizes.

Generally, the caches that usually matter with respect to size are the contract caches and the

in-memory fan-out event buffer. You can tune these using the following configurations. The val-

ues depicted here are the ones recommended for smaller memory-footprints and are therefore also

helpful if you run into out-of-memory issues:

canton.participants.participant1 {

// tune caching configs of the ledger api server

ledger­api {

max­contract­state­cache­size = 1000 // default 1e6

max­contract­key­state­cache­size = 1000 // default 1e6

// The in­memory fan­out will serve the transaction streams from memory␣

↪→as they are finalized, rather than

// using the database. Therefore, you should choose this buffer to be␣

↪→large enough such that the likeliness of

// applications having to stream transactions from the database is low.␣

↪→Generally, having a 10s buffer is

// sensible. Therefore, if you expect e.g. a throughput of 20 tx/s, then␣

↪→setting this number to 200 is sensible.

// The default setting assumes 1000 tx/s.

max­transactions­in­memory­fan­out­buffer­size = 200 // default 1e5

}

// tune the synchronisation protocols contract store cache

caching {

contract­store {

maximum­size = 1000 // default 1e6

expire­after­access = 120s // default 10 minutes

}

}

}

1.33 Advanced Ledger Operations

1.33.1 Manage Domains

1.33.1.1 Permissioned Domains

Important: This feature is only available in Canton Enterprise

1312 Chapter 1. Canton References

/canton/usermanual/downloading.html

Daml SDK Documentation, 2.7.3

Canton as a network is an open virtual shared ledger. Whoever runs a Canton participant node is

part of the same virtual shared ledger. However, the network itself is made up of domains that are

used by participants to run the Canton protocol and communicate to their peers. Such domains

can be open, allowing any participant with access to a sequencer node to enter and participate in

the network. But domains can also be permissioned, where the operator of the domain topology

managers needs to explicitly add the participant to the allow-list before the participant can register

with a domain.

While the Canton architecture is designed to be resilient against malicious participants, there can

never be a guarantee that the implementation of said architecture is absolutely secure. Therefore, it

makes sense for most networks to impose control on which participant can be part of the network.

The first layer of control is givenby securing access to the public api of the sequencers in thenetwork.

This can be done using standard network tools such as firewalls and virtual private networks.

The second layer of control is given by setting the appropriate configuration flag of the domainman-

ager (or domain):

canton.domain­managers.domainManager1.topology.open = false

Assuming we have set up a domain with this flag turned off, the config for that particular domain

would read:

@ val config = DomainConnectionConfig("mydomain", sequencer1.sequencerConnection)

config : DomainConnectionConfig = DomainConnectionConfig(

domain = Domain 'mydomain',

sequencerConnections = Sequencer 'DefaultSequencer' ­> GrpcSequencerConnection(

endpoints = http://127.0.0.1:30078,

transportSecurity = false,

..

When a participant attempts to join the domain, it will be rejected:

@ participant1.domains.register(config)

ERROR com.digitalasset.canton.integration.EnterpriseEnvironmentDefinition$$anon$3␣

↪→­ Request failed for participant1.

GrpcRequestRefusedByServer: FAILED_PRECONDITION/PARTICIPANT_IS_NOT_ACTIVE(9,

↪→20d5cc73): The participant is not yet active

Request: RegisterDomain(DomainConnectionConfig(

domain = Domain 'mydomain',

sequencerConnections = Sequencer 'DefaultSequencer' ­>␣

↪→GrpcSequencerConnection(endpoints = http://127.0.0.1:30078, transportSecurity =␣

↪→false, customTrustCertificates = None()),

...

CorrelationId: 20d5cc7385cb9dc0895e47ef8fc0495f

Context: HashMap(participant ­> participant1, test ­>␣

↪→ManagePermissionedDomainsDocumentationManual, serverResponse ­> Domain Domain

↪→'mydomain' has rejected our on­boarding attempt, domain ­> mydomain, tid ­>␣

↪→20d5cc7385cb9dc0895e47ef8fc0495f)

Command ParticipantAdministration$domains$.register invoked from cmd10000006.

↪→sc:1

In order to allow the participant to join the domain, we must first actively enable it on the topology

manager. We assume now that the operator of the participant extracts its id into a string:

1.33. Advanced Ledger Operations 1313

Daml SDK Documentation, 2.7.3

@ val participantAsString = participant1.id.toProtoPrimitive

participantAsString : String =

↪→"PAR::participant1::12201c55b3f9bd2090569099ed1a2eb60a872cad7170cb286a5e09b01bf32d856037

↪→"

and communicates this string to the operator of the domain topology manager:

@ val participantIdFromString = ParticipantId.

↪→tryFromProtoPrimitive(participantAsString)

participantIdFromString : ParticipantId = PAR::participant1::12201c55b3f9...

This topology manager can now add the participant by enabling it:

@ domainManager1.participants.set_state(participantIdFromString,␣

↪→ParticipantPermission.Submission, TrustLevel.Ordinary)

Note that the participant is not active yet:

@ domainManager1.participants.active(participantIdFromString)

res5: Boolean = false

So far, what we’ve done with setting the state is to issue a “domain trust certificate”, where the

domain topology manager declares that it trusts the participant enough to become a participant of

the domain. We can inspect this certificate using:

@ domainManager1.topology.participant_domain_states.list(filterStore="Authorized

↪→").map(_.item)

res6: Seq[ParticipantState] = Vector(

ParticipantState(

From,

domainManager1::1220ce9a486a...,

PAR::participant1::12201c55b3f9...,

Submission,

Ordinary

)

)

In order to have the participant become active on the domain, we need to register the signing keys

and the “domain trust certificate” of the participant. The certificate is generated by the participant

automatically and sent to the domain during the initial handshake.

We can trigger that handshake again by attempting to reconnect to the domain again:

@ participant1.domains.reconnect_all()

Now, we can check that the participant is active:

@ domainManager1.participants.active(participantIdFromString)

res8: Boolean = true

We can also observe that we now have both sides of the domain trust certificate, the From and the

To:

@ domainManager1.topology.participant_domain_states.list(filterStore="Authorized

↪→").map(_.item)

res9: Seq[ParticipantState] = Vector(

(continues on next page)

1314 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

ParticipantState(

From,

domainManager1::1220ce9a486a...,

PAR::participant1::12201c55b3f9...,

Submission,

Ordinary

),

ParticipantState(

To,

domainManager1::1220ce9a486a...,

PAR::participant1::12201c55b3f9...,

Submission,

Ordinary

)

)

Finally, the participant is healthy and can use the domain:

@ participant1.health.ping(participant1)

res10: Duration = 2646 milliseconds

1.33.1.2 Domain Rules

Every domain has its own rules in terms of what parameters are used by the participants while run-

ning the protocol. The participants obtain these parameters before connecting to the domain. They

can be configured using the specific parameter section. An example would be:

init.domain­parameters {

// example setting

unique­contract­keys = yes

}

The full set of available parameters can be found in the scala reference documentation.

1.33.1.3 Dynamic domain parameters

In addition to the parameters that are specified in the configuration, some parameters can be

changed at runtime (i.e., while the domain is running); these are called dynamic domain parame-

ters. When the domain is bootstrapped, default values are used for the dynamic domain parameters.

They can be changed subsequently using the console commands described below.

A participant can get the current parameters on a domain it is connected to using the following

command:

mydomain.service.get_dynamic_domain_parameters

Parameters thatwere transitioned fromstatic to dynamicwithprotocol version 4need to be retrieved

individually:

mydomain.service.get_reconciliation_interval

mydomain.service.get_max_rate_per_participant

(continues on next page)

1.33. Advanced Ledger Operations 1315

https://docs.daml.com/2.7.3/canton/scaladoc/com/digitalasset/canton/domain/config/DomainParametersConfig.html

Daml SDK Documentation, 2.7.3

(continued from previous page)

mydomain.service.get_max_request_size

mydomain.service.get_mediator_deduplication_timeout

Dynamic parameters can bet set individually using:

mydomain.service.set_reconciliation_interval(5.seconds)

mydomain.service.set_max_rate_per_participant(100)

mydomain.service.set_max_request_size(100000)

mydomain.service.set_mediator_deduplication_timeout(2.minutes)

Alternatively, several can be set at the same time:

mydomain.service.update_dynamic_domain_parameters(

_.update(

participantResponseTimeout = 10.seconds,

topologyChangeDelay = 1.second,

)

)

Note: When increasingmax request size, the sequencer nodes need to be restarted for the new value

to be taken into account. If the domain is not distributed, it means that the domain node needs to

be restarted.

1.33.1.4 Recover From a Small Max Request Size

MaxRequestSize is a dynamic parameter starting from protocol version 4. This parameter configures

both the grpc channel size on the sequencer node and the maximum size that a sequencer client is

allowed to transfer.

If the parameter is set to a very small value (roughly under 30kb), Canton can crash because all

messages are rejected by the sequencer client or by the sequencer node. This cannot be corrected

by setting a higher value within the console, because this change request needs to be send via the

sequencer and will also be rejected.

To recover from this crash, youneed to configure override-max-request-size onboth the sequencer node

and the sequencer clients.

On a non-distributed deployment, this meansmodifying both the domain and the participants con-

figuration as follows:

domains {

da {

overrides the maxRequestSize in bytes on the sequencer node

public­api.override­max­request­size = 30000

sequencer­client.override­max­request­size = 30000

}

}

participants {

participant1 {

sequencer­client.override­max­request­size = 30000

}

(continues on next page)

1316 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

participant2 {

sequencer­client.override­max­request­size = 30000

}

}

On a distributed deployment, for each domain entity deployed on its own node, you will need to over-

ride the max-request-size as follows:

domain­managers {

domainManager1 {

sequencer­client.override­max­request­size = 30000

}

}

participants {

participant1 {

sequencer­client.override­max­request­size = 30000

}

participant2 {

sequencer­client.override­max­request­size = 30000

}

}

mediators {

mediator1 {

sequencer­client.override­max­request­size = 30000

}

}

sequencers {

sequencer1 {

overrides the maxRequestSize in bytes on the sequencer node

public­api.override­max­request­size = 30000

sequencer­client.override­max­request­size = 30000

}

}

After the configuration ismodified, disconnect all the participants from the domain and then restart

all nodes.

On a non-distributed deployment, you can stop Canton by following these steps:

participants.all.domains.disconnect(da.name)

nodes.local.stop()

On a distributed deployment, you can stop Canton by following these steps:

participants.all.domains.disconnect(sequencer1.name)

nodes.local.stop()

Then perform the restart:

nodes.local.start()

participants.all.domains.reconnect_all()

Once Canton has recovered, use the admin command to set the maxRequestSize value, then delete

the added configuration in the previous step, and finally perform the restart again.

1.33. Advanced Ledger Operations 1317

Daml SDK Documentation, 2.7.3

1.33.2 Manage Domain Entities

1.33.2.1 Setting up a Distributed Domain With a Single Console

If you’re running a domain node in its default configuration as shown previously in this current page,

it will have a sequence and mediator embedded and these components will be automatically boot-

strapped for you.

If your domain operateswith external sequencers andmediators, youwill need to configure a domain

manager node (which only runs topologymanagement) and bootstrap your domain with at least one

external sequencer node and one external mediator node.

First make sure the nodes are fresh and have not yet been initialized:

@ mediator1.health.initialized()

res1: Boolean = false

@ sequencer1.health.initialized()

res2: Boolean = false

@ domainManager1.health.initialized()

res3: Boolean = false

The domain manager also needs its identity to be generated and ready before we can bootstrap the

domain:

@ domainManager1.health.wait_for_identity()

Note: This is technically only required when accessing the domain manager through a remote con-

sole, but is a good practice regardless.

Now you can initialize the distributed domain as follows:

@ domainManager1.setup.bootstrap_domain(Seq(sequencer1), Seq(mediator1))

At this point a participant should be able to connect to a sequencer and operate on that domain:

@ participant1.domains.connect_local(sequencer1)

@ participant1.health.ping(participant1)

res7: Duration = 5514 milliseconds

Domain managers are configured as domain­managers under the canton configuration. Domain

managers are configured similarly to domain nodes, except that there are no sequencer, mediator,

public api or service agreement configs.

Please note that if your sequencer is database-based and you’re horizontally scaling it as described

under sequencer high availability, you do not need to pass all sequencer nodes into the command

above. Since they all share the same relational database, you only need to run this initialization

step on one of them.

For non-database-based sequencer such as Ethereum or Fabric sequencers you need to have each

node initialized individually. You can either initialize such sequencers as part of the initial domain

1318 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

bootstrap shown above or dynamically add a new sequencer at a later point as described in opera-

tional processes.

1.33.2.2 Setting up a Distributed Domain With Separate Consoles

The process outlined in the previous section only works if all nodes are accessible from the same

console environment. If each node has its own isolated console environment, the bootstrapping

process must be coordinated in steps with the exchange of data via files using any secure channel

of communication between the environments.

Note: Please ensure that all of the nodes in the distributed domain are started before proceeding.

Initially the domain manager must transmit its domain parameters from its console by saving the

parameters to a file. The domain id, serialized as a string, must also be transmitted.

@ domainManager1.service.get_static_domain_parameters.writeToFile("tmp/domain­

↪→bootstrapping­files/params.proto")

@ val domainIdString = domainManager1.id.toProtoPrimitive

domainIdString : String =

↪→"domainManager1::1220be641b8b69c9e56c6548ac78437f05e2fdc0be96df9a70dfe2e403d28da0de9b

↪→"

Then the sequencer must receive this file, deserialize it and initialize itself. As part of the initial-

ization, the sequencer creates a signing key pair whose public key it must then transmit via file.

Optionally, repeat this for any extra sequencer nodes.

@ val domainParameters = com.digitalasset.canton.admin.api.client.data.

↪→StaticDomainParameters.tryReadFromFile("tmp/domain­bootstrapping­files/params.

↪→proto")

domainParameters : StaticDomainParameters = StaticDomainParametersV1(

uniqueContractKeys = true,

requiredSigningKeySchemes = Set(Ed25519, ECDSA­P256, ECDSA­P384),

requiredEncryptionKeySchemes = Set(ECIES­P256_HMAC256_AES128­GCM),

requiredSymmetricKeySchemes = Set(AES128­GCM),

requiredHashAlgorithms = Set(Sha256),

requiredCryptoKeyFormats = Set(Tink),

protocolVersion = 4

)

@ val domainId = DomainId.tryFromString(domainIdString)

domainId : DomainId = domainManager1::1220be641b8b...

@ val initResponse = sequencer1.initialization.initialize_from_beginning(domainId,

↪→ domainParameters)

initResponse : com.digitalasset.canton.domain.sequencing.admin.grpc.

↪→InitializeSequencerResponse = InitializeSequencerResponse(

keyId = "sequencer­id",

publicKey = SigningPublicKey(id = 122050ae909a..., format = Tink, scheme =␣

↪→Ed25519),

replicated = false

)

1.33. Advanced Ledger Operations 1319

Daml SDK Documentation, 2.7.3

@ initResponse.publicKey.writeToFile("tmp/domain­bootstrapping­files/seq1­key.

↪→proto")

The domain manager must then authorize the sequencer’s key. Optionally, repeat this for any extra

sequencer keys.

@ val sequencerPublicKey = SigningPublicKey.tryReadFromFile("tmp/domain­

↪→bootstrapping­files/seq1­key.proto")

sequencerPublicKey : SigningPublicKey = SigningPublicKey(id = 122050ae909a...,␣

↪→format = Tink, scheme = Ed25519)

@ domainManager1.setup.helper.authorizeKey(sequencerPublicKey, "sequencer",␣

↪→SequencerId(domainManager1.id))

Now the mediator also needs to create a signing key pair and transmit it. Optionally, repeat this for

any extra mediator nodes.

@ mediator1.keys.secret.generate_signing_key("initial­key").writeToFile("tmp/

↪→domain­bootstrapping­files/med1­key.proto")

The domainmanager must now authorize themediator’s key and also authorize themediator to act

as part of this domain. Optionally, repeat this for any extra mediator nodes.

@ val mediatorKey = SigningPublicKey.tryReadFromFile("tmp/domain­bootstrapping­

↪→files/med1­key.proto")

mediatorKey : SigningPublicKey = SigningPublicKey(id = 122097079077..., format =␣

↪→Tink, scheme = Ed25519)

@ val domainId = DomainId.tryFromString(domainIdString)

domainId : DomainId = domainManager1::1220be641b8b...

@ domainManager1.setup.helper.authorizeKey(mediatorKey, "mediator1",␣

↪→MediatorId(domainId))

@ domainManager1.topology.mediator_domain_states.authorize(TopologyChangeOp.Add,␣

↪→domainId, MediatorId(domainId), RequestSide.Both)

res13: com.google.protobuf.ByteString = <ByteString@227271fd size=560 contents="\

↪→n\255\004\n\333\001\n\326\001\n\323\001\022 TJu4dWv2cpqPUOi2StZtQyuEE2BjPM0UR...

↪→">

After that, still on the domainmanager’s console, the domainmanagermust collect the list of topol-

ogy transactions, which include all the key authorizations and a few other things it needs to broad-

cast to all domain members. This is now saved to a file.

@ domainManager1.topology.all.list().collectOfType[TopologyChangeOp.Positive].

↪→writeToFile("tmp/domain­bootstrapping­files/topology­transactions.proto")

The sequencer then reads this set of initial topology transactions and sequences it as the first mes-

sage to be sequenced in this domain. This will allow the domain members whose keys were autho-

rized in previous steps to connect to this sequencer and operate with it. The sequencer will then

transmit its connection info.

1320 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

@ val initialTopology = com.digitalasset.canton.topology.store.

↪→StoredTopologyTransactions.tryReadFromFile("tmp/domain­bootstrapping­files/

↪→topology­transactions.proto").collectOfType[TopologyChangeOp.Positive]

initialTopology : store.StoredTopologyTransactions[TopologyChangeOp.Positive] =␣

↪→Seq(

StoredTopologyTransaction(

sequenced = 2023­06­12T12:19:31.150925Z,

validFrom = 2023­06­12T12:19:31.150925Z,

validUntil = 2023­06­12T12:19:31.150925Z,

op = Add,

..

@ sequencer1.initialization.bootstrap_topology(initialTopology)

@ SequencerConnections.single(sequencer1.sequencerConnection).writeToFile("tmp/

↪→domain­bootstrapping­files/sequencer­connection.proto")

To initialize the mediator, it will need a connection to the sequencer and the domain parameters.

Optionally, repeat this for any extra mediator nodes.

@ val sequencerConnections = SequencerConnections.tryReadFromFile("tmp/domain­

↪→bootstrapping­files/sequencer­connection.proto")

sequencerConnections : SequencerConnections = Sequencer 'DefaultSequencer' ­>␣

↪→GrpcSequencerConnection(

endpoints = http://127.0.0.1:30141,

transportSecurity = false,

customTrustCertificates = None()

)

@ val domainParameters = com.digitalasset.canton.admin.api.client.data.

↪→StaticDomainParameters.tryReadFromFile("tmp/domain­bootstrapping­files/params.

↪→proto")

domainParameters : StaticDomainParameters = StaticDomainParametersV1(

uniqueContractKeys = true,

requiredSigningKeySchemes = Set(Ed25519, ECDSA­P256, ECDSA­P384),

requiredEncryptionKeySchemes = Set(ECIES­P256_HMAC256_AES128­GCM),

requiredSymmetricKeySchemes = Set(AES128­GCM),

requiredHashAlgorithms = Set(Sha256),

requiredCryptoKeyFormats = Set(Tink),

protocolVersion = 4

)

@ mediator1.mediator.initialize(domainId, MediatorId(domainId), domainParameters,␣

↪→sequencerConnections, None)

res20: PublicKey = SigningPublicKey(id = 1220189c84ae..., format = Tink, scheme =␣

↪→Ed25519)

@ mediator1.health.wait_for_initialized()

The domainmanager will also need a connection to the sequencer in order to complete its initializa-

tion .

@ val sequencerConnection = SequencerConnections.tryReadFromFile("tmp/domain­

↪→bootstrapping­files/sequencer­connection.proto")

(continues on next page)

1.33. Advanced Ledger Operations 1321

Daml SDK Documentation, 2.7.3

(continued from previous page)

sequencerConnection : SequencerConnections = Sequencer 'DefaultSequencer' ­>␣

↪→GrpcSequencerConnection(

endpoints = http://127.0.0.1:30141,

transportSecurity = false,

customTrustCertificates = None()

)

@ domainManager1.setup.init(sequencerConnection)

@ domainManager1.health.wait_for_initialized()

At this point the distributed domain should be completely initialized and a participant should be

able to operate on this domain by connection to the sequencer.

@ participant1.domains.connect_local(sequencer1)

@ participant1.health.ping(participant1)

res26: Duration = 948 milliseconds

Additionally, please note that if more than one sequencers have been initialized, any mediator node

and domain manager can choose to connect to just a subset of them.

1.33.2.3 Adding new sequencers to distributed domain

For non-database-based sequencers such as Ethereum or Fabric sequencers, you can either initial-

ize them as part of the regular distributed domain bootstrapping process or dynamically add a new se-

quencer at a later point as follows:

domainManager1.setup.onboard_new_sequencer(

initialSequencer = sequencer1,

newSequencer = sequencer2,

)

Similarly to initializing a distributed domain with separate consoles, dynamically onboarding new se-

quencers (supported by Fabric and Ethereum sequencers) can be achieved in separate consoles as

follows:

// Second sequencer's console: write signing key to file

{

secondSequencer.keys.secret

.generate_signing_key(s"${secondSequencer.name}­signing")

.writeToFile(file1)

}

// Domain manager's console: write domain params and current topology

{

domainManager1.service.get_static_domain_parameters.writeToFile(paramsFile)

val sequencerSigningKey = SigningPublicKey.tryReadFromFile(file1)

domainManager1.setup.helper.authorizeKey(

sequencerSigningKey,

(continues on next page)

1322 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

s"${secondSequencer.name}­signing",

sequencerId,

)

domainManager1.setup.helper.waitForKeyAuthorizationToBeSequenced(

sequencerId,

sequencerSigningKey,

)

domainManager1.topology.all

.list(domainId.filterString)

.collectOfType[TopologyChangeOp.Positive]

.writeToFile(file1)

}

// Initial sequencer's console: read topology and write snapshot to file

{

val topologySnapshotPositive =

StoredTopologyTransactions

.tryReadFromFile(file1)

.collectOfType[TopologyChangeOp.Positive]

val sequencingTimestamp = topologySnapshotPositive.lastChangeTimestamp.

↪→getOrElse(

sys.error("topology snapshot is empty")

)

sequencer.sequencer.snapshot(sequencingTimestamp).writeToFile(file2)

}

// Second sequencer's console: read topology, snapshot and domain params

{

val topologySnapshotPositive =

StoredTopologyTransactions

.tryReadFromFile(file1)

.collectOfType[TopologyChangeOp.Positive]

val state = SequencerSnapshot.tryReadFromFile(file2)

val domainParameters = StaticDomainParameters.tryReadFromFile(paramsFile)

secondSequencer.initialization

.initialize_from_snapshot(

domainId,

topologySnapshotPositive,

state,

domainParameters,

)

.publicKey

secondSequencer.health.initialized() shouldBe true

}

1.33. Advanced Ledger Operations 1323

Daml SDK Documentation, 2.7.3

1.33.3 Ledger Pruning

Pruning refers to the selective removal of old, stale, or unneeded data from participant, domain se-

quencer, and mediator nodes. Nodes operate continuously for an indefinite amount of time on a

limited amount of storage. In addition, privacy demands may require removing Personally Identifi-

able Information (PII) upon request.

Pruning participant nodes means removing archived contracts (and associated transactions and

events). Pruning never removes active (i.e., non-archived) Daml contracts. For domain sequencers

and mediators, pruning relates to the removal of processed messages. Participants and domain

sequencers and mediators can have different pruning schedules set.

1.33.3.1 Enable Automatic Pruning

Enable automatic pruning by specifying a pruning schedule consisting of the following:

• A cron expression that designates regular pruning “begin times”.

• A maximum duration specifying pruning “end times” relative to the begin times of the cron

expression.

• A retention period to specify how far to prune relative to the current time.

For example, to run pruning every Saturday starting at 8am until 4pm (both in UTC):

participant.pruning.set_schedule("0 0 8 ? * SAT", 8.hours, 90.days)

domain.sequencer.pruning.set_schedule("0 0 8 ? * SAT", 8.hours, 90.days)

domain.mediator.set_schedule("0 0 8 ? * SAT", 8.hours, 90.days)

Refer to the cron specification to customize the pruning schedule. Here are a few examples:

set_schedule("0 0 20 * * ?", 2.hours, retention) // run every evening at 8pm GMT␣

↪→for two hours

set_schedule("0 /5 * * * ?", 1.minute, retention) // run every 5 minutes for one␣

↪→minute

set_schedule("0 0 0 31 12 ? 2023", 1.day, retention) // run for one specific day

For themaximum duration to specify a reliable pruning window “end time”, the leading fields of the

cron expression should should not be wildcards (*) as illustrated in the examples above. If the hour

field is fixed, so should the fields for minute and second.

1.33.3.2 Monitoring Pruning Progress

Monitor the pruning state to determine that the pruning schedule allows participant, mediator, and

sequencer pruning to keep up with ledger growth, and is not stuck for one of the reasons described

below in the “Common Notes”.

Specifically, monitor the max-event-age metrics describing the age of the “oldest, un-pruned” event

(in hours):

<participant>.prune.max­event­age

<mediator>.max­event­age

<sequencer>.max­event­age

The max-event-age metrics should not exceed the value of the pruning schedule retention plus the

length of the interval. For example, if your schedule specifies a retention of 30 days and a cron that

1324 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

calls for weekly pruning, max-event-agemust remain below 37 days. If for any node themax-event-age

metric exceeds this upper limit, you should consider allocating more time for pruning by reducing

the interval between pruning windows or by increasing the maximum duration pruning schedule set-

ting.

1.33.3.3 Best Practices

• Pruning deletes data from the database, freeing up space, but it does not performany database

maintenance such as table resizing. PostgreSQL supports automatic and manual vacuuming

for this purpose, but Oracle lacks such support and relies on the database administrator to

manage freed database space.

• Pruning is an IO-heavy operation and would have an impact on overall system performance

(lowering throughput during pruning by as much as 50% in our test environments), hence it

is preferable to schedule pruning during maintenance windows such as after taking database

backups or during low load.

• A catastrophic failure of a participant and its backup can be mitigated by rebuilding its state

from the sequencer by replaying messages. However, this becomes impossible once the re-

quired messages have been pruned from the sequencer. For this reason, the backup strategy

for participant nodes should be coordinated with the sequencer’s pruning schedule.

• For high availability nodes that share a common database, the pruning schedule has to be set

on an active replica (participant, mediator) or one active shard (database sequencer).

• Participants,mediators, and sequencers also expose “manual” prune*methods that comewith

pitfalls. The methods might appear to be hanging unless the range of events and messages

specified for pruning is not broken up into sufficiently small chunks. In addition, these man-

ual methods have no built-in mechanism to resume on another node after a high-availability

failover. Automatic pruning is recommended instead.

1.33.3.4 Current Limitations

• The sequencer will only allow pruning of acknowledged events. As such, if a client such as

a participant or mediator stops acknowledging events that have been sent to it, sequencer

pruning will be blocked. This is a current limitation.

• Generally, idle sequencer clients will only acknowledge once they have observed subsequent

events. This means that idle clients normally won’t acknowledge the last event. Since each

member requests a time-proof once per day, there is a default limitation that a system

with idle but connected clients cannot be pruned with a retention window of less than 24

hours. As the topology manager connects to the sequencer but is often idle and only in-

voked on topology changes, this limitation manifests itself when pruning test environments

where aggressive pruning windows of less than 24 hours are used. This can be fixed by ad-

justing the domain-tracker time of the topology manager: canton.domains.mydomain.

time­tracker.min­observation­duration = 1h.

• Pruning of participants requires the participant to have received a commitment from each

counter-participantwithwhich it shares a contract. If a participant becomesdefunct and stops

sending commitments, pruning of the participant will not work. Therefore, before you disable a

participant, please make sure that is not involved in any contract. This is a current limitation.

Refer to the Participant Pruning section to learn how pruning affects Daml applications and the

Ledger API.

1.33. Advanced Ledger Operations 1325

Daml SDK Documentation, 2.7.3

1.33.4 Participant Pruning

The Daml Ledger API exposes an append-only ledger model; on the other hand, Daml Participants

must be able to operate continuously for an indefinite amount of time on a limited amount of hot

storage.

In addition, privacy demands1 may require removing Personally Identifiable Information (PII) upon

request.

To satisfy these requirements, the Pruning Service Ledger API endpoint2 allows Daml Participants to

support pruning of Daml contracts and transactions that were respectively archived and submitted

before or at a given ledger offset.

Please refer to the specific Daml driver information for details about its pruning support.

1.33.4.1 Impacts on Daml Applications

When supported, pruning can be invoked by an operator with administrative privileges at any time

on a healthy Daml participant; furthermore, it doesn’t require stopping nor suspending normal op-

eration.

Still, Daml applications may be affected in the following ways:

• Pruning is potentially a long-running operation and demanding one in terms of system re-

sources; as such, it may significantly reduce Daml Ledger API throughput and increase la-

tencywhile it is being performed. It is thus strongly recommended to plan pruning invocations,

preferably, when the system is offline or at least when very low system utilization is expected.

• Pruning may degrade the behavior of or abort in-progress requests if the pruning offset is too

recent. In particular, the systemmight misbehave if command completions are pruned before

the command trackers are able to process the completions.

• Command deduplication and command tracker retention should always be configured so that

the associated windows don’t overlap with the pruning window to ensure that their operation

is unaffected by pruning.

• Pruning may affect the behavior of Ledger API calls that allow to read data from the ledger: see

the next sub-section for more information about API impacts.

• Pruning of all divulged contracts (see Prune Request) does not preserve application visibility

over contracts divulged up to the pruning offset, hence applications making use of pruned

divulged contracts might start experiencing failed command submissions: see the section

below for determining a suitable pruning offset.

Warning: Participants may know of contracts for which they don’t know the current activeness

status. This happens through divulgence where a party learns of the existence of a contract with-

out being guaranteed to ever see its archival. Such contracts are pruned by the feature described

on this page as not doing so could easily lead to an ever growing participant state.

During command submission, parties can fetch divulged contracts. This is incompatible with the

pruning behaviour described above which allows participant operators to reclaim storage space by

pruning divulged contracts. Daml code running on pruned participants should therefore never rely

1 For example, as enabled by provisions about the “right to be forgotten” of legislation such as EU’s GDPR.
2 Invoking the Pruning Service requires administrative privileges.

1326 Chapter 1. Canton References

https://gdpr-info.eu/

Daml SDK Documentation, 2.7.3

on existence of divulged contracts prior to or at the pruning offset. Instead, such applications MUST

ensure re-divulgence of the used contracts.

1.33.4.2 How the Daml Ledger API is Affected

Pruning of old data is not noticed by applications that are up to date. However pruning data in active

use by applications can result in the following errors:

• Active data streams from the Daml Participant may abort and need to be re-established by the

Daml application from a later offset than pruned, even if they are already streaming past it.

• Requesting information at offsets that predate pruning, including from the ledger’s start, will

result in a FAILED_PRECONDITION gRPC error. - As a consequence, after pruning, a Daml ap-

plication must bootstrap from the Active Contract Service and a recent offset3.

Submission validation and Daml Ledger API endpoints that write to the ledger are generally not af-

fected by pruning; an exception is that in-progress calls could abort while awaiting completion.

Please refer to the protobuf documentation of the API for details about the prune operation itself and

the behavior of other Daml Ledger API endpoints when pruning is being or has been performed.

1.33.4.3 Other Limitations

• Pruning may be rejected even if the node is running correctly (for example, to preserve

non-repudiation properties); in this case, the application might not be able to archive con-

tracts containing PII or pruning of these contracts may not be possible; thus, actually deleting

this PII may also be technically unfeasible.

• Pruning may leave parties, packages, and configuration data on the participant node, even if

they are no longer needed for transaction processing, and even if they contain PIIPage 1326, 3.

• Pruning does not move pruned information to cold storage but simply deletes pruned data; for

this reason, it is advisable to back up the Participant Index DB before invoking pruning. See the

next sub-section for more Participant Index DB-related advice before and after invoking prune.

• Pruning is not selective but rather effectively truncates the ledger, removing events on behalf

of archived contracts and command completions at the pruning offset and all previous offsets.

1.33.4.4 How Pruning Affects Index DB Administration

Pruning deletes data from the participant’s database and therefore frees up space within it, which

can and will be reused during the continued operation of the Index DB. Whether this freed up space

is handed back to the OS depends on the database in use. For example, in PostgreSQL the deleted

data frees up space in the table storage itself, but does not shrink the size of the files backing the

tables of the IndexDB. Please refer to the PostgreSQL documentation on VACUUM and VACUUM FULL for

more information.

Activities to be carried out before invoking a pruning operation should thus include backing up the

Participant Index DB, as pruning will not move information to cold storage but rather it will delete

events on behalf of archived contracts and command completions before or at the pruning offset.

In addition, activities to be carried out after invoking a pruning operation might include:

3 This might be improved in future versions.

1.33. Advanced Ledger Operations 1327

Daml SDK Documentation, 2.7.3

• On a PostgreSQL Index DB, especially if auto-vacuum tuning has not been performed, issuing

VACUUM commands at appropriate times may improve performance and storage usage by let-

ting the database reuse freed space. Note that VACUUM FULL commands are still needed for the

OS to reclaim disk space previously used by the database.

Backing up and vacuuming, in addition to pruning itself, are also long-running and resource-hungry

operations thatmight negatively affect the performance of regular workloads and even the availabil-

ity of the system: this is true in particular for VACUUM FULL in PostgreSQL and equivalent commands

in other DBMSs. These operations should thus be planned and taken carefully into account when siz-

ing system resources. They should also be scheduled sensibly in relation to the desired sustained

performance levels of regular workloads and to the hot storage usage goals.

Professional advice on database administration is strongly recommended that would take into ac-

count the DB specifics as well as all of the above aspects.

1.33.4.5 Determine a Suitable Pruning Offset

The Transaction Service and the Active Contract Service provide offsets of the ledger end of the Trans-

actions, and of Active Contracts snapshots respectively. Such offsets can be passed unchanged to

prune calls, as long as they are lexicographically lower than the current ledger end. An additional con-

straint imposed by Canton is that the participant you are pruningmust have already exchanged the

ACS commitments with other participants for the offset that you prune at. Refer to Canton pruning

documentation for more information.

When pruning all divulged contracts, the participant operator can choose the pruning offset (pro-

vided that the suitable ACS commitments have already been exchanged) as follows:

• Just before the ledger end, if no application hosted on the participantmakes use of divulgence

OR

• An offset old enough (e.g. older than an arbitrary multi-day grace period) that it ensures that

pruning does not affect any recently-divulged contract needed by the applications hosted on

the participant.

Scheduled jobs, applications and/or operator tools can be built on top of the Daml Ledger API to

implement pruning automatically, for example at regular intervals, or on-demand, for example ac-

cording to a user-initiated process.

For instance, pruning at regular intervals could be performed by a cron job that:

1. If a pruning interval has been saved to a well-known location:

a. Backs up the Daml Participant Index DB.

b. Performs pruning.

c. (If using PostgreSQL) Performs a VACUUM FULL command on the Daml Participant Index DB.

2. Queries the current ledger end and saves its offset.

The interval between 2 (i.e. saving a recent ledger end offset) and the next cron job run determines

the data retention window, that should be long enough not to affect deduplication and commands

completion. For example, pruning at a recent ledger end offset could be problematic and should be

avoided.

Pruning could also be initiated on-demand at the offset of a specific transaction4, for example as

provided by a user application based on search.

4 Note that all the events on behalf of archived contracts and command completions found at earlier offsets will also

be pruned.

1328 Chapter 1. Canton References

../canton/usermanual/pruning.html
../canton/usermanual/pruning.html

Daml SDK Documentation, 2.7.3

1.33.5 Participant Metering

Participant metering is a way to report how many events have been submitted in a given period of

time.

Daml command execution results in a Daml transaction that contains events associated with the

processing of the command.

The events included in the report include:

• Contract creation

• Exercise of a contract (including non-consuming exercises and exercise by key)

• Fetch of a contract (including fetch by key)

• Lookup by contract key

Only events that originated from the local participant are included in the metering. Events received

by the local participant from remote participants are not included.

Only events contained in committed transactions are included, a failed transaction has no effect on

ledger metering.

1.33.5.1 Generate a Metering Report

A metering report is generated using the Daml assistant utility.

To run ametering reportdaml ledger metering­report is usedwith the followingmetering spe-

cific arguments:

­­from A start date that is used to initiate the reporting period. Events on or after this

date will be included.

­­to An end date that may be used to terminate the reporting period. Events prior to

this date will be included. If an end date is not provided then the report will contain

counts of all events that occurred on or after the ­­from date.

­­application Optionally, provide anapplication to limit the report to that application.

The from and to dates above should be formatted yyyy­mm­dd. The exact timestamp used for the

report will be the start of the UTC day provided.

Ledger metering is not affected by participant pruning.

Other non-metering specific Daml assistant flags may also be used alongside those shown above.

1.33.5.2 Example

To report on all applications for January 2022 the following from/to flags would be set:

daml ledger metering­report ­­from 2022­01­01 ­­to 2022­02­01

1.33. Advanced Ledger Operations 1329

Daml SDK Documentation, 2.7.3

1.33.5.3 Output

{

"participant": "some­participant",

"request": {

"from": "2022­01­01T00:00:00Z",

"to": "2022­02­01T00:00:00Z"

},

"final": true,

"applications": [

{

"application": "some­application",

"events": 42

}

],

"check": {

"digest": "sxRZw40JJ5gWGUJoecm6­i­UPQ2imBVqeOYnbmYhVNA=",

"scheme": "canton­enterprise­2022"

}

}

The output consists of the following sections:

participant The name of the local participant the report applies to

request This sectiongivesdetails of theparameters thatwereused togenerate the report

final This field will be set to true if a ­­to date was provided and the ­­to date is in

the past. Once a report is marked as final the event counts will never change and so

may be used for billing purposes.

applications This section will give an event count for each application used in the re-

porting period.

check This section is used by the billing operator to verify that the report has not been

modified.

1.33.6 API Configuration

A domain node exposes twomain APIs: the admin-api and the public-api, while the participant node

exposes the ledger-api and the admin-api. In this section, we will explain what the APIs do and how

they can be configured.

1.33.6.1 Default Ports

Canton assigns ports automatically for all the APIs of all the configured nodes if the port has not

been configured explicitly. The ports are allocated according to the following scheme:

/** Participant node default ports */

val ledgerApiPort = defaultPortStart(4001)

val participantAdminApiPort = defaultPortStart(4002)

/** Domain node default ports */

val domainPublicApiPort = defaultPortStart(4201)

val domainAdminApiPort = defaultPortStart(4202)

/** External sequencer node default ports ﴾enterprise­only﴿ */

(continues on next page)

1330 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

val sequencerPublicApiPort = defaultPortStart(4401)

val sequencerAdminApiPort = defaultPortStart(4402)

/** External mediator node default port ﴾enterprise­only﴿ */

val mediatorAdminApiPort = defaultPortStart(4602)

/** Domain node default ports */

val domainManagerAdminApiPort = defaultPortStart(4801)

/** External sequencer node x default ports ﴾enterprise­only﴿ */

val sequencerXPublicApiPort = defaultPortStart(5001)

val sequencerXAdminApiPort = defaultPortStart(5002)

/** External mediator node x default port ﴾enterprise­only﴿ */

val mediatorXAdminApiPort = defaultPortStart(5202)

/** Increase the default port number for each new instance by portStep */

private val portStep = 10

1.33.6.2 Administration API

The nature and scope of the admin api on participant and domain nodes has some overlap. As an

example, you will find the same key management commands on the domain and the participant

node API, whereas the participant has different commands to connect to several domains.

The configuration currently is simple (see the TLS example below) and just takes an address and a

port. The address defaults to 127.0.0.1 and a default port is assigned if not explicitly configured.

You should not expose the admin-api publicly in an unsecured way as it serves administrative pur-

poses only.

1.33.6.3 TLS Configuration

Both, the Ledger API and the admin API provide the same TLS capabilities and can be configured

using the same configuration directives. TLS provides end-to-end channel encryption between the

server and client, and depending on the settings, server or mutual authentication. Ensure that the

required TLS system dependencies are installed, e.g., libcrypt1 on Ubuntu.

A full configuration example is given by

canton.participants.participant4.ledger­api {

address = "127.0.0.1" // IP / DNS must be SAN of certificate to allow local␣

↪→connections from the canton process

port = 5041

tls {

// the certificate to be used by the server

cert­chain­file = "./tls/participant.crt"

// private key of the server

private­key­file = "./tls/participant.pem"

// trust collection, which means that all client certificates will be␣

↪→verified using the trusted

// certificates in this store. if omitted, the JVM default trust store is␣

↪→used.

(continues on next page)

1.33. Advanced Ledger Operations 1331

Daml SDK Documentation, 2.7.3

(continued from previous page)

trust­collection­file = "./tls/root­ca.crt"

// define whether clients need to authenticate as well (default not)

client­auth = {

// none, optional and require are supported

type = require

// If clients are required to authenticate as well, we need to provide a␣

↪→client

// certificate and the key, as Canton has internal processes that need to␣

↪→connect to these

// APIs. If the server certificate is trusted by the trust­collection, then␣

↪→you can

// just use the server certificates. Otherwise, you need to create separate␣

↪→ones.

admin­client {

cert­chain­file = "./tls/admin­client.crt"

private­key­file = "./tls/admin­client.pem"

}

}

// minimum­server­protocol­version = ...

// ciphers = ...

}

}

These TLS settings allow a connecting client to ensure that it is talking to the right server. In this

example, we have also enabled client authentication, which means that the client needs to present

a valid certificate (and have the corresponding private key). The certificate is valid if it has been

signed by a key in the trust store.

The trust­collection­file allows us to provide a file based trust store. If omitted, the system

will default to the built-in JVM trust store. The file must contain all client certificates (or parent

certificates which were used to sign the client certificate) who are trusted to use the API. The format

is just a collection of PEM certificates (in the right order or hierarchy), not a java based trust store.

In order to operate the server just with server-side authentication, you can just omit the section

on client­auth. However, if client­auth is set to require, then Canton also requires a client

certificate, as various Canton internal processes will connect to the process itself through the API.

All the private keys need to be in the pkcs8 PEM format.

By default, Canton only uses new versions of TLS and strong ciphers. You can also override the default

settings using the variables ciphers and protocols. If you set these settings to null, the default

JVM values will be used.

Note: Errormessages on TLS issues provided by the networking library netty are less than optimal.

If you are struggling with setting up TLS, please enable DEBUG logging on the io.netty logger.

Note that the configuration hierarchy for a remote participant console is slightly different from the

in-process console or participant shown above. For configuring a remote console with TLS, please

see the scaladocs for a TlsClientConfig (see also how scaladocs relates to the configuration).

If you need to create a set of testing TLS certificates, you can use the following openssl commands:

1332 Chapter 1. Canton References

https://docs.daml.com/2.7.3/canton/scaladoc/com/digitalasset/canton/participant/config/RemoteParticipantConfig.html
https://docs.daml.com/2.7.3/canton/scaladoc/com/digitalasset/canton/config/TlsClientConfig.html

Daml SDK Documentation, 2.7.3

DAYS=3650

function create_key {

local name=$1

openssl genrsa ­out "${name}.key" 4096

netty requires the keys in pkcs8 format, therefore convert them appropriately

openssl pkcs8 ­topk8 ­nocrypt ­in "${name}.key" ­out "${name}.pem"

}

create self signed certificate

function create_certificate {

local name=$1

local subj=$2

openssl req ­new ­x509 ­sha256 ­key "${name}.key" \

­out "${name}.crt" ­days ${DAYS} ­subj "$subj"

}

create certificate signing request with subject and SAN

we need the SANs as our certificates also need to include localhost or the

loopback IP for the console access to the admin­api and the ledger­api

function create_csr {

local name=$1

local subj=$2

local san=$3

(

echo "authorityKeyIdentifier=keyid,issuer"

echo "basicConstraints=CA:FALSE"

echo "keyUsage = digitalSignature, nonRepudiation, keyEncipherment,␣

↪→dataEncipherment"

) > ${name}.ext

if [[­n $san]]; then

echo "subjectAltName=${san}" >> ${name}.ext

fi

create certificate (but ensure that localhost is there as SAN as otherwise,␣

↪→admin local connections won't work)

openssl req ­new ­sha256 ­key "${name}.key" ­out "${name}.csr" ­subj "$subj"

}

function sign_csr {

local name=$1

local sign=$2

openssl x509 ­req ­sha256 ­in "${name}.csr" ­extfile "${name}.ext" ­CA "${sign}.

↪→crt" ­CAkey "${sign}.key" ­CAcreateserial \

­out "${name}.crt" ­days ${DAYS}

rm "${name}.ext" "${name}.csr"

}

function print_certificate {

local name=$1

openssl x509 ­in "${name}.crt" ­text ­noout

}

create root certificate

create_key "root­ca"

create_certificate "root­ca" "/O=TESTING/OU=ROOT CA/

↪→emailAddress=canton@digitalasset.com"

(continues on next page)

1.33. Advanced Ledger Operations 1333

Daml SDK Documentation, 2.7.3

(continued from previous page)

#print_certificate "root­ca"

create domain certificate

create_key "domain"

create_csr "domain" "/O=TESTING/OU=DOMAIN/CN=localhost/

↪→emailAddress=canton@digitalasset.com" "DNS:localhost,IP:127.0.0.1"

sign_csr "domain" "root­ca"

print_certificate "domain"

create participant certificate

create_key "participant"

create_csr "participant" "/O=TESTING/OU=PARTICIPANT/CN=localhost/

↪→emailAddress=canton@digitalasset.com" "DNS:localhost,IP:127.0.0.1"

sign_csr "participant" "root­ca"

create participant client key and certificate

create_key "admin­client"

create_csr "admin­client" "/O=TESTING/OU=ADMIN CLIENT/CN=localhost/

↪→emailAddress=canton@digitalasset.com"

sign_csr "admin­client" "root­ca"

print_certificate "admin­client"

If you are having problems with SSL connectivity, you can enable SSL debugging by adding the fol-

lowing flag to the command line when starting Canton:

bin/canton ­Djavax.net.debug=all

This will enable detailed SSL debugging information to be printed to the console, which can help you

diagnose and troubleshoot any problems youmay be experiencing. It is recommended to only enable

this flag when needed, as the output can be very verbose and may impact the performance of your

application.

1.33.6.4 Keep Alive

In order to prevent load-balancers or firewalls from terminating long running RPC calls in the event

of some silence on the connection, all gRPC connections enable keep-alive by default. An example

configuration for an adjusted setting is given below:

canton.participants.participant2 {

admin­api {

address = "127.0.0.1"

port = 5022

keep­alive­server {

time = 40s

timeout = 20s

permit­keep­alive­time = 20s

}

}

sequencer­client {

keep­alive­client {

time = 60s

timeout = 30s

}

(continues on next page)

1334 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

}

}

gRPC client connections are configured with keep­alive­client, with two settings: time, and

timeout. The effect of the time and timeout settings are described in the gRPC documentation.

Servers can additionally change another setting: permit­keep­alive­time. This specifies the

most aggressive keep-alive time that a client is permitted to use. If a client uses keep-alive time

that is more aggressive than the permit­keep­alive­time, the connection will be terminated

with a GOAWAY frame with “too_many_pings” as the debug data. This setting is described in more

detail in the gRPC documentation and gRPC manual page.

1.33.6.5 Max Inbound Message Size

The APIs exposed by both the participant (ledger API and admin API) as well as by the domain (public

API and admin API) have an upper limit on incoming message size. To increase this limit to accom-

modate larger payloads, the flag max­inbound­message­size has to be set for the respective API

to the maximummessage size in bytes.

For example, to configure a participant’s ledger API limit to 20MB:

canton.participants.participant2.ledger­api {

address = "127.0.0.1"

port = 5021

max­inbound­message­size = 20971520

}

1.33.6.6 Participant Configuration

Ledger API

The configuration of the ledger API is similar to the admin API configuration, except that the group

starts with ledger­api instead of admin­api.

JWT Authorization

The Ledger API supports JWT based authorization checks as described in the Authorization documen-

tation.

In order to enable JWT authorization checks, your safe configuration options are

_shared {

ledger­api {

auth­services = [{

// type can be

// jwt­rs­256­crt

// jwt­es­256­crt

// jwt­es­512­crt

type = jwt­rs­256­crt

// we need a certificate file (abcd.cert)

(continues on next page)

1.33. Advanced Ledger Operations 1335

https://grpc.github.io/grpc-java/javadoc/io/grpc/ManagedChannelBuilder.html#keepAliveTime-long-java.util.concurrent.TimeUnit
https://grpc.github.io/grpc-java/javadoc/io/grpc/netty/NettyServerBuilder.html#permitKeepAliveTime-long-java.util.concurrent.TimeUnit
https://github.com/grpc/grpc/blob/master/doc/keepalive.md
https://jwt.io/

Daml SDK Documentation, 2.7.3

(continued from previous page)

certificate = ${JWT_CERTIFICATE_FILE}

}]

}

}

• jwt­rs­256­crt. The participant will expect all tokens to be signed with RS256 (RSA Sig-

nature with SHA-256) with the public key loaded from the given X.509 certificate file. Both

PEM-encoded certificates (text files starting with ­­­­­BEGIN CERTIFICATE­­­­­) and

DER-encoded certificates (binary files) are supported.

• jwt­es­256­crt. The participant will expect all tokens to be signed with ES256 (ECDSA

using P-256 and SHA-256) with the public key loaded from the given X.509 certificate file.

Both PEM-encoded certificates (text files starting with ­­­­­BEGIN CERTIFICATE­­­­­)

and DER-encoded certificates (binary files) are supported.

• jwt­es­512­crt. The participant will expect all tokens to be signed with ES512 (ECDSA

using P-521 and SHA-512) with the public key loaded from the given X.509 certificate file.

Both PEM-encoded certificates (text files starting with ­­­­­BEGIN CERTIFICATE­­­­­)

and DER-encoded certificates (binary files) are supported.

Instead of specifying the path to a certificate, you can also use a JWKS URL. In that case, the partic-

ipant will expect all tokens to be signed with RS256 (RSA Signature with SHA-256) with the public

key loaded from the given JWKS URL.

_shared {

ledger­api {

auth­services = [{

type = jwt­rs­256­jwks

// we need a URL to a jwks key, e.g. https://path.to/jwks.key

url = ${JWT_URL}

}]

}

}

Warning: For testing purposes only, you can also specify a shared secret. In that case, the par-

ticipant will expect all tokens to be signed with HMAC256 with the given plaintext secret. This is

not considered safe for production.

_shared {

ledger­api {

auth­services = [{

type = unsafe­jwt­hmac­256

secret = "not­safe­for­production"

}]

}

}

Note: To prevent man-in-the-middle attacks, it is highly recommended to use TLS with server au-

thentication as described in TLS Configuration for any request sent to the Ledger API in production.

Note that you can define multiple authorization plugins. If more than one is defined, the system will

use the claim of the first auth plugin that does not return Unauthorized.

1336 Chapter 1. Canton References

https://tools.ietf.org/html/rfc7517

Daml SDK Documentation, 2.7.3

If no authorization plugins are defined, a default (wildcard) authorization method is used. Under it,

all valid ledger API requests are accepted without the system performing any request authorization.

To explicitly define the default authorization method, use the following configuration:

_shared {

ledger­api {

auth­services = [{

type = wildcard

}]

}

}

Leeway Parameters for JWT Authorization

You can define leeway parameters for authorization using JWT tokens. An authorization which fails

due to clock skew between the signing and the verification of the tokens can be eased by specifying

a leeway window in which the token should still be considered valid. Leeway can be defined either

specifically for the Expiration Time (“exp”),Not Before (“nbf”) and Issued At (“iat”) claims of the

token or by a default value for all three. The values defining the leeway for each of the three specific

fields override the default value if present. The leeway parameters should be given in seconds and

can be defined as in the example configuration below:

_shared {

parameters.ledger­api­server­parameters.jwt­timestamp­leeway {

default = 5

expires­at = 10

issued­at = 15

not­before = 20

}

}

Configuring the Target Audience for JWT Authorization

The default audience (aud field in the audience based token) for authenticating on the Ledger API

using JWT is https://daml.com/participant/jwt/aud/participant/${participantId}.

Other audiences can be configured explicitly using the custom target audience configuration option:

canton {

participants {

participant {

ledger­api {

auth­services = [{

type = jwt­rs­256­jwks

url = "https://target.audience.url/jwks.json"

target­audience = "https://rewrite.target.audience.url"

}]

}

}

}

}

1.33. Advanced Ledger Operations 1337

Daml SDK Documentation, 2.7.3

1.33.6.7 Domain Configurations

Public API

The domain configuration requires the same configuration of the admin­api as the participant.

Next to theadmin­api, we need to configure thepublic­api, which is the apiwhere all participants

connect.

Authentication Token

Authentication of the restricted services is built into the public sequencer api, leveraging the partic-

ipant signing keys. You don’t need to do anything in order to set this up; it is enforced automatically

and can’t be turned off. The same mechanism is used to check the authentication of the domain

topology manager and the mediator.

The token is generated during the handshake between the node and the sequencer. By default, it is

valid for one hour. The nodes automatically renew the token in the background before it expires. The

lifetime of the tokens and of the nonce can be reconfigured using

canton.domains.mydomain.public­api {

token­expiration­time = 60m

nonce­expiration­time = 1m

}

However, we suggest keeping the default values.

TLS Encryption

As with the admin-api, network traffic can (and should) be encrypted using TLS. This is particularly

crucial for the Public API.

An example configuration section which enables TLS encryption and server-side TLS authentication

is given by

canton.domains.acme.public­api {

port = 5028

address = localhost // defaults to 127.0.0.1

tls {

cert­chain­file = "./tls/domain.crt"

private­key­file = "./tls/domain.pem"

// minimum­server­protocol­version = TLSv1.3, optional argument

// ciphers = null // use null to default to JVM ciphers

}

}

If TLS is used on the server side with a self-signed certificate, we need to pass the certificate chain

during the connect call of the participant. Otherwise, the default root certificates of the Java runtime

will be used. An example would be:

participant3.domains.connect(

domainAlias = "acme",

connection = s"https://$hostname:$port",

(continues on next page)

1338 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

certificatesPath = certs, // path to certificate chain file (.pem) of server

)

1.33.6.8 Usage of native libraries by Netty

Canton ships with native libraries (for some processor architectures: x86_64, ARM64, S390_64)

so that the Netty network access library can take advantage of epoll on Linux, generally leading to

improved performance and less pressure on the JVMgarbage collector. The available native is picked

up automatically and it falls back to the standard NIO library if running on unsupported operating

systems or architectures.

Furthermore, the usage of the native library can also be switched off by setting the following:

-Dio.netty.transport.noNative=true. Even when this is expected, falling back to NIOmight lead to a warn-

ing being emitted at DEBUG level on your log.

1.33.7 Sequencer Connections

Any member of a Canton network, whether a participant, mediator or topology manager, connects

to the domain by virtue of connecting to a sequencer of that domain (there can be multiple thereof).

The component managing this connection is called the SequencerClient.

A participant can connect tomultiple domains (preview) simultaneously, but amediator or topology

manager will only connect to a single domain. Therefore, managing the sequencer connections of a

participant differs slightly frommanaging a mediator or topology manager connection.

In the following sections, we will explain how to manage such sequencer connections.

1.33.7.1 Participant Connections

The domain connectivity commands allow the administrator of a Canton node to manage connectivity

to domains. Generally, the key command to add new connections is given by the register command.

While this is the command with the broadest ability to configure the connection, there are a few

convenience macros that combine a series of steps to simplify administrative operations.

Connect Using Macros

Connect to Local Sequencers

When a participant should connect to a sequencer or domain that is running in the same process,

you can use the domains.connect_local macro and simply provide the reference to the local

node.

@ participant1.domains.connect_local(sequencer1)

The connect_local macro will generate the appropriate configuration settings for the provided

sequencer and instruct the participant to connect to it using the register command.

Please note that you can also pass a local DomainReference to the connect_local call in case

you are running an embedded domain.

1.33. Advanced Ledger Operations 1339

Daml SDK Documentation, 2.7.3

Connect to Remote Sequencers

If you are connecting to a sequencer that is running on a remote host, you need to know the address

and port the sequencer is configured to listen to. You can print out the port the sequencer is listening

to using:

@ sequencer1.config.publicApi.port

res2: Port = Port(n = 30123)

You can also check that the address is set such that remote processes can connect to it:

@ sequencer1.config.publicApi.address

res3: String = "0.0.0.0"

By default, a sequencer will listen to 127.0.0.1, which is localhost. These is a safe default and it

means that only processes running locally can connect to the sequencer (it is also set by default for

the Ledger API and the Admin API). If you want to support remote processes connecting to the given

sequencer, you need to explicitly configure it using:

// enable access of remote processes to the sequencer

canton.sequencers.sequencer1.public­api.address = 0.0.0.0

In this example, sequencer1 and sequencer2 are configured without TLS, whereas sequencer3

is configured to use TLS:

@ sequencer3.config.publicApi.tls

res4: Option[TlsBaseServerConfig] = Some(

value = TlsBaseServerConfig(

certChainFile = ExistingFile(file = ./tls/sequencer3­127.0.0.1.crt),

privateKeyFile = ExistingFile(file = ./tls/sequencer3­127.0.0.1.pem),

minimumServerProtocolVersion = Some(value = "TLSv1.2"),

ciphers = Some(

value = List(

"TLS_AES_256_GCM_SHA384",

"TLS_CHACHA20_POLY1305_SHA256",

"TLS_AES_128_GCM_SHA256",

"TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384",

"TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256"

)

)

)

)

To connect to sequencer3 using the connectmacro, we need to create an URL string:

@ val port = sequencer3.config.publicApi.port

port : Port = Port(n = 30119)

@ val url = s"https://127.0.0.1:${port}"

url : String = "https://127.0.0.1:30119"

Please note that you need to adjust the https to http if you are not using TLS on the public se-

quencer Api. If the sequencer is using TLS certificates (e.g. self-signed) that cannot be automatically

validated using your JVMs trust store, you have to provide the custom certificate such that the client

can verify the sequencer public API TLS certificate. Let’s assume that this root certificate is given by:

1340 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

@ val certificatesPath = "tls/root­ca.crt"

certificatesPath : String = "tls/root­ca.crt"

You can now connect the participant to the sequencer using:

@ participant2.domains.connect("mydomain", connection = url, certificatesPath =␣

↪→certificatesPath)

res8: DomainConnectionConfig = DomainConnectionConfig(

domain = Domain 'mydomain',

sequencerConnections = Sequencer 'DefaultSequencer' ­> GrpcSequencerConnection(

endpoints = https://127.0.0.1:30119,

transportSecurity = true,

customTrustCertificates = Some(2d2d2d2d2d42)

),

manualConnect = false,

domainId = None(),

priority = 0,

initialRetryDelay = None(),

maxRetryDelay = None()

)

Connect to High-Availability Sequencers

Important: This feature is only available in Canton Enterprise

The Daml Enterprise version of Canton lets you connect a participant to multiple sequencers for the

purpose of high availability. If one sequencer shuts down, the participant will then automatically fail

over to the second sequencer.

Such a connection can be configured using the connect_multi:

@ participant3.domains.connect_multi("mydomain", Seq(sequencer1, sequencer2))

res9: DomainConnectionConfig = DomainConnectionConfig(

domain = Domain 'mydomain',

sequencerConnections = Sequencer 'DefaultSequencer' ­> GrpcSequencerConnection(

endpoints = Seq(http://0.0.0.0:30123, http://127.0.0.1:30121),

transportSecurity = false,

customTrustCertificates = None()

),

manualConnect = false,

domainId = None(),

priority = 0,

initialRetryDelay = None(),

maxRetryDelay = None()

)

In such a setting, if a sequencer node goes down, the participant will round-robin through the avail-

able list of sequencers. The reference documentation provides further information on how to connect

to highly available sequencers, and the high availability guide has instructions on how to set up highly

available domains.

Currently, all the sequencer connections used by a node need to be using TLS or not. A mixed mode

where one sequencer is using TLS and another not is not supported.

1.33. Advanced Ledger Operations 1341

/canton/usermanual/downloading.html

Daml SDK Documentation, 2.7.3

Connect Using Register

The highest level of control over your domain connection is given by using register with a config-

uration of type DomainConnectionConfig. By default, the connection configuration only requires

two arguments: the domain alias and the connection URL. In this guide, we’ll cover all arguments.

First, we need to associate the domain connection to an alias. An alias is an arbitrary name chosen

by the operator of the participant to manage the given connection:

@ val domainAlias = "mydomain"

domainAlias : String = "mydomain"

A domain alias is just a string wrapped into the type “DomainAlias”. This is done implicitly in the

console, which allows you to use a string instead.

Next, you need to create a connection description of type SequencerConnection. The public se-

quencer API in Canton is based on gRPC, which uses HTTP 2.0. In this example, we build the URLs

by inspecting the configurations:

@ val urls = Seq(sequencer1, sequencer2).map(_.config.publicApi.port).map(port =>␣

↪→s"http://127.0.0.1:${port}")

urls : Seq[String] = List("http://127.0.0.1:30123", "http://127.0.0.1:30121")

However, the url can also be entered as a string. A connection is then built using:

@ val sequencerConnectionWithoutHighAvailability = com.digitalasset.canton.

↪→sequencing.GrpcSequencerConnection.tryCreate(urls(0))

sequencerConnectionWithoutHighAvailability : GrpcSequencerConnection =␣

↪→GrpcSequencerConnection(

endpoints = http://127.0.0.1:30123,

transportSecurity = false,

customTrustCertificates = None()

)

A second sequencer URL can be added using:

@ val sequencerConnection = sequencerConnectionWithoutHighAvailability.

↪→addEndpoints(urls(1))

sequencerConnection : SequencerConnection = GrpcSequencerConnection(

endpoints = Seq(http://127.0.0.1:30123, http://127.0.0.1:30121),

transportSecurity = false,

customTrustCertificates = None()

)

While the connectmacros allow you to pass in a file path as an argument for the optional TLS cer-

tificate, you need to resolve this argument and load the certificate into a ByteStringwhen working

with GrpcSequencerConnection. There is a utility function that allows you to read a certificate

from a file into a ByteString such that it can be used to create an appropriate sequencer connection:

@ val certificate = com.digitalasset.canton.util.BinaryFileUtil.

↪→tryReadByteStringFromFile("tls/root­ca.crt")

certificate : com.google.protobuf.ByteString = <ByteString@5ca338e4 size=1960␣

↪→contents="­­­­­BEGIN CERTIFICATE­­­­­\nMIIFeTCCA2GgAwIBAgI...">

1342 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

@ val connectionWithTLS = com.digitalasset.canton.sequencing.

↪→GrpcSequencerConnection.tryCreate("https://daml.com", customTrustCertificates =␣

↪→Some(certificate))

connectionWithTLS : GrpcSequencerConnection = GrpcSequencerConnection(

endpoints = https://daml.com:443,

transportSecurity = true,

customTrustCertificates = Some(2d2d2d2d2d42)

)

Next, you can assign a priority to the domain by setting the priority parameter:

@ val priority = 10 // default is 0 if not set

priority : Int = 10

This parameter is used to determine the domain to which a transaction should be sent if there are

multiple domains connected (early access feature). The domain with the highest priority that can

run a certain transaction will be picked.

Finally, when configuring a domain connection, the parameter manualConnect can be used when

the domain should not be auto-reconnected on startup. By default, you would set:

@ val manualConnect = false

manualConnect : Boolean = false

If a domain connection is configured to be manual, it will not reconnect automatically on startup; it

has to be reconnected specifically using:

@ participant3.domains.reconnect("mydomain")

res18: Boolean = true

Very security sensitive users that do not trust TLS to check for authenticity of the sequencer API can

additionally pass an optional domainId of the target domain into the configuration. In this case, the

participant will check that the sequencer it is connecting to can produce the cryptographic evidence

that it actually is the expected domain. The domainId can be obtained from the domain manager:

@ val domainId = Some(domainManager1.id)

domainId : Some[DomainId] = Some(value = domainManager1::1220b9035a1f...)

These parameters together can be used to define a connection configuration:

@ val config = DomainConnectionConfig(domain = "mydomain", sequencerConnection,␣

↪→manualConnect, domainId, priority)

config : DomainConnectionConfig = DomainConnectionConfig(

domain = Domain 'mydomain',

sequencerConnections = Sequencer 'DefaultSequencer' ­> GrpcSequencerConnection(

endpoints = Seq(http://127.0.0.1:30123, http://127.0.0.1:30121),

transportSecurity = false,

customTrustCertificates = None()

),

manualConnect = false,

domainId = Some(domainManager1::1220b9035a1f...),

priority = 10,

initialRetryDelay = None(),

maxRetryDelay = None()

)

1.33. Advanced Ledger Operations 1343

Daml SDK Documentation, 2.7.3

All other parameters are expert settings and should not be used. The config object can now be used

to connect a participant to a sequencer:

@ participant4.domains.register(config)

Inspect Connections

You can inspect the registered domain connections using:

@ participant2.domains.list_registered()

res22: Seq[(DomainConnectionConfig, Boolean)] = Vector(

(

DomainConnectionConfig(

domain = Domain 'mydomain',

sequencerConnections = Sequencer 'DefaultSequencer' ­>␣

↪→GrpcSequencerConnection(

endpoints = https://127.0.0.1:30119,

transportSecurity = true,

customTrustCertificates = Some(2d2d2d2d2d42)

),

manualConnect = false,

domainId = None(),

priority = 0,

initialRetryDelay = None(),

maxRetryDelay = None()

),

true

)

)

You can also get the aliases of the currently connected domains using:

@ participant2.domains.list_connected()

res23: Seq[ListConnectedDomainsResult] = Vector(

ListConnectedDomainsResult(

domainAlias = Domain 'mydomain',

domainId = domainManager1::1220b9035a1f...,

healthy = true

)

)

And you can inspect the configuration of a specific domain connection using:

@ participant2.domains.config("mydomain")

res24: Option[DomainConnectionConfig] = Some(

value = DomainConnectionConfig(

domain = Domain 'mydomain',

sequencerConnections = Sequencer 'DefaultSequencer' ­>␣

↪→GrpcSequencerConnection(

endpoints = https://127.0.0.1:30119,

transportSecurity = true,

customTrustCertificates = Some(2d2d2d2d2d42)

),

manualConnect = false,

domainId = None(),

(continues on next page)

1344 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

priority = 0,

initialRetryDelay = None(),

maxRetryDelay = None()

)

)

Modify Connections

Domain connection configurations can be updated using the modify function:

@ participant2.domains.modify("mydomain", _.copy(priority = 20))

The second argument is a mapping function which receives as input argument a DomainConnec­

tionConfigandneeds to returnaDomainConnectionConfig. Every case classhasadefaultcopy

method that allows overriding arguments.

Themodify command on the participant will only take effect after restarting the domain connection

explicitly (or restarting the entire node):

@ participant2.domains.disconnect("mydomain")

@ participant2.domains.reconnect("mydomain")

res27: Boolean = true

On the mediator and domain manager node, the change is effected immediately.

Update a Custom TLS Trust Certificate

In some cases (in particular in test environments), you might be using self-signed certificates as a

root of trust for the TLS sequencer connection. Whenever this root of trust changes, the clients need

to update the custom root certificate accordingly.

This can be done through the following steps. First, you need to load the certificate from a file:

@ val certificate = com.digitalasset.canton.util.BinaryFileUtil.

↪→tryReadByteStringFromFile("tls/root­ca.crt")

certificate : com.google.protobuf.ByteString = <ByteString@6f432dcb size=1960␣

↪→contents="­­­­­BEGIN CERTIFICATE­­­­­\nMIIFeTCCA2GgAwIBAgI...">

This step loads the root certificate from a file and stores it into a variable that can be used subse-

quently. Next, you create a new connection object, passing in the certificate:

@ val connection = com.digitalasset.canton.sequencing.GrpcSequencerConnection.

↪→tryCreate(url, customTrustCertificates = Some(certificate))

connection : GrpcSequencerConnection = GrpcSequencerConnection(

endpoints = https://127.0.0.1:30119,

transportSecurity = true,

customTrustCertificates = Some(2d2d2d2d2d42)

)

Finally, you update the sequencer connection settings on the participant node:

1.33. Advanced Ledger Operations 1345

Daml SDK Documentation, 2.7.3

@ participant2.domains.modify("mydomain", _.

↪→copy(sequencerConnections=SequencerConnections.single(connection)))

For mediators / domain managers, you can update the certificate accordingly.

Enable and Disable Connections

A participant can disconnect from a domain using:

@ participant2.domains.disconnect("mydomain")

Reconnecting to the domain can be done either on a per domain basis:

@ participant2.domains.reconnect("mydomain")

res32: Boolean = true

Or for all registered domains that are not configured to require a manual connection:

@ participant2.domains.reconnect_all()

1.33.7.2 Mediator and Domain Manager

Both the mediator and the domain manager connect to the domain using sequencer connections.

The sequencer connections are configured when the nodes are initialized:

@ mediator1.mediator.help("initialize")

initialize(domainId: com.digitalasset.canton.topology.DomainId, mediatorId: com.

↪→digitalasset.canton.topology.MediatorId, domainParameters: com.digitalasset.

↪→canton.admin.api.client.data.StaticDomainParameters, sequencerConnection: com.

↪→digitalasset.canton.sequencing.SequencerConnection, topologySnapshot:␣

↪→Option[com.digitalasset.canton.topology.store.StoredTopologyTransactions[com.

↪→digitalasset.canton.topology.transaction.TopologyChangeOp.Positive]]): com.

↪→digitalasset.canton.crypto.PublicKey

Initialize a mediator

initialize(domainId: com.digitalasset.canton.topology.DomainId, mediatorId: com.

↪→digitalasset.canton.topology.MediatorId, domainParameters: com.digitalasset.

↪→canton.admin.api.client.data.StaticDomainParameters, sequencerConnections: com.

↪→digitalasset.canton.sequencing.SequencerConnections, topologySnapshot:␣

↪→Option[com.digitalasset.canton.topology.store.StoredTopologyTransactions[com.

↪→digitalasset.canton.topology.transaction.TopologyChangeOp.Positive]]): com.

↪→digitalasset.canton.crypto.PublicKey

Initialize a mediator

The sequencer connection of a mediator and domain manager can be inspected using:

@ mediator1.sequencer_connection.get()

res35: Option[SequencerConnections] = Some(

value = Sequencer 'DefaultSequencer' ­> GrpcSequencerConnection(

endpoints = http://0.0.0.0:30123,

transportSecurity = false,

customTrustCertificates = None()

)

)

1346 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

In some cases, the connection settings have to be updated. For this purpose, the two following func-

tions can be used. First, the connection information can just be set using:

@ mediator1.sequencer_connection.set(sequencer1.sequencerConnection)

It can also be amended using:

@ mediator1.sequencer_connection.modify(_.addEndpoints(sequencer2.

↪→sequencerConnection))

Please note that the connection changes immediately, without requiring a restart.

1.33.8 Repairing Nodes

The Canton platform is generally built to self-heal and automatically recover from issues. As such, if

there is a situation where some degradation can be expected, there should be some code that yields

graceful degradation and automated recovery from said issues.

Common examples are database outages (retry until success) or network outages (failover and re-

connect until success).

Canton should report such issues as warnings to alert an operator about the degradation of its de-

pendencies, but generally, should not require anymanual intervention to recover fromadegradation.

However, not all situations can be foreseen and corruptions of systems can always happen in unan-

ticipatedways. Therefore, Canton can always bemanually repaired somehow. Thismeans that what-

ever the corruption is, there are a series of operational steps that can bemade in order to recover the

correct state of a node. If several nodes in the distributed system are affected, it may be necessary

to coordinate the recovery among the affected nodes.

Conceptually, this means that Canton recovery is structured along the four layers:

1. Automated self-recovery and self-healing.

2. Recovery from crash or restart by re-creating a consistent state from the persisted store.

3. Standarddisaster recovery fromadatabase backup in case of database outage and replay from

domain.

4. Corruption disaster recovery using repair and other console commands to re-establish a con-

sistent state within the distributed system.

If you run into corruption issues, you need to first understand what caused the issue. Ideally, you

can contact our support team to help you diagnose the issue and provide you with a custom recipe

on how to recover from your issue (and prevent recurrence).

The toolbox the support engineers have at hand are:

• Exporting / importing secret keys

• Manually initializing nodes

• Exporting / importing DARs

• Exporting / importing topology transactions

• Manually adding or removing contracts from the active contract set

• Moving contracts from one domain to another

• Manually ignoring faulty transactions (and then using add / remove contract to repair the ACS).

All these methods are very powerful but dangerous. You should not attempt to repair your nodes on

your own as you risk severe data corruption.

1.33. Advanced Ledger Operations 1347

Daml SDK Documentation, 2.7.3

Keep in mind that the corruption of the system state may not have been discovered immediately;

thus, the corruption may have leaked out through the APIs to the applications using the corrupted

node. Bringing the node back into a correct state with respect to the other nodes in the distributed

system can thereforemake the application state inconsistent with the nodes state. Accordingly, the

application should either re-initialize itself from the repaired state or itself offer tools to fix incon-

sistencies.

1.33.8.1 Preparation

As contracts (1) “belong to”parties and (2) are instances of Daml templates defined inDaml Archives

(DARs), importing contracts to Canton also requires creating corresponding parties and uploading

DARs.

• Contracts are often interdependent requiring care to honor dependencies such that the set of

imported contracts is internally consistent. This requires particular attention if you choose to

modify contracts prior to their import.

• Additionally use of divulgence in the original ledger has likely introduced non-obvious depen-

dencies that may impede exercising contract choices after import. As a result such divulged

contracts need to be re-divulged as part of the import (by exercising existing choices or if there

are no-side-effect-free choices that re-divulge the necessary contracts by extending your Daml

models with new choices).

• Party Ids have a stricter format on Canton than on non-Canton ledgers ending with a required

“fingerprint” suffix, so at a minimum, you will need to “remap” party ids.

• Canton contract keys do not have to be unique, so if your Daml models rely on uniqueness, con-

sider extending the models using these strategies or limit your Canton Participants to connect

to a single Canton domain with unique contract key semantics.

• Canton does not support implicit party creation, so be sure to create all needed parties explic-

itly.

• In addition you could choose to spread contracts, parties, and DARs across multiple Canton

Participants.

With the above requirements in mind, you are ready to plan and execute the following three step

process:

1. Download parties and contracts from the existing Daml Participant Node and locate the DAR

files that the contracts are based on.

2. Modify the parties and contracts (at the minimum assigning Canton-conformant party ids).

3. ProvisionCantonParticipants alongwith at least oneCantonDomain. ThenuploadDARs, create

parties, and finally the contracts to the Canton participants. Finally connect the participants

to the domain(s).

1.33.8.2 Importing an actual Ledger

To follow along with this guide, ensure you have installed and unpacked the Canton release bundle and

run the following commands from the “canton-X.Y.Z” directory to set up the initial topology.

export CANTON=`pwd`

export CONF="$CANTON/examples/03­advanced­configuration"

export IMPORT="$CANTON/examples/07­repair"

bin/canton \

­c $IMPORT/participant1.conf,$IMPORT/participant2.conf,$IMPORT/participant3.

↪→conf,$IMPORT/participant4.conf \
(continues on next page)

1348 Chapter 1. Canton References

https://docs.daml.com/concepts/ledger-model/ledger-privacy.html#divulgence-when-non-stakeholders-see-contracts

Daml SDK Documentation, 2.7.3

(continued from previous page)

­c $IMPORT/domain­export­ledger.conf,$IMPORT/domain­import­ledger.conf \

­c $CONF/storage/h2.conf,$IMPORT/enable­preview­commands.conf \

­­bootstrap $IMPORT/import­ledger­init.canton

This sets up an “exportLedger” with a set of parties consisting of painters, house owners, and banks

along with a handful of paint offer contracts and IOUs.

Define the following helper functions useful to extract parties and contracts via the ledger API:

def queryActiveContractsFromDamlLedger(

hostname: String,

port: Port,

tls: Option[TlsClientConfig],

token: Option[String] = None,

)(implicit consoleEnvironment: ConsoleEnvironment): Seq[CreatedEvent] = {

// Helper to query the ledger api using the specified command.

def queryLedgerApi[Svc <: AbstractStub[Svc], Result](

command: GrpcAdminCommand[_, _, Result]

): Either[String, Result] =

consoleEnvironment.grpcAdminCommandRunner

.runCommand("sourceLedger", command, ClientConfig(hostname, port, tls),␣

↪→token)

.toEither

(for {

// Identify all the parties on the ledger and narrow down the list to local␣

↪→parties.

allParties <­ queryLedgerApi(

LedgerApiCommands.PartyManagementService.

↪→ListKnownParties(identityProviderId = "")

)

localParties = allParties.collect {

case PartyDetails(party, _, isLocal, _, _) if isLocal => LfPartyId.

↪→assertFromString(party)

}

// Query the ActiveContractsService for the actual contracts

acs <­ queryLedgerApi(

LedgerApiCommands.AcsService

.GetActiveContracts(

localParties.toSet,

limit = PositiveInt.MaxValue,

timeout = NonNegativeDuration.maxTimeout,

)(consoleEnvironment.environment.scheduler)

)

} yield acs.map(_.event)).valueOr(err =>

throw new IllegalStateException(s"Failed to query parties, ledger id, or acs:

↪→$err")

)

}

def removeCantonSpecifics(acs: Seq[CreatedEvent]): Seq[CreatedEvent] = {

def stripPartyIdSuffix(suffixedPartyId: String): String =

suffixedPartyId.split(SafeSimpleString.delimiter).head

(continues on next page)

1.33. Advanced Ledger Operations 1349

Daml SDK Documentation, 2.7.3

(continued from previous page)

acs.map { event =>

ValueRemapper.convertEvent(identity, stripPartyIdSuffix)(event)

}

}

def lookUpPartyId(participant: ParticipantReference, party: String): PartyId =

participant.parties

.list(filterParty = party + SafeSimpleString.delimiter)

.map(_.party)

.headOption

.value

As the first step, export the active contract set (ACS). To illustrate how to import data from

non-Canton ledgers, strip the Canton-specifics by making the party ids generic (stripping the

Canton-specific suffix).

val acs =

queryActiveContractsFromDamlLedger(

exportLedger.config.ledgerApi.address,

exportLedger.config.ledgerApi.port,

exportLedger.config.ledgerApi.tls.map(_.clientConfig),

)

val acsExported = removeCantonSpecifics(acs).toList

Step number two involves preparing the Canton participants and domain by uploading DARs and

creating parties. Here we choose to place the house owners, painters, and banks on different partic-

ipants.

Also modify the events to be based on the newly created party ids.

// Decide on which canton participants to host which parties along with their␣

↪→contracts.

// We place house owners, painters, and banks on separate participants.

val participants = Seq(participant1, participant2, participant3)

val partyAssignments =

Seq(participant1 ­> houseOwners, participant2 ­> painters, participant3 ­>␣

↪→banks)

// Connect to domain prior to uploading dars and parties.

participants.foreach { participant =>

participant.domains.connect_local(importLedgerDomain)

participant.dars.upload(darPath)

}

// Create canton party ids and remember mapping of plain to canton party ids.

val toCantonParty: Map[String, String] =

partyAssignments.flatMap { case (participant, parties) =>

val partyMappingOnParticipant = parties.map { party =>

participant.ledger_api.parties.allocate(party, party)

party ­> lookUpPartyId(participant, party).toLf

}

partyMappingOnParticipant

}.toMap

(continues on next page)

1350 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.33. Advanced Ledger Operations 1351

Daml SDK Documentation, 2.7.3

(continued from previous page)

// Create traffic on all participants so that the repair commands will pick an␣

↪→identity snapshot that is aware of

// all party allocations

participants.foreach { participant =>

participant.health.ping(participant, workflowId = importLedgerDomain.name)

}

// Switch the ACS to be based on canton party ids.

val acsToImportToCanton =

acsExported.map(ValueRemapper.convertEvent(identity, toCantonParty(_)))

As the third step, perform the actual import to each participant filtering the contracts based on the

location of contract stakeholders and witnesses.

// Disconnect from domain temporarily to allow import to be performed.

participants.foreach(_.domains.disconnect(importLedgerDomain.name))

// Pick a ledger create time according to the domain's clock.

val ledgerCreateTime =

consoleEnvironment.environment.domains

.getRunning(importLedgerDomain.name)

.getOrElse(fail("No running domain node"))

.clock

.now

.toInstant

val contractsWithRecomputedContractIds =

acsToImportToCanton.view

.map(WrappedCreatedEvent)

.map { event => utils.contract_data_to_instance(event.toContractData,␣

↪→ledgerCreateTime) }

.toSeq

.pipe(recomputeContractIds(participant1.crypto.pureCrypto, _))

._1

val createdEventsAndContractsToImport =

acsToImportToCanton zip contractsWithRecomputedContractIds

// Filter active contracts based on participant parties and upload.

partyAssignments.foreach { case (participant, rawParties) =>

val parties = rawParties.map(toCantonParty(_))

val participantAcs = createdEventsAndContractsToImport.collect {

case (event, contract)

if event.signatories.intersect(parties).nonEmpty

|| event.observers.intersect(parties).nonEmpty

|| event.witnessParties.intersect(parties).nonEmpty =>

SerializableContractWithWitnesses(

contract,

Set.empty,

)

}

participant.repair.add(importLedgerDomain.name, participantAcs,␣

↪→ignoreAlreadyAdded = false)

}

(continues on next page)

1352 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

def verifyActiveContractCounts() = {

Map[LocalParticipantReference, (Boolean, Boolean)](

participant1 ­> ((true, true)),

participant2 ­> ((true, false)),

participant3 ­> ((false, true)),

).foreach { case (participant, (hostsPaintOfferStakeholder,␣

↪→hostsIouStakeholder)) =>

val expectedCounts =

(houseOwners.map { houseOwner =>

houseOwner.toPartyId(participant) ­>

((if (hostsPaintOfferStakeholder) paintOffersPerHouseOwner else 0)

+ (if (hostsIouStakeholder) 1 else 0))

}

++ painters.map { painter =>

painter.toPartyId(participant) ­> (if (hostsPaintOfferStakeholder)

paintOffersPerPainter

else 0)

}

++ banks.map { bank =>

bank.toPartyId(participant) ­> (if (hostsIouStakeholder) iousPerBank␣

↪→else 0)

}).toMap[PartyId, Int]

assertAcsCounts((participant, expectedCounts))

}

}

/*

If the test fails because of Errors.MismatchError.NoSharedContracts error, it␣

↪→could be worth to

extend the scope of the suppressing logger.

*/

loggerFactory.assertLogsUnorderedOptional(

{

// Finally reconnect to the domain.

participants.foreach(_.domains.reconnect(importLedgerDomain.name))

To demonstrate that the imported ledger works, let’s have each of the house owners accept one of

the painters’ offer to paint their house.

def yesYouMayPaintMyHouse(

houseOwner: PartyId,

painter: PartyId,

participant: ParticipantReference,

): Unit = {

val iou = participant.ledger_api.acs.await[Iou.Iou](houseOwner, Iou.Iou)

val bank = iou.value.payer

val paintProposal = participant.ledger_api.acs

.await[Paint.OfferToPaintHouseByPainter](

houseOwner,

Paint.OfferToPaintHouseByPainter,

pp => pp.value.painter == painter.toPrim && pp.value.bank == bank,

)

val cmd = paintProposal.contractId

(continues on next page)

1.33. Advanced Ledger Operations 1353

Daml SDK Documentation, 2.7.3

(continued from previous page)

.exerciseAcceptByOwner(iou.contractId)

.command

val _ = clue(

s"$houseOwner accepts paint proposal by $painter financing through ${bank.

↪→toString}"

)(participant.ledger_api.commands.submit(Seq(houseOwner), Seq(cmd)))

}

// Have each house owner accept one of the paint offers to illustrate use of the␣

↪→imported ledger.

houseOwners.zip(painters).foreach { case (houseOwner, painter) =>

yesYouMayPaintMyHouse(

lookUpPartyId(participant1, houseOwner),

lookUpPartyId(participant1, painter),

participant1,

)

}

// Illustrate that acceptance of have resulted in

{

val paintHouseContracts = painters.map { painter =>

participant2.ledger_api.acs

.await[Paint.PaintHouse](lookUpPartyId(participant2, painter), Paint.

↪→PaintHouse)

}

assert(paintHouseContracts.size == 4)

}

This guide has demonstrated how to import data from non-Canton Daml Participant Nodes or from

a Canton Participant of a lower major version as part of a Canton upgrade.

Repairing Participants

Canton enables interoperability of distributed participants and domains. Particularly in distributed

settings without trust assumptions, faults in one part of the system should ideally produceminimal

irrecoverable damage to other parts. For example if a domain is irreparably lost, the participants

previously connected to that domain need to recover and be empowered to continue their workflows

on a new domain.

This guide will illustrate how to replace a lost domain with a new domain providing business conti-

nuity to affected participants.

1.33.8.3 Recovering from a Lost Domain

Note: Please note that the given section describes a preview feature, due to the fact that using

multiple domains is only a preview feature.

Suppose that a set of participants have been conducting workflows via a domain that runs into

trouble. In fact consider that the domain has gotten into such a disastrous state that the domain is

1354 Chapter 1. Canton References

https://docs.daml.com/concepts/glossary.html#participant-node
https://docs.daml.com/concepts/glossary.html#domain

Daml SDK Documentation, 2.7.3

beyond repair, for example:

• The domain has experienced data loss and is unable to be restored from backups or the back-

ups are missing crucial recent history.

• The domain data is found to be corrupt causing participants to lose trust in the domain as a

mediator.

Next the participant operators each examine their local state, and upon coordinating conclude that

their participants’ active contracts are “mostly the same”. This domain-recovery repair demo illus-

trates how the participants can

• coordinate to agree on a set of contracts to use moving forward, serving as a new consistent

state,

• copying over the agreed-upon set of contracts to a brand new domain,

• “fail over” to the new domain,

• and finally continue running workflows on the new domain having recovered from the perma-

nent loss of the old domain.

1.33.8.4 Repairing an actual Topology

To follow along with this guide, ensure you have installed and unpacked the Canton release bundle and

run the following commands from the “canton-X.Y.Z” directory to set up the initial topology.

export CANTON=`pwd`

export CONF="$CANTON/examples/03­advanced­configuration"

export REPAIR="$CANTON/examples/07­repair"

bin/canton \

­c $REPAIR/participant1.conf,$REPAIR/participant2.conf,$REPAIR/domain­repair­

↪→lost.conf,$REPAIR/domain­repair­new.conf \

­c $CONF/storage/h2.conf,$REPAIR/enable­preview­commands.conf \

­­bootstrap $REPAIR/domain­repair­init.canton

To simplify the demonstration, this not only sets up the starting topology of

• two participants, “participant1” and “participant2”, along with

• one domain “lostDomain” that is about to become permanently unavailable leaving “partici-

pant1” and “participant2” unable to continue executing workflows,

but also already includes the ingredients needed to recover:

• The setup includes “newDomain” that we will rely on as a replacement domain, and

• we already enable the “enable-preview-commands” configuration needed to make available

the “repair.change_domain” command.

In practice you would only add the new domain once you have the need to recover from domain loss

and also only then enable the repair commands.

We simulate “lostDomain” permanently disappearing by stopping the domain and never bringing

it up again to emphasize the point that the participants no longer have access to any state from do-

main1. We also disconnect “participant1” and “participant2” from “lostDomain” to reflect that the

participants have “given up” on the domain and recognize the need for a replacement for business

continuity. The fact that we disconnect the participants “at the same time” is somewhat artificial

as in practice the participants might have lost connectivity to the domain at different times (more

on reconciling contracts below).

1.33. Advanced Ledger Operations 1355

Daml SDK Documentation, 2.7.3

lostDomain.stop()

Seq(participant1, participant2).foreach { p =>

p.domains.disconnect(lostDomain.name)

// Also let the participant know not to attempt to reconnect to lostDomain

p.domains.modify(lostDomain.name, _.copy(manualConnect = true))

}

Even though the domain is “the node that has broken”, recovering entails repairing the participants

using the “newDomain” already set up. As of now, participant repairs have to be performed in an

offline fashion requiring participants being repaired to be disconnected from the the new domain.

However we temporarily connect to the domain, to let the topology state initialize, and disconnect

only once the parties can be used on the new domain.

Seq(participant1, participant2).foreach(_.domains.connect_local(newDomain))

// Wait for topology state to appear before disconnecting again.

clue("newDomain initialization timed out") {

eventually()(

(

participant1.domains.active(newDomain.name),

participant2.domains.active(newDomain.name),

) shouldBe (true, true)

)

}

// Run a few transactions on the new domain so that the topology state chosen by␣

↪→the repair commands

// really is the active one that we've seen

participant1.health.ping(participant2, workflowId = newDomain.name)

Seq(participant1, participant2).foreach(_.domains.disconnect(newDomain.name))

With the participants connected neither to “lostDomain” nor “newDomain”, each participant can

• locally lookup theactive contracts assigned to the lost domainusing the “testing.pcs_search”

command made available via the “features.enable-testing-commands” configuration,

• and invoke “repair.change_domain” (enabled via the “features.enable-preview-commands”

configuration) in order to “move” the contracts to the new domain.

// Extract participant contracts from "lostDomain".

val contracts1 =

participant1.testing.pcs_search(lostDomain.name, filterTemplate = "^Iou",␣

↪→activeSet = true)

val contracts2 =

participant2.testing.pcs_search(lostDomain.name, filterTemplate = "^Iou",␣

↪→activeSet = true)

// Ensure that shared contracts match.

val Seq(sharedContracts1, sharedContracts2) = Seq(contracts1, contracts2).map(

(continues on next page)

1356 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

_.filter { case (_isActive, contract) =>

contract.metadata.stakeholders.contains(Alice.toLf) &&

contract.metadata.stakeholders.contains(Bob.toLf)

}.toSet

)

clue("checking if contracts match") {

sharedContracts1 shouldBe sharedContracts2

}

// Finally change the contracts from "lostDomain" to "newDomain"

participant1.repair.change_domain(

contracts1.map(_._2.contractId),

lostDomain.name,

newDomain.name,

)

participant2.repair.change_domain(

contracts2.map(_._2.contractId),

lostDomain.name,

newDomain.name,

skipInactive = false,

)

Note: The code snippet above includes a check that the contracts shared among the participants

match (as determined by each participant, “sharedContracts1” by “participant1” and “sharedCon-

tracts2” by “participant2). Should the contracts notmatch (as could happen if the participants had

lost connectivity to the domain at different times), this check fails soliciting the participant opera-

tors to reach an agreement on the set of contracts. The agreed-upon set of active contracts may for

example be

• the intersection of the active contracts among the participants

• or perhaps the union (for which the operators can use the “repair.add” command to create the

contracts missing from one participant).

Also note that both the repair commands and the “testing.pcs_search” command are currently

“preview” features, and therefore their names may change.

Once each participant has associated the contracts with “newDomain”, let’s have them reconnect,

and we should be able to confirm that the new domain is able to execute workflows from where the

lost domain disappeared.

Seq(participant1, participant2).foreach(_.domains.reconnect(newDomain.name))

// Look up a couple of contracts moved from lostDomain

val Seq(iouAlice, iouBob) = Seq(participant1 ­> Alice, participant2 ­> Bob).map {

case (participant, party) =>

participant.ledger_api.acs.await[Iou.Iou](party, Iou.Iou, _.value.owner ==␣

↪→party.toPrim)

}

// Ensure that we can create new contracts

Seq(participant1 ­> ((Alice, Bob)), participant2 ­> ((Bob, Alice))).foreach {

case (participant, (payer, owner)) =>

(continues on next page)

1.33. Advanced Ledger Operations 1357

Daml SDK Documentation, 2.7.3

(continued from previous page)

participant.ledger_api.commands.submit_flat(

Seq(payer),

Seq(

Iou

.Iou(

payer.toPrim,

owner.toPrim,

Iou.Amount(value = 200, currency = "USD"),

List.empty,

)

.create

.command

),

)

}

// Even better: Confirm that we can exercise choices on the moved contracts

Seq(participant2 ­> ((Bob, iouBob)), participant1 ­> ((Alice, iouAlice))).foreach

↪→{

case (participant, (owner, iou)) =>

participant.ledger_api.commands

.submit_flat(Seq(owner), Seq(iou.contractId.exerciseCall().command))

}

In practice, we would now be in a position to remove the “lostDomain” from both participants and

to disable the repair commands again to prevent accidental use of these “dangerously powerful”

tools.

This guide has demonstrated how participants can recover from losing a domain that has been per-

manently lost or somehow become irreparably corrupted.

1358 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Repair Macros

Some operations are combined as macros, which are a series of consecutive repair commands,

coded as a single command. While we discourage you from using these commands on your own,

we document them here for the sake of completeness. These macros are available only in the enter-

prise edition.

1.33.8.5 Clone Identity

Many nodes can be rehydrated from a domain, as long as the domain is not pruned. In such situa-

tions, you might want to reset your node while keeping the identity and the secret keys of the node.

This can be done using the repair macros.

You need local console access to the node. If you are running your production node in a container,

you need to create a new configuration file that allows you to access the database of the node from

an interactive console. Make sure that the normal node process is stopped and that nothing else

is accessing the same database (e.g. ensure that replication is turned on). Also, make sure that

the nodes are configured to not perform auto-initialization, as this would create a new identity. You

ensure that by setting the corresponding auto-init configuration option to false:

canton.participants.myparticipant.init.auto­init = false

Then start Canton interactively using:

./bin/canton ­c myconfig ­­manual­start

Starting with ­­manual­startwill prevent the participant to attempt to reconnect to the domains.

Then, you can download the identity state of the node to a directory on the machine you are running

the process:

repair.identity.download(participant, tempDirParticipant)

repair.dars.download(participant, tempDirParticipant)

participant.stop()

This will store the secret keys, the topology state and the identity onto the disk in the given directory.

You can run the identity.download command on all nodes. However, mediator and sequencer

nodes will only store their keys in files, as the sequencer’s identity is attached to the domain identity

and the mediator’s identity is set only later during initialization.

The dars.download command is a convenience command to download all dars that have been

added to the participant via the console command participant.dars.upload. Dars that were

uploaded through the Ledger API need to be manually re-uploaded to the new participant.

Once the data is stored, stop the node and then truncate the database (please back it up before).

Then restart the node and upload the identity data again:

participant.start()

repair.identity.upload(participant, tempDirParticipant)

repair.dars.upload(participant, tempDirParticipant)

Please note that dar uploading is only necessary for participants.

Now, depending on the node type, you need to re-integrate the node into the domain. For the domain

nodes, you need to grab the static domain parameters and the domain id from the domainmanager.

1.33. Advanced Ledger Operations 1359

Daml SDK Documentation, 2.7.3

If you have remote access to the domain manager, you can run

val domainId = domainManager1.id

val domainParameters = domainManager1.service.get_static_domain_parameters

You also want to grab the mediator identities for each mediator using:

val mediatorId = mediator.id

For the sequencer, rehydration works only if the domain uses a blockchain; the database-only se-

quencers cannot rehydrate. So rehydration for blockchain-based sequencers will be:

repair.identity.upload(newSequencer, tempDirSequencer)

newSequencer.initialization.initialize_from_beginning(domainId, domainParameters)

newSequencer.health.wait_for_initialized()

For the domain manager, it looks like:

repair.identity.upload(domainManager2, tempDirDomainManager)

domainManager2.setup.init(

SequencerConnections.single(newSequencer.sequencerConnection)

)

domainManager2.health.wait_for_initialized()

For the mediator, it would be:

repair.identity.upload(mediator, tempDirMediator)

mediator.mediator.initialize(

domainId,

mediatorId,

domainParameters,

SequencerConnections.single(newSequencer.sequencerConnection),

topologySnapshot = None,

)

mediator.health.wait_for_initialized()

For a participant, you would reconnect it to the domain using a normal connect:

participant.domains.connect_local(sequencer)

Note that this will replay all transactions from the domain. However, command deduplication will

only be fully functional once the participant catches up with the domain. Therefore, you need to en-

sure that applications relying on commanddeduplicationdonot submit commandsduring recovery.

1.33.8.6 Importing existing Contracts

You may have existing contracts, parties, and DARs in other Daml Participant Nodes (such as the

Daml sandbox) that you want to import into your Canton-based participant node. To address this

need, you can extract contracts and associated parties via the ledger API, modify contracts, parties,

and daml archived as needed, and upload the data to Canton using the Canton Console.

You can also import existing contracts from Canton as that is useful as part of Canton upgrades

across major versions with incompatible internal storage.

1360 Chapter 1. Canton References

https://docs.daml.com/tools/sandbox.html

Daml SDK Documentation, 2.7.3

1.33. Advanced Ledger Operations 1361

Daml SDK Documentation, 2.7.3

1.34 Troubleshooting Guide

1.34.1 Introduction

Distributed systems can fail in many ways and finding the cause of an error is not straight forward.

This guide here captures the common steps our engineers take when trying to troubleshoot issues

found during development or support.

1.34.2 Enable Information Gathering

The following switches / steps should be taken in order to improve analyzing errors. Without these,

you might not be able to diagnose “harder” issues.

• Create Health Dumps

Ensure that youare able to createHealthDumps. Youneed to share thesehealthdumps

during any support request. The health dumpsprovide a lot of diagnostic information

that we need to troubleshoot issues.

• Turn on Debug Logging

Turn on debug logging by starting the process with:

./bin/canton ­v

or even:

./bin/canton –debug

The ­v flag will turn on debug logging of all com.digitalasset.canton loggers,

whereas ­­debug will turn on debug logging of all libraries too. Please also see Log-

ging.

• Turn on Detailed API Logging

You might want to turn on detailed api logging. This will write all incoming commands

and the outgoing data into the log file and it will allow you to inspect the details of

a command that leads to failures. Beware that if your commands contain sensitive

data, this data will then be written to the log file.

• Turn on metrics collection

See CantonMetrics <canton-metrics>. If you don’t have ametrics system, you can report

metrics to CSV files and JMX beans by configuring:

metrics.report­jvm­metrics = true

canton.monitoring.metrics.reporters = [{

type = csv

directory = “metrics”

interval = 5s

filters = [{

contains = "canton.updates­published"

}, {

contains = "sequencer­client.event­handle"

}, {

contains = "sequencer.processed"

}, {

contains = "executor.queued"

}, {

(continues on next page)

1362 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

contains = "executor.running"

}, {

contains = "executor.waittime"

}, {

contains = "jvm.memory_usage.heap"

}, {

contains = "jvm.memory_usage.non­heap"

}, {

contains = "jvm.thread_states"

}]

}, {

type = jmx

}]

This will periodically write selected metrics to CSV files (one file per metric). It will

also expose all available metrics as JMX beans; therefore, you can use VisualVM to

look at metric values.

The CSV reporter needs to have a filters parameter, because otherwise Canton will

report all available metrics, which would substantially slow-down Canton. The JMX

reporter does not need a filters parameter, because JMX beans only get evaluated

when you actually look at them using VisualVM. So the JMX reporter is great for ex-

ploring differentmetrics initially. The CSV reporter is preferable, if you want to record

metrics without human intervention.

• Turn on database query cost monitoring

Enable canton.monitoring.log­query­cost.every = 60s. This will capture

query cost statistics and might help diagnose latency / indexing issues with your

database, as explained in How to Diagnose Slow Database Queries.

• Turn on slow futures supervision

Enable canton.monitoring.log­slow­futures = yes which will track some

operations and alert if they are taking too long (disabled by default to reduce the

overhead).

• Do not disable deadlock detection (enabled by default)

Deadlock detection (canton.monitoring.deadlock­detection) will periodi-

cally test if the JVM executes new tasks in a timely manner. It will log the following

warning, if this is not the case: Task runner <name> is stuck or overloaded for 5s”. Failure

of this check may indicate that the CPU is overloaded, the execution context is too

small. Usually the check resolves itself with a subsequent log message: Task runner

<name> is just overloaded, but operating correctly. Task got executed in the meantime. If this

message does not appear, all available threads are blocked for some reason. Their

stack-traces will be logged additionally. However, all threads being blocked are not

common. They should not happen. Therefore, normally this check just indicates that

your system is overloaded.

• Configure delay logging

Delay logging (canton.monitoring.delay­logging­threshold, default 20s)

will log a warning, if a node falls behind with processing messages from the se-

quencer. Such a warning indicates that the node is overloaded. As a rule of thumb,

configure themaximum latency, i.e., themaximum time it should take Canton to pro-

cess a command.

• Do not disable trace context propagation (enabled by default)

Every request will receive a unique trace id. The trace id is included in log mes-

sages referring to that request. If trace context propagation is enabled (canton.

monitoring.tracing.propagation = enabled), different nodes will use the

1.34. Troubleshooting Guide 1363

Daml SDK Documentation, 2.7.3

same trace id for a request. This makes it easier for you to identify log messages

across different nodes that refer to the same request.

1.34.3 Key Knowledge

• Canton Transaction Processing Steps

Canton transaction processing has the following key steps involved. When we debug,

we obviously try to find out which of the steps fails / is slow / faulty. This can help

you to narrow down the component and the issue. As all the message exchange hap-

pens via the sequencer, you effectively observe whether the information came into

the node and where the action that the node was supposed to take was taken by re-

sponding with a message to the sequencer (or emitting a command result on the

ledger API). The phases are:

– Phase 1: Submitting participant prepares the confirmation request based on the

“Daml command input”. The confirmation request is sent to the sequencer, ad-

dressing the mediator and the validating participants.

– Phase 2: The mediator receives the request from the sequencer, registers the

transaction and starts to wait for confirmations.

– Phase 3: The validating participants receive the confirmation request from the

sequencer and perform their validations. The twomain checks that happen here

are: validation (is the transaction correct and properly authorized?) & conflict

detection (are all contracts that are spent or fetched in the transaction still ac-

tive?).

– Phase 4: The confirming participants, a subset of the validating participants,

send their verdict on each sub-transaction they are privy via the sequencer to

the mediator. The verdict can be LocalApprove or some rejection reason.

– Phase 5: The mediator receives the mediator responses (approvals and rejec-

tions) from the participants via the sequencer and validates them. If the me-

diator receives enough responses for the given transaction, it will compute the

“Verdict”, which is the final decision on the transaction.

– Phase 6: The mediator sends its verdict to all validating participants of a trans-

action via the sequencer.

– Phase 7: The participants receive themediator verdict and register it to the record

order publisher. While the validation can happen in parallel, the record publisher

will ensure that the transactions are emitted in order.

For each phase a log line that should appear at the beginning and one that appears

at the end of the phase.

• Internal Errors

If internal consistency checks fail and indicate a possible bug in Canton, Canton will

include the term internal error into the log message. Please contact support, if

you see an internal error.

• Canton Error Codes

All non-internal warnings and errors are logged consistently (or at least we aspire to

do).The error code information listed in the documentation should contain all infor-

mation you need in order to understand and possibly resolve the issue.

1364 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.34.4 Log Files

• Canton Trace Ids

All Canton log statements contain a trace-id. This tracing is turned on by default and

the trace­id is passed between the distributed processes:

c.d.c.p.p.s.InFlightSubmissionTracker:participant=participant1

tid:d5df95972a95b5ff00cb5cc3346c545f ­ NOT_SEQUENCED_TIMEOUT(2,

↪→d5df9597):

Transaction was not sequenced within the pre­defined max sequencing␣

↪→time and has

therefore timed out err­context:{location=SubmissionTrackingData.

↪→scala:175,

timestamp=2022­10­19T17:45:56.393151Z}

In above example, we see the trace id twice: tid:d5df95972a95b5ff00cb5cc3346c545f

and NOT_SEQUENCED_TIMEOUT(2,d5df9597). By filtering according to the

trace­id, you can find almost all log statements that relate to a particular

command. However, sometimes, we also need to find out the command id of a

transaction. You can do that by grepping for the “rosetta stone”, which is one

particular log line that contains both strings:

2023­07­04 12:03:26,517 [⋮] INFO

c.d.c.p.a.s.c.CommandSubmissionServiceImpl:participant=participant1

tid:35e389f0e41fd0273443dd866ff9e347 ­ Submitting commands for␣

↪→interpretation,

commands ­> {readAs: [], deduplicationPeriod: {duration: 'PT168H'},

submittedAt: '2023­07­04T10:03:26.514885Z', ledgerId: 'participant1',

applicationId: 'CSsubmitAndWaitBasic',

submissionId: 'CSsubmitAndWaitBasic­alpha­410b4d7b1b585­submission­0',

actAs: ['CSsubmitAndWaitBasic­alpha­410b4d7b1b585­party­

↪→0::122035bd93d74879ce582adf5aa04a809b4b20618d39c1a9c2a17d35c29ab1ed098f

↪→'],

commandId: 'CSsubmitAndWaitBasic­alpha­410b4d7b1b585­command­0',

workflowId: 'CSsubmitAndWaitBasic­410b4d7b1b585'}.

The first string is again the trace id. Additionally, the commandId of the transaction,

the applicationId, the submissionId and the workflowId are logged and can be used

to filter the logs.

• Extract the Context of a Log Message

The log lines often also contain the “context” of the component. Examples:

– This log line tells us which component of which participant (participant1) of

which domain connection (da) has been emitting this log line. It also includes

the trace id of the underlying request:

2022­10­04 15:55:50,077 [⋮] DEBUG

c.d.c.p.p.TransactionProcessingSteps:participant=participant1/

↪→domain=da

tid:461cae6245cfaadc87c2481a17d7e1bb ­ Preparing batch for␣

↪→transaction

submission

– During tests, the log line includes the name of the test. In this case, it is Sim­

plestPingIntegrationTestInMemory:

:: 2022­10­04 15:55:50,077 [⋮] DEBUG c.d.c.p.p.

↪→TransactionProcessingSteps:SimplestPingIntegrationTestInMemory/
(continues on next page)

1.34. Troubleshooting Guide 1365

Daml SDK Documentation, 2.7.3

(continued from previous page)

participant=participant1/domain=da␣

↪→tid:461cae6245cfaadc87c2481a17d7e1bb

­ Preparing batch for transaction submission

• Compare with a Happy Path Successful Logging Trace

Many components will log something and it is impossible to document every

micro-step that happens (as this is also subject to change). But it makes sense to

compare a failure trace with a successful transaction trace. To get such a trace, you

start up a canton “simple topology” example setup and run a simple:

participant1.health.ping(participant2)

You then open the log file and filter for the command processing of that ping (search

for “Starting ping”). This will give you a “clean happy path trace”. You can then

subsequently compare your failure trace to the happy-path trace and look for the

differences, i.e. where did the steps start to take a different path etc.

• Use the API Request Logger to Locate the Component

One key logging component is the ApiRequestLogger. This component is injected

into the gRPC library and will log every incoming and outgoing request / message.

Therefore, we can easily observe when a transaction left a node and when it arrived

at a subsequent node. If api logging is turned on, the api request logger will print the

full detail of all the gRPC messages into the log files.

1.34.5 Using LNAV to View Log Files

• Setup and Use LNAV

Setup lnav for viewing logs as described in viewing logs. It will require a fewminutes to

get used to it, but the payoff of this investment is great and comes fast. In particular

get familiar with loadingmultiple files, filtering, searching and jumping to errors.

• Open Multiple Log Files in one LNAV Session

Generally, when you start reading log files, then open the log files of all involved nodes

in a single lnav session (if the files are small enough): lnav participant1.log

domain.log participant2.log

• Split Log Files if they are too big

If your log files are too big the unix utility split can be used to split the file into

chunks.

• Uncompress GZ Log files for faster reading

Normally, log files are compressed when you get them. Lnav works much better and

faster if you pass uncompressed files on the command line.

• Easily Navigate to the First Logged Error

Then hit g to go to the beginning of the file and subsequently w or e to get to the first

warning or error. Usually, the first error gives you the hint on what is going on.

• Look at All Warnings and Errors

Canton’s error reporting has been designed to log awarning/error whenever it detects

that something is not working as it should. Therefore, any problemwill likely show up

in the log file. On the flip side, Canton may log a huge number of warnings/errors, in

particular if a node or the database goes down. If the first warning or error does not

completely explain the situation, it is important to look at all such messages. Use

the following recipe:

1. Set the minimum log level to WARN to display only warnings and errors

(:set­min­log­level warn).

1366 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

2. Look at the first message. Mark the message (pressing m) so you can later get

back to the message.

3. Define an out-filter to hide the first message and all similar messages.

4. Repeat steps (2) and (3) until you have filtered out all messages.

5. Disable all out-filters. You can now press u and U to step through all marked

warning and error messages.

• Filter Irrelevant Items

One useful strategy when working with logs is to continuously remove lines that are

not relevant, adding “filter-out” until only the relevant log messages remain.

• Show Gap In Logging Times

Once you start filtering for a particular command trace, you might want to hit

“shift-t”. This will show you the delta time between the first log line and the sub-

sequent one. Usually, you just need to find the “gap”. This will tell you immediately

where something got stuck / slow / timed out:

– open the log files of all components

– search for the first error / warn (i.e. hit w or e)

– pick the trace-id (as described above) and filter for it

– hit shift­t and find the gap.

1.34.6 Setup Issues

• Connect to each node and check the status: <node> .health.status

• Are the nodes up and running?

• Are the nodes connected to a sequencer? Errors that often happen here are:

– public-apis / ledger-api addresses are not set to 0.0.0.0 and are still binding to local­

host (default value for security reasons).

– you are using TLS on the server side, but on the client side you have defined the URL as

http://.

– the chosen port is not correct.

• If you are running into TLS connectivity issues, turn on “–debug” and check the detailed netty

logs for hints. These libraries tend to log necessary information only on debug level. You can

also increase the debugging information level by starting canton with -Djavax.net.debug=all.

• Try to confirm that your setup works by running a ping:

participant1.health.ping(participant2)

1.34.7 Timeout Errors

Any transaction that is submitted to Canton will either be successfully worked off (accepted or re-

jected), or eventually timeout. If a transaction hits a timeout, the application will be informed by an

appropriate completion event on the Ledger API about the rejection reasons. We can hit the following

timeouts in Canton (you can get further timeouts from the command service):

• NOT_SEQUENCED_TIMEOUT

• LOCAL_VERDICT_TIMEOUT

• MEDIATOR_SAYS_TX_TIMED_OUT

• LOCAL_VERDICT_LEDGER_TIME_OUT_OF_BOUND

• LOCAL_VERDICT_SUBMISSION_TIME_OUT_OF_BOUND

Such a timeout usually means that some component is either:

1.34. Troubleshooting Guide 1367

https://docs.daml.com/app-dev/services.html#command-service

Daml SDK Documentation, 2.7.3

• offline - resolve by checking that all nodes are healthy (health.status()) and are connected

with each other.

• overloaded - resolve by tuning according to our performance configuration guide.

• unable to complete the transaction processing within the given time (i.e. transactions are too

big) - resolve by increasing the timeouts as described in our performance configuration guide.

• Use a ping to determine if your system is broken or just slow / overloaded / contentious

Many issues only surface under high load. Therefore, it often makes sense to diag-

nose timeout issues using a:

participant1.health.ping(...)

while the system is idle. If the ping works, then you have likely a throughput / per-

formance / contention issue and you should use one of the other guides to continue

debugging.

If the ping doesn’t work and never did before, you should check the setup trou-

bleshooting guide.

If previously, transaction processing worked and now stopped working, while all

nodes are up and running, and reporting to be healthy, you should raise an issue

with support.

By turning on diagnostics information collection as explained above, you can then

figure out which step of transaction processing failed by comparing the trace in the

logs to the Phase 1-7 explanation, isolating out which component did not respond.

1.34.8 Auth Errors

For security reasons, Canton removes all details from auth errors. On the client side, you usually

only see PERMISSION_DENIED/An error occurred. Please contact the operator and

inquire about the request <no­correlation­id>, so you need to inspect server logs to de-

bug auth errors.

To use an auth-enabled ledger API, the caller needs to attach an access token to the gRPC request.

These tokens are attached in theAuthorizationHTTP header. To see headers attached to incoming

and outgoing requests, you need to set the log level to TRACE. ApiRequestLogger will then output

log lines containing received headers or sending response headers.

Filter-in expressions for lnav:

• com.digitalasset.canton.ledger.api.auth.Authorizer

• c.d.l.a.a.i.AuthorizationInterceptor

• c.d.c.n.g.ApiRequestLogger

Common patterns from the canton log:

• PERMISSION_DENIED(7,0): Could not resolve is_deactivated status for

user

You are using a token for a user that is not (yet) allocated. The log line contains the

name of the user that needs to be allocated.

• PERMISSION_DENIED(7,0): Claims are only valid for applicationId

You are using a wrong application Id when submitting commands. The log line con-

tains the expected application ID. Note that the application ID must be equal to the

daml user name when using ledger API access tokens.

• UNAUTHENTICATED(6,0): The command is missing a (valid) JWT token

1368 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

You did not attach a token to the request, or the token could not be decoded. Use

JWT.IO to verify that the token string is a valid JWT.

• PERMISSION_DENIED(7,0): Claims do not authorize to act as party

The log line contains the name of themissing claim, but not the actual claims. When

using tokensbasedonuser names (AudienceBased TokensandScopeBased Tokens),

consult the usermanagement service to seewhether you need to grantmore rights to

the user. When using tokens based on party names (Custom Claims Access Tokens),

debug the token in JWT.IO.

1.34.9 Performance Issues

How to obtain a performant system is extensively documented.

If you have followed that documentation, we can assume that:

• Your database pools are sufficiently sized: check metric db­storage.queue.

• You have set the right settings with respect to:

– number of threads (check cpu usage)

– number of database connections (connection pool size) (max­connections in storage)

– high-throughput sequencer settings (sequencer.writer.type =

high­throughput)

• The database server is using SSDs and not spinning disks, and the latency to the database is

low.

• The database has enough memory to keep the indexes in memory (shared_buffers!) and is

properly configured.

• Thenumber of connections to thedatabasealignswith the available resources on thedatabase.

A database can not concurrently serve more than one request per CPU. Allocating too many

connections will lead to contention and slow down the database (latency under load goes up

as you queue on the db).

• You are not using one of the slow “DLT layers” such as Fabric or Besu that are simply limited

in their throughput (sequencer.type = database).

• You have enough spare CPU capacity (cpu usage is not at 100%).

• You don’t have other systems competing for resources.

• Themax inflight transaction resource limits on the participant (participant1.resources.

set_resource_limits) have been set carefully. The resource limits are low enough so that

an application cannot overload Canton. The resource limits are high enough such that appli-

cations can submit commands at the desired target rate.

• You are able to load the system fully. I.e. the load generator that you apply is submitting faster

than the system can handle (i.e. you throttle using, for example, max 1000 pending commands,

the latency grows linearly with num pending commands).

If you have done all that, you might have reached the limit of what the Canton version you are using

can do. The next step is then to find out which component is creating the bottleneck. Generally, it is

either one of the nodes or the database.

1.34. Troubleshooting Guide 1369

https://jwt.io/#debugger-io
https://docs.daml.com/app-dev/authorization.html#audience-based-tokens
https://docs.daml.com/app-dev/authorization.html#scope-based-tokens
https://docs.daml.com/app-dev/authorization.html#custom-daml-claims-access-tokens
https://jwt.io/#debugger-io

Daml SDK Documentation, 2.7.3

1.34.9.1 How to Measure Database Performance

To get a first impression of database performance, enable the following metrics:

• Metrics containing executor.waittime. These metrics show the time (in millis) a db com-

mand needs to wait until Canton sends it to the db. High values indicate that the db is a bot-

tleneck.

• Metrics containingexecutor.queued. Thesemetrics show thenumber of db commandswait-

ing in a queue for being sent to the db. High values indicate that the db is a bottleneck.

• Metrics containing executor.running. These metrics show the number of tasks currently

being executed by the db. Very high values indicate that Canton is overloading the db. Very low

values indicate that Canton is not fully loading the db. The number of db connections can be

configured via canton.<path­to­my­node>.storage.parameters.max­connections.

1.34.9.2 How to Diagnose Slow Database Queries

If databasemetrics indicate that the database is a bottleneck youmay want to obtainmore detailed

information on query performance. For that, you need to enable query cost monitoring (canton.

monitoring.log­query­cost.every = 60s). Once you have done that, Canton will log every 60

seconds a report on query statistics:

2022­08­16 07:12:35,528 [slick­diexec_domain­4­7] INFO c.d.c.r.

↪→DbStorage:domain=diexec_domain ­ Here is our list of the 15 most expensive␣

↪→database queries for canton.db­storage.general.executor:

count= 598 mean= 13.61 ms total= 8.1 s com.digitalasset.canton.domain.

↪→sequencing.sequencer.store.DbSequencerStore.saveWatermark(DbSequencerStore.

↪→scala:593)

count= 598 mean= 8.82 ms total= 5.3 s com.digitalasset.canton.domain.

↪→sequencing.sequencer.store.DbSequencerStore.fetchWatermark(DbSequencerStore.

↪→scala:621)

count= 1 mean= 29.48 ms total= 0.0 s com.digitalasset.canton.domain.

↪→sequencing.authentication.DbMemberAuthenticationStore.

↪→expireNoncesAndTokens(MemberAuthenticationStore.scala:234)

count= 2 mean= 9.37 ms total= 0.0 s com.digitalasset.canton.topology.

↪→store.db.DbTopologyStore.$anonfun$queryForTransactions$2(DbTopologyStore.

↪→scala:387)

count= 1 mean= 18.52 ms total= 0.0 s

The information in here can be very useful:

• countmeans how often has this query run in the last period.

• meanmeans what was the average execution time of that query

• total = count * mean

• saveWatermark(DbSequencerStore.scala:593) is really the query with the place in the

source code that is being run

Pleasenote that the “execution time”of thequery doesnot include “queuing time” in the connection

pool. The time is really the time it took from sending to the JDBC driver to getting the result back.

Now, you do the following analysis:

• if you have for example max­connections = 4 and you log once a minute, if the total time

of the queries approaches 240s, then you are obviously using up all db connections that are

available.

1370 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

• if a single query runs for 60s, then that query might be a sequential bottleneck, as it has been

running for 60s out of the 60s interval.

• themean time should also tell you roughly the db latency, as there are some cheap read queries

that should run < 1ms. If these queries take a long time, then you know that the database has

high latencies or is overloaded.

1.34.9.3 How to find the Bottleneck

In some situations, you would like to understand which component is causing a particular bottle-

neck. You can do that using the following technique.

Theory

In a model system with several computing stages:

Input -> Stage1 -> Stage2 -> Stage3 -> Stage4 -> Stage5 -> Output

The maximum throughput of the system is given by the minimum of the maximum throughputs of

all stages. Let’s assume that the max throughput is limited by Stage3 that has 100 tx/s.

Now, if you have an input source that will throttle its submission based on the number of “open

requests”, then we know that the average latency of each transaction is going to be

latency = num-open-requests / max-throughput

The latency will grow linearly with the number of open requests. Now, as we previously defined that

throughput(Stage 3) < throughput (all other Stages)

Weknow that the open requests will be starting to pile up in front of Stage 3, because all other stages

are processing every transaction much faster.

Therefore, if we run the system under full load with N pending requests, such that the observed la-

tency is large compared to the “zero load latency” of the system, then the bottleneck is trivially

observable from the trace of a command: there will be a gap in the trace of a command, where the

transaction is not being processed for (observed latency - zero load latency). That gap is the sequential

bottleneck.

Practical

1. Find out what the zero load latency of your system is by running a simple ping over an idle

system. A ping does three end-to-end Daml transactions, so your zero load latency is just a

third of the observed ping latency.

2. Run the system under full load again, including debug logging. You should be able to load the

system such that the observed latency is at least an order of magnitude larger than the zero

load latency.

3. Open the log files and pick a transaction in the middle of your test run:

• Look for “TransactionAccepted” somewhere in the log file and pick the trace-id

• Filter for the trace-id and find the command-id. Add the command-id to the filter

• Hit Shift-T to see the time differences.

• Find the gaps

To increase confidence, repeat this assessment on a few more transactions.

1.34. Troubleshooting Guide 1371

Daml SDK Documentation, 2.7.3

1.34.10 Contention

1.34.10.1 Why do you get contention

This section here explains you how to deal with situations where many commands are failing with

errors such as:

• LOCAL_VERDICT_LOCKED_CONTRACTS

• LOCAL_VERDICT_LOCKED_KEYS

• LOCAL_VERDICT_INCONSISTENT_KEY

• LOCAL_VERDICT_INACTIVE_CONTRACTS

• LOCAL_VERDICT_DUPLICATE_KEY

• CONTRACT_NOT_FOUND

• DUPLICATE_CONTRACT_KEY

Canton is not just a distributed system, but a distributed racy system where different independent

actors may race for contracts or other resources. As a simple example: if you have an offer contract

that can be accepted by a buyer and revoked by the seller, then the decision of the buyer to accept

can race with a decision of the seller to revoke the offer.

Now, a distributed decision system with individual actors can be accidentally racy or intentionally

racy. Let’s explain the difference between the two:

• Intentionally racy: You are putting out an offer for anyone interested on a first-come first serve

basis. People might race for it and that is intended.

• Accidentally racy: You turn off the traffic lights at a crossing. Suddenly, access to the shared

resource (the crossing) is notmanaged anymore such that everyone rushes into it, blocking the

entire box, making it impossible for anyone to move, leading to a complete traffic break-down.

If the system and model is intentionally racy, there is nothing you can do about the rejections. They

must be there as they are the result of resolving the race for resources. But often, you will find the

situation that the model is accidentally racy, which can be fixed by changing the model slightly. In

many cases, contention arises due to contract-keys being fetched and updated. The issue is then

that the transaction is built in phase 1, looking at the contract key state at that time. The validation

/ conflict detection happens then in phase 3. If any other transaction changed that particular key in

the time between phase 1 and phase 3, the transaction will fail.

Whether you get INACTIVE_CONTRACTS, LOCKED_CONTRACT or CONTRACT_NOT_FOUND just de-

pends on timing of the competing transaction. LOCKED means: there is a transaction about to

change this resource, but we have not yet received the final verdict on it.

1.34.10.2 How To Change Your Model To Avoid Undesired Contention

Now, you can resolve such accidental raciness by “introducing order” into the race. As an example,

you let individuals submit “request contracts” and you add one delegated party that receives these

requests and orders and performs their application to a shared resource (through delegation). As

an example, if you have an AccountIdGenerator:

template AccountIdGenerator

next : Integer

…

where

choice NextAccount : (ContractId AccountId, ContractId AccountIdGenerator)

(continues on next page)

1372 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

do

a <­ create this with next = next + 1

b <­ create AccountId with accountId = next

return (a,b)

This AccountIdGenerator contract will be very racy. However, you can just add a:

template GetAccountIdRequest

and thenhave a single application consume these requests andgenerate ids. That single application

knowswhether it has already spent the existing AccountIdGenerator contract. Of course, it would

make sense to support a list of requests in the choice NextAccount such thatmany AccountIds are

created at once, as otherwise, the throughput of account allocation would be limited.

This is just a simple example, but should be sufficient to illustrate the issue and the solution idea.

1.34.10.3 How To Find Contention

In a distributed application, where different systems such as Triggers, Nanobots, Ingestion Applica-

tion etc submit transactions, it is often not easy to understandwhere the contention is coming from.

Here is a recipe that can be used on the Canton level:

1. Ensure that you have turned on Detailed API Logging with Debug logs.

2. Run your system / tests until you have collected enough information / rejections.

3. Open the log files and search for one of the rejections, i.e. search for LOCKED.

4. Filter by the trace-id of this rejection. Determine the command-id using the “rosetta stone”

log entry. Add the command-id to the filter.

5. Now, find the ApiRequestLogger log entry of the CommandSubmissionService. This log entry

contains the entire command that the application has submitted (if you turned on the detailed

api logging). I.e. the “exercise choice” that caused the contention.

6. Then, go back to the rejection (i.e. the one with LOCKED). This rejection will contain a Resour­

ceInfo, referring to the key / contract that caused the rejection. The ResourceInfo will contain

the key that caused the failure.

Using the above recipe, you determine the choice and which key in that particular choice created the

problem. This should be sufficient to find the problematic parts in the model.

1.34.11 Use Bisection to Narrow Down the Root Cause

In this sectionanalternative approach is outlined that couldhelp you if the guidelines in theprevious

sections were insufficient to resolve the problem. To apply that approach, you do not need a deep

understanding of Canton. It is not only suitable to investigate problems inside of Canton, it also

helps to discover problems coming from the environment.

The approach is best explained with an example. Suppose you have developed a Canton deployment

and successfully tested it on your localmachine. Aftermoving it to the distributed test environment,

it is showing some problems. So you have two Canton deployments, a local one and distributed one,

one of them works correctly, the other one is broken.

You notice the following differences between the two deployments:

1.34. Troubleshooting Guide 1373

Daml SDK Documentation, 2.7.3

• The local deployment runsall nodes in a single process. Thedistributeddeployment runsnodes

in different processes.

• The local deployment runs all nodes on the same machine. The distributed deployment runs

nodes on different machines.

• Only the distributed deployment has TLS enabled.

• Only the distributed deployment has high-availability enabled.

• The distributed deployment runs in a docker container (e.g. by using a cloud environment). The

local deployment does not use docker.

To better understand which of the differences is causing the problem, you setup a new deployment

that has only half of the differences. That couldmean, you setup a new deployment with the follow-

ing characteristics:

• It runs nodes in different processes (like the distributed deployment)

• It runs nodes on the same machine (like the test deployment).

• It has TLS enabled.

• It has high availability disabled.

• It does not use docker.

For the sake of reference, let’s call it “Deployment 3”. Now you rerun the test. If the test succeeds

(as for the local deployment), you know that the problem in the distributed deployment is caused by

the network, by high-availability, or by docker. If the test fails (as for the distributed deployment),

you know that the problem is caused by running several processes, by using TLS or by both. For the

sake of the illustration, let’s assume the test succeeds.

To further narrow down the root cause, you setup yet another deployment that is “in themiddle” be-

tween “Deployment 3” (which was successful) and the distributed deployment (which was failing).

That could mean:

• It runs nodes in different processes.

• It runs nodes on differentmachines (like the distributed deployment).

• It has TLS enabled.

• It has high availability disabled.

• It does not use docker.

Let’s call it “Deployment 4”. Again, you rerun the test. If the test succeeds, you know that the prob-

lem in the distributed deployment is caused by high-availability or by docker. If the test fails, you

know that the problem is caused by some combination of running nodes in different processes, on

different machines and having TLS enabled. Let’s assume that the test fails.

To further narrow down the root cause, try to set up the simplest possible deployment that still has

the problem. That could mean:

• You simplify your test, e.g., run a ping instead of a complex workflow. It runs only two nodes

(because you are aiming for a minimal example).

• The two nodes run in different processes on different machines (because that seemed to be

the root cause).

• TLS is disabled (because that seemed not to trigger the problem).

• High availability is disabled.

• It does not use docker.

Let’s call it “Deployment 5”. If the test fails on “Deployment 5”, you have a minimal example to

reproduce the problem. You know that the problem is caused by running two nodes on different

machines. The problem is independent of your DAML workflow, occurs already with two nodes and

without enabling TLS. If the test succeeds on “Deployment 5”, you have not yet understood the root

1374 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

cause. In that case, you need to do yet another iteration with a deployment “in the middle” between

“Deployment 4” and “Deployment 5”.

The following guidelines are helpful to make this approach successful:

• Try to keep the list of differences between successful and failing deployment as complete as

possible. If the root cause is not on your list, you can’t find it. Differences can come from

configuration, DAMLmodels, ledger applications, deployment (in process, network, docker, ku-

bernetes, …), hardware, operating system.

• Always aim at the middle between the successful and failing deployment to learn the most

with every new deployment you create and test. That is the fastest path to the root cause.

• Don’t make assumptions up front of which difference may or may not cause the problem. For

example, if you are making the assumption that the problem is not caused by TLS, you may

save one iteration, if you are right. But you will take a long detour, if you are wrong.

• Do not assume that the problem is caused by a single difference between the two deployments.

It could very well be that a combination of differences is needed to reproduce the problem.

1.35 Error Codes

1.35.1 Overview

The goal of all error messages in Daml is to enable users, developers, and operators to act indepen-

dently on the encountered errors, either manually or with an automated process.

Most errors are a result of request processing. Each error is loggedand returned to theuser as a failed

gRPC response containing the status code, an optional status message and optional metadata. We

further enhance this by providing:

• improved consistency of the returned errors across API endpoints

• richer error payload format with clearly distinguished machine readable parts to facilitate au-

tomated error handling strategies

• complete inventory of all error codes with an explanation, suggested resolution and other use-

ful information

1.35.2 Glossary

Error Represents an occurrence of a failure. Consists of:

• an error code id,

• a gRPC status code (determined by its error category),

• an error category,

• a correlation id,

• a human readable message,

• and optional additional metadata.

You can think of it as an instantiation of an error code.

Error Code Represents a class of failures. Identified by its error code id (we may use error code and

error code id interchangeably in this document). Belongs to a single error category.

Error Category A broad categorization of error codes that you can base your error handling strate-

gies on. Maps to exactly one gRPC status code. We recommended dealing with errors based

on their error category. However, if the error category alone is too generic you can act on a

particular error codes.

1.35. Error Codes 1375

https://grpc.github.io/grpc/core/md_doc_statuscodes.html
https://grpc.github.io/grpc/core/md_doc_statuscodes.html

Daml SDK Documentation, 2.7.3

Correlation Id A value that allows the user to clearly identify the request, such that the operator can

lookup any log information associated with this error. We use the request’s submission id for

correlation id.

1.35.3 Anatomy of an Error

Errors returned to users contain a gRPC status code, a description, and additionalmachine-readable

information represented in the rich gRPC error model.

1.35.3.1 Error Description

We use the standard gRPC description that additionally adheres to our custommessage format:

<ERROR_CODE_ID>(<CATEGORY_ID>,<CORRELATION_ID_PREFIX>):<HUMAN_READABLE_MESSAGE>

The constituent parts are:

• <ERROR_CODE_ID> - a unique non-empty string containing atmost 63 characters: upper-case

letters, underscores or digits. Identifies corresponding error code id.

• <CATEGORY_ID> - a small integer identifying the corresponding error category.

• <CORRELATION_ID_PREFIX> - a string aimed at identifying originating request. Absence of

one is indicated by value 0. If present, it is the first 8 characters of the corresponding request’s

submission id. Full correlation id can be found in error’s additionalmachine readable informa-

tion (see Additional Machine-Readable Information).

• : - a colon serves as a separator for the machine and human readable parts of the error de-

scription.

• <HUMAN_READABLE_MESSAGE> - a message targeted at a human reader. Should never be

parsed by applications, as the description might change in future releases to improve clarity.

In a concrete example an error description might look like this:

TRANSACTION_NOT_FOUND(11,12345): Transaction not found, or not visible.

1.35.3.2 Additional Machine-Readable Information

We use following error details:

• A mandatory com.google.rpc.ErrorInfo containing error code id.

• A mandatory com.google.rpc.RequestInfo containing (not-truncated) correlation id (or 0

if correlation id is not available).

• An optional com.google.rpc.RetryInfo containing retry interval withmilliseconds resolu-

tion.

• An optional com.google.rpc.ResourceInfo containing information about the resource the

failure is based on. Any request that fails due to some well-defined resource issues (such as

contract, contract-key, package, party, template, domain, etc.) contains these. Particular re-

sources are implementation specific and vary across ledger implementations.

Many errors will includemore information, but there is no guarantee that additional information will

be preserved across versions.

1376 Chapter 1. Canton References

https://grpc.github.io/grpc/core/md_doc_statuscodes.html
https://cloud.google.com/apis/design/errors#error_details
https://grpc.github.io/grpc-java/javadoc/io/grpc/Status.html#getDescription--

Daml SDK Documentation, 2.7.3

1.35.3.3 Prevent Security Leaks in Error Codes

For any error that could leak information to an attacker, the system returns an errormessage via the

API that contains no valuable information. The log file contains the full error message.

1.35.3.4 Work With Error Codes

This example shows how a user can extract the relevant error information:

object SampleClientSide {

import com.google.rpc.ResourceInfo

import com.google.rpc.{ErrorInfo, RequestInfo, RetryInfo}

import io.grpc.StatusRuntimeException

import scala.jdk.CollectionConverters._

def example(): Unit = {

try {

DummmyServer.serviceEndpointDummy()

} catch {

case e: StatusRuntimeException =>

// Converting to a status object.

val status = io.grpc.protobuf.StatusProto.fromThrowable(e)

// Extracting gRPC status code.

assert(status.getCode == io.grpc.Status.Code.ABORTED.value())

assert(status.getCode == 10)

// Extracting error message, both

// machine oriented part: "MY_ERROR_CODE_ID﴾2,full­cor﴿:",

// and human oriented part: "A user oriented message".

assert(status.getMessage == "MY_ERROR_CODE_ID(2,full­cor): A user␣

↪→oriented message")

// Getting all the details

val rawDetails: Seq[com.google.protobuf.Any] = status.getDetailsList.

↪→asScala.toSeq

// Extracting error code id, error category id and optionally additional␣

↪→metadata.

assert {

rawDetails.collectFirst {

case any if any.is(classOf[ErrorInfo]) =>

val v = any.unpack(classOf[ErrorInfo])

assert(v.getReason == "MY_ERROR_CODE_ID")

assert(v.getMetadataMap.asScala.toMap == Map("category" ­> "2", "foo

↪→" ­> "bar"))

}.isDefined

}

// Extracting full correlation id, if present.

assert {

rawDetails.collectFirst {

case any if any.is(classOf[RequestInfo]) =>

val v = any.unpack(classOf[RequestInfo])

(continues on next page)

1.35. Error Codes 1377

Daml SDK Documentation, 2.7.3

(continued from previous page)

assert(v.getRequestId == "full­correlation­id­123456790")

}.isDefined

}

// Extracting retry information if the error is retryable.

assert {

rawDetails.collectFirst {

case any if any.is(classOf[RetryInfo]) =>

val v = any.unpack(classOf[RetryInfo])

assert(v.getRetryDelay.getSeconds == 123, v.getRetryDelay.

↪→getSeconds)

assert(v.getRetryDelay.getNanos == 456 * 1000 * 1000, v.

↪→getRetryDelay.getNanos)

}.isDefined

}

// Extracting resource if the error pertains to some well defined␣

↪→resource.

assert {

rawDetails.collectFirst {

case any if any.is(classOf[ResourceInfo]) =>

val v = any.unpack(classOf[ResourceInfo])

assert(v.getResourceType == "CONTRACT_ID")

assert(v.getResourceName == "someContractId")

}.isDefined

}

}

}

}

1.35.4 Error Codes In Canton Operations

Almost all errors and warnings that can be generated by a Canton-based system are annotated with

error codes of the form SOMETHING_NOT_SO_GOOD_HAPPENED(x,c). The upper case string with

underscores denotes the unique error id. The parentheses include key additional information. The id

together with the extra information is referred to as error­code. The x represents the ErrorCategory

used to classify the error, and the c represents the first 8 characters of the correlation id associated

with this request, or 0 if no correlation id is given.

Themajority of errors in Canton-based systemsare a result of request processing and are logged and

returned to the user as described above. In other cases, errors occur due to background processes

(i.e. network connection issues/transaction confirmation processing). Such errors are only logged.

Generally, we use the following log levels on the server:

• INFO to log user errors where the error leads to a failure of the request but the system remains

healthy.

• WARN to log degradations of the system or point out unusual behaviour.

• ERROR to log internal errors where the system does not behave properly and immediate atten-

tion is required.

On the client side, failures are considered to be errors and logged as such.

1378 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.35.5 Error Categories

The error categories allow you to group errors such that application logic can be built to automati-

cally deal with errors and decide whether to retry a request or escalate to the operator.

A full list of error categories is documented here.

1.35.6 Machine Readable Information

Every error on the API is constructed to allow automated and manual error handling. First,

the error category maps to exactly one gRPC status code. Second, every error description

(of the corresponding StatusRuntimeException.Status) starts with the error information

(SOMETHING_NOT_SO_GOOD_HAPPENED(CN,x)), separated from a human readable description

by a colon (“:”). The rest of the description is targeted to humans and should never be parsed by

applications, as the description might change in future releases to improve clarity.

In addition to the status code and the description, the gRPC rich error model is used to convey addi-

tional, machine-readable information to the application.

Therefore, to support automatic error processing, an application may:

• parse the error information from the beginning of the description to obtain the error-id, the

error category and the component.

• use the gRPC-code to get the set of possible error categories.

• if present, use the ResourceInfo included as Status.details. Any request that fails due to

some well-defined resource issues (contract, contract-key, package, party, template, domain)

will contain these, calling out on what resource the failure is based on.

• use the RetryInfo to determine the recommended retry interval (ormake this decision based

on the category / gRPC code).

• use the RequestInfo.id as the correlation-id, included as Status.details.

• use the ErrorInfo.reason as error-id and ErrorInfo.metadata("category") as error

category, included as Status.details.

All this information is included in errors that are generated by components under our control and

included as Status.details. As with Daml error codes described above, many errors includemore

information, but there is no guarantee that additional information will be preserved across versions.

Generally, automated error handling can be done on any level (e.g. load balancer using gRPC sta-

tus codes, application using ErrorCategory or human reacting to error-ids). In most cases it is

advisable to deal with errors on a per category basis and deal with error-ids in very specific situa-

tions which are application dependent. For example, a command failure with the message “CON-

TRACT_NOT_FOUND” may be an application failure in case the given application is the only actor

on the contracts, whereas a “CONTRACT_NOT_FOUND” message is to be expected in a case where

multiple independent actors operate on the ledger state.

1.35. Error Codes 1379

https://docs.daml.com/app-dev/grpc/error-codes.html#error-categories-inventory
https://grpc.github.io/grpc-java/javadoc/io/grpc/Status.html#getDescription--
https://cloud.google.com/apis/design/errors#error_details

Daml SDK Documentation, 2.7.3

1.35.7 Example

If an application submits a Daml transaction that exceeds the size limits enforced on a domain, the

command will be rejected. Using the logs of one of our test cases, the participant node will log the

following message:

2022­04­26 11:37:54,584 [GracefulRejectsIntegrationTestDefault­env­execution­

↪→context­30] INFO c.d.c.p.p.TransactionProcessingSteps:participant=participant1/

↪→domain=da tid:13617c1bda402e54e016a6a17637cb20 ­ SEQUENCER_REQUEST_FAILED(2,

↪→13617c1b): Failed to send command err­context:

↪→{location=TransactionProcessingSteps.scala:449, sendError=RequestInvalid(Batch␣

↪→size (85134 bytes) is exceeding maximum size (27000 bytes) for domain␣

↪→da::12201253c344...)}

The machine-readable part of the error message appears as SEQUENCER_REQUEST_FAILED(2,

13617c1b), mentioning the error idSEQUENCER_REQUEST_FAILED, the categoryContentionOnShare-

dResourceswithid=2, and the correlation identifier13617c1b. Please note that there is no guarantee

on the name of the logger that is emitting the given error, as this name is internal and subject to

change. The human-readable part of the log message should not be parsed, as we might subse-

quently improve the text.

The client will receive the error information as a Grpc error:

2022­04­26 11:37:54,923 [ScalaTest­run­running­

↪→GracefulRejectsIntegrationTestDefault] ERROR c.d.c.i.

↪→EnterpriseEnvironmentDefinition$$anon$3 ­ Request failed for participant1.

GrpcRequestRefusedByServer: ABORTED/SEQUENCER_REQUEST_FAILED(2,13617c1b):␣

↪→Failed to send command

Request: SubmitAndWaitTransactionTree(actAs = participant1::1220baa5cd30...,␣

↪→commandId = '', workflowId = '', submissionId = '', deduplicationPeriod =␣

↪→None(), ledgerId = 'participant1', commands= ...)

CorrelationId: 13617c1bda402e54e016a6a17637cb20

RetryIn: 1 second

Context: HashMap(participant ­> participant1, test ­>␣

↪→GracefulRejectsIntegrationTestDefault, domain ­> da, sendError ­>␣

↪→RequestInvalid(Batch size (85134 bytes) is exceeding maximum size (27000 bytes)␣

↪→for domain da::12201253c344...), definite_answer ­> true)

Note that the second log is created by Daml tooling that prints the Grpc Status into the log files

during tests. The actual Grpc error would be received by the application and would not be logged by

the participant node in the given form.

1380 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.35.8 Error Categories Inventory

The error categories allow you to group errors such that application logic can be built in a sensi-

ble way to automatically deal with errors and decide whether to retry a request or escalate to the

operator.

1.35.8.1 TransientServerFailure

Category id: 1

gRPC status code: UNAVAILABLE

Default log level: INFO

Description: One of the services required to process the request was not available.

Resolution: Expectation: transient failure that should be handled by retrying the request

with appropriate backoff.

Retry strategy: Retry quickly in load balancer.

1.35.8.2 ContentionOnSharedResources

Category id: 2

gRPC status code: ABORTED

Default log level: INFO

Description: The request could not be processed due to shared processing resources (e.g.

locks or rate limits that replenish quickly) being occupied. If the resource is known (i.e.

locked contract), it will be included as a resource info. (Not known resource contentions

are e.g. overloaded networks where we just observe timeouts, but can’t pin-point the

cause).

Resolution: Expectation: this is processing-flow level contention that should be handled

by retrying the request with appropriate backoff.

Retry strategy: Retry quickly (indefinitely or limited), but do not retry in load balancer.

1.35.8.3 DeadlineExceededRequestStateUnknown

Category id: 3

gRPC status code: DEADLINE_EXCEEDED

Default log level: INFO

Description: The request might not have been processed, as its deadline expired before

its completion was signalled. Note that for requests that change the state of the sys-

tem, this error may be returned even if the request has completed successfully. Note

that knownandwell-defined timeouts are signalled as [[ContentionOnSharedResources]],

while this category indicates that the state of the request is unknown.

Resolution: Expectation: the deadline might have been exceeded due to transient re-

source congestion or due to a timeout in the request processing pipeline being too low.

1.35. Error Codes 1381

Daml SDK Documentation, 2.7.3

The transient errors might be solved by the application retrying. The non-transient errors

will require operator intervention to change the timeouts.

Retry strategy: Retry for a limited number of times with deduplication.

1.35.8.4 SystemInternalAssumptionViolated

Category id: 4

gRPC status code: INTERNAL

Default log level: ERROR

Description: Request processing failed due to a violation of system internal invariants.

This error is exposed on the API with grpc-status INTERNALwithout any details for security

reasons

Resolution: Expectation: this is due to a bug in the implementation or data corruption

in the systems databases. Resolution will require operator intervention, and potentially

vendor support.

Retry strategy: Retry after operator intervention.

1.35.8.5 AuthInterceptorInvalidAuthenticationCredentials

Category id: 6

gRPC status code: UNAUTHENTICATED

Default log level: WARN

Description: The request doesnot have valid authentication credentials for the operation.

This error is exposed on the API with grpc-status UNAUTHENTICATED without any details

for security reasons

Resolution: Expectation: this is an application bug, application misconfiguration or

ledger-level misconfiguration. Resolution requires application and/or ledger operator in-

tervention.

Retry strategy: Retry after application operator intervention.

1.35.8.6 InsufficientPermission

Category id: 7

gRPC status code: PERMISSION_DENIED

Default log level: WARN

Description: The caller does not have permission to execute the specified operation. This

error is exposed on the API with grpc-status PERMISSION_DENIED without any details for

security reasons

Resolution: Expectation: this is an application bug or applicationmisconfiguration. Res-

olution requires application operator intervention.

Retry strategy: Retry after application operator intervention.

1382 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.35.8.7 SecurityAlert

Category id: 5

gRPC status code: INVALID_ARGUMENT

Default log level: WARN

Description: A potential attack or a faulty peer component has been detected. This error

is exposed on the API with grpc-status INVALID_ARGUMENT without any details for secu-

rity reasons.

Resolution: Expectation: this can be a severe issue that requires operator attention or

intervention, and potentially vendor support. It means that the system has detected in-

valid information that can be attributed to either faulty ormaliciousmanipulation of data

coming from a peer source.

Retry strategy: Errors in this category are non-retryable.

1.35.8.8 InvalidIndependentOfSystemState

Category id: 8

gRPC status code: INVALID_ARGUMENT

Default log level: INFO

Description: The request is invalid independent of the state of the system.

Resolution: Expectation: this is an application bug or ledger-level misconfiguration (e.g.

request size limits). Resolution requires application and/or ledger operator intervention.

Retry strategy: Retry after application operator intervention.

1.35.8.9 InvalidGivenCurrentSystemStateOther

Category id: 9

gRPC status code: FAILED_PRECONDITION

Default log level: INFO

Description: Themutable state of the systemdoes not satisfy the preconditions required

to execute the request. We consider the whole Daml ledger including ledger config, par-

ties, packages, users and command deduplication to be mutable system state. Thus all

Daml interpretation errors are reported as this error or one of its specializations.

Resolution: ALREADY_EXISTS and NOT_FOUND are special cases for the existence and

non-existence of well-defined entities within the system state; e.g., a .dalf package, con-

tracts ids, contract keys, or a transaction at an offset. OUT_OF_RANGE is a special case

for reading past a range. Violations of the Daml ledgermodel always result in these kinds

of errors. Expectation: this is due to application-level bugs, misconfiguration or con-

tention on application-visible resources; and might be resolved by retrying later, or after

changing the state of the system. Handling these errors requires an application-specific

strategy and/or operator intervention.

Retry strategy: Retry after application operator intervention.

1.35. Error Codes 1383

Daml SDK Documentation, 2.7.3

1.35.8.10 InvalidGivenCurrentSystemStateResourceExists

Category id: 10

gRPC status code: ALREADY_EXISTS

Default log level: INFO

Description: Special type of InvalidGivenCurrentSystemState referring to a well-defined

resource.

Resolution: Same as [[InvalidGivenCurrentSystemStateOther]].

Retry strategy: Inspect resource failure and retry after resource failure has been resolved

(depends on type of resource and application).

1.35.8.11 InvalidGivenCurrentSystemStateResourceMissing

Category id: 11

gRPC status code: NOT_FOUND

Default log level: INFO

Description: Special type of InvalidGivenCurrentSystemState referring to a well-defined

resource.

Resolution: Same as [[InvalidGivenCurrentSystemStateOther]].

Retry strategy: Inspect resource failure and retry after resource failure has been resolved

(depends on type of resource and application).

1.35.8.12 InvalidGivenCurrentSystemStateSeekAfterEnd

Category id: 12

gRPC status code: OUT_OF_RANGE

Default log level: INFO

Description: This error is only used by the Ledger API server in connection with invalid

offsets.

Resolution: Expectation: this error is only used by the Ledger API server in connection

with invalid offsets.

Retry strategy: Retry after application operator intervention.

1384 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.35.8.13 BackgroundProcessDegradationWarning

Category id: 13

gRPC status code: N/A

Default log level: WARN

Description: This error category is used internally to signal to the system operator an

internal degradation.

Resolution: Inspect details of the specific error for more information.

Retry strategy: Not an API error, therefore not retryable.

1.35.8.14 InternalUnsupportedOperation

Category id: 14

gRPC status code: UNIMPLEMENTED

Default log level: ERROR

Description: This error category is used to signal that an unimplemented code-path has

been triggered by a client or participant operator request. This error is exposed on the API

with grpc-status UNIMPLEMENTED without any details for security reasons

Resolution: This error is caused by a ledger-level misconfiguration or by an implementa-

tion bug. Resolution requires participant operator intervention.

Retry strategy: Errors in this category are non-retryable.

1.35.9 Error Codes Inventory - Daml

1.35.9.1 1. ParticipantErrorGroup

1.35.9.2 1.1. ParticipantErrorGroup / CommonErrors

Common errors raised in Daml services and components.

REQUEST_TIME_OUT

Explanation: This rejection is given when a request processing status is not known and

a time-out is reached.

Category: DeadlineExceededRequestStateUnknown

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status DEADLINE_EXCEEDED including a detailed error message.

Resolution: Retry for transient problems. If non-transient contact the operator as the

time-out limit might be too short.

1.35. Error Codes 1385

Daml SDK Documentation, 2.7.3

SERVER_IS_SHUTTING_DOWN

Explanation: This rejection is given when the participant server is shutting down.

Category: TransientServerFailure

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status UNAVAILABLE including a detailed error message.

Resolution: Contact the participant operator.

SERVICE_INTERNAL_ERROR

Explanation: This error occurs if one of the services encountered an unexpected excep-

tion.

Category: SystemInternalAssumptionViolated

Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on

the API with grpc-status INTERNAL without any details for security reasons.

Resolution: Contact support.

SERVICE_NOT_RUNNING

Explanation: This rejection is given when the requested service has already been closed.

Category: TransientServerFailure

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status UNAVAILABLE including a detailed error message.

Resolution: Retry re-submitting the request. If the error persists, contact the participant

operator.

UNSUPPORTED_OPERATION

Explanation: This error category is used to signal that an unimplemented code-path has

been triggered by a client or participant operator request.

Category: InternalUnsupportedOperation

Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on

the API with grpc-status UNIMPLEMENTED without any details for security reasons.

Resolution: This error is caused by a participant node misconfiguration or by an imple-

mentation bug. Resolution requires participant operator intervention.

1386 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.35.9.3 1.2. ParticipantErrorGroup / IndexErrors

Errors raised by the Participant Index persistence layer.

1.35.9.4 1.2.1. ParticipantErrorGroup / IndexErrors / DatabaseErrors

INDEX_DB_INVALID_RESULT_SET

Explanation: This error occurs if the result set returned by a query against the Index

database is invalid.

Category: SystemInternalAssumptionViolated

Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on

the API with grpc-status INTERNAL without any details for security reasons.

Resolution: Contact support.

INDEX_DB_SQL_NON_TRANSIENT_ERROR

Explanation: This error occurs if a non-transient error arises when executing a query

against the index database.

Category: SystemInternalAssumptionViolated

Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on

the API with grpc-status INTERNAL without any details for security reasons.

Resolution: Contact the participant operator.

INDEX_DB_SQL_TRANSIENT_ERROR

Explanation: This error occurs if a transient error arises when executing a query against

the index database.

Category: TransientServerFailure

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status UNAVAILABLE including a detailed error message.

Resolution: Re-submit the request.

1.35.9.5 1.3. ParticipantErrorGroup / LedgerApiErrors

Errors raised by or forwarded by the Ledger API.

1.35. Error Codes 1387

Daml SDK Documentation, 2.7.3

HEAP_MEMORY_OVER_LIMIT

Explanation: This error happens when the JVM heap memory pool exceeds a

pre-configured limit.

Category: ContentionOnSharedResources

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status ABORTED including a detailed error message.

Resolution: The following actions can be taken: 1. Review the historical use of heap space

by inspecting the metric given in the message. 2. Review the current heap space limits

configured in the rate limiting configuration. 3. Try to space out requests that are likely

to require a large amount of memory to process.

LEDGER_API_INTERNAL_ERROR

Explanation: This error occurs if there was an unexpected error in the Ledger API.

Category: SystemInternalAssumptionViolated

Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on

the API with grpc-status INTERNAL without any details for security reasons.

Resolution: Contact support.

MAXIMUM_NUMBER_OF_STREAMS

Explanation: This error happens when the number of concurrent gRPC streaming re-

quests exceeds the configured limit.

Category: ContentionOnSharedResources

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status ABORTED including a detailed error message.

Resolution: The following actions can be taken: 1. Review the historical need for concur-

rent streaming by inspecting the metric given in the message. 2. Review the maximum

streams limit configured in the rate limiting configuration. 3. Try to space out streaming

requests such that they do not need to run in parallel with each other.

PARTICIPANT_BACKPRESSURE

Explanation: This error occurs when a participant rejects a command due to excessive

load. Load can be caused by the following factors: 1. when commands are submitted to

the participant through its Ledger API, 2. when the participant receives requests from

other participants through a connected domain.

Category: ContentionOnSharedResources

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status ABORTED including a detailed error message.

1388 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Resolution: Wait a bit and retry, preferablywith somebackoff factor. If possible, ask other

participants to send fewer requests; the domain operator can enforce this by imposing a

rate limit.

THREADPOOL_OVERLOADED

Explanation: This happens when the rate of submitted gRPC requests requiresmore CPU

or database power than is available.

Category: ContentionOnSharedResources

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status ABORTED including a detailed error message.

Resolution: The following actions can be taken: Here the ‘queue size’ for the threadpool is

considered as reported by the executor itself. 1. Review the historical ‘queue size’ growth

by inspecting themetric given in themessage. 2. Review themaximum ‘queue size’ limits

configured in the rate limiting configuration. 3. Try to space out requests that are likely

to require a lot of CPU or database power.

1.35.9.6 1.3.1. ParticipantErrorGroup / LedgerApiErrors / AdminServices

Errors raised by Ledger API admin services.

CONFIGURATION_ENTRY_REJECTED

Explanation: This rejection is given when a new configuration is rejected.

Category: InvalidGivenCurrentSystemStateOther

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message.

Resolution: Fetch newest configuration and/or retry.

INTERNALLY_INVALID_KEY

Explanation: A cryptographic key used by the configured system is not valid

Category: SystemInternalAssumptionViolated

Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on

the API with grpc-status INTERNAL without any details for security reasons.

Resolution: Contact support.

1.35. Error Codes 1389

Daml SDK Documentation, 2.7.3

PACKAGE_UPLOAD_REJECTED

Explanation: This rejection is given when a package upload is rejected.

Category: InvalidGivenCurrentSystemStateOther

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message.

Resolution: Refer to the detailed message of the received error.

1.35.9.7 1.3.1.1. ParticipantErrorGroup / LedgerApiErrors / AdminServices / IdentityProvider-

ConfigServiceErrorGroup

IDP_CONFIG_ALREADY_EXISTS

Explanation: There already exists an identity provider configuration with the same iden-

tity provider id.

Category: InvalidGivenCurrentSystemStateResourceExists

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status ALREADY_EXISTS including a detailed error message.

Resolution: Check that you are connecting to the right participant node and the identity

provider id is spelled correctly, or use an identity provider that already exists.

IDP_CONFIG_BY_ISSUER_NOT_FOUND

Explanation: The identity provider config referred to by the request was not found.

Category: InvalidGivenCurrentSystemStateResourceMissing

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status NOT_FOUND including a detailed error message.

Resolution: Check that you are connecting to the right participant node and the identity

provider config is spelled correctly, or create the configuration.

IDP_CONFIG_ISSUER_ALREADY_EXISTS

Explanation: There already exists an identity provider configuration with the same is-

suer.

Category: InvalidGivenCurrentSystemStateResourceExists

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status ALREADY_EXISTS including a detailed error message.

Resolution: Check that you are connecting to the right participant node and the identity

provider id is spelled correctly, or use an identity provider that already exists.

1390 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

IDP_CONFIG_NOT_FOUND

Explanation: The identity provider config referred to by the request was not found.

Category: InvalidGivenCurrentSystemStateResourceMissing

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status NOT_FOUND including a detailed error message.

Resolution: Check that you are connecting to the right participant node and the identity

provider config is spelled correctly, or create the configuration.

INVALID_IDENTITY_PROVIDER_UPDATE_REQUEST

Explanation: There was an attempt to update an identity provider config using an invalid

update request.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message.

Resolution: Inspect the error details for specific information on what made the request

invalid. Retry with an adjusted update request.

TOO_MANY_IDENTITY_PROVIDER_CONFIGS

Explanation: A system can have only a limited number of identity provider configura-

tions. There was an attempt to create an identity provider configuration.

Category: InvalidGivenCurrentSystemStateOther

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message.

Resolution: Delete some of the already existing identity provider configurations. Contact

the participant operator if the limit is too low.

1.35.9.8 1.3.1.2. ParticipantErrorGroup / LedgerApiErrors / AdminServices / PartyManage-

mentServiceErrorGroup

CONCURRENT_PARTY_DETAILS_UPDATE_DETECTED

Explanation: Concurrent updates to a party can be controlled by supplying an update

request with a resource version (this is optional). A party’s resource version can be ob-

tained by reading the party on the Ledger API. There was attempt to update a party using

a stale resource version, indicating that a different process had updated the party earlier.

Category: ContentionOnSharedResources

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status ABORTED including a detailed error message.

1.35. Error Codes 1391

Daml SDK Documentation, 2.7.3

Resolution: Read this party again to obtain its most recent state and in particular its

most recent resource version. Use the obtained information to build and send a new up-

date request.

INTERNAL_PARTY_RECORD_ALREADY_EXISTS

Explanation: Each on-ledger party known to this participant node can have a partici-

pant’s local metadata assigned to it. The local information about a party referred to by

this request was found when it should have been not found.

Category: SystemInternalAssumptionViolated

Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on

the API with grpc-status INTERNAL without any details for security reasons.

Resolution: This error can indicate a problem with the server’s storage or implementa-

tion.

INTERNAL_PARTY_RECORD_NOT_FOUND

Explanation: Each on-ledger party known to this participant node can have a partici-

pant’s local metadata assigned to it. The local information about a party referred to by

this request was not found when it should have been found.

Category: SystemInternalAssumptionViolated

Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on

the API with grpc-status INTERNAL without any details for security reasons.

Resolution: This error can indicate a problem with the server’s storage or implementa-

tion.

INVALID_PARTY_DETAILS_UPDATE_REQUEST

Explanation: There was an attempt to update a party using an invalid update request.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message.

Resolution: Inspect the error details for specific information on what made the request

invalid. Retry with an adjusted update request.

1392 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

MAX_PARTY_DETAILS_ANNOTATIONS_SIZE_EXCEEDED

Explanation: A party can have at most 256kb worth of annotations in total measured in

number of bytes in UTF-8 encoding. There was an attempt to allocate or update a party

such that this limit would have been exceeded.

Category: InvalidGivenCurrentSystemStateOther

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message.

Resolution: Retry with fewer annotations or delete some of the party’s existing annota-

tions.

PARTY_NOT_FOUND

Explanation: The party referred to by the request was not found.

Category: InvalidGivenCurrentSystemStateResourceMissing

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status NOT_FOUND including a detailed error message.

Resolution: Check that youare connecting to the right participant nodeand that theparty

is spelled correctly.

1.35.9.9 1.3.1.3. ParticipantErrorGroup / LedgerApiErrors / AdminServices / UserManage-

mentServiceErrorGroup

CONCURRENT_USER_UPDATE_DETECTED

Explanation: Concurrent updates to a user can be controlled by supplying an update re-

quest with a resource version (this is optional). A user’s resource version can be obtained

by reading the user on the Ledger API. There was attempt to update a user using a stale

resource version, indicating that a different process had updated the user earlier.

Category: ContentionOnSharedResources

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status ABORTED including a detailed error message.

Resolution: Read this user again to obtain itsmost recent state and in particular itsmost

recent resource version. Use the obtained information to build and send a new update

request.

1.35. Error Codes 1393

Daml SDK Documentation, 2.7.3

INVALID_USER_UPDATE_REQUEST

Explanation: There was an attempt to update a user using an invalid update request.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message.

Resolution: Inspect the error details for specific information on what made the request

invalid. Retry with an adjusted update request.

MAX_USER_ANNOTATIONS_SIZE_EXCEEDED

Explanation: A user can have at most 256kb worth of annotations in total measured in

number of bytes in UTF-8 encoding. There was an attempt to create or update a user such

that this limit would have been exceeded.

Category: InvalidGivenCurrentSystemStateOther

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message.

Resolution: Retry with fewer annotations or delete some of the user’s existing annota-

tions.

TOO_MANY_USER_RIGHTS

Explanation: A user can have only a limited number of user rights. There was an attempt

to create a user with too many rights or grant too many rights to a user.

Category: InvalidGivenCurrentSystemStateOther

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message.

Resolution: Retry with a smaller number of rights or delete some of the already existing

rights of this user. Contact the participant operator if the limit is too low.

USER_ALREADY_EXISTS

Explanation: There already exists a user with the same user-id.

Category: InvalidGivenCurrentSystemStateResourceExists

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status ALREADY_EXISTS including a detailed error message.

Resolution: Check that you are connecting to the right participant node and the user-id

is spelled correctly, or use the user that already exists.

1394 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

USER_NOT_FOUND

Explanation: The user referred to by the request was not found.

Category: InvalidGivenCurrentSystemStateResourceMissing

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status NOT_FOUND including a detailed error message.

Resolution: Check that you are connecting to the right participant node and the user-id

is spelled correctly, if yes, create the user.

1.35.9.10 1.3.2. ParticipantErrorGroup / LedgerApiErrors / AuthorizationChecks

Authentication and authorization errors.

INTERNAL_AUTHORIZATION_ERROR

Explanation: An internal system authorization error occurred.

Category: SystemInternalAssumptionViolated

Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on

the API with grpc-status INTERNAL without any details for security reasons.

Resolution: Contact the participant operator.

PERMISSION_DENIED

Explanation: This rejection is given if the supplied authorization token is not sufficient

for the intended command. The exact reason is logged on the participant, but not given

to the user for security reasons.

Category: InsufficientPermission

Conveyance: This error is logged with log-level WARN on the server side. It is exposed on

the API with grpc-status PERMISSION_DENIED without any details for security reasons.

Resolution: Inspect your command and your token or ask your participant operator for

an explanation why this command failed.

STALE_STREAM_AUTHORIZATION

Explanation: The stream was aborted because the authenticated user’s rights changed,

and the user might thus no longer be authorized to this stream.

Category: ContentionOnSharedResources

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status ABORTED including a detailed error message.

Resolution: The application should automatically retry fetching the stream. It will either

succeed, or fail with an explicit denial of authentication or permission.

1.35. Error Codes 1395

Daml SDK Documentation, 2.7.3

UNAUTHENTICATED

Explanation: This rejection is given if the submitted command does not contain a JWT

token on a participant enforcing JWT authentication.

Category: AuthInterceptorInvalidAuthenticationCredentials

Conveyance: This error is logged with log-level WARN on the server side. It is exposed on

the API with grpc-status UNAUTHENTICATED without any details for security reasons.

Resolution: Ask your participant operator to provide you with an appropriate JWT token.

1.35.9.11 1.3.3. ParticipantErrorGroup / LedgerApiErrors / CommandExecution

Errors raised during the command execution phase of the command submission evaluation.

FAILED_TO_DETERMINE_LEDGER_TIME

Explanation: This error occurs if the participant fails to determine themax ledger time of

theused contracts. Most likely, thismeans that one of the contracts is not active anymore

which can happen under contention. It can also happen with contract keys.

Category: ContentionOnSharedResources

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status ABORTED including a detailed error message.

Resolution: Retry the transaction submission.

1.35.9.12 1.3.3.1. ParticipantErrorGroup / LedgerApiErrors / CommandExecution / Interpreter

Errors raised during the command interpretation phase of the command submission evaluation.

CONTRACT_DOES_NOT_IMPLEMENT_INTERFACE

Explanation: This error occurs when you try to coerce/use a contract via an interface that

it does not implement.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message.

Resolution: Ensure the contract you are calling does implement the interface you are

using to do so. Avoid writing LF/low-level interface implementation classes manually.

1396 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

CONTRACT_DOES_NOT_IMPLEMENT_REQUIRING_INTERFACE

Explanation: This error occurs when you try to create/use a contract that does not imple-

ment the requiring interfaces of some other interface that it does implement.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message.

Resolution: Ensure you implement all required interfaces correctly, and avoid writing

LF/low-level interface implementation classes manually.

CONTRACT_ID_COMPARABILITY

Explanation: This error occurs when you attempt to compare a global and local contract

ID of the same discriminator.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message.

Resolution: Avoid constructing contract IDs manually.

CONTRACT_ID_IN_CONTRACT_KEY

Explanation: This error occurs when a contract key contains a contract ID, which is illegal

for hashing reasons.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message.

Resolution: Ensure your contracts key field cannot contain a contract ID.

CONTRACT_NOT_ACTIVE

Explanation: This error occurs if an exercise or fetch happens on a transaction-locally

consumed contract.

Category: InvalidGivenCurrentSystemStateResourceMissing

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status NOT_FOUND including a detailed error message.

Resolution: This error indicates an application error.

1.35. Error Codes 1397

Daml SDK Documentation, 2.7.3

CREATE_EMPTY_CONTRACT_KEY_MAINTAINERS

Explanation: This error occurs when you try to create a contract that has a key, but with

empty maintainers.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message.

Resolution: Check the definition of the contract key’s maintainers, and ensure this list

won’t be empty given your creation arguments.

DAML_AUTHORIZATION_ERROR

Explanation: This error occurs if a Daml transaction fails due to an authorization error.

An authorization means that the Daml transaction computed a different set of required

submitters than you have provided during the submission as actAs parties.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message.

Resolution: This error type occurs if there is an application error.

DAML_INTERPRETATION_ERROR

Explanation: This error occurs if a Daml transaction fails during interpretation.

Category: InvalidGivenCurrentSystemStateOther

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message.

Resolution: This error type occurs if there is an application error.

DAML_INTERPRETER_INVALID_ARGUMENT

Explanation: This error occurs if a Daml transaction fails during interpretation due to an

invalid argument.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message.

Resolution: This error type occurs if there is an application error.

1398 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

DISCLOSED_CONTRACT_KEY_HASHING_ERROR

Explanation: This error occurs if a user attempts to provide a key hash for a disclosed

contract which we have already cached to be different.

Category: InvalidGivenCurrentSystemStateOther

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message.

Resolution: Ensure the contract ID and contract payload you have provided in your dis-

closed contract is correct.

FETCH_EMPTY_CONTRACT_KEY_MAINTAINERS

Explanation: This error occurs when you try to fetch a contract by key, but that key would

have empty maintainers.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message.

Resolution: Check the definition of the contract key’s maintainers, and ensure this list

won’t be empty given the contract key you are fetching.

INTERPRETATION_DEV_ERROR

Explanation: This error is a catch-all for errors thrown by in-development features, and

should never be thrown in production.

Category: InvalidGivenCurrentSystemStateOther

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message.

Resolution: See the errormessage for details of the specific in-development feature error.

If this is production, avoid using development features.

INTERPRETATION_USER_ERROR

Explanation: This error occurs when a user calls abort or error on an LF version before

native exceptions were introduced.

Category: InvalidGivenCurrentSystemStateOther

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message.

Resolution: Either remove the call to abort, error or perhaps assert, or ensure you are

exercising your contract choice as the author expects.

1.35. Error Codes 1399

Daml SDK Documentation, 2.7.3

NON_COMPARABLE_VALUES

Explanation: This error occurswhen you attempt to compare two values of different types

using the built-in comparison types.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message.

Resolution: Avoid using the low level comparison build, and instead use the Eq class.

TEMPLATE_PRECONDITION_VIOLATED

Explanation: This error occurs when a contract’s pre-condition (the ensure clause) is

violated on contract creation.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message.

Resolution: Ensure the contract argument you are passing into your create doesn’t vio-

late the conditions of the contract.

UNHANDLED_EXCEPTION

Explanation: This error occurs when a user throws an error and does not catch it with

try-catch.

Category: InvalidGivenCurrentSystemStateOther

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message.

Resolution: Either your error handling in a choice body is insufficient, or you are using a

contract incorrectly.

WRONGLY_TYPED_CONTRACT

Explanation: This error occurs when you try to fetch/use a contract in some way with a

contract ID that doesn’t match the template type on the ledger.

Category: InvalidGivenCurrentSystemStateOther

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message.

Resolution: Ensure the contract IDs you are using are of the type we expect on the ledger.

Avoid unsafely coercing contract IDs.

1400 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.35.9.13 1.3.3.1.1. ParticipantErrorGroup / LedgerApiErrors / CommandExecution / Inter-

preter / LookupErrors

Errors raised in lookups during the command interpretation phase.

CONTRACT_KEY_NOT_FOUND

Explanation: This error occurs if the Daml engine interpreter cannot resolve a contract

key to an active contract. This can be caused by either the contract key not being known to

the participant, or not being known to the submitting parties or the contract representing

an already archived key.

Category: InvalidGivenCurrentSystemStateResourceMissing

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status NOT_FOUND including a detailed error message.

Resolution: This error type occurs if there is contention on a contract.

1.35.9.14 1.3.3.2. ParticipantErrorGroup / LedgerApiErrors / CommandExecution / Package

Command execution errors raised due to invalid packages.

ALLOWED_LANGUAGE_VERSIONS

Explanation: This error indicates that the uploaded DAR is based on an unsupported lan-

guage version.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message.

Resolution: Use a DAR compiled with a language version that this participant supports.

PACKAGE_VALIDATION_FAILED

Explanation: This error occurs if a package referred to by a command fails validation.

This should not happen as packages are validated when being uploaded.

Category: SecurityAlert

Conveyance: This error is logged with log-level WARN on the server side. It is exposed on

the API with grpc-status INVALID_ARGUMENT without any details for security reasons.

Resolution: Contact support.

1.35. Error Codes 1401

Daml SDK Documentation, 2.7.3

1.35.9.15 1.3.3.3. ParticipantErrorGroup / LedgerApiErrors / CommandExecution / Prepro-

cessing

Errors raised during command conversion to the internal data representation.

COMMAND_PREPROCESSING_FAILED

Explanation: This error occurs if a command fails during interpreter pre-processing.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message.

Resolution: Inspect error details and correct your application.

1.35.9.16 1.3.4. ParticipantErrorGroup / LedgerApiErrors / ConsistencyErrors

Potential consistency errors raised due to race conditions during command submission or returned

as submission rejections by the backing ledger.

CONTRACT_NOT_FOUND

Explanation: This error occurs if the Daml engine can not find a referenced contract. This

can be caused by either the contract not being known to the participant, or not being

known to the submitting parties or already being archived.

Category: InvalidGivenCurrentSystemStateResourceMissing

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status NOT_FOUND including a detailed error message.

Resolution: This error type occurs if there is contention on a contract.

DISCLOSED_CONTRACT_INVALID

Explanation: This error occurs if the disclosed payload or metadata of one of the con-

tracts does not match the actual payload or metadata of the contract.

Category: InvalidGivenCurrentSystemStateOther

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message.

Resolution: Re-submit the command using valid disclosed contract payload and meta-

data.

1402 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

DUPLICATE_COMMAND

Explanation: A command with the given command id has already been successfully pro-

cessed.

Category: InvalidGivenCurrentSystemStateResourceExists

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status ALREADY_EXISTS including a detailed error message.

Resolution: The correct resolution depends on the use case. If the error received pertains

to a submission retried due to a timeout, do nothing, as the previous command has al-

ready beenaccepted. If the intent is to submit anewcommand, re-submit using adistinct

command id.

DUPLICATE_CONTRACT_KEY

Explanation: This error signals that within the transaction we got to a point where two

contracts with the same key were active.

Category: InvalidGivenCurrentSystemStateResourceExists

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status ALREADY_EXISTS including a detailed error message.

Resolution: This error indicates an application error.

INCONSISTENT

Explanation: At least one input has been altered by a concurrent transaction submission.

Category: InvalidGivenCurrentSystemStateOther

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message.

Resolution: The correct resolution depends on the business flow, for example it may be

possible to proceed without an archived contract as an input, or the transaction submis-

sion may be retried to load the up-to-date value of a contract key.

INCONSISTENT_CONTRACTS

Explanation: An input contract has been archived by a concurrent transaction submis-

sion.

Category: InvalidGivenCurrentSystemStateOther

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message.

Resolution: The correct resolution depends on the business flow, for example it may be

possible to proceed without the archived contract as an input, or a different contract

could be used.

1.35. Error Codes 1403

Daml SDK Documentation, 2.7.3

INCONSISTENT_CONTRACT_KEY

Explanation: An input contract key was re-assigned to a different contract by a concur-

rent transaction submission.

Category: InvalidGivenCurrentSystemStateOther

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message.

Resolution: Retry the transaction submission.

INVALID_LEDGER_TIME

Explanation: The ledger time of the submission violated some constraint on the ledger

time.

Category: InvalidGivenCurrentSystemStateOther

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message.

Resolution: Retry the transaction submission.

SUBMISSION_ALREADY_IN_FLIGHT

Explanation: Another command submission with the same change ID (application ID,

command ID, actAs) is already being processed.

Category: ContentionOnSharedResources

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status ABORTED including a detailed error message.

Resolution: Listen to the command completion streamuntil a completion for the in-flight

command submission is published. Alternatively, resubmit the command. If the in-flight

submission has finished successfully by then, this will return more detailed information

about the earlier one. If the in-flight submission has failed by then, the resubmission will

attempt to record the new transaction on the ledger.

1.35.9.17 1.3.5. ParticipantErrorGroup / LedgerApiErrors / PackageServiceError

Errors raised by the Package Management Service on package uploads.

1404 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

DAR_NOT_SELF_CONSISTENT

Explanation: This error indicates that the uploaded Dar is broken because it is missing

internal dependencies.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message.

Resolution: Contact the supplier of the Dar.

DAR_VALIDATION_ERROR

Explanation: This error indicates that the validation of the uploaded dar failed.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message.

Resolution: Inspect the error message and contact support.

PACKAGE_SERVICE_INTERNAL_ERROR

Explanation: This error indicates an internal issue within the package service.

Category: SystemInternalAssumptionViolated

Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on

the API with grpc-status INTERNAL without any details for security reasons.

Resolution: Inspect the error message and contact support.

1.35.9.18 1.3.5.1. ParticipantErrorGroup / LedgerApiErrors / PackageServiceError / Reading

Package parsing errors raised during package upload.

DAR_PARSE_ERROR

Explanation: This error indicates that the content of the Dar file could not be parsed suc-

cessfully.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message.

Resolution: Inspect the error message and contact support.

1.35. Error Codes 1405

Daml SDK Documentation, 2.7.3

INVALID_DAR

Explanation: This error indicates that the supplied dar file was invalid.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message.

Resolution: Inspect the error message for details and contact support.

INVALID_DAR_FILE_NAME

Explanation: This error indicates that the supplied dar file name did not meet the re-

quirements to be stored in the persistence store.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message.

Resolution: Inspect error message for details and change the file name accordingly

INVALID_LEGACY_DAR

Explanation: This error indicates that the supplied zipped dar is an unsupported legacy

Dar.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message.

Resolution: Please use a more recent dar version.

INVALID_ZIP_ENTRY

Explanation: This error indicates that the supplied zipped dar file was invalid.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message.

Resolution: Inspect the error message for details and contact support.

1406 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

ZIP_BOMB

Explanation: This error indicates that the supplied zipped dar is regarded as zip-bomb.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message.

Resolution: Inspect the dar and contact support.

1.35.9.19 1.3.6. ParticipantErrorGroup / LedgerApiErrors / RequestValidation

Validation errors raised when evaluating requests in the Ledger API.

INVALID_ARGUMENT

Explanation: This error is emitted when a submitted ledger API command contains an

invalid argument.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message.

Resolution: Inspect the reason given and correct your application.

INVALID_DEDUPLICATION_PERIOD

Explanation: This error is emitted when a submitted ledger API command specifies an

invalid deduplication period.

Category: InvalidGivenCurrentSystemStateOther

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message.

Resolution: Inspect the error message, adjust the value of the deduplication period or

ask the participant operator to increase the maximum deduplication period.

INVALID_FIELD

Explanation: This error is emittedwhen a submitted ledger API command contains a field

value that cannot be understood.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message.

Resolution: Inspect the reason given and correct your application.

1.35. Error Codes 1407

Daml SDK Documentation, 2.7.3

LEDGER_ID_MISMATCH

Explanation: Every ledger API command contains a ledger-id which is verified against

the running ledger. This error indicates that the provided ledger-id does not match the

expected one.

Category: InvalidGivenCurrentSystemStateResourceMissing

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status NOT_FOUND including a detailed error message.

Resolution: Ensure that your application is correctly configured to use the correct ledger.

MISSING_FIELD

Explanation: This error is emittedwhen amandatory field is not set in a submitted ledger

API command.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message.

Resolution: Inspect the reason given and correct your application.

NON_HEXADECIMAL_OFFSET

Explanation: The supplied offset could not be converted to a binary offset.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message.

Resolution: Ensure the offset is specified as a hexadecimal string.

OFFSET_AFTER_LEDGER_END

Explanation: This rejection is given when a read request uses an offset beyond the cur-

rent ledger end.

Category: InvalidGivenCurrentSystemStateSeekAfterEnd

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status OUT_OF_RANGE including a detailed error message.

Resolution: Use an offset that is before the ledger end.

1408 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

OFFSET_OUT_OF_RANGE

Explanation: This rejection is given when a read request uses an offset invalid in the

requests’ context.

Category: InvalidGivenCurrentSystemStateOther

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message.

Resolution: Inspect the error message and use a valid offset.

PARTICIPANT_PRUNED_DATA_ACCESSED

Explanation: This rejection is given when a read request tries to access pruned data.

Category: InvalidGivenCurrentSystemStateOther

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message.

Resolution: Use an offset that is after the pruning offset.

1.35.9.20 1.3.6.1. ParticipantErrorGroup / LedgerApiErrors / RequestValidation / NotFound

LEDGER_CONFIGURATION_NOT_FOUND

Explanation: The ledger configuration could not be retrieved. This could happen due to

incomplete initialization of the participant or due to an internal system error.

Category: InvalidGivenCurrentSystemStateResourceMissing

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status NOT_FOUND including a detailed error message.

Resolution: Contact the participant operator.

PACKAGE_NOT_FOUND

Explanation: This rejection is given when a read request tries to access a package which

does not exist on the ledger.

Category: InvalidGivenCurrentSystemStateResourceMissing

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status NOT_FOUND including a detailed error message.

Resolution: Use a package id pertaining to a package existing on the ledger.

1.35. Error Codes 1409

Daml SDK Documentation, 2.7.3

TEMPLATES_OR_INTERFACES_NOT_FOUND

Explanation: The queried template or interface ids do not exist.

Category: InvalidGivenCurrentSystemStateResourceMissing

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status NOT_FOUND including a detailed error message.

Resolution: Use valid template or interface ids in your query or ask the participant oper-

ator to upload the package containing the necessary interfaces/templates.

TRANSACTION_NOT_FOUND

Explanation: The transaction does not exist or the requesting set of parties are not au-

thorized to fetch it.

Category: InvalidGivenCurrentSystemStateResourceMissing

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status NOT_FOUND including a detailed error message.

Resolution: Check the transaction id and verify that the requested transaction is visible

to the requesting parties.

1.35.9.21 1.3.7. ParticipantErrorGroup / LedgerApiErrors / WriteServiceRejections

Generic submission rejection errors returned by the backing ledger’s write service.

DISPUTED

Deprecation: Corresponds to transaction submission rejections that are not produced

anymore. Since: 1.18.0

Explanation: An invalid transaction submission was not detected by the participant.

Category: SystemInternalAssumptionViolated

Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on

the API with grpc-status INTERNAL without any details for security reasons.

Resolution: Contact support.

OUT_OF_QUOTA

Deprecation: Corresponds to transaction submission rejections that are not produced

anymore. Since: 1.18.0

Explanation: The Participant node did not have sufficient resource quota to submit the

transaction.

Category: ContentionOnSharedResources

1410 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status ABORTED including a detailed error message.

Resolution: Inspect the error message and retry after after correcting the underlying is-

sue.

PARTY_NOT_KNOWN_ON_LEDGER

Explanation: One or more informee parties have not been allocated.

Category: InvalidGivenCurrentSystemStateResourceMissing

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status NOT_FOUND including a detailed error message.

Resolution: Check that all the informee party identifiers are correct, allocate all the in-

formee parties, request their allocation or wait for them to be allocated before retrying

the transaction submission.

SUBMITTER_CANNOT_ACT_VIA_PARTICIPANT

Explanation: A submitting party is not authorized to act through the participant.

Category: InsufficientPermission

Conveyance: This error is logged with log-level WARN on the server side. It is exposed on

the API with grpc-status PERMISSION_DENIED without any details for security reasons.

Resolution: Contact the participant operator or re-submit with an authorized party.

SUBMITTING_PARTY_NOT_KNOWN_ON_LEDGER

Explanation: The submitting party has not been allocated.

Category: InvalidGivenCurrentSystemStateResourceMissing

Conveyance: This error is logged with log-level INFO on the server side and exposed on

the API with grpc-status NOT_FOUND including a detailed error message.

Resolution: Check that the party identifier is correct, allocate the submitting party, re-

quest its allocation or wait for it to be allocated before retrying the transaction submis-

sion.

1.35.9.22 1.3.7.1. ParticipantErrorGroup / LedgerApiErrors / WriteServiceRejections / Internal

Errors that arise from an internal systemmisbehavior.

1.35. Error Codes 1411

Daml SDK Documentation, 2.7.3

INTERNALLY_DUPLICATE_KEYS

Explanation: The participant didn’t detect an attempt by the transaction submission to

use the same key for two active contracts.

Category: SystemInternalAssumptionViolated

Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on

the API with grpc-status INTERNAL without any details for security reasons.

Resolution: Contact support.

INTERNALLY_INCONSISTENT_KEYS

Explanation: The participant didn’t detect an inconsistent key usage in the transaction.

Within the transaction, an exercise, fetch or lookupByKey failed because the mapping of

key -> contract ID was inconsistent with earlier actions.

Category: SystemInternalAssumptionViolated

Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on

the API with grpc-status INTERNAL without any details for security reasons.

Resolution: Contact support.

1.35.10 Error Codes Inventory - Canton

1.35.10.1 1. GrpcErrors

ABORTED_DUE_TO_SHUTDOWN

• Explanation: This error is returnedwhenprocessing of the requestwas aborted due to the node

shutting down.

• Resolution: Retry the request against an active and available node.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: ABORTED_DUE_TO_SHUTDOWN

1.35.10.2 2. ParticipantErrorGroup

1.35.10.3 2.1. Errors

ACS_COMMITMENT_INTERNAL_ERROR

• Explanation: This error indicates that there was an internal error within the ACS commitment

processing.

• Resolution: Inspect error message for details.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side.

• Scaladocs: ACS_COMMITMENT_INTERNAL_ERROR

1412 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/networking/grpc/CantonGrpcUtil\protect \TU\textdollar \protect \TU\textdollar GrpcErrors\protect \TU\textdollar \protect \TU\textdollar AbortedDueToShutdown\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/pruning/AcsCommitmentProcessor\protect \TU\textdollar \protect \TU\textdollar Errors\protect \TU\textdollar \protect \TU\textdollar InternalError\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

1.35.10.4 2.1.1. MismatchError

ACS_COMMITMENT_ALARM

• Explanation: The participant has detected that another node is behaving maliciously.

• Resolution: Contact support.

• Category: SecurityAlert

• Conveyance: This error is logged with log-level WARN on the server side. It is exposed on the

API with grpc-status INVALID_ARGUMENT without any details for security reasons.

• Scaladocs: ACS_COMMITMENT_ALARM

ACS_COMMITMENT_MISMATCH

• Explanation: This error indicates that a remote participant has sent a commitment over an

ACS for a period which does not match the local commitment. This error occurs if a remote

participant hasmanually changed contracts using repair, or due to byzantine behavior, or due

to malfunction of the system. The consequence is that the ledger is forked, and some com-

mands that should pass will not.

• Resolution: Please contact the other participant in order to check the cause of the mismatch.

Either repair the store of this participant or of the counterparty.

• Category: SecurityAlert

• Conveyance: This error is logged with log-level WARN on the server side. It is exposed on the

API with grpc-status INVALID_ARGUMENT without any details for security reasons.

• Scaladocs: ACS_COMMITMENT_MISMATCH

ACS_MISMATCH_NO_SHARED_CONTRACTS

• Explanation: This error indicates that a remote participant has sent a commitment over an

ACS for a period, while this participant does not think that there is a shared contract state.

This error occurs if a remote participant has manually changed contracts using repair, or due

to byzantine behavior, or due tomalfunction of the system. The consequence is that the ledger

is forked, and some commands that should pass will not.

• Resolution: Please contact the other participant in order to check the cause of the mismatch.

Either repair the store of this participant or of the counterparty.

• Category: SecurityAlert

• Conveyance: This error is logged with log-level WARN on the server side. It is exposed on the

API with grpc-status INVALID_ARGUMENT without any details for security reasons.

• Scaladocs: ACS_MISMATCH_NO_SHARED_CONTRACTS

1.35.10.5 2.2. LedgerApiErrors

HEAP_MEMORY_OVER_LIMIT

• Explanation: This error happens when the JVM heap memory pool exceeds a pre-configured

limit.

• Resolution: The following actions can be taken: 1. Review the historical use of heap space by

inspecting themetric given in themessage. 2. Review the current heap space limits configured

1.35. Error Codes 1413

../../canton/scaladoc/com/digitalasset/canton/participant/pruning/AcsCommitmentProcessor\protect \TU\textdollar \protect \TU\textdollar Errors\protect \TU\textdollar \protect \TU\textdollar MismatchError\protect \TU\textdollar \protect \TU\textdollar AcsCommitmentAlarm\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/pruning/AcsCommitmentProcessor\protect \TU\textdollar \protect \TU\textdollar Errors\protect \TU\textdollar \protect \TU\textdollar MismatchError\protect \TU\textdollar \protect \TU\textdollar CommitmentsMismatch\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/pruning/AcsCommitmentProcessor\protect \TU\textdollar \protect \TU\textdollar Errors\protect \TU\textdollar \protect \TU\textdollar MismatchError\protect \TU\textdollar \protect \TU\textdollar NoSharedContracts\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

in the rate limiting configuration. 3. Try to space out requests that are likely to require a large

amount of memory to process.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status ABORTED including a detailed error message.

• Scaladocs: HEAP_MEMORY_OVER_LIMIT

LEDGER_API_INTERNAL_ERROR

• Explanation: This error occurs if there was an unexpected error in the Ledger API.

• Resolution: Contact support.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on the

API with grpc-status INTERNAL without any details for security reasons.

• Scaladocs: LEDGER_API_INTERNAL_ERROR

MAXIMUM_NUMBER_OF_STREAMS

• Explanation: This error happens when the number of concurrent gRPC streaming requests

exceeds the configured limit.

• Resolution: The following actions can be taken: 1. Review the historical need for concurrent

streaming by inspecting the metric given in the message. 2. Review the maximum streams

limit configured in the rate limiting configuration. 3. Try to space out streaming requests such

that they do not need to run in parallel with each other.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status ABORTED including a detailed error message.

• Scaladocs: MAXIMUM_NUMBER_OF_STREAMS

PARTICIPANT_BACKPRESSURE

• Explanation: This error occurs when a participant rejects a command due to excessive load.

Load can be caused by the following factors: 1. when commands are submitted to the partici-

pant through its Ledger API, 2. when the participant receives requests from other participants

through a connected domain.

• Resolution: Wait a bit and retry, preferably with some backoff factor. If possible, ask other

participants to send fewer requests; the domain operator can enforce this by imposing a rate

limit.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status ABORTED including a detailed error message.

• Scaladocs: PARTICIPANT_BACKPRESSURE

1414 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/ledger/error/LedgerApiErrors\protect \TU\textdollar \protect \TU\textdollar HeapMemoryOverLimit\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/LedgerApiErrors\protect \TU\textdollar \protect \TU\textdollar InternalError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/LedgerApiErrors\protect \TU\textdollar \protect \TU\textdollar MaximumNumberOfStreams\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/LedgerApiErrors\protect \TU\textdollar \protect \TU\textdollar ParticipantBackpressure\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

THREADPOOL_OVERLOADED

• Explanation: This happens when the rate of submitted gRPC requests requires more CPU or

database power than is available.

• Resolution: The following actions can be taken: Here the ‘queue size’ for the threadpool is con-

sideredas reportedby the executor itself. 1. Review thehistorical ‘queue size’ growthby inspect-

ing the metric given in the message. 2. Review the maximum ‘queue size’ limits configured in

the rate limiting configuration. 3. Try to space out requests that are likely to require a lot of

CPU or database power.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status ABORTED including a detailed error message.

• Scaladocs: THREADPOOL_OVERLOADED

1.35.10.6 2.2.1. CommandExecution

FAILED_TO_DETERMINE_LEDGER_TIME

• Explanation: This error occurs if the participant fails to determine the max ledger time of the

used contracts. Most likely, this means that one of the contracts is not active anymore which

can happen under contention. It can also happen with contract keys.

• Resolution: Retry the transaction submission.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status ABORTED including a detailed error message.

• Scaladocs: FAILED_TO_DETERMINE_LEDGER_TIME

1.35.10.7 2.2.1.1. Package

ALLOWED_LANGUAGE_VERSIONS

• Explanation: This error indicates that the uploaded DAR is based on an unsupported language

version.

• Resolution: Use a DAR compiled with a language version that this participant supports.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: ALLOWED_LANGUAGE_VERSIONS

1.35. Error Codes 1415

../../canton/scaladoc/com/digitalasset/canton/ledger/error/LedgerApiErrors\protect \TU\textdollar \protect \TU\textdollar ThreadpoolOverloaded\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/CommandExecution\protect \TU\textdollar \protect \TU\textdollar FailedToDetermineLedgerTime\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/CommandExecution\protect \TU\textdollar \protect \TU\textdollar Package\protect \TU\textdollar \protect \TU\textdollar AllowedLanguageVersions\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

PACKAGE_VALIDATION_FAILED

• Explanation: This error occurs if a package referred to by a command fails validation. This

should not happen as packages are validated when being uploaded.

• Resolution: Contact support.

• Category: SecurityAlert

• Conveyance: This error is logged with log-level WARN on the server side. It is exposed on the

API with grpc-status INVALID_ARGUMENT without any details for security reasons.

• Scaladocs: PACKAGE_VALIDATION_FAILED

1.35.10.8 2.2.1.2. Preprocessing

COMMAND_PREPROCESSING_FAILED

• Explanation: This error occurs if a command fails during interpreter pre-processing.

• Resolution: Inspect error details and correct your application.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: COMMAND_PREPROCESSING_FAILED

1.35.10.9 2.2.1.3. Interpreter

CONTRACT_DOES_NOT_IMPLEMENT_INTERFACE

• Explanation: This error occurs when you try to coerce/use a contract via an interface that it

does not implement.

• Resolution: Ensure the contract you are calling does implement the interface you are using to

do so. Avoid writing LF/low-level interface implementation classes manually.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: CONTRACT_DOES_NOT_IMPLEMENT_INTERFACE

CONTRACT_DOES_NOT_IMPLEMENT_REQUIRING_INTERFACE

• Explanation: This error occurs when you try to create/use a contract that does not implement

the requiring interfaces of some other interface that it does implement.

• Resolution: Ensure you implement all required interfaces correctly, and avoid writing

LF/low-level interface implementation classes manually.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: CONTRACT_DOES_NOT_IMPLEMENT_REQUIRING_INTERFACE

1416 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/CommandExecution\protect \TU\textdollar \protect \TU\textdollar Package\protect \TU\textdollar \protect \TU\textdollar PackageValidationFailed\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/CommandExecution\protect \TU\textdollar \protect \TU\textdollar Preprocessing\protect \TU\textdollar \protect \TU\textdollar PreprocessingFailed\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/CommandExecution\protect \TU\textdollar \protect \TU\textdollar Interpreter\protect \TU\textdollar \protect \TU\textdollar ContractDoesNotImplementInterface\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/CommandExecution\protect \TU\textdollar \protect \TU\textdollar Interpreter\protect \TU\textdollar \protect \TU\textdollar ContractDoesNotImplementRequiringInterface\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

CONTRACT_ID_COMPARABILITY

• Explanation: This error occurs when you attempt to compare a global and local contract ID of

the same discriminator.

• Resolution: Avoid constructing contract IDs manually.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: CONTRACT_ID_COMPARABILITY

CONTRACT_ID_IN_CONTRACT_KEY

• Explanation: This error occurs when a contract key contains a contract ID, which is illegal for

hashing reasons.

• Resolution: Ensure your contracts key field cannot contain a contract ID.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: CONTRACT_ID_IN_CONTRACT_KEY

CONTRACT_NOT_ACTIVE

• Explanation: This error occurs if an exercise or fetch happens on a transaction-locally con-

sumed contract.

• Resolution: This error indicates an application error.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status NOT_FOUND including a detailed error message.

• Scaladocs: CONTRACT_NOT_ACTIVE

CREATE_EMPTY_CONTRACT_KEY_MAINTAINERS

• Explanation: This error occurs when you try to create a contract that has a key, but with empty

maintainers.

• Resolution: Check the definition of the contract key’s maintainers, and ensure this list won’t

be empty given your creation arguments.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: CREATE_EMPTY_CONTRACT_KEY_MAINTAINERS

1.35. Error Codes 1417

../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/CommandExecution\protect \TU\textdollar \protect \TU\textdollar Interpreter\protect \TU\textdollar \protect \TU\textdollar ContractIdComparability\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/CommandExecution\protect \TU\textdollar \protect \TU\textdollar Interpreter\protect \TU\textdollar \protect \TU\textdollar ContractIdInContractKey\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/CommandExecution\protect \TU\textdollar \protect \TU\textdollar Interpreter\protect \TU\textdollar \protect \TU\textdollar ContractNotActive\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/CommandExecution\protect \TU\textdollar \protect \TU\textdollar Interpreter\protect \TU\textdollar \protect \TU\textdollar CreateEmptyContractKeyMaintainers\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

DAML_AUTHORIZATION_ERROR

• Explanation: This error occurs if a Daml transaction fails due to an authorization error. An au-

thorization means that the Daml transaction computed a different set of required submitters

than you have provided during the submission as actAs parties.

• Resolution: This error type occurs if there is an application error.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: DAML_AUTHORIZATION_ERROR

DAML_INTERPRETATION_ERROR

• Explanation: This error occurs if a Daml transaction fails during interpretation.

• Resolution: This error type occurs if there is an application error.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: DAML_INTERPRETATION_ERROR

DAML_INTERPRETER_INVALID_ARGUMENT

• Explanation: This error occurs if a Daml transaction fails during interpretation due to an in-

valid argument.

• Resolution: This error type occurs if there is an application error.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: DAML_INTERPRETER_INVALID_ARGUMENT

DISCLOSED_CONTRACT_KEY_HASHING_ERROR

• Explanation: This error occurs if a user attempts to provide a key hash for a disclosed contract

which we have already cached to be different.

• Resolution: Ensure the contract ID and contract payload you have provided in your disclosed

contract is correct.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: DISCLOSED_CONTRACT_KEY_HASHING_ERROR

1418 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/CommandExecution\protect \TU\textdollar \protect \TU\textdollar Interpreter\protect \TU\textdollar \protect \TU\textdollar AuthorizationError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/CommandExecution\protect \TU\textdollar \protect \TU\textdollar Interpreter\protect \TU\textdollar \protect \TU\textdollar GenericInterpretationError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/CommandExecution\protect \TU\textdollar \protect \TU\textdollar Interpreter\protect \TU\textdollar \protect \TU\textdollar InvalidArgumentInterpretationError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/CommandExecution\protect \TU\textdollar \protect \TU\textdollar Interpreter\protect \TU\textdollar \protect \TU\textdollar DisclosedContractKeyHashingError\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

FETCH_EMPTY_CONTRACT_KEY_MAINTAINERS

• Explanation: This error occurs when you try to fetch a contract by key, but that key would have

empty maintainers.

• Resolution: Check the definition of the contract key’s maintainers, and ensure this list won’t

be empty given the contract key you are fetching.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: FETCH_EMPTY_CONTRACT_KEY_MAINTAINERS

INTERPRETATION_DEV_ERROR

• Explanation: This error is a catch-all for errors thrown by in-development features, and should

never be thrown in production.

• Resolution: See the error message for details of the specific in-development feature error. If

this is production, avoid using development features.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: INTERPRETATION_DEV_ERROR

INTERPRETATION_USER_ERROR

• Explanation: This error occurs when a user calls abort or error on an LF version before native

exceptions were introduced.

• Resolution: Either remove the call to abort, error or perhaps assert, or ensure you are exercising

your contract choice as the author expects.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: INTERPRETATION_USER_ERROR

NON_COMPARABLE_VALUES

• Explanation: This error occurs when you attempt to compare two values of different types

using the built-in comparison types.

• Resolution: Avoid using the low level comparison build, and instead use the Eq class.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: NON_COMPARABLE_VALUES

1.35. Error Codes 1419

../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/CommandExecution\protect \TU\textdollar \protect \TU\textdollar Interpreter\protect \TU\textdollar \protect \TU\textdollar FetchEmptyContractKeyMaintainers\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/CommandExecution\protect \TU\textdollar \protect \TU\textdollar Interpreter\protect \TU\textdollar \protect \TU\textdollar InterpretationDevError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/CommandExecution\protect \TU\textdollar \protect \TU\textdollar Interpreter\protect \TU\textdollar \protect \TU\textdollar InterpretationUserError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/CommandExecution\protect \TU\textdollar \protect \TU\textdollar Interpreter\protect \TU\textdollar \protect \TU\textdollar NonComparableValues\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

TEMPLATE_PRECONDITION_VIOLATED

• Explanation: This error occurs when a contract’s pre-condition (the ensure clause) is violated

on contract creation.

• Resolution: Ensure the contract argument you are passing into your create doesn’t violate the

conditions of the contract.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: TEMPLATE_PRECONDITION_VIOLATED

UNHANDLED_EXCEPTION

• Explanation: This error occurswhen a user throws an error and does not catch it with try-catch.

• Resolution: Either your error handling in a choice body is insufficient, or you are using a con-

tract incorrectly.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: UNHANDLED_EXCEPTION

WRONGLY_TYPED_CONTRACT

• Explanation: This error occurswhen you try to fetch/use a contract in somewaywith a contract

ID that doesn’t match the template type on the ledger.

• Resolution: Ensure the contract IDs you are using are of the type we expect on the ledger. Avoid

unsafely coercing contract IDs.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: WRONGLY_TYPED_CONTRACT

1.35.10.10 2.2.1.3.1. LookupErrors

CONTRACT_KEY_NOT_FOUND

• Explanation: This error occurs if the Daml engine interpreter cannot resolve a contract key to

an active contract. This can be caused by either the contract key not being known to the par-

ticipant, or not being known to the submitting parties or the contract representing an already

archived key.

• Resolution: This error type occurs if there is contention on a contract.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status NOT_FOUND including a detailed error message.

• Scaladocs: CONTRACT_KEY_NOT_FOUND

1420 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/CommandExecution\protect \TU\textdollar \protect \TU\textdollar Interpreter\protect \TU\textdollar \protect \TU\textdollar TemplatePreconditionViolated\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/CommandExecution\protect \TU\textdollar \protect \TU\textdollar Interpreter\protect \TU\textdollar \protect \TU\textdollar UnhandledException\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/CommandExecution\protect \TU\textdollar \protect \TU\textdollar Interpreter\protect \TU\textdollar \protect \TU\textdollar WronglyTypedContract\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/CommandExecution\protect \TU\textdollar \protect \TU\textdollar Interpreter\protect \TU\textdollar \protect \TU\textdollar LookupErrors\protect \TU\textdollar \protect \TU\textdollar ContractKeyNotFound\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

1.35.10.11 2.2.2. AdminServices

CONFIGURATION_ENTRY_REJECTED

• Explanation: This rejection is given when a new configuration is rejected.

• Resolution: Fetch newest configuration and/or retry.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: CONFIGURATION_ENTRY_REJECTED

INTERNALLY_INVALID_KEY

• Explanation: A cryptographic key used by the configured system is not valid

• Resolution: Contact support.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on the

API with grpc-status INTERNAL without any details for security reasons.

• Scaladocs: INTERNALLY_INVALID_KEY

PACKAGE_UPLOAD_REJECTED

• Explanation: This rejection is given when a package upload is rejected.

• Resolution: Refer to the detailed message of the received error.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: PACKAGE_UPLOAD_REJECTED

1.35.10.12 2.2.2.1. PartyManagementServiceErrorGroup

CONCURRENT_PARTY_DETAILS_UPDATE_DETECTED

• Explanation: Concurrent updates to a party can be controlled by supplying an update request

with a resource version (this is optional). A party’s resource version can be obtained by reading

the party on the Ledger API. There was attempt to update a party using a stale resource version,

indicating that a different process had updated the party earlier.

• Resolution: Read this party again to obtain its most recent state and in particular its most

recent resource version. Use the obtained information to build and send a new update request.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status ABORTED including a detailed error message.

• Scaladocs: CONCURRENT_PARTY_DETAILS_UPDATE_DETECTED

1.35. Error Codes 1421

../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/AdminServices\protect \TU\textdollar \protect \TU\textdollar ConfigurationEntryRejected\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/AdminServices\protect \TU\textdollar \protect \TU\textdollar InternallyInvalidKey\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/AdminServices\protect \TU\textdollar \protect \TU\textdollar PackageUploadRejected\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/PartyManagementServiceErrorGroup\protect \TU\textdollar \protect \TU\textdollar ConcurrentPartyDetailsUpdateDetected\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

INTERNAL_PARTY_RECORD_ALREADY_EXISTS

• Explanation: Each on-ledger party known to this participant node can have a participant’s

local metadata assigned to it. The local information about a party referred to by this request

was found when it should have been not found.

• Resolution: This error can indicate a problem with the server’s storage or implementation.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on the

API with grpc-status INTERNAL without any details for security reasons.

• Scaladocs: INTERNAL_PARTY_RECORD_ALREADY_EXISTS

INTERNAL_PARTY_RECORD_NOT_FOUND

• Explanation: Each on-ledger party known to this participant node can have a participant’s

local metadata assigned to it. The local information about a party referred to by this request

was not found when it should have been found.

• Resolution: This error can indicate a problem with the server’s storage or implementation.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on the

API with grpc-status INTERNAL without any details for security reasons.

• Scaladocs: INTERNAL_PARTY_RECORD_NOT_FOUND

INVALID_PARTY_DETAILS_UPDATE_REQUEST

• Explanation: There was an attempt to update a party using an invalid update request.

• Resolution: Inspect the error details for specific information onwhatmade the request invalid.

Retry with an adjusted update request.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: INVALID_PARTY_DETAILS_UPDATE_REQUEST

MAX_PARTY_DETAILS_ANNOTATIONS_SIZE_EXCEEDED

• Explanation: A party canhaveatmost 256kbworthof annotations in totalmeasured innumber

of bytes in UTF-8 encoding. There was an attempt to allocate or update a party such that this

limit would have been exceeded.

• Resolution: Retry with fewer annotations or delete some of the party’s existing annotations.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: MAX_PARTY_DETAILS_ANNOTATIONS_SIZE_EXCEEDED

1422 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/PartyManagementServiceErrorGroup\protect \TU\textdollar \protect \TU\textdollar InternalPartyRecordAlreadyExists\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/PartyManagementServiceErrorGroup\protect \TU\textdollar \protect \TU\textdollar InternalPartyRecordNotFound\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/PartyManagementServiceErrorGroup\protect \TU\textdollar \protect \TU\textdollar InvalidUpdatePartyDetailsRequest\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/PartyManagementServiceErrorGroup\protect \TU\textdollar \protect \TU\textdollar MaxPartyAnnotationsSizeExceeded\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

PARTY_NOT_FOUND

• Explanation: The party referred to by the request was not found.

• Resolution: Check that you are connecting to the right participant node and that the party is

spelled correctly.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status NOT_FOUND including a detailed error message.

• Scaladocs: PARTY_NOT_FOUND

1.35.10.13 2.2.2.2. UserManagementServiceErrorGroup

CONCURRENT_USER_UPDATE_DETECTED

• Explanation: Concurrent updates to a user can be controlled by supplying an update request

with a resource version (this is optional). A user’s resource version can be obtained by reading

the user on the Ledger API. There was attempt to update a user using a stale resource version,

indicating that a different process had updated the user earlier.

• Resolution: Read this user again to obtain its most recent state and in particular its most

recent resource version. Use the obtained information to build and send a new update request.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status ABORTED including a detailed error message.

• Scaladocs: CONCURRENT_USER_UPDATE_DETECTED

INVALID_USER_UPDATE_REQUEST

• Explanation: There was an attempt to update a user using an invalid update request.

• Resolution: Inspect the error details for specific information onwhatmade the request invalid.

Retry with an adjusted update request.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: INVALID_USER_UPDATE_REQUEST

MAX_USER_ANNOTATIONS_SIZE_EXCEEDED

• Explanation: A user can have atmost 256kbworth of annotations in totalmeasured in number

of bytes in UTF-8 encoding. There was an attempt to create or update a user such that this limit

would have been exceeded.

• Resolution: Retry with fewer annotations or delete some of the user’s existing annotations.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: MAX_USER_ANNOTATIONS_SIZE_EXCEEDED

1.35. Error Codes 1423

../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/PartyManagementServiceErrorGroup\protect \TU\textdollar \protect \TU\textdollar PartyNotFound\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/UserManagementServiceErrorGroup\protect \TU\textdollar \protect \TU\textdollar ConcurrentUserUpdateDetected\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/UserManagementServiceErrorGroup\protect \TU\textdollar \protect \TU\textdollar InvalidUpdateUserRequest\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/UserManagementServiceErrorGroup\protect \TU\textdollar \protect \TU\textdollar MaxUserAnnotationsSizeExceeded\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

TOO_MANY_USER_RIGHTS

• Explanation: A user can have only a limited number of user rights. There was an attempt to

create a user with too many rights or grant too many rights to a user.

• Resolution: Retry with a smaller number of rights or delete some of the already existing rights

of this user. Contact the participant operator if the limit is too low.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: TOO_MANY_USER_RIGHTS

USER_ALREADY_EXISTS

• Explanation: There already exists a user with the same user-id.

• Resolution: Check that you are connecting to the right participant node and the user-id is

spelled correctly, or use the user that already exists.

• Category: InvalidGivenCurrentSystemStateResourceExists

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status ALREADY_EXISTS including a detailed error message.

• Scaladocs: USER_ALREADY_EXISTS

USER_NOT_FOUND

• Explanation: The user referred to by the request was not found.

• Resolution: Check that you are connecting to the right participant node and the user-id is

spelled correctly, if yes, create the user.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status NOT_FOUND including a detailed error message.

• Scaladocs: USER_NOT_FOUND

1.35.10.14 2.2.2.3. IdentityProviderConfigServiceErrorGroup

IDP_CONFIG_ALREADY_EXISTS

• Explanation: There already exists an identity provider configuration with the same identity

provider id.

• Resolution: Check that you are connecting to the right participant node and the identity

provider id is spelled correctly, or use an identity provider that already exists.

• Category: InvalidGivenCurrentSystemStateResourceExists

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status ALREADY_EXISTS including a detailed error message.

• Scaladocs: IDP_CONFIG_ALREADY_EXISTS

1424 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/UserManagementServiceErrorGroup\protect \TU\textdollar \protect \TU\textdollar TooManyUserRights\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/UserManagementServiceErrorGroup\protect \TU\textdollar \protect \TU\textdollar UserAlreadyExists\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/UserManagementServiceErrorGroup\protect \TU\textdollar \protect \TU\textdollar UserNotFound\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/IdentityProviderConfigServiceErrorGroup\protect \TU\textdollar \protect \TU\textdollar IdentityProviderConfigAlreadyExists\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

IDP_CONFIG_BY_ISSUER_NOT_FOUND

• Explanation: The identity provider config referred to by the request was not found.

• Resolution: Check that you are connecting to the right participant node and the identity

provider config is spelled correctly, or create the configuration.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status NOT_FOUND including a detailed error message.

• Scaladocs: IDP_CONFIG_BY_ISSUER_NOT_FOUND

IDP_CONFIG_ISSUER_ALREADY_EXISTS

• Explanation: There already exists an identity provider configuration with the same issuer.

• Resolution: Check that you are connecting to the right participant node and the identity

provider id is spelled correctly, or use an identity provider that already exists.

• Category: InvalidGivenCurrentSystemStateResourceExists

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status ALREADY_EXISTS including a detailed error message.

• Scaladocs: IDP_CONFIG_ISSUER_ALREADY_EXISTS

IDP_CONFIG_NOT_FOUND

• Explanation: The identity provider config referred to by the request was not found.

• Resolution: Check that you are connecting to the right participant node and the identity

provider config is spelled correctly, or create the configuration.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status NOT_FOUND including a detailed error message.

• Scaladocs: IDP_CONFIG_NOT_FOUND

INVALID_IDENTITY_PROVIDER_UPDATE_REQUEST

• Explanation: There was an attempt to update an identity provider config using an invalid up-

date request.

• Resolution: Inspect the error details for specific information onwhatmade the request invalid.

Retry with an adjusted update request.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: INVALID_IDENTITY_PROVIDER_UPDATE_REQUEST

1.35. Error Codes 1425

../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/IdentityProviderConfigServiceErrorGroup\protect \TU\textdollar \protect \TU\textdollar IdentityProviderConfigByIssuerNotFound\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/IdentityProviderConfigServiceErrorGroup\protect \TU\textdollar \protect \TU\textdollar IdentityProviderConfigIssuerAlreadyExists\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/IdentityProviderConfigServiceErrorGroup\protect \TU\textdollar \protect \TU\textdollar IdentityProviderConfigNotFound\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/IdentityProviderConfigServiceErrorGroup\protect \TU\textdollar \protect \TU\textdollar InvalidUpdateIdentityProviderConfigRequest\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

TOO_MANY_IDENTITY_PROVIDER_CONFIGS

• Explanation: A system can have only a limited number of identity provider configurations.

There was an attempt to create an identity provider configuration.

• Resolution: Delete some of the already existing identity provider configurations. Contact the

participant operator if the limit is too low.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: TOO_MANY_IDENTITY_PROVIDER_CONFIGS

1.35.10.15 2.2.3. ConsistencyErrors

CONTRACT_NOT_FOUND

• Explanation: This error occurs if the Daml engine can not find a referenced contract. This can

be caused by either the contract not being known to the participant, or not being known to the

submitting parties or already being archived.

• Resolution: This error type occurs if there is contention on a contract.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status NOT_FOUND including a detailed error message.

• Scaladocs: CONTRACT_NOT_FOUND

DISCLOSED_CONTRACT_INVALID

• Explanation: This error occurs if the disclosed payload or metadata of one of the contracts

does not match the actual payload or metadata of the contract.

• Resolution: Re-submit the command using valid disclosed contract payload and metadata.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: DISCLOSED_CONTRACT_INVALID

DUPLICATE_COMMAND

• Explanation: A commandwith the given command idhas already been successfully processed.

• Resolution: The correct resolution depends on the use case. If the error received pertains to a

submission retried due to a timeout, do nothing, as the previous command has already been

accepted. If the intent is to submit a new command, re-submit using a distinct command id.

• Category: InvalidGivenCurrentSystemStateResourceExists

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status ALREADY_EXISTS including a detailed error message.

• Scaladocs: DUPLICATE_COMMAND

1426 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/IdentityProviderConfigServiceErrorGroup\protect \TU\textdollar \protect \TU\textdollar TooManyIdentityProviderConfigs\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/ConsistencyErrors\protect \TU\textdollar \protect \TU\textdollar ContractNotFound\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/ConsistencyErrors\protect \TU\textdollar \protect \TU\textdollar DisclosedContractInvalid\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/ConsistencyErrors\protect \TU\textdollar \protect \TU\textdollar DuplicateCommand\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

DUPLICATE_CONTRACT_KEY

• Explanation: This error signals that within the transaction we got to a point where two con-

tracts with the same key were active.

• Resolution: This error indicates an application error.

• Category: InvalidGivenCurrentSystemStateResourceExists

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status ALREADY_EXISTS including a detailed error message.

• Scaladocs: DUPLICATE_CONTRACT_KEY

INCONSISTENT

• Explanation: At least one input has been altered by a concurrent transaction submission.

• Resolution: The correct resolution depends on the business flow, for example it may be possi-

ble to proceed without an archived contract as an input, or the transaction submissionmay be

retried to load the up-to-date value of a contract key.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: INCONSISTENT

INCONSISTENT_CONTRACTS

• Explanation: An input contract has been archived by a concurrent transaction submission.

• Resolution: The correct resolution depends on the business flow, for example it may be possi-

ble to proceed without the archived contract as an input, or a different contract could be used.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: INCONSISTENT_CONTRACTS

INCONSISTENT_CONTRACT_KEY

• Explanation: An input contract key was re-assigned to a different contract by a concurrent

transaction submission.

• Resolution: Retry the transaction submission.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: INCONSISTENT_CONTRACT_KEY

1.35. Error Codes 1427

../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/ConsistencyErrors\protect \TU\textdollar \protect \TU\textdollar DuplicateContractKey\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/ConsistencyErrors\protect \TU\textdollar \protect \TU\textdollar Inconsistent\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/ConsistencyErrors\protect \TU\textdollar \protect \TU\textdollar InconsistentContracts\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/ConsistencyErrors\protect \TU\textdollar \protect \TU\textdollar InconsistentContractKey\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

INVALID_LEDGER_TIME

• Explanation: The ledger time of the submission violated some constraint on the ledger time.

• Resolution: Retry the transaction submission.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: INVALID_LEDGER_TIME

SUBMISSION_ALREADY_IN_FLIGHT

• Explanation: Another command submission with the same change ID (application ID, com-

mand ID, actAs) is already being processed.

• Resolution: Listen to the command completion streamuntil a completion for the in-flight com-

mand submission is published. Alternatively, resubmit the command. If the in-flight submis-

sion has finished successfully by then, this will return more detailed information about the

earlier one. If the in-flight submission has failed by then, the resubmission will attempt to

record the new transaction on the ledger.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status ABORTED including a detailed error message.

• Scaladocs: SUBMISSION_ALREADY_IN_FLIGHT

1.35.10.16 2.2.4. PackageServiceError

DAR_NOT_SELF_CONSISTENT

• Explanation: This error indicates that theuploadedDar is brokenbecause it ismissing internal

dependencies.

• Resolution: Contact the supplier of the Dar.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: DAR_NOT_SELF_CONSISTENT

DAR_VALIDATION_ERROR

• Explanation: This error indicates that the validation of the uploaded dar failed.

• Resolution: Inspect the error message and contact support.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: DAR_VALIDATION_ERROR

1428 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/ConsistencyErrors\protect \TU\textdollar \protect \TU\textdollar InvalidLedgerTime\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/ConsistencyErrors\protect \TU\textdollar \protect \TU\textdollar SubmissionAlreadyInFlight\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/PackageServiceError\protect \TU\textdollar \protect \TU\textdollar Validation\protect \TU\textdollar \protect \TU\textdollar SelfConsistency\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/PackageServiceError\protect \TU\textdollar \protect \TU\textdollar Validation\protect \TU\textdollar \protect \TU\textdollar ValidationError\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

PACKAGE_SERVICE_INTERNAL_ERROR

• Explanation: This error indicates an internal issue within the package service.

• Resolution: Inspect the error message and contact support.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on the

API with grpc-status INTERNAL without any details for security reasons.

• Scaladocs: PACKAGE_SERVICE_INTERNAL_ERROR

SHUTDOWN_INTERRUPTED_PACKAGE_VETTING

• Explanation: Package vetting has been aborted because the participant is shutting down.

• Resolution: Re-submit the vetting request when the participant node is available again.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: SHUTDOWN_INTERRUPTED_PACKAGE_VETTING

1.35.10.17 2.2.4.1. Reading

DAR_PARSE_ERROR

• Explanation: This error indicates that the content of the Dar file could not be parsed success-

fully.

• Resolution: Inspect the error message and contact support.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: DAR_PARSE_ERROR

1.35. Error Codes 1429

../../canton/scaladoc/com/digitalasset/canton/ledger/error/PackageServiceError\protect \TU\textdollar \protect \TU\textdollar InternalError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/PackageServiceError\protect \TU\textdollar \protect \TU\textdollar ParticipantShuttingDown\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/PackageServiceError\protect \TU\textdollar \protect \TU\textdollar Reading\protect \TU\textdollar \protect \TU\textdollar ParseError\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

INVALID_DAR

• Explanation: This error indicates that the supplied dar file was invalid.

• Resolution: Inspect the error message for details and contact support.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: INVALID_DAR

INVALID_DAR_FILE_NAME

• Explanation: This error indicates that the supplied dar file name did not meet the require-

ments to be stored in the persistence store.

• Resolution: Inspect error message for details and change the file name accordingly

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: INVALID_DAR_FILE_NAME

INVALID_LEGACY_DAR

• Explanation: This error indicates that the supplied zipped dar is an unsupported legacy Dar.

• Resolution: Please use a more recent dar version.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: INVALID_LEGACY_DAR

INVALID_ZIP_ENTRY

• Explanation: This error indicates that the supplied zipped dar file was invalid.

• Resolution: Inspect the error message for details and contact support.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: INVALID_ZIP_ENTRY

ZIP_BOMB

• Explanation: This error indicates that the supplied zipped dar is regarded as zip-bomb.

• Resolution: Inspect the dar and contact support.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: ZIP_BOMB

1430 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/ledger/error/PackageServiceError\protect \TU\textdollar \protect \TU\textdollar Reading\protect \TU\textdollar \protect \TU\textdollar InvalidDar\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/PackageServiceError\protect \TU\textdollar \protect \TU\textdollar Reading\protect \TU\textdollar \protect \TU\textdollar InvalidDarFileName\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/PackageServiceError\protect \TU\textdollar \protect \TU\textdollar Reading\protect \TU\textdollar \protect \TU\textdollar InvalidLegacyDar\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/PackageServiceError\protect \TU\textdollar \protect \TU\textdollar Reading\protect \TU\textdollar \protect \TU\textdollar InvalidZipEntry\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/PackageServiceError\protect \TU\textdollar \protect \TU\textdollar Reading\protect \TU\textdollar \protect \TU\textdollar ZipBomb\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

1.35.10.18 2.2.5. WriteServiceRejections

DISPUTED

• Explanation: An invalid transaction submission was not detected by the participant.

• Resolution: Contact support.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on the

API with grpc-status INTERNAL without any details for security reasons.

• Scaladocs: DISPUTED

OUT_OF_QUOTA

• Explanation: The Participant node did not have sufficient resource quota to submit the trans-

action.

• Resolution: Inspect the error message and retry after after correcting the underlying issue.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status ABORTED including a detailed error message.

• Scaladocs: OUT_OF_QUOTA

PARTY_NOT_KNOWN_ON_LEDGER

• Explanation: One or more informee parties have not been allocated.

• Resolution: Check that all the informee party identifiers are correct, allocate all the informee

parties, request their allocation or wait for them to be allocated before retrying the transaction

submission.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status NOT_FOUND including a detailed error message.

• Scaladocs: PARTY_NOT_KNOWN_ON_LEDGER

SUBMITTER_CANNOT_ACT_VIA_PARTICIPANT

• Explanation: A submitting party is not authorized to act through the participant.

• Resolution: Contact the participant operator or re-submit with an authorized party.

• Category: InsufficientPermission

• Conveyance: This error is logged with log-level WARN on the server side. It is exposed on the

API with grpc-status PERMISSION_DENIED without any details for security reasons.

• Scaladocs: SUBMITTER_CANNOT_ACT_VIA_PARTICIPANT

1.35. Error Codes 1431

../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/WriteServiceRejections\protect \TU\textdollar \protect \TU\textdollar Disputed\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/WriteServiceRejections\protect \TU\textdollar \protect \TU\textdollar OutOfQuota\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/WriteServiceRejections\protect \TU\textdollar \protect \TU\textdollar PartyNotKnownOnLedger\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/WriteServiceRejections\protect \TU\textdollar \protect \TU\textdollar SubmitterCannotActViaParticipant\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

SUBMITTING_PARTY_NOT_KNOWN_ON_LEDGER

• Explanation: The submitting party has not been allocated.

• Resolution: Check that the party identifier is correct, allocate the submitting party, request its

allocation or wait for it to be allocated before retrying the transaction submission.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status NOT_FOUND including a detailed error message.

• Scaladocs: SUBMITTING_PARTY_NOT_KNOWN_ON_LEDGER

1.35.10.19 2.2.5.1. Internal

INTERNALLY_DUPLICATE_KEYS

• Explanation: The participant didn’t detect an attempt by the transaction submission to use

the same key for two active contracts.

• Resolution: Contact support.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on the

API with grpc-status INTERNAL without any details for security reasons.

• Scaladocs: INTERNALLY_DUPLICATE_KEYS

INTERNALLY_INCONSISTENT_KEYS

• Explanation: Theparticipant didn’t detect an inconsistent keyusage in the transaction. Within

the transaction, an exercise, fetch or lookupByKey failed because themapping of key -> contract

ID was inconsistent with earlier actions.

• Resolution: Contact support.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on the

API with grpc-status INTERNAL without any details for security reasons.

• Scaladocs: INTERNALLY_INCONSISTENT_KEYS

1.35.10.20 2.2.6. AuthorizationChecks

INTERNAL_AUTHORIZATION_ERROR

• Explanation: An internal system authorization error occurred.

• Resolution: Contact the participant operator.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on the

API with grpc-status INTERNAL without any details for security reasons.

• Scaladocs: INTERNAL_AUTHORIZATION_ERROR

1432 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/WriteServiceRejections\protect \TU\textdollar \protect \TU\textdollar SubmittingPartyNotKnownOnLedger\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/WriteServiceRejections\protect \TU\textdollar \protect \TU\textdollar Internal\protect \TU\textdollar \protect \TU\textdollar InternallyDuplicateKeys\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/WriteServiceRejections\protect \TU\textdollar \protect \TU\textdollar Internal\protect \TU\textdollar \protect \TU\textdollar InternallyInconsistentKeys\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/AuthorizationChecks\protect \TU\textdollar \protect \TU\textdollar InternalAuthorizationError\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

PERMISSION_DENIED

• Explanation: This rejection is given if the supplied authorization token is not sufficient for the

intended command. The exact reason is logged on the participant, but not given to the user for

security reasons.

• Resolution: Inspect your command and your token or ask your participant operator for an ex-

planation why this command failed.

• Category: InsufficientPermission

• Conveyance: This error is logged with log-level WARN on the server side. It is exposed on the

API with grpc-status PERMISSION_DENIED without any details for security reasons.

• Scaladocs: PERMISSION_DENIED

STALE_STREAM_AUTHORIZATION

• Explanation: The stream was aborted because the authenticated user’s rights changed, and

the user might thus no longer be authorized to this stream.

• Resolution: The application should automatically retry fetching the stream. It will either suc-

ceed, or fail with an explicit denial of authentication or permission.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status ABORTED including a detailed error message.

• Scaladocs: STALE_STREAM_AUTHORIZATION

UNAUTHENTICATED

• Explanation: This rejection is given if the submitted command does not contain a JWT token

on a participant enforcing JWT authentication.

• Resolution: Ask your participant operator to provide you with an appropriate JWT token.

• Category: AuthInterceptorInvalidAuthenticationCredentials

• Conveyance: This error is logged with log-level WARN on the server side. It is exposed on the

API with grpc-status UNAUTHENTICATED without any details for security reasons.

• Scaladocs: UNAUTHENTICATED

1.35.10.21 2.2.7. RequestValidation

INVALID_ARGUMENT

• Explanation: This error is emitted when a submitted ledger API command contains an invalid

argument.

• Resolution: Inspect the reason given and correct your application.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: INVALID_ARGUMENT

1.35. Error Codes 1433

../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/AuthorizationChecks\protect \TU\textdollar \protect \TU\textdollar PermissionDenied\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/AuthorizationChecks\protect \TU\textdollar \protect \TU\textdollar StaleUserManagementBasedStreamClaims\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/AuthorizationChecks\protect \TU\textdollar \protect \TU\textdollar Unauthenticated\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/RequestValidation\protect \TU\textdollar \protect \TU\textdollar InvalidArgument\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

INVALID_DEDUPLICATION_PERIOD

• Explanation: This error is emitted when a submitted ledger API command specifies an invalid

deduplication period.

• Resolution: Inspect the error message, adjust the value of the deduplication period or ask the

participant operator to increase the maximum deduplication period.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: INVALID_DEDUPLICATION_PERIOD

INVALID_FIELD

• Explanation: This error is emittedwhena submitted ledger API commandcontains a field value

that cannot be understood.

• Resolution: Inspect the reason given and correct your application.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: INVALID_FIELD

LEDGER_ID_MISMATCH

• Explanation: Every ledger API command contains a ledger-id which is verified against the run-

ning ledger. This error indicates that the provided ledger-id does not match the expected one.

• Resolution: Ensure that your application is correctly configured to use the correct ledger.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status NOT_FOUND including a detailed error message.

• Scaladocs: LEDGER_ID_MISMATCH

MISSING_FIELD

• Explanation: This error is emitted when a mandatory field is not set in a submitted ledger API

command.

• Resolution: Inspect the reason given and correct your application.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: MISSING_FIELD

1434 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/RequestValidation\protect \TU\textdollar \protect \TU\textdollar InvalidDeduplicationPeriodField\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/RequestValidation\protect \TU\textdollar \protect \TU\textdollar InvalidField\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/RequestValidation\protect \TU\textdollar \protect \TU\textdollar LedgerIdMismatch\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/RequestValidation\protect \TU\textdollar \protect \TU\textdollar MissingField\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

NON_HEXADECIMAL_OFFSET

• Explanation: The supplied offset could not be converted to a binary offset.

• Resolution: Ensure the offset is specified as a hexadecimal string.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: NON_HEXADECIMAL_OFFSET

OFFSET_AFTER_LEDGER_END

• Explanation: This rejection is given when a read request uses an offset beyond the current

ledger end.

• Resolution: Use an offset that is before the ledger end.

• Category: InvalidGivenCurrentSystemStateSeekAfterEnd

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status OUT_OF_RANGE including a detailed error message.

• Scaladocs: OFFSET_AFTER_LEDGER_END

OFFSET_OUT_OF_RANGE

• Explanation: This rejection is given when a read request uses an offset invalid in the requests’

context.

• Resolution: Inspect the error message and use a valid offset.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: OFFSET_OUT_OF_RANGE

PARTICIPANT_PRUNED_DATA_ACCESSED

• Explanation: This rejection is given when a read request tries to access pruned data.

• Resolution: Use an offset that is after the pruning offset.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: PARTICIPANT_PRUNED_DATA_ACCESSED

1.35.10.22 2.2.7.1. NotFound

LEDGER_CONFIGURATION_NOT_FOUND

• Explanation: The ledger configuration could not be retrieved. This could happen due to incom-

plete initialization of the participant or due to an internal system error.

• Resolution: Contact the participant operator.

• Category: InvalidGivenCurrentSystemStateResourceMissing

1.35. Error Codes 1435

../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/RequestValidation\protect \TU\textdollar \protect \TU\textdollar NonHexOffset\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/RequestValidation\protect \TU\textdollar \protect \TU\textdollar OffsetAfterLedgerEnd\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/RequestValidation\protect \TU\textdollar \protect \TU\textdollar OffsetOutOfRange\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/RequestValidation\protect \TU\textdollar \protect \TU\textdollar ParticipantPrunedDataAccessed\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status NOT_FOUND including a detailed error message.

• Scaladocs: LEDGER_CONFIGURATION_NOT_FOUND

PACKAGE_NOT_FOUND

• Explanation: This rejection is given when a read request tries to access a package which does

not exist on the ledger.

• Resolution: Use a package id pertaining to a package existing on the ledger.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status NOT_FOUND including a detailed error message.

• Scaladocs: PACKAGE_NOT_FOUND

TEMPLATES_OR_INTERFACES_NOT_FOUND

• Explanation: The queried template or interface ids do not exist.

• Resolution: Use valid template or interface ids in your query or ask the participant operator to

upload the package containing the necessary interfaces/templates.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status NOT_FOUND including a detailed error message.

• Scaladocs: TEMPLATES_OR_INTERFACES_NOT_FOUND

TRANSACTION_NOT_FOUND

• Explanation: The transaction does not exist or the requesting set of parties are not authorized

to fetch it.

• Resolution: Check the transaction id and verify that the requested transaction is visible to the

requesting parties.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status NOT_FOUND including a detailed error message.

• Scaladocs: TRANSACTION_NOT_FOUND

1.35.10.23 2.2.7.2. Error

STATE_REQUEST_VALIDATION

• Explanation: This error results if a state request failed validation.

• Resolution: Check the request.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: STATE_REQUEST_VALIDATION

1436 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/RequestValidation\protect \TU\textdollar \protect \TU\textdollar NotFound\protect \TU\textdollar \protect \TU\textdollar LedgerConfiguration\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/RequestValidation\protect \TU\textdollar \protect \TU\textdollar NotFound\protect \TU\textdollar \protect \TU\textdollar Package\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/RequestValidation\protect \TU\textdollar \protect \TU\textdollar NotFound\protect \TU\textdollar \protect \TU\textdollar TemplateOrInterfaceIdsNotFound\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/groups/RequestValidation\protect \TU\textdollar \protect \TU\textdollar NotFound\protect \TU\textdollar \protect \TU\textdollar Transaction\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/ledger/api/multidomain/StateApiService\protect \TU\textdollar \protect \TU\textdollar Error\protect \TU\textdollar \protect \TU\textdollar StateRequestValidation\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

1.35.10.24 2.3. TransactionErrorGroup

1.35.10.25 2.3.1. TransactionRoutingError

AUTOMATIC_TRANSFER_FOR_TRANSACTION_FAILED

• Explanation: This error indicates that the automated transfer couldnot succeed, as the current

topology does not allow the transfer to complete, mostly due to lack of confirmation permis-

sions of the involved parties.

• Resolution: Inspect themessage and your topology and ensure appropriate permissions exist.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: AUTOMATIC_TRANSFER_FOR_TRANSACTION_FAILED

ROUTING_INTERNAL_ERROR

• Explanation: This error indicates an internal error in the Canton domain router.

• Resolution: Please contact support.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on the

API with grpc-status INTERNAL without any details for security reasons.

• Scaladocs: ROUTING_INTERNAL_ERROR

UNABLE_TO_GET_TOPOLOGY_SNAPSHOT

• Explanation: This error indicates that topology information could not be queried.

• Resolution: Check that the participant is connected to the domain.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: UNABLE_TO_GET_TOPOLOGY_SNAPSHOT

1.35.10.26 2.3.1.1. MalformedInputErrors

DISCLOSED_CONTRACT_AUTHENTICATION_FAILED

• Explanation: A provided disclosed contract could not be authenticated against the provided

contract id.

• Resolution: Ensure that disclosed contracts provided with command submission match the

original contract creation content as sourced from the Ledger API. If the problem persists, con-

tact the participant operator.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: DISCLOSED_CONTRACT_AUTHENTICATION_FAILED

1.35. Error Codes 1437

../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar AutomaticTransferForTransactionFailure\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar RoutingInternalError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar UnableToQueryTopologySnapshot\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar MalformedInputErrors\protect \TU\textdollar \protect \TU\textdollar DisclosedContractAuthenticationFailed\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

INVALID_DISCLOSED_CONTRACT

• Explanation: A provided disclosed contract could not be processed.

• Resolution: Ensure that disclosed contracts provided with command submission have an au-

thenticated contract id (i.e. have been created in participant nodes running Canton protocol

version 4 or higher) and match the original contract creation format and content as sourced

from the Ledger API. If the problem persists, contact the participant operator.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: INVALID_DISCLOSED_CONTRACT

INVALID_DOMAIN_ALIAS

• Explanation: The WorkflowID defined in the transaction metadata is not a valid domain alias.

• Resolution: Check that the workflow ID (if specified) corresponds to a valid domain alias. A

typical rejection reason is a too-long domain alias.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status NOT_FOUND including a detailed error message.

• Scaladocs: INVALID_DOMAIN_ALIAS

INVALID_DOMAIN_ID

• Explanation: The WorkflowID defined in the transactionmetadata contains an invalid domain

id.

• Resolution: Check that the workflow ID (if specified) corresponds to a valid domain ID after the

domain­id: marker string.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status NOT_FOUND including a detailed error message.

• Scaladocs: INVALID_DOMAIN_ID

INVALID_PARTY_IDENTIFIER

• Explanation: The given party identifier is not a valid Canton party identifier.

• Resolution: Ensure that your commands only refer to correct and valid Canton party identifiers

of parties that are properly enabled on the system

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: INVALID_PARTY_IDENTIFIER

1438 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar MalformedInputErrors\protect \TU\textdollar \protect \TU\textdollar InvalidDisclosedContract\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar MalformedInputErrors\protect \TU\textdollar \protect \TU\textdollar InvalidDomainAlias\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar MalformedInputErrors\protect \TU\textdollar \protect \TU\textdollar InvalidDomainId\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar MalformedInputErrors\protect \TU\textdollar \protect \TU\textdollar InvalidPartyIdentifier\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

INVALID_SUBMITTER

• Explanation: The party defined as a submitter can not be parsed into a valid Canton party.

• Resolution: Check that you only use correctly setup party names in your application.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: INVALID_SUBMITTER

1.35.10.27 2.3.1.2. TopologyErrors

INFORMEES_NOT_ACTIVE

• Explanation: This error indicates that the informees are known, but there is no connected do-

main on which all the informees are hosted.

• Resolution: Ensure that there is such a domain, as Canton requires a domain where all in-

formees are present.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: INFORMEES_NOT_ACTIVE

NOT_CONNECTED_TO_ALL_CONTRACT_DOMAINS

• Explanation: This error indicates that the transaction is referring to contracts on domains to

which this participant is currently not connected.

• Resolution: Check the status of your domain connections.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: NOT_CONNECTED_TO_ALL_CONTRACT_DOMAINS

NO_COMMON_DOMAIN

• Explanation: This error indicates that there is no common domain to which all submitters can

submit and all informees are connected.

• Resolution: Check that your participant node is connected to all domains you expect and check

that the parties are hosted on these domains as you expect them to be.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: NO_COMMON_DOMAIN

1.35. Error Codes 1439

../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar MalformedInputErrors\protect \TU\textdollar \protect \TU\textdollar InvalidSubmitter\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar TopologyErrors\protect \TU\textdollar \protect \TU\textdollar InformeesNotActive\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar TopologyErrors\protect \TU\textdollar \protect \TU\textdollar NotConnectedToAllContractDomains\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar TopologyErrors\protect \TU\textdollar \protect \TU\textdollar NoCommonDomain\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

NO_DOMAIN_FOR_SUBMISSION

• Explanation: This error indicates that no valid domain was found for submission.

• Resolution: Check the status of your domain connections, that packages are vetted and that

you are connected to domains running recent protocol versions.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: NO_DOMAIN_FOR_SUBMISSION

NO_DOMAIN_ON_WHICH_ALL_SUBMITTERS_CAN_SUBMIT

• Explanation: This error indicates that a transaction has been sent where the system can not

find any active ” + “domain on which this participant can submit in the name of the given set

of submitters.

• Resolution: Ensure that you are connected to a domain where this participant has submission

rights. Check that you are actually connected to the domains you expect to be connected and

check that your participant node has the submission permission for each submitting party.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status NOT_FOUND including a detailed error message.

• Scaladocs: NO_DOMAIN_ON_WHICH_ALL_SUBMITTERS_CAN_SUBMIT

SUBMITTERS_NOT_ACTIVE

• Explanation: This error indicates that the submitters are known, but there is no connected

domain on which all the submitters are hosted.

• Resolution: Ensure that there is such a domain, as Canton requires a domain where all sub-

mitters are present.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: SUBMITTERS_NOT_ACTIVE

SUBMITTER_ALWAYS_STAKEHOLDER

• Explanation: This error indicates that the transaction requires contract transfers for which the

submitter must be a stakeholder.

• Resolution: Check that your participant node is connected to all domains you expect and check

that the parties are hosted on these domains as you expect them to be.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: SUBMITTER_ALWAYS_STAKEHOLDER

1440 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar TopologyErrors\protect \TU\textdollar \protect \TU\textdollar NoDomainForSubmission\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar TopologyErrors\protect \TU\textdollar \protect \TU\textdollar NoDomainOnWhichAllSubmittersCanSubmit\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar TopologyErrors\protect \TU\textdollar \protect \TU\textdollar SubmittersNotActive\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar TopologyErrors\protect \TU\textdollar \protect \TU\textdollar SubmitterAlwaysStakeholder\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

UNKNOWN_CONTRACT_DOMAINS

• Explanation: This error indicates that the transaction is referring to contracts whose domain

is not currently known.

• Resolution: Ensure all transfer operations on contracts used by the transaction have com-

pleted.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: UNKNOWN_CONTRACT_DOMAINS

UNKNOWN_INFORMEES

• Explanation: This error indicates that the transaction is referring to some informees that are

not known on any connected domain.

• Resolution: Check the list of submitted informees and check if your participant is connected

to the domains you are expecting it to be.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status NOT_FOUND including a detailed error message.

• Scaladocs: UNKNOWN_INFORMEES

UNKNOWN_SUBMITTERS

• Explanation: This error indicates that the transaction is referring to some submitters that are

not known on any connected domain.

• Resolution: Check the list of provided submitters and check if your participant is connected

to the domains you are expecting it to be.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status NOT_FOUND including a detailed error message.

• Scaladocs: UNKNOWN_SUBMITTERS

1.35.10.28 2.3.1.3. ConfigurationErrors

INVALID_PRESCRIBED_DOMAIN_ID

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: INVALID_PRESCRIBED_DOMAIN_ID

1.35. Error Codes 1441

../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar TopologyErrors\protect \TU\textdollar \protect \TU\textdollar UnknownContractDomains\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar TopologyErrors\protect \TU\textdollar \protect \TU\textdollar UnknownInformees\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar TopologyErrors\protect \TU\textdollar \protect \TU\textdollar UnknownSubmitters\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar ConfigurationErrors\protect \TU\textdollar \protect \TU\textdollar InvalidPrescribedDomainId\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

MULTI_DOMAIN_SUPPORT_NOT_ENABLED

• Explanation: This error indicates that a transaction has been submitted that requires

multi-domain support. Multi-domain support is a preview feature that needs to be enabled

explicitly by configuration.

• Resolution: Set canton.features.enable-preview-commands = yes

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: MULTI_DOMAIN_SUPPORT_NOT_ENABLED

SUBMISSION_DOMAIN_NOT_READY

• Explanation: This error indicates that the transaction should be submitted to a domain which

is not connected or not configured.

• Resolution: Ensure that the domain specified in the workflowId is correctly connected.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status NOT_FOUND including a detailed error message.

• Scaladocs: SUBMISSION_DOMAIN_NOT_READY

1.35.10.29 2.3.2. SubmissionErrors

CHOSEN_MEDIATOR_IS_INACTIVE

• Explanation: The mediator chosen for the transaction got deactivated before the request was

sequenced.

• Resolution: Resubmit.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status ABORTED including a detailed error message.

• Scaladocs: CHOSEN_MEDIATOR_IS_INACTIVE

CONTRACT_AUTHENTICATION_FAILED

• Explanation: At least one of the transaction’s input contracts could not be authenticated.

• Resolution: Retry the submission with correctly authenticated contracts.

• Category: SecurityAlert

• Conveyance: This error is logged with log-level WARN on the server side. It is exposed on the

API with grpc-status INVALID_ARGUMENT without any details for security reasons.

• Scaladocs: CONTRACT_AUTHENTICATION_FAILED

1442 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar ConfigurationErrors\protect \TU\textdollar \protect \TU\textdollar MultiDomainSupportNotEnabled\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar ConfigurationErrors\protect \TU\textdollar \protect \TU\textdollar SubmissionDomainNotReady\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/protocol/TransactionProcessor\protect \TU\textdollar \protect \TU\textdollar SubmissionErrors\protect \TU\textdollar \protect \TU\textdollar InactiveMediatorError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/protocol/TransactionProcessor\protect \TU\textdollar \protect \TU\textdollar SubmissionErrors\protect \TU\textdollar \protect \TU\textdollar ContractAuthenticationFailed\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

DOMAIN_BACKPRESSURE

• Explanation: This error occurs when the sequencer refuses to accept a command due to back-

pressure.

• Resolution: Wait a bit and retry, preferably with some backoff factor.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status ABORTED including a detailed error message.

• Scaladocs: DOMAIN_BACKPRESSURE

DOMAIN_WITHOUT_MEDIATOR

• Explanation: The participant routed the transaction to a domain without an active mediator.

• Resolution: Add a mediator to the domain.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status NOT_FOUND including a detailed error message.

• Scaladocs: DOMAIN_WITHOUT_MEDIATOR

MALFORMED_REQUEST

• Explanation: This error has not yet been properly categorised into sub-error codes.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: MALFORMED_REQUEST

NOT_SEQUENCED_TIMEOUT

• Explanation: This error occurs when the transactionwas not sequencedwithin the pre-defined

max-sequencing time and has therefore timed out. The max-sequencing time is derived from

the transaction’s ledger time via the ledger time model skews.

• Resolution: Resubmit if the delay is caused by high load. If the command requires substan-

tial processing on the participant, specify a higher minimum ledger time with the command

submission so that a higher max sequencing time is derived.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status ABORTED including a detailed error message.

• Scaladocs: NOT_SEQUENCED_TIMEOUT

1.35. Error Codes 1443

../../canton/scaladoc/com/digitalasset/canton/participant/protocol/TransactionProcessor\protect \TU\textdollar \protect \TU\textdollar SubmissionErrors\protect \TU\textdollar \protect \TU\textdollar DomainBackpressure\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/protocol/TransactionProcessor\protect \TU\textdollar \protect \TU\textdollar SubmissionErrors\protect \TU\textdollar \protect \TU\textdollar DomainWithoutMediatorError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/protocol/TransactionProcessor\protect \TU\textdollar \protect \TU\textdollar SubmissionErrors\protect \TU\textdollar \protect \TU\textdollar MalformedRequest\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/protocol/TransactionProcessor\protect \TU\textdollar \protect \TU\textdollar SubmissionErrors\protect \TU\textdollar \protect \TU\textdollar TimeoutError\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

PACKAGE_NOT_VETTED_BY_RECIPIENTS

• Explanation: This error occurs if a transaction was submitted referring to a package that a

receiving participant has not vetted. Any transaction view can only refer to packages that have

explicitly been approved by the receiving participants.

• Resolution: Ensure that the receiving participant uploads and vets the respective package.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: PACKAGE_NOT_VETTED_BY_RECIPIENTS

PARTICIPANT_OVERLOADED

• Explanation: The participant has rejected all incoming commandsduring a configurable grace

period.

• Resolution: Configure more restrictive resource limits (enterprise only). Change applications

to submit commandsat a lower rate. Configure ahigher value formyParticipant.parameters.warnI-

fOverloadedFor.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level WARN on the server side and exposed on the API

with grpc-status ABORTED including a detailed error message.

• Scaladocs: PARTICIPANT_OVERLOADED

SEQUENCER_DELIVER_ERROR

• Explanation: This error occurs when the domain refused to sequence the given message.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status ABORTED including a detailed error message.

• Scaladocs: SEQUENCER_DELIVER_ERROR

1444 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/participant/protocol/TransactionProcessor\protect \TU\textdollar \protect \TU\textdollar SubmissionErrors\protect \TU\textdollar \protect \TU\textdollar PackageNotVettedByRecipients\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/protocol/TransactionProcessor\protect \TU\textdollar \protect \TU\textdollar SubmissionErrors\protect \TU\textdollar \protect \TU\textdollar ParticipantOverloaded\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/protocol/TransactionProcessor\protect \TU\textdollar \protect \TU\textdollar SubmissionErrors\protect \TU\textdollar \protect \TU\textdollar SequencerDeliver\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

SEQUENCER_REQUEST_FAILED

• Explanation: This error occurs when the command cannot be sent to the domain.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status ABORTED including a detailed error message.

• Scaladocs: SEQUENCER_REQUEST_FAILED

SUBMISSION_DURING_SHUTDOWN

• Explanation: This error occurs when a command is submitted while the system is performing

a shutdown.

• Resolution: Assuming that the participant will restart or failover eventually, retry in a couple

of seconds.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status ABORTED including a detailed error message.

• Scaladocs: SUBMISSION_DURING_SHUTDOWN

1.35.10.30 2.3.3. SyncServiceInjectionError

COMMAND_INJECTION_FAILURE

• Explanation: This errors occurs if an internal error results in an exception.

• Resolution: Contact support.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on the

API with grpc-status INTERNAL without any details for security reasons.

• Scaladocs: COMMAND_INJECTION_FAILURE

1.35. Error Codes 1445

../../canton/scaladoc/com/digitalasset/canton/participant/protocol/TransactionProcessor\protect \TU\textdollar \protect \TU\textdollar SubmissionErrors\protect \TU\textdollar \protect \TU\textdollar SequencerRequest\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/protocol/TransactionProcessor\protect \TU\textdollar \protect \TU\textdollar SubmissionErrors\protect \TU\textdollar \protect \TU\textdollar SubmissionDuringShutdown\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/SyncServiceInjectionError\protect \TU\textdollar \protect \TU\textdollar InjectionFailure\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

NODE_IS_PASSIVE_REPLICA

• Explanation: This error results if a command is submitted to the passive replica.

• Resolution: Send the command to the active replica.

• Category: TransientServerFailure

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status UNAVAILABLE including a detailed error message.

• Scaladocs: NODE_IS_PASSIVE_REPLICA

NOT_CONNECTED_TO_ANY_DOMAIN

• Explanation: This errors results if a command is submitted to a participant that is not con-

nected to any domain.

• Resolution: Connect your participant to the domain where the given parties are hosted.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: NOT_CONNECTED_TO_ANY_DOMAIN

1.35.10.31 2.3.4. LocalReject

1.35.10.32 2.3.4.1. MalformedRejects

LOCAL_VERDICT_BAD_ROOT_HASH_MESSAGES

• Explanation: This rejection is made by a participant if a transaction does not contain valid

root hash messages.

• Resolution: This indicates a race condition due to a in-flight topology change, or malicious or

faulty behaviour.

• Category: SecurityAlert

• Conveyance: This error is logged with log-level WARN on the server side. It is exposed on the

API with grpc-status INVALID_ARGUMENT without any details for security reasons.

• Scaladocs: LOCAL_VERDICT_BAD_ROOT_HASH_MESSAGES

LOCAL_VERDICT_CREATES_EXISTING_CONTRACTS

• Explanation: This error indicates that the transaction would create already existing contracts.

• Resolution: This error indicates either faulty or malicious behaviour.

• Category: SecurityAlert

• Conveyance: This error is logged with log-level WARN on the server side. It is exposed on the

API with grpc-status INVALID_ARGUMENT without any details for security reasons.

• Scaladocs: LOCAL_VERDICT_CREATES_EXISTING_CONTRACTS

1446 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/participant/sync/SyncServiceInjectionError\protect \TU\textdollar \protect \TU\textdollar PassiveReplica\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/SyncServiceInjectionError\protect \TU\textdollar \protect \TU\textdollar NotConnectedToAnyDomain\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar MalformedRejects\protect \TU\textdollar \protect \TU\textdollar BadRootHashMessages\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar MalformedRejects\protect \TU\textdollar \protect \TU\textdollar CreatesExistingContracts\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

LOCAL_VERDICT_FAILED_MODEL_CONFORMANCE_CHECK

• Explanation: This rejection ismade by a participant if a transaction fails amodel conformance

check.

• Resolution: This indicates either malicious or faulty behaviour.

• Category: SecurityAlert

• Conveyance: This error is logged with log-level WARN on the server side. It is exposed on the

API with grpc-status INVALID_ARGUMENT without any details for security reasons.

• Scaladocs: LOCAL_VERDICT_FAILED_MODEL_CONFORMANCE_CHECK

LOCAL_VERDICT_MALFORMED_PAYLOAD

• Explanation: This rejection is made by a participant if a view of the transaction is malformed.

• Resolution: This indicates either malicious or faulty behaviour.

• Category: SecurityAlert

• Conveyance: This error is logged with log-level WARN on the server side. It is exposed on the

API with grpc-status INVALID_ARGUMENT without any details for security reasons.

• Scaladocs: LOCAL_VERDICT_MALFORMED_PAYLOAD

LOCAL_VERDICT_MALFORMED_REQUEST

• Explanation: This rejection is made by a participant if a request is malformed.

• Resolution: Please contact support.

• Category: SecurityAlert

• Conveyance: This error is logged with log-level WARN on the server side. It is exposed on the

API with grpc-status INVALID_ARGUMENT without any details for security reasons.

• Scaladocs: LOCAL_VERDICT_MALFORMED_REQUEST

1.35.10.33 2.3.4.2. ConsistencyRejections

LOCAL_VERDICT_DUPLICATE_KEY

• Explanation: If the participant provides unique contract key support, this error will indicate

that a transaction would create a unique key which already exists.

• Resolution: It depends on your use case and application whether and when retrying makes

sense or not.

• Category: InvalidGivenCurrentSystemStateResourceExists

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status ALREADY_EXISTS including a detailed error message.

• Scaladocs: LOCAL_VERDICT_DUPLICATE_KEY

1.35. Error Codes 1447

../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar MalformedRejects\protect \TU\textdollar \protect \TU\textdollar ModelConformance\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar MalformedRejects\protect \TU\textdollar \protect \TU\textdollar Payloads\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar MalformedRejects\protect \TU\textdollar \protect \TU\textdollar MalformedRequest\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar ConsistencyRejections\protect \TU\textdollar \protect \TU\textdollar DuplicateKey\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

LOCAL_VERDICT_INACTIVE_CONTRACTS

• Explanation: The transaction is referring to contracts that have either been previously

archived, transferred to another domain, or do not exist.

• Resolution: Inspect your contract state and try a different transaction.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status NOT_FOUND including a detailed error message.

• Scaladocs: LOCAL_VERDICT_INACTIVE_CONTRACTS

LOCAL_VERDICT_INCONSISTENT_KEY

• Explanation: If the participant provides unique contract key support, this error will indicate

that a transaction expected a key to be unallocated, but a contract for the key already exists.

• Resolution: It depends on your use case and application whether and when retrying makes

sense or not.

• Category: InvalidGivenCurrentSystemStateResourceExists

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status ALREADY_EXISTS including a detailed error message.

• Scaladocs: LOCAL_VERDICT_INCONSISTENT_KEY

LOCAL_VERDICT_LOCKED_CONTRACTS

• Explanation: The transaction is referring to locked contracts which are in the process of be-

ing created, transferred, or archived by another transaction. If the other transaction fails, this

transaction could be successfully retried.

• Resolution: Retry the transaction

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status ABORTED including a detailed error message.

• Scaladocs: LOCAL_VERDICT_LOCKED_CONTRACTS

LOCAL_VERDICT_LOCKED_KEYS

• Explanation: The transaction is referring to locked keys which are in the process of beingmod-

ified by another transaction.

• Resolution: Retry the transaction

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status ABORTED including a detailed error message.

• Scaladocs: LOCAL_VERDICT_LOCKED_KEYS

1448 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar ConsistencyRejections\protect \TU\textdollar \protect \TU\textdollar InactiveContracts\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar ConsistencyRejections\protect \TU\textdollar \protect \TU\textdollar InconsistentKey\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar ConsistencyRejections\protect \TU\textdollar \protect \TU\textdollar LockedContracts\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar ConsistencyRejections\protect \TU\textdollar \protect \TU\textdollar LockedKeys\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

1.35.10.34 2.3.4.3. TimeRejects

LOCAL_VERDICT_LEDGER_TIME_OUT_OF_BOUND

• Explanation: This error is thrown if the ledger time and the record time differ more than per-

mitted. This can happen in an overloaded system due to high latencies or for transactions with

long interpretation times.

• Resolution: For long-running transactions, specify a ledger time with the command submis-

sion or adjust the dynamic domain parameter ledgerTimeRecordTimeTolerance (and possibly

the participant and mediator reaction timeout). For short-running transactions, simply retry.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status ABORTED including a detailed error message.

• Scaladocs: LOCAL_VERDICT_LEDGER_TIME_OUT_OF_BOUND

LOCAL_VERDICT_SUBMISSION_TIME_OUT_OF_BOUND

• Explanation: This error is thrown if the submission time and the record time differ more than

permitted. This can happen in an overloaded system due to high latencies or for transactions

with long interpretation times.

• Resolution: For long-running transactions, adjust the ledger time bounds used with the com-

mand submission. For short-running transactions, simply retry.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status ABORTED including a detailed error message.

• Scaladocs: LOCAL_VERDICT_SUBMISSION_TIME_OUT_OF_BOUND

LOCAL_VERDICT_TIMEOUT

• Explanation: This rejection is sent if the participant locally determined a timeout.

• Resolution: In the first instance, resubmit your transaction. If the rejection still appears spu-

riously, consider increasing the participantResponseTimeout ormediatorReactionTimeout values in

the DynamicDomainParameters. If the rejection appears unrelated to timeout settings, validate

that all other Canton components which take part in the transaction also function correctly

and that, e.g., messages are not stuck at the sequencer.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level WARN on the server side and exposed on the API

with grpc-status ABORTED including a detailed error message.

• Scaladocs: LOCAL_VERDICT_TIMEOUT

1.35. Error Codes 1449

../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar TimeRejects\protect \TU\textdollar \protect \TU\textdollar LedgerTime\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar TimeRejects\protect \TU\textdollar \protect \TU\textdollar SubmissionTime\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar TimeRejects\protect \TU\textdollar \protect \TU\textdollar LocalTimeout\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

1.35.10.35 2.3.4.4. TransferInRejects

TRANSFER_IN_ALREADY_COMPLETED

• Explanation: This rejection is emitted by a participant if a transfer-in has already been com-

pleted.

• Category: InvalidGivenCurrentSystemStateResourceExists

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status ALREADY_EXISTS including a detailed error message.

• Scaladocs: TRANSFER_IN_ALREADY_COMPLETED

TRANSFER_IN_CONTRACT_ALREADY_ACTIVE

• Explanation: This rejection is emitted by a participant if a transfer-in has already been made

by another entity.

• Category: InvalidGivenCurrentSystemStateResourceExists

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status ALREADY_EXISTS including a detailed error message.

• Scaladocs: TRANSFER_IN_CONTRACT_ALREADY_ACTIVE

TRANSFER_IN_CONTRACT_ALREADY_ARCHIVED

• Explanation: This rejection is emitted by a participant if a transfer would be invoked on an

already archived contract.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status NOT_FOUND including a detailed error message.

• Scaladocs: TRANSFER_IN_CONTRACT_ALREADY_ARCHIVED

TRANSFER_IN_CONTRACT_IS_LOCKED

• Explanation: This rejection is emitted by a participant if a transfer-in is referring to an already

locked contract.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status ABORTED including a detailed error message.

• Scaladocs: TRANSFER_IN_CONTRACT_IS_LOCKED

1.35.10.36 2.3.4.5. TransferOutRejects

TRANSFER_OUT_ACTIVENESS_CHECK_FAILED

• Explanation: Activeness check failed for transfer out submission. This rejection occurs if the

contract to be transferred has already been transferred or is currently locked (due to a compet-

ing transaction) on domain.

• Resolution: Depending on your use-case and your expectation, retry the transaction.

• Category: InvalidGivenCurrentSystemStateResourceMissing

1450 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar TransferInRejects\protect \TU\textdollar \protect \TU\textdollar AlreadyCompleted\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar TransferInRejects\protect \TU\textdollar \protect \TU\textdollar ContractAlreadyActive\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar TransferInRejects\protect \TU\textdollar \protect \TU\textdollar ContractAlreadyArchived\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar TransferInRejects\protect \TU\textdollar \protect \TU\textdollar ContractIsLocked\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status NOT_FOUND including a detailed error message.

• Scaladocs: TRANSFER_OUT_ACTIVENESS_CHECK_FAILED

1.35.10.37 2.3.5. CommandDeduplicationError

MALFORMED_DEDUPLICATION_OFFSET

• Explanation: The specified deduplication offset is syntactically malformed.

• Resolution: Use a deduplication offset that was produced by this participant node.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: MALFORMED_DEDUPLICATION_OFFSET

1.35.10.38 2.3.6. Error

TRANSFER_COMMAND_VALIDATION

• Explanation: This error results if a transfer command fails initial validation.

• Resolution: Check connection to the domain and the topology.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: TRANSFER_COMMAND_VALIDATION

1.35.10.39 2.4. SyncServiceError

PARTY_ALLOCATION_WITHOUT_CONNECTED_DOMAIN

• Explanation: The participant is not connected to a domain and can therefore not allo-

cate a party because the party notification is configured as party­notification.type =

via­domain.

• Resolution: Connect the participant to a domain first or change the participant’s party notifi-

cation config to eager.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: PARTY_ALLOCATION_WITHOUT_CONNECTED_DOMAIN

1.35. Error Codes 1451

../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar TransferOutRejects\protect \TU\textdollar \protect \TU\textdollar ActivenessCheckFailed\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/CommandDeduplicationError\protect \TU\textdollar \protect \TU\textdollar MalformedDeduplicationOffset\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/ledger/api/multidomain/TransferSubmissionApiService\protect \TU\textdollar \protect \TU\textdollar Error\protect \TU\textdollar \protect \TU\textdollar TransferValidation\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/SyncServiceError\protect \TU\textdollar \protect \TU\textdollar PartyAllocationNoDomainError\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

SYNC_SERVICE_ALARM

• Explanation: The participant has detected that another node is behaving maliciously.

• Resolution: Contact support.

• Category: SecurityAlert

• Conveyance: This error is logged with log-level WARN on the server side. It is exposed on the

API with grpc-status INVALID_ARGUMENT without any details for security reasons.

• Scaladocs: SYNC_SERVICE_ALARM

SYNC_SERVICE_ALREADY_ADDED

• Explanation: This error results on an attempt to register a new domain under an alias already

in use.

• Category: InvalidGivenCurrentSystemStateResourceExists

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status ALREADY_EXISTS including a detailed error message.

• Scaladocs: SYNC_SERVICE_ALREADY_ADDED

SYNC_SERVICE_DOMAIN_BECAME_PASSIVE

• Explanation: This error is logged when a sync domain is disconnected because the participant

became passive.

• Resolution: Fail over to the active participant replica.

• Category: TransientServerFailure

• Conveyance: This error is logged with log-level WARN on the server side and exposed on the API

with grpc-status UNAVAILABLE including a detailed error message.

• Scaladocs: SYNC_SERVICE_DOMAIN_BECAME_PASSIVE

SYNC_SERVICE_DOMAIN_DISABLED_US

• Explanation: This error is logged when the synchronization service shuts down because the

remote domain has disabled this participant.

• Resolution: Contact the domain operator and inquire why you have been booted out.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level WARN on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: SYNC_SERVICE_DOMAIN_DISABLED_US

SYNC_SERVICE_DOMAIN_DISCONNECTED

• Explanation: This error is logged when a sync domain is unexpectedly disconnected from the

Canton sync service (after having previously been connected)

• Resolution: Please contact support and provide the failure reason.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on the

API with grpc-status INTERNAL without any details for security reasons.

• Scaladocs: SYNC_SERVICE_DOMAIN_DISCONNECTED

1452 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/participant/sync/SyncServiceError\protect \TU\textdollar \protect \TU\textdollar SyncServiceAlarm\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/SyncServiceError\protect \TU\textdollar \protect \TU\textdollar SyncServiceAlreadyAdded\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/SyncServiceError\protect \TU\textdollar \protect \TU\textdollar SyncServiceDomainBecamePassive\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/SyncServiceError\protect \TU\textdollar \protect \TU\textdollar SyncServiceDomainDisabledUs\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/SyncServiceError\protect \TU\textdollar \protect \TU\textdollar SyncServiceDomainDisconnect\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

SYNC_SERVICE_DOMAIN_MUST_BE_OFFLINE

• Explanation: This error is emitted when an operation is attempted such as repair that requires

the domain connection to be disconnected and clean.

• Resolution: Disconnect the domain before attempting the command.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: SYNC_SERVICE_DOMAIN_MUST_BE_OFFLINE

SYNC_SERVICE_DOMAIN_STATUS_NOT_ACTIVE

• Explanation: This error is logged when a sync domain has a non-active status.

• Resolution: If you attempt to connect to a domain that has either been migrated off or has a

pendingmigration, this error will be emitted. Please complete themigration before attempting

to connect to it.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: SYNC_SERVICE_DOMAIN_STATUS_NOT_ACTIVE

SYNC_SERVICE_INTERNAL_ERROR

• Explanation: This error indicates an internal issue.

• Resolution: Please contact support and provide the failure reason.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on the

API with grpc-status INTERNAL without any details for security reasons.

• Scaladocs: SYNC_SERVICE_INTERNAL_ERROR

SYNC_SERVICE_UNKNOWN_DOMAIN

• Explanation: This error results if a domain connectivity command is referring to a domain

alias that has not been registered.

• Resolution: Please confirm the domain alias is correct, or configure the domain before (re)con-

necting.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status NOT_FOUND including a detailed error message.

• Scaladocs: SYNC_SERVICE_UNKNOWN_DOMAIN

1.35. Error Codes 1453

../../canton/scaladoc/com/digitalasset/canton/participant/sync/SyncServiceError\protect \TU\textdollar \protect \TU\textdollar SyncServiceDomainMustBeOffline\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/SyncServiceError\protect \TU\textdollar \protect \TU\textdollar SyncServiceDomainIsNotActive\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/SyncServiceError\protect \TU\textdollar \protect \TU\textdollar SyncServiceInternalError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/SyncServiceError\protect \TU\textdollar \protect \TU\textdollar SyncServiceUnknownDomain\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

1.35.10.40 2.4.1. SyncDomainMigrationError

BROKEN_DOMAIN_MIGRATION

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on the

API with grpc-status INTERNAL without any details for security reasons.

• Scaladocs: BROKEN_DOMAIN_MIGRATION

INVALID_DOMAIN_MIGRATION_REQUEST

• Explanation: This error resultswhen invalid arguments are passed to themigration command.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: INVALID_DOMAIN_MIGRATION_REQUEST

1.35.10.41 2.4.2. DomainRegistryError

DOMAIN_REGISTRY_INTERNAL_ERROR

• Explanation: This error indicates that there has been an internal error noticed by Canton.

• Resolution: Contact support and provide the failure reason.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on the

API with grpc-status INTERNAL without any details for security reasons.

• Scaladocs: DOMAIN_REGISTRY_INTERNAL_ERROR

TOPOLOGY_CONVERSION_ERROR

• Explanation: This error indicates that therewas an error converting topology transactions dur-

ing connecting to a domain.

• Resolution: Contact the operator of the topology management for this node.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status NOT_FOUND including a detailed error message.

• Scaladocs: TOPOLOGY_CONVERSION_ERROR

1.35.10.42 2.4.2.1. ConfigurationErrors

CANNOT_ISSUE_DOMAIN_TRUST_CERTIFICATE

• Explanation: This error indicates that the participant can not issue a domain trust certificate.

Such a certificate is necessary to become active on a domain. Therefore, it must be present in

the authorized store of the participant topology manager.

• Resolution: Manually upload a valid domain trust certificate for the given domain or upload

the necessary certificates such that participant can issue such certificates automatically.

1454 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/participant/sync/SyncDomainMigrationError\protect \TU\textdollar \protect \TU\textdollar InternalError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/SyncDomainMigrationError\protect \TU\textdollar \protect \TU\textdollar InvalidArgument\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainRegistryError\protect \TU\textdollar \protect \TU\textdollar DomainRegistryInternalError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainRegistryError\protect \TU\textdollar \protect \TU\textdollar TopologyConversionError\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: CANNOT_ISSUE_DOMAIN_TRUST_CERTIFICATE

DOMAIN_PARAMETERS_CHANGED

• Explanation: Error indicating that the domain parameters have been changed, while this isn’t

supported yet.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level WARN on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: DOMAIN_PARAMETERS_CHANGED

INCOMPATIBLE_UNIQUE_CONTRACT_KEYS_MODE

• Explanation: This error indicates that the domain this participant is trying to connect to is a

domain where unique contract keys are supported, while this participant is already connected

to other domains. Multiple domains and unique contract keys aremutually exclusive features.

• Resolution: Use isolated participants for domains that require unique keys.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: INCOMPATIBLE_UNIQUE_CONTRACT_KEYS_MODE

INVALID_DOMAIN_CONNECTION

• Explanation: This error indicates there is a validation error with the configured connections

for the domain

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: INVALID_DOMAIN_CONNECTION

MISCONFIGURED_STATIC_DOMAIN_PARAMETERS

• Explanation: This error indicates that the participant is configured to connect to multiple do-

main sequencers but their static domain parameters are different from other sequencers.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: MISCONFIGURED_STATIC_DOMAIN_PARAMETERS

1.35. Error Codes 1455

../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainRegistryError\protect \TU\textdollar \protect \TU\textdollar ConfigurationErrors\protect \TU\textdollar \protect \TU\textdollar CanNotIssueDomainTrustCertificate\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainRegistryError\protect \TU\textdollar \protect \TU\textdollar ConfigurationErrors\protect \TU\textdollar \protect \TU\textdollar DomainParametersChanged\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainRegistryError\protect \TU\textdollar \protect \TU\textdollar ConfigurationErrors\protect \TU\textdollar \protect \TU\textdollar IncompatibleUniqueContractKeysMode\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainRegistryError\protect \TU\textdollar \protect \TU\textdollar ConfigurationErrors\protect \TU\textdollar \protect \TU\textdollar InvalidDomainConnections\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainRegistryError\protect \TU\textdollar \protect \TU\textdollar ConfigurationErrors\protect \TU\textdollar \protect \TU\textdollar MisconfiguredStaticDomainParameters\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

SEQUENCERS_FROM_DIFFERENT_DOMAINS_ARE_CONFIGURED

• Explanation: This error indicates that the participant is configured to connect to multiple do-

main sequencers from different domains.

• Resolution: Carefully verify the connection settings.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: SEQUENCERS_FROM_DIFFERENT_DOMAINS_ARE_CONFIGURED

1.35.10.43 2.4.2.2. HandshakeErrors

DOMAIN_ALIAS_DUPLICATION

• Explanation: This error indicates that the domain alias was previously used to connect to a

domain with a different domain id. This is a known situation when an existing participant is

trying to connect to a freshly re-initialised domain.

• Resolution: Carefully verify the connection settings.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: DOMAIN_ALIAS_DUPLICATION

DOMAIN_CRYPTO_HANDSHAKE_FAILED

• Explanation: This error indicates that the domain is using crypto settings which are either not

supported or not enabled on this participant.

• Resolution: Consult the error message and adjust the supported crypto schemes of this par-

ticipant.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: DOMAIN_CRYPTO_HANDSHAKE_FAILED

DOMAIN_HANDSHAKE_FAILED

• Explanation: This error indicates that the participant to domain handshake has failed.

• Resolution: Inspect the provided reason for more details and contact support.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: DOMAIN_HANDSHAKE_FAILED

1456 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainRegistryError\protect \TU\textdollar \protect \TU\textdollar ConfigurationErrors\protect \TU\textdollar \protect \TU\textdollar SequencersFromDifferentDomainsAreConfigured\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainRegistryError\protect \TU\textdollar \protect \TU\textdollar HandshakeErrors\protect \TU\textdollar \protect \TU\textdollar DomainAliasDuplication\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainRegistryError\protect \TU\textdollar \protect \TU\textdollar HandshakeErrors\protect \TU\textdollar \protect \TU\textdollar DomainCryptoHandshakeFailed\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainRegistryError\protect \TU\textdollar \protect \TU\textdollar HandshakeErrors\protect \TU\textdollar \protect \TU\textdollar HandshakeFailed\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

DOMAIN_ID_MISMATCH

• Explanation: This error indicates that the domain-id does not match the one that the partici-

pant expects. If this error happens on a first connect, then the domain id defined in the domain

connection settings does not match the remote domain. If this happens on a reconnect, then

the remote domain has been reset for some reason.

• Resolution: Carefully verify the connection settings.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: DOMAIN_ID_MISMATCH

SERVICE_AGREEMENT_ACCEPTANCE_FAILED

• Explanation: This error indicates that the domain requires the participant to accept a service

agreement before connecting to it.

• Resolution: Use the commands $participant.domains.get_agreement and $participant.do-

mains.accept_agreement to accept the agreement.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: SERVICE_AGREEMENT_ACCEPTANCE_FAILED

1.35.10.44 2.4.2.3. ConnectionErrors

DOMAIN_IS_NOT_AVAILABLE

• Explanation: This error results if the GRPC connection to the domain service fails with GRPC

status UNAVAILABLE.

• Resolution: Check your connection settings and ensure that the domain can really be reached.

• Category: TransientServerFailure

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status UNAVAILABLE including a detailed error message.

• Scaladocs: DOMAIN_IS_NOT_AVAILABLE

FAILED_TO_CONNECT_TO_SEQUENCER

• Explanation: This error indicates that the participant failed to connect to the sequencer.

• Resolution: Inspect the provided reason.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: FAILED_TO_CONNECT_TO_SEQUENCER

1.35. Error Codes 1457

../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainRegistryError\protect \TU\textdollar \protect \TU\textdollar HandshakeErrors\protect \TU\textdollar \protect \TU\textdollar DomainIdMismatch\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainRegistryError\protect \TU\textdollar \protect \TU\textdollar HandshakeErrors\protect \TU\textdollar \protect \TU\textdollar ServiceAgreementAcceptanceFailed\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainRegistryError\protect \TU\textdollar \protect \TU\textdollar ConnectionErrors\protect \TU\textdollar \protect \TU\textdollar DomainIsNotAvailable\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainRegistryError\protect \TU\textdollar \protect \TU\textdollar ConnectionErrors\protect \TU\textdollar \protect \TU\textdollar FailedToConnectToSequencer\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

FAILED_TO_CONNECT_TO_SEQUENCERS

• Explanation: This error indicates that the participant failed to connect to the sequencers.

• Resolution: Inspect the provided reason.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: FAILED_TO_CONNECT_TO_SEQUENCERS

GRPC_CONNECTION_FAILURE

• Explanation: This error indicates that the participant failed to connect due to a general GRPC

error.

• Resolution: Inspect the provided reason and contact support.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: GRPC_CONNECTION_FAILURE

PARTICIPANT_IS_NOT_ACTIVE

• Explanation: This error indicates that the connecting participant has either not yet been acti-

vated by the domain operator. If the participant was previously successfully connected to the

domain, then this error indicates that the domain operator has deactivated the participant.

• Resolution: Contact the domain operator and inquire the permissions your participant node

has on the given domain.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: PARTICIPANT_IS_NOT_ACTIVE

1.35.10.45 2.4.3. TrafficControlError

TRAFFIC_CONTROL_DOMAIN_ID_NOT_FOUND

• Explanation: This error indicates that no available domain with that id could be found, and

therefore no traffic state could be retrieved.

• Resolution: Ensure that the participant is connected to the domain with the provided id.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: TRAFFIC_CONTROL_DOMAIN_ID_NOT_FOUND

1458 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainRegistryError\protect \TU\textdollar \protect \TU\textdollar ConnectionErrors\protect \TU\textdollar \protect \TU\textdollar FailedToConnectToSequencers\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainRegistryError\protect \TU\textdollar \protect \TU\textdollar ConnectionErrors\protect \TU\textdollar \protect \TU\textdollar GrpcFailure\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainRegistryError\protect \TU\textdollar \protect \TU\textdollar ConnectionErrors\protect \TU\textdollar \protect \TU\textdollar ParticipantIsNotActive\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/traffic/TrafficStateController\protect \TU\textdollar \protect \TU\textdollar TrafficControlError\protect \TU\textdollar \protect \TU\textdollar DomainIdNotFound\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

TRAFFIC_CONTROL_STATE_NOT_FOUND

• Explanation: This error indicates that the participant does not have a traffic state.

• Resolution: Ensure that the the participant is connected to a domain with traffic control en-

abled, and that it has received at least one event from the domain since its connection.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status NOT_FOUND including a detailed error message.

• Scaladocs: TRAFFIC_CONTROL_STATE_NOT_FOUND

1.35.10.46 2.5. AdminWorkflowServices

CAN_NOT_AUTOMATICALLY_VET_ADMIN_WORKFLOW_PACKAGE

• Explanation: This error indicates that the admin workflow package could not be vetted. The

admin workflows is a set of packages that are pre-installed and can be used for administrative

processes. The error can happen if the participant is initialised manually but is missing the

appropriate signing keys or certificates in order to issue new topology transactions within the

participants namespace. The adminworkflows can not be used until the participant has vetted

the package.

• Resolution: This error can be fixed by ensuring that an appropriate vetting transaction is is-

sued in the name of this participant and imported into this participant node. If the correspond-

ing certificates have been added after the participant startup, then this error can be fixed by

either restarting theparticipant node, issuing the vetting transactionmanually or re-uploading

the Dar (leaving the vetAllPackages argument as true)

• Category: BackgroundProcessDegradationWarning

• Conveyance: This error is logged with log-level WARN on the server side.

• Scaladocs: CAN_NOT_AUTOMATICALLY_VET_ADMIN_WORKFLOW_PACKAGE

1.35.10.47 2.6. RepairServiceError

CONTRACT_PURGE_ERROR

• Explanation: A contract cannot be purged due to an error.

• Resolution: Retry after operator intervention.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: CONTRACT_PURGE_ERROR

1.35. Error Codes 1459

../../canton/scaladoc/com/digitalasset/canton/participant/traffic/TrafficStateController\protect \TU\textdollar \protect \TU\textdollar TrafficControlError\protect \TU\textdollar \protect \TU\textdollar TrafficStateNotFound\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/admin/AdminWorkflowServices\protect \TU\textdollar \protect \TU\textdollar CanNotAutomaticallyVetAdminWorkflowPackage\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/admin/RepairServiceError\protect \TU\textdollar \protect \TU\textdollar ContractPurgeError\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

INVALID_ACS_SNAPSHOT_TIMESTAMP

• Explanation: The participant does not support serving an ACS snapshot at the requested

timestamp, likely because some concurrent processing has not yet finished.

• Resolution: Make sure that the specified timestamp has been obtained from the participant

in some way. If so, retry after a bit (possibly repeatedly).

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status ABORTED including a detailed error message.

• Scaladocs: INVALID_ACS_SNAPSHOT_TIMESTAMP

INVALID_ARGUMENT_REPAIR

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: INVALID_ARGUMENT_REPAIR

UNAVAILABLE_ACS_SNAPSHOT

• Explanation: The participant does not support serving an ACS snapshot at the requested

timestamp because its database has already been pruned, e.g., by the continuous background

pruning process.

• Resolution: The snapshot at the requested timestamp is no longer available. Pick a more re-

cent timestamp if possible.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: UNAVAILABLE_ACS_SNAPSHOT

UNSUPPORTED_PROTOCOL_VERSION_PARTICIPANT

• Explanation: The participant does not support the requested protocol version.

• Resolution: Specify a protocol version that the participant supports or upgrade the participant

to a release that supports the requested protocol version.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: UNSUPPORTED_PROTOCOL_VERSION_PARTICIPANT

1460 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/participant/admin/RepairServiceError\protect \TU\textdollar \protect \TU\textdollar InvalidAcsSnapshotTimestamp\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/admin/RepairServiceError\protect \TU\textdollar \protect \TU\textdollar InvalidArgument\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/admin/RepairServiceError\protect \TU\textdollar \protect \TU\textdollar UnavailableAcsSnapshot\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/admin/RepairServiceError\protect \TU\textdollar \protect \TU\textdollar UnsupportedProtocolVersionParticipant\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

1.35.10.48 2.7. IndexErrors

1.35.10.49 2.7.1. DatabaseErrors

INDEX_DB_INVALID_RESULT_SET

• Explanation: This error occurs if the result set returned by a query against the Index database

is invalid.

• Resolution: Contact support.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on the

API with grpc-status INTERNAL without any details for security reasons.

• Scaladocs: INDEX_DB_INVALID_RESULT_SET

INDEX_DB_SQL_NON_TRANSIENT_ERROR

• Explanation: This error occurs if a non-transient error arises when executing a query against

the index database.

• Resolution: Contact the participant operator.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on the

API with grpc-status INTERNAL without any details for security reasons.

• Scaladocs: INDEX_DB_SQL_NON_TRANSIENT_ERROR

INDEX_DB_SQL_TRANSIENT_ERROR

• Explanation: This error occurs if a transient error arises when executing a query against the

index database.

• Resolution: Re-submit the request.

• Category: TransientServerFailure

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status UNAVAILABLE including a detailed error message.

• Scaladocs: INDEX_DB_SQL_TRANSIENT_ERROR

1.35.10.50 2.8. PruningServiceError

INTERNAL_PRUNING_ERROR

• Explanation: Pruning has failed because of an internal server error.

• Resolution: Identify the error in the server log.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on the

API with grpc-status INTERNAL without any details for security reasons.

• Scaladocs: INTERNAL_PRUNING_ERROR

1.35. Error Codes 1461

../../canton/scaladoc/com/digitalasset/canton/ledger/error/IndexErrors\protect \TU\textdollar \protect \TU\textdollar DatabaseErrors\protect \TU\textdollar \protect \TU\textdollar ResultSetError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/IndexErrors\protect \TU\textdollar \protect \TU\textdollar DatabaseErrors\protect \TU\textdollar \protect \TU\textdollar SqlNonTransientError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/IndexErrors\protect \TU\textdollar \protect \TU\textdollar DatabaseErrors\protect \TU\textdollar \protect \TU\textdollar SqlTransientError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/admin/grpc/PruningServiceError\protect \TU\textdollar \protect \TU\textdollar InternalServerError\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

NON_CANTON_OFFSET

• Explanation: The supplied offset has an unexpected lengths.

• Resolution: Ensure the offset has originated from this participant and is 9 bytes in length.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: NON_CANTON_OFFSET

PRUNING_NOT_SUPPORTED_IN_COMMUNITY_EDITION

• Explanation: Pruning is not supported in the Community Edition.

• Resolution: Upgrade to the Enterprise Edition.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: PRUNING_NOT_SUPPORTED_IN_COMMUNITY_EDITION

SHUTDOWN_INTERRUPTED_PRUNING

• Explanation: Pruning has been aborted because the participant is shutting down.

• Resolution: After the participant is restarted, the participant ensures that it is in a consistent

state. Therefore no intervention is necessary. After the restart, pruning can be invoked again

as usual to prune the participant up to the desired offset.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: SHUTDOWN_INTERRUPTED_PRUNING

UNSAFE_TO_PRUNE

• Explanation: Pruning is not possible at the specified offset at the current time.

• Resolution: Specify a lower offset or retry pruning after a while. Generally, you can only prune

older events. In particular, the eventsmust be older than the sumofmediator reaction timeout

and participant timeout for every domain. And, you can only prune events that are older than

the deduplication time configured for this participant. Therefore, if you observe this error, you

either just prune older events or you adjust the settings for this participant. The error details

field safe_offset contains the highest offset that can currently be pruned, if any.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: UNSAFE_TO_PRUNE

1462 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/participant/admin/grpc/PruningServiceError\protect \TU\textdollar \protect \TU\textdollar NonCantonOffset\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/admin/grpc/PruningServiceError\protect \TU\textdollar \protect \TU\textdollar PruningNotSupportedInCommunityEdition\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/admin/grpc/PruningServiceError\protect \TU\textdollar \protect \TU\textdollar ParticipantShuttingDown\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/admin/grpc/PruningServiceError\protect \TU\textdollar \protect \TU\textdollar UnsafeToPrune\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

1.35.10.51 2.9. CantonPackageServiceError

PACKAGE_OR_DAR_REMOVAL_ERROR

• Explanation: Errors raised by the Package Service on package removal.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: PACKAGE_OR_DAR_REMOVAL_ERROR

1.35.10.52 2.10. ParticipantReplicationServiceError

PARTICIPANT_REPLICATION_INTERNAL_ERROR

• Explanation: Internal error emitted upon internal participant replication errors

• Resolution: Contact support

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on the

API with grpc-status INTERNAL without any details for security reasons.

• Scaladocs: PARTICIPANT_REPLICATION_INTERNAL_ERROR

PARTICIPANT_REPLICATION_NOT_SUPPORTED_BY_STORAGE

• Explanation: Error emitted if the supplied storage configuration does not support replication.

• Resolution: Use a participant storage backend supporting replication.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: PARTICIPANT_REPLICATION_NOT_SUPPORTED_BY_STORAGE

1.35.10.53 2.11. CommonErrors

REQUEST_TIME_OUT

• Explanation: This rejection is given when a request processing status is not known and a

time-out is reached.

• Resolution: Retry for transient problems. If non-transient contact the operator as the time-out

limit might be too short.

• Category: DeadlineExceededRequestStateUnknown

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status DEADLINE_EXCEEDED including a detailed error message.

• Scaladocs: REQUEST_TIME_OUT

1.35. Error Codes 1463

../../canton/scaladoc/com/digitalasset/canton/participant/admin/CantonPackageServiceError\protect \TU\textdollar \protect \TU\textdollar PackageRemovalErrorCode\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/admin/grpc/ParticipantReplicationServiceError\protect \TU\textdollar \protect \TU\textdollar InternalError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/admin/grpc/ParticipantReplicationServiceError\protect \TU\textdollar \protect \TU\textdollar UnsupportedConfig\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/CommonErrors\protect \TU\textdollar \protect \TU\textdollar RequestTimeOut\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

SERVER_IS_SHUTTING_DOWN

• Explanation: This rejection is given when the participant server is shutting down.

• Resolution: Contact the participant operator.

• Category: TransientServerFailure

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status UNAVAILABLE including a detailed error message.

• Scaladocs: SERVER_IS_SHUTTING_DOWN

SERVICE_INTERNAL_ERROR

• Explanation: This error occurs if one of the services encountered an unexpected exception.

• Resolution: Contact support.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on the

API with grpc-status INTERNAL without any details for security reasons.

• Scaladocs: SERVICE_INTERNAL_ERROR

SERVICE_NOT_RUNNING

• Explanation: This rejection is given when the requested service has already been closed.

• Resolution: Retry re-submitting the request. If the error persists, contact the participant oper-

ator.

• Category: TransientServerFailure

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status UNAVAILABLE including a detailed error message.

• Scaladocs: SERVICE_NOT_RUNNING

UNSUPPORTED_OPERATION

• Explanation: This error category is used to signal that an unimplemented code-path has been

triggered by a client or participant operator request.

• Resolution: This error is caused by a participant node misconfiguration or by an implementa-

tion bug. Resolution requires participant operator intervention.

• Category: InternalUnsupportedOperation

• Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on the

API with grpc-status UNIMPLEMENTED without any details for security reasons.

• Scaladocs: UNSUPPORTED_OPERATION

1464 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/ledger/error/CommonErrors\protect \TU\textdollar \protect \TU\textdollar ServerIsShuttingDown\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/CommonErrors\protect \TU\textdollar \protect \TU\textdollar ServiceInternalError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/CommonErrors\protect \TU\textdollar \protect \TU\textdollar ServiceNotRunning\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ledger/error/CommonErrors\protect \TU\textdollar \protect \TU\textdollar UnsupportedOperation\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

1.35.10.54 3. EthereumErrors

1.35.10.55 3.1. ConfigurationErrors

AHEAD_OF_HEAD

• Explanation: This warning is logged on startup if the sequencer is configured to only start

reading from a block that wasn’t mined yet by the blockchain (e.g. sequencer is supposed to

start reading from block 500, but the latest block is only 100). This is likely due to a misconfig-

uration.

• Resolution: This issue frequently occurs when the blockchain is reset but the sequencer

database configuration isnot updatedor the sequencer database (whichpersists the last block

that was read by the sequencer) is not reset. Validate these settings and ensure that the se-

quencer is still reading from the same blockchain.

• Category: BackgroundProcessDegradationWarning

• Conveyance: This error is logged with log-level WARN on the server side.

• Scaladocs: AHEAD_OF_HEAD

ATTEMPT_TO_CHANGE_IMMUTABLE_VALUE

• Explanation: The sequencer smart contract has detected that a value that is immutable af-

ter being set for the first time (either the signing tolerance or the topology manager ID) was

attempted to be changed. Most frequently this error occurs during testing when a Canton

Ethereumsequencer processwithout persistence is restartedwhile pointing to the samesmart

sequencer contract. An Ethereum sequencer attempts to set the topology manager ID during

initialization, however, without persistence the topology manager ID is randomly regenerated

on the restart which leads to the sequencer attempting to change the topology manager ID in

the sequencer smart contract.

• Resolution: Deploy a new instance of the sequencer contract and configure the Ethereum se-

quencer to use that instance. If the errors occur because an Ethereum sequencer process is

restarted without persistence, deploy a fresh instance of the sequencer contract and configure

persistence for restarts.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: ATTEMPT_TO_CHANGE_IMMUTABLE_VALUE

BESU_VERSION_MISMATCH

• Explanation: This error is loggedwhen the sequencer detects that the version of the Besu client

it connects to is not what is expected / supported.

• Resolution: Either deploy the documented required version or set canton.parame-

ters.non-standard-config = true.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: BESU_VERSION_MISMATCH

1.35. Error Codes 1465

../../canton/scaladoc/com/digitalasset/canton/error/EthereumErrors\protect \TU\textdollar \protect \TU\textdollar ConfigurationErrors\protect \TU\textdollar \protect \TU\textdollar AheadOfHead\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/error/EthereumErrors\protect \TU\textdollar \protect \TU\textdollar ConfigurationErrors\protect \TU\textdollar \protect \TU\textdollar AttemptToChangeImmutableValue\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/error/EthereumErrors\protect \TU\textdollar \protect \TU\textdollar ConfigurationErrors\protect \TU\textdollar \protect \TU\textdollar BesuVersionMismatch\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

ETHEREUM_CANT_QUERY_VERSION

• Explanation: As one of the first steps when initializing a Besu sequencer, Canton attempts to

query the version (attribute) of the Sequencer.sol contract.

• Resolution: Usually, the root cause of this is a deployment or configuration problem. Ensure

that a Sequencer.sol contract is deployed on the configured address on the latest block when

attempting to initialize the Canton Besu sequencer node. If this error persists, amalicious user

may be attempting to interfere with the Ethereum network.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level WARN on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: ETHEREUM_CANT_QUERY_VERSION

MANY_BLOCKS_BEHIND_HEAD

• Explanation: This error is logged when the sequencer is currently processing blocks that are

very far behind the head of the blockchain of the connected Ethereum network. The Ethereum

sequencer won’t observe new transactions in the blockchain until it has caught up to the head.

This may take a long time depending on the blockchain length and number of Canton transac-

tion in the blocks. Empirically, we have observed that the Canton sequencer processes roughly

500 empty blocks/second. This may vary strongly for non-empty blocks. The sequencer logs

once it has caught up to within blocksBehindBlockchainHead blocks behind the blockchain head.

• Resolution: Wait until the sequencer has caught up to theheadof the blockchain. Alternatively,

consider changing the configuration of block-to-read-from of the Ethereum sequencer when ini-

tializing it against an Ethereum network that already mined a lot of blocks.

• Category: BackgroundProcessDegradationWarning

• Conveyance: This error is logged with log-level WARN on the server side.

• Scaladocs: MANY_BLOCKS_BEHIND_HEAD

NOT_FREE_GAS_NETWORK

• Explanation: This error is logged when during setup the sequencer detects that it isn’t con-

nected to a free-gas network. This usually leads to transactions silently being dropped by

Ethereum nodes. You should only use a non-free-gas network, if you have configured an

Ethereum wallet for the sequencer to use and have given it gas.

• Resolution: Change the configuration of the Ethereum network to a free-gas network.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: NOT_FREE_GAS_NETWORK

1466 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/error/EthereumErrors\protect \TU\textdollar \protect \TU\textdollar ConfigurationErrors\protect \TU\textdollar \protect \TU\textdollar UnableToQueryVersion\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/error/EthereumErrors\protect \TU\textdollar \protect \TU\textdollar ConfigurationErrors\protect \TU\textdollar \protect \TU\textdollar ManyBlocksBehindHead\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/error/EthereumErrors\protect \TU\textdollar \protect \TU\textdollar ConfigurationErrors\protect \TU\textdollar \protect \TU\textdollar NotFreeGasNetwork\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

WRONG_EVM_BYTECODE

• Explanation: Canton validates on startup that the configured address on the blockchain con-

tains the EVMbytecode of the sequencer smart contract in the latest block. This error indicates

that no bytecode or the wrong bytecode was found. This is a serious error and means that the

sequencer can’t sequence events.

• Resolution: This frequently error occurs when updating the Canton system without updating

the sequencer contract deployed on the blockchain. Validate that the sequencer contract cor-

responding to the current Canton release is deployed in the latest blockchain blocks on the

configured address. Another common reason for this error is that the wrong contract address

was configured.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level WARN on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: WRONG_EVM_BYTECODE

1.35.10.56 3.2. TransactionErrors

ETHEREUM_TRANSACTION_INVALID

• Explanation: This error happens when the Sequencer Ethereum application reads a transac-

tion from the blockchain which ismalformed (e.g, invalidmember, arguments aren’t parseable

or too large). This could happen if a malicious or faulty Ethereum Sequencer node is placing

faulty data on the blockchain.

• Resolution: Generally, Canton should recover automatically from this error. The faulty trans-

actions are simply skipped by all non-malicious/non-faulty sequencers in a deterministic way,

so the integrity of the event stream across sequencer nodes should be maintained. If you con-

tinue to see this error, investigate whether some of the sequencer nodes in the network are

misbehaving.

• Category: SecurityAlert

• Conveyance: This error is logged with log-level WARN on the server side. It is exposed on the

API with grpc-status INVALID_ARGUMENT without any details for security reasons.

• Scaladocs: ETHEREUM_TRANSACTION_INVALID

ETHEREUM_TRANSACTION_RECEIPT_FETCHING_FAILED

• Explanation: This error occurs when the Ethereum sequencer attempts to fetch the transac-

tion receipt for a previously submitted transaction but receives an exception. Usually, this

is caused by network errors, the Ethereum client node being overloaded or the Ethereum se-

quencer reaching its transactionReceiptPollingAttempts for a given transaction. The fetching of

transaction receipts of submitted transactions is separate from the Ethereum sequencer’s

read-stream used to ingest new transactions. Thus, in this sense, this error is purely infor-

mative and can be caused by transient issues (such as a transient network outage). Note, that

the Canton noncemanager refreshes his cache whenever this error occurs whichmay unblock

stuck transactions with a too-high nonce.

• Resolution: Usually, this error should resolve by itself. If you frequently see this error, ensure

that the Ethereum account of the Ethereum sequencer is used by no one else and that the

Ethereum client doesn’t drop submitted transactions through being overloaded or reaching a

full txpool. If this errors keeps occurring, please contact support.

1.35. Error Codes 1467

../../canton/scaladoc/com/digitalasset/canton/error/EthereumErrors\protect \TU\textdollar \protect \TU\textdollar ConfigurationErrors\protect \TU\textdollar \protect \TU\textdollar WrongEVMBytecode\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/error/EthereumErrors\protect \TU\textdollar \protect \TU\textdollar TransactionErrors\protect \TU\textdollar \protect \TU\textdollar InvalidTransaction\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

• Category: BackgroundProcessDegradationWarning

• Conveyance: This error is logged with log-level WARN on the server side.

• Scaladocs: ETHEREUM_TRANSACTION_RECEIPT_FETCHING_FAILED

ETHEREUM_TRANSACTION_SUBMISSION_FAILED

• Explanation: This error is logged when the Sequencer Ethereum application receives an er-

ror when attempting to submit a transaction to the transaction pool of the Ethereum client.

Common causes for this are network errors, or when the Ethereum account of the Sequencer

Ethereum application is used by another application. Less commonly, this error might also

indirectly be caused if the transaction pool of the Ethereum client is full or flushed.

• Resolution: Generally, Canton should recover automatically from this error. If you continue

to see this error, investigate possible root causes such as poor network connections, if the

Ethereumwallet of the EthereumSequencer application is being reusedby another application,

and the health of the Ethereum client.

• Category: BackgroundProcessDegradationWarning

• Conveyance: This error is logged with log-level WARN on the server side.

• Scaladocs: ETHEREUM_TRANSACTION_SUBMISSION_FAILED

1.35.10.57 4. TopologyManagementErrorGroup

1.35.10.58 4.1. TopologyManagerError

DUPLICATE_TOPOLOGY_TRANSACTION

• Explanation: This error indicates that a transaction has already been added previously.

• Resolution: Nothing to do as the transaction is already registered. Note however that a revoca-

tion is ” + final. If you want to re-enable a statement, you need to re-issue an new transaction.

• Category: InvalidGivenCurrentSystemStateResourceExists

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status ALREADY_EXISTS including a detailed error message.

• Scaladocs: DUPLICATE_TOPOLOGY_TRANSACTION

INCREASE_OF_LEDGER_TIME_RECORD_TIME_TOLERANCE

• Explanation: This error indicates that it has been attempted to increase the ledgerTimeRe­

cordTimeTolerance domain parameter in an insecure manner. Increasing this parameter

may disable security checks and can therefore be a security risk.

• Resolution: Make sure that the new value of ledgerTimeRecordTimeTolerance is at most

half of the mediatorDeduplicationTimeout domain parameter. Use myDomain.service.

set_ledger_time_record_time_tolerance for securely increasing ledgerTimeRecord-

TimeTolerance. Alternatively, add the force = true flag to your command, if security is not a

concern for you. The security checkswill be effective again after twice thenewvalue ofledger­

TimeRecordTimeTolerance. Using force = true is safe upon domain bootstrapping.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: INCREASE_OF_LEDGER_TIME_RECORD_TIME_TOLERANCE

1468 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/error/EthereumErrors\protect \TU\textdollar \protect \TU\textdollar TransactionErrors\protect \TU\textdollar \protect \TU\textdollar ReceiptFetchingFailed\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/error/EthereumErrors\protect \TU\textdollar \protect \TU\textdollar TransactionErrors\protect \TU\textdollar \protect \TU\textdollar SubmissionFailed\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/topology/TopologyManagerError\protect \TU\textdollar \protect \TU\textdollar DuplicateTransaction\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/topology/TopologyManagerError\protect \TU\textdollar \protect \TU\textdollar IncreaseOfLedgerTimeRecordTimeTolerance\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

INVALID_DOMAIN

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: INVALID_DOMAIN

INVALID_TOPOLOGY_TX_SIGNATURE_ERROR

• Explanation: This error indicates that the uploaded signed transaction contained an invalid

signature.

• Resolution: Ensure that the transaction is valid and uses a crypto version understood by this

participant.

• Category: SecurityAlert

• Conveyance: This error is logged with log-level WARN on the server side. It is exposed on the

API with grpc-status INVALID_ARGUMENT without any details for security reasons.

• Scaladocs: INVALID_TOPOLOGY_TX_SIGNATURE_ERROR

NO_APPROPRIATE_SIGNING_KEY_IN_STORE

• Explanation: This error results if the topology manager did not find a secret key in its store to

authorize a certain topology transaction.

• Resolution: Inspect your topology transaction and your secret key store and check that you

have the appropriate certificates and keys to issue the desired topology transaction. If the list

of candidates is empty, then you are missing the certificates.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status NOT_FOUND including a detailed error message.

• Scaladocs: NO_APPROPRIATE_SIGNING_KEY_IN_STORE

NO_CORRESPONDING_ACTIVE_TX_TO_REVOKE

• Explanation: This error indicates that the attempt to add a removal transaction was rejected,

as the mapping / element affecting the removal did not exist.

• Resolution: Inspect the topology state and ensure themapping and the element id of the active

transaction you are trying to revoke matches your revocation arguments.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: NO_CORRESPONDING_ACTIVE_TX_TO_REVOKE

1.35. Error Codes 1469

../../canton/scaladoc/com/digitalasset/canton/topology/TopologyManagerError\protect \TU\textdollar \protect \TU\textdollar WrongDomain\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/topology/TopologyManagerError\protect \TU\textdollar \protect \TU\textdollar InvalidSignatureError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/topology/TopologyManagerError\protect \TU\textdollar \protect \TU\textdollar NoAppropriateSigningKeyInStore\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/topology/TopologyManagerError\protect \TU\textdollar \protect \TU\textdollar NoCorrespondingActiveTxToRevoke\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

PUBLIC_KEY_NOT_IN_STORE

• Explanation: This error indicates that a command contained a fingerprint referring to a public

key not being present in the public key store.

• Resolution: Upload the public key to the public key store using $node.keys.public.load(.) before

retrying.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: PUBLIC_KEY_NOT_IN_STORE

REMOVING_KEY_DANGLING_TRANSACTIONS_MUST_BE_FORCED

• Explanation: This error indicates that the attempted key removal would create dangling topol-

ogy transactions, making the node unusable.

• Resolution: Add the force = true flag to your command if you are really sure what you are doing.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: REMOVING_KEY_DANGLING_TRANSACTIONS_MUST_BE_FORCED

REMOVING_LAST_KEY_MUST_BE_FORCED

• Explanation: This error indicates that the attempted key removal would remove the last valid

key of the given entity, making the node unusable.

• Resolution: Add the force = true flag to your command if you are really sure what you are doing.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: REMOVING_LAST_KEY_MUST_BE_FORCED

SECRET_KEY_NOT_IN_STORE

• Explanation: This error indicates that the secret key with the respective fingerprint can not be

found.

• Resolution: Ensure you only use fingerprints of secret keys stored in your secret key store.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: SECRET_KEY_NOT_IN_STORE

1470 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/topology/TopologyManagerError\protect \TU\textdollar \protect \TU\textdollar PublicKeyNotInStore\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/topology/TopologyManagerError\protect \TU\textdollar \protect \TU\textdollar RemovingKeyWithDanglingTransactionsMustBeForced\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/topology/TopologyManagerError\protect \TU\textdollar \protect \TU\textdollar RemovingLastKeyMustBeForced\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/topology/TopologyManagerError\protect \TU\textdollar \protect \TU\textdollar SecretKeyNotInStore\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

SERIAL_MISMATCH

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: SERIAL_MISMATCH

TOPOLOGY_MANAGER_ALARM

• Explanation: The topology manager has received a malformed message from another node.

• Resolution: Inspect the error message for details.

• Category: SecurityAlert

• Conveyance: This error is logged with log-level WARN on the server side. It is exposed on the

API with grpc-status INVALID_ARGUMENT without any details for security reasons.

• Scaladocs: TOPOLOGY_MANAGER_ALARM

TOPOLOGY_MANAGER_INTERNAL_ERROR

• Explanation: This error indicates that there was an internal error within the topologymanager.

• Resolution: Inspect error message for details.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on the

API with grpc-status INTERNAL without any details for security reasons.

• Scaladocs: TOPOLOGY_MANAGER_INTERNAL_ERROR

TOPOLOGY_MAPPING_ALREADY_EXISTS

• Explanation: This error indicates that a topology transaction would create a state that already

exists and has been authorized with the same key.

• Resolution: Your intended change is already in effect.

• Category: InvalidGivenCurrentSystemStateResourceExists

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status ALREADY_EXISTS including a detailed error message.

• Scaladocs: TOPOLOGY_MAPPING_ALREADY_EXISTS

UNAUTHORIZED_TOPOLOGY_TRANSACTION

• Explanation: This error indicates that the attempt to add a transaction was rejected, as the

signing key is not authorized within the current state.

• Resolution: Inspect the topology state and ensure that valid namespace or identifier delega-

tions of the signing key exist or upload them before adding this transaction.

• Category: SecurityAlert

• Conveyance: This error is logged with log-level WARN on the server side. It is exposed on the

API with grpc-status INVALID_ARGUMENT without any details for security reasons.

• Scaladocs: UNAUTHORIZED_TOPOLOGY_TRANSACTION

1.35. Error Codes 1471

../../canton/scaladoc/com/digitalasset/canton/topology/TopologyManagerError\protect \TU\textdollar \protect \TU\textdollar SerialMismatch\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/topology/TopologyManagerError\protect \TU\textdollar \protect \TU\textdollar TopologyManagerAlarm\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/topology/TopologyManagerError\protect \TU\textdollar \protect \TU\textdollar InternalError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/topology/TopologyManagerError\protect \TU\textdollar \protect \TU\textdollar MappingAlreadyExists\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/topology/TopologyManagerError\protect \TU\textdollar \protect \TU\textdollar UnauthorizedTransaction\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

1.35.10.59 4.1.1. DomainTopologyManagerError

ALIEN_DOMAIN_ENTITIES

• Explanation: This error is returned if a transaction attempts to add keys for alien domainman-

ager or sequencer entities to this domain topology manager.

• Resolution: Use a participant topology manager if you want to manage foreign domain keys

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: ALIEN_DOMAIN_ENTITIES

FAILED_TO_ADD_MEMBER

• Explanation: This error indicates an external issue with the member addition hook.

• Resolution: Consult the error details.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on the

API with grpc-status INTERNAL without any details for security reasons.

• Scaladocs: FAILED_TO_ADD_MEMBER

MALICOUS_OR_FAULTY_ONBOARDING_REQUEST

• Category: SecurityAlert

• Conveyance: This error is logged with log-level WARN on the server side. It is exposed on the

API with grpc-status INVALID_ARGUMENT without any details for security reasons.

• Scaladocs: MALICOUS_OR_FAULTY_ONBOARDING_REQUEST

PARTICIPANT_NOT_INITIALIZED

• Explanation: This error is returned if a domain topology manager attempts to activate a par-

ticipant without having all necessary data, such as keys or domain trust certificates.

• Resolution: Register the necessary keys or trust certificates and try again.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: PARTICIPANT_NOT_INITIALIZED

WRONG_DOMAIN

• Explanation: This error is returned if a transaction restricted to a domain should be added to

another domain.

• Resolution: Recreate the content of the transaction with a correct domain identifier.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: WRONG_DOMAIN

1472 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/domain/topology/DomainTopologyManagerError\protect \TU\textdollar \protect \TU\textdollar AlienDomainEntities\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/domain/topology/DomainTopologyManagerError\protect \TU\textdollar \protect \TU\textdollar FailedToAddMember\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/domain/topology/DomainTopologyManagerError\protect \TU\textdollar \protect \TU\textdollar InvalidOrFaultyOnboardingRequest\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/domain/topology/DomainTopologyManagerError\protect \TU\textdollar \protect \TU\textdollar ParticipantNotInitialized\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/domain/topology/DomainTopologyManagerError\protect \TU\textdollar \protect \TU\textdollar WrongDomain\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

WRONG_PROTOCOL_VERSION

• Explanation: This error is returned if a transaction has a protocol version different than the

one spoken on the domain.

• Resolution: Recreate the transaction with a correct protocol version.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: WRONG_PROTOCOL_VERSION

1.35.10.60 4.1.2. ParticipantTopologyManagerError

CANNOT_VET_DUE_TO_MISSING_PACKAGES

• Explanation: This error indicates that a package vetting command failed due to packages not

existing locally. This can be due to either the packages not being present or their dependencies

being missing. When vetting a package, the package must exist on the participant, as other-

wise the participant will not be able to process a transaction relying on a particular package.

• Resolution: Ensure that the package exists locally before issuing such a transaction.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status NOT_FOUND including a detailed error message.

• Scaladocs: CANNOT_VET_DUE_TO_MISSING_PACKAGES

DANGEROUS_KEY_USE_COMMAND_REQUIRES_FORCE

• Explanation: This error indicates that a dangerous owner to key mapping authorization was

rejected. This is the case if a command is run that could break a participant. If the command

was run to assign a key for the given participant, then the command was rejected because the

key is not in the participants private store. If the command is run on a participant to issue

transactions for another participant, then such commands must be run with force, as they

are very dangerous and could easily break the participant. As an example, if we assign an

encryption key to a participant that the participant does not have, then the participant will be

unable to process an incoming transaction. Therefore we must be very careful to not create

such situations.

• Resolution: Set force=true if you really know what you are doing.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: DANGEROUS_KEY_USE_COMMAND_REQUIRES_FORCE

1.35. Error Codes 1473

../../canton/scaladoc/com/digitalasset/canton/domain/topology/DomainTopologyManagerError\protect \TU\textdollar \protect \TU\textdollar WrongProtocolVersion\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/topology/ParticipantTopologyManagerError\protect \TU\textdollar \protect \TU\textdollar CannotVetDueToMissingPackages\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/topology/ParticipantTopologyManagerError\protect \TU\textdollar \protect \TU\textdollar DangerousKeyUseCommandRequiresForce\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

DANGEROUS_VETTING_COMMANDS_REQUIRE_FORCE

• Explanation: This error indicates that a dangerous package vetting command was rejected.

This is the case if a vetting command, if not run correctly, could potentially lead to a ledger fork.

The vetting authorization checks the participant for the presence of the given set of packages

(including their dependencies) and allows only to vet for the given participant id. In rare cases

where a more centralised topology manager is used, this behaviour can be overridden with

force. However, if a package is vetted but not present on the participant, the participant will

refuse to process any transaction of the given domain until the problematic package has been

uploaded.

• Resolution: Set force=true if you really know what you are doing.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: DANGEROUS_VETTING_COMMANDS_REQUIRE_FORCE

DEPENDENCIES_NOT_VETTED

• Explanation: This error indicates a vetting request failed due to dependencies not being vet-

ted. On every vetting request, the set supplied packages is analysed for dependencies. The

system requires that not only the main packages are vetted explicitly but also all dependen-

cies. This is necessary as not all participants are required to have the same packages installed

and therefore not every participant can resolve the dependencies implicitly.

• Resolution: Vet the dependencies first and then repeat your attempt.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: DEPENDENCIES_NOT_VETTED

DISABLE_PARTY_WITH_ACTIVE_CONTRACTS_REQUIRES_FORCE

• Explanation: This error indicates that a dangerous PartyToParticipant mapping deletion was

rejected. If the command is run and there are active contracts where the party is a stakeholder

these contracts will become inoperable and will never get pruned, leaking storage.

• Resolution: Set force=true if you really know what you are doing.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: DISABLE_PARTY_WITH_ACTIVE_CONTRACTS_REQUIRES_FORCE

1474 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/participant/topology/ParticipantTopologyManagerError\protect \TU\textdollar \protect \TU\textdollar DangerousVettingCommandsRequireForce\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/topology/ParticipantTopologyManagerError\protect \TU\textdollar \protect \TU\textdollar DependenciesNotVetted\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/topology/ParticipantTopologyManagerError\protect \TU\textdollar \protect \TU\textdollar DisablePartyWithActiveContractsRequiresForce\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

UNINITIALIZED_PARTICIPANT

• Explanation: This error indicates that a request involving topology management was at-

tempted on a participant that is not yet initialised. During initialisation, only namespace and

identifier delegations can be managed.

• Resolution: Initialise the participant and retry.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: UNINITIALIZED_PARTICIPANT

1.35.10.61 4.1.3. Domain

DOMAIN_NODE_INITIALISATION_FAILED

• Explanation: This error indicates that the initialisation of a domain node failed due to invalid

arguments.

• Resolution: Consult the error details.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: DOMAIN_NODE_INITIALISATION_FAILED

1.35.10.62 4.1.3.1. GrpcSequencerAuthenticationService

CLIENT_AUTHENTICATION_FAULTY

• Explanation: This error indicates that a client failed to authenticate with the sequencer due to

a reason possibly pointing out to faulty or malicious behaviour. The message is logged on the

server in order to support an operator to provide explanations to clients struggling to connect.

• Category: SecurityAlert

• Conveyance: This error is logged with log-level WARN on the server side.

• Scaladocs: CLIENT_AUTHENTICATION_FAULTY

CLIENT_AUTHENTICATION_REJECTED

• Explanation: This error indicates that a client failed to authenticate with the sequencer. The

message is logged on the server in order to support an operator to provide explanations to

clients struggling to connect.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side.

• Scaladocs: CLIENT_AUTHENTICATION_REJECTED

1.35. Error Codes 1475

../../canton/scaladoc/com/digitalasset/canton/participant/topology/ParticipantTopologyManagerError\protect \TU\textdollar \protect \TU\textdollar UninitializedParticipant\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/domain/Domain\protect \TU\textdollar \protect \TU\textdollar FailedToInitialiseDomainNode\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/domain/sequencing/service/GrpcSequencerAuthenticationService\protect \TU\textdollar \protect \TU\textdollar SequencerAuthenticationFaultyOrMalicious\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/domain/sequencing/service/GrpcSequencerAuthenticationService\protect \TU\textdollar \protect \TU\textdollar SequencerAuthenticationFailure\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

1.35.10.63 4.2. DomainTopologySender

TOPOLOGY_DISPATCHING_DEGRADATION

• Explanation: This warning occurs when the topology dispatcher experiences timeouts while

trying to register topology transactions.

• Resolution: This error should normally self-recover due to retries. If issue persist, contact sup-

port and investigate system state.

• Category: BackgroundProcessDegradationWarning

• Conveyance: This error is logged with log-level WARN on the server side.

• Scaladocs: TOPOLOGY_DISPATCHING_DEGRADATION

TOPOLOGY_DISPATCHING_INTERNAL_ERROR

• Explanation: This error is emitted if there is a fundamental, un-expected situation during

topology dispatching. In such a situation, the topology state of a newly onboarded participant

or of all domain members might become outdated

• Resolution: Contact support.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on the

API with grpc-status INTERNAL without any details for security reasons.

• Scaladocs: TOPOLOGY_DISPATCHING_INTERNAL_ERROR

1.35.10.64 5. ConfigErrors

CANNOT_PARSE_CONFIG_FILES

• Explanation: This error is usually thrown because a config file doesn’t contain configs in valid

HOCON format. The most common cause of an invalid HOCON format is a forgotten bracket.

• Resolution: Make sure that all files are in valid HOCON format.

• Category: InvalidIndependentOfSystemState

• Conveyance: Config errors are logged and output to stdout if starting Canton with a given con-

figuration fails

• Scaladocs: CANNOT_PARSE_CONFIG_FILES

CANNOT_READ_CONFIG_FILES

• Explanation: This error is usually thrown when Canton can’t find a given configuration file.

• Resolution: Make sure that the path and name of all configuration files is correctly specified.

• Category: InvalidIndependentOfSystemState

• Conveyance: Config errors are logged and output to stdout if starting Canton with a given con-

figuration fails

• Scaladocs: CANNOT_READ_CONFIG_FILES

1476 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/domain/topology/DomainTopologySender\protect \TU\textdollar \protect \TU\textdollar TopologyDispatchingDegradation\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/domain/topology/DomainTopologySender\protect \TU\textdollar \protect \TU\textdollar TopologyDispatchingInternalError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/config/ConfigErrors\protect \TU\textdollar \protect \TU\textdollar CannotParseFilesError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/config/ConfigErrors\protect \TU\textdollar \protect \TU\textdollar CannotReadFilesError\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

CONFIG_SUBSTITUTION_ERROR

• Resolution: A common cause of this error is attempting to use an environment variable that

isn’t defined within a config-file.

• Category: InvalidIndependentOfSystemState

• Conveyance: Config errors are logged and output to stdout if starting Canton with a given con-

figuration fails

• Scaladocs: CONFIG_SUBSTITUTION_ERROR

CONFIG_VALIDATION_ERROR

• Category: InvalidIndependentOfSystemState

• Conveyance: Config errors are logged and output to stdout if starting Canton with a given con-

figuration fails

• Scaladocs: CONFIG_VALIDATION_ERROR

GENERIC_CONFIG_ERROR

• Resolution: In general, this can be one of many errors since this is the ‘miscellaneous cate-

gory’ of configuration errors. One of the more common errors in this category is an ‘unknown

key’ error. This error usually means that a keyword that is not valid (e.g. it may have a typo

‘bort’ instead of ‘port’), or that a valid keyword at the wrong part of the configuration hierarchy

was used (e.g. to enable database replication for a participant, the correct configuration is can-

ton.participants.participant2.replication.enabled = true and not canton.participants.replication.enabled

= true). Please refer to the scaladoc of either CantonEnterpriseConfig or CantonCommunityConfig

(depending on whether the community or enterprise version is used) to find the valid configu-

ration keywords and the correct position in the configuration hierarchy.

• Category: InvalidIndependentOfSystemState

• Conveyance: Config errors are logged and output to stdout if starting Canton with a given con-

figuration fails

• Scaladocs: GENERIC_CONFIG_ERROR

1.35. Error Codes 1477

../../canton/scaladoc/com/digitalasset/canton/config/ConfigErrors\protect \TU\textdollar \protect \TU\textdollar SubstitutionError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/config/ConfigErrors\protect \TU\textdollar \protect \TU\textdollar ValidationError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/config/ConfigErrors\protect \TU\textdollar \protect \TU\textdollar GenericConfigError\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

NO_CONFIG_FILES

• Category: InvalidIndependentOfSystemState

• Conveyance: Config errors are logged and output to stdout if starting Canton with a given con-

figuration fails

• Scaladocs: NO_CONFIG_FILES

1.35.10.65 6. CommandErrors

CONSOLE_COMMAND_INTERNAL_ERROR

• Category: SystemInternalAssumptionViolated

• Conveyance: These errors are shown as errors on the console.

• Scaladocs: CONSOLE_COMMAND_INTERNAL_ERROR

CONSOLE_COMMAND_TIMED_OUT

• Category: SystemInternalAssumptionViolated

• Conveyance: These errors are shown as errors on the console.

• Scaladocs: CONSOLE_COMMAND_TIMED_OUT

NODE_NOT_STARTED

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: These errors are shown as errors on the console.

• Scaladocs: NODE_NOT_STARTED

1.35.10.66 7. DatabaseStorageError

DB_CONNECTION_LOST

• Explanation: This error indicates that the connection to the database has been lost.

• Resolution: Inspect error message for details.

• Category: BackgroundProcessDegradationWarning

• Conveyance: This error is logged with log-level WARN on the server side.

• Scaladocs: DB_CONNECTION_LOST

DB_STORAGE_DEGRADATION

• Explanation: This error indicates that degradation of database storage components.

• Resolution: This error indicates performance degradation. The error occurs when a database

task has been rejected, typically due to having a too small task queue. The task will be retried

after a delay. If this error occurs frequently, however, you may want to consider increasing the

task queue. (Config parameter: canton.<path-to-my-node>.storage.config.queueSize).

• Category: BackgroundProcessDegradationWarning

• Conveyance: This error is logged with log-level WARN on the server side.

1478 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/config/ConfigErrors\protect \TU\textdollar \protect \TU\textdollar NoConfigFiles\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/console/CommandErrors\protect \TU\textdollar \protect \TU\textdollar CommandInternalError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/console/CommandErrors\protect \TU\textdollar \protect \TU\textdollar ConsoleTimeout\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/console/CommandErrors\protect \TU\textdollar \protect \TU\textdollar NodeNotStarted\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/resource/DatabaseStorageError\protect \TU\textdollar \protect \TU\textdollar DatabaseConnectionLost\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

• Scaladocs: DB_STORAGE_DEGRADATION

1.35.10.67 8. HandshakeErrors

DEPRECATED_PROTOCOL_VERSION

• Explanation: This error is logged or returned if a participant or domain are using deprecated

protocol versions. Deprecated protocol versions might not be secure anymore.

• Resolution: Migrate to a new domain that uses the most recent protocol version.

• Category: SecurityAlert

• Conveyance: This error is logged with log-level WARN on the server side. It is exposed on the

API with grpc-status INVALID_ARGUMENT without any details for security reasons.

• Scaladocs: DEPRECATED_PROTOCOL_VERSION

1.35.10.68 9. FabricErrors

1.35.10.69 9.1. ConfigurationErrors

FABRIC_AHEAD_OF_HEAD

• Explanation: This warning is logged on startup if the sequencer is configured to only start

reading from a block that wasn’t ordered yet by the blockchain (e.g. sequencer is supposed to

start reading from block 500, but the latest block is only 100). This is likely due to a misconfig-

uration.

• Resolution: This issue frequently occurs when the blockchain is reset but the sequencer

database configuration isnot updatedor the sequencer database (whichpersists the last block

that was read by the sequencer) is not reset. Validate these settings and ensure that the se-

quencer is still reading from the same blockchain.

• Category: BackgroundProcessDegradationWarning

• Conveyance: This error is logged with log-level WARN on the server side.

• Scaladocs: FABRIC_AHEAD_OF_HEAD

FABRIC_MANY_BLOCKS_BEHIND_HEAD

• Explanation: This error is logged when the sequencer is currently processing blocks that are

very far behind the head of the blockchain of the connected Fabric network. The Fabric se-

quencer won’t observe new transactions in the blockchain until it has caught up to the head.

This may take a long time depending on the blockchain length and number of Canton transac-

tion in the blocks. Empirically, we have observed that the Canton sequencer processes roughly

500 empty blocks/second. This may vary strongly for non-empty blocks.

• Resolution: Change the configuration of startBlockHeight for the Fabric sequencerwhenworking

with an existing (not fresh) Fabric network. Alternatively, wait until the sequencer has caught

up to the head of the blockchain.

• Category: BackgroundProcessDegradationWarning

• Conveyance: This error is logged with log-level WARN on the server side.

• Scaladocs: FABRIC_MANY_BLOCKS_BEHIND_HEAD

1.35. Error Codes 1479

../../canton/scaladoc/com/digitalasset/canton/resource/DatabaseStorageError\protect \TU\textdollar \protect \TU\textdollar DatabaseStorageDegradation\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/version/HandshakeErrors\protect \TU\textdollar \protect \TU\textdollar DeprecatedProtocolVersion\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/error/FabricErrors\protect \TU\textdollar \protect \TU\textdollar ConfigurationErrors\protect \TU\textdollar \protect \TU\textdollar AheadOfHead\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/error/FabricErrors\protect \TU\textdollar \protect \TU\textdollar ConfigurationErrors\protect \TU\textdollar \protect \TU\textdollar ManyBlocksBehindHead\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

1.35.10.70 9.2. TransactionErrors

FABRIC_TRANSACTION_INVALID

• Explanation: This error happens when the Sequencer Fabric application reads a transaction

from the blockchain which is malformed (e.g, missing arguments, arguments aren’t parseable

or too large). This could happen if a malicious or faulty Fabric Sequencer node is placing faulty

data on the blockchain.

• Resolution: Generally, Canton should recover automatically from this error. The faulty trans-

actions are simply skipped by all non-malicious/non-faulty sequencers in a deterministic way,

so the integrity of the event stream across sequencer nodes should be maintained. If you con-

tinue to see this error, investigate whether some of the sequencer nodes in the network are

misbehaving.

• Category: SecurityAlert

• Conveyance: This error is logged with log-level WARN on the server side. It is exposed on the

API with grpc-status INVALID_ARGUMENT without any details for security reasons.

• Scaladocs: FABRIC_TRANSACTION_INVALID

FABRIC_TRANSACTION_PROPOSAL_SUBMISSION_FAILED

• Explanation: An error happened with the Fabric transaction proposal submissions possibly

due to some of the peers being down or due to network issues. Thus won’t stop the transaction

workflow, because theremight still be enoughsuccessful responses to satisfy the endorsement

policy. Therefore the transactionmight still go through successfully despite this being logged.

• Resolution: Generally, Canton should recover automatically from this error. If you continue to

see this error, investigate possible root causes such as poor network connections, if the Fabric

sequencer is properly configured with enough peers and if they are running.

• Category: TransientServerFailure

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status UNAVAILABLE including a detailed error message.

• Scaladocs: FABRIC_TRANSACTION_PROPOSAL_SUBMISSION_FAILED

FABRIC_TRANSACTION_SUBMISSION_FAILED

• Explanation: This error is logged when the Sequencer Fabric application receives an error dur-

ing any of the transaction flow steps that prevents the submission of a transaction over the

Fabric client. Common causes for this are network errors, peers that are down or that there

aren’t enough configured endorsers.

• Resolution: Generally, Canton should recover automatically from this error. If you continue to

see this error, investigate possible root causes such as poor network connections, if the Fabric

sequencer is properly configured with enough peers and if they are running.

• Category: TransientServerFailure

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status UNAVAILABLE including a detailed error message.

• Scaladocs: FABRIC_TRANSACTION_SUBMISSION_FAILED

1480 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/error/FabricErrors\protect \TU\textdollar \protect \TU\textdollar TransactionErrors\protect \TU\textdollar \protect \TU\textdollar InvalidTransaction\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/error/FabricErrors\protect \TU\textdollar \protect \TU\textdollar TransactionErrors\protect \TU\textdollar \protect \TU\textdollar TransactionProposalSubmissionFailed\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/error/FabricErrors\protect \TU\textdollar \protect \TU\textdollar TransactionErrors\protect \TU\textdollar \protect \TU\textdollar SubmissionFailed\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

1.35.10.71 10. SequencerError

INVALID_ACKNOWLEDGEMENT_SIGNATURE

• Explanation: This error indicates that the sequencer has detected an invalid acknowledge-

ment request signature. This most likely indicates that the request is bogus and has been

created by a malicious sequencer. So it will not get processed.

• Category: SecurityAlert

• Conveyance: This error is logged with log-level WARN on the server side. It is exposed on the

API with grpc-status INVALID_ARGUMENT without any details for security reasons.

• Scaladocs: INVALID_ACKNOWLEDGEMENT_SIGNATURE

INVALID_ACKNOWLEDGEMENT_TIMESTAMP

• Explanation: This error indicates that themember has acknowledgeda timestamp that is after

the events it has received. This violates the sequencing protocol.

• Category: SecurityAlert

• Conveyance: This error is logged with log-level WARN on the server side. It is exposed on the

API with grpc-status INVALID_ARGUMENT without any details for security reasons.

• Scaladocs: INVALID_ACKNOWLEDGEMENT_TIMESTAMP

INVALID_ENVELOPE_SIGNATURE

• Explanation: This error indicates that the sequencer has detected an invalid envelope signa-

ture in the submission request. This most likely indicates that the request is bogus and has

been created by a malicious sequencer. So it will not get processed.

• Category: SecurityAlert

• Conveyance: This error is logged with log-level WARN on the server side. It is exposed on the

API with grpc-status INVALID_ARGUMENT without any details for security reasons.

• Scaladocs: INVALID_ENVELOPE_SIGNATURE

INVALID_LEDGER_EVENT

• Explanation: The sequencer has detected that some event that was placed on the ledger can-

not be parsed. Thismay be due to some sequencer node actingmaliciously or faulty. The event

is ignored and processing continues as usual.

• Category: SecurityAlert

• Conveyance: This error is logged with log-level WARN on the server side. It is exposed on the

API with grpc-status INVALID_ARGUMENT without any details for security reasons.

• Scaladocs: INVALID_LEDGER_EVENT

1.35. Error Codes 1481

../../canton/scaladoc/com/digitalasset/canton/domain/sequencing/sequencer/errors/SequencerError\protect \TU\textdollar \protect \TU\textdollar InvalidAcknowledgementSignature\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/domain/sequencing/sequencer/errors/SequencerError\protect \TU\textdollar \protect \TU\textdollar InvalidAcknowledgementTimestamp\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/domain/sequencing/sequencer/errors/SequencerError\protect \TU\textdollar \protect \TU\textdollar InvalidEnvelopeSignature\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/domain/sequencing/sequencer/errors/SequencerError\protect \TU\textdollar \protect \TU\textdollar InvalidLedgerEvent\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

INVALID_SEQUENCER_PRUNING_REQUEST_ON_CHAIN

• Explanation: This error indicates that some sequencer node has distributed an invalid se-

quencer pruning request via the blockchain. Either the sequencer nodes got out of sync or

one of the sequencer nodes is buggy. The sequencer node will stop processing to prevent the

danger of severe data corruption.

• Resolution: Stop using the domain involving the sequencer nodes. Contact support.

• Category: SecurityAlert

• Conveyance: This error is logged with log-level WARN on the server side. It is exposed on the

API with grpc-status INVALID_ARGUMENT without any details for security reasons.

• Scaladocs: INVALID_SEQUENCER_PRUNING_REQUEST_ON_CHAIN

INVALID_SUBMISSION_REQUEST_SIGNATURE

• Explanation: This error indicates that the sequencer has detected an invalid submission re-

quest signature. This most likely indicates that the request is bogus and has been created by

a malicious sequencer. So it will not get processed.

• Category: SecurityAlert

• Conveyance: This error is logged with log-level WARN on the server side. It is exposed on the

API with grpc-status INVALID_ARGUMENT without any details for security reasons.

• Scaladocs: INVALID_SUBMISSION_REQUEST_SIGNATURE

MAX_REQUEST_SIZE_EXCEEDED

• Explanation: This errormeans that the request size has exceeded the configured valuemaxRe-

questSize.

• Resolution: Send smaller requests or increase themaxRequestSize in the domain parameters

• Category: SecurityAlert

• Conveyance: This error is logged with log-level WARN on the server side. It is exposed on the

API with grpc-status INVALID_ARGUMENT without any details for security reasons.

• Scaladocs: MAX_REQUEST_SIZE_EXCEEDED

MISSING_SUBMISSION_REQUEST_SIGNATURE_TIMESTAMP

• Explanation: This error indicates that the sequencer has detected that the signed submission

request being processed is missing a signature timestamp. It indicates that the sequencer

node that placed the request is not following the protocol as there should always be a defined

timestamp. This request will not get processed.

• Category: SecurityAlert

• Conveyance: This error is logged with log-level WARN on the server side. It is exposed on the

API with grpc-status INVALID_ARGUMENT without any details for security reasons.

• Scaladocs: MISSING_SUBMISSION_REQUEST_SIGNATURE_TIMESTAMP

1482 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/domain/sequencing/sequencer/errors/SequencerError\protect \TU\textdollar \protect \TU\textdollar InvalidPruningRequestOnChain\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/domain/sequencing/sequencer/errors/SequencerError\protect \TU\textdollar \protect \TU\textdollar InvalidSubmissionRequestSignature\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/domain/sequencing/sequencer/errors/SequencerError\protect \TU\textdollar \protect \TU\textdollar MaxRequestSizeExceeded\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/domain/sequencing/sequencer/errors/SequencerError\protect \TU\textdollar \protect \TU\textdollar MissingSubmissionRequestSignatureTimestamp\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

MULTIPLE_MEDIATOR_RECIPIENTS

• Explanation: This error indicates that the participant is trying to send envelopes to multiple

mediators ormediator groups in the same submission request. Thismost likely indicates that

the request is bogus and has been created by a malicious sequencer. So it will not get pro-

cessed.

• Category: SecurityAlert

• Conveyance: This error is logged with log-level WARN on the server side. It is exposed on the

API with grpc-status INVALID_ARGUMENT without any details for security reasons.

• Scaladocs: MULTIPLE_MEDIATOR_RECIPIENTS

1.35.10.72 11. EnterpriseGrpcVaultServiceError

INVALID_KMS_KEY_ID

• Explanation: Selected KMS key id is invalid

• Resolution: Specify a valid key id and retry.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status NOT_FOUND including a detailed error message.

• Scaladocs: INVALID_KMS_KEY_ID

NO_ENCRYPTED_PRIVATE_KEY_STORE_ERROR

• Explanation: Node is not running an encrypted private store

• Resolution: Verify that an encrypted store and KMS config are set for this node.

• Category: InternalUnsupportedOperation

• Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on the

API with grpc-status UNIMPLEMENTED without any details for security reasons.

• Scaladocs: NO_ENCRYPTED_PRIVATE_KEY_STORE_ERROR

REGISTER_KMS_KEY_INTERNAL_ERROR

• Explanation: Internal error emitted upon failing to register a KMS key in Canton

• Resolution: Contact support

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on the

API with grpc-status INTERNAL without any details for security reasons.

• Scaladocs: REGISTER_KMS_KEY_INTERNAL_ERROR

1.35. Error Codes 1483

../../canton/scaladoc/com/digitalasset/canton/domain/sequencing/sequencer/errors/SequencerError\protect \TU\textdollar \protect \TU\textdollar MultipleMediatorRecipients\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/crypto/admin/grpc/EnterpriseGrpcVaultServiceError\protect \TU\textdollar \protect \TU\textdollar InvalidKmsKeyId\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/crypto/admin/grpc/EnterpriseGrpcVaultServiceError\protect \TU\textdollar \protect \TU\textdollar NoEncryptedPrivateKeyStoreError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/crypto/admin/grpc/EnterpriseGrpcVaultServiceError\protect \TU\textdollar \protect \TU\textdollar RegisterKmsKeyInternalError\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

WRAPPER_KEY_ALREADY_IN_USE_ERROR

• Explanation: Selected wrapper key id for rotation is already in use

• Resolution: Select a different key id and retry.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status NOT_FOUND including a detailed error message.

• Scaladocs: WRAPPER_KEY_ALREADY_IN_USE_ERROR

WRAPPER_KEY_DISABLED_OR_DELETED_ERROR

• Explanation: Selected wrapper key id for rotation cannot be used because key is disabled or

set to be deleted

• Resolution: Specify a key id from an active key and retry.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status NOT_FOUND including a detailed error message.

• Scaladocs: WRAPPER_KEY_DISABLED_OR_DELETED_ERROR

WRAPPER_KEY_NOT_EXIST_ERROR

• Explanation: Selected wrapper key id for rotation does not match any existing KMS key

• Resolution: Specify a key id that matches an existing KMS key and retry.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status NOT_FOUND including a detailed error message.

• Scaladocs: WRAPPER_KEY_NOT_EXIST_ERROR

WRAPPER_KEY_ROTATION_INTERNAL_ERROR

• Explanation: Internal error emitted upon internal wrapper key rotation errors

• Resolution: Contact support

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on the

API with grpc-status INTERNAL without any details for security reasons.

• Scaladocs: WRAPPER_KEY_ROTATION_INTERNAL_ERROR

1.35.10.73 12. MediatorError

MEDIATOR_INTERNAL_ERROR

• Explanation: Request processing failed due to a violation of internal invariants. It indicates a

bug at the mediator.

• Resolution: Contact support.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on the

API with grpc-status INTERNAL without any details for security reasons.

1484 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/crypto/admin/grpc/EnterpriseGrpcVaultServiceError\protect \TU\textdollar \protect \TU\textdollar WrapperKeyAlreadyInUseError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/crypto/admin/grpc/EnterpriseGrpcVaultServiceError\protect \TU\textdollar \protect \TU\textdollar WrapperKeyDisabledOrDeletedError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/crypto/admin/grpc/EnterpriseGrpcVaultServiceError\protect \TU\textdollar \protect \TU\textdollar WrapperKeyNotExistError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/crypto/admin/grpc/EnterpriseGrpcVaultServiceError\protect \TU\textdollar \protect \TU\textdollar WrapperKeyRotationInternalError\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

• Scaladocs: MEDIATOR_INTERNAL_ERROR

MEDIATOR_INVALID_MESSAGE

• Explanation: The mediator has received an invalid message (request or response). The mes-

sage will be discarded. As a consequence, the underlying request may be rejected. No corrup-

tion of the ledger is to be expected.

• Resolution: Address the cause of the error. Let the submitter retry the command.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level WARN on the server side and exposed on the API

with grpc-status FAILED_PRECONDITION including a detailed error message.

• Scaladocs: MEDIATOR_INVALID_MESSAGE

MEDIATOR_RECEIVED_MALFORMED_MESSAGE

• Explanation: Themediator has received amalformedmessage. Thismay occur due to a bug at

the sender of the message. The message will be discarded. As a consequence, the underlying

request may be rejected. No corruption of the ledger is to be expected.

• Resolution: Contact support.

• Category: SecurityAlert

• Conveyance: This error is logged with log-level WARN on the server side. It is exposed on the

API with grpc-status INVALID_ARGUMENT without any details for security reasons.

• Scaladocs: MEDIATOR_RECEIVED_MALFORMED_MESSAGE

MEDIATOR_SAYS_TX_TIMED_OUT

• Explanation: This rejection indicates that the transaction has been rejected by the mediator

as it didn’t receive enough confirmations within the participant response timeout.

• Resolution: Check that all involved participants are available and not overloaded.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status ABORTED including a detailed error message.

• Scaladocs: MEDIATOR_SAYS_TX_TIMED_OUT

1.35.10.74 13. ProtoDeserializationError

PROTO_DESERIALIZATION_FAILURE

• Explanation: This error indicates that an incoming administrative command could not be pro-

cessed due to a malformed message.

• Resolution: Inspect the error details and correct your application

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side and exposed on the API

with grpc-status INVALID_ARGUMENT including a detailed error message.

• Scaladocs: PROTO_DESERIALIZATION_FAILURE

1.35. Error Codes 1485

../../canton/scaladoc/com/digitalasset/canton/error/MediatorError\protect \TU\textdollar \protect \TU\textdollar InternalError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/error/MediatorError\protect \TU\textdollar \protect \TU\textdollar InvalidMessage\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/error/MediatorError\protect \TU\textdollar \protect \TU\textdollar MalformedMessage\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/error/MediatorError\protect \TU\textdollar \protect \TU\textdollar Timeout\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ProtoDeserializationError\protect \TU\textdollar \protect \TU\textdollar ProtoDeserializationFailure\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

1.35.10.75 14. ResilientSequencerSubscription

SEQUENCER_FORK_DETECTED

• Explanation: This error is logged when a sequencer client determined a ledger fork, where a

sequencer node respondedwithdifferent events for the same timestamp / counter. Whenever a

client reconnects to a domain, it will start with the lastmessage received and comparewhether

that last message matches the one it received previously. If not, it will report with this error.

A ledger fork should not happen in normal operation. It can happen if the backups have been

taken in a wrong order and e.g. the participant was more advanced than the sequencer.

• Resolution: You can recover by restoring the system with a correctly ordered backup. Please

consult the respective sections in the manual.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. It is exposed on the

API with grpc-status INTERNAL without any details for security reasons.

• Scaladocs: SEQUENCER_FORK_DETECTED

SEQUENCER_SUBSCRIPTION_LOST

• Explanation: This warning is loggedwhen a sequencer subscription is interrupted. The system

will keep on retrying to reconnect indefinitely.

• Resolution: Monitor the situation and contact the server operator if the issues does not resolve

itself automatically.

• Category: BackgroundProcessDegradationWarning

• Conveyance: This error is logged with log-level WARN on the server side.

• Scaladocs: SEQUENCER_SUBSCRIPTION_LOST

1.35.10.76 15. Clock

SYSTEM_CLOCK_RUNNING_BACKWARDS

• Explanation: This error is emitted if the unique time generation detects that the host system

clock is lagging behind the unique time source by more than a second. This can occur if the

system processes more than 2e6 events per second (unlikely) or when the underlying host

system clock is running backwards.

• Resolution: Inspect your host system. Generally, the unique time source is not negatively af-

fected by a clock moving backwards and will keep functioning. Therefore, this message is just

a warning about something strange being detected.

• Category: BackgroundProcessDegradationWarning

• Conveyance: This error is logged with log-level WARN on the server side.

• Scaladocs: SYSTEM_CLOCK_RUNNING_BACKWARDS

1486 Chapter 1. Canton References

../../canton/scaladoc/com/digitalasset/canton/sequencing/client/ResilientSequencerSubscription\protect \TU\textdollar \protect \TU\textdollar ForkHappened\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/sequencing/client/ResilientSequencerSubscription\protect \TU\textdollar \protect \TU\textdollar LostSequencerSubscription\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/time/Clock\protect \TU\textdollar \protect \TU\textdollar SystemClockRunningBackwards\protect \TU\textdollar .html

Daml SDK Documentation, 2.7.3

1.36 Troubleshooting

1.36.1 Error: “<X> is not authorized to commit an update”

This error occurs when there are multiple obligables on a contract.

A cornerstone of Daml is that you cannot create a contract thatwill force someother party (or parties)

into an obligation. This error means that a party is trying to do something that would force another

parties into an agreement without their consent.

To solve this, make sure each party is entering into the contract freely by exercising a choice. A good

way of ensuring this is the “initial and accept” pattern: see the Daml patterns for more details.

1.36.2 Error: “Argument is not of serializable type”

This error occurs when you’re using a function as a parameter to a template. For example, here is a

contract that creates a Payout controller by a receiver’s supervisor:

template SupervisedPayout

with

supervisor : Party ­> Party

receiver : Party

giver : Party

amount : Decimal

where

signatory giver

observer (supervisor receiver)

choice SupervisedPayout_Call

: ContractId Payout

controller supervisor receiver

do create Payout with giver; receiver; amount

Hovering over the compilation error displays:

[Type checker] Argument expands to non­serializable type Party ­> Party.

1.36.3 Modeling Questions

1.36.3.1 How To Model an Agreement With Another Party

To enter into an agreement, create a contract from a template that has explicit signatory and

agreement statements.

You’ll need to use a series of contracts that give each party the chance to consent, via a contract

choice.

Because of the rules that Daml enforces, it is not possible for a single party to create an instance

of a multi-party agreement. This is because such a creation would force the other parties into that

agreement, without giving them a choice to enter it or not.

1.36. Troubleshooting 1487

Daml SDK Documentation, 2.7.3

1.36.3.2 How To Model Rights

Use a contract choice to model a right. A party exercises that right by exercising the choice.

1.36.3.3 How To Void a Contract

To allow voiding a contract, provide a choice that does not create any new contracts. Daml contracts

are archived (but not deleted)when a consuming choice ismade - so exercising the choice effectively

voids the contract.

However, you should bear inmind who is allowed to void a contract, especially without the re-sought

consent of the other signatories.

1.36.3.4 How To Represent Off-ledger Parties

You’d need to do this if you can’t set up all parties as ledger participants, because the Daml Party

type gets associated with a cryptographic key and can so only be used with parties that have been

set up accordingly.

To model off-ledger parties in Daml, they must be represented on-ledger by a participant who can

sign on their behalf. You could represent them with an ordinary Text argument.

This isn’t very private, so you could use a numeric ID/an accountId to identify the off-ledger client.

1.36.3.5 How To Limit a Choice by Time

Some rights have a time limit: either a time by which it must be exercised or a time before which it

cannot be exercised.

You can use getTime to get the current time, and compare your desired time to it. Use assert to

abort the choice if your time condition is not met.

1.36.3.6 How To Model a Mandatory Action

If you want to ensure that a party takes some action within a given time period. Might want to incur

a penalty if they don’t - because that would breach the contract.

For example: an Invoice that must be paid by a certain date, with a penalty (could be something like

an added interest charge or a penalty fee). To do this, you could have a time-limited Penalty choice

that can only be exercised after the time period has expired.

However, note that the penalty action can only ever create another contract on the ledger, which

represents an agreement between all parties that the initial contract has been breached. Ultimately,

the recourse for any breach is legal action of some kind. What Daml provides is provable violation

of the agreement.

1488 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.36.3.7 When to Use Optional

The Optional type, from the standard library, to indicate that a value is optional, i.e, that in some

cases it may be missing.

In functional languages, Optional is a better way of indicating amissing value than using themore

familiar value “NULL”, present in imperative languages like Java.

To use Optional, include Optional.daml from the standard library:

import DA.Optional

Then, you can create Optional values like this:

Some "Some text" ­­ Optional value exists.

None ­­ Optional value does not exist.

You can test for existence in various ways:

­­ isSome returns True if there is a value.

if isSome m

then "Yes"

else "No"

­­ The inverse is isNone.

if isNone m

then "No"

else "Yes"

If you need to extract the value, use the optional function.

It returns a value of a defined type, and takes a Optional value and a function that can transform

the value contained in a Some value of the Optional to that type. If it is missing optional also

takes a value of the return type (the default value), which will be returned if the Optional value is

None

let f = \ (i : Int) ­> "The number is " <> (show i)

let t = optional "No number" f someValue

If optionalValue is Some 5, the value of twould be "The number is 5". If it was None, twould

be "No number". Note that with optional, it is possible to return a different type from that con-

tained in the Optional value. This makes the Optional type very flexible.

There are many other functions in “Optional.daml” that let you perform familiar functional opera-

tions onstructures that containOptional values – suchasmap,filter, etc. onListsofOptional

values.

1.36. Troubleshooting 1489

Daml SDK Documentation, 2.7.3

1.36.4 Testing Questions

1.36.4.1 How To Test That a Contract Is Visible to a Party

Use queryContractId: its first argument is a party, and the second is a ContractId. If the con-

tract corresponding to that ContractId exists and is visible to the party, the result will be wrapped

in Some, otherwise the result will be None.

Use a submit block and a fetch operation. The submit block tests that the contract (as a Con­

tractId) is visible to that party, and the fetch tests that it is valid, i.e., that the contract does exist.

For example, if we wanted to test for the existence and visibility of an Invoice, visible to ‘Alice’,

whose ContractId is bound to invoiceCid, we could say:

Some result <­ alice `queryContractId` invoiceCid

Note that we pattern match on the Some constructor. If the contract doesn’t exist or is not visible to

‘Alice’, the test will fail with a pattern match error.

Now that the contract is bound to a variable, we can check whether it has some expected values:

result === Invoice with

payee = alice

payer = acme

amount = 130.0

service = "A job well done"

timeLimit = datetime 1970 Feb 20 0 0 0

1.36.4.2 How To Test That an Update Action Cannot Be Committed

Use the submitMustFail function. This is similar in form to the submit function, but is an asser-

tion that an update will fail if attempted by some Party.

1.37 Getting Help

Have questions or feedback? You’re in the right place.

• Questions: Forum

For “how do I?”, “why does something work this way” or “I’ve got a programming problem I’m

trying to solve” questions, the Questions category on our forum is the best place to ask.

If you’re not sure what makes a good question, take a look at our guide on the topic.

• Feedback: Forum

If you want to give feedback, you can make a topic in the General category on our forum.

When you’re in the community Forum or on Stack Overflow, please keep to our Code of Conduct.

1490 Chapter 1. Canton References

https://discuss.daml.com
https://discuss.daml.com/t/how-to-ask-questions/304
https://discuss.daml.com
https://github.com/digital-asset/daml/blob/main/CODE_OF_CONDUCT.md

Daml SDK Documentation, 2.7.3

1.37.1 Support Expectations

For Daml Open Source users:

• Timing: You can enjoy the support of the community, which is provided for you out of their own

good will and free time. On top of that, a Digital Asset employee will try to reply to unanswered

questions within two business days.

Business days are affected by public holidays. Engineers contributing to Daml are mostly lo-

cated in Zurich and New York, so please be mindful of the public holidays in those locations

(timeanddate.commaintains an unofficial list of holidays for both Switzerland and the United

States).

• Public support: We offer public support in the Questions category on our forum.

We can’t answer questions in private messages or over email, so please only ask questions in

public forums.

• Level of support: We’re happy to answer questions about error messages you’re encountering,

or discuss Daml design questions. However, we can’t provide more extensive consultation on

how to build your Daml application or the languages, frameworks, libraries and tools you may

use to build it.

Digital Asset offers paid private support, which can be accessed here. Digital Asset further offers

consultation on how to build your Daml application; please contact us for pricing.

1.38 Portability, Compatibility, and Support Durations

The Daml Ecosystem offers a number of forward and backward compatibility guarantees aiming to

give the Ecosystem as a whole the following properties. See Architecture for the terms used here and

how they fit together.

Application Portability

A Daml application should not depend on the underlying Database or DLT used by a Daml

network.

Network Upgradeability

Ledger Operators should be able to upgrade Daml network or Participant Nodes seam-

lessly to stay up to date with the latest features and fixes. A Daml application should be

able to operate without significant change across such Network Upgrades.

Daml Upgradeability

Application Developers should be able to update their developer tools seamlessly to stay

up to date with the latest features and fixes, and stay able to maintain and develop their

existing applications.

1.38. Portability, Compatibility, and Support Durations 1491

https://www.timeanddate.com
https://www.timeanddate.com/holidays/switzerland/
https://www.timeanddate.com/holidays/us/
https://www.timeanddate.com/holidays/us/
https://discuss.daml.com
https://www.digitalasset.com/contact-support

Daml SDK Documentation, 2.7.3

1.38.1 Ledger API Compatibility: Application Portability

Application Portability and to some extent Network Upgradeability are achieved by intermediating

through the Ledger API. As per Versioning, and Architecture, the Ledger API is independently semanti-

cally versioned, and the compatibility guarantees derived from that semantic versioning extend to

the entire semantics of the API, including the behavior of Daml Packages on the Ledger. Since all in-

teractionwith aDaml Ledger happens through theDaml Ledger API, a Daml Application is guaranteed

to work as long as the Participant Node exposes a compatible Ledger API version.

Specifically, if a Daml Application is built against Ledger API version X.Y.Z and a Participant Node

exposes Ledger API version X.Y2.Z2, the application is guaranteed to work as long as Y2.Z2 >= Y.Z.

Participant Nodes advertise the Ledger API version they support via the version service.

As a concrete example, Daml for Postgres 1.4.0 has the Participant Node integrated, and exposes

Ledger API version 1.4.0 and the Daml for VMware Blockchain 1.0 Participant Nodes expose Ledger API

version 1.6.0. So any application that runs on Daml for Postgres 1.4.0 will also run on Daml for VMware

Blockchain 1.0.

1.38.1.1 List of Ledger API Versions Supported by Daml

The below lists with which Daml version a new Ledger API version was introduced.

Ledger API Version Daml Version

2.4 2.7

2.3 2.6

2.2 2.5

2.1 2.4

2.0 2.0

1.12 1.15

1.11 1.14

1.10 1.11

1.9 1.10

1.8 1.9

<= 1.7 Introduced with the same Daml SDK version

1492 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.38. Portability, Compatibility, and Support Durations 1493

Daml SDK Documentation, 2.7.3

1.38.1.2 Summary of Ledger API Changes

Ledger API Version Changes

2.4

The IdentityProviderConfig record that

contains the Identity Provider Config has been

extended with an audience field. When set, the

callers using JWT tokens issued by this

identity provider are allowed to get an access

only if the aud claim includes the string

matching this specification.

The identity_provider_id field on gRPC

requests can be left empty if the JWT token

submitted with the request already specifies

an identity provider via an iss field.

Users and parties can now be re-assigned

between identity providers.

The error codes and metadata of gRPC errors

returned as part of failed command

interpretation from the Ledger API have been

updated to include more information.

Previously, most errors from the Daml engine

would be given as either

GenericInterpretationError or

InvalidArgumentInterpretationError. They now

all have their own codes and encode relevant

information in the gRPC Status metadata.

2.3

Introduce the Identity Provider Config Service.

It makes possible for participant node

administrators to setup and manage

additional identity providers at runtime. This

allows using access tokens from identity

providers unknown at deployment time. When

an identity provider is configured, independent

IDP administrators can manage their own set

of parties and users.

Extend the Active Contract Service by adding

active_at_offset field to the

GetActiveContractsRequest. It defines an offset at

which the snapshot of the active contracts will

be computed.

Extend the Metering Report Service by adding

a JSON schema that defines the format of the

reports in GetMeteringReportResponse.

Extend the Transaction Service by adding a

new GetLatestPrunedOffsets request. It allows

querying for current pruning offsets.

Introduce the Event Query Service. It allows

querying for events associated with a given

ContractId and ContractKey.

2.2

Remove the inlined error documentation from

gRPC calls in favor of rich error details

documentation under Error Codes.

Extend the User Management Service by

adding is_deactivated and metadata fields to

the User record and by providing an

UpdateUser method allowing modifications of

the existing users.

Extend the Party Management Service by

adding participant specific local_metadata

field to the PartyDetails record and by

providing an UpdatePartyDetails method that

allows changing existing parties’ details.

Extend the Labs feature of contract disclosure

by adding support for opaque contract

argument blobs. The message types of

DisclosedContract and ContractMetadata

should continue being ignored.

2.1

Establish the order of child events in

ExercisedEvent to agree with the order of

events in transaction.

Indicate an exercise done on an interface

through the interface_id field on the

ExercisedEvent message.

Make interfaces available for subscriptions in

the Transaction Service as an Alpha feature.

Implement contract disclosure as a Labs

feature in the Transaction, Command

Submission and Command Services. Related

new message types of DisclosedContract and

ContractMetadata should be ignored.

Convert Metering Service to using JSON format

for its reports.

2.0

Introduce User Management Service

Introduce Metering Report Service

Remove Reset Service

Deprecate Ledger Identity Service

Make ledger_id and application_id fields

optional

Change error codes returned by the gRPC

services

1.12 Introduce Daml-LF 1.14

1.11 Introduce Daml-LF 1.13

1.10 Introduce Daml-LF 1.12

Stabilize participant pruning

1.9 Introduce Daml-LF 1.11

1.8 Introduce Multi-Party Submissions

<= 1.7 See Daml (SDK) release notes of same version

number.

1494 Chapter 1. Canton References

https://daml.com/release-notes

Daml SDK Documentation, 2.7.3

1.38.2 Driver and Participant Compatibility: Network Upgradeability

Given the Ledger API Compatibility above, network upgrades are seamless if they preserve data, and

Participant Nodes keep exposing the same or a newer minor version of the same major Ledger API

Version. The semantic versioning of Daml drivers and participant nodes gives this guarantee. Up-

grades from one minor version to another are data preserving, and major Ledger API versions may

only be removed with a new major version of integration components, Daml drivers and Participant

Nodes.

As an example, from an application standpoint, the only effect of upgrading Daml for Postgres 1.4.0

to Daml for Postgres 1.6.0 is an uptick in the Ledger API version. There may be significant changes to

components or database schemas, but these are not public APIs.

1.38.2.1 Participant database migration

Participant Nodes automatically manage their database schema. The database schema is tied to

the Daml version, and schema migrations are always data preserving. The below lists which Daml

version can be upgraded from which Daml version.

Daml SDK version Upgradeable from

2.1 1.7 or later

<= 2.0 1.0 or later

As an example, to upgrade a Participant Node built with Daml 1.4.0 to a version built with Daml 2.1, the

operator should first upgrade to Daml 1.7 (or any other version between 1.7 and and 2.0), then upgrade

to Daml 2.1.

1.38.3 SDK, Runtime Component, and Library Compatibility: Daml Upgradeability

As long as amajor Ledger API version is supported (see Ledger API Support Duration), there will be sup-

ported version of Daml able to target all minor versions of that major version. This has the obvious

caveat that new features may not be available with old Ledger API versions.

For example, an application built and compiledwithDaml SDK 1.4.0 against Ledger API 1.4.0, it can still

be compiled using SDK 1.6.0 and can be run against Ledger API 1.4.0 using 1.6.0 libraries and runtime

components.

1.38.4 Ledger API Support Duration

Major Ledger API versions behave like stable features in Status Definitions. They are supported from

the time they are first released as “stable” to the point where they are removed from Integration

Components and Daml following a 12 month deprecation cycle. The earliest point a major Ledger

API version can be deprecated is with the release of the next major version. The earliest it can be

removed is 12 months later with a major version release of the Integration Components.

Other than for hotfix releases, new releases of the IntegrationComponentswill only support the latest

minor/patch version of each major Ledger API version.

As a result we can make this overall statement:

1.38. Portability, Compatibility, and Support Durations 1495

Daml SDK Documentation, 2.7.3

An application built using Daml SDK U.V.W against Ledger API X.Y.Z can be maintained using

any Daml SDK version U2.V2.W2 >= U.V.W as long as Ledger API major version X is still supported

at the time of release of U2.V2.W2, and run against any Daml Network with Participant Nodes

exposing Ledger API X.Y2.Z2 >= X.Y.Z.

1.39 Daml Ecosystem Overview

This page is intended to give you an overview of the components that constitute theDaml Ecosystem,

what status they are in, and how they fit together. It lays out Daml’s “public API” in the sense of

Semantic Versioning, and is aprerequisite to understandingDaml’s Portability, Compatibility, andSupport

Durations.

The pages Status Definitions and Feature and Component Statuses give a fine-grained view of what labels

like “Alpha” and “Beta” mean, which components expose public APIs and what status they are in.

1.39.1 Architecture

A high level view of the architecture of a Daml application or solution is helpful tomake sense of how

individual components, APIs and features fit into the Daml Stack.

The stack is segmented into two parts. Daml drivers encompass those components which enable

an infrastructure to run Daml Smart Contracts, turning it into a Daml Network. Daml Components

consists of everything developers and users need to connect to a Daml Network: the tools to build,

deploy, integrate, and maintain a Daml Application.

1496 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Taking the diagram from left to right, the SDK acts on various components of the client application

and directly on the participant nodes: it aids in the development of user code, generates code of its

own, feeds into runtime components via runtime APIs, and creates participant nodes via the Ledger

API. The client application also acts on participant nodes via the Ledger API, and the user code for that

application can act on the various Daml components of the application (generated code, libraries,

and runtime components) via public API. Participant nodes, in turn, act via an internal API on the

Daml network, specifically with Daml drivers that in turn interact with infrastructure nodes. The

infrastructure nodes can also interact with each other. Each client application is linked to only one

participant node, but a participant node can potentially touch more than one Daml network.

1.39.2 Daml Networks

1.39.2.1 Daml drivers

At the bottom of every Daml Application is a Daml network, a distributed, or possibly centralized per-

sistence infrastructure together with Daml drivers. Daml drivers enable the persistence infrastruc-

ture to act as a consensus, messaging, and in some cases persistence layer for Daml Applications.

Most Daml drivers will have a public API, but there are no uniform public APIs on Daml drivers. This

does not harm application portability since applications only interact with Daml networks through

the Participant Node. A good example of a public API of a Daml driver is the deployment interface of

Daml for VMware Blockchain. It’s a public interface, but specific to the VMware driver.

1.39.3 Participant Nodes

On top of, or integrated into the Daml drivers sits a Participant Node, that has the primary purpose

of exposing the Daml Ledger API. In the case of integrated Daml drivers, the Participant Node usually

interacts with the Daml drivers through solution-specific APIs. In this case, Participant Nodes can

only communicate with Daml drivers of one Daml Network. In the case of interoperable Daml drivers,

the Participant Node communicates with the Daml drivers through the uniform Canton Protocol.

The Canton Protocol is versioned and has some cross-version compatibility guarantees, but is not

a public API. So participant nodes may have public APIs like monitoring and logging, command line

interfaces or similar, but the only uniform public API exposed by all Participant Nodes is the Ledger

API.

1.39.4 Ledger API

The Ledger API is the primary interface that offers forward andbackward compatibility betweenDaml

Networks and Applications (including Daml components). As you can see in the diagram above,

all interaction between components above the Participant Node and the Participant Node or Daml

Network happen through the Ledger API. The Ledger API is a public API and offers the lowest level of

access to Daml Ledgers supported for application use.

1.39. Daml Ecosystem Overview 1497

https://docs.vmware.com/en/VMware-Blockchain/index.html

Daml SDK Documentation, 2.7.3

1.39.5 Daml Components

1.39.5.1 Runtime Components

Runtime components are standalone components that run alongside Participant Nodes or Applica-

tions and expose additional services like query endpoints, automations, or integrations. Each Run-

time Component has public APIs, which are covered in Feature and Component Statuses. Typically there

is a command line interface, and one or more “Runtime APIs” as indicated in the above diagram.

1.39.5.2 Libraries

Libraries naturally provide public APIs in their target language, be it Daml, or secondary languages

like JavaScript or Java. For details on available libraries and their interfaces, see Feature and Compo-

nent Statuses.

1.39.5.3 Generated Code

The SDK allows the generation of code for some languages from a Daml Model. This generated code

has public APIs, which are not independently versioned, but depend on the Daml version and source

of the generated code, like a Daml package. In this case, the version of the Daml SDK used covers

changes to the public API of the generated code.

1.39.5.4 Developer Tools / SDK

The Daml SDK consists of the developer tools used to develop user code, both Daml and in secondary

languages, to generate code, and to interact with running applications via Runtime, and Ledger API.

The SDK has a broad public API covering the Daml Language, CLIs, IDE, and Developer tools, but few of

those APIs are intended for runtime use in a production environment. Exceptions to that are called

out on Feature and Component Statuses.

1.39.6 Status Definitions

Throughout the documentation, we use labels to mark features of APIs not yet deemed stable. This

page gives meaning to those labels.

1.39.6.1 Early Access Features

Features or components covered by these docs are Stable by default. Stable features and components

constitute Daml’s “public API” in the sense of Semantic Versioning. Feature and components that are

not Stable are called “Early Access” and called out explicitly.

Early Access features are opt-in whenever possible, needing to be activated with special commands

or flags needing to be started up separately, or requiring the use of additional endpoints, for example.

Within the Early Access category, we distinguish three labels:

Labs

1498 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Labs components and features are experiments, introduced for evaluation, testing, or

project-internal use. There is no intent to develop them into a stable feature other than

to see whether they add value and find uptake. They can be changed or discontinued

without advance notice. They may be poorly documented and it is not recommended to

start relying on them.

Alpha

Alpha components and features are early preview versions of features being actively de-

veloped to become a stable part of the ecosystem. At the Alpha stage, they are not yet

feature complete, may have poor runtime characteristics, are still subject to frequent

change, and may not be fully documented. Alpha features can be evaluated, and used in

PoCs, but should not yet be relied upon for large projects or production use where break-

ages or changes to APIs would be costly.

Beta

Beta components and features are preview versions of features that are close tomaturity.

They are characterized by being considered feature complete, and the APIs close to the

final public APIs. It is relatively safe to build on Beta features as long as the documented

caveats to runtime characteristics are understood and bugs and minor API adjustments

are not too costly.

1.39.6.2 Deprecation

In addition to being labelled Early Access, features and components can also be labelled “Depre-

cated”. Deprecation follows a deprecation cycle laid out in the table below. The date of deprecation

is documented in Daml Ecosystem Overview.

Deprecated features can be relied upon during the deprecation cycle to the same degree as their

non-deprecated counterparts, but building on deprecated features may hinder an upgrade to new

Daml versions following the deprecation cycle.

1.39.6.3 Comparison of Statuses

The table below gives a concise overview of the labels used for Daml features and components.

1.39. Daml Ecosystem Overview 1499

Daml SDK Documentation, 2.7.3

Table 4: Feature Maturities

Stable Beta Alpha Labs

Func-

tional-

ity

Func-

tional

Com-

plete-

ness

Functionally com-

plete

Considered func-

tionally complete,

but subject to

change according

to usability testing

MVP-level function-

ality covering at

least a few core

use-cases

Functionality cov-

ering one specific

use-case it was

made for

Non-functional

Re-

quire-

ments

Perfor-

mance

Unless stated oth-

erwise, the feature

can be used with-

out concern about

system perfor-

mance.

Current perfor-

mance impacts

and expected per-

formance for the

stable release are

documented.

Using the fea-

ture may have

significant undoc-

umented impact

on overall system

performance.

Using the fea-

ture may have

significant undoc-

umented impact

on overall system

performance.

Com-

patibil-

ity

Compatibility is

covered by Porta-

bility, Compatibility,

and Support Dura-

tions.

Compatibility is

covered by Porta-

bility, Compatibility,

and Support Dura-

tions.

The feature may

only work against

specific Daml

integrations, or

specific API ver-

sions, including

Early Access ones.

The feature may

only work against

specific Daml

integrations, or

specific API ver-

sions, including

Early Access ones.

Stability

& Error

Recov-

ery

The feature is

long-term stable

and supports re-

covery fit for a

production system.

No known repro-

ducible crashes

which can’t be

recovered from.

There is still an

expectation that

new issues may be

discovered.

The featuremaynot

be stable and lack

error recovery.

The featuremaynot

be stable and lack

error recovery.

Re-

leases

and

Support

Distri-

bution

and Re-

leases

Distributed as part

of regular releases.

Distributed as part

of regular releases.

Distributed as part

of regular releases.

Releases and dis-

tribution may be

separate.

Support Covered by stan-

dard commercial

support terms.

Hotfixes for critical

bugs and security

issues are avail-

able.

Not covered by

standard commer-

cial support terms.

Receives bug- and

security fixes with

regular releases.

Not covered by

standard commer-

cial support terms.

Receives bug- and

security fixes with

regular releases.

Not covered by

standard commer-

cial support terms.

Only receives fixes

with low priority.

Depre-

cation

May be removed

with any newmajor

version 12 months

after the date of

deprecation.

May be removed

with any newminor

version 1 month

after the date of

deprecation.

May be removed

without warning.

May be removed

without warning.

Covered

by Se-

mantic

Version-

ing

Yes, part of the

“public API”.

No, but breaking

changes will be

documented.

No, and changes

may be poorly doc-

umented.

No, and changes

may be poorly doc-

umented.

Docu-

menta-

tion

Basic

Use

Fully documented

as part of main

docs.

Fully documented

as part of main

docs.

Basic documenta-

tion as part of main

docs.

Documentation

may be sparse and

separate from the

main docs.

API,

Func-

tional-

ity, and

Gaps

Fully documented

as part of main

docs.

Fully documented

as part of main

docs.

Rough indication of

targeted function-

ality and current

limitations.

May be undocu-

mented.

Com-

patibil-

ity

Covered by Porta-

bility, Compatibility,

and Support Dura-

tions.

Covered by Porta-

bility, Compatibility,

and Support Dura-

tions.

Current compati-

bility documented

as part of main

docs.

May be undocu-

mented.

1500 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.39.7 Feature and Component Statuses

This page gives an overview of the statuses of released components and features according to Status

Definitions. Anything not listed here implicitly has status “Labs”, but it’s possible that something

accidentally slipped the list so if in doubt, please contact us.

1.39.7.1 Ledger API

Component/Feature Status Dep-

re-

cated

on

Ledger API specification including all semantics of >= Daml-LF 1.6 Stable

Numbered (ie non-dev) Versions of Proto definitions distributed via GitHub

Releases

Stable

Dev Versions of Proto definitions distributed via GitHub Releases Alpha

Use of divulged contracts in later transactions Stable,

Depre-

cated

2021-06-16

1.39.7.2 Runtime Components

Component / Feature Status Dep-

re-

cated

on

Canton

Canton Application and Console Stable

Canton Administrative APIs for participant and domain nodes Stable

Canton Protocol Stable

Sequencer for PostgreSQL Stable

Sequencer for Oracle DB Stable

Sequencer for Hyperledger Fabric Beta

Sequencer for Hyperledger Besu Beta

Support for connecting a single participant to multiple domains Alpha

JSON API

HTTPendpointsunder/v1/ includingstatus codes, authentication, query lan-

guage and encoding.

Stable

daml json­api CLI for development. (as specified using daml json­api

­­help)

Stable

Stand-alone distribution for production use, including CLI specified in

­­help.

Stable

Triggers

Daml API of individual Triggers Stable

Development CLI to start individual triggers in dev environment (daml trigger) Stable

Trigger Service (daml trigger­service) Stable

Non-repudiation

Non-repudiation Alpha

1.39. Daml Ecosystem Overview 1501

https://github.com/digital-asset/daml/releases/download/v2.7.3/protobufs-2.7.3.zip
https://github.com/digital-asset/daml/releases/download/v2.7.3/protobufs-2.7.3.zip
https://github.com/digital-asset/daml/releases/download/v2.7.3/protobufs-2.7.3.zip

Daml SDK Documentation, 2.7.3

1.39.7.3 Libraries

Component / Feature Status Dep-

re-

cated

on

Java Ledger API Bindings

daml codegen java CLI and generated code Stable

bindings­java library and its public API. Stable

bindings­rxjava library and its public API. Stable

daml­lf­1.6­archive­java­proto Stable

daml­lf­1.7­archive­java­proto Stable

daml­lf­1.8­archive­java­proto Stable

daml­lf­dev­archive­java­proto Alpha

Python Ledger API Bindings (formerly known as DAZL)

dazl library and its public API Stable

JavaScript Client Libraries

daml codegen js CLI and generated code Stable

@daml/types library and its public API Stable

@daml/ledger library and its public API Stable

@daml/react library and its public API Stable

Daml Libraries

The Daml Standard Library Stable

The Daml Script Library Stable

The Daml Trigger Library Stable

1.39.7.4 Developer Tools

Component / Feature Status Dep-

re-

cated

on

SDK

Windows SDK Stable

Mac SDK Stable

Linux SDK Stable

Daml Assistant (daml) with top level commands

• ­­help

• version

• install

• uninstall

Stable

daml start helper command and associated CLI (daml start ­­help) Stable

daml deploy helper command and associated CLI (daml deploy ­­help) Stable

continues on next page

1502 Chapter 1. Canton References

https://digital-asset.github.io/dazl-client/

Daml SDK Documentation, 2.7.3

Table 5 – continued from previous page

Component / Feature Status Dep-

re-

cated

on

Assistant commands to start Runtime Components: daml json­api, daml

trigger, and daml trigger­service.

See

Run-

time

Compo-

nents.

Daml Projects

daml.yaml project specification Stable

Assistant commands new, create­daml­app, and init. Note that the tem-

plates created by daml new and create­daml­app are considered example

code, and are not covered by semantic versioning.

Stable

Daml Studio

VSCode Extension Stable

daml studio assistant command Stable

Code Generation

daml codegen assistant commands See Li-

braries.

Sandbox Development Ledger

daml sandbox assistant commandanddocumented CLI underdaml sand­

box ­­help.

Stable

Daml Profiler in Sandbox Stable

Daml Compiler

daml build CLI Stable

daml damlc CLI Stable

Compilation and packaging (daml damlc build) Stable

Legacy packaging command (daml damlc package) Stable,

Depre-

cated

2020-10-14

In-memory Scenario/Script testing (daml damlc test) Stable

DAR File inspection (daml damlc inspect­dar). The exact output is only

covered by semantic versioning when used with the ­­json flag.

Stable

DAR File validation (daml damlc validate­dar) Stable

Daml Linter (daml damlc lint) Stable

Daml REPL (daml damlc repl) See

Daml

REPL

head-

ing

below

Daml Language Server CLI (daml damlc ide) Labs

Daml Documentation Generation (daml damlc docs) Labs

daml doctest Labs

Script

Script Daml API Stable

Daml Scenario IDE integration Stable

continues on next page

1.39. Daml Ecosystem Overview 1503

Daml SDK Documentation, 2.7.3

Table 5 – continued from previous page

Component / Feature Status Dep-

re-

cated

on

Daml Script IDE integration Stable

Daml Script Library See Li-

braries

daml test in-memory Script and Scenario test CLI Stable

daml script CLI to run Scripts against live ledgers. Stable

Navigator

Daml Navigator Development UI (daml navigator server) Stable

Navigator Config File Creation (daml navigator create­config) Stable

Navigator graphQL Schema (daml navigator dump­graphql­schema) Labs

Daml REPL Interactive Shell

daml repl CLI Stable

Daml and meta-APIs of the REPL Stable

Ledger Administration CLI

daml ledger CLI and all subcommands. Stable

1.40 Releases and Versioning

1.40.1 Versioning

All Daml components follow Semantic Versioning. In short, this means that there is a well defined

“public API”, changes or breakages to which are indicated by the version number.

Stable releaseshave versionsMAJOR.MINOR.PATCH. Segments of the version are incrementedaccord-

ing to the following rules:

1. MAJOR version when there are incompatible API changes,

2. MINOR version when functionality is added in a backwards compatible manner, and

3. PATCH version when there are only backwards compatible bug fixes.

Daml’s “public API” is laid out in the Daml Ecosystem Overview.

1.40.2 Cadence

Regular, weekly snapshot releases are made every Wednesday, with additional snapshots produced

as needed. These releases contain Daml Components, both from the daml repository aswell as some

others.

The decision to perform a Minor version release is based on the content or scope of the payload of

that release. The intent is to release a Minor version once a quarter but this may change based on

the customer demand for new, key features.

No more than one major version is released every six months, barring exceptional circumstances.

Individual Daml drivers follow their own release cadence, using already released Integration Compo-

nents as a dependency.

1504 Chapter 1. Canton References

https://semver.org/
https://github.com/digital-asset/daml

Daml SDK Documentation, 2.7.3

1.40.3 Support Duration

Major versions will be supported for a minimum of one year after a subsequent Major version is

release. Within a major version, only the latest minor version receives security and bug fixes.

1.40.4 Release Notes

Release notes for each release are published on the Release Notes section of the Daml Driven blog.

1.40.5 Process

Weekly snapshot and Minor releases follow a common process. The process is documented in the

Daml repository. Only the schedule for Minor releases is covered below.

Selecting a Release Candidate

This is done by the Daml core engineering teams.

TheMinor releases are scope-based. Furthermore, Daml development is fully HEAD-based

so both the repository and every snapshot are intended to be in a fully releasable state

at every point. The release process therefore starts with “selecting a release candidate”.

Typically the Snapshot from the preceding Wednesday is selected as the release candi-

date.

Release Notes and Candidate Review

After selecting the release candidate, Release Notes are written and reviewed with a par-

ticular view towards unintended changes and violations of Semantic Versioning.

Release Candidate Refinement

If issues surface in the initial review, the issues are resolved and different Snapshot is

selected as the release candidate.

Release Candidate Announcement

Barring delays due to issues during initial review, the release candidate is announced

publicly with accompanying Release Notes.

Communications, Testing and Feedback

In the days following the announcement, the release is presented and discussed with

both commercial and community users. It is also put through its paces by integrating it

in Daml Hub and several ledger integrations.

Release Candidate Refinement II

Depending on feedback and test results, new release candidates may be issued itera-

tively. Depending on the severity of changes from release candidate to release candidate,

the testing period is extended more or less.

Release

Assuming the release is not postponed due to extended test periods or newly discovered

issues in the release candidate, the release is declared stable and given a regular version

number.

1.40. Releases and Versioning 1505

https://daml.com/release-notes/
https://github.com/digital-asset/daml/blob/main/release/RELEASE.md
https://github.com/digital-asset/daml/blob/main/release/RELEASE.md
https://hub.daml.com

Daml SDK Documentation, 2.7.3

1.41 Glossary of concepts

1.41.1 Key Concepts

1.41.1.1 Daml

Daml is a platform for building and running sophisticated, multi-party applications. At its core, it

contains a smart contract language and tooling that defines the schema, semantics, and execution

of transactions between parties. Daml includes Canton, a privacy-enabled distributed ledger that is

enhanced when deployed with complementary blockchains.

1.41.1.2 Daml Language

The Daml language is a purpose-built language for rapid development of composable multi-party

applications. It is amodern, ergonomically designed functional language that carefully avoidsmany

of the pitfalls that hinder multi-party application development in other languages.

1.41.1.3 Daml Ledger

ADaml ledger is a distributed ledger system runningDaml smart contracts according to theDaml ledger

model and exposes the Daml Ledger APIs. All current implementations of Daml ledgers consist of a

Daml driver that utilizes an underlying Synchronization Technology to either implement the Daml

ledger directly, or to run the Canton protocol.

Canton Ledger

A Canton ledger is a privacy-enabled Daml ledger implemented using the Canton application, nodes,

and protocol.

1.41.1.4 Canton Protocol

The Canton protocol is the technologywhich synchronizes participant nodes across any Daml-enabled

blockchain or database. The Canton protocol not only makes Daml applications portable between

different underlying synchronization technologies, but also allows applications to transact with each

other across them.

1.41.1.5 Synchronization Technology

The synchronization technology is the database or blockchain that Daml uses for synchronization,

messaging, and topology. Daml runs on a range of synchronization technologies, from centralized

databases to fully distributed deployments, and users can employ the technology that best suits

their technical and operational needs.

1506 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.41.1.6 Daml Drivers

Daml drivers enable a ledger to be implemented on top of different synchronization technologies; a

database or distributed ledger technology.

1.41.2 Daml Language Concepts

1.41.2.1 Contract

Contracts are items on a ledger. They are created from blueprints called templates, and include:

• data (parameters)

• roles (signatory, observer)

• choices (and controllers)

Contracts are immutable: once they are created on the ledger, the information in the contract cannot

be changed. The only thing that can happen to them is that they can be archived.

Active Contract, Archived Contract

When a contract is created on a ledger, it becomes active. But that doesn’t mean it will remain active

forever: it can be archived. This can happen:

• if the signatories of the contract decide to archive it

• if a consuming choice is exercised on the contract

Once the contract is archived, it is no longer valid, and choices on the contract can no longer be

exercised.

1.41.2.2 Template

A template is a blueprint for creating a contract. This is the Daml code you write.

For full documentation on what can be in a template, see Reference: Templates.

1.41.2.3 Choice

A choice is something that a party can exercise on a contract. You write code in the choice body that

specifies what happens when the choice is exercised: for example, it could create a new contract.

Choices give one a way to transform the data in a contract: while the contract itself is immutable,

you can write a choice that archives the contract and creates a new version of it with updated data.

A choice can only be exercised by its controller. Within the choice body, you have the authorization of

all of the contract’s signatories.

For full documentation on choices, see Reference: Choices.

1.41. Glossary of concepts 1507

Daml SDK Documentation, 2.7.3

Consuming Choice

A consuming choice means that, when the choice is exercised, the contract it is on will be archived.

The alternative is a nonconsuming choice.

Consuming choices can be preconsuming or postconsuming.

Preconsuming Choice

A choice marked preconsuming will be archived at the start of that exercise.

Postconsuming Choice

A choice marked postconsuming will not be archived until the end of the exercise choice body.

Nonconsuming Choice

A nonconsuming choice does NOT archive the contract it is on when exercised. This means the choice

can be exercised more than once on the same contract.

Disjunction Choice, Flexible Controllers

A disjunction choice has more than one controller.

If a contract uses flexible controllers, this means you don’t specify the controller of the choice at

creation time of the contract, but at exercise time.

1.41.2.4 Party

A party represents a person or legal entity. Parties can create contracts and exercise choices.

Signatories, observers, controllers, and maintainers all must be parties, represented by the Party data type in Daml and determine who may see

contract data.

Parties are hosted on participant nodes and a participant node can hostmore than one party. A party

can be hosted on several participant nodes simultaneously.

Signatory

A signatory is a party on a contract. The signatories MUST consent to the creation of the contract by

authorizing it: if they don’t, contract creation will fail. Once the contract is created, signatories can

see the contracts and all exercises of that contract.

For documentation on signatories, see Reference: Templates.

1508 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Observer

An observer is a party on a contract. Being an observer allows them to see that instance and all the

information about it. They do NOT have to consent to the creation.

For documentation on observers, see Reference: Templates.

Controller

A controller is a party that is able to exercise a particular choice on a particular contract.

Controllers must be at least an observer, otherwise they can’t see the contract to exercise it on. But

they don’t have to be a signatory. this enables the propose-accept pattern.

Choice Observer

A choice observer is a party on a choice. Choice observers are guaranteed to see the choice being

exercised and all its consequences with it.

Stakeholder

Stakeholder is not a term used within the Daml language, but the concept refers to the signatories

and observers collectively. That is, it means all of the parties that are interested in a contract.

Maintainer

Themaintainer is a party that is part of a contract key. Theymust always be a signatory on the contract

that they maintain the key for.

It’s not possible for keys to be globally unique, because there is no party that will necessarily know

about every contract. However, by including a party as part of the key, this ensures that the main-

tainerwill know about all of the contracts, and so can guarantee the uniqueness of the keys that they

know about.

For documentation on contract keys, see Reference: Contract Keys.

1.41.2.5 Authorization, Signing

The Daml runtime checks that every submitted transaction is well-authorized, according to the au-

thorization rules of the ledger model, which guarantee the integrity of the underlying ledger.

A Daml update is the composition of update actions created with one of the items in the table below.

A Daml update is well-authorized when all its contained update actions are well-authorized. Each

operation has an associated set of parties that need to authorize it:

1.41. Glossary of concepts 1509

Daml SDK Documentation, 2.7.3

Table 6: Updates and required authorization

Update

action

Type Authorization

create (Template c) => c ­> Up­

date (ContractId c)

All signatories of the created contract

exercise ContractId c ­> e ­> Up­

date r

All controllers of the choice

fetch ContractId c ­> e ­> Up­

date r

One of the union of signatories and ob-

servers of the fetched contract

fetch­

ByKey

k ­> Update (ContractId c,

c)

Same as fetch

lookup­

ByKey

k ­> Update (Optional

(ContractId c))

All key maintainers

At runtime, the Daml execution engine computes the required authorizing parties from this map-

ping. It also computes which parties have given authorization to the update in question. A party

gives authorization to an update in one of two ways:

• It is the signatory of the contract that contains the update action.

• It is an element of the controllers executing the choice containing the update action.

Only if all required parties have given their authorization to an update action, the update action is

well-authorized and therefore executed. A missing authorization leads to the abortion of the update

action and the failure of the containing transaction.

It is noteworthy, that authorizing parties are always determined only from the local context of a

choice in question, that is, its controllers and the contract’s signatories. Authorization is never in-

herited from earlier execution contexts.

1.41.2.6 Standard Library

The Daml standard library is a set of Daml functions, classes and more that make developing with

Daml easier.

For documentation, see The standard library.

1.41.2.7 Agreement

An agreement is part of a contract. It is the text that explains what the contract represents.

It can be used to clarify the legal intent of a contract, but this text isn’t evaluated programmatically.

See Reference: Templates.

1510 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.41.2.8 Create

A create is an update that creates a contract on the ledger.

Contract creation requires authorization from all its signatories, or the create will fail. For how to get

authorization, see the propose-accept and multi-party agreement patterns.

A party submits a create command.

See Reference: Updates.

1.41.2.9 Exercise

An exercise is an action that exercises a choice on a contract on the ledger. If the choice is consuming,

the exercise will archive the contract; if it is nonconsuming, the contract will stay active.

Exercising a choice requires authorization from all of the controllers of the choice.

A party submits an exercise command.

See Reference: Updates.

1.41.2.10 Daml Script

Daml Script provides a way of testing Daml code during development. You can run Daml Script

inside Daml Studio, or write them to be executed on Sandbox when it starts up.

They’re useful for:

• expressing clearly the intended workflow of your contracts

• ensuring that parties can exclusively create contracts, observe contracts, and exercise choices

that they are meant to

• acting as regression tests to confirm that everything keeps working correctly

In Daml Studio, Daml Script runs in an emulated ledger. You specify a linear sequence of actions

that various parties take, and these are evaluated in order, according to the same consistency, au-

thorization, andprivacy rules as theywouldbe onaDaml ledger. DamlStudio shows you the resulting

transaction graph, and (if a Daml Script fails) what caused it to fail.

See Test Templates Using Daml Script.

1.41.2.11 Contract Key

A contract key allows you to uniquely identify a contract of a particular template, similar to a primary

key in a database table.

A contract key requires amaintainer: a simple key would be something like a tuple of text and main-

tainer, like (accountId, bank).

See Reference: Contract Keys.

1.41. Glossary of concepts 1511

Daml SDK Documentation, 2.7.3

1.41.2.12 DAR File, DALF File

A Daml Archive file, known as a .dar file is the result of compiling Daml code using the Assistant

which can be interpreted using a Daml interpreter.

You upload .dar files to a ledger in order to be able to create contracts from the templates in that

file.

A .dar contains multiple .dalf files. A .dalf file is the output of a compiled Daml package or

library. Its underlying format is Daml-LF.

1.41.3 Developer Tools

1.41.3.1 Assistant

Daml Assistant is a command-line tool for many tasks related to Daml. Using it, you can create

Daml projects, compile Daml projects into .dar files, launch other developer tools, and download new

SDK versions.

See Daml Assistant (daml).

1.41.3.2 Studio

Daml Studio is a plugin for Visual Studio Code, and is the IDE for writing Daml code.

See Daml Studio.

1.41.3.3 Sandbox

Sandbox is a lightweight ledger implementation. In its normal mode, you can use it for testing.

You can also run the Sandbox connected to a PostgreSQL back end, which gives you persistence and

a more production-like experience.

See Daml Sandbox.

1.41.3.4 Navigator

Navigator is a tool for exploring what’s on the ledger. You can use it to see what contracts can be

seen by different parties, and submit commands on behalf of those parties.

Navigator GUI

This is the version of Navigator that runs as a web app.

See Navigator.

1512 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.41.4 Building Applications

1.41.4.1 Application, Ledger Client, Integration

Application, ledger client, and integration are all terms for an application that sits on top of the

ledger. These usually read from the ledger, send commands to the ledger, or both.

There’s a lot of information available about application development, starting with the Daml Applica-

tion Architecture page.

1.41.4.2 Ledger API

The Ledger API is an API that’s exposed by any ledger on a participant node. Users access and ma-

nipulate the ledger state through the Ledger API. An alternative name for the Ledger API is the gRPC

Ledger API if disambiguation from other technologies is needed. See The Ledger API page. It includes

the following services.

Command Submission Service

Use the command submission service to submit commands - either create commands or exercise

commands - to the ledger. See Command Submission Service.

Command Completion Service

Use the command completion service to find out whether or not commands you have submitted have

completed, and what their status was. See Command Completion Service.

Command Service

Use the command service when you want to submit a command and wait for it to be executed. See

Command Service.

Transaction Service

Use the transaction service to listen to changes in the ledger, reported as a stream of transactions.

See Transaction Service.

Active Contract Service

Use the active contract service to obtain a party-specific view of all contracts currently active on the

ledger. See Active Contracts Service.

1.41. Glossary of concepts 1513

Daml SDK Documentation, 2.7.3

Package Service

Use the package service to obtain information about Daml packages available on the ledger. See

Package Service.

Ledger Identity Service

Use the ledger identity service to get the identity string of the ledger that your application is con-

nected to. See Ledger Identity Service (DEPRECATED).

Ledger Configuration Service

Use the ledger configuration service to subscribe to changes in ledger configuration. See Ledger

Configuration Service.

1.41.4.3 Ledger API Libraries

The following libraries wrap the ledger API for more native experience applications development.

Java Bindings

An idiomatic Java library for writing ledger applications. See Java Bindings.

Python Bindings

A Python library (formerly known as DAZL) for writing ledger applications. See Python Bindings.

1.41.4.4 Reading From the Ledger

Applications get information about the ledger by reading from it. You can’t query the ledger, but you

can subscribe to the transaction stream to get the events, or themore sophisticated active contract

service.

1.41.4.5 Submitting Commands, Writing To the Ledger

Applications make changes to the ledger by submitting commands. You can’t change it directly: an

application submits a command of transactions. The command gets evaluated by the runtime, and

will only be accepted if it’s valid.

For example, a commandmight get rejected because the transactions aren’twell-authorized; because

the contract isn’t active (perhaps someone else archived it); or for other reasons.

This is echoed in Daml script, where you can mock an application by having parties submit trans-

actions/updates to the ledger. You can use submit or submitMustFail to express what should

succeed and what shouldn’t.

1514 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Commands

A command is an instruction to add a transaction to the ledger.

1.41.4.6 Participant Node

The participant node is a server that provides userswith consistent programmatic access to a ledger

through the Ledger API. The participant nodes handle transaction signing and validation, such that

users don’t have to deal with cryptographic primitives but can trust the participant node that the

data they are observing has been properly verified to be correct.

1.41.4.7 Sub-transaction Privacy

Sub-transaction privacy is where participants in a transaction only learn about the subset of the

transaction they are directly involved in, but not about any other part of the transaction. This applies

to both the content of the transaction as well as other involved participants.

1.41.4.8 Daml-LF

When you compile Daml source code into a .dar file, the underlying format is Daml-LF. Daml-LF is

similar to Daml, but is stripped down to a core set of features. The relationship between the surface

Daml syntax and Daml-LF is loosely similar to that between Java and JVM bytecode.

As a user, you don’t need to interact with Daml-LF directly. But internally, it’s used for:

• executing Daml code on the Sandbox or on another platform

• sending and receiving values via the Ledger API (using a protocol such as gRPC)

• generating code in other languages for interacting with Damlmodels (often called “codegen”)

1.41.4.9 Composability

Composability is the ability of a participant to extend an existing systemwith newDaml applications

or new topologiesunilaterallywithout requiring cooperation fromanyone except thedirectly involved

participants who wish to be part of the new application functionality.

1.41.4.10 Trust Domain

A trust domain encompasses a part of the system (in particular, a Daml ledger) operated by a single

real-world entity. This subsystem may consist of one or more physical nodes. A single physical

machine is always assumed to be controlled by exactly one real-world entity.

1.41. Glossary of concepts 1515

https://docs.daml.com/concepts/ledger-model/ledger-privacy.html
https://docs.daml.com/concepts/ledger-model/ledger-privacy.html

Daml SDK Documentation, 2.7.3

1.41.5 Canton Concepts

1.41.5.1 Domain

The domain provides total ordered, guaranteed delivery multi-cast to the participants. This means

that participant nodes communicate with each other by sending end-to-end encrypted messages

through the domain.

The sequencer service of the domain orders these messages without knowing about the content and

ensures that every participant receives the messages in the same order.

The other services of the domain are the mediator and the domain identity manager.

1.41.5.2 Private Contract Store

Every participant node manages its own private contract store (PCS) which contains only contracts

the participant is privy to. There is no global state or global contract store.

1.41.5.3 Virtual Global Ledger

While every participant has their own private contract store (PCS), the Canton protocol guarantees

that the contracts which are stored in the PCS are well-authorized and that any change to the store

is justified, authorized, and valid. The result is that every participant only possesses a small part

of the virtual global ledger. All the local stores together make up that virtual global ledger and they

are thus synchronized. The Canton protocol guarantees that the virtual ledger provides integrity,

privacy, transparency, and auditability. The ledger is logically global, even though physically, it runs

on segregated and isolated domains that are not aware of each other.

1.41.5.4 Mediator

The mediator is a service provided by the domain and used by the Canton protocol. The mediator acts

as commit coordinator, collecting individual transaction verdicts issued by validating participants

and aggregating them into a single result. The mediator does not learn about the content of the

transaction, they only learn about the involved participants.

1.41.5.5 Sequencer

The sequencer is a service provided by the domain, used by the Canton protocol. The sequencer for-

wards encrypted addressed messages from participants and ensures that every member receives

the messages in the same order. Think about registered and sealed mail delivered according to the

postal datestamp.

1516 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.41.5.6 Domain Identity Manager

The Domain Identity Manager is a service provided by the domain, used by the Canton protocol. Par-

ticipants join a new domain by registering with the domain identity manager. The domain identity

manager establishes a consistent identity state among all participants. The domain identity man-

ager only forwards identity updates. It can not invent them.

1.41.5.7 Consensus

The Canton protocol does not use PBFT or any similar consensus algorithm. There is no proof of work

or proof of stake involved. Instead, Canton uses a variant of a stakeholder-based two-phase com-

mit protocol. As such, only stakeholders of a transaction are involved in it and need to process it,

providing efficiency, privacy, and horizontal scalability. Canton-based ledgers are resilient to mali-

cious participants as long as there is at least a single honest participant. A domain integration itself

might be using the consensusmechanism of the underlying platform, but participant nodes will not

be involved in that process.

1.42 Daml Example Applications

Click to open our collection of

1.43 Daml Language References

1.43.1 Daml Language Cheat Sheet

Click to open the

1.43.2 Language Reference

This section contains a reference to writing templates for Daml contracts. It includes:

1.43.2.1 Overview: Template Structure

This page covers what a template looks like: what parts of a template there are, and where they go.

For the structure of a Daml file outside a template, see Reference: Daml File Structure.

1.42. Daml Example Applications 1517

Daml SDK Documentation, 2.7.3

Template Outline Structure

Here’s the structure of a Daml template:

template NameOfTemplate

with

exampleParty : Party

exampleParty2 : Party

exampleParty3 : Party

exampleParameter : Text

­­ more parameters here

where

signatory exampleParty

observer exampleParty2

agreement

­­ some text

""

ensure

­­ boolean condition

True

key (exampleParty, exampleParameter) : (Party, Text)

maintainer (exampleFunction key)

­­ a choice goes here; see next section

template name template keyword

parameters with followed by the names of parameters and their types

template body where keyword

Can include:

template-local definitions let keyword

Lets you make definitions that have access to the contract arguments and are available

in the rest of the template definition.

signatories signatory keyword

Required. The parties (see the Party type)whomust consent to the creation of this contract.

You won’t be able to create this contract until all of these parties have authorized it.

observers observer keyword

Optional. Parties that aren’t signatories but who you still want to be able to see this con-

tract.

an agreement agreement keyword

Optional. Text that describes the agreement that this contract represents.

a precondition ensure keyword

Only create the contract if the conditions after ensure evaluate to true.

a contract key key keyword

Optional. Lets you specify a combination of a party and other data that uniquely identifies

a contract of this template. See Reference: Contract Keys.

maintainers maintainer keyword

Required if you have specified a key. Keys are only unique to a maintainer. See Reference:

Contract Keys.

choices choice NameOfChoice : ReturnType controller nameOfParty do

or

controller nameOfParty can NameOfChoice : ReturnType do

Defines choices that can be exercised. See Choice structure for what can go in a choice.

Note that controller-first syntax is deprecated and will be removed in a future version

of Daml.

1518 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Choice Structure

Here’s the structure of a choice inside a template. There are two ways of specifying a choice:

• start with the choice keyword

• start with the controller keyword

­­ option 1 for specifying choices: choice name first

choice NameOfChoice

: () ­­ replace ﴾﴿ with the actual return type

with

party : Party ­­ parameters here

controller party

do

return () ­­ replace this line with the choice body

­­ option 2 for specifying choices ﴾deprecated syntax﴿: controller first

controller exampleParty can

NameOfAnotherChoice

: () ­­ replace ﴾﴿ with the actual return type

with

party : Party ­­ parameters here

do

return () ­­ replace the line with the choice body

a controller (or controllers) controller keyword

Who can exercise the choice.

choice observers observer keyword

Optional. Additional parties that are guaranteed to be informed of an exercise of the choice.

To specify choice observers, you must start you choice with the choice keyword.

The optional observer keyword must precede the mandatory controller keyword.

consumption annotation Optionally one of preconsuming, postconsuming, nonconsuming, which

changes the behavior of the choice with respect to privacy and if and when the contract is

archived. See contract consumption in choices for more details.

a name Must begin with a capital letter. Must be unique - choices in different templates can’t have

the same name.

a return type after a :, the return type of the choice

choice arguments with keyword

If you start your choice with choice and include a Party as a parameter, you can make that

Party the controller of the choice. This is a feature called “flexible controllers”, and it

means you don’t have to specify the controller when you create the contract - you can spec-

ify it when you exercise the choice. To exercise a choice, the party needs to be a signatory or an

observer of the contract and must be explicitly declared as such.

a choice body After do keyword

What happens when someone exercises the choice. A choice body can contain update state-

ments: see Choice body structure below.

1.43. Daml Language References 1519

Daml SDK Documentation, 2.7.3

Choice Body Structure

A choice body contains Update expressions, wrapped in a do block.

The update expressions are:

create Create a new contract of this template.

create NameOfContract with contractArgument1 = value1; contractArgu­

ment2 = value2; ...

exercise Exercise a choice on a particular contract.

exercise idOfContract NameOfChoiceOnContract with choiceArgument1 =

value1; choiceArgument2 = value 2; ...

fetch Fetch a contract using its ID. Often used with assert to check conditions on the contract’s

content.

fetchedContract <­ fetch IdOfContract

fetchByKey Like fetch, but uses a contract key rather than an ID.

fetchedContract <­ fetchByKey @ContractType contractKey

lookupByKey Confirm that a contract with the given contract key exists.

fetchedContractId <­ lookupByKey @ContractType contractKey

abort Stop execution of the choice, fail the update.

if False then abort

assert Fail the update unless the condition is true. Usually used to limit the arguments that can be

supplied to a contract choice.

assert (amount > 0)

getTime Gets the ledger time. Usually used to restrict when a choice can be exercised.

currentTime <­ getTime

return Explicitly return a value. By default, a choice returns the result of its last update expression.

This means you only need to use return if you want to return something else.

return ContractID ExampleTemplate

The choice body can also contain:

let keyword Used to assign values or functions.

assign a value to the result of an update statement For example: contractFetched <­ fetch

someContractId

1.43.2.2 Reference: Templates

This page gives reference information on templates:

For the structure of a template, see Overview: Template Structure.

Template Name

template NameOfTemplate

• This is the name of the template. It’s preceded bytemplate keyword. Must beginwith a capital

letter.

• This is the highest level of nesting.

• The name is used when creating a contract of this template (usually, from within a choice).

1520 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Template Parameters

with

exampleParty : Party

exampleParty2 : Party

exampleParty3 : Party

exampleParam : Text

­­ more parameters here

• with keyword. The parameters are in the form of a record type.

• Passed in when creating a contract from this template. These are then in scope inside the tem-

plate body.

• A template parameter can’t have the same name as any choice arguments inside the template.

• For all parties involved in the contract (whether they’re a signatory, observer, or con­

troller) you must pass them in as parameters to the contract, whether individually or as

a list ([Party]).

Implicit Record

Whenever a template is defined, a record is implicitly defined with the same name and fields as that

template. This record structure is used in Daml code to represent the data of a contract based on

that template.

Note that in the general case, the existence of a local binding b of type T, where T is a template (and

thus also a record), does not necessarily imply the existence of a contract with the same data as b

on the ledger. You can only assume the existence of such a contract if b is the result of a fetch from

the ledger within the same transaction.

You can create a new instance of a record of type T without any interaction with the ledger; in fact,

this is how you construct a create command.

this and self

Within the body of a template we implicitly define a local binding this to represent the data of the

current contract. For a template T, this binding is of type T, i.e. the implicit record defined by the

template.

Within choices, you can additionally use the binding self to refer to the contract ID of the current

contract (the one on which the choice is being executed). For a contract of template T, the self

binding is of type ContractId T.

1.43. Daml Language References 1521

Daml SDK Documentation, 2.7.3

Template-local Definitions

where

let

allParties = [exampleParty, exampleParty2, exampleParty3]

• let keyword. Starts a block and is followed by any number of definitions, just like any other

let block.

• Template parameters as well as this are in scope, but self is not.

• Definitions from the let block can be used anywhere else in the template’s where block.

Warning: Some uses of the this keyword in template-local definitions can cause an infinite

loop of evaluation as a circular dependency arises. Hence any usage of:

• key this

• observer this

• signatory this

• interface methods applied to this

in a template-local let definition will result in an error generated by the infinite loop.

Signatory Parties

signatory exampleParty

• signatory keyword. After where. Followed by at least one Party.

• Signatories are the parties (see the Party type) who must consent to the creation of this con-

tract. They are the parties who would be put into an obligable position when this contract is

created.

Daml won’t let you put someone into an obligable position without their consent. So if the

contract will cause obligations for a party, theymust be a signatory. If they haven’t authorized

it, you won’t be able to create the contract. In this situation, you may see errors like:

NameOfTemplate requires authorizers Party1,Party2,Party, but only

Party1 were given.

• When a signatory consents to the contract creation, this means they also authorize the conse-

quences of choices that can be exercised on this contract.

• The contract is visible to all signatories (as well as the other stakeholders of the contract). That

is, the compiler automatically adds signatories as observers.

• Each templatemust have at least one signatory. A signatory declaration consists of the signa-

tory keyword followed by a comma-separated list of one or more expressions, each expression

denoting a Party or collection thereof.

1522 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Observers

observer exampleParty2

• observer keyword. After where. Followed by at least one Party.

• Observers are additional stakeholders, so the contract is visible to these parties (see theParty

type).

• Optional. You can have many, either as a comma-separated list or reusing the keyword. You

could pass in a list (of type [Party]).

• Use when a party needs visibility on a contract, or be informed or contract events, but is not a

signatory or controller.

• If you start your choice with choice rather than controller (see Choices below), you must

make sure to add any potential controller as an observer. Otherwise, they will not be able to

exercise the choice, because they won’t be able to see the contract.

Choices

­­ option 1 for specifying choices: choice name first

choice NameOfChoice1

: () ­­ replace ﴾﴿ with the actual return type

with

exampleParameter : Text ­­ parameters here

controller exampleParty

do

return () ­­ replace this line with the choice body

­­ option 2 for specifying choices ﴾deprecated syntax﴿: controller first

controller exampleParty can

NameOfChoice2

: () ­­ replace ﴾﴿ with the actual return type

with

exampleParameter : Text ­­ parameters here

do

return () ­­ replace this line with the choice body

nonconsuming NameOfChoice3

: () ­­ replace ﴾﴿ with the actual return type

with

exampleParameter : Text ­­ parameters here

do

return () ­­ replace this line with the choice body

• A right that the contract gives the controlling party. Can be exercised.

• This is essentially where all the logic of the template goes.

• By default, choices are consuming: that is, exercising the choice archives the contract, so no

further choices can be exercised on it. You can make a choice non-consuming using the non­

consuming keyword.

• There are two ways of specifying a choice: start with the choice keyword or start with the

controller keyword.

Starting with choice lets you pass in a Party to use as a controller. But you must make sure

to add that party as an observer.

• See Reference: Choices for full reference information.

1.43. Daml Language References 1523

Daml SDK Documentation, 2.7.3

Serializable Types

Every parameter to a template, choice argument, and choice result must have a serializable type. This

does not merely mean “convertible to bytes”; it has a specific meaning in Daml. The serializability

rule serves three purposes:

1. Offer a stable means to store ledger values permanently.

2. Provide a sensible encoding of them over The Ledger API.

3. Provide sensible types that directly match their Daml counterparts in languages like Java for

language codegen.

For example, certain kinds of type parameters Daml offers are compatible with (1) and (2), but have

no proper counterpart in (3), so they are disallowed. Similarly, function types have sensible Java

counterparts, satisfying (3), but no reliable way to store or share them via the API, thus failing (1) and

(2).

The following types are not serializable, and thus may not be used in templates.

• Function types.

• Record types with any non-serializable field.

• Variant types with any non-serializable value case.

• Variant and enum types with no constructors.

• References to a parameterized data type with any non-serializable type argument. This applies

whether or not the data type definition uses the type parameter.

• Defined data types with any type parameter of kind Nat, or any kind other than *. This means

higher-kinded types, and types that take a parameter just to pass to Numeric, are not serial-

izable.

Agreements

agreement

­­ text representing the contract

""

• agreement keyword, followed by text.

• Represents what the contract means in text. They’re usually the boundary between on-ledger

and off-ledger rights and obligations.

• Usually, they look like agreement tx, where tx is of type Text.

You can use the built-in operator show to convert party names to a string, and concatenatewith

<> .

Preconditions

ensure

True ­­ a boolean condition goes here

• ensure keyword, followed by a boolean condition.

• Used on contract creation. ensure limits the values on parameters that can be passed to the

contract: the contract can only be created if the boolean condition is true.

1524 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Contract Keys and Maintainers

key (exampleParty, exampleParam) : (Party, Text)

maintainer (exampleFunction key)

• key and maintainer keywords.

• This feature lets you specify a “key” that you can use to uniquely identify this contract as an

instance of this template.

• If you specify a key, you must also specify a maintainer. This is a Party that will ensure the

uniqueness of all the keys it is aware of.

Because of this, the keymust include the maintainer Party or parties (for example, as part

of a tuple or record), and the maintainermust be a signatory.

• For a full explanation, see Reference: Contract Keys.

Interface Instances

interface instance MyInterface for NameOfTemplate where

view = MyInterfaceViewType "NameOfTemplate" 100

method1 = field1

method2 = field2

method3 False _ _ = 0

method3 True x y

| x > 0 = x + y

| otherwise = y

• Used to make a template an instance of an existing interface.

• The clause must start with the keywords interface instance, followed by the name of the

interface, then thekeywordforand thenameof the template (whichmustmatch the enclosing

declaration), and finally the keyword where, which introduces a block where all the methods

of the interface must be implemented.

• See Reference: Interfaces for full reference information on interfaces, or section Interface Instances

for interface instances specifically.

1.43.2.3 Reference: Choices

This page gives reference information on choices. For information on the high-level structure of a

choice, see Overview: Template Structure.

choice First or controller First

There are two ways you can start a choice:

• start with the choice keyword

• start with the controller keyword

Warning: controller first syntax is deprecated since Daml 2.0 and will be removed in a future

version. For more information, see Deprecation of controller first syntax.

1.43. Daml Language References 1525

Daml SDK Documentation, 2.7.3

­­ option 1 for specifying choices: choice name first

choice NameOfChoice

: () ­­ replace ﴾﴿ with the actual return type

with

party : Party ­­ parameters here

controller party

do

return () ­­ replace this line with the choice body

­­ option 2 for specifying choices ﴾deprecated syntax﴿: controller first

controller exampleParty can

NameOfAnotherChoice

: () ­­ replace ﴾﴿ with the actual return type

with

party : Party ­­ parameters here

do

return () ­­ replace the line with the choice body

The main difference is that starting with choice means that you can pass in a Party to use as a

controller. If you do this, you must make sure that you add that party as an observer, otherwise

they won’t be able to see the contract (and therefore won’t be able to exercise the choice).

In contrast, if you start with controller, the controller is automatically added as an observer

when you compile your Daml files.

A secondary difference is that starting with choice allows choice observers to be attached to the

choice using the observer keyword. The choice observers are a list of parties that, in addition to

the stakeholders, will see all consequences of the action.

­­ choice observers may be specified if option 1 is used

choice NameOfChoiceWithObserver

: () ­­ replace ﴾﴿ with the actual return type

with

party : Party ­­ parameters here

observer party ­­ optional specification of choice observers ﴾only␣

↪→available in Daml­LF >=1.11﴿

controller exampleParty

do

return () ­­ replace this line with the choice body

Choice Name

Listing 60: Option 1 for specifying choices: choice name

first

choice ExampleChoice1

: () ­­ replace ﴾﴿ with the actual return type

1526 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Listing 61: Option 2 for specifying choices (deprecated syn-

tax): controller first

ExampleChoice2

: () ­­ replace ﴾﴿ with the actual return type

• The name of the choice. Must begin with a capital letter.

• If you’re using choice-first, preface with choice. Otherwise, this isn’t needed.

• Must be unique in the module. Different templates defined in the same module cannot share

a choice name.

• If you’re using controller-first, you can have multiple choices after one can, for tidiness. How-

ever, note that this syntax is deprecated and will be removed in a future version of Daml.

Controllers

Listing 62: Option 1 for specifying choices: choice name

first

controller exampleParty

Listing 63: Option 2 for specifying choices (deprecated

syntax): controller first

controller exampleParty can

• controller keyword

• The controller is a comma-separated list of values, where each value is either a party or a col-

lection of parties.

The conjunction of all the parties are required to authorize when this choice is exercised.

Contract Consumption

If no qualifier is present, choices are consuming: the contract is archived before the evaluation of

the choice body and both the controllers and all contract stakeholders see all consequences of the

action.

Preconsuming Choices

Listing 64: Option 1 for specifying choices: choice name

first

preconsuming choice ExampleChoice5

: () ­­ replace ﴾﴿ with the actual return type

1.43. Daml Language References 1527

Daml SDK Documentation, 2.7.3

Listing 65: Option 2 for specifying choices (deprecated

syntax): controller first

preconsuming ExampleChoice7

: () ­­ replace ﴾﴿ with the actual return type

• preconsuming keyword. Optional.

• Makes a choice pre-consuming: the contract is archived before the body of the exercise is ex-

ecuted.

• The create arguments of the contract can still be used in the body of the exercise, but cannot

be fetched by its contract id.

• The archival behavior is analogous to the consuming default behavior.

• Only the controllers and signatories of the contract see all consequences of the action. Other

stakeholders merely see an archive action.

• Can be thought as a non-consuming choice that implicitly archives the contract before any-

thing else happens

Postconsuming Choices

Listing 66: Option 1 for specifying choices: choice name

first

postconsuming choice ExampleChoice6

: () ­­ replace ﴾﴿ with the actual return type

Listing 67: Option 2 for specifying choices (deprecated

syntax): controller first

postconsuming ExampleChoice8

: () ­­ replace ﴾﴿ with the actual return type

• postconsuming keyword. Optional.

• Makes a choice post-consuming: the contract is archived after the body of the exercise is exe-

cuted.

• The create arguments of the contract can still be used in the body of the exercise as well as the

contract id for fetching it.

• Only the controllers and signatories of the contract see all consequences of the action. Other

stakeholders merely see an archive action.

• Can be thought as a non-consuming choice that implicitly archives the contract after the

choice has been exercised

1528 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Non-consuming Choices

Listing 68: Option 1 for specifying choices: choice name

first

nonconsuming choice ExampleChoice3

: () ­­ replace ﴾﴿ with the actual return type

Listing 69: Option 2 for specifying choices (deprecated

syntax): controller first

nonconsuming ExampleChoice4

: () ­­ replace ﴾﴿ with the actual return type

• nonconsuming keyword. Optional.

• Makes a choice non-consuming: that is, exercising the choice does not archive the contract.

• Only the controllers and signatories of the contract see all consequences of the action.

• Useful in the many situations when you want to be able to exercise a choice more than once.

Return Type

• Return type is written immediately after choice name.

• All choices have a return type. A contract returning nothing should be marked as returning a

“unit”, ie ().

• If a contract is/contracts are created in the choice body, usually you would return the contract

ID(s) (which have the type ContractId <name of template>). This is returned when the

choice is exercised, and can be used in a variety of ways.

Choice Arguments

with

exampleParameter : Text

• with keyword.

• Choice arguments are similar in structure to Template Parameters: a record type.

• A choice argument can’t have the same name as any parameter to the template the choice is in.

• Optional - only if you need extra information passed in to exercise the choice.

Choice Body

• Introduced with do

• The logic in this section is what is executed when the choice gets exercised.

• The choice body contains Update expressions. For detail on this, see Reference: Updates.

• By default, the last expression in the choice is returned. You can return multiple updates in

tuple form or in a custom data type. To return something that isn’t of type Update, use the

return keyword.

1.43. Daml Language References 1529

Daml SDK Documentation, 2.7.3

Deprecation of controller first syntax

Since Daml 2.0, using controller first syntax to define a choice will result in the followingwarning:

The syntax 'controller ... can' is deprecated,

it will be removed in a future version of Daml.

Instead, use 'choice ... with ... controller' syntax.

Note that 'choice ... with ... controller' syntax does not

implicitly add the controller as an observer,

so it must be added explicitly as one (or as a signatory).

Migrating

Users are strongly encouraged to adapt their choices to use choice first syntax. This is a schema

to adapt affected code:

1. For each controller ... can block,

1. Note the parties between the controller and can keywords; these are the block con-

trollers.

2. Ensure that all the block controllers are signatories or observers of the template. If any

controller is neither a signatory nor observer of the template, add it as an observer.

3. For each choice in the block,

1. Prefix the choicenamewith thechoicekeyword, but keepany consumptionqualifiers

before choice.

2. Add a controller clause with the block controllers before the body of the choice (the

do block) .

4. Remove the controller ... can block header and adjust indentation as necessary.

Turning off the warning

This warning is controlled by the warning flag controller­can, whichmeans that it can be toggled

independently of otherwarnings. This is especially useful for graduallymigrating code that used this

syntax.

To turn off the warning within a Daml file, add the following line at the top of the file:

{­# OPTIONS_GHC ­Wno­controller­can #­}

To turn it off for an entire Daml project, add the following entry to the build­options field of the

project’s daml.yaml file

build­options:

­ ­­ghc­option=­Wno­controller­can

Within a project where the warning has been turned off via the daml.yaml file, it can be turned back

on for individual Daml files by adding the following line at the top of each file:

{­# OPTIONS_GHC ­Wcontroller­can #­}

1530 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.43.2.4 Reference: Updates

This page gives reference information on Updates. For the structure around them, see Overview: Tem-

plate Structure.

Background

• An Update is ledger update. There are many different kinds of these, and they’re listed below.

• They are what can go in a choice body.

Binding Variables

boundVariable <­ UpdateExpression1

• Oneof the things youcando in a choice body is bind (assign) anUpdate expression to a variable.

This works for any of the Updates below.

do

do

updateExpression1

updateExpression2

• do can be used to group Update expressions. You can only have one update expression in a

choice, so any choice beyond the very simple will use a do block.

• Anything you can put into a choice body, you can put into a do block.

• By default, do returns whatever is returned by the last expression in the block.

So if you want to return something else, you’ll need to use return explicitly - see return for an

example.

archive

archive ContractId

• archive function.

• Archives a contract already created and residing on the ledger. The contract is fetched by its

unique contract identifierContractId <name of template> and then exercises the Archive

choice on it.

• Returns unit.

• Requires authorization from the contract controllers/signatories. Without the required autho-

rization, the transaction fails. For more detail on authorization, see Signatory Parties.

• All templates implicitly have an Archive choice that cannot be removed, which is equivalent to:

choice Archive : ()

controller (signatory this)

do return ()

1.43. Daml Language References 1531

Daml SDK Documentation, 2.7.3

create

create NameOfTemplate with exampleParameters

• create function.

• Creates a contract on the ledger. When a contract is committed to the ledger, it is given a

unique contract identifier of type ContractId <name of template>.

• Creating the contract returns that ContractId.

• Use with to specify the template parameters.

• Requires authorization from the signatories of the contract being created. This is given by

being signatories of the contract fromwhich the other contract is created, being the controller,

or explicitly creating the contract itself.

If the required authorization is not given, the transaction fails. Formore detail on authorization,

see Signatory Parties.

exercise

exercise IdOfContract NameOfChoiceOnContract with choiceArgument1 = value1

• exercise function.

• Exercises the specified choice on the specified contract.

• Use with to specify the choice parameters.

• Requires authorization from the controller(s) of the choice. If the authorization is not given,

the transaction fails.

exerciseByKey

exerciseByKey @ContractType contractKey NameOfChoiceOnContract with␣

↪→choiceArgument1 = value1

• exerciseByKey function.

• Like exercise, but the contract is specified by contract key, instead of contract ID.

• For details see Reference: Contract Keys: exerciseByKey

fetch

fetchedContract <­ fetch IdOfContract

• fetch function.

• Fetches the contract with that ID. Usually used with a bound variable, as in the example above.

• Often used to check the details of a contract before exercising a choice on that contract. Also

used when referring to some reference data.

• fetch cid fails if cid is not the contract id of an active contract, and thus causes the entire

transaction to abort.

• The submitting party must be an observer or signatory on the contract, otherwise fetch fails,

and similarly causes the entire transaction to abort.

1532 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

fetchByKey

fetchedContract <­ fetchByKey @ContractType contractKey

• fetchByKey function.

• Like fetch, but fetches the contract with that contract key, instead of the contract ID.

• For details see Reference: Contract Keys: fetchByKey.

visibleByKey

isVisible <­ visibleByKey @ContractType contractKey

• visibleByKey function.

• Use this to check whether a contract with the given contract key exists.

• For details see Reference: Contract Keys: visibleByKey

lookupByKey

fetchedContractId <­ lookupByKey @ContractType contractKey

• lookupByKey function.

• Use this to confirm that a contract with the given contract key exists.

• For details see Reference: Contract Keys: lookupByKey

abort

abort errorMessage

• abort function.

• Fails the transaction - nothing in it will be committed to the ledger.

• errorMessage is of type Text. Use the error message to provide more context to an external

system (e.g., it gets displayed in Daml Studio script results).

• You could use assert False as an alternative.

assert

assert (condition == True)

• assert keyword.

• Fails the transaction if the condition is false. So the choice can only be exercised if the boolean

expression evaluates to True.

• Often used to restrict the arguments that can be supplied to a contract choice.

Here’s an example of using assert to prevent a choice being exercised if the Party passed as a

parameter is on a blacklist:

1.43. Daml Language References 1533

Daml SDK Documentation, 2.7.3

choice Transfer : ContractId RestrictedPayout

with newReceiver : Party

controller receiver

do

assert (newReceiver /= blacklisted)

create RestrictedPayout with receiver = newReceiver; giver; blacklisted;␣

↪→qty

getTime

currentTime <­ getTime

• getTime keyword.

• Gets the ledger time. (You will usually want to immediately bind it to a variable in order to be

able to access the value.)

• Used to restrict when a choice can bemade. For example, with an assert that the time is later

than a certain time.

Here’s an example of a choice that uses a check on the current time:

choice Complete : ()

controller party

do

­­ bind the ledger effective time to the tchoose variable using getTime

tchoose <­ getTime

­­ assert that tchoose is no earlier than the begin time

assert (begin <= tchoose && tchoose < addRelTime begin period)

return

return ()

• return keyword.

• Used to return a value from do block that is not of type Update.

Here’s an example where two contracts are created in a choice and both their ids are returned as a

tuple:

do

firstContract <­ create SomeContractTemplate with arg1; arg2

secondContract <­ create SomeContractTemplate with arg1; arg2

return (firstContract, secondContract)

1534 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

let

See the documentation on Let.

Let looks similar to binding variables, but it’s very different! This code example shows how:

do

­­ defines a function, createdContract, taking a single argument that when

­­ called _will_ create the new contract using argument for issuer and owner

let createContract x = create NameOfContract with issuer = x; owner = x

createContract party1

createContract party2

this

this lets you refer to the current contract from within the choice body. This refers to the contract,

not the contract ID.

It’s useful, for example, if you want to pass the current contract to a helper function outside the

template.

1.43.2.5 Reference: Data Types

This page gives reference information on Daml’s data types.

Built-in Types

1.43. Daml Language References 1535

Daml SDK Documentation, 2.7.3

Table of built-in primitive types

Type For Example Notes

Int integers 1, 1000000,

1_000_000

Int values are signed 64-bit integers which

represent numbers between ­9,223,372,

036,854,775,808 and 9,223,372,036,

854,775,807 inclusive. Arithmetic opera-

tions raise an error on overflows and divi-

sion by0. Tomake longnumbersmore read-

able you can optionally add underscores.

Decimal short for Numeric

10

1.0 Decimal values are rational numbers with

precision 38 and scale 10.

Numeric n fixed point decimal

numbers

1.0 Numeric n values are rational numbers

with 38 total digits. The scale parameter n

controls the number of digits after the deci-

mal point, so for example, Numeric 10 val-

ues have 28 digits before the decimal point

and 10 digits after it, and Numeric 20 val-

ues have 18 digits before the decimal point

and 20 digits after it. The value of nmust be

between 0 and 37 inclusive.

BigNu­

meric

large fixed point

decimal numbers

1.0 BigNumeric values are rational numbers

with up to 2^16 decimal digits. They can

have up to 2^15 digits before the decimal

point, and up to 2^15 digits after the deci-

mal point.

Text strings "hello" Text values are strings of characters en-

closed by double quotes.

Bool boolean values True, False

Party unicode string rep-

resenting a party

alice <­

getParty

"Alice"

Every party in a Daml system has a unique

identifier of type Party. To create a value

of type Party, use binding on the result of

calling getParty. The party text can only

contain alphanumeric characters, ­, _ and

spaces.

Date models dates date 2007

Apr 5

Permissible dates range from 0001­01­01

to 9999­12­31 (using a year-month-day

format). To create a value of type Date, use

the function date (to get this function, im-

port DA.Date).

Time models absolute

time (UTC)

time

(date

2007 Apr

5) 14 30

05

Time values have microsecond precision

with allowed range from 0001­01­01 to

9999­12­31 (using a year-month-day for-

mat). To create a value of type Time, use

a Date and the function time (to get this

function, import DA.Time).

RelTime models differences

between time values

seconds 1,

seconds

(­2)

RelTime values have microsec-

ond precision with allowed range

from -9,223,372,036,854,775,808ms to

9,223,372,036,854,775,807ms There are no

literals for RelTime. Instead they are cre-

ated using one of days, hours, minutes,

seconds, milliseconds and microsec­

onds (to get these functions, import

DA.Time).

1536 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Escaping Characters

Text literals support backslash escapes to include their delimiter (\") and a backslash itself (\\).

Time

Definition of time on the ledger is a property of the execution environment. Daml assumes there is

a shared understanding of what time is among the stakeholders of contracts.

Lists

[a] is the built-in data type for a list of elements of type a. The empty list is denoted by [] and [1,

3, 2] is an example of a list of type [Int].

You can also construct lists using [] (the empty list) and :: (which is an operator that appends an

element to the front of a list). For example:

twoEquivalentListConstructions =

script do

assert ([1, 2, 3] == 1 :: 2 :: 3 :: [])

Sum a List

To sum a list, use a fold (because there are no loops in Daml). See Fold for details.

Records and Record Types

You declare a new record type using the data and with keyword:

data MyRecord = MyRecord

with

label1 : type1

label2 : type2

...

labelN : typeN

deriving (Eq, Show)

where:

• label1, label2, …, labelN are labels, which must be unique in the record type

• type1, type2, …, typeN are the types of the fields

There’s an alternative way to write record types:

data MyRecord = MyRecord { label1 : type1; label2 : type2; ...; labelN : typeN }

deriving (Eq, Show)

The format using with and the format using { } are exactly the same syntactically. Themain differ-

ence is that when you use with, you can use newlines and proper indentation to avoid the delimiting

semicolons.

1.43. Daml Language References 1537

Daml SDK Documentation, 2.7.3

The deriving (Eq, Show) ensures the data type can be compared (using ==) and displayed (us-

ing show). The line starting deriving is required for data types used in fields of a template.

In general, add thederivingunless the data type contains function types (e.g. Int ­> Int), which

cannot be compared or shown.

For example:

­­ This is a record type with two fields, called first and second,

­­ both of type `Int`

data MyRecord = MyRecord with first : Int; second : Int

deriving (Eq, Show)

­­ An example value of this type is:

newRecord = MyRecord with first = 1; second = 2

­­ You can also write:

newRecord = MyRecord 1 2

Data Constructors

You can use data keyword to define a new data type, for example data Floor a = Floor a for

some type a.

The first Floor in the expression is the type constructor. The second Floor is a data constructor that

can be used to specify values of the Floor Int type: for example, Floor 0, Floor 1.

In Daml, data constructors may take at most one argument.

An example of a data constructor with zero arguments is data Empty = Empty {}. The only value

of the Empty type is Empty.

Note: In data Confusing = Int, the Int is a data constructor with no arguments. It has nothing

to do with the built-in Int type.

Access Record Fields

To access the fields of a record type, use dot notation. For example:

­­ Access the value of the field `first`

val.first

­­ Access the value of the field `second`

val.second

1538 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Update Record Fields

You can also use the with keyword to create a new record on the basis of an existing replacing select

fields.

For example:

myRecord = MyRecord with first = 1; second = 2

myRecord2 = myRecord with second = 5

produces the new record value MyRecord with first = 1; second = 5.

If you have a variable with the same name as the label, Daml lets you use this without assigning it

to make things look nicer:

­­ if you have a variable called `second` equal to 5

second = 5

­­ you could construct the same value as before with

myRecord2 = myRecord with second = second

­­ or with

myRecord3 = MyRecord with first = 1; second = second

­­ but Daml has a nicer way of putting this:

myRecord4 = MyRecord with first = 1; second

­­ or even

myRecord5 = r with second

Note: The with keyword binds more strongly than function application. So for a function, say

return, either write return IntegerCoordinate with first = 1; second = 5 or return

(IntegerCoordinate {first = 1; second = 5}), where the latter expression is enclosed in

parentheses.

Parameterized Data Types

Daml supports parameterized data types.

For example, to express a more general type for 2D coordinates:

­­ Here, a and b are type parameters.

­­ The Coordinate after the data keyword is a type constructor.

data Coordinate a b = Coordinate with first : a; second : b

An example of a type that can be constructed with Coordinate is Coordinate Int Int.

1.43. Daml Language References 1539

Daml SDK Documentation, 2.7.3

Type Synonyms

To declare a synonym for a type, use the type keyword.

For example:

type IntegerTuple = (Int, Int)

This makes IntegerTuple and (Int, Int) synonyms: they have the same type and can be used

interchangeably.

You can use the type keyword for any type, including Built-in Types.

Function Types

A function’s type includes its parameter and result types. A function foo with two parameters has

type ParamType1 ­> ParamType2 ­> ReturnType.

Note that this can be treated as any other type. You could for instance give it a synonym using type

FooType = ParamType1 ­> ParamType2 ­> ReturnType.

Algebraic Data Types

An algebraic data type is a composite type: a type formed by a combination of other types. The

enumeration data type is an example. This section introduces more powerful algebraic data types.

Product Types

The following data constructor is not valid in Daml: data AlternativeCoordinate a b = Al­

ternativeCoordinate a b. This is because data constructors can only have one argument.

To get around this, wrap the values in a record: data Coordinate a b = Coordinate {first:

a; second: b}.

These kinds of types are called product types.

Awayof thinkingabout this is that theCoordinate Int Int typehasa first andseconddimension

(that is, a 2D product space). By adding an extra type to the record, you get a third dimension, and

so on.

Sum Types

Sum types capture the notion of being of one kind or another.

An example is the built-in data type Bool. This is defined by data Bool = True | False de­

riving (Eq,Show), where True and False are data constructors with zero arguments . This

means that a Bool value is either True or False and cannot be instantiated with any other value.

Please note that all types which you intend to use as template or choice arguments need to derive

at least from (Eq, Show).

1540 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

A very useful sum type is data Optional a = None | Some a deriving (Eq,Show). It is

part of the Daml standard library.

Optional captures the concept of a box, which can be empty or contain a value of type a.

Optional is a sum type constructor taking a type a as parameter. It produces the sum type defined

by the data constructors None and Some.

The Some data constructor takes one argument, and it expects a value of type a as a parameter.

Pattern Matching

You can match a value to a specific pattern using the case keyword.

The pattern is expressed with data constructors. For example, the Optional Int sum type:

import Daml.Script

import DA.Assert

optionalIntegerToText (x : Optional Int) : Text =

case x of

None ­> "Box is empty"

Some val ­> "The content of the box is " <> show val

optionalIntegerToTextTest =

script do

In the optionalIntegerToText function, the case construct first tries to match the x argument

against the None data constructor, and in case of amatch, the "Box is empty" text is returned. In

case of no match, a match is attempted for x against the next pattern in the list, i.e., with the Some

data constructor. In case of a match, the content of the value attached to the Some label is bound to

the val variable, which is then used in the corresponding output text string.

Note that all patterns in the case construct need to be complete, i.e., for each x there must be at least

one pattern that matches. The patterns are tested from top to bottom, and the expression for the

first pattern that matches will be executed. Note that _ can be used as a catch-all pattern.

You could also case distinguish a Bool variable using the True and False data constructors and

achieve the same behavior as an if-then-else expression.

As an example, the following is an expression for a Text:

tmp =

let

l = [1, 2, 3]

in case l of

Notice the use of nested pattern matching above.

Note: An underscore was used in place of a variable name. The reason for this is that Daml Studio

produces a warning for all variables that are not being used. This is useful in detecting unused

variables. You can suppress the warning by naming the variable with an initial underscore.

1.43. Daml Language References 1541

Daml SDK Documentation, 2.7.3

1.43.2.6 Reference: Built-in Functions

This page gives reference information on built-in functions for working with a variety of common

concepts.

Work with Time

Daml has these built-in functions for working with time:

• datetime: creates a Time given year, month, day, hours, minutes, and seconds as argument.

• subTime: subtracts one time from another. Returns the RelTime difference between time1

and time2.

• addRelTime: add times. Takes a Time and RelTime and adds the RelTime to the Time.

• days, hours, minutes, seconds: constructs a RelTime of the specified length.

• pass: (in Daml Script tests only) use pass : RelTime ­> Script Time to advance the

ledger time by the argument amount. Returns the new time.

Work with Numbers

Daml has these built-in functions for working with numbers:

• round: rounds a Decimal number to Int.

round d is the nearest Int to d. Tie-breaks are resolved by rounding away from zero, for exam-

ple:

round 2.5 == 3 round (­2.5) == ­3

round 3.4 == 3 round (­3.7) == ­4

• truncate: converts aDecimalnumber toInt, truncating the value towards zero, for example:

truncate 2.2 == 2 truncate (­2.2) == ­2

truncate 4.9 == 4 v (­4.9) == ­4

• intToDecimal: converts an Int to Decimal.

The set of numbers expressed by Decimal is not closed under division as the result may require

more than 10 decimal places to represent. For example, 1.0 / 3.0 == 0.3333... is a rational

number, but not a Decimal.

Work with Text

Daml has these built-in functions for working with text:

• <> operator: concatenates two Text values.

• show converts a value of the primitive types (Bool, Int, Decimal, Party, Time, RelTime) to

a Text.

To escape text in Daml strings, use \:

1542 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Character How to escape it

\ \\

" \"

' \'

Newline \n

Tab \t

Carriage return \r

Unicode (using ! as an example)
• Decimal code: \33

• Octal code: \o41

• Hexadecimal code: \x21

Work with Lists

Daml has these built-in functions for working with lists:

• foldl and foldr: see Fold below.

Fold

A fold takes:

• a binary operator

• a first accumulator value

• a list of values

The elements of the list are processed one-by-one (from the left in a foldl, or from the right in a

foldr).

Note: We’d usually recommend using foldl, as foldr is usually slower. This is because it needs

to traverse the whole list before starting to discharge its elements.

Processing goes like this:

1. The binary operator is applied to the first accumulator value and the first element in the list.

This produces a second accumulator value.

2. The binary operator is applied to the second accumulator value and the second element in the

list. This produces a third accumulator value.

3. This continues until there are nomore elements in the list. Then, the last accumulator value is

returned.

As an example, to sum up a list of integers in Daml:

sumList =

script do

assert (foldl (+) 0 [1, 2, 3] == 6)

1.43. Daml Language References 1543

Daml SDK Documentation, 2.7.3

1.43.2.7 Reference: Expressions

This page gives reference information for Daml expressions that are not updates.

Definitions

Use assignment to bind values or functions at the top level of a Daml file or in a contract template

body.

Values

For example:

pi = 3.1415926535

The fact that pi has type Decimal is inferred from the value. To explicitly annotate the type, mention

it after a colon following the variable name:

pi : Decimal = 3.1415926535

Functions

You can define functions. Here’s an example: a function for computing the surface area of a tube:

tubeSurfaceArea : Decimal ­> Decimal ­> Decimal

tubeSurfaceArea r h =

2.0 * pi * r * h

Here you see:

• the name of the function

• the function’s type signature Decimal ­> Decimal ­> Decimal

This means it takes two Decimals and returns another Decimal.

• the definition = 2.0 * pi * r * h (which uses the previously defined pi)

Arithmetic Operators

Operator Works for

+ Int, Decimal, RelTime

­ Int, Decimal, RelTime

* Int, Decimal

/ (integer division) Int

% (integer remainder opera-

tion)

Int

^ (integer exponentiation) Int

The result of the modulo operation has the same sign as the dividend:

1544 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

• 7 / 3 and (­7) / (­3) evaluate to 2

• (­7) / 3 and 7 / (­3) evaluate to ­2

• 7 % 3 and 7 % (­3) evaluate to 1

• (­7) % 3 and (­7) % (­3) evaluate to ­1

To write infix expressions in prefix form, wrap the operators in parentheses. For example, (+) 1 2

is another way of writing 1 + 2.

Comparison Operators

Operator Works for

<, <=, >, >= Bool, Text, Int, Decimal, Party, Time

==, /= Bool, Text, Int, Decimal, Party, Time, and identifiers of con-

tracts stemming from the same contract template

Logical Operators

The logical operators in Daml are:

• not for negation, e.g., not True == False

• && for conjunction, where a && b == and a b

• || for disjunction, where a || b == or a b

for Bool variables a and b.

If-then-else

You can use conditional if-then-else expressions, for example:

if owner == scroogeMcDuck then "sell" else "buy"

Let

To bind values or functions to be in scope beneath the expression, use the block keyword let:

doubled =

­­ let binds values or functions to be in scope beneath the expression

let

double (x : Int) = 2 * x

up = 5

in double up

You can use let inside do blocks:

blah = script

do

let

x = 1

(continues on next page)

1.43. Daml Language References 1545

Daml SDK Documentation, 2.7.3

(continued from previous page)

y = 2

­­ x and y are in scope for all subsequent expressions of the do block,

­­ so can be used in expression1 and expression2.

expression1

expression2

Lastly, a templatemay contain a single let block.

template Iou

with

issuer : Party

owner : Party

where

signatory issuer

let updateOwner o = create this with owner = o

updateAmount a = create this with owner = a

­­ Expressions bound in a template let block can be referenced

­­ from any and all of the signatory, consuming, ensure and

­­ agreement expressions and from within any choice do blocks.

choice Transfer : ContractId Iou

with newOwner : Party

controller owner

do

updateOwner newOwner

1.43.2.8 Reference: Functions

This page gives reference information on functions in Daml.

Daml is a functional language. It lets you apply functions partially and also have functions that take

other functions as arguments. This page discusses these higher-order functions.

Defining Functions

In Reference: Expressions, the tubeSurfaceArea function was defined as:

tubeSurfaceArea : Decimal ­> Decimal ­> Decimal

tubeSurfaceArea r h =

2.0 * pi * r * h

You can define this function equivalently using lambdas, involving \, a sequence of parameters, and

an arrow ­> as:

tubeSurfaceArea : BinaryDecimalFunction =

\ (r : Decimal) (h : Decimal) ­> 2.0 * pi * r * h

1546 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Partial Application

The type of the tubeSurfaceArea function described previously, is Decimal ­> Decimal ­>

Decimal. An equivalent, but more instructive, way to read its type is: Decimal ­> (Decimal ­>

Decimal): saying that tubeSurfaceArea is a function that takes one argument and returns an-

other function.

So tubeSurfaceArea expects one argument of type Decimal and returns a function of type Dec­

imal ­> Decimal. In other words, this function returns another function. Only the last application of

an argument yields a non-function.

This is called currying: currying is the process of converting a function of multiple arguments to a

function that takes just a single argument and returns another function. In Daml, all functions are

curried.

This doesn’t affect things that much. If you use functions in the classical way (by applying them to

all parameters) then there is no difference.

If you only apply a few arguments to the function, this is called partial application. The result is a

function with partially defined arguments. For example:

multiplyThreeNumbers : Int ­> Int ­> Int ­> Int

multiplyThreeNumbers xx yy zz =

xx * yy * zz

multiplyTwoNumbersWith7 = multiplyThreeNumbers 7

multiplyWith21 = multiplyTwoNumbersWith7 3

multiplyWith18 = multiplyThreeNumbers 3 6

You could also define equivalent lambda functions:

multiplyWith18_v2 : Int ­> Int

multiplyWith18_v2 xx =

multiplyThreeNumbers 3 6 xx

Functions are Values

The function type can be explicitly added to the tubeSurfaceArea function (when it is written with

the lambda notation):

­­ Type synonym for Decimal ­> Decimal ­> Decimal

type BinaryDecimalFunction = Decimal ­> Decimal ­> Decimal

pi : Decimal = 3.1415926535

tubeSurfaceArea : BinaryDecimalFunction =

\ (r : Decimal) (h : Decimal) ­> 2.0 * pi * r * h

Note that tubeSurfaceArea : BinaryDecimalFunction = ... follows the same pattern as

when binding values, e.g., pi : Decimal = 3.14159265359.

Functions have types, just like values. Which means they can be used just like normal variables. In

fact, in Daml, functions are values.

1.43. Daml Language References 1547

Daml SDK Documentation, 2.7.3

This means a function can take another function as an argument. For example, define a function

applyFilter: (Int ­> Int ­> Bool) ­> Int ­> Int ­> Bool which applies the first ar-

gument, a higher-order function, to the second and the third arguments to yield the result.

applyFilter (filter : Int ­> Int ­> Bool)

(x : Int)

(y : Int) = filter x y

compute = script do

applyFilter (<) 3 2 === False

applyFilter (/=) 3 2 === True

round (2.5 : Decimal) === 3

round (3.5 : Decimal) === 4

explode "me" === ["m", "e"]

applyFilter (\a b ­> a /= b) 3 2 === True

The Fold section looks into two useful built-in functions, foldl and foldr, that also take a function

as an argument.

Note: Daml does not allow functions as parameters of contract templates and contract choices.

However, a follow up of a choice can use built-in functions, defined at the top level or in the contract

template body.

Generic Functions

A function is parametrically polymorphic if it behaves uniformly for all types, in at least one of its type

parameters. For example, you can define function composition as follows:

compose (f : b ­> c) (g : a ­> b) (x : a) : c = f (g x)

where a, b, and c are any data types. Both compose ((+) 4) ((*) 2) 3 == 10 and compose

not ((&&) True) False evaluate to True. Note that ((+) 4) has type Int ­> Int, whereas

not has type Bool ­> Bool.

You can find many other generic functions including this one in the Daml standard library.

Note: Daml currently does not support generic functions for a specific set of types, such as Int and

Decimal numbers. For example, sum (x: a) (y: a) = x + y is undefined when a equals the

type Party. Bounded polymorphism might be added to Daml in a later version.

1548 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.43.2.9 Reference: Daml File Structure

This page gives reference information on the structure of Daml files outside of templates.

File Structure

• This file’s module name (module NameOfThisFile where).

Part of a hierarchical module system to facilitate code reuse. Must be the same as the Daml

file name, without the file extension.

For a file with path ./Scenarios/Demo.daml, use module Scenarios.Demo where.

Imports

• You can import other modules (import OtherModuleName), including qualified imports

(import qualified AndYetOtherModuleName, import qualified AndYetOtherMod­

uleName as Signifier). Can’t have circular import references.

• To import the Preludemodule of ./Prelude.daml, use import Prelude.

• To import a module of ./Scenarios/Demo.daml, use import Scenarios.Demo.

• If you leave out qualified, and a module alias is specified, top-level declarations of the im-

portedmodule are imported into themodule’s namespace as well as the namespace specified

by the given alias.

Libraries

A Daml library is a collection of related Daml modules.

Define a Daml library using a LibraryModules.daml file: a normal Daml file that imports the root

modules of the library. The library consists of the LibraryModules.daml file and all its dependen-

cies, found by recursively following the imports of each module.

Errors are reported in Daml Studio on a per-library basis. This means that breaking changes on

shared Daml modules are displayed even when the files are not explicitly open.

Comments

Use ­­ for a single line comment. Use {­ and ­} for a comment extending over multiple lines.

Contract Identifiers

When an instance of a template (that is, a contract) is added to the ledger, it’s assigned a unique

identifier, of type ContractId <name of template>.

The runtime representation of these identifiers depends on the execution environment: a contract

identifier from the Sandbox may look different to ones on other Daml Ledgers.

You can use == and /= on contract identifiers of the same type.

1.43. Daml Language References 1549

Daml SDK Documentation, 2.7.3

1.43.2.10 Reference: Daml Packages

This page gives reference information on Daml package dependencies.

Building Daml Archives

When a Daml project is compiled, the compiler produces a Daml archive. These are

platform-independent packages of compiled Daml code that can be uploaded to a Daml ledger or

imported in other Daml projects.

Daml archives have a .dar file ending. By default, when you run daml build, it will generate the

.dar file in the .daml/dist folder in the project root folder. For example, running daml build in

project foowith project version 0.0.1will result in a Daml archive .daml/dist/foo­0.0.1.dar.

You can specify a different path for the Daml archive by using the ­o flag:

daml build ­o foo.dar

The rest of this page will focus on how to import a Daml package in other Daml␣

↪→projects.

Inspecting DARs

To inspect a DAR and get information about the packages inside it, you can use the daml damlc

inspect­dar command. This is often useful to find the package id of the project you just built.

You can run daml damlc inspect­dar /path/to/your.dar to get a human-readable listing of

the files inside it and a list of packages and their package ids. Here is a (shortened) example output:

$ daml damlc inspect­dar .daml/dist/create­daml­app­0.1.0.dar

DAR archive contains the following files:

create­daml­app­0.1.0­

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/create­daml­

↪→app­0.1.0­29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d.dalf

create­daml­app­0.1.0­

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/daml­prim­

↪→75b070729b1fbd37a618493652121b0d6f5983b787e35179e52d048db70e9f15.dalf

create­daml­app­0.1.0­

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/daml­stdlib­0.

↪→0.0­a535cbc3657b8df953a50aaef5a4cd224574549c83ca4377e8219aadea14f21a.dalf

create­daml­app­0.1.0­

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/daml­stdlib­DA­

↪→Internal­Template­

↪→d14e08374fc7197d6a0de468c968ae8ba3aadbf9315476fd39071831f5923662.dalf

create­daml­app­0.1.0­

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/data/create­

↪→daml­app­0.1.0.conf

create­daml­app­0.1.0­

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/User.daml

create­daml­app­0.1.0­

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/User.hi

create­daml­app­0.1.0­

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/User.hie
(continues on next page)

1550 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

META­INF/MANIFEST.MF

DAR archive contains the following packages:

create­daml­app­0.1.0­

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d

↪→"29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d"

daml­stdlib­DA­Internal­Template­

↪→d14e08374fc7197d6a0de468c968ae8ba3aadbf9315476fd39071831f5923662

↪→"d14e08374fc7197d6a0de468c968ae8ba3aadbf9315476fd39071831f5923662"

daml­prim­75b070729b1fbd37a618493652121b0d6f5983b787e35179e52d048db70e9f15

↪→"75b070729b1fbd37a618493652121b0d6f5983b787e35179e52d048db70e9f15"

daml­stdlib­0.0.0­

↪→a535cbc3657b8df953a50aaef5a4cd224574549c83ca4377e8219aadea14f21a

↪→"a535cbc3657b8df953a50aaef5a4cd224574549c83ca4377e8219aadea14f21a"

In addition to the human-readable output, you can also get the output as JSON. This is easier to

consume programmatically and it is more robust to changes across SDK versions:

$ daml damlc inspect­dar ­­json .daml/dist/create­daml­app­0.1.0.dar

{

"packages": {

"29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d": {

"path": "create­daml­app­0.1.0­

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/create­daml­

↪→app­0.1.0­29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d.dalf

↪→",

"name": "create­daml­app",

"version": "0.1.0"

},

"d14e08374fc7197d6a0de468c968ae8ba3aadbf9315476fd39071831f5923662": {

"path": "create­daml­app­0.1.0­

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/daml­stdlib­DA­

↪→Internal­Template­

↪→d14e08374fc7197d6a0de468c968ae8ba3aadbf9315476fd39071831f5923662.dalf",

"name": null,

"version": null

},

"75b070729b1fbd37a618493652121b0d6f5983b787e35179e52d048db70e9f15": {

"path": "create­daml­app­0.1.0­

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/daml­prim­

↪→75b070729b1fbd37a618493652121b0d6f5983b787e35179e52d048db70e9f15.dalf",

"name": "daml­prim",

"version": "0.0.0"

},

"a535cbc3657b8df953a50aaef5a4cd224574549c83ca4377e8219aadea14f21a": {

"path": "create­daml­app­0.1.0­

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/daml­stdlib­0.

↪→0.0­a535cbc3657b8df953a50aaef5a4cd224574549c83ca4377e8219aadea14f21a.dalf",

"name": "daml­stdlib",

"version": "0.0.0"

}

},

"main_package_id":

↪→"29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d",

(continues on next page)

1.43. Daml Language References 1551

Daml SDK Documentation, 2.7.3

(continued from previous page)

"files": [

"create­daml­app­0.1.0­

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/create­daml­

↪→app­0.1.0­29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d.dalf

↪→",

"create­daml­app­0.1.0­

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/daml­prim­

↪→75b070729b1fbd37a618493652121b0d6f5983b787e35179e52d048db70e9f15.dalf",

"create­daml­app­0.1.0­

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/daml­stdlib­0.

↪→0.0­a535cbc3657b8df953a50aaef5a4cd224574549c83ca4377e8219aadea14f21a.dalf",

"create­daml­app­0.1.0­

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/daml­stdlib­DA­

↪→Internal­Template­

↪→d14e08374fc7197d6a0de468c968ae8ba3aadbf9315476fd39071831f5923662.dalf",

"create­daml­app­0.1.0­

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/data/create­

↪→daml­app­0.1.0.conf",

"create­daml­app­0.1.0­

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/User.daml",

"create­daml­app­0.1.0­

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/User.hi",

"create­daml­app­0.1.0­

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/User.hie",

"META­INF/MANIFEST.MF"

]

}

Note that name and version will be null for packages in Daml-LF < 1.8.

Import Daml Packages

There are two ways to import a Daml package in a project: via dependencies, and via

data­dependencies. They each have certain advantages and disadvantages. To summarize:

• dependencies allow you to import a Daml archive as a library. The definitions in the depen-

dency will all be made available to the importing project. However, the dependency must be

compiled with the same SDK version, so this method is only suitable for breaking up large

projects into smaller projects that depend on each other, or to reuse existing libraries.

• data­dependencies allow you to import a Daml archive (.dar) or a Daml-LF package (.dalf),

including packages that have already been deployed to a ledger. These packages can be com-

piled with any previous SDK version. On the other hand, not all definitions can be carried over

perfectly, since the Daml interface needs to be reconstructed from the binary.

The following sections will cover these two approaches in more depth.

1552 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Import a Daml package via Dependencies

A Daml project can declare a Daml archive as a dependency in the dependencies field of daml.

yaml. This lets you import modules and reuse definitions from another Daml project. The main

limitation of this method is that the dependency must be built for the same SDK version as the

importing project.

Let’s go through an example. Suppose you have an existing Daml project foo, located at /home/

user/foo, and you want to use it as a dependency in a project bar, located at /home/user/bar.

To do so, you first need to generate the Daml archive of foo. Go into /home/user/foo and run daml

build ­o foo.dar. This will create the Daml archive, /home/user/foo/foo.dar.

Next, we will update the project config for bar to use the generated Daml archive as a dependency.

Go into /home/user/bar and change the dependencies field in daml.yaml to point to the created

Daml archive:

dependencies:

­ daml­prim

­ daml­stdlib

­ ../foo/foo.dar

The import path can also be absolute, for example, by changing the last line to:

­ /home/user/foo/foo.dar

When you run daml build in the bar project, the compiler will make the definitions in foo.dar

available for importing. For example, if foo exports the module Foo, you can import it in the usual

way:

import Foo

By default, all modules of foo are made available when importing foo as a dependency. To limit

which modules of foo get exported, you may add an exposed­modules field in the daml.yaml file

for foo:

exposed­modules:

­ Foo

Import a Daml Archive via data­dependencies

You can import a Daml archive (.dar) or Daml-LF package (.dalf) using data­dependencies. Unlike

dependencies, this can be used when the SDK versions do not match.

For example, you can import foo.dar as follows:

dependencies:

­ daml­prim

­ daml­stdlib

data­dependencies:

­ ../foo/foo.dar

When importing packages this way, the Daml compiler will try to reconstruct the original Daml in-

terface from the compiled binaries. However, to allow data­dependencies to work across SDK

1.43. Daml Language References 1553

Daml SDK Documentation, 2.7.3

versions, the compiler has to abstract over some details which are not compatible across SDK

versions. This means that there are some Daml features that cannot be recovered when using

data­dependencies. In particular:

1. Export lists cannot be recovered, so imports via data­dependencies can access definitions

that were originally hidden. This means it is up to the importing module to respect the data

abstraction of the original module. Note that this is the same for all code that runs on the

ledger, since the ledger does not provide special support for data abstraction.

2. If you have a dependency that limits the modules that can be accessed via

exposed­modules, you can get an error if you also have a data­dependency that references

something from the hidden modules (even if it is only reexported). Since exposed­modules

are not available on the ledger in general, we recommend to not make use of them and instead

rely on naming conventions (e.g., suffix module names with .Internal) to make it clear

which modules are part of the public API.

3. Prior to Daml-LF version 1.8, typeclasses could not be reconstructed. This means if you have a

package that is compiledwith anolder version ofDaml-LF, typeclasses and typeclass instances

will not be carried over via data-dependencies, and you won’t be able to call functions that rely

on typeclass instances. This includes the template functions, such as create, signatory,

and exercise, as these rely on typeclass instances.

4. Starting from Daml-LF version 1.8, when possible, typeclass instances will be reconstructed

by re-using the typeclass definitions from dependencies, such as the typeclasses exported in

daml­stdlib. However, if the typeclass signature has changed, you will get an instance for a

reconstructed typeclass instead, which will not interoperate with code from dependencies.

Because of their flexibility, data-dependencies are a tool that is recommended for performing Daml

model upgrades. See the upgrade documentation for more details.

Reference Daml Packages Already On the Ledger

Daml packages that have been uploaded to a ledger can be imported as data dependencies, given

you have the necessary permissions to download these packages. To import such a package, add

the package name and version separated by a colon to the data-dependencies stanza as follows:

ledger:

host: localhost

port: 6865

dependencies:

­ daml­prim

­ daml­stdlib

data­dependencies:

­ foo:1.0.0

If your ledger runs at the default host and port (localhost:6865), the ledger stanza can be omitted.

This will fetch and install the package foo­1.0.0. A daml.lock file is created at the root of your

project directory, pinning the resolved packages to their exact package ID:

dependencies:

­ pkgId: 51255efad65a1751bcee749d962a135a65d12b87eb81ac961142196d8bbca535

name: foo

version: 1.0.0

The daml.lock file needs to be checked into version control of your project. This assures that pack-

age name/version tuples specified in your data dependencies are always resolved to the same pack-

1554 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

age ID. To recreate or update your daml.lock file, delete it and run daml build again.

Handling Module Name Collisions

Sometimes you will have multiple packages with the same module name. In that case, a simple

import will fail, since the compiler doesn’t know which version of the module to load. Fortunately,

there are a few tools you can use to approach this problem.

The first is to use package qualified imports. Supposing you have packages with different names,

foo and bar, which both expose a module X, you can select which one you want with a package

qualified import.

To get X from foo:

import "foo" X

To get X from bar:

import "bar" X

To get both, you need to rename the module as you perform the import:

import "foo" X as FooX

import "bar" X as BarX

Sometimes, package qualified imports will not help, because you are importing two packages with

the same name. For example, if you’re loading different versions of the same package. To handle this

case, you need the ­­package build option.

Suppose you are importing packages foo­1.0.0 and foo­2.0.0. Notice they have the same name

foobutdifferent versions. To getmodules that are exposed inbothpackages, youwill need toprovide

module aliases. You can do this by passing the ­­package build option. Open daml.yaml and add

the following build­options:

build­options:

­ '­­package'

­ 'foo­1.0.0 with (X as Foo1.X)'

­ '­­package'

­ 'foo­2.0.0 with (X as Foo2.X)'

This will alias the X in foo­1.0.0 as Foo1.X, and alias the X in foo­2.0.0 as Foo2.X. Now you will

be able to import both X by using the new names:

import qualified Foo1.X

import qualified Foo2.X

It is also possible to add a prefix to all modules in a package using the module­prefixes field in

your daml.yaml. This is particularly useful for upgrades where you can map all modules of version

v of your package under V$v. For the example above you can use the following:

module­prefixes:

foo­1.0.0: Foo1

foo­2.0.0: Foo2

1.43. Daml Language References 1555

Daml SDK Documentation, 2.7.3

That will allow you to import module X from package foo­1.0.0 as Foo1.X and X from package

foo­2.0.0 as Foo2.

You canalso usemore complexmodule prefixes, e.g., foo­1.0.0: Foo1.Barwhichwillmakemod-

ule X available under Foo1.Bar.X.

1.43.2.11 Reference: Contract Keys

Contract keys are an optional addition to templates. They let you specify away of uniquely identifying

contracts, using the parameters to the template - similar to a primary key for a database.

Contract keys donot changeand canbeused to refer to a contract evenwhen the contract id changes.

Here’s an example of setting up a contract key for a bank account, to act as a bank account ID:

type AccountKey = (Party, Text)

template Account with

bank : Party

number : Text

owner : Party

balance : Decimal

observers : [Party]

where

signatory [bank, owner]

observer observers

key (bank, number) : AccountKey

maintainer key._1

What Can Be a Contract Key

The key can be an arbitrary serializable expression that does not contain contract IDs. However, it

must include every party that you want to use as a maintainer (see Specify Maintainers below).

It’s best to use simple types for your keys like Text or Int, rather than a list or more complex type.

Specify Maintainers

If you specify a contract key for a template, you must also specify a maintainer or maintainers, in

a similar way to specifying signatories or observers. Themaintainers “own” the key in the sameway

the signatories “own” a contract. Just like signatories of contracts prevent double spends or use of

false contract data,maintainers of keys prevent double allocation or incorrect lookups. Since the key

is part of the contract, the maintainers must be signatories of the contract. However, maintainers

are computed from the key instead of the template arguments. In the example above, the bank is

ultimately the maintainer of the key.

Uniqueness of keys is guaranteed per template. Since multiple templates may use the same key

type, some key-related functions must be annotated using the @ContractType as shown in the

examples below.

1556 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

When you are writing Daml models, the maintainers matter since they affect authorization – much

like signatories and observers. You don’t need to do anything to “maintain” the keys. In the above

example, it is guaranteed that there can only be one Account with a given number at a given bank.

Checking of the keys is done automatically at execution time, by the Daml execution engine: if some-

one tries to create a new contract that duplicates an existing contract key, the execution engine will

cause that creation to fail.

Contract Lookups

The primary purpose of contract keys is to provide a stable, and possibly meaningful, identifier that

can be used in Daml to fetch contracts. There are two functions to perform such lookups: fetchByKey

and lookupByKey. Both types of lookup are performed at interpretation time on the submitting Par-

ticipant Node, on a best-effort basis. Currently, that best-effort means lookups only return contracts

if the submitting Party is a stakeholder of that contract.

In particular, the above means that if multiple commands are submitted simultaneously, all using

contract lookups to find and consume a given contract, there will be contention between these com-

mands, and at most one will succeed. For more information, see the section on Avoiding Contention.

Limiting key usage to stakeholders also means that keys cannot be used to access a divulged con-

tract, i.e. there can be cases where fetch succeeds and fetchByKey does not. See the example at the

end of this section for details.

fetchByKey

(fetchedContractId, fetchedContract) <­ fetchByKey @ContractType contrac­

tKey

Use fetchByKey to fetch the ID and data of the contract with the specified key. It is an alternative

to fetch and behaves the same in most ways.

It returns a tuple of the ID and the contract object (containing all its data).

Like fetch, fetchByKey needs to be authorized by at least one stakeholder.

fetchByKey fails and aborts the transaction if:

• The submitting Party is not a stakeholder on a contract with the given key, or

• A contract was found, but the fetchByKey violates the authorization rule, meaning no stake-

holder authorized the fetch.

This means that if it fails, it doesn’t guarantee that a contract with that key doesn’t exist, just that

the submitting Party doesn’t know about it, or there are issues with authorization.

1.43. Daml Language References 1557

../resource-management/contention-avoiding.html

Daml SDK Documentation, 2.7.3

visibleByKey

boolean <­ visibleByKey @ContractType contractKey

UsevisibleByKey to checkwhether youcanseeanactive contract for thegivenkeywith the current

authorizations. If the contract exists and you have permission to see it, returns True, otherwise

returns False.

To clarify, ignoring contention:

1. visibleByKeywill return True if all of these are true: there exists a contract for the given key,

the submitter is a stakeholder on that contract, and at the point of call we have the authoriza-

tion of all of the maintainers of the key.

2. visibleByKey will return False if all of those are true: there is no contract for the given key,

and at the point of call we have authorization from all the maintainers of the key.

3. visibleByKey will abort the transaction at interpretation time if, at the point of call, we are

missing the authorization from any one maintainer of the key.

4. visibleByKey will fail at validation time (after returning False at interpretation time) if all

of these are true: at the point of call, we have the authorization of all the maintainers, and a

valid contract exists for the given key, but the submitter is not a stakeholder on that contract.

While it may at first seem too restrictive to require allmaintainers to authorize the call, this is actu-

ally required in order to validatenegative lookups. In thepositive case, when youcansee the contract,

it’s easy for the transaction tomention which contract it found, and therefore for validators to check

that this contract does indeed exist, and is active as of the time of executing the transaction.

For the negative case, however, the transaction submitted for execution cannot say which contract it

has not found (as, by definition, it has not found it, and it may not even exist). Still, validators have

to be able to reproduce the result of not finding the contract, and therefore they need to be able to

look for it, which means having the authorization to ask the maintainers about it.

lookupByKey

optionalContractId <­ lookupByKey @ContractType contractKey

UselookupByKey to checkwhether a contract with the specified key exists. If it does exist, lookup­

ByKey returns the Some contractId, where contractId is the ID of the contract; otherwise, it

returns None.

lookupByKey is conceptually equivalent to

lookupByKey : forall c k. (HasFetchByKey c k) => k ­> Update (Optional␣

↪→(ContractId c))

lookupByKey k = do

visible <­ visibleByKey @c k

if visible then do

(contractId, _ignoredContract) <­ fetchByKey @c k

return $ Some contractId

else

return None

Therefore, lookupByKey needs all the same authorizations as visibleByKey, for the same reasons,

and fails in the same cases.

To get the data from the contract once you’ve confirmed it exists, you’ll still need to use fetch.

1558 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

exerciseByKey

exerciseByKey @ContractType contractKey

Use exerciseByKey to exercise a choice on a contract identified by its key (compared to exer­

cise, which lets you exercise a contract identified by its ContractId). Just like exercise, running

exerciseByKey requires visibility of the contract (either through divulgence, readAs or being a

stakeholder) and authorization from the controllers of the choice.

Example

A complete example of possible success and failure scenarios of fetchByKey and lookupByKey is shown

below.

­­ Copyright ﴾c﴿ 2023 Digital Asset ﴾Switzerland﴿ GmbH and/or its affiliates. All␣

↪→rights reserved.

­­ SPDX­License­Identifier: Apache­2.0

module Keys where

import Daml.Script

import DA.Assert

import DA.Optional

template Keyed

with

sig : Party

obs : Party

where

signatory sig

observer obs

key sig : Party

maintainer key

template Divulger

with

divulgee : Party

sig : Party

where

signatory divulgee

observer sig

nonconsuming choice DivulgeKeyed

: Keyed

with

keyedCid : ContractId Keyed

controller sig

do

fetch keyedCid

template Delegation

with

sig : Party

delegees : [Party]

(continues on next page)

1.43. Daml Language References 1559

Daml SDK Documentation, 2.7.3

(continued from previous page)

where

signatory sig

observer delegees

nonconsuming choice CreateKeyed

: ContractId Keyed

with

delegee : Party

obs : Party

controller delegee

do

create Keyed with sig; obs

nonconsuming choice ArchiveKeyed

: ()

with

delegee : Party

keyedCid : ContractId Keyed

controller delegee

do

archive keyedCid

nonconsuming choice UnkeyedFetch

: Keyed

with

cid : ContractId Keyed

delegee : Party

controller delegee

do

fetch cid

nonconsuming choice VisibleKeyed

: Bool

with

key : Party

delegee : Party

controller delegee

do

visibleByKey @Keyed key

nonconsuming choice LookupKeyed

: Optional (ContractId Keyed)

with

lookupKey : Party

delegee : Party

controller delegee

do

lookupByKey @Keyed lookupKey

nonconsuming choice FetchKeyed

: (ContractId Keyed, Keyed)

with

lookupKey : Party

delegee : Party

controller delegee

do

(continues on next page)

1560 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

fetchByKey @Keyed lookupKey

template Helper

with

p : Party

where

signatory p

choice FetchByKey : (ContractId Keyed, Keyed)

with

keyedKey : Party

controller p

do fetchByKey @Keyed keyedKey

choice VisibleByKey : Bool

with

keyedKey : Party

controller p

do visibleByKey @Keyed keyedKey

choice LookupByKey : (Optional (ContractId Keyed))

with

keyedKey : Party

controller p

do lookupByKey @Keyed keyedKey

choice AssertNotVisibleKeyed : ()

with

delegationCid : ContractId Delegation

delegee : Party

key : Party

controller p

do

b <­ exercise delegationCid VisibleKeyed with

delegee

key

assert $ not b

choice AssertLookupKeyedIsNone : ()

with

delegationCid : ContractId Delegation

delegee : Party

lookupKey : Party

controller p

do

b <­ exercise delegationCid LookupKeyed with

delegee

lookupKey

assert $ isNone b

choice AssertFetchKeyedEqExpected : ()

with

delegationCid : ContractId Delegation

delegee : Party

lookupKey : Party

expectedCid : ContractId Keyed

(continues on next page)

1.43. Daml Language References 1561

Daml SDK Documentation, 2.7.3

(continued from previous page)

controller p

do

(cid, keyed) <­ exercise delegationCid FetchKeyed with

delegee

lookupKey

cid === expectedCid

lookupTest = script do

­­ Put four parties in the four possible relationships with a `Keyed`

sig <­ allocateParty "s" ­­ Signatory

obs <­ allocateParty "o" ­­ Observer

divulgee <­ allocateParty "d" ­­ Divulgee

blind <­ allocateParty "b" ­­ Blind

keyedCid <­ submit sig do createCmd Keyed with ..

divulgercid <­ submit divulgee do createCmd Divulger with ..

submit sig do exerciseCmd divulgercid DivulgeKeyed with ..

­­ Now the signatory and observer delegate their choices

sigDelegationCid <­ submit sig do

createCmd Delegation with

sig

delegees = [obs, divulgee, blind]

obsDelegationCid <­ submit obs do

createCmd Delegation with

sig = obs

delegees = [divulgee, blind]

­­ TESTING LOOKUPS AND FETCHES

­­ Maintainer can fetch

(cid, keyed) <­ submit sig do

Helper sig `createAndExerciseCmd` FetchByKey sig

cid === keyedCid

­­ Maintainer can see

b <­ submit sig do

Helper sig `createAndExerciseCmd` VisibleByKey sig

assert b

­­ Maintainer can lookup

mcid <­ submit sig do

Helper sig `createAndExerciseCmd` LookupByKey sig

mcid === Some keyedCid

­­ Stakeholder can fetch

(cid, l) <­ submit obs do

Helper obs `createAndExerciseCmd` FetchByKey sig

keyedCid === cid

­­ Stakeholder can't see without authorization

submitMustFail obs do

Helper obs `createAndExerciseCmd` VisibleByKey sig

­­ Stakeholder can see with authorization

b <­ submit obs do

(continues on next page)

1562 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

exerciseCmd sigDelegationCid VisibleKeyed with

delegee = obs

key = sig

assert b

­­ Stakeholder can't lookup without authorization

submitMustFail obs do

Helper obs `createAndExerciseCmd` LookupByKey sig

­­ Stakeholder can lookup with authorization

mcid <­ submit obs do

exerciseCmd sigDelegationCid LookupKeyed with

delegee = obs

lookupKey = sig

mcid === Some keyedCid

­­ Divulgee _can_ fetch the contract directly

submit divulgee do

exerciseCmd obsDelegationCid UnkeyedFetch with

delegee = divulgee

cid = keyedCid

­­ Divulgee can't fetch through the key

submitMustFail divulgee do

Helper divulgee `createAndExerciseCmd` FetchByKey sig

­­ Divulgee can't see

submitMustFail divulgee do

Helper divulgee `createAndExerciseCmd` VisibleByKey sig

­­ Divulgee can't see with stakeholder authority

submitMustFail divulgee do

exerciseCmd obsDelegationCid VisibleKeyed with

delegee = divulgee

key = sig

­­ Divulgee can't lookup

submitMustFail divulgee do

Helper divulgee `createAndExerciseCmd` LookupByKey sig

­­ Divulgee can't lookup with stakeholder authority

submitMustFail divulgee do

exerciseCmd obsDelegationCid LookupKeyed with

delegee = divulgee

lookupKey = sig

­­ Divulgee can't do positive lookup with maintainer authority.

submitMustFail divulgee do

Helper divulgee `createAndExerciseCmd` AssertNotVisibleKeyed with

delegationCid = sigDelegationCid

delegee = divulgee

key = sig

­­ Divulgee can't do positive lookup with maintainer authority.

­­ Note that the lookup returns `None` so the assertion passes.

­­ If the assertion is changed to `isSome`, the assertion fails,

­­ which means the error message changes. The reason is that the

­­ assertion is checked at interpretation time, before the lookup

­­ is checked at validation time.

submitMustFail divulgee do

Helper divulgee `createAndExerciseCmd` AssertLookupKeyedIsNone with

delegationCid = sigDelegationCid

delegee = divulgee

lookupKey = sig

­­ Divulgee can't fetch with stakeholder authority

(continues on next page)

1.43. Daml Language References 1563

Daml SDK Documentation, 2.7.3

(continued from previous page)

submitMustFail divulgee do

Helper divulgee `createAndExerciseCmd` AssertFetchKeyedEqExpected with

delegationCid = obsDelegationCid

delegee = divulgee

lookupKey = sig

expectedCid = keyedCid

­­ Blind party can't fetch

submitMustFail blind do

Helper blind `createAndExerciseCmd` FetchByKey sig

­­ Blind party can't see

submitMustFail blind do

Helper blind `createAndExerciseCmd` VisibleByKey sig

­­ Blind party can't see with stakeholder authority

submitMustFail blind do

exerciseCmd obsDelegationCid VisibleKeyed with

delegee = blind

key = sig

­­ Blind party can't see with maintainer authority

submitMustFail blind do

Helper blind `createAndExerciseCmd` AssertNotVisibleKeyed with

delegationCid = sigDelegationCid

delegee = blind

key = sig

­­ Blind party can't lookup

submitMustFail blind do

Helper blind `createAndExerciseCmd` LookupByKey sig

­­ Blind party can't lookup with stakeholder authority

submitMustFail blind do

exerciseCmd obsDelegationCid LookupKeyed with

delegee = blind

lookupKey = sig

­­ Blind party can't lookup with maintainer authority.

­­ The lookup initially returns `None`, but is rejected at

­­ validation time

submitMustFail blind do

Helper blind `createAndExerciseCmd` AssertLookupKeyedIsNone with

delegationCid = sigDelegationCid

delegee = blind

lookupKey = sig

­­ Blind party can't fetch with stakeholder authority as lookup is negative

submitMustFail blind do

exerciseCmd obsDelegationCid FetchKeyed with

delegee = blind

lookupKey = sig

­­ Blind party can see nonexistence of a contract

submit blind do

Helper blind `createAndExerciseCmd` AssertNotVisibleKeyed with

delegationCid = obsDelegationCid

delegee = blind

key = obs

­­ Blind can do a negative lookup on a truly nonexistant contract

submit blind do

Helper blind `createAndExerciseCmd` AssertLookupKeyedIsNone with

delegationCid = obsDelegationCid

delegee = blind

(continues on next page)

1564 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

lookupKey = obs

­­ TESTING CREATES AND ARCHIVES

­­ Divulgee can archive

submit divulgee do

exerciseCmd sigDelegationCid ArchiveKeyed with

delegee = divulgee

keyedCid

­­ Divulgee can create

keyedCid2 <­ submit divulgee do

exerciseCmd sigDelegationCid CreateKeyed with

delegee = divulgee

obs

­­ Stakeholder can archive

submit obs do

exerciseCmd sigDelegationCid ArchiveKeyed with

delegee = obs

keyedCid = keyedCid2

­­ Stakeholder can create

keyedCid3 <­ submit obs do

exerciseCmd sigDelegationCid CreateKeyed with

delegee = obs

obs

return ()

1.43.2.12 Reference: Exceptions

Exceptions are a Daml feature which provides a way to handle certain errors that arise during in-

terpretation instead of aborting the transaction, and to roll back the state changes that lead to the

error.

There are two types of errors:

Builtin Errors

Exception type Thrown on

GeneralError Calls to error and abort

ArithmeticError Arithmetic errors like overflows and division by zero

PreconditionFailed ensure statements that return False

AssertionFailed Failed assert calls (or other functions from DA.Assert)

Note that other errors cannot be handled via exceptions, e.g., an exercise on an inactive contract will

still result in a transaction abort.

1.43. Daml Language References 1565

Daml SDK Documentation, 2.7.3

User-defined Exceptions

Users can define their own exception types which can be thrown and caught. The definition looks

similar to templates, and just like with templates, the definition produces a record type of the given

name as well as instances to make that type throwable and catchable.

In addition to the record fields, exceptions also need to define a message function.

exception MyException

with

field1 : Int

field2 : Text

where

message "MyException(" <> show field1 <> ", " <> show field2 <> ")"

Throw Exceptions

There are two ways to throw exceptions:

1. Inside of an Action like Update or Script you can use throw from DA.Exception. This

works for any Action that is an instance of ActionThrow.

2. Outside of ActionThrow you can throw exceptions using throwPure.

If both are an option, it is generally preferable to use throw since it is easier to reason about when

exactly the exception will get thrown.

Catch Exceptions

Exceptions are caught in try-catch blocks similar to those found in languages like Java. The try

block defines the scope within which errors should be handled while the catch clauses defines

which types of errors are handled and how the programshould continue. If an exception gets caught,

the subtransaction between the try and the the point where the exception is thrown is rolled back.

The actions under rollback nodes are still validated, so, e.g., you can never fetch a contract that is

inactive at that point or have two contracts with the same key active at the same time. However, all

ledger state changes (creates, consuming exercises) are rolled back to the state before the rollback

node.

Each try-catch block can have multiple catch clauses with the first one that applies taking prece-

dence.

In the example below the create of T will be rolled back and the first catch clause applies which

will create an Error contract.

try do

_ <­ create (T p)

throw MyException with

field1 = 0

field2 = "42"

catch

(MyException field1 field2) ­>

create Error with

p = p

(continues on next page)

1566 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

msg = "MyException"

(ArithmeticError _) ­>

create Error with

p = p

msg = "ArithmeticError"

1.43.2.13 Reference: Interfaces

In Daml, an interface defines an abstract type together with a behavior specified by its view type,

method signatures, and choices. For a template to conform to this interface, there must be a cor-

responding interface instance definition where all the methods of the interface (including the

special viewmethod) are implemented. This allows decoupling such behavior from its implemen-

tation, so other developers can write applications in terms of the interface instead of the concrete

template.

Configuration

In order to use this new feature, your Daml project needs to explicitly target Daml-LF version 1.15

or higher which is specified by adding the following line to the project’s daml.yaml file:

build­options: [­­target=1.15]

If using Canton, the protocol version of the domain should be 4 or higher, see Canton protocol version

for more details.

Interface Declaration

An interface declaration is somewhat similar to a template declaration.

Interface Name

interface MyInterface where

• This is the name of the interface.

• It’s preceded by the keyword interface and followed by the keyword where.

• It must begin with a capital letter, like any other type name.

1.43. Daml Language References 1567

Daml SDK Documentation, 2.7.3

Implicit abstract type

• Whenever an interface is defined, an abstract type is defined with the same name. “Abstract”

here means:

– Values of this type cannot be created using a data constructor. Instead, they are con-

structed by applying the function toInterface to a template value.

– Values of this type cannot be inspected directly via case analysis. Instead, use functions

such as fromInterface.

– See Interface Functions for more information on these and other functions for interacting

with interface values.

• An interface value carries inside it the type and parameters of the template value from which

it was constructed.

• As for templates, the existence of a local binding b of type I, where I is an interface does not

necessarily imply the existence on the ledger of a contract with the template type and param-

eters used to construct b. This can only be assumed if b the result of a fetch from the ledger

within the same transaction.

Interface Methods

method1 : Party

method2 : Int

method3 : Bool ­> Int ­> Int ­> Int

• An interface may define any number of methods.

• A method definition consists of the method name and the method type, separated by a single

colon :. The name of themethodmust be a valid identifier beginning with a lowercase letter or

an underscore.

• A method definition introduces a top level function of the same name:

– If the interface is called I, the method is called m, and the method type is M (which might

be a function type), this introduces the function m : I ­> M:

func1 : MyInterface ­> Party

func1 = method1

func2 : MyInterface ­> Int

func2 = method2

func3 : MyInterface ­> Bool ­> Int ­> Int ­> Int

func3 = method3

– The first argument’s type Imeans that the function can only be applied to values of the in-

terface type I itself. Methods cannot be applied to template values, even if there exists an

interface instance of I for that template. To use an interface method on a template

value, first convert it using the toInterface function.

– Applying the function to such argument results in a value of type M, corresponding to the

implementation of m in the interface instance of I for the underlying template type t (the

type of the template value from which the interface value was constructed).

• One special method, view, must be defined for the viewtype. (see Interface View Type below).

1568 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Interface View Type

data MyInterfaceViewType =

MyInterfaceViewType { name : Text, value : Int }

viewtype MyInterfaceViewType

• All interface instances must implement a special view method which returns a value of the

type declared by viewtype.

• The type must be a record.

• This type is returned by subscriptions on interfaces.

Interface Choices

choice MyChoice : (ContractId MyInterface, Int)

with

argument1 : Bool

argument2 : Int

controller method1 this

do

let n0 = method2 this

let n1 = method3 this argument1 argument2 n0

pure (self, n1)

nonconsuming choice MyNonConsumingChoice : Int

controller method1 this

do

pure $ method2 this

• Interface choices work in a very similar way to template choices. Any contract of a template

type for which an interface instance exists will grant the choice to the controlling party.

• Interface choices can only be exercised on values of the corresponding interface type. To exer-

cise an interface choice on a template value, first convert it using the toInterface function.

• Interfacemethods can be used to define the controller of a choice (e.g. method1) as well as the

actions that run when the choice is exercised (e.g. method2 and method3).

• As for template choices, the choice keyword can be optionally prefixed with the nonconsum­

ing keyword to specify that the contract will not be consumed when the choice is exercised. If

not specified, the choice will be consuming. Note that the preconsuming and postconsum­

ing qualifiers are not supported on interface choices.

• See Reference: Choices for full reference information, but note that controller-first syntax is not

supported for interface choices.

1.43. Daml Language References 1569

Daml SDK Documentation, 2.7.3

Empty Interfaces

data EmptyInterfaceView = EmptyInterfaceView {}

interface YourInterface where

viewtype EmptyInterfaceView

• It is possible (though not necessarily useful) to define an interface without methods, precon-

dition or choices. However, a view type must always be defined, though it can be set to unit.

Interface Instances

For context, a simple template definition:

template NameOfTemplate

with

field1 : Party

field2 : Int

where

signatory field1

interface instance clause

interface instance MyInterface for NameOfTemplate where

view = MyInterfaceViewType "NameOfTemplate" 100

method1 = field1

method2 = field2

method3 False _ _ = 0

method3 True x y

| x > 0 = x + y

| otherwise = y

• To make a template an instance of an existing interface, an interface instance clause

must be defined in the template declaration.

• The template of the clause must match the enclosing declaration. In other words, a template

T declaration can only contain interface instance clauses where the template is T.

• The clause must start with the keywords interface instance, followed by the name of the

interface, then the keyword for and the name of the template, and finally the keyword where,

which introduces a block where all the methods of the interface must be implemented.

• Within the clause, there’s an implicit local binding this referring to the contract on which the

method is applied, which has the type of the template’s data record. The template parameters

of this contract are also in scope.

• Method implementations can be defined using the same syntax as for top level functions, in-

cluding pattern matches and guards (e.g. method3).

• Each method implementation must return the same type as specified for that method in the

interface declaration.

• The implementation of the special viewmethod must return the type specified as the view­

type in the interface declaration.

1570 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

interface instance clause in the interface

interface MyNewInterface where

viewtype EmptyInterfaceView

myNewMethod1 : Party

myNewMethod2 : Int ­> Int

choice MyNewChoice : Int

controller myNewMethod1 this

do pure $ myNewMethod2 this 0

interface instance MyNewInterface for NameOfTemplate where

view = EmptyInterfaceView

myNewMethod1 = field1

myNewMethod2 x = field2 `min` x

• Tomake an existing template an instance of a new interface, the interface instance clause

must be defined in the interface declaration.

• In this case, the interface of the clause must match the enclosing declaration. In other words,

an interfaceI declaration can only containinterface instance clauseswhere the interface

is I.

• All other rules for interface instance clauses are the same whether the enclosing declara-

tion is a template or an interface. In particular, the implicit local binding this always has the

type of the template’s record.

Empty interface instance clause

• If the interface has no methods, the interface instance only needs to implement the view

method:

interface instance YourInterface for NameOfTemplate where

view = EmptyInterfaceView

Interface Functions

interfaceTypeRep

Type

HasInterfaceTypeRep i =>

i ­> TemplateTypeRep

Instantiated Type MyInterface ­> TemplateTypeRep

Notes The value of the resulting TemplateTypeRep

indicates what template was used to construct

the interface value.

1.43. Daml Language References 1571

Daml SDK Documentation, 2.7.3

toInterface

Type

forall i t.

HasToInterface t i =>

t ­> i

Instantiated Type MyTemplate ­> MyInterface

Notes Converts a template value into an interface

value.

fromInterface

Type

HasFromInterface t i =>

i ­> Optional t

Instantiated Type MyInterface ­> Optional MyTemplate

Notes Attempts to convert an interface value back

into a template value. The result is None if the

expected template type doesn’t match the un-

derlying template type used to construct the

contract.

toInterfaceContractId

Type

forall i t.

HasToInterface t i =>

ContractId t ­> ContractId i

Instantiated Type ContractId MyTemplate ­> ContractId

MyInterface

Notes Converts a template Contract ID into an Inter-

face Contract ID.

1572 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

fromInterfaceContractId

Type

forall t i.

HasFromInterface t i =>

ContractId i ­> ContractId t

Instantiated Type ContractId MyInterface ­> Contrac­

tId MyTemplate

Notes Converts an interface contract id into a tem-

plate contract id. This function does not ver-

ify that the given contract id actually points to

a contract of the resulting type; if that is not

the case, a subsequent fetch, exercise or

archive will fail. Therefore, this should only

be used when the underlying contract is known

to be of the resulting type, or when the result

is immediately used by a fetch, exercise or

archive action and a transaction failure is the

desired behavior in case of mismatch. In all

other cases, consider usingfetchFromInter­

face instead.

coerceInterfaceContractId

Type

forall j i.

(HasInterfaceTypeRep i,

HasInterfaceTypeRep j) =>

ContractId i ­> ContractId j

Instantiated Type ContractId SourceInterface ­> Con­

tractId TargetInterface

Notes Converts an interface contract id into a contract

id of a different interface. This function does

not verify that the given contract id actually

points to a contract of the resulting type; if that

is not the case, a subsequent fetch, exercise

or archive will fail. Therefore, this should only

be used when the underlying contract is known

to be of the resulting type, or when the result

is immediately used by a fetch, exercise or

archive action and a transaction failure is the

desired behavior in case of mismatch.

1.43. Daml Language References 1573

Daml SDK Documentation, 2.7.3

fetchFromInterface

Type

forall t i.

(HasFromInterface t i, HasFetch i)

=>

ContractId i ­> Update (Optional

(ContractId t, t))

Instantiated Type

ContractId MyInterface ­>

Update (Optional (ContractId

MyTemplate, MyTemplate))

Notes Attempts to fetch and convert an interface con-

tract id into a template, returning both the con-

verted contract and its contract id if the conver-

sion is successful, or None otherwise.

Required Interfaces

interface OurInterface requires MyInterface, YourInterface where

viewtype EmptyInterfaceView

• An interface can depend on other interfaces. These are specified with the requires keyword

after the interface name but before the where keyword, separated by commas.

• For an interfacedeclaration to be valid, its list of required interfacesmust be transitively closed.

In other words, an interface I cannot require an interface J without also explicitly requiring all

the interfaces required by J. The order, however, is irrelevant.

For example, given

interface Shape where

viewtype EmptyInterfaceView

interface Rectangle requires Shape where

viewtype EmptyInterfaceView

This declaration for interface Square would cause a compiler error

­­ Compiler error! "Interface Square is missing requirement [Shape]"

interface Square requires Rectangle where

viewtype EmptyInterfaceView

Explicitly adding Shape to the required interfaces fixes the error

interface Square requires Rectangle, Shape where

viewtype EmptyInterfaceView

• For a template T to be a valid interface instance of an interface I, Tmust also be an in­

terface instance of each of the interfaces required by I.

1574 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Interface Functions

Function Notes

toInterface Can also be used to convert an interface value to one of its required inter-

faces.

fromInterface Can also be used to convert a value of an interface type to one of its requiring

interfaces.

toInterface­

ContractId

Can also be used to convert an interface contract id into a contract id of one

of its required interfaces.

fromInter­

faceContrac­

tId

Can also be used to convert an interface contract id into a contract id of one

of its requiring interfaces.

fetch­

FromInterface

Can also be used to fetch and convert an interface contract id into a contract

and contract id of one of its requiring interfaces.

1.43.3 The standard library

The Daml standard library is a collection of Daml modules that are bundled with the SDK, and can

be used to implement Daml applications.

The Prelude module is imported automatically in every Daml module. Other modules must be im-

ported manually, just like your own project’s modules. For example:

import DA.Optional

import DA.Time

Here is a complete list of modules in the standard library:

1.43.3.1 Prelude

The pieces that make up the Daml language.

Typeclasses

class Action m => CanAssert m where

Constraint that determines whether an assertion can be made in this context.

assertFail : Text -> m t

Abort since an assertion has failed. In an Update, Scenario, Script, or Trigger context

this will throw an AssertionFailed exception. In an Either Text context, this will

return the message as an error.

instance CanAssert Scenario

instance CanAssert Update

instance CanAssert (Either Text)

class HasInterfaceTypeRep i where

(Daml-LF >= 1.15) Exposes the interfaceTypeRep function. Available only for interfaces.

1.43. Daml Language References 1575

Daml SDK Documentation, 2.7.3

class HasToInterface t i where

(Daml-LF >= 1.15) Exposes the toInterface and toInterfaceContractId functions.

class HasFromInterface t i where

(Daml-LF >= 1.15) Exposes fromInterface and fromInterfaceContractId functions.

fromInterface : i -> Optional t

(Daml-LF >= 1.15) Attempt to convert an interface value back into a template value. A

None indicates that the expected template type doesn’t match the underyling tem-

plate type for the interface value.

For example, fromInterface @MyTemplate value will try to convert the inter-

face value value into the template type MyTemplate.

class HasInterfaceView i v where

_view : i -> v

class HasTime m where

The HasTime class is for where the time is available: Scenario and Update.

getTime : HasCallStack => m Time

Get the current time.

instance HasTime Scenario

instance HasTime Update

class Action m => CanAbort m where

The CanAbort class is for Action s that can be aborted.

abort : Text -> m a

Abort the current action with a message.

instance CanAbort Scenario

instance CanAbort Update

instance CanAbort (Either Text)

class HasSubmit m cmds where

submit : HasCallStack => Party -> cmds a -> m a

submit p cmds submits the commands cmds as a single transaction from party p

and returns the value returned by cmds.

If the transaction fails, submit also fails.

submitMustFail : HasCallStack => Party -> cmds a -> m ()

submitMustFail p cmds submits the commands cmds as a single transaction

from party p.

It only succeeds if the submitting the transaction fails.

instance HasSubmit Scenario Update

class Functor f => Applicative f where

pure : a -> f a

Lift a value.

1576 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(<*>) : f (a -> b) -> f a -> f b

Sequentially apply the function.

A few functors support an implementation of <*> that is more efficient than the

default one.

liftA2 : (a -> b -> c) -> f a -> f b -> f c

Lift a binary function to actions.

Some functors support an implementation of liftA2 that ismore efficient than the

default one. In particular, if fmap is an expensive operation, it is likely better to use

liftA2 than to fmap over the structure and then use <*>.

(*>) : f a -> f b -> f b

Sequence actions, discarding the value of the first argument.

(<*) : f a -> f b -> f a

Sequence actions, discarding the value of the second argument.

instance Applicative ((->) r)

instance Applicative (State s)

instance Applicative Down

instance Applicative Scenario

instance Applicative Update

instance Applicative Optional

instance Applicative Formula

instance Applicative NonEmpty

instance Applicative (Validation err)

instance Applicative (Either e)

instance Applicative ([])

class Applicative m => Action m where

(>>=) : m a -> (a -> m b) -> m b

Sequentially compose two actions, passing any value produced by the first as an

argument to the second.

instance Action ((->) r)

instance Action (State s)

instance Action Down

instance Action Scenario

instance Action Update

instance Action Optional

instance Action Formula

instance Action NonEmpty

instance Action (Either e)

instance Action ([])

1.43. Daml Language References 1577

Daml SDK Documentation, 2.7.3

class Action m => ActionFail m where

This class exists to desugar pattern matches in do-notation. Polymorphic usage, or call-

ing fail directly, is not recommended. Instead consider using CanAbort.

fail : Text -> m a

Fail with an error message.

instance ActionFail Scenario

instance ActionFail Update

instance ActionFail Optional

instance ActionFail (Either Text)

instance ActionFail ([])

class Semigroup a where

The class of semigroups (types with an associative binary operation).

(<>) : a -> a -> a

An associative operation.

instance Ord k => Semigroup (Map k v)

instance Semigroup (TextMap b)

instance Semigroup All

instance Semigroup Any

instance Semigroup (Endo a)

instance Multiplicative a => Semigroup (Product a)

instance Additive a => Semigroup (Sum a)

instance Semigroup (NonEmpty a)

instance Ord a => Semigroup (Max a)

instance Ord a => Semigroup (Min a)

instance Ord k => Semigroup (Set k)

instance Semigroup (Validation err a)

instance Semigroup Ordering

instance Semigroup Text

instance Semigroup [a]

class Semigroup a => Monoid a where

The class of monoids (types with an associative binary operation that has an identity).

mempty : a

Identity of (<>)

mconcat : [a] -> a

Fold a list using the monoid. For example using mconcat on a list of strings would

concatenate all strings to one lone string.

1578 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

instance Ord k => Monoid (Map k v)

instance Monoid (TextMap b)

instance Monoid All

instance Monoid Any

instance Monoid (Endo a)

instance Multiplicative a => Monoid (Product a)

instance Additive a => Monoid (Sum a)

instance Ord k => Monoid (Set k)

instance Monoid Ordering

instance Monoid Text

instance Monoid [a]

class HasSignatory t where

Exposes signatory function. Part of the Template constraint.

signatory : t -> [Party]

The signatories of a contract.

class HasObserver t where

Exposes observer function. Part of the Template constraint.

observer : t -> [Party]

The observers of a contract.

class HasEnsure t where

Exposes ensure function. Part of the Template constraint.

ensure : t -> Bool

A predicate that must be true, otherwise contract creation will fail.

class HasAgreement t where

Exposes agreement function. Part of the Template constraint.

agreement : t -> Text

The agreement text of a contract.

class HasCreate t where

Exposes create function. Part of the Template constraint.

create : t -> Update (ContractId t)

Create a contract based on a template t.

class HasFetch t where

Exposes fetch function. Part of the Template constraint.

fetch : ContractId t -> Update t

Fetch the contract data associated with the given contract ID. If the ContractId t

supplied is not the contract ID of an active contract, this fails and aborts the entire

transaction.

1.43. Daml Language References 1579

Daml SDK Documentation, 2.7.3

class HasSoftFetch t where

Exposes softFetch function

class HasSoftExercise t c r where

class HasArchive t where

Exposes archive function. Part of the Template constraint.

archive : ContractId t -> Update ()

Archive the contract with the given contract ID.

class HasTemplateTypeRep t where

Exposes templateTypeRep function in Daml-LF 1.7 or later. Part of the Template con-

straint.

class HasToAnyTemplate t where

Exposes toAnyTemplate function in Daml-LF 1.7 or later. Part of the Template con-

straint.

class HasFromAnyTemplate t where

Exposes fromAnyTemplate function in Daml-LF 1.7 or later. Part of the Template con-

straint.

class HasExercise t c r where

Exposes exercise function. Part of the Choice constraint.

exercise : ContractId t -> c -> Update r

Exercise a choice on the contract with the given contract ID.

class HasDynamicExercise t c r where

class HasChoiceController t c where

Exposes choiceController function. Part of the Choice constraint.

class HasChoiceObserver t c where

Exposes choiceObserver function. Part of the Choice constraint.

class HasExerciseGuarded t c r where

(1.dev only) Exposes exerciseGuarded function. Only available for interface choices.

exerciseGuarded : (t -> Bool) -> ContractId t -> c -> Update r

(1.dev only) Exercise a choice on the contract with the given contract ID, only if the

predicate returns True.

class HasToAnyChoice t c r where

Exposes toAnyChoice function for Daml-LF 1.7 or later. Part of the Choice constraint.

class HasFromAnyChoice t c r where

Exposes fromAnyChoice function for Daml-LF 1.7 or later. Part of the Choice constraint.

class HasKey t k where

Exposes key function. Part of the TemplateKey constraint.

1580 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

key : t -> k

The key of a contract.

class HasLookupByKey t k where

Exposes lookupByKey function. Part of the TemplateKey constraint.

lookupByKey : k -> Update (Optional (ContractId t))

Look up the contract ID t associated with a given contract key k.

You must pass the t using an explicit type application. For instance, if you want to

look up a contract of template Account by its key k, you must call lookupByKey

@Account k.

class HasFetchByKey t k where

Exposes fetchByKey function. Part of the TemplateKey constraint.

fetchByKey : k -> Update (ContractId t, t)

Fetch the contract ID and contract data associated with a given contract key.

You must pass the t using an explicit type application. For instance, if you want

to fetch a contract of template Account by its key k, you must call fetchByKey

@Account k.

class HasMaintainer t k where

Exposes maintainer function. Part of the TemplateKey constraint.

class HasToAnyContractKey t k where

Exposes toAnyContractKey function in Daml-LF 1.7 or later. Part of the TemplateKey

constraint.

class HasFromAnyContractKey t k where

Exposes fromAnyContractKey function in Daml-LF 1.7 or later. Part of the TemplateKey

constraint.

class HasExerciseByKey t k c r where

Exposes exerciseByKey function.

class IsParties a where

Accepted ways to specify a list of parties: either a single party, or a list of parties.

toParties : a -> [Party]

Convert to list of parties.

instance IsParties Party

instance IsParties (Optional Party)

instance IsParties (NonEmpty Party)

instance IsParties (Set Party)

instance IsParties [Party]

class Functor f where

A Functor is a typeclass for things that can be mapped over (using its fmap function.

Examples include Optional, [] and Update).

1.43. Daml Language References 1581

Daml SDK Documentation, 2.7.3

fmap : (a -> b) -> f a -> f b

fmap takes a function of type a ­> b, and turns it into a function of type f a ­> f

b, where f is the type which is an instance of Functor.

For example, map is an fmap that only works on lists. It takes a function a ­> b and

a [a], and returns a [b].

(<$) : a -> f b -> f a

Replace all locations in the input f b with the same value a. The default definition

is fmap . const, but you can override this with a more efficient version.

class Eq a where

The Eq class defines equality (==) and inequality (/=). All the basic datatypes exported

by the "Prelude" are instances of Eq, and Eqmay be derived for any datatype whose con-

stituents are also instances of Eq.

Usually, == is expected to implement an equivalence relationship where two values com-

paring equal are indistinguishable by "public" functions, with a "public" function being

one not allowing to see implementation details. For example, for a type representing

non-normalised natural numbers modulo 100, a "public" function doesn’t make the dif-

ference between 1 and 201. It is expected to have the following properties:

Reflexivity: x == x = True

Symmetry: x == y = y == x

Transitivity: if x == y && y == z = True, then x == z = True

Substitutivity: if x == y = True and f is a "public" function whose return type is an

instance of Eq, then f x == f y = True

Negation: x /= y = not (x == y)

Minimal complete definition: either == or /=.

(==) : a -> a -> Bool

(/=) : a -> a -> Bool

instance (Eq a, Eq b) => Eq (Either a b)

instance Eq BigNumeric

instance Eq Bool

instance Eq Int

instance Eq (Numeric n)

instance Eq Ordering

instance Eq RoundingMode

instance Eq Text

instance Eq a => Eq [a]

instance Eq ()

instance (Eq a, Eq b) => Eq (a, b)

instance (Eq a, Eq b, Eq c) => Eq (a, b, c)

instance (Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d)

1582 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

instance (Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e)

instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f) => Eq (a, b, c, d, e, f)

instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g) => Eq (a, b, c, d, e, f, g)

instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h) => Eq (a, b, c, d, e, f, g, h)

instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i) => Eq (a, b, c, d, e, f, g, h, i)

instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j) => Eq (a, b, c, d, e, f, g, h, i, j)

instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k) => Eq (a, b, c, d, e, f, g, h, i,

j, k)

instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l) => Eq (a, b, c, d, e, f, g,

h, i, j, k, l)

instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m) => Eq (a, b, c, d,

e, f, g, h, i, j, k, l, m)

instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n) => Eq (a,

b, c, d, e, f, g, h, i, j, k, l, m, n)

instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eqm, Eq n, Eq o) => Eq

(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)

class Eq a => Ord a where

The Ord class is used for totally ordered datatypes.

Instances of Ord can be derived for any user-defined datatype whose constituent types

are in Ord. The declared order of the constructors in the data declaration determines the

ordering in derived Ord instances. The Ordering datatype allows a single comparison

to determine the precise ordering of two objects.

The Haskell Report defines no laws for Ord. However, <= is customarily expected to im-

plement a non-strict partial order and have the following properties:

Transitivity: if x <= y && y <= z = True, then x <= z = True

Reflexivity: x <= x = True

Antisymmetry: if x <= y && y <= x = True, then x == y = True

Note that the following operator interactions are expected to hold:

1. x >= y = y <= x

2. x < y = x <= y && x /= y

3. x > y = y < x

4. x < y = compare x y == LT

5. x > y = compare x y == GT

6. x == y = compare x y == EQ

7. min x y == if x <= y then x else y = ‘True’

8. max x y == if x >= y then x else y = ‘True’

Minimal complete definition: either compare or <=. Using compare can bemore efficient

for complex types.

compare : a -> a -> Ordering

(<) : a -> a -> Bool

1.43. Daml Language References 1583

Daml SDK Documentation, 2.7.3

(<=) : a -> a -> Bool

(>) : a -> a -> Bool

(>=) : a -> a -> Bool

max : a -> a -> a

min : a -> a -> a

instance (Ord a, Ord b) => Ord (Either a b)

instance Ord BigNumeric

instance Ord Bool

instance Ord Int

instance Ord (Numeric n)

instance Ord Ordering

instance Ord RoundingMode

instance Ord Text

instance Ord a => Ord [a]

instance Ord ()

instance (Ord a, Ord b) => Ord (a, b)

instance (Ord a, Ord b, Ord c) => Ord (a, b, c)

instance (Ord a, Ord b, Ord c, Ord d) => Ord (a, b, c, d)

instance (Ord a, Ord b, Ord c, Ord d, Ord e) => Ord (a, b, c, d, e)

instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f) => Ord (a, b, c, d, e, f)

instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g) => Ord (a, b, c, d, e, f, g)

instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h) => Ord (a, b, c, d, e, f, g, h)

instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i) => Ord (a, b, c, d, e, f, g, h, i)

instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j) => Ord (a, b, c, d, e, f,

g, h, i, j)

instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k) => Ord (a, b, c,

d, e, f, g, h, i, j, k)

instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l) => Ord (a,

b, c, d, e, f, g, h, i, j, k, l)

instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m) =>

Ord (a, b, c, d, e, f, g, h, i, j, k, l, m)

instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ordm, Ord

n) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n)

instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ordm, Ord

n, Ord o) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)

class NumericScale n where

1584 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Is this a valid scale for the Numeric type?

This typeclass is used to prevent the creation of Numeric values with too large a scale.

The scale controls the number of digits available after the decimal point, and it must be

between 0 and 37 inclusive.

Thus the only available instances of this typeclass areNumericScale 0 throughNumer­

icScale 37. This cannot be extended without additional compiler and runtime support.

You cannot implement a custom instance of this typeclass.

If you have an error message in your code of the form "No instance for (NumericScale

n)", this is probably caused by having a numeric literal whose scale cannot be inferred

by the compiler. You can usually fix this by adding a type signature to the definition, or

annotating the numeric literal directly (for example, instead of writing 3.14159 you can

write (3.14159 : Numeric 5)).

numericScale : proxy n -> Int

Get the scale of a Numeric as an integer. For example, numericScale (3.14159

: Numeric 5) equals 5.

instance NumericScale 0

instance NumericScale 1

instance NumericScale 10

instance NumericScale 11

instance NumericScale 12

instance NumericScale 13

instance NumericScale 14

instance NumericScale 15

instance NumericScale 16

instance NumericScale 17

instance NumericScale 18

instance NumericScale 19

instance NumericScale 2

instance NumericScale 20

instance NumericScale 21

instance NumericScale 22

instance NumericScale 23

instance NumericScale 24

instance NumericScale 25

instance NumericScale 26

instance NumericScale 27

instance NumericScale 28

instance NumericScale 29

1.43. Daml Language References 1585

Daml SDK Documentation, 2.7.3

instance NumericScale 3

instance NumericScale 30

instance NumericScale 31

instance NumericScale 32

instance NumericScale 33

instance NumericScale 34

instance NumericScale 35

instance NumericScale 36

instance NumericScale 37

instance NumericScale 4

instance NumericScale 5

instance NumericScale 6

instance NumericScale 7

instance NumericScale 8

instance NumericScale 9

class IsNumeric t where

Types that can be represented by decimal literals in Daml.

fromNumeric : NumericScale m => Numeric m -> t

Convert from Numeric. Raises an error if the number can’t be represented exactly in

the target type.

fromBigNumeric : BigNumeric -> t

Convert from BigNumeric. Raises an error if the number can’t be represented ex-

actly in the target type.

instance IsNumeric BigNumeric

instance NumericScale n => IsNumeric (Numeric n)

class Bounded a where

Use the Bounded class to name the upper and lower limits of a type.

You can derive an instance of the Bounded class for any enumeration type. minBound is

the first constructor listed in the data declaration and maxBound is the last.

You can also derive an instance of Bounded for single-constructor data types whose con-

stituent types are in Bounded.

Ord is not a superclass of Bounded because types that are not totally ordered can still

have upper and lower bounds.

minBound : a

maxBound : a

instance Bounded Bool

instance Bounded Int

1586 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

class Enum a where

Use the Enum class to define operations on sequentially ordered types: that is, types that

can be enumerated. Enum members have defined successors and predecessors, which

you can get with the succ and pred functions.

Types that are an instance of class Bounded as well as Enum should respect the following

laws:

• Both succ maxBound and pred minBound should result in a runtime error.

• fromEnum and toEnum should give a runtime error if the result value is not repre-

sentable in the result type. For example, toEnum 7 : Bool is an error.

• enumFrom and enumFromThen should be defined with an implicit bound, like this:

enumFrom x = enumFromTo x maxBound

enumFromThen x y = enumFromThenTo x y bound

where

bound | fromEnum y >= fromEnum x = maxBound

| otherwise = minBound

succ : a -> a

Returns the successor of the given value. For example, for numeric types, succ adds

1.

If the type is also an instance ofBounded,succ maxBound results in a runtimeerror.

pred : a -> a

Returns the predecessor of the given value. For example, for numeric types, pred

subtracts 1.

If the type is also an instance ofBounded,pred minBound results in a runtimeerror.

toEnum : Int -> a

Convert a value from an Int to an Enum value: ie, toEnum i returns the item at the

i th position of (the instance of) Enum

fromEnum : a -> Int

Convert a value from an Enum value to an Int: ie, returns the Int position of the

element within the Enum.

If fromEnum is applied to a value that’s too large to fit in an Int, what is returned is

up to your implementation.

enumFrom : a -> [a]

Return a list of the Enum values starting at the Int position. For example:

• enumFrom 6 : [Int] = [6,7,8,9,...,maxBound : Int]

enumFromThen : a -> a -> [a]

Returns a list of the Enum values with the first value at the first Int position, the

second value at the second Int position, and further values with the same distance

between them.

For example:

• enumFromThen 4 6 : [Int] = [4,6,8,10...]

• enumFromThen 6 2 : [Int] = [6,2,­2,­6,...,minBound :: Int]

enumFromTo : a -> a -> [a]

Returns a list of the Enum values with the first value at the first Int position, and the

last value at the last Int position.

This is what’s behind the language feature that lets you write [n,m..].

For example:

1.43. Daml Language References 1587

Daml SDK Documentation, 2.7.3

• enumFromTo 6 10 : [Int] = [6,7,8,9,10]

enumFromThenTo : a -> a -> a -> [a]

Returns a list of the Enum values with the first value at the first Int position, the

second value at the second Int position, and further values with the same distance

between them, with the final value at the final Int position.

This is what’s behind the language feature that lets you write [n,n'..m].

For example:

• enumFromThenTo 4 2 ­6 : [Int] = [4,2,0,­2,­4,­6]

• enumFromThenTo 6 8 2 : [Int] = []

instance Enum Bool

instance Enum Int

class Additive a where

Use the Additive class for types that can be added. Instances have to respect the fol-

lowing laws:

• (+)must be associative, ie: (x + y) + z = x + (y + z)

• (+)must be commutative, ie: x + y = y + x

• x + aunit = x

• negate gives the additive inverse, ie: x + negate x = aunit

(+) : a -> a -> a

Add the two arguments together.

aunit : a

The additive identity for the type. For example, for numbers, this is 0.

(-) : a -> a -> a

Subtract the second argument from the first argument, ie. x ­ y = x + negate y

negate : a -> a

Negate the argument: x + negate x = aunit

instance Additive BigNumeric

instance Additive Int

instance Additive (Numeric n)

class Multiplicative a where

Use the Multiplicative class for types that can be multiplied. Instances have to re-

spect the following laws:

• (*) is associative, ie:(x * y) * z = x * (y * z)

• (*) is commutative, ie: x * y = y * x

• x * munit = x

(*) : a -> a -> a

Multipy the arguments together

munit : a

The multiplicative identity for the type. For example, for numbers, this is 1.

(^) : a -> Int -> a

x ^ n raises x to the power of n.

1588 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

instance Multiplicative BigNumeric

instance Multiplicative Int

instance Multiplicative (Numeric n)

class (Additive a, Multiplicative a) => Number a where

Number is a class for numerical types. As well as the rules for Additive and Multi­

plicative, instances also have to respect the following law:

• (*) is distributive with respect to (+). That is: a * (b + c) = (a * b) + (a *

c) and (b + c) * a = (b * a) + (c * a)

instance Number BigNumeric

instance Number Int

instance Number (Numeric n)

class Signed a where

The Signed is for the sign of a number.

signum : a -> a

Sign of a number. For real numbers, the ‘signum’ is either ­1 (negative), 0 (zero) or

1 (positive).

abs : a -> a

The absolute value: that is, the value without the sign.

instance Signed BigNumeric

instance Signed Int

instance Signed (Numeric n)

class Multiplicative a => Divisible a where

Use the Divisible class for types that can be divided. Instances should respect that di-

vision is the inverse of multiplication, i.e. x * y / y is equal to xwhenever it is defined.

(/) : a -> a -> a

x / y divides x by y

instance Divisible Int

instance Divisible (Numeric n)

class Divisible a => Fractional a where

Use the Fractional class for types that can be divided and where the reciprocal is well

defined. Instances have to respect the following laws:

• When recip x is defined, it must be the inverse of x with respect to multiplication:

x * recip x = munit

• When recip y is defined, then x / y = x * recip y

recip : a -> a

Calculates the reciprocal: recip x is 1/x.

instance Fractional (Numeric n)

class Show a where

1.43. Daml Language References 1589

Daml SDK Documentation, 2.7.3

Use the Show class for values that can be converted to a readable Text value.

Derived instances of Show have the following properties:

• The result of show is a syntactically correct expression that only contains constants

(given the fixity declarations in force at the point where the type is declared). It only

contains the constructor names defined in the data type, parentheses, and spaces.

When labelled constructor fields are used, braces, commas, field names, and equal

signs are also used.

• If the constructor is defined to be an infix operator, then showsPrec produces infix

applications of the constructor.

• If the precedence of the top-level constructor in x is less than d (associativity is ig-

nored), the representationwill be enclosed in parentheses. For example, if d is 0 then

the result is never surrounded in parentheses; if d is 11 it is always surrounded in

parentheses, unless it is an atomic expression.

• If the constructor is defined using record syntax, then show will produce the

record-syntax form, with the fields given in the same order as the original decla-

ration.

showsPrec : Int -> a -> ShowS

Convert a value to a readable Text value. Unlike show, showsPrec should satisfy

the rule showsPrec d x r ++ s == showsPrec d x (r ++ s)

show : a -> Text

Convert a value to a readable Text value.

showList : [a] -> ShowS

Allows you to show lists of values.

instance (Show a, Show b) => Show (Either a b)

instance Show BigNumeric

instance Show Bool

instance Show Int

instance Show (Numeric n)

instance Show Ordering

instance Show RoundingMode

instance Show Text

instance Show a => Show [a]

instance Show ()

instance (Show a, Show b) => Show (a, b)

instance (Show a, Show b, Show c) => Show (a, b, c)

instance (Show a, Show b, Show c, Show d) => Show (a, b, c, d)

instance (Show a, Show b, Show c, Show d, Show e) => Show (a, b, c, d, e)

1590 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Data Types

data AnyChoice

Existential choice type that can wrap an arbitrary choice.

AnyChoice

Field Type Description

getAnyChoice Any

getAnyChoiceTem-

plateTypeRep

Template-

TypeRep

instance Eq AnyChoice

instance Ord AnyChoice

data AnyContractKey

Existential contract key type that can wrap an arbitrary contract key.

AnyContractKey

Field Type Description

getAnyContrac-

tKey

Any

getAnyContrac-

tKeyTemplateType-

Rep

Template-

TypeRep

instance Eq AnyContractKey

instance Ord AnyContractKey

data AnyTemplate

Existential template type that can wrap an arbitrary template.

AnyTemplate

Field Type Description

getAnyTemplate Any

instance Eq AnyTemplate

instance Ord AnyTemplate

data TemplateTypeRep

Unique textual representation of a template Id.

TemplateTypeRep

1.43. Daml Language References 1591

Daml SDK Documentation, 2.7.3

Field Type Description

getTemplateType-

Rep

TypeRep

instance Eq TemplateTypeRep

instance Ord TemplateTypeRep

data Down a

The Down type can be used for reversing sorting order. For example, sortOn (\x ­>

Down x.field) would sort by descending field.

Down a

instance Action Down

instance Applicative Down

instance Functor Down

instance Eq a => Eq (Down a)

instance Ord a => Ord (Down a)

instance Show a => Show (Down a)

type Implements t i = (HasInterfaceTypeRep i, HasToInterface t i, HasFromInterface t i)

(Daml-LF >= 1.15) Constraint that indicates that a template implements an interface.

data AnyException

A wrapper for all exception types.

instance HasFromAnyException AnyException

instance HasMessage AnyException

instance HasToAnyException AnyException

data ContractId a

The ContractId a type represents an ID for a contract created from a template a. You

can use the ID to fetch the contract, among other things.

instance Eq (ContractId a)

instance Ord (ContractId a)

instance Show (ContractId a)

data Date

The Date type represents a date, for example date 2007 Apr 5.

instance Eq Date

instance Ord Date

instance Bounded Date

instance Enum Date

1592 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

instance Show Date

data Map a b

The Map a b type represents an associative array from keys of type a to values of type b.

It uses the built-in equality for keys. Import DA.Map to use it.

instance Ord k => Foldable (Map k)

instance Ord k => Monoid (Map k v)

instance Ord k => Semigroup (Map k v)

instance Ord k => Traversable (Map k)

instance Ord k => Functor (Map k)

instance (Ord k, Eq v) => Eq (Map k v)

instance (Ord k, Ord v) => Ord (Map k v)

instance (Show k, Show v) => Show (Map k v)

data Party

The Party type represents a party to a contract.

instance IsParties Party

instance IsParties (Optional Party)

instance IsParties (NonEmpty Party)

instance IsParties (Set Party)

instance IsParties [Party]

instance Eq Party

instance Ord Party

instance Show Party

data Scenario a

The Scenario type is for simulating ledger interactions. The type Scenario a describes

a set of actions taken by various parties during the simulated scenario, before returning

a value of type a.

instance CanAssert Scenario

instance ActionThrow Scenario

instance CanAbort Scenario

instance HasSubmit Scenario Update

instance HasTime Scenario

instance Action Scenario

instance ActionFail Scenario

instance Applicative Scenario

instance Functor Scenario

1.43. Daml Language References 1593

Daml SDK Documentation, 2.7.3

data TextMap a

The TextMap a type represents an associative array from keys of type Text to values of

type a.

instance Foldable TextMap

instance Monoid (TextMap b)

instance Semigroup (TextMap b)

instance Traversable TextMap

instance Functor TextMap

instance Eq a => Eq (TextMap a)

instance Ord a => Ord (TextMap a)

instance Show a => Show (TextMap a)

data Time

The Time type represents a specific datetime in UTC, for example time (date 2007

Apr 5) 14 30 05.

instance Eq Time

instance Ord Time

instance Show Time

data Update a

The Update a type represents an Action to update or query the ledger, before returning

a value of type a. Examples include create and fetch.

instance CanAssert Update

instance ActionCatch Update

instance ActionThrow Update

instance CanAbort Update

instance HasSubmit Scenario Update

instance HasTime Update

instance Action Update

instance ActionFail Update

instance Applicative Update

instance Functor Update

data Optional a

The Optional type encapsulates an optional value. A value of type Optional a either

contains a value of type a (represented as Some a), or it is empty (represented as None).

Using Optional is a good way to deal with errors or exceptional cases without resorting

to drastic measures such as error.

1594 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

The Optional type is also an Action. It is a simple kind of error Action, where all errors

are represented by None. A richer error Action could be built using the Data.Either.

Either type.

None

Some a

instance Foldable Optional

instance Action Optional

instance ActionFail Optional

instance Applicative Optional

instance IsParties (Optional Party)

instance Traversable Optional

instance Functor Optional

instance Eq a => Eq (Optional a)

instance Ord a => Ord (Optional a)

instance Show a => Show (Optional a)

data Archive

The data type corresponding to the implicit Archive choice in every template.

Archive

(no fields)

instance Eq Archive

instance Show Archive

type Choice t c r = (Template t, HasExercise t c r, HasToAnyChoice t c r, HasFromAnyChoice t c r)

Constraint satisfied by choices.

type Template t = (HasTemplateTypeRep t, HasToAnyTemplate t, HasFromAnyTemplate t)

type TemplateKey t k = (Template t, HasKey t k, HasLookupByKey t k, HasFetchByKey t k, HasMaintainer t k,

HasToAnyContractKey t k, HasFromAnyContractKey t k)

Constraint satisfied by template keys.

data Either a b

The Either type represents values with two possibilities: a value of type Either a b is

either Left a or Right b.

The Either type is sometimes used to represent a value which is either correct or an

error; by convention, the Left constructor is used to hold an error value and the Right

constructor is used to hold a correct value (mnemonic: "right" also means "correct").

Left a

Right b

instance (Eq a, Eq b) => Eq (Either a b)

instance (Ord a, Ord b) => Ord (Either a b)

1.43. Daml Language References 1595

Daml SDK Documentation, 2.7.3

instance (Show a, Show b) => Show (Either a b)

type ShowS = Text -> Text

showS should represent some text, and applying it to some argument should prepend the ar-

gument to the represented text.

data BigNumeric

A big numeric type, capable of holding large decimal values with many digits.

BigNumeric represents any positive or negative decimal number with up to 2^15 digits

before the decimal point, and up to 2^15 digits after the decimal point.

BigNumeric is not serializable, it is only intended for intermediate computation. You

must round and convert BigNumeric to a fixed-width numeric (Numeric n) in order

to store it in a template. The rounding operations are round and div from the DA.

BigNumeric module. The casting operations are fromNumeric and fromBigNumeric

from the IsNumeric typeclass.

instance Eq BigNumeric

instance IsNumeric BigNumeric

instance Ord BigNumeric

instance Additive BigNumeric

instance Multiplicative BigNumeric

instance Number BigNumeric

instance Signed BigNumeric

instance Show BigNumeric

data Bool

A type for Boolean values, ie True and False.

False

True

instance Eq Bool

instance Ord Bool

instance Bounded Bool

instance Enum Bool

instance Show Bool

type Decimal = Numeric 10

data Int

A type representing a 64-bit integer.

instance Eq Int

instance Ord Int

instance Bounded Int

instance Enum Int

1596 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

instance Additive Int

instance Divisible Int

instance Multiplicative Int

instance Number Int

instance Signed Int

instance Show Int

data Nat

(Kind) This is the kind of type-level naturals.

data Numeric n

A type for fixed-point decimal numbers, with the scale being passed as part of the type.

Numeric n represents a fixed-point decimal number with a fixed precision of 38 (i.e. 38

digits not including a leading zero) and a scale of n, i.e., n digits after the decimal point.

nmust be between 0 and 37 (bounds inclusive).

Examples:

0.01 : Numeric 2

0.0001 : Numeric 4

instance Eq (Numeric n)

instance NumericScale n => IsNumeric (Numeric n)

instance Ord (Numeric n)

instance Additive (Numeric n)

instance Divisible (Numeric n)

instance Fractional (Numeric n)

instance Multiplicative (Numeric n)

instance Number (Numeric n)

instance Signed (Numeric n)

instance Show (Numeric n)

data Ordering

A type for giving information about ordering: being less than (LT), equal to (EQ), or greater

than (GT) something.

LT

EQ

GT

instance Eq Ordering

instance Ord Ordering

instance Show Ordering

1.43. Daml Language References 1597

Daml SDK Documentation, 2.7.3

data RoundingMode

Roundingmodes for BigNumeric operations like div and round from DA.BigNumeric.

RoundingUp

Round away from zero.

RoundingDown

Round towards zero.

RoundingCeiling

Round towards positive infinity.

RoundingFloor

Round towards negative infinity.

RoundingHalfUp

Round towards the nearest neighbor unless both neighbors are equidistant, in

which case round away from zero.

RoundingHalfDown

Round towards the nearest neighbor unless both neighbors are equidistant, in

which case round towards zero.

RoundingHalfEven

Round towards the nearest neighbor unless both neighbors are equidistant, in

which case round towards the even neighbor.

RoundingUnnecessary

Do not round. Raises an error if the result cannot be represented without round-

ing at the targeted scale.

instance Eq RoundingMode

instance Ord RoundingMode

instance Show RoundingMode

data Text

A type for text strings, that can represent any unicode code point. For example "Hello,

world".

instance Eq Text

instance Ord Text

instance Show Text

data [] a

A type for lists, for example [1,2,3].

([])

(:) _ _

1598 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Functions

assert : CanAssert m => Bool -> m ()

Check whether a condition is true. If it’s not, abort the transaction.

assertMsg : CanAssert m => Text -> Bool -> m ()

Check whether a condition is true. If it’s not, abort the transaction with a message.

assertAfter : (CanAssert m, HasTime m) => Time -> m ()

Check whether the given time is in the future. If it’s not, abort the transaction.

assertBefore : (CanAssert m, HasTime m) => Time -> m ()

Check whether the given time is in the past. If it’s not, abort the transaction.

daysSinceEpochToDate : Int -> Date

Convert from number of days since epoch (i.e. the number of days since January 1, 1970) to a

date.

dateToDaysSinceEpoch : Date -> Int

Convert from a date to number of days from epoch (i.e. the number of days since January 1,

1970).

interfaceTypeRep : HasInterfaceTypeRep i => i -> TemplateTypeRep

(Daml-LF >= 1.15) Obtain the TemplateTypeRep for the template given in the interface value.

toInterface : HasToInterface t i => t -> i

(Daml-LF >= 1.15) Convert a template value into an interface value. For example toInterface

@MyInterface value converts a template value into a MyInterface type.

toInterfaceContractId : HasToInterface t i => ContractId t -> ContractId i

(Daml-LF >= 1.15) Convert a template contract id into an interface contract id. For example,

toInterfaceContractId @MyInterface cid.

fromInterfaceContractId : HasFromInterface t i => ContractId i -> ContractId t

(Daml-LF >= 1.15) Convert an interface contract id into a template contract id. For example,

fromInterfaceContractId @MyTemplate cid.

Can also be used to convert an interface contract id into a contract id of one of its requiring

interfaces.

This function does not verify that the interface contract id actually points to a template of the

given type. This means that a subsequent fetch, exercise, or archive may fail, if, for ex-

ample, the contract id points to a contract that implements the interface but is of a different

template type than expected.

Therefore, you should only use fromInterfaceContractId in situations where you already

know that the contract id points to a contract of the right template type. You can also use it in

situations where you will fetch, exercise, or archive the contract right away, when a transaction

failure is the appropriate response to the contract having the wrong template type.

In all other cases, consider using fetchFromInterface instead.

coerceInterfaceContractId : (HasInterfaceTypeRep i, HasInterfaceTypeRep j) => ContractId i -> ContractId j

(Daml-LF >= 1.15) Convert an interface contract id into a contract id of a different interface. For

example, given two interfaces Source and Target, and cid : ContractId Source, coer­

ceInterfaceContractId @Target @Source cid : ContractId Target.

This function does not verify that the contract id actually points to a contract that implements

either interface. This means that a subsequent fetch, exercise, or archivemay fail, if, for

example, the contract id points to a contract of template A but it was coerced into a Contrac­

tId B where B is an interface and there’s no interface instance B for A.

1.43. Daml Language References 1599

Daml SDK Documentation, 2.7.3

Therefore, you should only use coerceInterfaceContractId in situations where you al-

ready know that the contract id points to a contract of the right type. You can also use it in

situations where you will fetch, exercise, or archive the contract right away, when a transaction

failure is the appropriate response to the contract having the wrong type.

fetchFromInterface : (HasFromInterface t i, HasFetch i) => ContractId i -> Update (Optional (ContractId t, t))

(Daml-LF >= 1.15) Fetch an interface and convert it to a specific template type. If conversion is

succesful, this function returns the converted contract and its converted contract id. Other-

wise, this function returns None.

Can also be used to fetch and convert an interface contract id into a contract and contract id

of one of its requiring interfaces.

Example:

do

fetchResult <­ fetchFromInterface @MyTemplate ifaceCid

case fetchResult of

None ­> abort "Failed to convert interface to appropriate template type"

Some (tplCid, tpl) ­> do

... do something with tpl and tplCid ...

_exerciseInterfaceGuard : a -> b -> c -> Bool

view : HasInterfaceView i v => i -> v

partyToText : Party -> Text

Convert the Party to Text, giving back what you passed to getParty. In most cases, you

should use show instead. show wraps the party in 'ticks' making it clear it was a Party

originally.

partyFromText : Text -> Optional Party

Converts a Text to Party. It returns None if the provided text contains any forbidden charac-

ters. See Daml-LF spec for a specification on which characters are allowed in parties. Note that

this function accepts text without single quotes.

This function does not check on whether the provided text corresponds to a party that "exists"

on a given ledger: it merely converts the given Text to a Party. The only way to guarantee that

a given Party exists on a given ledger is to involve it in a contract.

This function, together with partyToText, forms an isomorphism between valid party strings

and parties. In other words, the following equations hold:

∀ p. partyFromText (partyToText p) = Some p

∀ txt p. partyFromText txt = Some p ==> partyToText p = txt

This function will crash at runtime if you compile Daml to Daml-LF < 1.2.

getParty : Text -> Scenario Party

Get the party with the given name. Party namesmust be non-empty and only contain alphanu-

meric charaters, space, ­ (dash) or _ (underscore).

coerceContractId : ContractId a -> ContractId b

Used to convert the type index of a ContractId, since they are just pointers. Note that sub-

sequent fetches and exercises might fail if the template of the contract on the ledger doesn’t

match.

scenario : Scenario a -> Scenario a

Declare you are building a scenario.

curry : ((a, b) -> c) -> a -> b -> c

1600 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Turn a function that takes a pair into a function that takes two arguments.

uncurry : (a -> b -> c) -> (a, b) -> c

Turn a function that takes two arguments into a function that takes a pair.

(>>) : Action m => m a -> m b -> m b

Sequentially compose two actions, discarding any value produced by the first. This is like se-

quencing operators (such as the semicolon) in imperative languages.

ap : Applicative f => f (a -> b) -> f a -> f b

Synonym for <*>.

return : Applicative m => a -> m a

Inject a value into the monadic type. For example, for Update and a value of type a, return

would give you an Update a.

join : Action m => m (m a) -> m a

Collapses nested actions into a single action.

identity : a -> a

The identity function.

guard : ActionFail m => Bool -> m ()

foldl : (b -> a -> b) -> b -> [a] -> b

This function is a left fold, which you can use to inspect/analyse/consume lists. foldl f i

xs performs a left fold over the list xs using the function f, using the starting value i.

Examples:

>>> foldl (+) 0 [1,2,3]

6

>>> foldl (^) 10 [2,3]

1000000

Note that foldl works from left-to-right over the list arguments.

find : (a -> Bool) -> [a] -> Optional a

find p xs finds the first element of the list xs where the predicate p is true. There might not

be such an element, which is why this function returns an Optional a.

length : [a] -> Int

Gives the length of the list.

any : (a -> Bool) -> [a] -> Bool

Are there any elements in the list where the predicate is true? any p xs is True if p holds for

at least one element of xs.

all : (a -> Bool) -> [a] -> Bool

Is the predicate true for all of the elements in the list? all p xs is True if p holds for every

element of xs.

or : [Bool] -> Bool

Is at least one of elements in a list of Bool true? or bs is True if at least one element of bs is

True.

and : [Bool] -> Bool

Is every element in a list of Bool true? and bs is True if every element of bs is True.

elem : Eq a => a -> [a] -> Bool

1.43. Daml Language References 1601

Daml SDK Documentation, 2.7.3

Does this value exist in this list? elem x xs is True if x is an element of the list xs.

notElem : Eq a => a -> [a] -> Bool

Negation of elem: elem x xs is True if x is not an element of the list xs.

(<$>) : Functor f => (a -> b) -> f a -> f b

Synonym for fmap.

optional : b -> (a -> b) -> Optional a -> b

The optional function takes a default value, a function, and a Optional value. If the Op­

tional value is None, the function returns the default value. Otherwise, it applies the function

to the value inside the Some and returns the result.

Basic usage examples:

>>> optional False (> 2) (Some 3)

True

>>> optional False (> 2) None

False

>>> optional 0 (*2) (Some 5)

10

>>> optional 0 (*2) None

0

This example applies show to a Optional Int. If you have Some n, this shows the underlying

Int, n. But if you have None, this returns the empty string instead of (for example) None:

>>> optional "" show (Some 5)

"5"

>>> optional "" show (None : Optional Int)

""

either : (a -> c) -> (b -> c) -> Either a b -> c

The either function provides case analysis for the Either type. If the value is Left a, it

applies the first function to a; if it is Right b, it applies the second function to b.

Examples:

This example has two values of type Either [Int] Int, one using the Left constructor and

another using the Right constructor. Then it applies either the length function (if it has a

[Int]) or the "times-two" function (if it has an Int):

>>> let s = Left [1,2,3] : Either [Int] Int in either length (*2) s

3

>>> let n = Right 3 : Either [Int] Int in either length (*2) n

6

concat : [[a]] -> [a]

Take a list of lists and concatenate those lists into one list.

(++) : [a] -> [a] -> [a]

Concatenate two lists.

flip : (a -> b -> c) -> b -> a -> c

Flip the order of the arguments of a two argument function.

reverse : [a] -> [a]

Reverse a list.

1602 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

mapA : Applicative m => (a -> m b) -> [a] -> m [b]

Apply an applicative function to each element of a list.

forA : Applicative m => [a] -> (a -> m b) -> m [b]

forA is mapA with its arguments flipped.

sequence : Applicative m => [m a] -> m [a]

Perform a list of actions in sequence and collect the results.

(=<<) : Action m => (a -> m b) -> m a -> m b

=<< is >>= with its arguments flipped.

concatMap : (a -> [b]) -> [a] -> [b]

Map a function over each element of a list, and concatenate all the results.

replicate : Int -> a -> [a]

replicate i x gives the list [x, x, x, ..., x] with i copies of x.

take : Int -> [a] -> [a]

Take the first n elements of a list.

drop : Int -> [a] -> [a]

Drop the first n elements of a list.

splitAt : Int -> [a] -> ([a], [a])

Split a list at a given index.

takeWhile : (a -> Bool) -> [a] -> [a]

Take elements from a list while the predicate holds.

dropWhile : (a -> Bool) -> [a] -> [a]

Drop elements from a list while the predicate holds.

span : (a -> Bool) -> [a] -> ([a], [a])

span p xs is equivalent to (takeWhile p xs, dropWhile p xs).

partition : (a -> Bool) -> [a] -> ([a], [a])

The partition function takes a predicate, a list and returns the pair of lists of elementswhich

do and do not satisfy the predicate, respectively; i.e.,

> partition p xs == (filter p xs, filter (not . p) xs)

>>> partition (<0) [1, ­2, ­3, 4, ­5, 6]

([­2, ­3, ­5], [1, 4, 6])

break : (a -> Bool) -> [a] -> ([a], [a])

Break a list into two, just before the first element where the predicate holds. break p xs is

equivalent to span (not . p) xs.

lookup : Eq a => a -> [(a, b)] -> Optional b

Look up the first element with a matching key.

enumerate : (Enum a, Bounded a) => [a]

Generate a list containing all values of a given enumeration.

zip : [a] -> [b] -> [(a, b)]

zip takes two lists and returns a list of corresponding pairs. If one list is shorter, the excess

elements of the longer list are discarded.

zip3 : [a] -> [b] -> [c] -> [(a, b, c)]

zip3 takes three lists and returns a list of triples, analogous to zip.

1.43. Daml Language References 1603

Daml SDK Documentation, 2.7.3

zipWith : (a -> b -> c) -> [a] -> [b] -> [c]

zipWith takes a function and two lists. It generalises zip by combining elements using the

function, instead of forming pairs. If one list is shorter, the excess elements of the longer list

are discarded.

zipWith3 : (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d]

zipWith3 generalises zip3 by combining elements using the function, instead of forming

triples.

unzip : [(a, b)] -> ([a], [b])

Turn a list of pairs into a pair of lists.

unzip3 : [(a, b, c)] -> ([a], [b], [c])

Turn a list of triples into a triple of lists.

traceRaw : Text -> a -> a

traceRaw msg a prints msg and returns a, for debugging purposes.

Note that on some ledgers, thosemessages are not displayed at the default log level. For Sand-

box, you can use ­­log­level=debug to include them.

trace : Show b => b -> a -> a

trace b a prints b and returns a, for debugging purposes.

Note that on some ledgers, thosemessages are not displayed at the default log level. For Sand-

box, you can use ­­log­level=debug to include them.

traceId : Show b => b -> b

traceId a prints a and returns a, for debugging purposes.

Note that on some ledgers, thosemessages are not displayed at the default log level. For Sand-

box, you can use ­­log­level=debug to include them.

debug : (Show b, Action m) => b -> m ()

debug x prints x for debugging purposes.

Note that on some ledgers, thosemessages are not displayed at the default log level. For Sand-

box, you can use ­­log­level=debug to include them.

debugRaw : Action m => Text -> m ()

debugRaw msg prints msg for debugging purposes.

Note that on some ledgers, thosemessages are not displayed at the default log level. For Sand-

box, you can use ­­log­level=debug to include them.

fst : (a, b) -> a

Return the first element of a tuple.

snd : (a, b) -> b

Return the second element of a tuple.

truncate : Numeric n -> Int

truncate x rounds x toward zero.

intToNumeric : Int -> Numeric n

Convert an Int to a Numeric.

intToDecimal : Int -> Decimal

Convert an Int to a Decimal.

roundBankers : Int -> Numeric n -> Numeric n

Bankers’ Rounding: roundBankers dp x rounds x to dp decimal places, where a .5 is

rounded to the nearest even digit.

1604 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

roundCommercial : NumericScale n => Int -> Numeric n -> Numeric n

Commercial Rounding: roundCommercial dp x rounds x to dp decimal places, where a .5

is rounded away from zero.

round : Numeric n -> Int

Round a Decimal to the nearest integer, where a .5 is rounded away from zero.

floor : Numeric n -> Int

Round a Decimal down to the nearest integer.

ceiling : Numeric n -> Int

Round a Decimal up to the nearest integer.

null : [a] -> Bool

Is the list empty? null xs is true if xs is the empty list.

filter : (a -> Bool) -> [a] -> [a]

Filters the list using the function: keep only the elements where the predicate holds.

sum : Additive a => [a] -> a

Add together all the elements in the list.

product : Multiplicative a => [a] -> a

Multiply all the elements in the list together.

undefined : a

A convenience function that can be used to mark something not implemented. Always throws

an error with "Not implemented."

stakeholder : (HasSignatory t, HasObserver t) => t -> [Party]

The stakeholders of a contract: its signatories and observers.

maintainer : HasMaintainer t k => k -> [Party]

The list of maintainers of a contract key.

exerciseByKey : HasExerciseByKey t k c r => k -> c -> Update r

Exercise a choice on the contract associated with the given key.

You must pass the t using an explicit type application. For instance, if you want to exercise a

choice Withdraw on a contract of template Account given by its key k, you must call exer­

ciseByKey @Account k Withdraw.

createAndExercise : (HasCreate t, HasExercise t c r) => t -> c -> Update r

Create a contract and exercise the choice on the newly created contract.

templateTypeRep : HasTemplateTypeRep t => TemplateTypeRep

Generate a unique textual representation of the template id.

toAnyTemplate : HasToAnyTemplate t => t -> AnyTemplate

Wrap the template in AnyTemplate.

Only available for Daml-LF 1.7 or later.

fromAnyTemplate : HasFromAnyTemplate t => AnyTemplate -> Optional t

Extract the underlying template from AnyTemplate if the type matches or return None.

Only available for Daml-LF 1.7 or later.

toAnyChoice : (HasTemplateTypeRep t, HasToAnyChoice t c r) => c -> AnyChoice

Wrap a choice in AnyChoice.

You must pass the template type t using an explicit type application. For example toAny­

Choice @Account Withdraw.

1.43. Daml Language References 1605

Daml SDK Documentation, 2.7.3

Only available for Daml-LF 1.7 or later.

fromAnyChoice : (HasTemplateTypeRep t, HasFromAnyChoice t c r) => AnyChoice -> Optional c

Extract the underlying choice from AnyChoice if the template and choice types match, or re-

turn None.

You must pass the template type t using an explicit type application. For example fromAny­

Choice @Account choice.

Only available for Daml-LF 1.7 or later.

toAnyContractKey : (HasTemplateTypeRep t, HasToAnyContractKey t k) => k -> AnyContractKey

Wrap a contract key in AnyContractKey.

Youmust pass the template type t using an explicit type application. For example toAnyCon­

tractKey @Proposal k.

Only available for Daml-LF 1.7 or later.

fromAnyContractKey : (HasTemplateTypeRep t, HasFromAnyContractKey t k) => AnyContractKey -> Optional k

Extract the underlying key from AnyContractKey if the template and choice types match, or

return None.

You must pass the template type t using an explicit type application. For example fromAny­

ContractKey @Proposal k.

Only available for Daml-LF 1.7 or later.

visibleByKey : HasLookupByKey t k => k -> Update Bool

True if contract exists, submitter is a stakeholder, and all maintainers authorize. False if con-

tract does not exist and all maintainers authorize. Fails otherwise.

otherwise : Bool

Used as an alternative in conditions.

map : (a -> b) -> [a] -> [b]

map f xs applies the function f to all elements of the list xs and returns the list of results (in

the same order as xs).

foldr : (a -> b -> b) -> b -> [a] -> b

This function is a right fold, which you can use to manipulate lists. foldr f i xs performs

a right fold over the list xs using the function f, using the starting value i.

Note that foldr works from right-to-left over the list elements.

(.) : (b -> c) -> (a -> b) -> a -> c

Composes two functions, i.e., (f . g) x = f (g x).

const : a -> b -> a

const x is a unary function which evaluates to x for all inputs.

>>> const 42 "hello"

42

>>> map (const 42) [0..3]

[42,42,42,42]

($) : (a -> b) -> a -> b

Take a function from a to b and a value of type a, and apply the function to the value of type a,

returning a value of type b. This function has a very low precedence, which is why you might

want to use it instead of regular function application.

(&&) : Bool -> Bool -> Bool

1606 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Boolean "and". This function has short-circuiting semantics, i.e., when both arguments are

present and the first arguments evaluates to ‘False’, the second argument is not evaluated

at all.

(||) : Bool -> Bool -> Bool

Boolean "or". This function has short-circuiting semantics, i.e., when both arguments are

present and the first arguments evaluates to ‘True’, the second argument is not evaluated at

all.

not : Bool -> Bool

Boolean "not"

error : Text -> a

Throws a GeneralError exception.

subtract : Additive a => a -> a -> a

subtract x y is equivalent to y ­ x.

This is useful for partial application, e.g., in subtract 1 since (­ 1) is interpreted as the

number ­1 and not a function that subtracts 1 from its argument.

(%) : Int -> Int -> Int

x % y calculates the remainder of x by y

shows : Show a => a -> ShowS

showParen : Bool -> ShowS -> ShowS

Utility function that surrounds the inner show function with parentheses when the ‘Bool’ pa-

rameter is ‘True’.

showString : Text -> ShowS

Utility function converting a ‘String’ to a show function that simply prepends the string un-

changed.

showSpace : ShowS

Prepends a single space to the front of the string.

showCommaSpace : ShowS

Prepends a comma and a single space to the front of the string.

1.43.3.2 DA.Action

Action

Functions

when : Applicative f => Bool -> f () -> f ()

Conditional execution of Action expressions. For example,

when final (archive contractId)

will archive the contract contractId if the Boolean value final is True, and otherwise do

nothing.

This function has short-circuiting semantics, i.e., when both arguments are present and the

first arguments evaluates to False, the second argument is not evaluated at all.

1.43. Daml Language References 1607

Daml SDK Documentation, 2.7.3

unless : Applicative f => Bool -> f () -> f ()

The reverse of when.

This function has short-circuiting semantics, i.e., when both arguments are present and the

first arguments evaluates to True, the second argument is not evaluated at all.

foldrA : Action m => (a -> b -> m b) -> b -> [a] -> m b

The foldrA is analogous to foldr, except that its result is encapsulated in an action. Note

that foldrA works from right-to-left over the list arguments.

foldr1A : Action m => (a -> a -> m a) -> [a] -> m a

foldr1A is like foldrA but raises an error when presented with an empty list argument.

foldlA : Action m => (b -> a -> m b) -> b -> [a] -> m b

foldlA is analogous to foldl, except that its result is encapsulated in an action. Note that

foldlA works from left-to-right over the list arguments.

foldl1A : Action m => (a -> a -> m a) -> [a] -> m a

The foldl1A is like foldlA but raises an errors when presented with an empty list argument.

filterA : Applicative m => (a -> m Bool) -> [a] -> m [a]

Filters the list using the applicative function: keeps only the elements where the predicate

holds. Example: given a collection of Iou contract IDs one can find only the GBPs.

filterA (fmap (\iou ­> iou.currency == "GBP") . fetch) iouCids

replicateA : Applicative m => Int -> m a -> m [a]

replicateA n act performs the action n times, gathering the results.

replicateA_ : Applicative m => Int -> m a -> m ()

Like replicateA, but discards the result.

(>=>) : Action m => (a -> m b) -> (b -> m c) -> a -> m c

Left-to-right composition of Kleisli arrows.

(<=<) : Action m => (b -> m c) -> (a -> m b) -> a -> m c

Right-to-left composition of Kleisli arrows. @(’>=>’)@, with the arguments flipped.

1.43.3.3 DA.Action.State

DA.Action.State

Data Types

data State s a

A value of type State s a represents a computation that has access to a state variable

of type s and produces a value of type a.

> > > runState (modify (+1)) 0 > > > ((), 1)

> > > evalState (modify (+1)) 0 > > > ()

> > > execState (modify (+1)) 0 > > > 1

> > > runState (do x <- get; modify (+1); pure x) 0 > > > (0, 1)

> > > runState (put 1) 0 > > > ((), 1)

1608 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

> > > runState (modify (+1)) 0 > > > ((), 1)

Note that values of type State s a are not serializable.

State

Field Type Description

runState s -> (a, s)

instance ActionState s (State s)

instance Action (State s)

instance Applicative (State s)

instance Functor (State s)

Functions

evalState : State s a -> s -> a

Special case of runState that does not return the final state.

execState : State s a -> s -> s

Special case of runState that does only retun the final state.

1.43.3.4 DA.Action.State.Class

DA.Action.State.Class

Typeclasses

class ActionState s m where

Action m has a state variable of type s.

Rules:

• get *> ma = ma

• ma <* get = ma

• put a >>= get = put a $> a

• put a *> put b = put b

• (,) <$> get <*> get = get <&> \a ­> (a, a)

Informally, these rules mean it behaves like an ordinary assignable variable: it doesn’t

magically change value by looking at it, if you put a value there that’s always the value

you’ll get if you read it, assigning a value but never reading that value has no effect, and

so on.

get : m s

Fetch the current value of the state variable.

put : s -> m ()

Set the value of the state variable.

1.43. Daml Language References 1609

Daml SDK Documentation, 2.7.3

modify : (s -> s) -> m ()

Modify the state variable with the given function.

defaultmodify

: Action m => (s -> s) -> m ()

instance ActionState s (State s)

1.43.3.5 DA.Assert

Functions

assertEq : (CanAssert m, Show a, Eq a) => a -> a -> m ()

Check two values for equality. If they’re not equal, fail with a message.

(===) : (CanAssert m, Show a, Eq a) => a -> a -> m ()

Infix version of assertEq.

assertNotEq : (CanAssert m, Show a, Eq a) => a -> a -> m ()

Check two values for inequality. If they’re equal, fail with a message.

(=/=) : (CanAssert m, Show a, Eq a) => a -> a -> m ()

Infix version of assertNotEq.

assertAfterMsg : (CanAssert m, HasTime m) => Text -> Time -> m ()

Check whether the given time is in the future. If it’s not, abort with a message.

assertBeforeMsg : (CanAssert m, HasTime m) => Text -> Time -> m ()

Check whether the given time is in the past. If it’s not, abort with a message.

1.43.3.6 DA.Bifunctor

Typeclasses

class Bifunctor p where

A bifunctor is a type constructor that takes two type arguments and is a functor in both

arguments. That is, unlike with Functor, a type constructor such as Either does not

need to be partially applied for a Bifunctor instance, and the methods in this class

permit mapping functions over the Left value or the Right value, or both at the same

time.

It is a bifunctor where both the first and second arguments are covariant.

You candefine aBifunctorby either defining bimapor by defining both first and second.

If you supply bimap, you should ensure that:

`bimap identity identity` ≡ `identity`

If you supply first and second, ensure:

first identity ≡ identity

second identity ≡ identity

1610 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

If you supply both, you should also ensure:

bimap f g ≡ first f . second g

By parametricity, these will ensure that:

bimap (f . g) (h . i) ≡ bimap f h . bimap g i

first (f . g) ≡ first f . first g

second (f . g) ≡ second f . second g

bimap : (a -> b) -> (c -> d) -> p a c -> p b d

Map over both arguments at the same time.

bimap f g ≡ first f . second g

Examples:

>>> bimap not (+1) (True, 3)

(False,4)

>>> bimap not (+1) (Left True)

Left False

>>> bimap not (+1) (Right 3)

Right 4

first : (a -> b) -> p a c -> p b c

Map covariantly over the first argument.

first f ≡ bimap f identity

Examples:

>>> first not (True, 3)

(False,3)

>>> first not (Left True : Either Bool Int)

Left False

second : (b -> c) -> p a b -> p a c

Map covariantly over the second argument.

second ≡ bimap identity

Examples:

>>> second (+1) (True, 3)

(True,4)

>>> second (+1) (Right 3 : Either Bool Int)

Right 4

instance Bifunctor Either

instance Bifunctor ()

instance Bifunctor x1

instance Bifunctor (x1, x2)

1.43. Daml Language References 1611

Daml SDK Documentation, 2.7.3

instance Bifunctor (x1, x2, x3)

instance Bifunctor (x1, x2, x3, x4)

instance Bifunctor (x1, x2, x3, x4, x5)

1.43.3.7 DA.BigNumeric

This module exposes operations for working with the BigNumeric type.

Functions

scale : BigNumeric -> Int

Calculate the scale of a BigNumeric number. The BigNumeric number is represented as n *

10^­s where n is an integer with no trailing zeros, and s is the scale.

Thus, the scale represents the number of nonzero digits after the decimal point. Note that the

scale can be negative if the BigNumeric represents an integer with trailing zeros. In that case,

it represents the number of trailing zeros (negated).

The scale ranges between 2^15 and -2^15 + 1. The scale of 0 is 0 by convention.

>>> scale 1.1

1

>>> scale (shiftLeft (2^14) 1.0)

­2^14

precision : BigNumeric -> Int

Calculate the precision of a BigNumeric number. The BigNumeric number is represented as

n * 10^­s where n is an integer with no trailing zeros, and s is the scale. The precision is the

number of digits in n.

Thus, the precision represents the number of significant digits in the BigNumeric.

The precision ranges between 0 and 2^16 - 1.

>>> precision 1.10

2

div : Int -> RoundingMode -> BigNumeric -> BigNumeric -> BigNumeric

Calculate a division of BigNumeric numbers. The value of div n r a b is the division of a

by b, rounded to n decimal places (i.e. scale), according to the rounding mode r.

This will fail when dividing by 0, and when using the RoundingUnnecessarymode for a num-

ber that cannot be represented exactly with at most n decimal places.

round : Int -> RoundingMode -> BigNumeric -> BigNumeric

Round a BigNumeric number. The value of round n r a is the value of a rounded to n deci-

mal places (i.e. scale), according to the rounding mode r.

This will fail when using the RoundingUnnecessarymode for a number that cannot be rep-

resented exactly with at most n decimal places.

shiftRight : Int -> BigNumeric -> BigNumeric

Shift a BigNumeric number to the right by a power of 10. The value shiftRight n a is the

value of a times 10^(­n).

This will fail if the resulting BigNumeric is out of bounds.

1612 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

>>> shiftRight 2 32.0

0.32

shiftLeft : Int -> BigNumeric -> BigNumeric

Shift a BigNumeric number to the left by a power of 10. The value shiftLeft n a is the value

of a times 10^n.

This will fail if the resulting BigNumeric is out of bounds.

>>> shiftLeft 2 32.0

3200.0

roundToNumeric : NumericScale n => RoundingMode -> BigNumeric -> Numeric n

Round a BigNumeric and cast it to a Numeric. This function uses the scale of the resulting

numeric to determine the scale of the rounding.

This will fail when using the RoundingUnnecessarymode if the BigNumeric cannot be rep-

resented exactly in the requested Numeric n.

>>> (roundToNumeric RoundingHalfUp 1.23456789 : Numeric 5)

1.23457

1.43.3.8 DA.Date

Data Types

data DayOfWeek

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

instance Eq DayOfWeek

instance Ord DayOfWeek

instance Bounded DayOfWeek

instance Enum DayOfWeek

instance Show DayOfWeek

data Month

The Month type represents a month in the Gregorian calendar.

Note that, while Month has an Enum instance, the toEnum and fromEnum functions start

counting at 0, i.e. toEnum 1 :: Month is Feb.

Jan

1.43. Daml Language References 1613

Daml SDK Documentation, 2.7.3

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

instance Eq Month

instance Ord Month

instance Bounded Month

instance Enum Month

instance Show Month

Functions

addDays : Date -> Int -> Date

Add the given number of days to a date.

subtractDays : Date -> Int -> Date

Subtract the given number of days from a date.

subtractDays d r is equivalent to addDays d (­ r).

subDate : Date -> Date -> Int

Returns the number of days between the two given dates.

dayOfWeek : Date -> DayOfWeek

Returns the day of week for the given date.

fromGregorian : (Int, Month, Int) -> Date

Constructs a Date from the triplet (year, month, days).

toGregorian : Date -> (Int, Month, Int)

Turn Date value into a (year, month, day) triple, according to the Gregorian calendar.

date : Int -> Month -> Int -> Date

Given the three values (year, month, day), constructs a Date value. date y m d turns the

year y, month m, and day d into a Date value. Raises an error if d is outside the range 1 ..

monthDayCount y m.

isLeapYear : Int -> Bool

Returns True if the given year is a leap year.

1614 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

fromMonth : Month -> Int

Get the number corresponding to given month. For example, Jan corresponds to 1, Feb corre-

sponds to 2, and so on.

monthDayCount : Int -> Month -> Int

Get number of days in the givenmonth in the given year, according to Gregorian calendar. This

does not take historical calendar changes into account (for example, the moves from Julian to

Gregorian calendar), but does count leap years.

datetime : Int -> Month -> Int -> Int -> Int -> Int -> Time

Constructs an instant using year, month, day, hours, minutes, seconds.

toDateUTC : Time -> Date

Extracts UTC date from UTC time.

This function will truncate Time to Date, but in many cases it will not return the date you really

want. The reason for this is that usually the source of Time would be getTime, and getTime

returns UTC, andmost likely the date you want is something local to a location or an exchange.

Consequently the date retrieved thiswaywould be yesterday if retrievedwhen themarket opens

in say Singapore.

passToDate : Date -> Scenario Time

Within a scenario, pass the simulated scenario to given date.

1.43.3.9 DA.Either

The Either type represents values with two possibilities.

It is sometimes used to represent a value which is either correct or an error. By convention, the Left

constructor is used to hold an error value and the Right constructor is used to hold a correct value

(mnemonic: "right" also means correct).

Functions

lefts : [Either a b] -> [a]

Extracts all the Left elements from a list.

rights : [Either a b] -> [b]

Extracts all the Right elements from a list.

partitionEithers : [Either a b] -> ([a], [b])

Partitions a list of Either into two lists, the Left and Right elements respectively. Order is

maintained.

isLeft : Either a b -> Bool

Return True if the given value is a Left-value, False otherwise.

isRight : Either a b -> Bool

Return True if the given value is a Right-value, False otherwise.

fromLeft : a -> Either a b -> a

Return the contents of a Left-value, or a default value in case of a Right-value.

fromRight : b -> Either a b -> b

Return the contents of a Right-value, or a default value in case of a Left-value.

1.43. Daml Language References 1615

Daml SDK Documentation, 2.7.3

optionalToEither : a -> Optional b -> Either a b

Convert a Optional value to an Either value, using the supplied parameter as the Left value

if the Optional is None.

eitherToOptional : Either a b -> Optional b

Convert an Either value to a Optional, dropping any value in Left.

maybeToEither : a -> Optional b -> Either a b

eitherToMaybe : Either a b -> Optional b

1.43.3.10 DA.Exception

Exception handling in Daml.

Typeclasses

class HasThrow e where

Part of the Exception constraint.

throwPure : e -> t

Throw exception in a pure context.

instance HasThrow ArithmeticError

instance HasThrow AssertionFailed

instance HasThrow GeneralError

instance HasThrow PreconditionFailed

class HasMessage e where

Part of the Exception constraint.

message : e -> Text

Get the error message associated with an exception.

instance HasMessage AnyException

instance HasMessage ArithmeticError

instance HasMessage AssertionFailed

instance HasMessage GeneralError

instance HasMessage PreconditionFailed

class HasToAnyException e where

Part of the Exception constraint.

toAnyException : e -> AnyException

Convert an exception type to AnyException.

instance HasToAnyException AnyException

instance HasToAnyException ArithmeticError

instance HasToAnyException AssertionFailed

1616 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

instance HasToAnyException GeneralError

instance HasToAnyException PreconditionFailed

class HasFromAnyException e where

Part of the Exception constraint.

fromAnyException : AnyException -> Optional e

Convert an AnyException back to the underlying exception type, if possible.

instance HasFromAnyException AnyException

instance HasFromAnyException ArithmeticError

instance HasFromAnyException AssertionFailed

instance HasFromAnyException GeneralError

instance HasFromAnyException PreconditionFailed

class Action m => ActionThrow m where

Action type in which throw is supported.

throw : Exception e => e -> m t

instance ActionThrow Scenario

instance ActionThrow Update

class ActionThrow m => ActionCatch m where

Action type in which try ... catch ... is supported.

_tryCatch : (() -> m t) -> (AnyException -> Optional (m t)) -> m t

Handle an exception. Use the try ... catch ... syntax instead of calling this

method directly.

instance ActionCatch Update

Data Types

type Exception e = (HasThrow e, HasMessage e, HasToAnyException e, HasFromAnyException e)

Exception typeclass. This should not be implemented directly, instead, use the exception

syntax.

data ArithmeticError

Exception raised by an arithmetic operation, such as divide-by-zero or overflow.

ArithmeticError

Field Type Description

message Text

data AssertionFailed

1.43. Daml Language References 1617

Daml SDK Documentation, 2.7.3

Exception raised by assert functions in DA.Assert

AssertionFailed

Field Type Description

message Text

data GeneralError

Exception raised by error.

GeneralError

Field Type Description

message Text

data PreconditionFailed

Exception raised when a contract is invalid, i.e. fails the ensure clause.

PreconditionFailed

Field Type Description

message Text

1.43.3.11 DA.Foldable

Class of data structures that can be folded to a summary value. It’s a good idea to import thismodule

qualified to avoid clashes with functions defined in Prelude. Ie.:

import DA.Foldable qualified as F

Typeclasses

class Foldable t where

Class of data structures that can be folded to a summary value.

fold : Monoid m => t m -> m

Combine the elements of a structure using a monoid.

foldMap : Monoid m => (a -> m) -> t a -> m

Combine the elements of a structure using a monoid.

foldr : (a -> b -> b) -> b -> t a -> b

Right-associative fold of a structure.

foldl : (b -> a -> b) -> b -> t a -> b

Left-associative fold of a structure.

1618 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

foldr1 : (a -> a -> a) -> t a -> a

A variant of foldr that hasnobase case, and thusshould only beapplied tonon-empty

structures.

foldl1 : (a -> a -> a) -> t a -> a

A variant of foldl that hasnobase case, and thus should only be applied to non-empty

structures.

toList : t a -> [a]

List of elements of a structure, from left to right.

null : t a -> Bool

Test whether the structure is empty. The default implementation is optimized for

structures that are similar to cons-lists, because there is no general way to do better.

length : t a -> Int

Returns the size/length of a finite structure as an Int. The default implementation

is optimized for structures that are similar to cons-lists, because there is no general

way to do better.

elem : Eq a => a -> t a -> Bool

Does the element occur in the structure?

sum : Additive a => t a -> a

The sum function computes the sum of the numbers of a structure.

product : Multiplicative a => t a -> a

The product function computes the product of the numbers of a structure.

minimum : Ord a => t a -> a

The least element of a non-empty structure.

maximum : Ord a => t a -> a

The largest element of a non-empty structure.

instance Ord k => Foldable (Map k)

instance Foldable TextMap

instance Foldable Optional

instance Foldable NonEmpty

instance Foldable Set

instance Foldable (Validation err)

instance Foldable (Either a)

instance Foldable ([])

instance Foldable a

1.43. Daml Language References 1619

Daml SDK Documentation, 2.7.3

Functions

mapA_ : (Foldable t, Applicative f) => (a -> f b) -> t a -> f ()

Map each element of a structure to an action, evaluate these actions from left to right, and

ignore the results. For a version that doesn’t ignore the results see ‘DA.Traversable.mapA’.

forA_ : (Foldable t, Applicative f) => t a -> (a -> f b) -> f ()

‘for_’ is ‘mapA_’ with its arguments flipped. For a version that doesn’t ignore the results see

‘DA.Traversable.forA’.

forM_ : (Foldable t, Applicative f) => t a -> (a -> f b) -> f ()

sequence_ : (Foldable t, Action m) => t (m a) -> m ()

Evaluate each action in the structure from left to right, and ignore the results. For a version

that doesn’t ignore the results see ‘DA.Traversable.sequence’.

concat : Foldable t => t [a] -> [a]

The concatenation of all the elements of a container of lists.

and : Foldable t => t Bool -> Bool

and returns the conjunction of a container of Bools. For the result to be True, the container

must be finite; False, however, results from a False value finitely far from the left end.

or : Foldable t => t Bool -> Bool

or returns the disjunction of a container of Bools. For the result to be False, the container

must be finite; True, however, results from a True value finitely far from the left end.

any : Foldable t => (a -> Bool) -> t a -> Bool

Determines whether any element of the structure satisfies the predicate.

all : Foldable t => (a -> Bool) -> t a -> Bool

Determines whether all elements of the structure satisfy the predicate.

1.43.3.12 DA.Functor

The Functor class is used for types that can be mapped over.

Functions

($>) : Functor f => f a -> b -> f b

Replace all locations in the input (on the left) with the given value (on the right).

(<&>) : Functor f => f a -> (a -> b) -> f b

Map a function over a functor. Given a value as and a function f, as <&> f is f <$> as. That

is, <&> is like <$> but the arguments are in reverse order.

void : Functor f => f a -> f ()

Replace all the locations in the input with ().

1620 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.43.3.13 DA.Internal.Interface.AnyView

Typeclasses

class HasFromAnyView i v where

Functions

fromAnyView : (HasTemplateTypeRep i, HasFromAnyView i v) => AnyView -> Optional v

1.43.3.14 DA.Internal.Interface.AnyView.Types

Data Types

data AnyView

Existential contract key type that can wrap an arbitrary contract key.

AnyView

Field Type Description

getAnyView Any

getAnyViewInter-

faceTypeRep

Interface-

TypeRep

data InterfaceTypeRep

InterfaceTypeRep

Field Type Description

getInterfaceType-

Rep

TypeRep

instance Eq InterfaceTypeRep

instance Ord InterfaceTypeRep

1.43.3.15 DA.List

List

1.43. Daml Language References 1621

Daml SDK Documentation, 2.7.3

Functions

sort : Ord a => [a] -> [a]

The sort function implements a stable sorting algorithm. It is a special case of sortBy, which

allows the programmer to supply their own comparison function.

Elements are arranged from lowest to highest, keeping duplicates in the order they appeared

in the input (a stable sort).

sortBy : (a -> a -> Ordering) -> [a] -> [a]

The sortBy function is the non-overloaded version of sort.

minimumBy : (a -> a -> Ordering) -> [a] -> a

minimumBy f xs returns the first element x of xs for which f x y is either LT or EQ for all

other y in xs. xsmust be non-empty.

maximumBy : (a -> a -> Ordering) -> [a] -> a

maximumBy f xs returns the first element x of xs for which f x y is either GT or EQ for all

other y in xs. xsmust be non-empty.

sortOn : Ord k => (a -> k) -> [a] -> [a]

Sort a list by comparing the results of a key function applied to each element. sortOn f is

equivalent tosortBy (comparing f), but has the performance advantage of only evaluating

fonce for each element in the input list. This is sometimes called thedecorate-sort-undecorate

paradigm.

Elements are arranged from from lowest to highest, keeping duplicates in the order they ap-

peared in the input.

minimumOn : Ord k => (a -> k) -> [a] -> a

minimumOn f xs returns the first element x of xs for which f x is smaller than or equal to

any other f y for y in xs. xsmust be non-empty.

maximumOn : Ord k => (a -> k) -> [a] -> a

maximumOn f xs returns the first element x of xs for which f x is greater than or equal to

any other f y for y in xs. xsmust be non-empty.

mergeBy : (a -> a -> Ordering) -> [a] -> [a] -> [a]

Merge two sorted lists using into a single, sorted whole, allowing the programmer to specify

the comparison function.

combinePairs : (a -> a -> a) -> [a] -> [a]

Combine elements pairwise by means of a programmer supplied function from two list inputs

into a single list.

foldBalanced1 : (a -> a -> a) -> [a] -> a

Fold a non-empty list in a balancedway. Balancedmeans that each element has approximately

the same depth in the operator tree. Approximately the same depth means that the difference

between maximum and minimum depth is at most 1. The accumulation operation must be

associative and commutative in order to get the same result as foldl1 or foldr1.

group : Eq a => [a] -> [[a]]

The ‘group’ function groups equal elements into sublists such that the concatenation of the

result is equal to the argument.

groupBy : (a -> a -> Bool) -> [a] -> [[a]]

The ‘groupBy’ function is the non-overloaded version of ‘group’.

groupOn : Eq k => (a -> k) -> [a] -> [[a]]

1622 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Similar to ‘group’, except that the equality is done on an extracted value.

dedup : Ord a => [a] -> [a]

dedup l removes duplicate elements from a list. In particular, it keeps only the first occur-

rence of each element. It is a special case of dedupBy, which allows the programmer to supply

their own equality test. dedup is called nub in Haskell.

dedupBy : (a -> a -> Ordering) -> [a] -> [a]

A version of dedup with a custom predicate.

dedupOn : Ord k => (a -> k) -> [a] -> [a]

A version of dedupwhere deduplication is done after applyng function. Example use: dedupOn

(.employeeNo) employees

dedupSort : Ord a => [a] -> [a]

The dedupSort function sorts and removes duplicate elements from a list. In particular, it

keeps only the first occurrence of each element.

dedupSortBy : (a -> a -> Ordering) -> [a] -> [a]

A version of dedupSort with a custom predicate.

unique : Ord a => [a] -> Bool

Returns True if and only if there are no duplicate elements in the given list.

uniqueBy : (a -> a -> Ordering) -> [a] -> Bool

A version of unique with a custom predicate.

uniqueOn : Ord k => (a -> k) -> [a] -> Bool

Returns True if and only if there are no duplicate elements in the given list after applyng func-

tion. Example use: assert $ uniqueOn (.employeeNo) employees

replace : Eq a => [a] -> [a] -> [a] -> [a]

Given a list and a replacement list, replaces each occurance of the search list with the replace-

ment list in the operation list.

dropPrefix : Eq a => [a] -> [a] -> [a]

Drops the given prefix from a list. It returns the original sequence if the sequence doesn’t start

with the given prefix.

dropSuffix : Eq a => [a] -> [a] -> [a]

Drops the given suffix from a list. It returns the original sequence if the sequence doesn’t end

with the given suffix.

stripPrefix : Eq a => [a] -> [a] -> Optional [a]

The stripPrefix function drops the given prefix from a list. It returns None if the list did not

start with the prefix given, or Some the list after the prefix, if it does.

stripSuffix : Eq a => [a] -> [a] -> Optional [a]

Return the prefix of the second list if its suffix matches the entire first list.

stripInfix : Eq a => [a] -> [a] -> Optional ([a], [a])

Return the string before and after the search string or None if the search string is not found.

>>> stripInfix [0,0] [1,0,0,2,0,0,3]

Some ([1], [2,0,0,3])

>>> stripInfix [0,0] [1,2,0,4,5]

None

1.43. Daml Language References 1623

Daml SDK Documentation, 2.7.3

isPrefixOf : Eq a => [a] -> [a] -> Bool

The isPrefixOf function takes two lists and returns True if and only if the first is a prefix of

the second.

isSuffixOf : Eq a => [a] -> [a] -> Bool

The isSuffixOf function takes two lists and returns True if and only if the first list is a suffix

of the second.

isInfixOf : Eq a => [a] -> [a] -> Bool

TheisInfixOf function takes two lists and returnsTrue if and only if the first list is contained

anywhere within the second.

mapAccumL : (acc -> x -> (acc, y)) -> acc -> [x] -> (acc, [y])

The mapAccumL function combines the behaviours of map and foldl; it applies a function to

each element of a list, passing an accumulating parameter from left to right, and returning a

final value of this accumulator together with the new list.

inits : [a] -> [[a]]

The inits function returns all initial segments of the argument, shortest first.

intersperse : a -> [a] -> [a]

The intersperse function takes an element and a list and "intersperses" that element be-

tween the elements of the list.

intercalate : [a] -> [[a]] -> [a]

intercalate inserts the list xs in between the lists in xss and concatenates the result.

tails : [a] -> [[a]]

The tails function returns all final segments of the argument, longest first.

dropWhileEnd : (a -> Bool) -> [a] -> [a]

A version of dropWhile operating from the end.

takeWhileEnd : (a -> Bool) -> [a] -> [a]

A version of takeWhile operating from the end.

transpose : [[a]] -> [[a]]

The transpose function transposes the rows and columns of its argument.

breakEnd : (a -> Bool) -> [a] -> ([a], [a])

Break, but from the end.

breakOn : Eq a => [a] -> [a] -> ([a], [a])

Find the first instanceofneedle inhaystack. The first element of the returned tuple is thepre-

fix of haystack before needle ismatched. The second is the remainder of haystack, starting

with the match. If you want the remainder without the match, use stripInfix.

breakOnEnd : Eq a => [a] -> [a] -> ([a], [a])

Similar to breakOn, but searches from the end of the string.

The first element of the returned tuple is the prefix of haystack up to and including the last

match of needle. The second is the remainder of haystack, following the match.

linesBy : (a -> Bool) -> [a] -> [[a]]

A variant of lines with a custom test. In particular, if there is a trailing separator it will be

discarded.

wordsBy : (a -> Bool) -> [a] -> [[a]]

A variant of words with a custom test. In particular, adjacent separators are discarded, as are

leading or trailing separators.

1624 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

head : [a] -> a

Extract the first element of a list, which must be non-empty.

tail : [a] -> [a]

Extract the elements after the head of a list, which must be non-empty.

last : [a] -> a

Extract the last element of a list, which must be finite and non-empty.

init : [a] -> [a]

Return all the elements of a list except the last one. The list must be non-empty.

foldl1 : (a -> a -> a) -> [a] -> a

Left associative fold of a list that must be non-empty.

foldr1 : (a -> a -> a) -> [a] -> a

Right associative fold of a list that must be non-empty.

repeatedly : ([a] -> (b, [a])) -> [a] -> [b]

Apply some operation repeatedly, producing an element of output and the remainder of the list.

chunksOf : Int -> [a] -> [[a]]

Splits a list into chunks of length@n@. @n@must be strictly greater than zero. The last chunk

will be shorter than @n@ in case the length of the input is not divisible by @n@.

delete : Eq a => a -> [a] -> [a]

delete x removes the first occurrence of x from its list argument. For example,

> delete "a" ["b","a","n","a","n","a"]

["b","n","a","n","a"]

It is a special case of ‘deleteBy’, which allows the programmer to supply their own equality test.

deleteBy : (a -> a -> Bool) -> a -> [a] -> [a]

The ‘deleteBy’ function behaves like ‘delete’, but takes a user-supplied equality predicate.

> deleteBy (<=) 4 [1..10]

[1,2,3,5,6,7,8,9,10]

(\\\\) : Eq a => [a] -> [a] -> [a]

The \\ function is list difference (non-associative). In the result of xs \\ ys, the first occur-

rence of each element of ys in turn (if any) has been removed from xs. Thus

(xs ++ ys) \\ xs == ys

Note this function is O(n*m) given lists of size n and m.

singleton : a -> [a]

Produce a singleton list.

>>> singleton True

[True]

(!!) : [a] -> Int -> a

List index (subscript) operator, starting from 0. For example, xs !! 2 returns the third ele-

ment in xs. Raises an error if the index is not suitable for the given list. The function has com-

plexity O(n) where n is the index given, unlike in languages such as Java where array indexing

is O(1).

1.43. Daml Language References 1625

Daml SDK Documentation, 2.7.3

elemIndex : Eq a => a -> [a] -> Optional Int

Find index of element in given list. Will return None if not found.

findIndex : (a -> Bool) -> [a] -> Optional Int

Find index, given predicate, of first matching element. Will return None if not found.

1.43.3.16 DA.List.BuiltinOrder

Note: This is only supported in Daml-LF 1.11 or later.

This module provides variants of other standard library functions that are based on the builtin

Daml-LF ordering rather than user-defined ordering. This is the same order also used by DA.Map.

These functions are usually much more efficient than their Ord-based counterparts.

Note that the functions in thismodule still require Ord constraints. This is purely to enforce that you

don’t pass in values that cannot be compared, e.g., functions. The implementation of those instances

is not used.

Functions

dedup : Ord a => [a] -> [a]

dedup l removes duplicate elements from a list. In particular, it keeps only the first occur-

rence of each element.

dedup is stable so the elements in the output are ordered by their first occurrence in the input.

If you do not need stability, consider using dedupSort which is more efficient.

>>> dedup [3, 1, 1, 3]

[3, 1]

dedupOn : Ord k => (v -> k) -> [v] -> [v]

A version of dedupwhere deduplication is done after applying the given function. Example use:

dedupOn (.employeeNo) employees.

dedupOn is stable so the elements in the output are ordered by their first occurrence in the

input. If you do not need stability, consider using dedupOnSort which is more efficient.

>>> dedupOn fst [(3, "a"), (1, "b"), (1, "c"), (3, "d")]

[(3, "a"), (1, "b")]

dedupSort : Ord a => [a] -> [a]

dedupSort is a more efficient variant of dedup that does not preserve the order of the input

elements. Instead the output will be sorted acoording to the builtin Daml-LF ordering.

>>> dedupSort [3, 1, 1, 3]

[1, 3]

dedupOnSort : Ord k => (v -> k) -> [v] -> [v]

dedupOnSort is a more efficient variant of dedupOn that does not preserve the order of the

input elements. Instead the output will be sorted on the values returned by the function.

For duplicates, the first element in the list will be included in the output.

>>> dedupOnSort fst [(3, "a"), (1, "b"), (1, "c"), (3, "d")]

[(1, "b"), (3, "a")]

1626 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

sort : Ord a => [a] -> [a]

Sort the list according to the Daml-LF ordering.

Values that are identical according to the builtin Daml-LF ordering are indistinguishable so

stability is not relevant here.

>>> sort [3,1,2]

[1,2,3]

sortOn : Ord b => (a -> b) -> [a] -> [a]

sortOn f is a version of sort that allows sorting on the result of the given function.

sortOn is stable so elements that map to the same sort key will be ordered by their position

in the input.

>>> sortOn fst [(3, "a"), (1, "b"), (3, "c"), (2, "d")]

[(1, "b"), (2, "d"), (3, "a"), (3, "c")]

unique : Ord a => [a] -> Bool

Returns True if and only if there are no duplicate elements in the given list.

>>> unique [1, 2, 3]

True

uniqueOn : Ord k => (a -> k) -> [a] -> Bool

Returns True if and only if there are no duplicate elements in the given list after applyng func-

tion.

>>> uniqueOn fst [(1, 2), (2, 42), (1, 3)]

False

1.43.3.17 DA.List.Total

Functions

head : [a] -> Optional a

Return the first element of a list. Return None if list is empty.

tail : [a] -> Optional [a]

Return all but the first element of a list. Return None if list is empty.

last : [a] -> Optional a

Extract the last element of a list. Returns None if list is empty.

init : [a] -> Optional [a]

Return all the elements of a list except the last one. Returns None if list is empty.

(!!) : [a] -> Int -> Optional a

Return the nth element of a list. Return None if index is out of bounds.

foldl1 : (a -> a -> a) -> [a] -> Optional a

Fold left starting with the head of the list. For example, foldl1 f [a,b,c] = f (f a b)

c. Return None if list is empty.

foldr1 : (a -> a -> a) -> [a] -> Optional a

Fold right starting with the last element of the list. For example, foldr1 f [a,b,c] = f a

(f b c)

1.43. Daml Language References 1627

Daml SDK Documentation, 2.7.3

foldBalanced1 : (a -> a -> a) -> [a] -> Optional a

Fold a non-empty list in a balancedway. Balancedmeans that each element has approximately

the same depth in the operator tree. Approximately the same depth means that the difference

between maximum and minimum depth is at most 1. The accumulation operation must be

associative and commutative in order to get the same result as foldl1 or foldr1.

Return None if list is empty.

minimumBy : (a -> a -> Ordering) -> [a] -> Optional a

Return the least element of a list according to the given comparison function. Return None if

list is empty.

maximumBy : (a -> a -> Ordering) -> [a] -> Optional a

Return the greatest element of a list according to the given comparison function. Return None

if list is empty.

minimumOn : Ord k => (a -> k) -> [a] -> Optional a

Return the least element of a list when comparing by a key function. For example minimumOn

(\(x,y) ­> x + y) [(1,2), (2,0)] == Some (2,0). Return None if list is empty.

maximumOn : Ord k => (a -> k) -> [a] -> Optional a

Return the greatest element of a list when comparing by a key function. For example maximu­

mOn (\(x,y) ­> x + y) [(1,2), (2,0)] == Some (1,2). ReturnNone if list is empty.

1.43.3.18 DA.Logic

Logic - Propositional calculus.

Data Types

data Formula t

A Formula t is a formula in propositional calculus with propositions of type t.

Proposition t

Proposition p is the formula p

Negation (Formula t)

For a formula f, Negation f is ¬f

Conjunction [Formula t]

For formulas f1, ..., fn, Conjunction [f1, ..., fn] is f1 ∧ ... ∧ fn

Disjunction [Formula t]

For formulas f1, ..., fn, Disjunction [f1, ..., fn] is f1 ∨ ... ∨ fn

instance Action Formula

instance Applicative Formula

instance Functor Formula

instance Eq t => Eq (Formula t)

instance Ord t => Ord (Formula t)

1628 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

instance Show t => Show (Formula t)

Functions

(&&&) : Formula t -> Formula t -> Formula t

&&& is the ∧ operation of the boolean algebra of formulas, to be read as "and"

(|||) : Formula t -> Formula t -> Formula t

||| is the ∨ operation of the boolean algebra of formulas, to be read as "or"

true : Formula t

true is the 1 element of the boolean algebra of formulas, represented as an empty conjunction.

false : Formula t

false is the 0 element of the boolean algebra of formulas, represented as an empty disjunc-

tion.

neg : Formula t -> Formula t

neg is the ¬ (negation) operation of the boolean algebra of formulas.

conj : [Formula t] -> Formula t

conj is a list version of &&&, enabled by the associativity of ∧.

disj : [Formula t] -> Formula t

disj is a list version of |||, enabled by the associativity of ∨.

fromBool : Bool -> Formula t

fromBool converts True to true and False to false.

toNNF : Formula t -> Formula t

toNNF transforms a formula to negation normal form (see https://en.wikipedia.org/wiki/Nega-

tion_normal_form).

toDNF : Formula t -> Formula t

toDNF turns a formula into disjunctive normal form. (see https://en.wikipedia.org/wiki/Dis-

junctive_normal_form).

traverse : Applicative f => (t -> f s) -> Formula t -> f (Formula s)

An implementation of traverse in the usual sense.

zipFormulas : Formula t -> Formula s -> Formula (t, s)

zipFormulas takes to formulas of same shape, meaning only propositions are different and

zips them up.

substitute : (t -> Optional Bool) -> Formula t -> Formula t

substitute takes a truth assignment and substitutes True or False into the respective

places in a formula.

reduce : Formula t -> Formula t

reduce reduces a formula as far as possible by:

1. Removing any occurrences of true and false;

2. Removing directly nested Conjunctions and Disjunctions;

3. Going to negation normal form.

isBool : Formula t -> Optional Bool

isBool attempts to convert a formula to a bool. It satisfies isBool true == Some True

and isBool false == Some False. Otherwise, it returns None.

1.43. Daml Language References 1629

Daml SDK Documentation, 2.7.3

interpret : (t -> Optional Bool) -> Formula t -> Either (Formula t) Bool

interpret is a version of toBool that first substitutes using a truth function and then re-

duces as far as possible.

substituteA : Applicative f => (t -> f (Optional Bool)) -> Formula t -> f (Formula t)

substituteA is a version of substitute that allows for truth values to be obtained from an

action.

interpretA : Applicative f => (t -> f (Optional Bool)) -> Formula t -> f (Either (Formula t) Bool)

interpretA is a version of interpret that allows for truth values to be obtained form an

action.

1.43.3.19 DA.Map

Note: This is only supported in Daml-LF 1.11 or later.

This module exports the generic map type Map k v and associated functions. This module should

be imported qualified, for example:

import DA.Map (Map)

import DA.Map qualified as M

This will give access to the Map type, and the various operations as M.lookup, M.insert, M.

fromList, etc.

Map k v internally uses the built-in order for the typek. Thismeans that keys that contain functions

are not comparable and will result in runtime errors. To prevent this, the Ord k instance is required

for most map operations. It is recommended to only use Map k v for key types that have an Ord k

instance that is derived automatically using deriving:

data K = ...

deriving (Eq, Ord)

This includesall built-in types that aren’t function types, suchasInt,Text,Bool,(a, b)assuming

a and b have default Ord instances, Optional t and [t] assuming t has a default Ord instance,

Map k v assuming k and v have default Ord instances, and Set k assuming k has a default Ord

instance.

Functions

fromList : Ord k => [(k, v)] -> Map k v

Create a map from a list of key/value pairs.

fromListWith : Ord k => (v -> v -> v) -> [(k, v)] -> Map k v

Create a map from a list of key/value pairs with a combining function. Examples:

>>> fromListWith (++) [("A", [1]), ("A", [2]), ("B", [2]), ("B", [1]), ("A",␣

↪→[3])]

fromList [("A", [1, 2, 3]), ("B", [2, 1])]

>>> fromListWith (++) [] == (empty : Map Text [Int])

True

keys : Map k v -> [k]

1630 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Get the list of keys in the map. Keys are sorted according to the built-in order for the type k,

which matches the Ord k instance when using deriving Ord.

>>> keys (fromList [("A", 1), ("C", 3), ("B", 2)])

["A", "B", "C"]

values : Map k v -> [v]

Get the list of values in the map. These will be in the same order as their respective keys from

M.keys.

>>> values (fromList [("A", 1), ("B", 2)])

[1, 2]

toList : Map k v -> [(k, v)]

Convert the map to a list of key/value pairs. These will be ordered by key, as in M.keys.

empty : Map k v

The empty map.

size : Map k v -> Int

Number of elements in the map.

null : Map k v -> Bool

Is the map empty?

lookup : Ord k => k -> Map k v -> Optional v

Lookup the value at a key in the map.

member : Ord k => k -> Map k v -> Bool

Is the key a member of the map?

filter : Ord k => (v -> Bool) -> Map k v -> Map k v

Filter the Map using a predicate: keep only the entries where the value satisfies the predicate.

filterWithKey : Ord k => (k -> v -> Bool) -> Map k v -> Map k v

Filter the Map using a predicate: keep only the entries which satisfy the predicate.

delete : Ord k => k -> Map k v -> Map k v

Delete a key and its value from themap. When the key is not amember of themap, the original

map is returned.

insert : Ord k => k -> v -> Map k v -> Map k v

Insert a new key/value pair in the map. If the key is already present in the map, the associated

value is replaced with the supplied value.

insertWith : Ord k => (v -> v -> v) -> k -> v -> Map k v -> Map k v

Insert a new key/value pair in the map. If the key is already present in the map, it is combined

with the previous value using the given function f new_value old_value.

alter : Ord k => (Optional v -> Optional v) -> k -> Map k v -> Map k v

Update the value inm atkwithf, inserting or deleting as required. fwill be calledwith either the

value at k, or None if absent; f can return Some with a new value to be inserted in m (replacing

the old value if there was one), or None to remove any k association mmay have.

Some implications of this behavior:

alter identity k = identity alter g k . alter f k = alter (g . f) k alter (_ -> Some v) k = insert k v alter

(_ -> None) = delete

union : Ord k => Map k v -> Map k v -> Map k v

1.43. Daml Language References 1631

Daml SDK Documentation, 2.7.3

The union of two maps, preferring the first map when equal keys are encountered.

unionWith : Ord k => (v -> v -> v) -> Map k v -> Map k v -> Map k v

The union of two maps using the combining function to merge values that exist in both maps.

merge : Ord k => (k -> a -> Optional c) -> (k -> b -> Optional c) -> (k -> a -> b -> Optional c) -> Map k a -> Map

k b -> Map k c

Combine two maps, using separate functions based on whether a key appears only in the first

map, only in the second map, or appears in both maps.

1.43.3.20 DA.Math

Math - Utility Math functions for Decimal The this library is designed to give good precision, typi-

cally giving 9 correct decimal places. The numerical algorithms run with many iterations to achieve

that precision and are interpreted by the Daml runtime so they are not performant. Their use is not

advised in performance critical contexts.

Functions

(**) : Decimal -> Decimal -> Decimal

Take a power of a number Example: 2.0 ** 3.0 == 8.0.

sqrt : Decimal -> Decimal

Calculate the square root of a Decimal.

>>> sqrt 1.44

1.2

exp : Decimal -> Decimal

The exponential function. Example: exp 0.0 == 1.0

log : Decimal -> Decimal

The natural logarithm. Example: log 10.0 == 2.30258509299

logBase : Decimal -> Decimal -> Decimal

The logarithm of a number to a given base. Example: log 10.0 100.0 == 2.0

sin : Decimal -> Decimal

sin is the sine function

cos : Decimal -> Decimal

cos is the cosine function

tan : Decimal -> Decimal

tan is the tangent function

1632 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.43.3.21 DA.Monoid

Data Types

data All

Boolean monoid under conjunction (&&)

All

Field Type Description

getAll Bool

instance Monoid All

instance Semigroup All

instance Eq All

instance Ord All

instance Show All

data Any

Boolean Monoid under disjunction (||)

Any

Field Type Description

getAny Bool

instance Monoid Any

instance Semigroup Any

instance Eq Any

instance Ord Any

instance Show Any

data Endo a

The monoid of endomorphisms under composition.

Endo

Field Type Description

appEndo a -> a

instance Monoid (Endo a)

instance Semigroup (Endo a)

1.43. Daml Language References 1633

Daml SDK Documentation, 2.7.3

data Product a

Monoid under (*)

> Product 2 <> Product 3

Product 6

Product a

instance Multiplicative a => Monoid (Product a)

instance Multiplicative a => Semigroup (Product a)

instance Eq a => Eq (Product a)

instance Ord a => Ord (Product a)

instance Additive a => Additive (Product a)

instance Multiplicative a => Multiplicative (Product a)

instance Show a => Show (Product a)

data Sum a

Monoid under (+)

> Sum 1 <> Sum 2

Sum 3

Sum a

instance Additive a => Monoid (Sum a)

instance Additive a => Semigroup (Sum a)

instance Eq a => Eq (Sum a)

instance Ord a => Ord (Sum a)

instance Additive a => Additive (Sum a)

instance Multiplicative a => Multiplicative (Sum a)

instance Show a => Show (Sum a)

1.43.3.22 DA.NonEmpty

Type and functions for non-empty lists. Thismodule re-exportsmany functions with the same name

as prelude list functions, so it is expected to import the module qualified. For example, with the

following import list you will have access to the NonEmpty type and any functions on non-empty

lists will be qualified, for example as NE.append, NE.map, NE.foldl:

import DA.NonEmpty (NonEmpty)

import qualified DA.NonEmpty as NE

1634 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Functions

cons : a -> NonEmpty a -> NonEmpty a

Prepend an element to a non-empty list.

append : NonEmpty a -> NonEmpty a -> NonEmpty a

Append or concatenate two non-empty lists.

map : (a -> b) -> NonEmpty a -> NonEmpty b

Apply a function over each element in the non-empty list.

nonEmpty : [a] -> Optional (NonEmpty a)

Turn a list into a non-empty list, if possible. Returns None if the input list is empty, and Some

otherwise.

singleton : a -> NonEmpty a

A non-empty list with a single element.

toList : NonEmpty a -> [a]

Turn a non-empty list into a list (by forgetting that it is not empty).

reverse : NonEmpty a -> NonEmpty a

Reverse a non-empty list.

find : (a -> Bool) -> NonEmpty a -> Optional a

Find an element in a non-empty list.

deleteBy : (a -> a -> Bool) -> a -> NonEmpty a -> [a]

The ‘deleteBy’ function behaves like ‘delete’, but takes a user-supplied equality predicate.

delete : Eq a => a -> NonEmpty a -> [a]

Remove the first occurence of x from the non-empty list, potentially removing all elements.

foldl1 : (a -> a -> a) -> NonEmpty a -> a

Apply a function repeatedly to pairs of elements from a non-empty list, from the left. For exam-

ple, foldl1 (+) (NonEmpty 1 [2,3,4]) = ((1 + 2) + 3) + 4.

foldr1 : (a -> a -> a) -> NonEmpty a -> a

Apply a function repeatedly to pairs of elements from a non-empty list, from the right. For

example, foldr1 (+) (NonEmpty 1 [2,3,4]) = 1 + (2 + (3 + 4)).

foldr : (a -> b -> b) -> b -> NonEmpty a -> b

Apply a function repeatedly to pairs of elements from a non-empty list, from the right, with a

given initial value. For example, foldr (+) 0 (NonEmpty 1 [2,3,4]) = 1 + (2 + (3

+ (4 + 0))).

foldrA : Action m => (a -> b -> m b) -> b -> NonEmpty a -> m b

The same as foldr but running an action each time.

foldr1A : Action m => (a -> a -> m a) -> NonEmpty a -> m a

The same as foldr1 but running an action each time.

foldl : (b -> a -> b) -> b -> NonEmpty a -> b

Apply a function repeatedly to pairs of elements from a non-empty list, from the left, with a

given initial value. For example, foldl (+) 0 (NonEmpty 1 [2,3,4]) = (((0 + 1) +

2) + 3) + 4.

foldlA : Action m => (b -> a -> m b) -> b -> NonEmpty a -> m b

The same as foldl but running an action each time.

1.43. Daml Language References 1635

Daml SDK Documentation, 2.7.3

foldl1A : Action m => (a -> a -> m a) -> NonEmpty a -> m a

The same as foldl1 but running an action each time.

1.43.3.23 DA.NonEmpty.Types

This module contains the type for non-empty lists so we can give it a stable package id. This is

reexported from DA.NonEmpty so you should never need to import this module.

Data Types

data NonEmpty a

NonEmpty is the type of non-empty lists. In other words, it is the type of lists that always

contain at least one element. If x is a non-empty list, you can obtain the first element with

x.hd and the rest of the list with x.tl.

NonEmpty

Field Type Description

hd a

tl [a]

instance Foldable NonEmpty

instance Action NonEmpty

instance Applicative NonEmpty

instance Semigroup (NonEmpty a)

instance IsParties (NonEmpty Party)

instance Traversable NonEmpty

instance Functor NonEmpty

instance Eq a => Eq (NonEmpty a)

instance Ord a => Ord (NonEmpty a)

instance Show a => Show (NonEmpty a)

1.43.3.24 DA.Numeric

Functions

mul : NumericScale n3 => Numeric n1 -> Numeric n2 -> Numeric n3

Multiply two numerics. Both inputs and the outputmay have different scales, unlike (*)which

forces all numeric scales to be the same. Raises an error on overflow, rounds to chosen scale

otherwise.

1636 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

div : NumericScale n3 => Numeric n1 -> Numeric n2 -> Numeric n3

Divide two numerics. Both inputs and the output may have different scales, unlike (/) which

forces all numeric scales to be the same. Raises an error on overflow, rounds to chosen scale

otherwise.

cast : NumericScale n2 => Numeric n1 -> Numeric n2

Cast a Numeric. Raises an error on overflow or loss of precision.

castAndRound : NumericScale n2 => Numeric n1 -> Numeric n2

Cast a Numeric. Raises an error on overflow, rounds to chosen scale otherwise.

shift : NumericScale n2 => Numeric n1 -> Numeric n2

Move the decimal point left or right by multiplying the numeric value by 10^(n1 - n2). Does not

overflow or underflow.

pi : NumericScale n => Numeric n

The number pi.

1.43.3.25 DA.Optional

The Optional type encapsulates an optional value. A value of type Optional a either contains a

value of type a (represented as Some a), or it is empty (represented as None). Using Optional is

a good way to deal with errors or exceptional cases without resorting to drastic measures such as

error.

The Optional type is also an action. It is a simple kind of error action, where all errors are represented

by None. A richer error action can be built using the Either type.

Functions

fromSome : Optional a -> a

The fromSome function extracts the element out of a Some and throws an error if its argument

is None.

Note that inmost cases you should prefer usingfromSomeNote to get a better error on failures.

fromSomeNote : Text -> Optional a -> a

Like fromSome but with a custom error message.

catOptionals : [Optional a] -> [a]

The catOptionals function takes a list of Optionals and returns a list of all the Some values.

listToOptional : [a] -> Optional a

The listToOptional function returns None on an empty list or Some a where a is the first

element of the list.

optionalToList : Optional a -> [a]

The optionalToList function returns an empty list when given None or a singleton list when

not given None.

fromOptional : a -> Optional a -> a

The fromOptional function takes a default value and a Optional value. If the Optional is

None, it returns the default values otherwise, it returns the value contained in the Optional.

isSome : Optional a -> Bool

The isSome function returns True iff its argument is of the form Some _.

1.43. Daml Language References 1637

Daml SDK Documentation, 2.7.3

isNone : Optional a -> Bool

The isNone function returns True iff its argument is None.

mapOptional : (a -> Optional b) -> [a] -> [b]

The mapOptional function is a version of map which can throw out elements. In particular,

the functional argument returns something of type Optional b. If this is None, no element is

added on to the result list. If it is Some b, then b is included in the result list.

whenSome : Applicative m => Optional a -> (a -> m ()) -> m ()

Perform some operation on Some, given the field inside the Some.

findOptional : (a -> Optional b) -> [a] -> Optional b

ThefindOptional returns the value of thepredicate at the first elementwhere it returnsSome.

findOptional is similar to find but it allows you to return a value from the predicate. This

is useful both as a more type safe version if the predicate corresponds to a pattern match and

for performance to avoid duplicating work performed in the predicate.

1.43.3.26 DA.Record

Exports the record machinery necessary to allow one to annotate code that is polymorphic in the

underlying record type.

Typeclasses

class HasField x r a where

HasField gives you getter and setter functions for each record field automatically.

In the vast majority of use-cases, plain Record syntax should be preferred:

daml> let a = MyRecord 1 "hello"

daml> a.foo

1

daml> a.bar

"hello"

daml> a { bar = "bye" }

MyRecord {foo = 1, bar = "bye"}

daml> a with foo = 3

MyRecord {foo = 3, bar = "hello"}

daml>

For more on Record syntax, see https://docs.daml.com/daml/intro/3_Data.html#record.

HasField x r a is a typeclass that takes three parameters. The first parameter x is

the field name, the second parameter r is the record type, and the last parameter a is the

type of the field in this record. For example, if we define a type:

data MyRecord = MyRecord with

foo : Int

bar : Text

Then we get, for free, the following HasField instances:

HasField "foo" MyRecord Int

HasField "bar" MyRecord Text

1638 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

If we want to get a value using HasField, we can use the getField function:

getFoo : MyRecord ­> Int

getFoo r = getField @"foo" r

getBar : MyRecord ­> Text

getBar r = getField @"bar" r

Note that this uses the “type application” syntax (f @t) to specify the field name.

Likewise, if we want to set the value in the field, we can use the setField function:

setFoo : Int ­> MyRecord ­> MyRecord

setFoo a r = setField @"foo" a r

setBar : Text ­> MyRecord ­> MyRecord

setBar a r = setField @"bar" a r

getField : r -> a

setField : a -> r -> r

1.43.3.27 DA.Semigroup

Data Types

data Max a

Semigroup under max

> Max 23 <> Max 42

Max 42

Max a

instance Ord a => Semigroup (Max a)

instance Eq a => Eq (Max a)

instance Ord a => Ord (Max a)

instance Show a => Show (Max a)

data Min a

Semigroup under min

> Min 23 <> Min 42

Min 23

Min a

instance Ord a => Semigroup (Min a)

instance Eq a => Eq (Min a)

instance Ord a => Ord (Min a)

instance Show a => Show (Min a)

1.43. Daml Language References 1639

Daml SDK Documentation, 2.7.3

1.43.3.28 DA.Set

Note: This is only supported in Daml-LF 1.11 or later.

This module exports the generic set type Set k and associated functions. This module should be

imported qualified, for example:

import DA.Set (Set)

import DA.Set qualified as S

This will give access to the Set type, and the various operations as S.lookup, S.insert, S.

fromList, etc.

Set k internally uses the built-in order for the type k. This means that keys that contain functions

are not comparable and will result in runtime errors. To prevent this, the Ord k instance is required

for most set operations. It is recommended to only use Set k for key types that have an Ord k

instance that is derived automatically using deriving:

data K = ...

deriving (Eq, Ord)

This includesall built-in types that aren’t function types, suchasInt,Text,Bool,(a, b)assuming

a and b have default Ord instances, Optional t and [t] assuming t has a default Ord instance,

Map k v assuming k and v have default Ord instances, and Set k assuming k has a default Ord

instance.

Data Types

data Set k

The type of a set. This is a wrapper over the Map type.

Set

Field Type Description

map Map k ()

instance Foldable Set

instance Ord k => Monoid (Set k)

instance Ord k => Semigroup (Set k)

instance IsParties (Set Party)

instance Ord k => Eq (Set k)

instance Ord k => Ord (Set k)

instance (Ord k, Show k) => Show (Set k)

1640 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Functions

empty : Set k

The empty set.

size : Set k -> Int

The number of elements in the set.

toList : Set k -> [k]

Convert the set to a list of elements.

fromList : Ord k => [k] -> Set k

Create a set from a list of elements.

toMap : Set k -> Map k ()

Convert a Set into a Map.

fromMap : Map k () -> Set k

Create a Set from a Map.

member : Ord k => k -> Set k -> Bool

Is the element in the set?

notMember : Ord k => k -> Set k -> Bool

Is the element not in the set? notMember k s is equivalent to not (member k s).

null : Set k -> Bool

Is this the empty set?

insert : Ord k => k -> Set k -> Set k

Insert an element in a set. If the set already contains the element, this returns the set un-

changed.

filter : Ord k => (k -> Bool) -> Set k -> Set k

Filter all elements that satisfy the predicate.

delete : Ord k => k -> Set k -> Set k

Delete an element from a set.

singleton : Ord k => k -> Set k

Create a singleton set.

union : Ord k => Set k -> Set k -> Set k

The union of two sets.

intersection : Ord k => Set k -> Set k -> Set k

The intersection of two sets.

difference : Ord k => Set k -> Set k -> Set k

difference x y returns the set consisting of all elements in x that are not in y.

> > > fromList [1, 2, 3] difference fromList [1, 4] > > > fromList [2, 3]

isSubsetOf : Ord k => Set k -> Set k -> Bool

isSubsetOf a b returns true if a is a subset of b, that is, if every element of a is in b.

isProperSubsetOf : Ord k => Set k -> Set k -> Bool

isProperSubsetOf a b returns true if a is a proper subset of b. That is, if a is a subset of b

but not equal to b.

1.43. Daml Language References 1641

Daml SDK Documentation, 2.7.3

1.43.3.29 DA.Stack

Data Types

data SrcLoc

Location in the source code.

Line and column are 0-based.

SrcLoc

Field Type Description

srcLocPackage Text

srcLocModule Text

srcLocFile Text

srcLocStartLine Int

srcLocStartCol Int

srcLocEndLine Int

srcLocEndCol Int

data CallStack

Type of callstacks constructed automatically from HasCallStack constraints.

Use callStack to get the current callstack, and use getCallStack to deconstruct the

CallStack.

type HasCallStack = IP "callStack" CallStack

Request a CallStack. Use this as a constraint in type signatures in order to get nicer call-

stacks for error and debug messages.

For example, instead of declaring the following type signature:

myFunction : Int ­> Update ()

You can declare a type signature with the HasCallStack constraint:

myFunction : HasCallStack => Int ­> Update ()

The function myFunction will still be called the same way, but it will also show up as an entry

in the current callstack, which you can obtain with callStack.

Note that only functions with the HasCallStack constraint will be added to the current call-

stack, and if any function does not have the HasCallStack constraint, the callstack will be

reset within that function.

1642 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Functions

prettyCallStack : CallStack -> Text

Pretty-print a CallStack.

getCallStack : CallStack -> [(Text, SrcLoc)]

Extract the list of call sites from the CallStack.

The most recent call comes first.

callStack : HasCallStack => CallStack

Access to the current CallStack.

1.43.3.30 DA.Text

Functions for working with Text.

Functions

explode : Text -> [Text]

implode : [Text] -> Text

isEmpty : Text -> Bool

Test for emptiness.

length : Text -> Int

Compute the number of symbols in the text.

trim : Text -> Text

Remove spaces from either side of the given text.

replace : Text -> Text -> Text -> Text

Replace a subsequence everywhere it occurs. The first argument must not be empty.

lines : Text -> [Text]

Breaks a Text value up into a list of Text’s at newline symbols. The resulting texts do not

contain newline symbols.

unlines : [Text] -> Text

Joins lines, after appending a terminating newline to each.

words : Text -> [Text]

Breaks a ‘Text’ up into a list of words, delimited by symbols representing white space.

unwords : [Text] -> Text

Joins words using single space symbols.

linesBy : (Text -> Bool) -> Text -> [Text]

A variant of lines with a custom test. In particular, if there is a trailing separator it will be

discarded.

wordsBy : (Text -> Bool) -> Text -> [Text]

A variant of words with a custom test. In particular, adjacent separators are discarded, as are

leading or trailing separators.

1.43. Daml Language References 1643

Daml SDK Documentation, 2.7.3

intercalate : Text -> [Text] -> Text

intercalate inserts the text argument t in between the items in ts and concatenates the

result.

dropPrefix : Text -> Text -> Text

dropPrefix drops the given prefix from the argument. It returns the original text if the text

doesn’t start with the given prefix.

dropSuffix : Text -> Text -> Text

Drops the given suffix from the argument. It returns the original text if the text doesn’t end

with the given suffix. Examples:

dropSuffix "!" "Hello World!" == "Hello World"

dropSuffix "!" "Hello World!!" == "Hello World!"

dropSuffix "!" "Hello World." == "Hello World."

stripSuffix : Text -> Text -> Optional Text

Return the prefix of the second text if its suffix matches the entire first text. Examples:

stripSuffix "bar" "foobar" == Some "foo"

stripSuffix "" "baz" == Some "baz"

stripSuffix "foo" "quux" == None

stripPrefix : Text -> Text -> Optional Text

The stripPrefix function drops the given prefix from the argument text. It returns None if

the text did not start with the prefix.

isPrefixOf : Text -> Text -> Bool

The isPrefixOf function takes two text arguments and returns True if and only if the first is

a prefix of the second.

isSuffixOf : Text -> Text -> Bool

The isSuffixOf function takes two text arguments and returns True if and only if the first is

a suffix of the second.

isInfixOf : Text -> Text -> Bool

The isInfixOf function takes two text arguments and returns True if and only if the first is

contained, wholly and intact, anywhere within the second.

takeWhile : (Text -> Bool) -> Text -> Text

The function takeWhile, applied to a predicate p and a text, returns the longest prefix (possi-

bly empty) of symbols that satisfy p.

takeWhileEnd : (Text -> Bool) -> Text -> Text

The function ‘takeWhileEnd’, applied to a predicate p and a ‘Text’, returns the longest suffix

(possibly empty) of elements that satisfy p.

dropWhile : (Text -> Bool) -> Text -> Text

dropWhile p t returns the suffix remaining after takeWhile p t.

dropWhileEnd : (Text -> Bool) -> Text -> Text

dropWhileEnd p t returns theprefix remainingafter dropping symbols that satisfy thepred-

icate p from the end of t.

splitOn : Text -> Text -> [Text]

Break a text into pieces separated by the first text argument (which cannot be empty), con-

suming the delimiter.

1644 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

splitAt : Int -> Text -> (Text, Text)

Split a text before a given position so that for 0 <= n <= length t, length (fst (spli­

tAt n t)) == n.

take : Int -> Text -> Text

take n, applied to a text t, returns the prefix of t of length n, or t itself if n is greater than the

length of t.

drop : Int -> Text -> Text

drop n, applied to a text t, returns the suffix of t after the first n characters, or the empty

Text if n is greater than the length of t.

substring : Int -> Int -> Text -> Text

Compute the sequence of symbols of length l in the argument text starting at s.

isPred : (Text -> Bool) -> Text -> Bool

isPred f t returns True if t is not empty and f is True for all symbols in t.

isSpace : Text -> Bool

isSpace t is True if t is not empty and consists only of spaces.

isNewLine : Text -> Bool

isSpace t is True if t is not empty and consists only of newlines.

isUpper : Text -> Bool

isUpper t is True if t is not empty and consists only of uppercase symbols.

isLower : Text -> Bool

isLower t is True if t is not empty and consists only of lowercase symbols.

isDigit : Text -> Bool

isDigit t is True if t is not empty and consists only of digit symbols.

isAlpha : Text -> Bool

isAlpha t is True if t is not empty and consists only of alphabet symbols.

isAlphaNum : Text -> Bool

isAlphaNum t is True if t is not empty and consists only of alphanumeric symbols.

parseInt : Text -> Optional Int

Attempt to parse an Int value from a given Text.

parseNumeric : Text -> Optional (Numeric n)

Attempt to parse a Numeric value from a given Text. To get Some value, the text must follow

the regex (­|\+)?[0­9]+(\.[0­9]+)? In particular, the shorthands ".12" and "12." do

not work, but the value can be prefixed with +. Leading and trailing zeros are fine, however

spaces are not. Examples:

parseNumeric "3.14" == Some 3.14

parseNumeric "+12.0" == Some 12

parseDecimal : Text -> Optional Decimal

Attempt to parse a Decimal value from a given Text. To get Some value, the text must follow

the regex (­|\+)?[0­9]+(\.[0­9]+)? In particular, the shorthands ".12" and "12." do

not work, but the value can be prefixed with +. Leading and trailing zeros are fine, however

spaces are not. Examples:

1.43. Daml Language References 1645

Daml SDK Documentation, 2.7.3

parseDecimal "3.14" == Some 3.14

parseDecimal "+12.0" == Some 12

sha256 : Text -> Text

Computes the SHA256 hash of the UTF8 bytes of the Text, and returns it in its hex-encoded

form. The hex encoding uses lowercase letters.

This function will crash at runtime if you compile Daml to Daml-LF < 1.2.

reverse : Text -> Text

Reverse some Text.

reverse "Daml" == "lmaD"

toCodePoints : Text -> [Int]

Convert a Text into a sequence of unicode code points.

fromCodePoints : [Int] -> Text

Convert a sequence of unicode code points into a Text. Raises an exception if any of the code

points is invalid.

asciiToLower : Text -> Text

Convert the uppercase ASCII characters of a Text to lowercase; all other characters remain

unchanged.

asciiToUpper : Text -> Text

Convert the lowercase ASCII characters of a Text to uppercase; all other characters remain

unchanged.

1.43.3.31 DA.TextMap

TextMap - A map is an associative array data type composed of a collection of key/value pairs such

that, each possible key appears at most once in the collection.

Functions

fromList : [(Text, a)] -> TextMap a

Create a map from a list of key/value pairs.

fromListWith : (a -> a -> a) -> [(Text, a)] -> TextMap a

Create a map from a list of key/value pairs with a combining function. Examples:

fromListWith (++) [("A", [1]), ("A", [2]), ("B", [2]), ("B", [1]), ("A",␣

↪→[3])] == fromList [("A", [1, 2, 3]), ("B", [2, 1])]

fromListWith (++) [] == (empty : TextMap [Int])

toList : TextMap a -> [(Text, a)]

Convert the map to a list of key/value pairs where the keys are in ascending order.

empty : TextMap a

The empty map.

size : TextMap a -> Int

Number of elements in the map.

1646 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

null : TextMap v -> Bool

Is the map empty?

lookup : Text -> TextMap a -> Optional a

Lookup the value at a key in the map.

member : Text -> TextMap v -> Bool

Is the key a member of the map?

filter : (v -> Bool) -> TextMap v -> TextMap v

Filter the TextMap using a predicate: keep only the entries where the value satisfies the pred-

icate.

filterWithKey : (Text -> v -> Bool) -> TextMap v -> TextMap v

Filter the TextMap using a predicate: keep only the entries which satisfy the predicate.

delete : Text -> TextMap a -> TextMap a

Delete a key and its value from themap. When the key is not amember of themap, the original

map is returned.

insert : Text -> a -> TextMap a -> TextMap a

Insert a new key/value pair in the map. If the key is already present in the map, the associated

value is replaced with the supplied value.

union : TextMap a -> TextMap a -> TextMap a

The union of two maps, preferring the first map when equal keys are encountered.

merge : (Text -> a -> Optional c) -> (Text -> b -> Optional c) -> (Text -> a -> b -> Optional c) -> TextMap a ->

TextMap b -> TextMap c

Merge two maps. merge f g h x y applies f to all key/value pairs whose key only appears

in x, g to all pairs whose key only appears in y and h to all pairs whose key appears in both x

and y. In the end, all pairs yielding Some are collected as the result.

1.43.3.32 DA.Time

Data Types

data RelTime

The RelTime type describes a time offset, i.e. relative time.

instance Eq RelTime

instance Ord RelTime

instance Additive RelTime

instance Signed RelTime

instance Show RelTime

1.43. Daml Language References 1647

Daml SDK Documentation, 2.7.3

Functions

time : Date -> Int -> Int -> Int -> Time

time d h m s turns given UTC date d and the UTC time (given in hours, minutes, seconds)

into a UTC timestamp (Time). Does not handle leap seconds.

pass : RelTime -> Scenario Time

Pass simulated scenario time by argument

addRelTime : Time -> RelTime -> Time

Adjusts Time with given time offset.

subTime : Time -> Time -> RelTime

Returns time offset between two given instants.

wholeDays : RelTime -> Int

Returns the number of whole days in a time offset. Fraction of time is rounded towards zero.

days : Int -> RelTime

A number of days in relative time.

hours : Int -> RelTime

A number of hours in relative time.

minutes : Int -> RelTime

A number of minutes in relative time.

seconds : Int -> RelTime

A number of seconds in relative time.

milliseconds : Int -> RelTime

A number of milliseconds in relative time.

microseconds : Int -> RelTime

A number of microseconds in relative time.

convertRelTimeToMicroseconds : RelTime -> Int

Convert RelTime to microseconds Use higher level functions instead of the internal microsec-

onds

convertMicrosecondsToRelTime : Int -> RelTime

Convert microseconds to RelTime Use higher level functions instead of the internal microsec-

onds

1.43.3.33 DA.Traversable

Class of data structures that can be traversed from left to right, performing an action on each el-

ement. You typically would want to import this module qualified to avoid clashes with functions

defined in Prelude. Ie.:

import DA.Traversable qualified as F

1648 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Typeclasses

class (Functor t, Foldable t) => Traversable t where

Functors representing data structures that can be traversed from left to right.

mapA : Applicative f => (a -> f b) -> t a -> f (t b)

Map each element of a structure to an action, evaluate these actions from left to

right, and collect the results.

sequence : Applicative f => t (f a) -> f (t a)

Evaluate each action in the structure from left to right, and collect the results.

instance Ord k => Traversable (Map k)

instance Traversable TextMap

instance Traversable Optional

instance Traversable NonEmpty

instance Traversable (Validation err)

instance Traversable (Either a)

instance Traversable ([])

instance Traversable a

Functions

forA : (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b)

forA is mapA with its arguments flipped.

1.43.3.34 DA.Tuple

Tuple - Ubiquitous functions of tuples.

Functions

first : (a -> a’) -> (a, b) -> (a’, b)

The pair obtained from a pair by application of a programmer supplied function to the argu-

ment pair’s first field.

second : (b -> b’) -> (a, b) -> (a, b’)

The pair obtained from a pair by application of a programmer supplied function to the argu-

ment pair’s second field.

both : (a -> b) -> (a, a) -> (b, b)

The pair obtained from a pair by application of a programmer supplied function to both the

argument pair’s first and second fields.

swap : (a, b) -> (b, a)

The pair obtained from a pair by permuting the order of the argument pair’s first and second

fields.

1.43. Daml Language References 1649

Daml SDK Documentation, 2.7.3

dupe : a -> (a, a)

Duplicate a single value into a pair.

> dupe 12 == (12, 12)

fst3 : (a, b, c) -> a

Extract the ‘fst’ of a triple.

snd3 : (a, b, c) -> b

Extract the ‘snd’ of a triple.

thd3 : (a, b, c) -> c

Extract the final element of a triple.

curry3 : ((a, b, c) -> d) -> a -> b -> c -> d

Converts an uncurried function to a curried function.

uncurry3 : (a -> b -> c -> d) -> (a, b, c) -> d

Converts a curried function to a function on a triple.

1.43.3.35 DA.Validation

Validation type and associated functions.

Data Types

data Validation err a

A Validation represents eithor a non-empty list of errors, or a successful value. This

generalizes Either to allow more than one error to be collected.

Errors (NonEmpty err)

Success a

instance Foldable (Validation err)

instance Applicative (Validation err)

instance Semigroup (Validation err a)

instance Traversable (Validation err)

instance Functor (Validation err)

instance (Eq err, Eq a) => Eq (Validation err a)

instance (Show err, Show a) => Show (Validation err a)

1650 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Functions

invalid : err -> Validation err a

Fail for the given reason.

ok : a -> Validation err a

Succeed with the given value.

validate : Either err a -> Validation err a

Turn an Either into a Validation.

run : Validation err a -> Either (NonEmpty err) a

Convert a Validation err a value into an Either, taking the non-empty list of errors as the

left value.

run1 : Validation err a -> Either err a

Convert a Validation err a value into an Either, taking just the first error as the left value.

runWithDefault : a -> Validation err a -> a

Run a Validation err a with a default value in case of errors.

(<?>) : Optional b -> err -> Validation err b

Convert an Optional t into a Validation err t, or more generally into an m t for any Ac­

tionFail type m.

1.43.3.36 GHC.Show.Text

Functions

showsPrecText : Int -> Text -> ShowS

1.43.3.37 GHC.Tuple.Check

Functions

userWrittenTuple : a -> a

1.43.4 Daml Script Library

The Daml Script library defines the API used to implement Daml scripts. See Daml Script:: for more

information on Daml script.

1.43. Daml Language References 1651

Daml SDK Documentation, 2.7.3

1.43.4.1 Daml.Script

Data Types

data Commands a

This is used to build up the commands send as part of submit. If you enable the Ap­

plicativeDo extension by adding {­# LANGUAGE ApplicativeDo #­} at the top of

your file, you can use do-notation but the individual commandsmust not depend on each

other and the last statement in a do block must be of the form return expr or pure

expr.

instance Functor Commands

instance HasSubmit Script Commands

instance Applicative Commands

instance HasField "commands" (SubmitCmd a) (Commands a)

instance HasField "commands" (SubmitMustFailCmd a) (Commands a)

instance HasField "commands" (SubmitTreePayload a) (Commands ())

data InvalidUserId

Thrown if text for a user identifier does not conform to the format restriction.

InvalidUserId

Field Type Description

m Text

instance Eq InvalidUserId

instance Show InvalidUserId

instance HasFromAnyException InvalidUserId

instance HasMessage InvalidUserId

instance HasThrow InvalidUserId

instance HasToAnyException InvalidUserId

instance HasField "m" InvalidUserId Text

data ParticipantName

ParticipantName

Field Type Description

participantName Text

instance HasField "participantName" ParticipantName Text

data PartyDetails

1652 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-base-functor-31205
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-lf-hassubmit-5275
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-prelude-applicative-9257
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/DA-Exception.html#class-da-internal-exception-hasfromanyexception-16788
https://docs.daml.com/daml/stdlib/DA-Exception.html#class-da-internal-exception-hasmessage-3179
https://docs.daml.com/daml/stdlib/DA-Exception.html#class-da-internal-exception-hasthrow-30284
https://docs.daml.com/daml/stdlib/DA-Exception.html#class-da-internal-exception-hastoanyexception-55973
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952

Daml SDK Documentation, 2.7.3

The party details returned by the party management service.

PartyDetails

Field Type Description

party Party Party id

displayName Optional

Text

Optional display name

isLocal Bool True if party is hosted by the backingpar-

ticipant.

instance Eq PartyDetails

instance Ord PartyDetails

instance Show PartyDetails

instance HasField "continue" (ListKnownPartiesPayload a) ([PartyDetails] -> a)

instance HasField "displayName" PartyDetails (Optional Text)

instance HasField "isLocal" PartyDetails Bool

instance HasField "party" PartyDetails Party

data PartyIdHint

A hint to the backing participant what party id to allocate. Must be a valid PartyIdString

(as described in @value.proto@).

PartyIdHint

Field Type Description

partyIdHint Text

instance HasField "partyIdHint" PartyIdHint Text

data Script a

This is the type of A Daml script. Script is an instance of Action, so you can use do

notation.

instance Functor Script

instance CanAssert Script

instance ActionCatch Script

instance ActionThrow Script

instance CanAbort Script

instance HasSubmit Script Commands

instance HasTime Script

instance Action Script

instance ActionFail Script

1.43. Daml Language References 1653

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-ord-6395
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-base-functor-31205
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-assert-canassert-67323
https://docs.daml.com/daml/stdlib/DA-Exception.html#class-da-internal-exception-actioncatch-69238
https://docs.daml.com/daml/stdlib/DA-Exception.html#class-da-internal-exception-actionthrow-37623
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-lf-canabort-29060
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-lf-hassubmit-5275
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-lf-hastime-96546
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-prelude-action-68790
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-prelude-actionfail-34438

Daml SDK Documentation, 2.7.3

instance Applicative Script

instance HasField "dummy" (Script a) ()

instance HasField "runScript" (Script a) (() -> Free ScriptF (a, ()))

data User

User-info record for a user in the user management service.

User

Field Type Description

userId UserId

primaryParty Optional

Party

instance Eq User

instance Ord User

instance Show User

instance HasField "continue" (GetUserPayload a) (Optional User -> a)

instance HasField "continue" (ListAllUsersPayload a) ([User] -> a)

instance HasField "primaryParty" User (Optional Party)

instance HasField "user" (CreateUserPayload a) User

instance HasField "userId" User UserId

data UserAlreadyExists

Thrown if a user to be created already exists.

UserAlreadyExists

Field Type Description

userId UserId

instance Eq UserAlreadyExists

instance Show UserAlreadyExists

instance HasFromAnyException UserAlreadyExists

instance HasMessage UserAlreadyExists

instance HasThrow UserAlreadyExists

instance HasToAnyException UserAlreadyExists

instance HasField "userId" UserAlreadyExists UserId

data UserId

1654 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-prelude-applicative-9257
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-ord-6395
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/DA-Exception.html#class-da-internal-exception-hasfromanyexception-16788
https://docs.daml.com/daml/stdlib/DA-Exception.html#class-da-internal-exception-hasmessage-3179
https://docs.daml.com/daml/stdlib/DA-Exception.html#class-da-internal-exception-hasthrow-30284
https://docs.daml.com/daml/stdlib/DA-Exception.html#class-da-internal-exception-hastoanyexception-55973
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839

Daml SDK Documentation, 2.7.3

Identifier for a user in the user management service.

instance Eq UserId

instance Ord UserId

instance Show UserId

instance HasField "userId" (DeleteUserPayload a) UserId

instance HasField "userId" (GetUserPayload a) UserId

instance HasField "userId" (GrantUserRightsPayload a) UserId

instance HasField "userId" (ListUserRightsPayload a) UserId

instance HasField "userId" (RevokeUserRightsPayload a) UserId

instance HasField "userId" User UserId

instance HasField "userId" UserAlreadyExists UserId

instance HasField "userId" UserNotFound UserId

data UserNotFound

Thrown if a user cannot be located for a given user identifier.

UserNotFound

Field Type Description

userId UserId

instance Eq UserNotFound

instance Show UserNotFound

instance HasFromAnyException UserNotFound

instance HasMessage UserNotFound

instance HasThrow UserNotFound

instance HasToAnyException UserNotFound

instance HasField "userId" UserNotFound UserId

data UserRight

The rights of a user.

ParticipantAdmin

CanActAs Party

CanReadAs Party

instance Eq UserRight

instance Show UserRight

instance HasField "continue" (GrantUserRightsPayload a) (Optional [UserRight] -> a)

instance HasField "continue" (ListUserRightsPayload a) (Optional [UserRight] -> a)

1.43. Daml Language References 1655

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-ord-6395
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/DA-Exception.html#class-da-internal-exception-hasfromanyexception-16788
https://docs.daml.com/daml/stdlib/DA-Exception.html#class-da-internal-exception-hasmessage-3179
https://docs.daml.com/daml/stdlib/DA-Exception.html#class-da-internal-exception-hasthrow-30284
https://docs.daml.com/daml/stdlib/DA-Exception.html#class-da-internal-exception-hastoanyexception-55973
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153

Daml SDK Documentation, 2.7.3

instance HasField "continue" (RevokeUserRightsPayload a) (Optional [UserRight] -> a)

instance HasField "rights" (CreateUserPayload a) [UserRight]

instance HasField "rights" (GrantUserRightsPayload a) [UserRight]

instance HasField "rights" (RevokeUserRightsPayload a) [UserRight]

Functions

query : (Template t, HasAgreement t, IsParties p) => p -> Script [(ContractId t, t)]

Query the set of active contracts of the template that are visible to the given party.

queryFilter : (Template c, HasAgreement c, IsParties p) => p -> (c -> Bool) -> Script [(ContractId c, c)]

Query the set of active contracts of the template that are visible to the given party and match

the given predicate.

queryContractId : (Template t, HasAgreement t, IsParties p, HasCallStack) => p -> ContractId t -> Script

(Optional t)

Query for the contract with the given contract id.

Returns None if there is no active contract the party is a stakeholder on.

WARNING: Over the gRPC and with the JSON API in-memory backend this performs a linear

search so only use this if the number of active contracts is small.

This is semantically equivalent to calling query and filtering on the client side.

queryInterface : (Template i, HasInterfaceView i v, IsParties p) => p -> Script [(ContractId i, Optional v)]

Query the set of active contract views for an interface that are visible to the given party. If the

view function fails for a given contract id, The Optional v will be None.

WARNING: Information about instances with failed-views is not currently returned over the

JSON API: the Optional v will be Some _ for every element in the returned list.

queryInterfaceContractId : (Template i, HasInterfaceView i v, IsParties p, HasCallStack) => p -> Con-

tractId i -> Script (Optional v)

Query for the contract view with the given contract id.

Returns None if there is no active contract the party is a stakeholder on.

Returns None if the view function fails for the given contract id.

WARNING: Over the gRPC and with the JSON API in-memory backend this performs a linear

search so only use this if the number of active contracts is small.

This is semantically equivalent to calling queryInterface and filtering on the client side.

queryContractKey : (HasCallStack, TemplateKey t k, IsParties p) => p -> k -> Script (Optional (ContractId

t, t))

Returns None if there is no active contract with the given key that the party is a stakeholder on.

WARNING: Over the gRPC and with the JSON API in-memory backend this performs a linear

search so only use this if the number of active contracts is small.

This is semantically equivalent to calling query and filtering on the client side.

setTime : HasCallStack => Time -> Script ()

Set the time via the time service.

This is only supported in Daml Studio and daml test as well as when running over the gRPC

API against a ledger in static time mode.

Note that the ledger time service does not support going backwards in time. However, you can

go back in time in Daml Studio.

passTime : RelTime -> Script ()

1656 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-template-31804
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasagreement-49535
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-isparties-53750
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-template-31804
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasagreement-49535
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-isparties-53750
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-template-31804
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasagreement-49535
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-isparties-53750
https://docs.daml.com/daml/stdlib/DA-Stack.html#type-ghc-stack-types-hascallstack-63713
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-template-31804
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hasinterfaceview-4492
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-isparties-53750
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-template-31804
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-interface-hasinterfaceview-4492
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-isparties-53750
https://docs.daml.com/daml/stdlib/DA-Stack.html#type-ghc-stack-types-hascallstack-63713
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/DA-Stack.html#type-ghc-stack-types-hascallstack-63713
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-templatekey-95200
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-isparties-53750
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Stack.html#type-ghc-stack-types-hascallstack-63713
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886
https://docs.daml.com/daml/stdlib/DA-Time.html#type-da-time-types-reltime-23082

Daml SDK Documentation, 2.7.3

Advance ledger time by the given interval.

This is only supported in Daml Studio and daml test as well as when running over the gRPC

API against a ledger in static time mode. Note that this is not an atomic operation over the

gRPC API so no other clients should try to change time while this is running.

Note that the ledger time service does not support going backwards in time. However, you can

go back in time in Daml Studio.

allocateParty : HasCallStack => Text -> Script Party

Allocate a party with the given display name using the party management service.

allocatePartyWithHint : HasCallStack => Text -> PartyIdHint -> Script Party

Allocate a party with the given display name and id hint using the party management service.

allocatePartyOn : Text -> ParticipantName -> Script Party

Allocate a party with the given display name on the specified participant using the party man-

agement service.

allocatePartyWithHintOn : Text -> PartyIdHint -> ParticipantName -> Script Party

Allocate a party with the given display name and id hint on the specified participant using the

party management service.

listKnownParties : HasCallStack => Script [PartyDetails]

List the parties known to the default participant.

listKnownPartiesOn : HasCallStack => ParticipantName -> Script [PartyDetails]

List the parties known to the given participant.

sleep : HasCallStack => RelTime -> Script ()

Sleep for the given duration.

This is primarily useful in tests where you repeatedly call query until a certain state is reached.

Note that this will sleep for the same duration in both wall clock and static time mode.

submitMulti : HasCallStack => [Party] -> [Party] -> Commands a -> Script a

submitMulti actAs readAs cmds submitscmds as a single transaction authorized byac­

tAs. Fetched contracts must be visible to at least one party in the union of actAs and readAs.

submitMultiMustFail : HasCallStack => [Party] -> [Party] -> Commands a -> Script ()

submitMultiMustFail actAs readAs cmds behaves like submitMulti actAs readAs

cmds but fails when submitMulti succeeds and the other way around.

createCmd : (Template t, HasAgreement t) => t -> Commands (ContractId t)

Create a contract of the given template.

exerciseCmd : Choice t c r => ContractId t -> c -> Commands r

Exercise a choice on the given contract.

exerciseByKeyCmd : (TemplateKey t k, Choice t c r) => k -> c -> Commands r

Exercise a choice on the contract with the given key.

createAndExerciseCmd : (Template t, Choice t c r, HasAgreement t) => t -> c -> Commands r

Create a contract and exercise a choice on it in the same transaction.

archiveCmd : Choice t Archive () => ContractId t -> Commands ()

Archive the given contract.

archiveCmd cid is equivalent to exerciseCmd cid Archive.

script : Script a -> Script a

Convenience helper to declare you are writing a Script.

1.43. Daml Language References 1657

https://docs.daml.com/daml/stdlib/DA-Stack.html#type-ghc-stack-types-hascallstack-63713
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/DA-Stack.html#type-ghc-stack-types-hascallstack-63713
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/DA-Stack.html#type-ghc-stack-types-hascallstack-63713
https://docs.daml.com/daml/stdlib/DA-Stack.html#type-ghc-stack-types-hascallstack-63713
https://docs.daml.com/daml/stdlib/DA-Stack.html#type-ghc-stack-types-hascallstack-63713
https://docs.daml.com/daml/stdlib/DA-Time.html#type-da-time-types-reltime-23082
https://docs.daml.com/daml/stdlib/DA-Stack.html#type-ghc-stack-types-hascallstack-63713
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/DA-Stack.html#type-ghc-stack-types-hascallstack-63713
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-template-31804
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasagreement-49535
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-choice-82157
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-templatekey-95200
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-choice-82157
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-template-31804
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-choice-82157
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasagreement-49535
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-choice-82157
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-archive-15178
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282

Daml SDK Documentation, 2.7.3

This is only useful for readability and to improve type inference. Any expression of type Script

a is a valid script regardless of whether it is implemented using script or not.

userIdToText : UserId -> Text

Extract the name-text from a user identitifer.

validateUserId : HasCallStack => Text -> Script UserId

Construct a user identifer from text. May throw InvalidUserId.

createUser : HasCallStack => User -> [UserRight] -> Script ()

Create a user with the given rights. May throw UserAlreadyExists.

createUserOn : HasCallStack => User -> [UserRight] -> ParticipantName -> Script ()

Create a user with the given rights on the given participant. May throw UserAlreadyExists.

getUser : HasCallStack => UserId -> Script User

Fetch a user record by user id. May throw UserNotFound.

getUserOn : HasCallStack => UserId -> ParticipantName -> Script User

Fetch a user record by user id from the given participant. May throw UserNotFound.

listAllUsers : Script [User]

List all users. This function may make multiple calls to underlying paginated ledger API.

listAllUsersOn : ParticipantName -> Script [User]

List all users on the given participant. This function may make multiple calls to underlying

paginated ledger API.

grantUserRights : HasCallStack => UserId -> [UserRight] -> Script [UserRight]

Grant rights to a user. Returns the rights that have been newly granted. May throw UserNot-

Found.

grantUserRightsOn : HasCallStack => UserId -> [UserRight] -> ParticipantName -> Script [UserRight]

Grant rights to a user on the given participant. Returns the rights that have been newly granted.

May throw UserNotFound.

revokeUserRights : HasCallStack => UserId -> [UserRight] -> Script [UserRight]

Revoke rights for a user. Returns the revoked rights. May throw UserNotFound.

revokeUserRightsOn : HasCallStack => UserId -> [UserRight] -> ParticipantName -> Script [UserRight]

Revoke rights for a user on the given participant. Returns the revoked rights. May throw User-

NotFound.

deleteUser : HasCallStack => UserId -> Script ()

Delete a user. May throw UserNotFound.

deleteUserOn : HasCallStack => UserId -> ParticipantName -> Script ()

Delete a user on the given participant. May throw UserNotFound.

listUserRights : HasCallStack => UserId -> Script [UserRight]

List the rights of a user. May throw UserNotFound.

listUserRightsOn : HasCallStack => UserId -> ParticipantName -> Script [UserRight]

List the rights of a user on the given participant. May throw UserNotFound.

submitUser : HasCallStack => UserId -> Commands a -> Script a

Submit the commands with the actAs and readAs claims granted to a user. May throw User-

NotFound.

submitUserOn : HasCallStack => UserId -> ParticipantName -> Commands a -> Script a

1658 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/DA-Stack.html#type-ghc-stack-types-hascallstack-63713
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/DA-Stack.html#type-ghc-stack-types-hascallstack-63713
https://docs.daml.com/daml/stdlib/DA-Stack.html#type-ghc-stack-types-hascallstack-63713
https://docs.daml.com/daml/stdlib/DA-Stack.html#type-ghc-stack-types-hascallstack-63713
https://docs.daml.com/daml/stdlib/DA-Stack.html#type-ghc-stack-types-hascallstack-63713
https://docs.daml.com/daml/stdlib/DA-Stack.html#type-ghc-stack-types-hascallstack-63713
https://docs.daml.com/daml/stdlib/DA-Stack.html#type-ghc-stack-types-hascallstack-63713
https://docs.daml.com/daml/stdlib/DA-Stack.html#type-ghc-stack-types-hascallstack-63713
https://docs.daml.com/daml/stdlib/DA-Stack.html#type-ghc-stack-types-hascallstack-63713
https://docs.daml.com/daml/stdlib/DA-Stack.html#type-ghc-stack-types-hascallstack-63713
https://docs.daml.com/daml/stdlib/DA-Stack.html#type-ghc-stack-types-hascallstack-63713
https://docs.daml.com/daml/stdlib/DA-Stack.html#type-ghc-stack-types-hascallstack-63713
https://docs.daml.com/daml/stdlib/DA-Stack.html#type-ghc-stack-types-hascallstack-63713
https://docs.daml.com/daml/stdlib/DA-Stack.html#type-ghc-stack-types-hascallstack-63713
https://docs.daml.com/daml/stdlib/DA-Stack.html#type-ghc-stack-types-hascallstack-63713

Daml SDK Documentation, 2.7.3

Submit the commands with the actAs and readAs claims granted to the user on the given par-

ticipant. May throw UserNotFound.

1.43.5 Daml Trigger Library

The Daml Trigger library defines the API used to declare a Daml trigger. See Daml Triggers - Off-Ledger

Automation in Daml:: for more information on Daml triggers.

1.43.5.1 Daml.Trigger

Typeclasses

class ActionTriggerAny m where

Features possible in initialize, updateState, and rule.

queryContractId : Template a => ContractId a -> m (Optional a)

Find the contract with the given id in the ACS, if present.

getReadAs : m [Party]

getActAs : m Party

instance ActionTriggerAny (TriggerA s)

instance ActionTriggerAny TriggerInitializeA

instance ActionTriggerAny (TriggerUpdateA s)

class ActionTriggerAny m => ActionTriggerUpdate m where

Features possible in updateState and rule.

getCommandsInFlight : m (Map CommandId [Command])

Retrieve command submissionsmade by this trigger that have not yet completed. If

the trigger has restarted, it will not contain commands frombefore the restart; there-

fore, this should be treated as an optimization rather than an absolute authority on

ledger state.

instance ActionTriggerUpdate (TriggerA s)

instance ActionTriggerUpdate (TriggerUpdateA s)

Data Types

data Trigger s

This is the type of your trigger. s is the user-defined state type which you can often leave

at ().

Trigger

1.43. Daml Language References 1659

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-template-31804
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-map-90052

Daml SDK Documentation, 2.7.3

Field Type Description

initialize TriggerIni-

tializeA s

Initialize the user-defined state based on

the ACS.

updateState Message ->

TriggerUp-

dateA s ()

Update the user-defined state based on

a transaction or completion message.

It can manipulate the state with get,

put, and modify, or query the ACS with

query.

rule Party -> Trig-

gerA s ()

The rule defines the main logic of your

trigger. It can send commands to the

ledger using emitCommands to change

the ACS. The rule depends on the follow-

ing arguments: * The party your trigger

is running as. * The user-defined state.

and can retrieve other data with func-

tions in TriggerA: * The current state of

the ACS. * The current time (UTC in wall-

clockmode, Unix epoch in static mode) *

The commands in flight.

registeredTem-

plates

Regis-

teredTem-

plates

The templates the trigger will receive

events for.

heartbeat Optional

RelTime

Send a heartbeat message at the given

interval.

instance HasField "heartbeat" (Trigger s) (Optional RelTime)

instance HasField "initialize" (Trigger s) (TriggerInitializeA s)

instance HasField "registeredTemplates" (Trigger s) RegisteredTemplates

instance HasField "rule" (Trigger s) (Party -> TriggerA s ())

instance HasField "updateState" (Trigger s) (Message -> TriggerUpdateA s ())

data TriggerA s a

TriggerA is the type used in the rule of a Daml trigger. Its main feature is that you can

call emitCommands to send commands to the ledger.

instance ActionTriggerAny (TriggerA s)

instance ActionTriggerUpdate (TriggerA s)

instance Functor (TriggerA s)

instance ActionState s (TriggerA s)

instance HasTime (TriggerA s)

instance Action (TriggerA s)

instance Applicative (TriggerA s)

instance HasField "rule" (Trigger s) (Party -> TriggerA s ())

instance HasField "runTriggerA" (TriggerA s a) (ACS -> TriggerRule (TriggerAState s) a)

1660 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/DA-Time.html#type-da-time-types-reltime-23082
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/DA-Time.html#type-da-time-types-reltime-23082
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-base-functor-31205
https://docs.daml.com/daml/stdlib/DA-Action-State-Class.html#class-da-action-state-class-actionstate-80467
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-lf-hastime-96546
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-prelude-action-68790
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-prelude-applicative-9257
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839

Daml SDK Documentation, 2.7.3

data TriggerInitializeA a

TriggerInitializeA is the type used in the initialize of a Daml trigger. It can query, but

not emit commands or update the state.

instance ActionTriggerAny TriggerInitializeA

instance Functor TriggerInitializeA

instance Action TriggerInitializeA

instance Applicative TriggerInitializeA

instance HasField "initialize" (Trigger s) (TriggerInitializeA s)

instance HasField "runTriggerInitializeA" (TriggerInitializeA a) (TriggerInitState -> a)

data TriggerUpdateA s a

TriggerUpdateA is the type used in the updateState of a Daml trigger. It has similar

actions in common with TriggerA, but cannot use emitCommands or getTime.

instance ActionTriggerAny (TriggerUpdateA s)

instance ActionTriggerUpdate (TriggerUpdateA s)

instance Functor (TriggerUpdateA s)

instance ActionState s (TriggerUpdateA s)

instance Action (TriggerUpdateA s)

instance Applicative (TriggerUpdateA s)

instance HasField "runTriggerUpdateA" (TriggerUpdateA s a) (TriggerUpdateState -> State s

a)

instance HasField "updateState" (Trigger s) (Message -> TriggerUpdateA s ())

Functions

query : (Template a, ActionTriggerAny m) => m [(ContractId a, a)]

Extract the contracts of a given template from the ACS.

queryFilter : (Functor m, Template a, ActionTriggerAny m) => (a -> Bool) -> m [(ContractId a, a)]

Extract the contracts of a given template from the ACS and filter to those that match the pred-

icate.

queryContractKey : (Template a, HasKey a k, Eq k, ActionTriggerAny m, Functor m) => k -> m (Optional

(ContractId a, a))

Find the contract with the given key in the ACS, if present.

emitCommands : [Command] -> [AnyContractId] -> TriggerA s CommandId

Send a transaction consisting of the given commands to the ledger. The second argument can

be used tomark a list of contract ids as pending. These contracts will automatically be filtered

from getContracts until we either get the corresponding transaction event for this command

or a failing completion.

emitCommandsV2 : [Command] -> [AnyContractId] -> TriggerA s (Optional CommandId)

1.43. Daml Language References 1661

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-base-functor-31205
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-prelude-action-68790
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-prelude-applicative-9257
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-base-functor-31205
https://docs.daml.com/daml/stdlib/DA-Action-State-Class.html#class-da-action-state-class-actionstate-80467
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-prelude-action-68790
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-prelude-applicative-9257
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Action-State.html#type-da-action-state-type-state-76783
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-template-31804
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-base-functor-31205
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-template-31804
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-bool-66265
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-template-31804
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-haskey-87616
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-base-functor-31205
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153

Daml SDK Documentation, 2.7.3

dedupCreate : (Eq t, Template t) => t -> TriggerA s ()

Create the template if it’s not already in the list of commands in flight (it will still be created if

it is in the ACS).

Note that this will send the create as a single-command transaction. If you need to send mul-

tiple commands in one transaction, use emitCommands with createCmd and handle filtering

yourself.

dedupCreateAndExercise : (Eq t, Eq c, Template t, Choice t c r) => t -> c -> TriggerA s ()

Create the template and exercise a choice on it if it’s not already in the list of commands in

flight (it will still be created if it is in the ACS).

Note that this will send the create and exercise as a single-command transaction. If you need

to send multiple commands in one transaction, use emitCommands with createAndExer­

ciseCmd and handle filtering yourself.

dedupExercise : (Eq c, Choice t c r) => ContractId t -> c -> TriggerA s ()

Exercise the choice on the given contract if it is not already in flight.

Note that this will send the exercise as a single-command transaction. If you need to send

multiple commands in one transaction, use emitCommands with exerciseCmd and handle

filtering yourself.

If you are calling a consuming choice, you might be better off by using emitCommands and

adding the contract id to the pending set.

dedupExerciseByKey : (Eq c, Eq k, Choice t c r, TemplateKey t k) => k -> c -> TriggerA s ()

Exercise the choice on the given contract if it is not already in flight.

Note that this will send the exercise as a single-command transaction. If you need to send

multiple commands in one transaction, use emitCommands with exerciseCmd and handle

filtering yourself.

runTrigger : Trigger s -> BatchTrigger (TriggerState s)

Transformthehigh-level trigger type into thebatching trigger fromDaml.Trigger.LowLevel.

1.43.5.2 Daml.Trigger.Assert

Data Types

data ACSBuilder

Used to construct an ‘ACS’ for ‘testRule’.

instanceMonoid ACSBuilder

instance Semigroup ACSBuilder

Functions

toACS : (Template t, HasAgreement t) => ContractId t -> ACSBuilder

Include the given contract in the ‘ACS’. Note that the ContractIdmust point to an active con-

tract.

testRule : Trigger s -> Party -> [Party] -> ACSBuilder -> Map CommandId [Command] -> s -> Script (s, [Com-

mands])

Execute a trigger’s rule once in a scenario.

1662 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-template-31804
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-template-31804
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-choice-82157
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-choice-82157
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-choice-82157
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-templatekey-95200
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-prelude-monoid-6742
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-prelude-semigroup-78998
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-template-31804
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasagreement-49535
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-map-90052

Daml SDK Documentation, 2.7.3

flattenCommands : [Commands] -> [Command]

Drop ‘CommandId’s and extract all ‘Command’s.

assertCreateCmd : (Template t, HasAgreement t, CanAbort m) => [Command] -> (t -> Either Text ()) -> m

()

Check that at least one command is a create command whose payload fulfills the given asser-

tions.

assertExerciseCmd : (Template t, HasAgreement t, Choice t c r, CanAbort m) => [Command] -> ((Con-

tractId t, c) -> Either Text ()) -> m ()

Check that at least one command is an exercise command whose contract id and choice argu-

ment fulfill the given assertions.

assertExerciseByKeyCmd : (TemplateKey t k, Choice t c r, CanAbort m) => [Command] -> ((k, c) -> Either

Text ()) -> m ()

Check that at least one command is an exercise by key command whose key and choice argu-

ment fulfill the given assertions.

1.43.5.3 Daml.Trigger.LowLevel

Typeclasses

class HasTime m => ActionTrigger m where

Low-level trigger actions.

liftTF : TriggerF a -> m a

instance ActionTrigger (TriggerRule s)

instance ActionTrigger TriggerSetup

Data Types

data ActiveContracts

ActiveContracts

Field Type Description

activeContracts [Created]

instance HasField "acs" TriggerSetupArguments ActiveContracts

instance HasField "activeContracts" ActiveContracts [Created]

instance HasField "initialState" (Trigger s) (Party -> [Party] -> ActiveContracts -> TriggerSetup

s)

data AnyContractId

This type represents the contract id of an unknown template. You can use fromAnyCon­

tractId to check which template it corresponds to.

instance Eq AnyContractId

1.43. Daml Language References 1663

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-template-31804
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasagreement-49535
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-lf-canabort-29060
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-types-either-56020
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-template-31804
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-template-functions-hasagreement-49535
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-choice-82157
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-lf-canabort-29060
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-types-either-56020
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-templatekey-95200
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-choice-82157
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-lf-canabort-29060
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-types-either-56020
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-lf-hastime-96546
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713

Daml SDK Documentation, 2.7.3

instance Ord AnyContractId

instance Show AnyContractId

instance HasField "activeContracts" ACS (Map TemplateTypeRep (Map AnyContractId

AnyTemplate))

instance HasField "contractId" AnyContractId (ContractId ())

instance HasField "contractId" Archived AnyContractId

instance HasField "contractId" Command AnyContractId

instance HasField "contractId" Created AnyContractId

instance HasField "pendingContracts" ACS (Map CommandId [AnyContractId])

instance HasField "pendingContracts" (TriggerAState s) (Map CommandId [AnyContractId])

instance HasField "templateId" AnyContractId TemplateTypeRep

data Archived

The data in an Archived event.

Archived

Field Type Description

eventId EventId

contractId AnyContrac-

tId

instance Eq Archived

instance Show Archived

instance HasField "contractId" Archived AnyContractId

instance HasField "eventId" Archived EventId

data BatchTrigger s

Batching trigger is (approximately) a left-fold over Message with an accumulator of type

s.

BatchTrigger

1664 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-ord-6395
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-map-90052
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-any-templatetyperep-33792
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-map-90052
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-any-anytemplate-63703
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-map-90052
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-map-90052
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-any-templatetyperep-33792
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839

Daml SDK Documentation, 2.7.3

Field Type Description

initialState TriggerSetu-

pArguments

-> Trigger-

Setup s

update [Message] ->

TriggerRule s

()

registeredTem-

plates

Regis-

teredTem-

plates

heartbeat Optional

RelTime

instance HasField "heartbeat" (BatchTrigger s) (Optional RelTime)

instance HasField "initialState" (BatchTrigger s) (TriggerSetupArguments -> TriggerSetup s)

instance HasField "registeredTemplates" (BatchTrigger s) RegisteredTemplates

instance HasField "update" (BatchTrigger s) ([Message] -> TriggerRule s ())

data Command

A ledger API command. To construct a command use createCmd and exerciseCmd.

CreateCommand

Field Type Description

templateArg AnyTem-

plate

ExerciseCommand

Field Type Description

contractId AnyContrac-

tId

choiceArg AnyChoice

CreateAndExerciseCommand

Field Type Description

templateArg AnyTem-

plate

choiceArg AnyChoice

ExerciseByKeyCommand

1.43. Daml Language References 1665

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/DA-Time.html#type-da-time-types-reltime-23082
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/DA-Time.html#type-da-time-types-reltime-23082
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-any-anytemplate-63703
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-any-anytemplate-63703
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-any-anychoice-86490
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-any-anytemplate-63703
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-any-anytemplate-63703
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-any-anychoice-86490

Daml SDK Documentation, 2.7.3

Field Type Description

tplTypeRep Template-

TypeRep

contractKey AnyCon-

tractKey

choiceArg AnyChoice

instance HasField "choiceArg" Command AnyChoice

instance HasField "commands" Commands [Command]

instance HasField "commandsInFlight" (TriggerAState s) (Map CommandId [Command])

instance HasField "commandsInFlight" (TriggerState s) (Map CommandId [Command])

instance HasField "commandsInFlight" TriggerUpdateState (Map CommandId [Command])

instance HasField "contractId" Command AnyContractId

instance HasField "contractKey" Command AnyContractKey

instance HasField "templateArg" Command AnyTemplate

instance HasField "tplTypeRep" Command TemplateTypeRep

data CommandId

CommandId Text

instance Eq CommandId

instance Ord CommandId

instance Show CommandId

instance HasField "commandId" Commands CommandId

instance HasField "commandId" Completion CommandId

instance HasField "commandId" Transaction (Optional CommandId)

instance HasField "commandsInFlight" (TriggerAState s) (Map CommandId [Command])

instance HasField "commandsInFlight" (TriggerState s) (Map CommandId [Command])

instance HasField "commandsInFlight" TriggerUpdateState (Map CommandId [Command])

instance HasField "pendingContracts" ACS (Map CommandId [AnyContractId])

instance HasField "pendingContracts" (TriggerAState s) (Map CommandId [AnyContractId])

data Commands

A set of commands that are submitted as a single transaction.

Commands

Field Type Description

commandId CommandId

commands [Command]

1666 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-any-templatetyperep-33792
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-any-templatetyperep-33792
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-any-anycontractkey-68193
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-any-anycontractkey-68193
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-any-anychoice-86490
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-any-anychoice-86490
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-map-90052
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-map-90052
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-map-90052
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-any-anycontractkey-68193
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-any-anytemplate-63703
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-any-templatetyperep-33792
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-ord-6395
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-map-90052
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-map-90052
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-map-90052
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-map-90052
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-map-90052

Daml SDK Documentation, 2.7.3

instance HasField "commandId" Commands CommandId

instance HasField "commands" Commands [Command]

data Completion

A completion message. Note that you will only get completions for commands emitted

from the trigger. Contrary to the ledger API completion stream, this also includes syn-

chronous failures.

Completion

Field Type Description

commandId CommandId

status Completion-

Status

instance Show Completion

instance HasField "commandId" Completion CommandId

instance HasField "status" Completion CompletionStatus

data CompletionStatus

Failed

Field Type Description

status Int

message Text

Succeeded

Field Type Description

transactionId Transac-

tionId

instance Show CompletionStatus

instance HasField "message" CompletionStatus Text

instance HasField "status" Completion CompletionStatus

instance HasField "status" CompletionStatus Int

instance HasField "transactionId" CompletionStatus TransactionId

data Created

The data in a Created event.

Created

1.43. Daml Language References 1667

https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-int-37261
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-int-37261
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839

Daml SDK Documentation, 2.7.3

Field Type Description

eventId EventId

contractId AnyContrac-

tId

argument Optional

AnyTem-

plate

views [Interface-

View]

instance HasField "activeContracts" ActiveContracts [Created]

instance HasField "argument" Created (Optional AnyTemplate)

instance HasField "contractId" Created AnyContractId

instance HasField "eventId" Created EventId

instance HasField "views" Created [InterfaceView]

data Event

An event in a transaction. This definition should be kept consistent with the

object EventVariant defined in triggers/runner/src/main/scala/com/digitalas-

set/daml/lf/engine/trigger/Converter.scala

CreatedEvent Created

ArchivedEvent Archived

instance HasField "events" Transaction [Event]

data EventId

EventId Text

instance Eq EventId

instance Show EventId

instance HasField "eventId" Archived EventId

instance HasField "eventId" Created EventId

data Message

Either a transaction or a completion. This definition should be kept consistent with

the object MessageVariant defined in triggers/runner/src/main/scala/com/digitalas-

set/daml/lf/engine/trigger/Converter.scala

MTransaction Transaction

MCompletion Completion

MHeartbeat

instance HasField "update" (BatchTrigger s) ([Message] -> TriggerRule s ())

instance HasField "update" (Trigger s) (Message -> TriggerRule s ())

instance HasField "updateState" (Trigger s) (Message -> TriggerUpdateA s ())

1668 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-any-anytemplate-63703
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-any-anytemplate-63703
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-any-anytemplate-63703
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839

Daml SDK Documentation, 2.7.3

data RegisteredTemplates

AllInDar

Listen to events for all templates in the given DAR.

RegisteredTemplates [RegisteredTemplate]

instance HasField "registeredTemplates" (BatchTrigger s) RegisteredTemplates

instance HasField "registeredTemplates" (Trigger s) RegisteredTemplates

instance HasField "registeredTemplates" (Trigger s) RegisteredTemplates

data Transaction

Transaction

Field Type Description

transactionId Transac-

tionId

commandId Optional

CommandId

events [Event]

instance HasField "commandId" Transaction (Optional CommandId)

instance HasField "events" Transaction [Event]

instance HasField "transactionId" Transaction TransactionId

data TransactionId

TransactionId Text

instance Eq TransactionId

instance Show TransactionId

instance HasField "transactionId" CompletionStatus TransactionId

instance HasField "transactionId" Transaction TransactionId

data Trigger s

Trigger

1.43. Daml Language References 1669

https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-text-51952
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-classes-eq-22713
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-show-show-65360
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839

Daml SDK Documentation, 2.7.3

Field Type Description

initialState Party ->

[Party] ->

ActiveCon-

tracts ->

TriggerSetup

s

update Message ->

TriggerRule s

()

registeredTem-

plates

Regis-

teredTem-

plates

heartbeat Optional

RelTime

instance HasField "heartbeat" (Trigger s) (Optional RelTime)

instance HasField "initialState" (Trigger s) (Party -> [Party] -> ActiveContracts -> TriggerSetup

s)

instance HasField "registeredTemplates" (Trigger s) RegisteredTemplates

instance HasField "update" (Trigger s) (Message -> TriggerRule s ())

data TriggerConfig

TriggerConfig

Field Type Description

maxInFlightCom-

mands

Int maximum number of commands that

should be allowed to be in-flight at any

point in time. Exceeding this value will

eventually lead to the trigger run rais-

ing an InFlightCommandOverflowExcep-

tion exception.

maxActiveCon-

tracts

Int maximum number of active contracts

that we will allow to be stored Exceeding

this value will lead to the trigger runner

raising an ACSOverflowException excep-

tion.

instance HasField "config" (TriggerAState s) TriggerConfig

instance HasField "config" (TriggerState s) TriggerConfig

instance HasField "config" TriggerSetupArguments TriggerConfig

instance HasField "maxActiveContracts" TriggerConfig Int

instance HasField "maxInFlightCommands" TriggerConfig Int

data TriggerRule s a

1670 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/DA-Time.html#type-da-time-types-reltime-23082
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/DA-Time.html#type-da-time-types-reltime-23082
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-int-37261
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-int-37261
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-int-37261
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-ghc-types-int-37261

Daml SDK Documentation, 2.7.3

TriggerRule

Field Type Description

runTriggerRule StateT s

(Free Trig-

gerF) a

instance ActionTrigger (TriggerRule s)

instance Functor (TriggerRule s)

instance ActionState s (TriggerRule s)

instance HasTime (TriggerRule s)

instance Action (TriggerRule s)

instance Applicative (TriggerRule s)

instance HasField "runTriggerA" (TriggerA s a) (ACS -> TriggerRule (TriggerAState s) a)

instance HasField "runTriggerRule" (TriggerRule s a) (StateT s (Free TriggerF) a)

instance HasField "update" (BatchTrigger s) ([Message] -> TriggerRule s ())

instance HasField "update" (Trigger s) (Message -> TriggerRule s ())

data TriggerSetup a

TriggerSetup

Field Type Description

runTriggerSetup Free Trig-

gerF a

instance ActionTrigger TriggerSetup

instance Functor TriggerSetup

instance HasTime TriggerSetup

instance Action TriggerSetup

instance Applicative TriggerSetup

instance HasField "initialState" (BatchTrigger s) (TriggerSetupArguments -> TriggerSetup s)

instance HasField "initialState" (Trigger s) (Party -> [Party] -> ActiveContracts -> TriggerSetup

s)

instance HasField "runTriggerSetup" (TriggerSetup a) (Free TriggerF a)

data TriggerSetupArguments

TriggerSetupArguments

1.43. Daml Language References 1671

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-base-functor-31205
https://docs.daml.com/daml/stdlib/DA-Action-State-Class.html#class-da-action-state-class-actionstate-80467
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-lf-hastime-96546
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-prelude-action-68790
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-prelude-applicative-9257
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-base-functor-31205
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-lf-hastime-96546
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-prelude-action-68790
https://docs.daml.com/daml/stdlib/Prelude.html#class-da-internal-prelude-applicative-9257
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839

Daml SDK Documentation, 2.7.3

Field Type Description

actAs Party

readAs [Party]

acs ActiveCon-

tracts

config TriggerCon-

fig

instance HasField "acs" TriggerSetupArguments ActiveContracts

instance HasField "actAs" TriggerSetupArguments Party

instance HasField "config" TriggerSetupArguments TriggerConfig

instance HasField "initialState" (BatchTrigger s) (TriggerSetupArguments -> TriggerSetup s)

instance HasField "readAs" TriggerSetupArguments [Party]

Functions

toAnyContractId : Template t => ContractId t -> AnyContractId

Wrap a ContractId t in AnyContractId.

fromAnyContractId : Template t => AnyContractId -> Optional (ContractId t)

Check if a AnyContractId corresponds to the given template or return None otherwise.

fromCreated : Template t => Created -> Optional (EventId, ContractId t, t)

Check if a Created event corresponds to the given template.

fromArchived : Template t => Archived -> Optional (EventId, ContractId t)

Check if an Archived event corresponds to the given template.

registeredTemplate : Template t => RegisteredTemplate

createCmd : Template t => t -> Command

Create a contract of the given template.

exerciseCmd : Choice t c r => ContractId t -> c -> Command

Exercise the given choice.

createAndExerciseCmd : (Template t, Choice t c r) => t -> c -> Command

Create a contract of the given template and immediately exercise the given choice on it.

exerciseByKeyCmd : (Choice t c r, TemplateKey t k) => k -> c -> Command

fromCreate : Template t => Command -> Optional t

Check if the command corresponds to a create command for the given template.

fromCreateAndExercise : (Template t, Choice t c r) => Command -> Optional (t, c)

Check if the command corresponds to a create and exercise command for the given template.

fromExercise : Choice t c r => Command -> Optional (ContractId t, c)

Check if the command corresponds to an exercise command for the given template.

fromExerciseByKey : (Choice t c r, TemplateKey t k) => Command -> Optional (k, c)

Check if the command corresponds to an exercise by key command for the given template.

1672 Chapter 1. Canton References

https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/DA-Record.html#class-da-internal-record-hasfield-52839
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-party-57932
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-template-31804
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-template-31804
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-template-31804
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-template-31804
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-template-31804
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-template-31804
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-choice-82157
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-template-31804
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-choice-82157
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-choice-82157
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-templatekey-95200
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-template-31804
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-template-31804
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-choice-82157
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-choice-82157
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-contractid-95282
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-choice-82157
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-template-functions-templatekey-95200
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-prelude-optional-37153

Daml SDK Documentation, 2.7.3

execStateT : Functor m => StateT s m a -> s -> m s

zoom : Functor m => (t -> s) -> (t -> s -> t) -> StateT s m a -> StateT t m a

simulateRule : TriggerRule s a -> Time -> s -> (s, [Commands], a)

Run a rule without running it. May lose information from the rule; meant for testing purposes

only.

submitCommands : ActionTrigger m => [Command] -> m CommandId

1.44 Daml Ledger References

1.44.1 Daml Ledger Model

Daml Ledgers enable multi-party workflows by providing parties with a virtual shared ledger, which

encodes the current state of their shared contracts, written in Daml. At a high level, the interactions

are visualized as follows:

The Daml ledger model defines:

1. what the ledger looks like - the structure of Daml ledgers

2. who can request which changes - the integrity model for Daml ledgers

3. who sees which changes and data - the privacy model for Daml ledgers

The below sections review these concepts of the ledger model in turn. They also briefly describe the

link between Daml and the model.

1.44. Daml Ledger References 1673

https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-base-functor-31205
https://docs.daml.com/daml/stdlib/Prelude.html#class-ghc-base-functor-31205
https://docs.daml.com/daml/stdlib/Prelude.html#type-da-internal-lf-time-63886

Daml SDK Documentation, 2.7.3

1.44.1.1 Structure

This section looks at the structure of a Daml ledger and the associated ledger changes. The basic

building blocks of changes are actions, which get grouped into transactions.

Actions and Transactions

One of the main features of the Daml ledger model is a hierarchical action structure.

This structure is illustrated below on a toy example of a multi-party interaction. Alice (A) gets some

digital cash, in the formof an I-Owe-You (IOU for short) fromabank, and she needs her house painted.

She gets an offer from a painter (P) with reference number P123 to paint her house in exchange for

this IOU. Lastly, A accepts the offer, transferring themoney and signing a contract with P, whereby he

is promising to paint her house.

This acceptance can be viewed as A exercising her right to accept the offer. Her acceptance has two

consequences. First, A transfers her IOU, that is, exercises her right to transfer the IOU, after which a

new IOU for P is created. Second, a new contract is created that requires P to paint A’s house.

Thus, the acceptance in this example is reduced to two types of actions: (1) creating contracts, and

(2) exercising rights on them. These are also the twomain kinds of actions in the Daml ledgermodel.

The visual notation below records the relations between the actions during the above acceptance.

Formally, an action is one of the following:

1. a Create action on a contract, which records the creation of the contract

2. an Exercise action on a contract, which records that one ormore parties have exercised a right

they have on the contract, and which also contains:

1. An associated set of parties called actors. These are the parties who perform the action.

2. An exercise kind, which is either consuming or non-consuming. Once consumed, a con-

tract cannot be used again (for example, Alice should not be able to accept the painter’s

offer twice). Contracts exercised in a non-consuming fashion can be reused.

3. A list of consequences, which are themselves actions. Note that the consequences, as

well as the kind and the actors, are considered a part of the exercise action itself. This

nesting of actions within other actions through consequences of exercises gives rise to

the hierarchical structure. The exercise action is the parent action of its consequences.

3. a Fetch action on a contract, which demonstrates that the contract exists and is active at the

time of fetching. The action also contains actors, the parties who fetch the contract. A Fetch

behaves like a non-consuming exercise with no consequences, and can be repeated.

4. a Key assertion, which records the assertion that the given contract key is not assigned to any

unconsumed contract on the ledger.

1674 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

An Exercise or a Fetch action on a contract is said to use the contract. Moreover, a consuming Ex-

ercise is said to consume (or archive) its contract.

The following EBNF-like grammar summarizes the structure of actions and transactions. Here, “s |

t” represents the choice between s and t, “s t” represents s followed by t, and “s*” represents the

repetition of s zero or more times. The terminal ‘contract’ denotes the underlying type of contracts,

and the terminal ‘party’ the underlying type of parties.

Action ::= 'Create' contract

| 'Exercise' party* contract Kind Transaction

| 'Fetch' party* contract

| 'NoSuchKey' key

Transaction ::= Action*

Kind ::= 'Consuming' | 'NonConsuming'

The visual notation presented earlier captures actions precisely with conventions that:

1. Exercise denotes consuming, ExerciseN non-consuming exercises, and Fetch a fetch.

2. double arrows connect exercises to their consequences, if any.

3. the consequences are ordered left-to-right.

4. to aid intuitions, exercise actions are annotated with suggestive names like “accept” or

“transfer”. Intuitively, these correspond to names of Daml choices, but they have no semantic

meaning.

An alternative shorthand notation, shown below uses the abbreviations Exe and ExeN for exercises,

and omits the Create labels on create actions.

To show an example of a non-consuming exercise, consider a different offer example with an easily

replenishable subject. For example, if P was a car manufacturer, and A a car dealer, P could make an

offer that could be accepted multiple times.

1.44. Daml Ledger References 1675

Daml SDK Documentation, 2.7.3

To see an example of a fetch, we can extend this example to the case where P produces exclusive cars

and allows only certified dealers to sell them. Thus, when accepting the offer, A has to additionally

show a valid quality certificate issued by some standards body S.

In the paint offer example, the underlying type of contracts consists of three sorts of contracts:

PaintOffer houseOwner painter obligor refNo Intuitively an offer (with a reference number) by

which the painter proposes to the house owner to paint her house, in exchange for a single

IOU token issued by the specified obligor.

PaintAgree painter houseOwner refNo Intuitively a contract whereby the painter agrees to paint

the owner’s house

Iou obligor owner An IOU token from an obligor to an owner (for simplicity, the token is of unit

amount).

In practice, multiple IOU contracts can exist between the same obligor and owner, in which case each

contract should have a unique identifier. However, in this section, each contract only appears once,

allowing us to drop the notion of identifiers for simplicity reasons.

A transaction is a list of actions. Thus, the consequences of an exercise form a transaction. In

the example, the consequences of Alice’s exercise form the following transaction, where actions are

again ordered left-to-right.

1676 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

For an action act, its proper subactions are all actions in the consequences of act, together with all

of their proper subactions. Additionally, act is a (non-proper) subaction of itself.

The subaction relation is visualized below. Both the green and yellow boxes are proper subactions of

Alice’s exercise on the paint offer. Additionally, the creation of Iou Bank P (yellow box) is also a proper

subaction of the exercise on the Iou Bank A.

Similarly, a subtransaction of a transaction is either the transaction itself, or a proper subtransac-

tion: a transaction obtained by removing at least one action, or replacing it by a subtransaction of

its consequences. For example, given the transaction consisting of just one action, the paint offer

acceptance, the image below shows all its proper non-empty subtransactions on the right (yellow

boxes).

To illustrate contract keys, suppose that the contract key for a PaintOffer consists of the reference

number and the painter. So Alice can refer to the PaintOffer by its key (P, P123). To make this explicit,

we use the notation PaintOffer @P A&P123 for contracts, where@ and&mark the parts that belong to

a key. (The difference between @ and & will be explained in the integrity section.) The ledger integrity

1.44. Daml Ledger References 1677

Daml SDK Documentation, 2.7.3

constraints in the next section ensure that there is always at most one active PaintOffer for a given

key. So if the painter retracts its PaintOffer and later Alice tries to accept it, she can then record the

absence with a NoSuchKey (P, P123) key assertion.

Ledgers

The transaction structure records the contents of the changes, but not who requested them. This in-

formation is added by the notion of a commit: a transaction paired with the parties that requested

it, called the requesters of the commit. A commit may have one or more requesters. Given a commit

(p, tx) with transaction tx = act1, …, actn, every acti is called a top-level action of the commit. A ledger

is a sequence of commits. A top-level action of any ledger commit is also a top-level action of the

ledger.

The following EBNF grammar summarizes the structure of commits and ledgers:

Commit ::= party+ Transaction

Ledger ::= Commit*

A Daml ledger thus represents the full history of all actions taken by parties.1 Since the ledger is a se-

quence (of dependent actions), it induces an order on the commits in the ledger. Visually, a ledger can

be represented as a sequence growing from left to right as time progresses. Below, dashed vertical

lines mark the boundaries of commits, and each commit is annotated with its requester(s). Arrows

link the create and exercise actions on the same contracts. These additional arrows highlight that

the ledger forms a transaction graph. For example, the aforementioned house painting scenario is

visually represented as follows.

The definitions presented here are all the ingredients required to record the interaction between par-

ties in a Daml ledger. That is, they address the first question: “what do changes and ledgers look

like?”. To answer the next question, “who can request which changes”, a precise definition is needed

of which ledgers are permissible, and which are not. For example, the above paint offer ledger is in-

tuitively permissible, while all of the following ledgers are not.

The next section discusses the criteria that rule out the above examples as invalid ledgers.

1 Calling such a complete record “ledger” is standard in the distributed ledger technology community. In accounting

terminology, this record is closer to a journal than to a ledger.

1678 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Fig. 19: Alice spending her IOU twice (“double spend”), once transferring it to B and once to P.

Fig. 20: Alice changing the offer’s outcome by removing the transfer of the Iou.

Fig. 21: An obligation imposed on the painter without his consent.

1.44. Daml Ledger References 1679

Daml SDK Documentation, 2.7.3

Fig. 22: Painter stealing Alice’s IOU. Note that the ledger would be intuitively permissible if it was

Alice performing the last commit.

Fig. 23: Painter falsely claiming that there is no offer.

Fig. 24: Painter trying to create two different paint offers with the same reference number.

1680 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.44.1.2 Integrity

This section addresses the question of who can request which changes.

Valid Ledgers

At the core is the concept of a valid ledger; changes are permissible if adding the corresponding com-

mit to the ledger results in a valid ledger. Valid ledgers are those that fulfill three conditions:

Consistency Exercises and fetches on inactive contracts are not allowed, i.e. contracts that have not

yet been created or have already been consumed by an exercise. A contract with a contract key

can be created only if the key is not associated to another unconsumed contract, and all key

assertions hold.

Conformance Only a restricted set of actions is allowed on a given contract.

Authorization The parties who may request a particular change are restricted.

Only the last of these conditions depends on the party (or parties) requesting the change; the other

two are general.

Consistency

Consistency consists of two parts:

1. Contract consistency: Contracts must be created before they are used, and they cannot be used

once they are consumed.

2. Key consistency: Keys are unique and key assertions are satisfied.

To define this precisely, notions of “before” and “after” are needed. These are given by putting all

actions in a sequence. Technically, the sequence is obtained by a pre-order traversal of the ledger’s

actions, noting that these actions form an (ordered) forest. Intuitively, it is obtained by always pick-

ing parent actions before their proper subactions, and otherwise always picking the actions on the

left before the actions on the right. The image below depicts the resulting order on the paint offer

example:

In the image, an action act happens before action act’ if there is a (non-empty) path from act to act’.

Then, act’ happens after act.

1.44. Daml Ledger References 1681

Daml SDK Documentation, 2.7.3

Contract Consistency

Contract consistency ensures that contracts are used after they have been created and before they

are consumed.

Definition »contract consistency« A ledger is consistent for a contract c if all of the following

holds for all actions act on c:

1. either act is itself Create c or a Create c happens before act

2. act does not happen before any Create c action

3. act does not happen after any Exercise action consuming c.

The consistency condition rules out the double spend example. As the red path below indicates, the

second exercise in the example happens after a consuming exercise on the same contract, violating

the contract consistency criteria.

In addition to the consistency notions, the before-after relation on actions can also be used to define

the notion of contract state at any point in a given transaction. The contract state is changed by

creating the contract and by exercising it consumingly. At any point in a transaction, we can then

define the latest state change in the obvious way. Then, given a point in a transaction, the contract

state of c is:

1. active, if the latest state change of c was a create;

2. archived, if the latest state change of c was a consuming exercise;

3. inexistent, if c never changed state.

A ledger is consistent for c exactly ifExerciseand Fetchactions on chappenonlywhen c is active, and

Create actions only when c is inexistent. The figures below visualize the state of different contracts

at all points in the example ledger.

The notion of order can be defined on all the different ledger structures: actions, transactions, lists of

transactions, and ledgers. Thus, the notions of consistency, inputs and outputs, and contract state

can also all be defined on all these structures. The active contract set of a ledger is the set of all

contracts that are active on the ledger. For the example above, it consists of contracts Iou Bank P and

PaintAgree P A.

1682 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Fig. 25: Activeness of the PaintOffer contract

Fig. 26: Activeness of the Iou Bank A contract

1.44. Daml Ledger References 1683

Daml SDK Documentation, 2.7.3

Key Consistency

Contract keys introduce a key uniqueness constraint for the ledger. To capture this notion, the con-

tract model must specify for every contract in the system whether the contract has a key and, if so,

the key. Every contract can have at most one key.

Like contracts, every key has a state. An action act is an action on a key k if

• act is a Create, Exercise, or a Fetch action on a contract c with key k, or

• act is the key assertion NoSuchKey k.

Definition »key state« The key state of a key on a ledger is determined by the last action act on the

key:

• If act is a Create, non-consuming Exercise, or Fetch action on a contract c, then the key

state is assigned to c.

• If act is a consuming Exercise action or a NoSuchKey assertion, then the key state is free.

• If there is no such action act, then the key state is unknown.

A key is unassigned if its key state is either free or unknown.

Key consistency ensures that there is at most one active contract for each key and that all key as-

sertions are satisfied.

Definition »key consistency« A ledger is consistent for a key k if for every action act on k, the key

state s before act satisfies

• If act is a Create action or NoSuchKey assertion, then s is free or unknown.

• If act is an Exercise or Fetch action on some contract c, then s is assigned to c orunknown.

Key consistency rules out the problematic examples around key consistency. For example, suppose

that the painter P hasmade a paint offer to A with reference number P123, but A has not yet accepted

it. When P tries to create another paint offer to David with the same reference number P123, then this

creation action would violate key uniqueness. The following ledger violates key uniqueness for the

key (P, P123).

Key assertions can be used in workflows to evidence the inexistence of a certain kind of contract. For

example, suppose that the painter P is a member of the union of painters U. This union maintains

a blacklist of potential customers that its members must not do business with. A customer A is

considered to be on the blacklist if there is an active contract Blacklist @U&A. To make sure that the

painter P does not make a paint offer if A is blacklisted, the painter combines its commit with a No-

SuchKey assertion on the key (U, A). The following ledger shows the transaction, where UnionMember

U P represents P’s membership in the union U. It grants P the choice to perform such an assertion,

which is needed for authorization.

Key consistency extends to actions, transactions and lists of transactions just like the other consis-

tency notions.

1684 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Ledger Consistency

Definition »ledger consistency« A ledger is consistent if it is consistent for all contracts and for

all keys.

Internal Consistency

The above consistency requirement is too strong for actions and transactions in isolation. For exam-

ple, the acceptance transaction from the paint offer example is not consistent as a ledger, because

PaintOffer A P Bank and the Iou Bank A contracts are used without being created before:

However, the transaction can still be appended to a ledger that creates these contracts and yields

a consistent ledger. Such transactions are said to be internally consistent, and contracts such as

the PaintOffer A P Bank P123 and Iou Bank A are called input contracts of the transaction. Dually, output

contracts of a transaction are the contracts that a transaction creates and does not archive.

Definition »internal consistency for a contract« A transaction is internally consistent for a con-

tract c if the following holds for all of its subactions act on the contract c

1. act does not happen before any Create c action

2. act does not happen after any exercise consuming c.

A transaction is internally consistent if it is internally consistent for all contracts and consis-

tent for all keys.

Definition »input contract« For an internally consistent transaction, a contract c is an input con-

tract of the transaction if the transaction contains an Exercise or a Fetch action on c but not

a Create c action.

1.44. Daml Ledger References 1685

Daml SDK Documentation, 2.7.3

Definition »output contract« For an internally consistent transaction, a contract c is an output

contract of the transaction if the transaction contains a Create c action, but not a consuming

Exercise action on c.

Note that the input and output contracts are undefined for transactions that are not internally con-

sistent. The image below shows some examples of internally consistent and inconsistent transac-

tions.

Fig. 27: The first two transactions violate the conditions of internal consistency. The first transaction

creates the Iou after exercising it consumingly, violating both conditions. The second transaction

contains a (non-consuming) exercise on the Iou after a consuming one, violating the second condi-

tion. The last transaction is internally consistent.

Similar to input contracts, we define the input keys as the set that must be unassigned at the be-

ginning of a transaction.

Definition »input key« A key k is an input key to an internally consistent transaction if the first

action act on k is either a Create action or a NoSuchKey assertion.

In the blacklisting example, P‘s transaction has two input keys: (U, A) due to theNoSuchKey action and

(P, P123) as it creates a PaintOffer contract.

1686 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Conformance

The conformance condition constrains the actions that may occur on the ledger. This is done by con-

sidering a contract model M (or amodel for short), which specifies the set of all possible actions. A

ledger is conformant to M (or conforms to M) if all top-level actions on the ledger are members of

M. Like consistency, the notion of conformance does not depend on the requesters of a commit, so it

can also be applied to transactions and lists of transactions.

For example, the set of allowed actions on IOU contracts could be described as follows.

The boxes in the image are templates in the sense that the contract parameters in a box (such as

obligor or owner) can be instantiated by arbitrary values of the appropriate type. To facilitate un-

derstanding, each box includes a label describing the intuitive purpose of the corresponding set of

actions. As the image suggests, the transfer box imposes the constraint that the bankmust remain

the same both in the exercised IOU contract, and in the newly created IOU contract. However, the

owner can change arbitrarily. In contrast, in the settle actions, both the bank and the owner must

remain the same. Furthermore, to be conformant, the actor of a transfer actionmust be the same as

the owner of the contract.

Of course, the constraints on the relationship between the parameters can be arbitrarily complex,

and cannot conveniently be reproduced in this graphical representation. This is the role of Daml – it

provides a much more convenient way of representing contract models. The link between Daml and

contract models is explained in more detail in a later section.

To see the conformance criterion in action, assume that the contractmodel allows only the following

actions on PaintOffer and PaintAgree contracts.

1.44. Daml Ledger References 1687

Daml SDK Documentation, 2.7.3

The problem with the example where Alice changes the offer’s outcome to avoid transferring the

money now becomes apparent.

A’s commit is not conformant to the contract model, as the model does not contain the top-level

action she is trying to commit.

1688 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Authorization

The last criterion rules out the last two problematic examples, an obligation imposed on a painter, and

the painter stealing Alice’s money. The first of those is visualized below.

The reason why the example is intuitively impermissible is that the PaintAgree contract is supposed

to express that the painter has an obligation to paint Alice’s house, but he never agreed to that obli-

gation. On paper contracts, obligations are expressed in the body of the contract, and imposed on

the contract’s signatories.

Signatories, Agreements, and Maintainers

To capture these elements of real-world contracts, the contract model additionally specifies, for

each contract in the system:

1. A non-empty set of signatories, the parties bound by the contract.

2. An optional agreement text associated with the contract, specifying the off-ledger, real-world

obligations of the signatories.

3. If the contract is associated with a key, a non-empty set ofmaintainers, the parties that make

sure that at most one unconsumed contract exists for the key. The maintainers must be a

subset of the signatories and depend only on the key. This dependence is captured by the

function maintainers that takes a key and returns the key’s maintainers.

In the example, the contract model specifies that

1. an Iou obligor owner contract has only the obligor as a signatory, and no agreement text.

2. aMustPay obligor owner contract has both the obligor and the owner as signatories, with an agree-

ment text requiring the obligor to pay the owner a certain amount, off the ledger.

3. a PaintOffer houseOwner painter obligor refNo contract has only the painter as the signatory, with

no agreement text. Its associated key consists of the painter and the reference number. The

painter is the maintainer.

4. a PaintAgree houseOwner painter refNo contract has both the house owner and the painter as sig-

natories, with an agreement text requiring the painter to paint the house. The key consists of

the painter and the reference number. The painter is the only maintainer.

In the graphical representation below, signatories of a contract are indicated with a dollar sign (as

a mnemonic for an obligation) and use a bold font. Maintainers are marked with@ (as a mnemonic

who enforces uniqueness). Since maintainers are always signatories, parties marked with @ are

implicitly signatories. For example, annotating the paint offer acceptance action with signatories

yields the image below.

1.44. Daml Ledger References 1689

Daml SDK Documentation, 2.7.3

Authorization Rules

Signatories allow one to precisely state that the painter has an obligation. The imposed obligation

is intuitively invalid because the painter did not agree to this obligation. In other words, the painter

did not authorize the creation of the obligation.

In a Daml ledger, a party can authorize a subaction of a commit in either of the following ways:

• Every top-level action of the commit is authorized by all requesters of the commit.

• Every consequence of an exercise action act on a contract c is authorized by all signatories of c

and all actors of act.

The second authorization rule encodes the offer-acceptance pattern, which is a prerequisite for con-

tract formation in contract law. The contract c is effectively an offer by its signatories who act as

offerers. The exercise is an acceptance of the offer by the actors who are the offerees. The conse-

quences of the exercise can be interpreted as the contract body so the authorization rules of Daml

ledgers closely model the rules for contract formation in contract law.

A commit is well-authorized if every subaction act of the commit is authorized by at least all of the

required authorizers of act, where:

1. the required authorizers of a Create action on a contract c are the signatories of c.

2. the required authorizers of an Exercise or a Fetch action are its actors.

3. the required authorizers of a NoSuchKey assertion are the maintainers of the key.

We lift this notion to ledgers, whereby a ledger is well-authorized exactly when all of its commits are.

Examples

An intuition for how the authorization definitions work is most easily developed by looking at some

examples. Themain example, the paint offer ledger, is intuitively legitimate. It should therefore also

be well-authorized according to our definitions, which it is indeed.

In the visualizations below, ΠX act denotes that the parties Π authorize the action act. The resulting

authorizations are shown below.

1690 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

In the first commit, the bank authorizes the creation of the IOU by requesting that commit. As the

bank is the sole signatory on the IOU contract, this commit is well-authorized. Similarly, in the sec-

ond commit, the painter authorizes the creation of the paint offer contract, and painter is the only

signatory on that contract, making this commit also well-authorized.

The third commit is more complicated. First, Alice authorizes the exercise on the paint offer by re-

questing it. She is the only actor on this exercise, so this complies with the authorization require-

ment. Since the painter is the signatory of the paint offer, and Alice the actor of the exercise, they

jointly authorize all consequences of the exercise. The first consequence is an exercise on the IOU,

with Alice as the actor, so this is permissible. The second consequence is the creation of the new IOU

(for P) by exercising the old IOU (for A). As the IOU was formerly signed by the bank, with Alice as the

actor of the exercise, they jointly authorize this creation. This action is permissible as the bank is

the sole signatory. The final consequence is creating the paint agreement with Alice and the painter

as signatories. Since they both authorize the action, this is also permissible. Thus, the entire third

commit is also well-authorized, and so is the ledger.

Similarly, the intuitively problematic examples are prohibited by our authorization criterion. In the

first example, Alice forced the painter to paint her house. The authorizations for the example are

shown below.

Alice authorizes the Create action on the PaintAgree contract by requesting it. However, the painter

is also a signatory on the PaintAgree contract, but he did not authorize the Create action. Thus, this

ledger is indeed not well-authorized.

In the second example, the painter steals money from Alice.

1.44. Daml Ledger References 1691

Daml SDK Documentation, 2.7.3

The bank authorizes the creation of the IOU by requesting this action. Similarly, the painter autho-

rizes the exercise that transfers the IOU to him. However, the actor of this exercise is Alice, who has

not authorized the exercise. Thus, this ledger is not well-authorized.

The rationale for making the maintainers required authorizers for a NoSuchKey assertion is dis-

cussed in the next section about privacy.

Valid Ledgers, Obligations, Offers and Rights

Daml ledgers are designed to mimic real-world interactions between parties, which are governed

by contract law. The validity conditions on the ledgers, and the information contained in contract

models have several subtle links to the concepts of the contract law that are worth pointing out.

First, in addition to the explicit off-ledger obligations specified in the agreement text, contracts also

specify implicit on-ledger obligations, which result from consequences of the exercises on con-

tracts. For example, the PaintOffer contains an on-ledger obligation for A to transfer her IOU in case

she accepts the offer. Agreement texts are therefore only necessary to specify obligations that are

not already modeled as permissible actions on the ledger. For example, P’s obligation to paint the

house cannot be sensibly modeled on the ledger, and must thus be specified by the agreement text.

Second, every contract on a Daml ledger can simultaneously model both:

• a real-world offer, whose consequences (both on- and off-ledger) are specified by the Exercise

actions on the contract allowed by the contract model, and

• a real-world contract “proper”, specified through the contract’s (optional) agreement text.

Third, in Daml ledgers, as in the real world, one person’s rights are another person’s obligations. For

example, A’s right to accept the PaintOffer is P’s obligation to paint her house in case she accepts. In

Daml ledgers, a party’s rights according to a contract model are the exercise actions the party can

perform according to the authorization and conformance rules.

Finally, validity conditions ensure three important properties of the Daml ledger model, that mimic

the contract law.

1. Obligations need consent. Daml ledgers follow the offer-acceptance pattern of the contract

law, and thus ensures that all ledger contracts are formed voluntarily. For example, the follow-

ing ledger is not valid.

1692 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

2. Consent is needed to take awayon-ledger rights. As onlyExerciseactions consumecontracts,

the rights cannot be taken away from the actors; the contract model specifies exactly who the

actors are, and the authorization rules require them to approve the contract consumption.

In the examples, Alice had the right to transfer her IOUs; painter’s attempt to take that right

away from her, by performing a transfer himself, was not valid.

Parties can still delegate their rights to other parties. For example, assume that Alice, instead

of accepting painter’s offer, decides to make him a counteroffer instead. The painter can then

accept this counteroffer, with the consequences as before:

Here, by creating the CounterOffer contract, Alice delegates her right to transfer the IOU contract

to the painter. In case of delegation, prior to submission, the requester must get informed

about the contracts that are part of the requested transaction, but where the requester is not

a signatory. In the example above, the painter must learn about the existence of the IOU for

Alice before he can request the acceptance of the CounterOffer. The concepts of observers and

divulgence, introduced in the next section, enable such scenarios.

3. On-ledger obligations cannot be unilaterally escaped. Once an obligation is recorded on a

Daml ledger, it can only be removed in accordance with the contract model. For example, as-

suming the IOU contract model shown earlier, if the ledger records the creation of a MustPay

contract, the bank cannot later simply record an action that consumes this contract:

1.44. Daml Ledger References 1693

Daml SDK Documentation, 2.7.3

That is, this ledger is invalid, as the action above is not conformant to the contract model.

1.44.1.3 Causality and Local Daml Ledgers

Daml ledgers do not totally order all transactions. So different partiesmay observe two transactions

on different Participant Nodes in different orders via the Ledger API. Moreover, different Participant

Nodes may output two transactions for the same party in different orders. This document explains

the ordering guarantees that Daml ledgers do provide, by example and formally via the concept of

causality graphs and local ledgers.

The presentation assumes that you are familiar with the following concepts:

• The Ledger API

• The Daml Ledger Model

Causality Examples

A Daml Ledger need not totally order all transaction, unlike ledgers in the Daml Ledger Model. The

following examples illustrate these ordering guarantees of the Ledger API. They are based on the

paint counteroffer workflow from the Daml Ledger Model’s privacy section, ignoring the total ordering

coming from the Daml Ledger Model. Recall that the party projections are as follows.

1694 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.44. Daml Ledger References 1695

Daml SDK Documentation, 2.7.3

Stakeholders of a Contract See Creation and Archival in the Same Order

Every Daml Ledger orders the creation of the CounterOffer A P Bank before the painter exercising the

consuming choice on the CounterOffer. (If the Create was ordered after the Exercise, the resulting

shared ledger would be inconsistent, which violates the validity guarantee of Daml ledgers.) Accord-

ingly, Alice will see the creation before the archival on her transaction stream and so will the painter.

This does not depend on whether they are hosted on the same Participant Node.

Signatories of a Contract and Stakeholder Actors See Usages After the Creation and Before

the Archival

The Fetch A (Iou Bank A) action comes after the creation of the Iou Bank A and before its archival, for

both Alice and the Bank, because the Bank is a signatory of the Iou Bank A contract and Alice is a

stakeholder of the Iou Bank A contract and an actor on the Fetch action.

Commits Are Atomic

Alice sees the Create of her Iou before the creation of the CounterOffer, because the CounterOffer is

created in the same commit as the Fetch of the Iou and the Fetch commit comes after the Create of

the Iou.

Non-Consuming Usages in Different Commits May Appear in Different Orders

Suppose that the Bank exercises a non-consuming choice on the Iou Bank A without consequences

while Alice creates the CounterOffer. In the ledger shown below, the Bank’s commit comes before

Alice’s commit.

The Bank’s projection contains the nonconsuming Exercise and the Fetch action on the Iou. Yet, the

Fetchmay come before the non-consuming Exercise in the Bank’s transaction tree stream.

1696 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Out-of-Band Causality Is Not Respected

The following examples assume that Alice splits up her commit into two as follows:

Fig. 28: Counteroffer workflow with four commits.

Alice can specify in the CounterOffer the Iou that she wants to pay the painter with. In a deployed

implementation, Alice’s application first observes the created Iou contract via the transaction service

or active contract service before she requests to create the CounterOffer. Such application logic does

not induce an ordering between commits. So the creation of the CounterOffer need not come after the

creation of the Iou.

If Alice is hosted on several Participant Nodes, the Participant Nodes can therefore output the two

creations in either order.

The rationale for this behaviour is that Alice could have learnt about the contract ID out of band or

made it up. The Participant Nodes therefore cannot know whether there will ever be a Create event

for the contract. So if Participant Nodes delayed outputting the Create action for the CounterOffer

until a Create event for the Iou contract was published, this delay might last forever and liveness is

lost. Daml ledgers therefore do not capture data flow through applications.

Divulged Actions Do Not Induce Order

The painter witnesses the fetching of Alice’s Iouwhen the ShowIou contract is consumed. The painter

also witnesses the Exercise of the Iou when Alice exercises the transfer choice as a consequence

of the painter accepting the CounterOffer. However, as the painter is not a stakeholder of Alice’s Iou

contract, hemay observe Alice’s ShowIou commit after the archival of the Iou as part of accepting the

CounterOffer.

In practice, this can happen in a setup where two Participant Nodes N1 and N2 host the painter. He

sees the divulged Iou and the created CounterOffer through N1‘s transaction tree streamand then sub-

mits the acceptance through N1. Like in the previous example, N2 does not know about the depen-

dence of the two commits. Accordingly, N2 may output the accepting transaction before the ShowIou

contract on the transaction stream.

Even though this may seem unexpected, it is in line with stakeholder-based ledgers: Since the

painter is not a stakeholder of the Iou contract, he should not care about the archivals or creates

of the contract. In fact, the divulged Iou contract shows up neither in the painter’s active contract

service nor in the flat transaction stream. Suchwitnessed events are included in the transaction tree

1.44. Daml Ledger References 1697

Daml SDK Documentation, 2.7.3

stream as a convenience: They relieve the painter from computing the consequences of the choice

and enable him to check that the action conforms to the Daml model.

Similarly, being an actor of an Exercise action induces order with respect to other uses of the con-

tract only if the actor is a contract stakeholder. This is because non-stakeholder actors of an Exer-

cise action merely authorize the action, but they do not track whether the contract is active; this is

what signatories and contract observers are for. Analogously, choice observers of an Exercise action

benefit from the ordering guarantees only if they are contract stakeholders.

The Ordering Guarantees Depend on the Party

By the previous example, for the painter, fetching the Iou is not ordered before transferring the Iou.

For Alice, however, the Fetchmust appear before the Exercise because Alice is a stakeholder on the

Iou contract. This shows that the ordering guarantees depend on the party.

Causality Graphs

The above examples indicate that Daml ledgers order transactions only partially. Daml ledgers can

be represented as finite directed acyclic graphs (DAG) of transactions.

Definition »causality graph« A causality graph is a finite directed acyclic graph G of transactions

that is transitively closed. Transitively closedmeans thatwhenever v1 -> v2 and v2 -> v3 are edges

in G, then there is also an edge v1 -> v3 in G.

Definition »action order« For a causality graph G, the induced action order on the actions in the

transactions combines the graph-induced order between transactions with the execution or-

der of actions inside each transaction. It is the least partial order that includes the following

ordering relations between two actions act1 and act2:

• act1 and act2 belong to the same transaction and act1 precedes act2 in the transaction.

• act1 and act2 belong to different transactions in vertices tx1 and tx2 and there is a path in

G from tx1 to tx2.

Note: Checking for an edge instead of a path in G from tx1 to tx2 is equivalent because

causality graphs are transitively closed. The definition uses path because the figures be-

low omit transitive edges for readability.

The action order is a partial order on the actions in a causality graph. For example, the following

diagram shows such a causality graph for the ledger in the above Out-of-band causality example. Each

grey box represents one transaction and the graph edges are the solid arrows between the boxes.

Diagrams omit transitive edges for readability; in this graph the edge from tx1 to tx4 is not shown.

The Create action of Alice’s Iou is ordered before the Create action of the ShowIou contract because

there is an edge from the transaction tx1 with the Iou Create to the transaction tx3 with the ShowIou

Create. Moreover, the ShowIou Create action is ordered before the Fetch of Alice’s Iou because the

Create action precedes the Fetch action in the transaction. In contrast, the Create actions of the

CounterOffer andAlice’s Iou are unordered: neither precedes the other because they belong to different

transaction and there is no directed path between them.

1698 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Fig. 29: Causality graph for the counteroffer workflow with four commits.

Consistency

Consistency ensures that a causality graph sufficiently orders all the transactions. It generalizes

ledger consistency from the Daml Ledger Model as explained below.

Definition »Causal consistency for a contract« Let G be a causality graph and X be a set of actions

on a contract c that belong to transactions in G. The graph G is causally consistent for the

contract c on X if all of the following hold:

• If X is not empty, then X contains exactly one Create action. This action precedes all other

actions in X in G‘s action order.

• If X contains a consuming Exercise action act, then act follows all actions in X other than

act in G‘s action order.

Definition »Causal consistency for a key« Let G be a causality graph and X be a set of actions on a

key k that belong to transactions in G. The graph G is causally consistent for the key k on X if

all of the following hold:

• All Create and consuming Exercise actions in X are totally ordered in G‘s action order and

Creates and consuming Exercises alternate, starting with Create. Every consecutive Cre-

ate-Exercise pair acts on the same contract.

• All NoSuchKey actions in X are action-ordered with respect to all Create and consuming

Exercise actions in X. NoNoSuchKey action is action-ordered between aCreate action and

its subsequent consuming Exercise action in X.

Definition »Consistency for a causality graph« LetXbeasubset of the actions in a causality graph

G. Then G is consistent on X (or X-consistent) if G is causally consistent for all contracts c on

the set of actions on c in X and for all keys k on the set of actions on k in X. G is consistent if G

is consistent on all the actions in G.

When edges are added to an X-consistent causality graph such that it remains acyclic and tran-

sitively closed, the resulting graph is again X-consistent. So it makes sense to consider minimal

consistent causality graphs.

Definition »Minimal consistent causality graph« An X-consistent causality graph G is X-minimal

if no strict subgraph of G (same vertices, fewer edges) is an X-consistent causality graph. If X

is the set of all actions in G, then X is omitted.

For example, the above causality graph for the split counteroffer workflow is consistent. This causality

graph is minimal, as the following analysis shows:

1.44. Daml Ledger References 1699

Daml SDK Documentation, 2.7.3

Edge Justification

tx1 -> tx3 Alice’s Iou Create action of must precede the Fetch action.

tx2 -> tx4 The CounterOffer Create action of must precede the Exercise action.

tx3 -> tx4 The consuming Exercise action on Alice’s Iou must follow the Fetch action.

We can focus on parts of the causality graph by restricting the set X. If X consists of the actions on

Iou contracts, this causality graph is X-consistent. Yet, it is not X-minimal since the edge tx2 -> tx4

can be removedwithout violating X-consistency: the edge is required only because of the CounterOffer

actions, which are excluded fromX. TheX-minimal consistent causality graph looks as follows, where

the actions in X are highlighted in red.

Fig. 30: Minimal consistent causality graph for the highlighted actions.

Another example of a minimal causality graph is shown below. At the top, the transactions tx1 to tx4

create an Iou for Alice, exercise two non-consuming choices on it, and transfer the Iou to the painter.

At the bottom, tx5asserts that there is nokey for anAccount contract for thepainter. Then, tx6 creates

an such account with balance 0 and tx7 deposits the painter’s Iou from tx4 into the account, updating

the balance to 1.

1700 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Unlike in a linearly ordered ledger, the causality graph relates the transactions of the Iou transfer

workflow with the Account creation workflow only at the end, when the Iou is deposited into the ac-

count. As will be formalized below, the Bank, Alice, and the painter therefore need not observe the

transactions tx1 to tx7 in the same order.

Moreover, transaction tx2 and tx3 are unordered in this causality graph even though they act on the

same Iou contract. However, as both actions are non-consuming, they do not interfere with each

other and could therefore be parallelized, too. Alice and the Bank accordingly may observe them in

different orders.

The NoSuchKey action in tx5 must be ordered with respect to the two Account Create actions in tx6

and tx7and the consumingExerciseon theAccount contract in tx7, by thekey consistency conditions.

For this set of transactions, consistency allows only one such order: tx5 comes before tx6 because

tx7 is atomic: tx5 cannot be interleaved with tx7, e.g., between the consuming Exercise of the Acc Bank

P P 0 and the Create of the updated account Acc Bank P P 1.

NoSuchKey actions are similar to non-consumingExercises and Fetches of contractswhen it comes

to causal ordering: If there were another transaction tx5’with aNoSuchKey (Acc, Bank, P) action, then

tx5 and tx5’ need not be ordered, just like tx2 and tx3 are unordered.

1.44. Daml Ledger References 1701

Daml SDK Documentation, 2.7.3

From Causality Graphs to Ledgers

Since causality graphs are acyclic, their vertices can be sorted topologically and the resulting list is

again a causality graph, where every vertex has an outgoing edge to all later vertices. If the original

causality graph is X-consistent, then so is the topological sort, as topological sorting merely adds

edges. For example, the transactions on the ledger in the out-of-band causality exampleare a topological

sort of the corresponding causality graph.

Conversely, we can reduce an X-consistent causality graph to only the causal dependencies that

X-consistency imposes. This gives a minimal X-consistent causality graph.

Definition »Reduction of a consistent causality graph« For an X-consistent causality graph G,

there exists a unique minimal X-consistent causality graph reduceX(G) with the same vertices

and the edges being a subset of G. The graph reduceX(G) is called the X-reduction of G. As before,

X is omitted if it contains all actions in G.

The causality graph for the split CounterOffer workflow is minimal and therefore its own reduction. It

is also the reduction of the topological sort, i.e., the ledger in the out-of-band causality example.

Note: The reduction reduceX(G) of an X-consistent causality graph G can be computed as follows:

1. Set the vertices of G’ to the vertices of G.

2. The causal consistency conditions for contracts and keys demand that certain pairs of actions

act1 and act2 in X must be action-ordered. For each such pair, determine the actions’ ordering

in G and add an edge to G’ from the earlier action’s transaction to the later action’s transaction.

3. reduceX(G) is the transitive closure of G’.

Topological sort and reduction link causality graphs G to the ledgers L from the Daml Ledger Model.

Topological sort transformsa causality graphG into a sequence of transactions; extending themwith

the requesters gives a sequence of commits, i.e., a ledger in the Daml Ledger Model. Conversely, a

sequence of commits L yields a causality graph GL by taking the transactions as vertices and adding

an edge from tx1 to tx2 whenever tx1‘s commit precedes tx2‘s commit in the sequence.

There are now two consistency definitions:

• Ledger Consistency according to Daml Ledger Model

• Consistency of causality graph

Fortunately, the two definitions are equivalent: If G is a consistent causality graph, then the topolog-

ical sort is ledger consistent. Conversely, if the sequence of commits L is ledger consistent, GL is a

consistent causality graph, and so is the reduction reduce(GL).

Local Ledgers

As explained in the Daml Ledger Model, parties see only a projection of the shared ledger for privacy

reasons. Like consistency, projection extends to causality graphs as follows.

Definition »Stakeholder informee« A party P is a stakeholder informee of an action act if all of the

following holds:

• P is an informee of act.

• If act is an action on a contract then P is a stakeholder of the contract.

1702 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

An Exercise and Fetch action acts on the input contract, a Create action on the created contract,

and a NoSuchKey action does not act on a contract. So for a NoSuchKey action, the stakeholder

informees are the key maintainers.

Definition »Causal consistency for a party« A causality graph G is consistent for a party P

(P-consistent) if G is consistent on all the actions that P is a stakeholder informee of.

The notions of X-minimality and X-reduction extend to parties accordingly.

For example, the split counteroffer causality graph without the edge tx2 -> tx4 is consistent for the Bank

because the Bank is a stakeholder informee of exactly the highlighted actions. It is also minimal

Bank-consistent and the Bank-reduction of the original split counteroffer causality graph.

Definition »Projection of a consistent causality graph« The projection projP(G) of a consistent

causality graph G to a party P is the P-reduction of the following causality graph G’:

• The vertices of G’ are the vertices of G projected to P, excluding empty projections.

• There is an edge between two vertices v1 and v2 in G’ if there is an edge from the G-vertex

corresponding to v1 to the G-vertex corresponding to v2.

For the split counteroffer causality graph, the projections to Alice, the Bank, and the painter are as fol-

lows.

Fig. 31: Projections of the split counteroffer causality graph.

Alice’s projection is the same as the originalminimal causality graph. The Bank sees only actions on

Iou contracts, so the causality graph projection does not contain tx2 anymore. Similarly, the painter

1.44. Daml Ledger References 1703

Daml SDK Documentation, 2.7.3

is not aware of tx1, where Alice’s Iou is created. Moreover, there is no longer an edge from tx3 to tx4 in

the painter’s local ledger. This is because the edge is induced by the Fetch of Alice’s Iou preceding

the consuming Exercise. However, the painter is not an informee of those two actions; he merely

witnesses the Fetch and Exercise actions as part of divulgence. Therefore no ordering is required

from the painter’s point of view. This difference explains the divulgence causality example.

Ledger API Ordering Guarantees

The Transaction Service provides the updates as a stream of Daml transactions and the Active Con-

tract Service summarizes all the updates up to a given point by the contracts that are active at this

point. Conceptually, both services are derived from the local ledger that the Participant Node man-

ages for each hosted party. That is, the transaction tree stream for a party is a topological sort of

the party’s local ledger. The flat transaction stream contains precisely the CreatedEvents and

ArchivedEvents that correspond to Create and consuming Exercise actions in transaction trees

on the transaction tree stream where the party is a stakeholder of the affected contract.

Note: The transaction trees of the Transaction Service omit Fetch and NoSuchKey actions that are

part of the transactions in the local ledger. The Fetch and NoSuchKey actions are thus removed

before the Transaction Service outputs the transaction trees.

Similarly, the active contract service provides the set of contracts that are active at the returned

offset according to the Transaction Service streams. That is, the contract state changes of all events

from the transaction event stream are taken into account in the provided set of contracts. In par-

ticular, an application can process all subsequent events from the flat transaction stream or the

transaction tree stream without having to take events before the snapshot into account.

Since the topological sort of a local ledger is not unique, different Participant Nodes may pick dif-

ferent orders for the transaction streams of the same party. Similarly, the transaction streams for

different partiesmay order common transactions differently, as the party’s local ledgers impose dif-

ferent ordering constraints. Nevertheless, Daml ledgers ensure that all local ledgers are projections

of a virtual shared causality graph that connects to the Daml Ledger Model as described above. The

ledger validity guarantees therefore extend via the local ledgers to the Ledger API. These guarantees

are subject to the deployed Daml ledger’s trust assumptions.

Note: The virtual shared causality graph exists only as a concept, to reason about Daml ledger guar-

antees. A deployed Daml ledger in general does not store or even construct such a shared causality

graph. The Participant Nodes merely maintain the local ledgers for their parties. They synchronize

these local ledgers to the extent that they remain consistent. That is, all the local ledgers can in

theory be combined into a consistent single causality graph of which they are projections.

1704 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Explaining the Causality Examples

The causality examples can be explained in terms of causality graphs and local ledgers as follows:

1. Stakeholders of a Contract See Creation and Archival in the Same Order Causal consistency for the

contract requires that theCreate comes before the consuming Exercise action on the contract.

As all stakeholders are informees onCreate and consumingExercise actions of their contracts,

the stakeholder’s local ledgers impose this order on the actions.

2. Signatories of a Contract and Stakeholder Actors See Usages After the Creation and Before the Archival

Causal consistency for the contract requires that the Create comes before the non-consuming

Exercise and Fetch actions of a contract and that consuming Exercises follow them. Since

signatories and stakeholder actors are informees of Create, Exercise, and Fetch actions, the

stakeholder’s local ledgers impose this order on the actions.

3. Commits Are Atomic Local ledgers are DAGs of (projected) transactions. Topologically sorting

such a DAG cannot interleave one transaction with another, even if the transaction consists of

several top-level actions.

4. Non-Consuming Usages in Different CommitsMay Appear in Different Orders Causal consistency does

not require ordering between non-consuming usages of a contract. As there is no other action

in the transaction that would prescribe an ordering, the Participant Nodes can output them in

any order.

5. Out-of-Band Causality Is Not Respected Out-of-band data flow is not captured by causal consis-

tency and therefore does not induce ordering.

6. Divulged Actions Do Not Induce Order The painter is not an informee of the Fetch and Exercise

actions on Alice’s Iou; he merely witnesses them. The painter’s local ledger therefore does not

order tx3 before tx4. So the painter’s transaction stream can output tx4 before tx3.

7. The Ordering Guarantees Depend on the Party Alice is an informee of the Fetch and Exercise actions

on her Iou. Unlike for the painter, her local ledger does order tx3 before tx4, so Alice is guaranteed

to observe tx3 before tx4 on all Participant Nodes through which she is connect to the Daml

ledger.

1.44.1.4 Privacy

The previous sections have addressed two out of three questions posed in the introduction: “what

the ledger looks like”, and “who may request which changes”. This section addresses the last one,

“who sees which changes and data”. That is, it explains the privacy model for Daml ledgers.

The privacy model of Daml Ledgers is based on a need-to-know basis, and provides privacy on the

level of subtransactions. Namely, a party learns only those parts of ledger changes that affect con-

tracts in which the party has a stake, and the consequences of those changes. And maintainers see

all changes to the contract keys they maintain.

To make this more precise, a stakeholder concept is needed.

1.44. Daml Ledger References 1705

Daml SDK Documentation, 2.7.3

Contract Observers and Stakeholders

Intuitively, as signatories are bound by a contract, they have a stake in it. Actorsmight not be bound

by the contract, but they still haveastake in their actions, as theseare theactor’s rights. Generalizing

this, observers are parties whomight not be bound by the contract, but still have the right to see the

contract. For example, Alice should be an observer of the PaintOffer, such that she ismade aware that

the offer exists.

Signatories are already determined by the contract model discussed so far. The full contract model

additionally specifies the contract observers on each contract. A stakeholder of a contract (accord-

ing to a given contract model) is then either a signatory or a contract observer on the contract. Note

that in Daml, as detailed later, controllers specified using simple syntax are automatically made

contract observers whenever possible.

In the graphical representation of the paint offer acceptance below, contract observers who are not

signatories are indicated by an underline.

Choice Observers

In addition to contract observers, the contract model can also specify choice observers on individ-

ual Exercise actions. Choice observers get to see a specific exercise on a contract, and to view its

consequences. Choice observers are not considered stakeholders of the contract, they only affect

the set of informees on an action, for the purposes of projection (see below).

Projections

Stakeholders should see changes to contracts they hold a stake in, but that does notmean that they

have to see the entirety of any transaction that their contract is involved in. This is made precise

through projections of a transaction, which define the view that each party gets on a transaction. In-

tuitively, given a transaction within a commit, a party will see only the subtransaction consisting of

all actions on contracts where the party is a stakeholder. Thus, privacy is obtained on the subtrans-

action level.

An example is given below. The transaction that consists only of Alice’s acceptance of the PaintOffer

is projected for each of the three parties in the example: the painter, Alice, and the bank.

1706 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Since both the painter and Alice are stakeholders of the PaintOffer contract, the exercise on this con-

tract is kept in the projection of both parties. Recall that consequences of an exercise action are a

part of the action. Thus, both parties also see the exercise on the Iou Bank A contract, and the cre-

ations of the Iou Bank P and PaintAgree contracts.

The bank is not a stakeholder on the PaintOffer contract (even though it ismentioned in the contract).

Thus, the projection for the bank is obtained by projecting the consequences of the exercise on the

PaintOffer. The bank is a stakeholder in the contract Iou Bank A, so the exercise on this contract is

kept in the bank’s projection. Lastly, as the bank is not a stakeholder of the PaintAgree contract, the

corresponding Create action is dropped from the bank’s projection.

Note the privacy implications of the bank’s projection. While the bank learns that a transfer has

occurred from A to P, the bank does not learn anything about why the transfer occurred. In practice,

thismeans that the bank does not learnwhat A is paying for, providing privacy to A and Pwith respect

to the bank.

As a design choice, Daml Ledgers show to contract observers only the state changing actions on the

contract. More precisely, Fetch and non-consuming Exercise actions are not shown to contract ob-

1.44. Daml Ledger References 1707

Daml SDK Documentation, 2.7.3

servers - except when they are also actors or choice observers of these actions. This motivates the

following definition: a party p is an informee of an action A if one of the following holds:

• A is a Create on a contract c and p is a stakeholder of c.

• A is a consuming Exercise on a contract c, and p is a stakeholder of c or an actor on A. Note that

a Daml “flexible controller” can be an exercise actor without being a contract stakeholder.

• A is a non-consuming Exercise on a contract c, and p is a signatory of c or an actor on A.

• A is an Exercise action and p is a choice observer on A.

• A is a Fetch on a contract c, and p is a signatory of c or an actor on A.

• A is a NoSuchKey k assertion and p is a maintainer of k.

Then, we can formally define the projection of a transaction tx = act1, …, actn for a party p is the sub-

transaction obtained by doing the following for each action acti:

1. If p is an informee of acti, keep acti as-is.

2. Else, if acti has consequences, replace acti by the projection (for p) of its consequences, which

might be empty.

3. Else, drop acti.

Finally, the projection of a ledger l for a party p is a list of transactions obtained by first projecting

the transaction of each commit in l for p, and then removing all empty transactions from the result.

Note that the projection of a ledger is not a ledger, but a list of transactions. Projecting the ledger of

our complete paint offer example yields the following projections for each party:

1708 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Examine each party’s projection in turn:

1. The painter does not see any part of the first commit, as he is not a stakeholder of the Iou Bank A

contract. Thus, this transaction is not present in the projection for the painter at all. However,

the painter is a stakeholder in the PaintOffer, so he sees both the creation and the exercise of

this contract (again, recall that all consequences of an exercise action are a part of the action

1.44. Daml Ledger References 1709

Daml SDK Documentation, 2.7.3

itself).

2. Alice is a stakeholder in both the Iou Bank A and PaintOffer A B Bank contracts. As all top-level

actions in the ledger are performed on one of these two contracts, Alice’s projection includes

all the transactions from the ledger intact.

3. The Bank is only a stakeholder of the IOU contracts. Thus, the bank sees the first commit’s

transaction as-is. The second commit’s transaction is, however dropped from the bank’s pro-

jection. The projection of the last commit’s transaction is as described above.

Ledger projections do not always satisfy the definition of consistency, even if the ledger does. For

example, in P’s view, Iou Bank A is exercised without ever being created, and thus without beingmade

active. Furthermore, projections can in general be non-conformant. However, the projection for a

party p is always

• internally consistent for all contracts,

• consistent for all contracts on which p is a stakeholder, and

• consistent for the keys that p is a maintainer of.

In other words, p is never a stakeholder on any input contracts of its projection. Furthermore, if the

contract model is subaction-closed, which means that for every action act in the model, all subac-

tions of act are also in the model, then the projection is guaranteed to be conformant. As we will see

shortly, Daml-based contract models are conformant. Lastly, as projections carry no information

about the requesters, we cannot talk about authorization on the level of projections.

Privacy Through Authorization

Setting the maintainers as required authorizers for a NoSuchKey assertion ensures that parties

cannot learn about the existence of a contract without having a right to know about their existence.

So we use authorization to impose access controls that ensure confidentiality about the existence

of contracts. For example, suppose now that for a PaintAgreement contract, both signatories are key

maintainers, not only the painter. That is, we consider PaintAgreement @A@P&P123 instead of PaintA-

greement $A @P &P123. Then, when the painter’s competitor Q passes by A’s house and sees that

the house desperately needs painting, Q would like to know whether there is any point in spending

marketing efforts and making a paint offer to A. Without key authorization, Q could test whether a

ledger implementation accepts the action NoSuchKey (A, P, refNo) for different guesses of the refer-

ence number refNo. In particular, if the ledger does not accept the transaction for some refNo, then Q

knows that P has some business with A and his chances of A accepting his offer are lower. Key autho-

rization prevents this flow of information because the ledger always rejects Q‘s action for violating

the authorization rules.

For these access controls, it suffices if one maintainer authorizes a NoSuchKey assertion. However,

we demand that all maintainers must authorize it. This is to prevent spam in the projection of the

maintainers. If only one maintainer sufficed to authorize a key assertion, then a valid ledger could

contain NoSuchKey k assertions where the maintainers of k include, apart from the requester, arbi-

trary other parties. Unlike Create actions to contract observers, such assertions are of no value to

the other parties. Since processing such assertionsmay be expensive, they can be considered spam.

Requiring all maintainers to authorize a NoSuchKey assertion avoids the problem.

1710 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Divulgence: When Non-Stakeholders See Contracts

The guiding principle for the privacy model of Daml ledgers is that contracts should only be shown

to their stakeholders. However, ledger projections can cause contracts to become visible to other

parties as well.

In the example of ledger projections of the paint offer, the exercise on the PaintOffer is visible to both the

painter and Alice. As a consequence, the exercise on the Iou Bank A is visible to the painter, and the

creation of Iou Bank P is visible to Alice. As actions also contain the contracts they act on, Iou Bank A

was thus shown to the painter and Iou Bank P was shown to Alice.

Showing contracts to non-stakeholders through ledger projections is called divulgence. Divulgence

is a deliberate choice in the design of Daml ledgers. In the paint offer example, the only proper way

to accept the offer is to transfer the money from Alice to the painter. Conceptually, at the instant

where the offer is accepted, its stakeholders also gain a temporary stake in the actions on the two

Iou contracts, even though they are never recorded as stakeholders in the contractmodel. Thus, they

are allowed to see these actions through the projections.

More precisely, every action act on c is shown to all informees of all ancestor actions of act. These

informees are called thewitnesses of act. If one of the witnessesW is not a stakeholder on c, then act

and c are said to be divulged toW. Note that only Exercise actions can be ancestors of other actions.

Divulgence can be used to enable delegation. For example, consider the scenario where Alice makes

a counteroffer to the painter. Painter’s acceptance entails transferring the IOU to him. To be able to

construct the acceptance transaction, the painter first needs to learn about the details of the IOU

that will be transferred to him. To give him these details, Alice can fetch the IOU in a context visible

to the painter:

1.44. Daml Ledger References 1711

Daml SDK Documentation, 2.7.3

In the example, the context is provided by consuming a ShowIou contract on which the painter is a

stakeholder. This now requires an additional contract type, compared to the original paint offer ex-

ample. An alternative approach to enable this workflow, without increasing the number of contracts

required, is to replace the original Iou contract by one on which the painter is a contract observer.

This would require extending the contract model with a (consuming) exercise action on the Iou that

creates a new Iou, with observers of Alice’s choice. In addition to the different number of commits,

the two approaches differ in one more aspect. Unlike stakeholders, parties who see contracts only

through divulgence have no guarantees about the state of the contracts in question. For example,

consider what happens if we extend our (original) paint offer example such that the painter imme-

diately settles the IOU.

1712 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

While Alice sees the creation of the Iou Bank P contract, she does not see the settlement action. Thus,

she does not know whether the contract is still active at any point after its creation. Similarly, in the

previous example with the counteroffer, Alice could spend the IOU that she showed to the painter

by the time the painter attempts to accept her counteroffer. In this case, the painter’s transaction

could not be added to the ledger, as it would result in a double spend and violate validity. But the

painter has no way to predict whether his acceptance can be added to the ledger or not.

1.44. Daml Ledger References 1713

Daml SDK Documentation, 2.7.3

1.44.1.5 Daml: Define Contract Models Compactly

As described in preceding sections, both the integrity and privacy notions depend on a contract

model, and such a model must specify:

1. a set of allowed actions on the contracts, and

2. the signatories, contract observers, and

3. an optional agreement text associated with each contract, and

4. the optional key associated with each contract and its maintainers.

The sets of allowed actions can in general be infinite. For instance, the actions in the IOU contract

model considered earlier can be instantiated for an arbitrary obligor and an arbitrary owner. As enu-

merating all possible actions from an infinite set is infeasible, a more compact way of representing

models is needed.

Daml provides exactly that: a compact representation of a contract model. Intuitively, the allowed

actions are:

1. Create actions on all instances of templates such that the template arguments satisfy the

ensure clause of the template

2. Exercise actions on a contract corresponding to choices on that template, with given choice

arguments, such that:

1. The actors match the controllers of the choice. That is, the controllers define the required

authorizers of the choice.

2. The choice observers match the observers annotated in the choice.

3. The exercise kind matches.

4. All assertions in the update block hold for the given choice arguments.

5. Create, exercise, fetch and key statements in the update block are represented as create,

exercise and fetch actions and key assertions in the consequences of the exercise action.

3. Fetch actions on a contract corresponding to a fetch of that instance inside of an update block.

The actors must be a non-empty subset of the contract stakeholders. The actors are deter-

mined dynamically as follows: if the fetch appears in an update block of a choice ch on a con-

tract c1, and the fetched contract ID resolves to a contract c2, then the actors are defined as the

intersection of (1) the signatories of c1 union the controllers of ch with (2) the stakeholders of

c2.

A fetchByKey statement also produces a Fetch action with the actors determined in the same

way. A lookupByKey statement that finds a contract also translates into a Fetch action, but all

maintainers of the key are the actors.

4. NoSuchKey assertions corresponding to a lookupByKey update statement for the given key that

does not find a contract.

An instance of a Daml template, that is, a Daml contract, is a triple of:

1. a contract identifier

2. the template identifier

3. the template arguments

The signatories of a Daml contract are derived from the template arguments and the explicit signa-

tory annotations on the contract template. The contract observers are also derived from the template

arguments and include:

1. the observers as explicitly annotated on the template

2. all controllers c of every choice defined using the syntax controller c can... (as opposed

to the syntax choice ... controller c)

1714 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

For example, the following template exactly describes the contract model of a simple IOU with a unit

amount, shown earlier.

template MustPay with

obligor : Party

owner : Party

where

signatory obligor, owner

agreement

show obligor <> " must pay " <>

show owner <> " one unit of value"

template Iou with

obligor : Party

owner : Party

where

signatory obligor

observer owner

choice Transfer

: ContractId Iou

with newOwner : Party

controller owner

do create Iou with obligor; owner = newOwner

choice Settle

: ContractId MustPay

controller owner

do create MustPay with obligor; owner

In this example, the owner is specified as an observer, since it must be able to see the contract to

exercise the Transfer and Settle choices on it.

The template identifiers of contracts are created through a content-addressing scheme. Thismeans

every contract is self-describing in a sense: it constrains its stakeholder annotations and all

Daml-conformant actions on itself. As a consequence, one can talk about “the” Daml contract

model, as a single contract model encoding all possible instances of all possible templates. This

model is subaction-closed; all exercise and create actions done within an update block are also al-

ways permissible as top-level actions.

1.44.1.6 Exceptions

The introduction of exceptions, a newDaml feature, hasmany implications for the ledgermodel. This

page describes the changes to the ledger model introduced as part of this new feature.

1.44. Daml Ledger References 1715

Daml SDK Documentation, 2.7.3

Structure

Under the new feature, Daml programs can raise and catch exceptions. When an exception is caught

in a catch block, the subtransaction starting at the corresponding try block is rolled back.

To support this in our ledger model, we need to modify the transaction structure to indicate which

subtransactions were rolled back. We do this by introducing rollback nodes in the transaction. Each

rollback node contains a rolled back subtransaction. Rollback nodes are not considered ledger ac-

tions.

Therefore we define transactions as a list of nodes, where each node is either a ledger action or a

rollback node. This is reflected in the updated EBNF grammar for the transaction structure:

Transaction ::= Node*

Node ::= Action | Rollback

Rollback ::= 'Rollback' Transaction

Action ::= 'Create' contract

| 'Exercise' party* contract Kind Transaction

| 'Fetch' party* contract

| 'NoSuchKey' key

Kind ::= 'Consuming' | 'NonConsuming'

Note that Action and Kind have the same definition as before, but since Transaction may now contain

rollback nodes, this means that an Exercise action may have a rollback node as one of its conse-

quences.

For example, the following transaction contains a rollback node inside an exercise. It represents

a paint offer involving multiple banks. The painter P is offering to paint A’s house as long as they

receive an Iou from Bank1 or, failing that, from Bank2. When A accepts, they confirm that transfer

of an Iou via Bank1 has failed for some reason, so they roll it back and proceed with a transfer via

Bank2:

Note also that rollbacknodesmaybenested, which represents a situationwheremultiple exceptions

are raised and caught within the same transaction.

For example, the following transaction contains the previous one under a rollback node. It represents

a case where the “accept” has failed at the last moment, for some reason, and a “cancel” exercise

has been issued in response.

1716 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Consistency

In the previous section on consistency, we defined a “before-after” relation on ledger actions. This

notion needs to be revised in the presence of rollback nodes. It is no longer enough to perform a

preorder traversal of the transaction tree, because the actions under a rollback node cannot affect

actions that appear later in the transaction tree.

For example, a contract may be consumed by an exercise under a rollback node, and immediately

again after the rollback node. This is allowed because the exercise was rolled back, and this does

not represent a “double spend” of the same contract. You can see this in the nested example above,

where the PaintOffer contract is consumed by an “agree” exercise, which is rolled back, and then by

a “cancel” exercise.

So, we now define the “before-after” relation as a partial order, rather than a total order, on all the

actions of a transaction. This relation is defined as follows: act1 comes before act2 (equivalently, act2

comes after act1) if and only if act1 appears before act2 in a preorder traversal of the transaction tree,

and any rollback nodes that are ancestors of act1 are also ancestors of act2.

With this modified “before-after” relation, the notion of internal consistency remains the same.

Meaning that, for example, for any contract c, we still forbid the creation of c coming after any action

on c, and we forbid any action on c coming after a consuming exercise on c.

In the example above, neither consuming exercise comes “after” the other. They are part of separate

“continuities”, so they don’t introduce inconsistency. Here are three continuities implied by the

“before-after” relation. The first:

The second:

1.44. Daml Ledger References 1717

Daml SDK Documentation, 2.7.3

And the third:

As you can see, in each of these continuities, no contract was consumed twice.

Transaction Normalization

The same “before-after” relation can be represented inmore than one way using rollback nodes. For

example, the following three transactions have the same “before-after” relation among their ledger

actions (act1, act2, and act3):

Because of this, these three transactions are equivalent. More generally, two transactions are equiv-

alent if:

• The transactions are the same when you ignore all rollback nodes. That is, if you remove ev-

ery rollback node and absorb its children into its parent, then two transactions are the same.

1718 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Equivalently, the transactions have the same ledger actions with the same preorder traversal

and subaction relation.

• The transactions have the same “before-after” relation between their actions.

• The transactionshave the sameset of “rollback children”. A “rollback child” is anactionwhose

direct parent is a rollback node.

For all three transactions above, the “transaction tree ignoring rollbacks” consists only of top-level

actions (act1, act2, and act3), the “before-after” relation only says that act2 comes before act3, and all

three actions are rollback children. Thus all three transactions are equivalent.

Transaction normalization is the process by which equivalent transactions are converted into the

same transaction. In the case above, all three transactions become the transaction in the middle

when normalized.

To normalize a transaction, we apply three rules repeatedly across the whole transaction:

1. If a rollback node is empty, we drop it.

2. If a rollback node starts with another rollback node, for instance:

'Rollback' ['Rollback' tx , node1, ..., nodeN]

Then we re-associate the rollback nodes, bringing the inner rollback node out:

'Rollback' tx, 'Rollback' [node1, ..., nodeN]

3. If a rollback node ends with another rollback node, for instance:

'Rollback' [node1, ..., nodeN, 'Rollback' [node1', ..., nodeM']]

Then we flatten the inner rollback node into its parent:

'Rollback' [node1, ..., nodeN, node1', ..., nodeM']

In the example above, using rule 3 we can turn the left transaction into the middle transaction, and

using rule 2 we can turn the right transaction into themiddle transaction. None of these rules apply

to the middle transaction, so it is already normalized.

In the end, a normalized transaction cannot contain any rollback node that starts or ends with an-

other rollback node, nor may it contain any empty rollback nodes. The normalization process mini-

mizes the number of rollback nodes and their depth needed to represent the transaction.

To reduce the potential for information leaks, the ledger model must only contain normalized trans-

actions. This also applies to projected transactions. An unnormalized transaction is always invalid.

1.44. Daml Ledger References 1719

Daml SDK Documentation, 2.7.3

Authorization

Since they are not ledger actions, rollback nodes do not have authorizers directly. Instead, a ledger

is well-authorized exactly when the same ledger with rollback nodes removed (that is, replacing the

rollback nodes with their children) is well-authorized, according to the old definition.

This is captured in the following rules:

• Whena rollbacknode is authorizedby p, then all of its children are authorizedby p. In particular:

– Top-level rollback nodes share the authorization of the requestors of the commit with all

of its children.

– Rollback nodes that are a consequence of an exercise action act on a contract c share the

authorization of the signatories of c and the actors of act with all of its children.

– A nested rollback node shares the authorization it got from its parent with all of its chil-

dren.

• The required authorizers of a rollback node are the union of all the required authorizers of its

children.

Privacy

Rollback nodes also have an interesting effect on the notion of privacy in the ledger model. When

projecting a transaction for a party p, it’s necessary to preserve some of the rollback structure of the

transaction, even if p does not have the right to observe every action under it. For example, we need

p to be able to verify that a rolled back exercise (to which they are an informee) is conformant, but

we also need p to know that the exercise was rolled back.

We adjust the definition of projection as follows:

1. For a ledger action, the projection for p is the same as it was before. That is, if p is an informee

of the action, then the entire subtree is preserved. Otherwise the action is dropped, and the

action’s consequences are projected for p.

2. For a rollback node, the projection for p consists of the projection for p of its children, wrapped

up in a new rollback node. In other words, projection happens under the rollback node, but the

node is preserved.

After applying this process, the transaction must be normalized.

Consider the deeply nested example from before. To calculate the projection for Bank1, we note that

the only visible action is the bottom left exercise. Removing the actions that Bank1 isn’t an informee

of, this results in a transaction containing a rollback node, containing a rollback node, containing

an exercise. After normalization, this becomes a simple rollback node containing an exercise. See

below:

1720 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

The privacy section of the ledger model makes a point of saying that a contract model should be

subaction-closed to support projections. But this requirement is not necessarily true once we in-

troduce rollbacks. Rollback nodes may contain actions that are not valid as standalone actions,

since they may have been interrupted prematurely by an exception.

Instead, we require that the contract model be projection-closed, i.e. closed under projections for

any party ‘p’. This is a weaker requirement that matches what we actually need.

Relation to Daml Exceptions

Rollback nodes are created when an exception is thrown and caught within the same transaction. In

particular, any exception that is caught within a try-catch will generate a rollback node if there are

any ledger actions to roll back. For example:

try do

cid <­ create MyContract { ... }

exercise cid MyChoice { ... }

throw MyException

catch

MyException ­>

create MyOtherContract { ... }

This Daml code will try to create a contract, and exercise a choice on this contract, before throwing

an exception. That exception is caught immediately, and then another contract is created.

Thus a rollback node is created, to reset the ledger to the state it had at the start of the “try” block.

The rollback node contains the create and exercise nodes. After the rollback node, another contract

is created. Thus the final transaction looks like this:

1.44. Daml Ledger References 1721

Daml SDK Documentation, 2.7.3

Note that rollback nodes are only created if an exception is caught. An uncaught exception will result

in an error, not a transaction.

After execution of the Daml code, the generated transaction is normalized.

1.44.1.7 Identity and Package Management

Since Daml ledgers enable parties to automate the management of their rights and obligations

through smart contract code, they also have to provide party and code management functions.

Hence, this document addresses:

1. Management of parties’ digital identifiers in a Daml ledger.

2. Distribution of smart contract code between the parties connected to the same Daml ledger.

The access to this functionality is usuallymore restricted compared to the other Ledger API services,

as they are part of the administrative API. This document is intended for the users and implementers

of this API.

The administrative part of the Ledger API provides both a party management service and a package

service. Any implementation of the party and package services is guaranteed to accept inputs and

provide outputs of the format specified by these services. However, the services’ behavior – the rela-

tionship between the inputs andoutputs that the variousparties observe – is largely implementation

dependent. The remainder of the document will present:

1. The minimal behavioral guarantees for identity and package services across all ledger imple-

mentations. The service users can rely on these guarantees, and the implementers must en-

sure that they hold.

2. Guidelines for service users, explaining how different ledgers handle the unspecified part of

the behavior.

Identity Management

A Daml ledger may freely define its own format of party and participant node identifiers, with some

minor constraints on the identifiers’ serialized form. For example, a ledgermay use human-readable

strings as identifiers, such as “Alice” or “Alice’s Bank”. A different ledger might use public keys

as identifiers, or the keys’ fingerprints. The applications should thus not rely on the format of the

identifier – even a software upgrade of a Daml ledger may introduce a new format.

By definition, identifiers identify parties, and are thus unique for a ledger. They do not, however,

have to be unique across different ledgers. That is, two identical identifiers in two different ledgers

1722 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

do not necessarily identify the same real-world party. Moreover, a real-world entity can havemultiple

identifiers (and thus parties) within the same ledger.

Since the identifiers might be difficult to interpret and manage for humans, the ledger may also

accompany each identifier with a user-friendly display name. Unlike the identifier, the display name

is not guaranteed to be unique, and two different participant nodes might return different display

names for the same party identifier. Furthermore, a display name is in general not guaranteed to

have any link to real world identities. For example, a party with a display name “Attorney of Nigerian

Prince”might well be controlled by a real-world entity without a bar exam. However, particular ledger

deployments might make stronger guarantees about this link. Finally, the association of identifiers

to display names may change over time. For example, a party might change its display name from

“Bruce” to “Caitlyn” – as long as the identifier remains the same, so does the party.

Provisioning Identifiers

The set of parties of anyDaml ledger is dynamic: newpartiesmay always be added to the system. The

first step in adding a new party to the ledger is to provision a new identifier for the party. The Ledger

API provides an AllocatePartymethod for this purpose. Themethod, if successful, returns an newparty

identifier. The AllocateParty call can take the desired identifier and display name as optional

parameters, but these aremerely hints and the ledger implementationmay completely ignore them.

If the call returns a new identifier, the participant node serving this call is ready to host the party with

this identifier. For some ledgers (Daml for VMware Blockchain in particular), the returned identifier

is guaranteed to be unique in the ledger; namely, no other call of the AllocateParty method at

this or any other ledger participant may return the same identifier. On Canton ledgers, the identifier

is also unique as long as the participant node is configured correctly (in particular, it does not share

its private key with other participant nodes).

After an identifier is returned, the ledger is set up in such a way that the participant node serving

the call is allowed to issue commands and receive transactions on behalf of the party. However, the

newly provisioned identifier need not be visible to the other participant nodes. For example, consider

the setupwith two participants P1 and P2, where the party Alice_123 is hosted on P1. Assume that

a new party Bob_456 is next successfully allocated on P2. As long as P1 and P2 are connected to the

same Canton domain or Daml ledger, Alice_123 can now submit a command with Bob_456 as an

informee.

For diagnostics, the ledger provides a ListKnownParties method which lists parties known to the par-

ticipant node. The parties can be local (i.e., hosted by the participant) or not.

Identifiers and Authorization

To issue commands or receive transactions on behalf of a newly provisioned party, an application

must provide a proof to the party’s hosting participant that they are authorized to represent the

party. Before the newly provisioned party can be used, the application will have to obtain a token for

this party. The issuance of tokens is specific to each ledger and independent of the Ledger API. The

same is true for the policy which the participants use to decide whether to accept a token.

To learn more about Ledger API security model, please read the Authorization documentation.

1.44. Daml Ledger References 1723

Daml SDK Documentation, 2.7.3

Identifiers and the Real World

The “substrate” on which Daml workflows are built are the real-world obligations of the parties in

the workflow. To give value to these obligations, they must be connected to parties in the real world.

However, the process of linking party identifiers to real-world entities is left to the ledger implemen-

tation.

In centralized deployments, one can simplify the process by trusting the operator of the writer

node(s) with providing the link to the real world. For example, if the operator is a stock exchange, it

might guarantee that a real-world exchange participant whose legal name is “Bank Inc.” is repre-

sentedbya ledger partywith the identifier “Bank Inc.”. Alternatively, itmightusea random identifier,

but guarantee that the display name is “Bank Inc.”. In general, a ledgermight not have such a single

store of identities. The solutions for linking the identifiers to real-world identities could rely on cer-

tificate chains, verifiable credentials, or other mechanisms. The mechanisms can be implemented

off-ledger, using Daml workflows (for instance, a “know your customer” workflow), or a combination

of these.

Package Management

All Daml ledgers implement endpoints that allow for provisioning new Daml code to the ledger. The

vetting process for this code, however, depends on the particular ledger implementation and its

configuration. The remainder of this section describes the endpoints and general principles behind

the vetting process. The details of the process are ledger-dependent.

Package Formats and Identifiers

Any code – i.e., Daml templates – to be uploaded must compiled down to the Daml-LF language. The

unit of packaging for Daml-LF is the .dalf file. Each .dalf file is uniquely identified by its package

identifier, which is the hash of its contents. Templates in a .dalf file can reference templates from

other .dalf files, i.e., .dalf files can depend on other .dalf files. A .dar file is a simple archive

containing multiple .dalf files, and has no identifier of its own. The archive provides a convenient

way to package .dalf files together with their dependencies. The Ledger API supports only .dar file

uploads. Internally, the ledger implementation need not (and often will not) store the uploaded .dar

files, but only the contained .dalf files.

Package Management API

The package management API supports two methods:

• UploadDarFile for uploading .dar files. The ledger implementation is, however, free to reject

any and all packages and return an error. Furthermore, even if the method call succeeds, the

ledger’s vetting processmight restrict the usability of the template. For example, assume that

Alice successfully uploads a .dar file to her participant containing a NewTemplate template.

It may happen that she can now issue commands that create NewTemplate instances with

Bob as a stakeholder, but that all commands that create NewTemplate instances with Charlie

as a stakeholder fail.

• ListKnownPackages that lists the .dalf package vetted for usage at the participant node. Like

with the previousmethod, the usability of the listed templates depends on the ledger’s vetting

process.

1724 Chapter 1. Canton References

https://www.w3.org/TR/vc-data-model/

Daml SDK Documentation, 2.7.3

Package Vetting

Using a Daml package entails running its Daml code. The Daml interpreter ensures that the Daml

code cannot interact with the environment of the system on which it is executing. However, the

operators of the ledger infrastructure nodes may still wish to review and vet any Daml code before

allowing it to execute. One reason for this is that the Daml interpreter currently lacks a notion of

reproducible resource limits, and executing a Daml contract might result in high memory or CPU

usage.

Thus, Daml ledgers generally allow some form of vetting a package before running its code on a

node. Not all nodes in a Daml ledger must vet all packages, as it is possible that some of them will

not execute the code. The exact vetting mechanism is ledger-dependent. For example, in the Daml

Sandbox, the vetting is implicit: uploadingapackage through the Ledger API already vets thepackage,

since it’s assumed that only the system administrator has access to these API facilities. The vetting

process can be manual, where an administrator inspects each package, or it can be automated, for

example, by accepting only packages with a digital signature from a trusted package issuer.

In Canton, participant nodes also only need to vet code for the contracts of the parties they host.

As only participants execute contract code, only they need to vet it. The vetting results may also

differ at different participants. For example, participants P1 and P2might vet a package containing

a NewTemplate template, whereas P3might reject it. In that case, if Alice is hosted at P1, she can

create NewTemplate instances with stakeholder Bob who is hosted at P2, but not with stakeholder

Charlie if he’s hosted at P3.

Package Upgrades

The Ledger API does not have any special support for package upgrades. A new version of an existing

package is treated the same as a completely new package, and undergoes the same vetting process.

Upgrades to active contracts can be done by the Daml code of the new package version, by archiving

the old contracts and creating new ones.

1.44.1.8 Time on Daml Ledgers

The Daml language contains a function getTime which returns the “current time”. However, the con-

cept of a “current time” can be challenging in a distributed setting.

This document describes the detailed semantics of time on Daml ledgers, centered around the two

timestamps assigned to each transaction: the ledger time lt_TX and the record time rt_TX.

Ledger Time

The ledger time lt_TX is a property of a transaction. It is a timestamp that defines the value of all

getTime calls in the given transaction, and has microsecond resolution. The ledger time is assigned

by the submitting participant as part of the Daml command interpretation.

1.44. Daml Ledger References 1725

Daml SDK Documentation, 2.7.3

Record Time

The record time rt_TX is another property of a transaction. It is a timestamp with microsecond res-

olution, and it is assigned by the backing storage mechanism when the transaction is persisted.

The record time should be an intuitive representation of “real time”, but the Daml abstract ledger

model does not prescribe exactly how to assign the record time. Each persistence technology might

use a different way of representing time in a distributed setting.

Guarantees

The ledger time of a valid transaction TXmust fulfill the following rules:

1. Causal monotonicity: for any action (create, exercise, fetch, lookup) in TX on a contract C,

lt_TX >= lt_C, where lt_C is the ledger time of the transaction that created C.

2. Bounded skew: rt_TX ­ skew_min <= lt_TX <= rt_TX + skew_max, where skew_min

and skew_max are parameters defined by the ledger.

Apart from that, no other guarantees are given on the ledger time. In particular, neither the ledger

time nor the record time need to be monotonically increasing.

Time has therefore to be considered slightly fuzzy in Daml, with the fuzziness depending on the

skew parameters. Daml applications should not interpret the value returned by getTime as a precise

timestamp.

Ledger Time Model

The ledger time model is the set of parameters used in the assignment and validation of ledger time.

It consists of the following:

1. skew_min and skew_max, the bounds on the difference between lt_TX and rt_TX.

2. transaction_latency, the averageduration from the timea transaction is submitted froma

participant to the ledger until the transaction is recorded. This value is used by the participant

to account for latency when submitting transactions to the ledger: transactions are submitted

slightly ahead of their ledger time, with the intention that they arrive at lt_TX == rt_TX.

The ledger time model is part of the ledger configuration and can be changed by ledger operators

through the SetTimeModel config management API.

Assign Ledger Time

The ledger time is assigned automatically by the participant. In most cases, Daml applications will

not need to worry about ledger time and record time at all.

For reference, this section describes the details of how the ledger time is currently assigned. The

algorithm is not part of the definition of time in Daml, and may change in the future.

1. When submitting commands over the ledger API, users can optionally specify a

min_ledger_time_rel or min_ledger_time_abs argument. This defines a lower bound

for the ledger time in relative and absolute terms, respectively.

2. The ledger time is set to the highest of the following values:

1726 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1. max(lt_C_1, ..., lt_C_n), the maximum ledger time of all contracts used by the

given transaction

2. t_p, the local time on the participant

3. t_p + min_ledger_time_rel, if min_ledger_time_rel is given

4. min_ledger_time_abs, if min_ledger_time_abs is given

3. Since the set of commands used by a given transaction can depend on the chosen time, the

above process might need to be repeated until a suitable ledger time is found.

4. If no suitable ledger time is found after 3 iterations, the submission is rejected. This can hap-

pen if there is contention around a contract, or if the transaction uses a very fine-grained con-

trol flow based on time.

5. At this point, the ledger time may lie in the future (e.g., if a large value for

min_ledger_time_rel was given). The participant waits until lt_TX ­ transac­

tion_latency before it submits the transaction to the ledger - the intention is that the

transaction is recorded at lt_TX == rt_TX.

Use the parameters min_ledger_time_rel and min_ledger_time_abs if you expect that com-

mand interpretation will take a considerate amount of time, such that by the time the resulting

transaction is submitted to the ledger, its assigned ledger time is not valid anymore. Note that these

parameters can only make sure that the transaction arrives roughly at rt_TX at the ledger. If a sub-

sequent validation on the ledger takes longer than skew_max, the transaction will still be rejected

and you’ll have to ask your ledger operator to increase the skew_max time model parameter.

1.44.2 Canton Advanced Architecture

1.44.2.1 Contract Keys in Canton

Daml provides a “contract key” mechanism for contracts, similar to primary keys in relational

databases. When using multi-domain topologies, Canton will support the full syntax of contract

keys, but only a reduced semantics. That is, all valid Daml contracts using keys will run on Canton,

but their behavior may deviate from the prescribed one. This document explains the deviation, as

well as ways of recovering the full functionality of keys in some scenarios. It assumes a reasonable

familiarity with Daml.

Note: This section covers a preview feature, when using contract keys in a multi-domain setup.

By default, contract key uniqueness is enabled, and therefore this section does not apply. However,

contract key uniquenesswill soon be deprecated, as uniqueness cannot be enforced amongmultiple

domains. We encourage to build your models already anticipating this change.

Keys have two main functions:

• Simplifying the modeling of mutable state in Daml. Daml contracts are immutable and can

be only created andarchived. Mutating a contractC ismodeledby archivingCandcreating

a new contract C'which is amodified version of C. Other than keys, Daml offers nomeans

to capture the relation between C and C'. After archiving C, any contract D that contains

the contract ID of C is left with a dangling reference. This makes it cumbersome to model

mutable state that is split across multiple contracts. Keys provide mutable references

in Daml; giving C and C' the same key K allows D to store K as a reference that will start

pointing to C' after archiving C.

• Checking that no active contract with a given key exists at some point in time. This

mainly serves to provide uniqueness guarantees, which are useful in many cases.

1.44. Daml Ledger References 1727

Daml SDK Documentation, 2.7.3

One is that they can serve to de-duplicate data coming from external sources. Another

one is that they allow “natural” mutable references, e.g., referring to a user by their

username or e-mail.

Canton participants and domains can be run in two modes:

1. In unique-contract-key (UCK) mode, contract keys in Canton provide both functions; there can be at most one active contract for each key on a UCK domain.

However, only UCK participants can connect to UCK domains and the first UCK domain a

UCK participant connects to is the only domain that the participant can connect to in its

lifetime. UCK domains and their participants are thus isolated islands that are deprived

of Canton’s composability and interoperability features.

2. In non-unique-keys mode, contract keys in Canton provide the first, but not the second function,

at least not without additional effort or restrictions. In particular:

1. In Canton, two (or more) active contracts with the same key may exist simultaneously on

the same or different domains.

2. If no submitting party is a stakeholder of an active contract instance of template Tem­

platewith the keyk visible on the submitting participantwhen the participant processes

the submission, then a lookupByKey @Template k may return None even if an active

contract instance of template Templatewith the key k exists on the virtual shared ledger

at the point in time when the transaction is committed.

3. A fetchByKey @Template k or an exerciseByKey @Template k or a positive

lookupByKey @Template k (returning Some cid) may return any active contract of

template Template with key k.

In the remainder of the document we:

• give more detailed examples of the differences above

• give an overview of how keys are implemented so that you can better understand their behavior

• show workarounds for recovering the uniqueness functionality in particular scenarios on normal

domains

• give a formal semantics of keys in Canton, in terms of the Daml ledger model

• explain how to run a domain in UCK mode.

Domains with Uniqueness Guarantees

By default, Canton domains and participants are currently configured to provide unique contract

key (UCK) semantics. This will be deprecated in the future, as such a uniqueness constraint cannot

be supported on a distributed system in a useful way. The semantic differences from the ledger model

disappear if the transactions are submitted to a participant connected to a Canton domain in UCK

mode. The workarounds are therefore not needed.

A UCK participant can connect only to a UCK domain. Moreover, once it has successfully connected

to a UCK domain, it will refuse to connect to another domain. Accordingly, conflict detection on a

single domain suffices to check for key uniqueness. Participants connected to a UCK domain check

for key conflicts whenever they host one of the key maintainers:

• When a contract is created, they check that there is no other active contract with the same key.

• When the submitted transaction contains a negative key lookup, the participants check that

there is indeed no active contract for the given key.

1728 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Warning: Daml workflows deployed on a UCK domain are locked into this domain. They cannot

use Canton’s composability and interoperability features because the participants will refuse to

connect to other domains.

Non Unique Contract Keys Mode

This section explains how contract keys behave on participants connected to Canton domains with-

out unique contract keys. This mode can be activated by setting

canton {

domains {

alpha {

// subsequent changes have no effect and the mode of a node can never␣

↪→be changed

init.domain­parameters.unique­contract­keys = false

}

}

participants {

participant1 {

// subsequent changes have no effect and the mode of a node can never␣

↪→be changed

init.parameters.unique­contract­keys = false

}

}

}

Note: Non-Unique contract keys is preview only and currently broken. Multiple keys will override

each other.

Examples of Semantic Differences

Double Key Creation

Consider the following template:

template Keyed

with

sig: Party

k: Int

where

signatory sig

key (sig, k): (Party, Int)

maintainer key._1

The Daml contract key semantics prescribe that no two active Keyed contracts with the same keys

should exist. For example, consider the following Daml script:

multiple = script do

alice <­ allocateParty "alice"

(continues on next page)

1.44. Daml Ledger References 1729

Daml SDK Documentation, 2.7.3

(continued from previous page)

submitMustFail alice $ do

createCmd (Keyed with sig = alice, k = 1)

createCmd (Keyed with sig = alice, k = 1)

pure ()

Alice’s submission must fail, since it attempts to create two contracts with the key (Alice, 1). In

Canton, however, the submission is legal and will succeed (if executed, for example, through Daml

Script). Thus, you cannot directly rely on keys to ensure the uniqueness of user-chosen usernames

or external identifiers (e.g., order identifiers, health record identifiers, entity identifiers) in Canton.

False lookupByKey Negatives

Similarly, your code might rely on the negative case of a lookupByKey:

template Initialization

with

sig: Party

k: Int

where

signatory sig

template Orchestrator

with

sig: Party

where

signatory sig

nonconsuming choice Initialize: Optional (ContractId Initialization)

with

k: Int

controller sig

do

optCid <­ lookupByKey @Keyed (sig, k)

case optCid of

None ­> do

create Keyed with ..

time <­ getTime

cid <­ create Initialization with sig, k

pure $ Some cid

Some _ ­> pure None

When running a process (represented by the Initialization template here), youmight use a pat-

tern like above to ensure that it is run only once. The Initialization template does not have a

key. Nevertheless, if all processing happens through the Orchestrator template, there will only

ever be one Initialization created for the given party and key. For example, the following script

creates only one Initialization contract:

lookupNone = script do

alice <­ allocateParty "alice"

orchestratorId <­ submit alice do

createCmd Orchestrator with sig = alice

submit alice do

exerciseCmd orchestratorId Initialize with k = 1

(continues on next page)

1730 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

submit alice do

exerciseCmd orchestratorId Initialize with k = 1

In scripts, transactions are executed sequentially. Alice’s second submission above will always

find the existing Keyed contract, and thus execute the Some branch of the Initialize choice. In

real-world applications, transactions may run concurrently. Assume that initTx1 and initTx2

are run concurrently, and that these are the first two transactions running the Initialize choice.

Then, during their preparation, both of them might execute the None branch (i.e., lookupByKey

might return a negative result), and thus both might try to create the Initialization contract.

However, negative lookupByKey results must be committed to the ledger, and the key consistency

requirements prohibit both of them committing. Thus, one of initTx1 and initTx2 might fail, or

they both might succeed (if one of them sees the effects of the other and then executes the Some

branch), but in either case, only one Initialization contract will be created.

In Canton, however, it is possible that both initTx1 and initTx2 execute the None branch, yet both

get committed. For example, if theparticipant processes the submissions forinitTx1andinitTx2

concurrently, neither will see initTx1 the Initialization contract created by initTx2 nor vice

versa. Canton orders the transactions only after the commandshave been interpreted, and in normal

mode it does not check the consistency of negative lookup by keys after ordering any more. Thus,

two Initialization contracts may get created.

Semantics of fetchByKey and Positive lookupByKey

Daml also provides a fetchByKey operation. Daml commands are evaluated against some active

contract set. WhenDaml encounters afetchByKey command, it tries to find an active contract with

the given key (and fails if it cannot). Since Daml semantics prescribe that only one such contract

may exist, it is clear which one to return. For example, consider the script:

fetchSome = script do

alice <­ allocateParty "alice"

keyedId1 <­ submit alice do

createCmd Keyed with sig = alice, k = 1

keyedId2 <­ submitMustFail alice do

createCmd Keyed with sig = alice, k = 1

(foundId, _) <­ submit alice do

createAndExerciseCmd (KeyedHelper alice) $ FetchByKey (alice, 1)

assert $ foundId == keyedId1

optFoundId <­ submit alice do

createAndExerciseCmd (KeyedHelper alice) $ LookupByKey (alice, 1)

assert $ optFoundId == Some keyedId1

The script uses a helper template KeyedHelper shown at the end of this section because fetch­

ByKey and lookupByKey cannot be used directly in a Daml script.

Daml’s contract key semantics says that Alice’s second submission must fail, since a contract with

the given key already exists. Thus, her third submission will always succeed, and return keyedId1,

since this is the only Keyed contract with the key (Alice, 1). Similarly, her fourth submission will

also successfully find a contract, which will be keyedId1.

As discussed earlier, Alice’s second submission in the above script will succeed in Canton. Alice’s

third and fourth submissions thus may return different contract IDs, with each returning either

keyedId1, or keyedId2. Whichever one is returned, a successful fetchByKey and lookupByKey

1.44. Daml Ledger References 1731

https://discuss.daml.com/t/in-daml-script-do-we-have-equivalent-command-for-lookupbykey-fetchbykey/919

Daml SDK Documentation, 2.7.3

still guarantees that the returned contract is active at the time when the transaction gets commit-

ted. As mentioned earlier, negative lookupByKey results may be spurious.

template KeyedHelper

with

p: Party

where

signatory p

choice FetchByKey: (ContractId Keyed, Keyed)

with keyP: (Party, Int)

controller p

do fetchByKey @Keyed keyP

choice LookupByKey: Optional (ContractId Keyed)

with keyP: (Party, Int)

controller p

do lookupByKey @Keyed keyP

Canton’s Implementation of Keys

Internally, a Canton participant node has a component that provides the gRPC interface (the “Ledger

API Server”), and another component that synchronizes participants (the “sync service”). When a

command is submitted, the Ledger API Server evaluates the command against its local view, in-

cluding the resolution of key lookups (lookupByKey and fetchByKey). Submitted commands are

evaluated in parallel, both on a single node and across different nodes.

The evaluated command is then sent to the sync service, which runs Canton’s commit protocol. The

protocol provides a linear ordering of all transactions on a single domain, and participants check

all transactions for conflicts, with an earlier-transaction-wins policy. As participants only see parts

of transactions (the joint projection of the parties they host), they only check conflicts on contracts

for which they host stakeholders. During conflict detection, positive key lookups (that find a con-

tract ID based on a key) are treated as ordinary fetch commands on the found contract ID, and the

contract ID is checked to still be active. Negative key lookups, on the other hand, are never checked

by Canton (a malicious submitter, for example, can always successfully claim that the lookup was

negative). Similarly, contract creations are not checked for duplicate keys. Logically, both of these

checks would require checking a “there is no such key” statement. Canton does not check such

statements. While adding the check to the individual participants is straightforward, it is hard to

getmeaningful guarantees from such local checks because each participant has only a limited view

of the entire virtual global ledger. For example, the check could pass locally on a participant even

though there exists a contract with the given key on some domain that the participant is not con-

nected to. Similarly, since the processing of different domains runs in parallel, it is unclear how to

consistently handle the case where transactions on different domains create two contracts with the

same key.

For integrity, the participants also re-evaluate the submitted command (or, more precisely, the sub-

transaction in the joint projection of the parties they host). The commit protocol ensures that any two

involved participants will evaluate the key lookups in the same way as the Ledger API Server of the

submitting participant. That is, if there are two active contracts with the key k, the protocol insures

that a fetchByKey k will return the same contract on all participants.

Once the syncprotocol commits a transaction, it informs the Ledger API server, which thenatomically

updates its set of active contracts. The transactions are passed to the Ledger API server in the order

1732 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

in which they are recorded on the ledger.

Workarounds for Recovering Uniqueness

Since some form of uniqueness for ledger data is necessary in many cases, we list some strategies

to achieve it in Cantonwithout being locked into a UCKdomain. The strategies’ applicability depends

on your contracts and the deployment setup of your application. In general, none of the strategies

apply to the case where creations and deletions of contracts with keys are delegated.

Setting: Single Maintainer, Single Participant Node

Often, contracts may have a single maintainer (e.g., an “operator” that wants to have unique user

names for its users). In the simplest case, themaintainer party will be hosted on just one participant

node. This setting allows some simple options for recovering uniqueness.

Command ID Deduplication

The Ledger API server deduplicates commands based on their IDs. Note, however, that the IDs are

deduplicated only within a configured window of time. This can simplify the uniqueness bookkeep-

ing of your application as follows. Before your application sends a command that creates a contract

with the key k, it should first check that no contract with the key k exists in a recent ACS snapshot

(obtained from the Ledger API). Then, it should use a command ID that is a deterministic function of

k to send the command. This protects you from the race condition of creating the key twice concur-

rently, without having to keep track of commands in flight. Caveats to keep in mind are:

• you need to know exactly which contracts with keys each of your commands will create

• your commands may only create contracts with a single key k

• only the maintainer party may submit commands that create contracts with keys (i.e., do not

delegate the creation to other parties).

However, these conditions are often true in simple cases (e.g., commands that create new users).

Generator Contract

Another approach is to funnel all creations of the keyed contracts through a “generator” contract.

An example generator for the Keyed template is shown below.

template Generator

with

sig: Party

where

signatory sig

choice Generate : (ContractId Generator, ContractId Keyed)

with

k: Int

controller sig

do

existing <­ lookupByKey @Keyed (sig, k)

(continues on next page)

1.44. Daml Ledger References 1733

Daml SDK Documentation, 2.7.3

(continued from previous page)

keyed <­ case existing of

Some cid ­> pure cid

None ­>

create Keyed with ..

gen <­ create this

pure (gen, keyed)

The main difference from the Orchestrator contract is that the Generate choice is consuming.

Caveats to keep in mind are:

• Your applicationmust ensure that you only ever create one Generator contract (e.g., by creat-

ing one when initializing the application for the first time).

• All commands that create the Keyed contract must be issued by themaintainer (in particular,

do not delegate choices on the Generator contract to other parties).

• Youmust not create Keyed contracts by any other means other than exercising the Generate

choice.

• The Generate choice as shown abovewill not abort the command if the contract with the given

key already exists, it will just return the existing contract. However, this is easy to change.

• This approach relies on a particular internal behavior of Canton (as discussed below). While

we don’t expect the behavior to change, we do not currentlymake strong guarantees that it will

not change.

• If the participant is connected to multiple domains, the approach may fail in future versions

of Canton. To be future-proof, you should only use it in the settings when your participant is

connected to a single domain.

A usage example script is below.

generator = script do

alice <­ allocateParty "Alice"

­­ Your application must ensure that the following command runs at most once

gen <­ submit alice $

createCmd Generator with sig = alice

(gen, keyed) <­ submit alice $

exerciseCmd gen Generate with k = 1

(gen, keyed1) <­ submit alice $

exerciseCmd gen Generate with k = 1

assert $ keyed1 == keyed

submit alice $

exerciseCmd keyed Archive

(gen, keyed2) <­ submit alice $

exerciseCmd gen Generate with k = 1

assert $ keyed2 /= keyed

To understand why this works, first read how keys are implemented in Canton. With this inmind, since

the Generate choice is consuming, if you issue two or more concurrent commands that use the

Generate choice, at most one of them will succeed (as the Generator contract will be archived

when the first transaction commits). Thus, all accepted commands will be evaluated sequentially

by the Ledger API server. As the server writes the results of accepted commands to its database

atomically, the Keyed contract created by one command that uses Generate will either be visible

to the following command that usesGenerate, or it will have been archivedby someother, unrelated

command in between.

1734 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Setting: Single Maintainer, Multiple Participants

Ensuring uniqueness with multiple participants is more complicated, and adds more restrictions

on how you operate on the contract.

The main approach is to track all “allocations” and “deallocations” of a key through a helper con-

tract.

template KeyState

with

sig: Party

k: Int

allocated: Bool

where

signatory sig

choice Allocate : (ContractId KeyState, ContractId Keyed)

controller sig

do

assert $ not allocated

newState <­ create this with allocated = True

keyed <­ create Keyed with ..

pure (newState, keyed)

choice Deallocate : ContractId KeyState

controller sig

do

assert $ allocated

(cid, _) <­ fetchByKey @Keyed (sig, k)

exercise cid Archive

create this with allocated = False

Caveats:

• Before creating a contract with the key k for the first time, your application must create the

matching KeyState contract with allocated set to False. Such a contract must be created

at most once. Most likely, you will want to choose a “master” participant on which you create

such contracts.

• Do not delegate choices on the Keyed contract to parties other than the maintainers.

• Youmust never send a command that creates or archives the Keyed contract directly. Instead,

you must use the Allocate and Deallocate choices on the KeyState contract. The only

exception are consuming choices on the Keyed contract that immediately recreate a Keyed

contract with the same key. These choices may also be delegated.

A usage example script is below.

state = script do

alice <­ allocateParty "Alice"

­­ Your application must ensure that the following command executes at most once

state <­ submit alice $

createCmd KeyState with sig = alice, k = 1, allocated = False

(state, keyed) <­ submit alice $

exerciseCmd state Allocate

submitMustFail alice $

exerciseCmd state Allocate

­­ If you archive the keyed contract without going through the

(continues on next page)

1.44. Daml Ledger References 1735

Daml SDK Documentation, 2.7.3

(continued from previous page)

­­ KeyState, you must also recreate it in the same transaction.

­­ For example, if Keyed had consuming choices, the choices' bodies

­­ would have to recreate another Keyed contract with the same key

submit alice $ do

exerciseCmd keyed Archive

createCmd Keyed with sig = alice, k = 1

pure ()

state <­ submit alice $

exerciseCmd state Deallocate

(state, keyed2) <­ submit alice $

exerciseCmd state Allocate

assert $ keyed2 /= keyed

An alternative to this approach, if you want to use a consuming choice ch on the Keyed template

that doesn’t recreate key, is to record the contract ID of theKeyState contract in theKeyed contract.

You can then call Deallocate from ch, but you must first modify Deallocate to not perform a

lookupByKey.

Setting: Multiple Maintainers

Achieving uniqueness for contracts withmultiplemaintainers ismore difficult, and themaintainers

must trust each other. To handle this case, follow the KeyState approach from the previous section.

Themain difference is that the KeyState contractsmust havemultiple signatories. Thus youmust

follow the usual Daml pattern of collecting signatories. Be aware that you must still structure this

such that you only ever create one KeyState contract.

Formal Semantics of Keys in Canton

In termsof theDaml ledgermodel, Canton’s virtual shared ledger satisfies key consistency onlywhen it

represents a single UCK domain. In general, Canton’s virtual shared ledger violates key consistency.

That is, NoSuchKey k actions may happen on the ledger even when there exists an active contract

with the key k. Similarly, Create actions for a contract with the key kmay appear on the ledger even

if another active contract with the key k exists.

In terms of Daml evaluation, i.e., the translation of Daml into the ledger model transactions, the

following changes:

• When evaluated against an active contract set, a fetchByKey kmay result in a Fetch c ac-

tion for any active contract c with the key k (in Canton, there can be multiple such contracts).

In the current implementation, it will favor themost recently created contract within the single

transaction. However, this is not guaranteed to hold in future versions of Canton. If no contract

with key k is active, it will fail as usual.

• Similarly, lookupByKey kmay result in a Fetch c for any active contract c with the key k of

which the submitter is a stakeholder. If no such contract exists, it results in a NoSuchKey k

as usual.

• Likewise, an exerciseByKey kmay result in an Exercise on any contract c with the key k.

It fails if no contract with key k is active.

1736 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.44.2.2 Domain Architecture and Integrations

Recall the high-level topology with Canton domains being backed by different technologies, such as

a relational database as well as block-chains like Hyperledger Fabric or Ethereum.

In this chapter we define the requirements specific to a Canton domain, explain the generic domain

architecture, as well as the concrete integrations for Canton domains.

Domain-specific Requirements

The high-level requirements define requirements for Canton in general, covering both participant

and domains. This section categorizes and expands on these high-level requirements and defines

domain-specific requirements, both functional and non-functional ones.

1.44. Daml Ledger References 1737

Daml SDK Documentation, 2.7.3

Functional Requirements

The domain contributes to the high-level functional requirements in terms of facilitating the syn-

chronization of changes. As the domain can only see encrypted transactions, refer to transaction

privacy in the non-functional requirements, the functional requirements are satisfied on a lower

level than the Daml transaction level.

• Synchronization: The domainmust facilitate the synchronization of the shared ledger among

participants by establishing a total-order of transactions.

• Transparency: The domain must inform the designated participants timely on changes to the

shared ledger.

• Finality: The domain must facilitate the synchronization of the shared ledger in an

append-only fashion.

• No unnecessary rejections: The domain should minimize unnecessary rejections of valid

transactions.

• Seek support for notifications: The domain must facilitate offset-based access to the notifi-

cations of the shared ledger.

Non-Functional Requirements

Reliability

• Seamless fail-over for domain entities: All domain entities must be able to tolerate crash

faults up to a certain failure rate, e.g., 1 sequencer node out of 3 can fail without interruption.

• Resilience to faulty domain behavior: The domain must be able to detect and recover from

failures of the domain entities, such as performing a fail-over on crash failures or retrying op-

erations on transient failures if possible. The domain should tolerate byzantine failures of the

domain entities.

• Backups: The state of the domain entities have to be backed up such that in case of disaster

recovery only minimal amount of data is lost.

• Site-wide disaster recovery: In case of a failure of a data-center hosting a domain, the system

must be able to fail-over to another data-center and recover operations.

• Resilience to erroneous behavior: The domain must be resilient to erroneous behavior from

the participants interacting with the domain.

Scalability

• Horizontal scalability: The parallelizable domain entities and their sub-components must be

able to horizontally scale.

• Large transaction support: The domain entities must be able to cope with large transactions

and their resulting large payloads.

1738 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Security

• Domain entity compromise recovery: In case of a compromise of a domain entity, the do-

main must provide procedures to mitigate the impact of the compromise and allow to restore

operations.

• Standards compliant cryptography: All used cryptographic primitives and their configura-

tions must comply to approved standards and based on existing and audited implementa-

tions.

• Authentication and authorization: The participants interacting with the domain as well as

the domain entities internal to the domain must authenticate themselves and have their ap-

propriate permissions enforced.

• Secure channel (TLS): All communication channels between the participants and the domain

as well as between the domain entities themselves have to support a secure channel option

using TLS, optionally with client certificate-based mutual authentication.

• Distributed Trust: The domain should be able to be operated by a consortium in order to dis-

tribute the trust by the participants in the domain among many organizations.

• TransactionMetadata Privacy: The domain entitiesmust never learn the content of the trans-

actions. The domain entities should learn a limited amount of transaction metadata, such as

structural properties of a transaction and involved stakeholders.

Manageability

• Garbage collection: The domain entities must provide ways to minimize the amount of data

kept on hot storage, in particular data that is only required for auditability can move to cold

storage or data that has been processed and stored by the participants could be removed after

a specific retention period.

• Upgradeability: The domain as a whole or individual domain entities must be able to upgrade

with minimal downtime.

• Semantic versioning: The interfaces, protocols, and persistent data schemas of the domain

entities must be versioned according to semantic versioning guidelines.

• Domain approved protocol versions: The domainmust offer and verify the supported versions

towards the participants. The domainmust further ensure that the domain entities operate on

compatible versions.

• Reuse off-the-shelf solutions: The domain entities should use off-the-shelf solutions for per-

sistence, API specification, logging, and metrics.

• Metrics on communication and processing: The domain entities must expose metrics on

communication and processing to facilitate operations and trouble shooting.

• Component health monitoring: The domain entities must expose a health endpoint for mon-

itoring.

1.44. Daml Ledger References 1739

Daml SDK Documentation, 2.7.3

Domain-Internal Components

The following diagram shows the architecture and components of a Canton domain as well as how

a participant node interacts with the domain.

The domain consists of the following components:

• Domain Service: The first point of contact for a participant nodewhen connecting to a domain.

The participant performsa version handshakewith the domain service anddiscovers the avail-

able other services, such as the sequencer. If the domain requires a service agreement to be

accepted by connecting participants, the domain service will provide the agreement.

• Domain Topology Service: The domain topology services is responsible for all topology man-

agement operations on a domain. The service provides the essential topology state to a new

participant node, i.e., the set of keys for the domain entities to bootstrap the participant node.

Furthermore, participant nodes can upload their own topology transactions to the domain

topology service, which inspects and possibly approves and publishes those topology transac-

tions on the domain via the sequencer.

• Sequencer Authentication Service: A node can authenticate itself to the sequencer service

either using a client certificate or using anauthentication token. The sequencer authentication

service issues suchauthentication tokens after performing a challenge-responseprotocolwith

the node. The node has to sign the challenge with their private key corresponding to a public

key that has been approved and published by the domain identity service.

• Sequencer Service: The sequencer services establishes the total-order ofmessages, including

transactions, within a domain. The service implements a total-order multicast, i.e., the sender

of a message indicates the set of recipients to which the message is delivered. The order is

established based on a unique timestamp assigned by the sequencer to each message.

• Sequencer Manager: The sequencermanager is responsible for initializing the sequencer ser-

vice.

• Mediator: Themediator participates in the Canton transaction protocol and acts as the trans-

action commit coordinator to register new transaction requests and finalizes those requests

by collecting transaction confirmations. Themediator provides privacy among the set of trans-

1740 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

action stakeholders as the stakeholders do not communicate directly but always via the me-

diator.

The domain operator is responsible to operate the domain infrastructure and (optionally) also veri-

fies and approves topology transactions, in particular to admit new participant nodes to a domain.

The operator can either be a single entity managing the entire domain or a consortium of operators,

refer to the distributed trust security requirement.

Drivers

Based on the set of domain internal components, a driver implements one or more components

based on a particular technology. The prime component is the sequencer service and its ordering

functionality, with implementations ranging from a relational database to a distributed blockchain.

Components can be shared among integrations, for example, a mediator implemented on a rela-

tional database can be used together with a blockchain-based sequencer.

Canton Domain on Ethereum

ACanton Ethereumdomainuses a sequencer backedby Ethereum instead of by another ledger (such

as Postgres or Fabric). The other domain components (mediator, domain manager) are reused from

the relational database driver. Architecturally, the Canton Ethereum sequencer is a JVM applica-

tion that interacts with an Ethereum client via the RPC JSON API to write events to the blockchain.

Specifically, it interacts with an instance of the smart contract Sequencer.sol and calls function

of Sequencer.sol to persist transactions and requests to the blockchain. It uses the configured

Ethereum account to execute these calls. Analogous to the database-based sequencer implementa-

tions, multiple Ethereum sequencer applications can read and write to the same Sequencer.sol

smart contract instance and they can do so through different Ethereum client nodes for high avail-

ability, scalability, and trust. The following diagrams shows the architecture of an Ethereum-based

domain:

Note: When running in a multi-writer setup, each Ethereum Sequencer application needs to use a

separate Ethereum account. Otherwise, transactions may get stuck due to nonce mismatches.

Smart contract Sequencer.sol

The smart contract deployed to the blockchain is implemented in Solidity. Its latest revision

drivers/ethereum/solidity/Sequencer.sol is available in the enterprise edition only.

Data is written to the blockchain by emitting events to the transaction logs. The Sequencer Applica-

tion reads all transactions (and transaction logs) created from calls to Sequencer.sol and keeps

its ownstore for a viewof the sequencer history. This enables theSequencer Application to serve read

subscriptions promptly without having to query the Ethereum client and to restart without having

to re-read all the history. The store can either use in-memory storage or persistent storage (using a

database).

1.44. Daml Ledger References 1741

https://eth.wiki/json-rpc/API
https://docs.soliditylang.org/en/stable/contracts.html#events

Daml SDK Documentation, 2.7.3

Canton Domain on Fabric

Introduction to Hyperledger Fabric

Hyperledger Fabric is an open source enterprise-grade permissioned distributed ledger technology

(DLT) platform.

Components of the Fabric Blockchain Network

The following key concepts of Fabric are relevant for the Canton domain integration with Fabric. For

further details, refer to the Fabric documentation.

• Peers: A network entity that maintains a Fabric ledger and runs chaincode containers in or-

der to perform read/write operations to the Fabric ledger. Peers are owned and maintained by

organizations.

• Channels: A channel is a private blockchain overlay which allows for data isolation and con-

fidentiality. A channel-specific Fabric ledger is shared across the peers in the channel, and

transacting parties must be authenticated to a channel in order to interact with it. Members

who are not a part of the channel are unable see the transactions or even know that the channel

exists.

• Ordering Service: Also known as orderer. A defined collective of nodes that orders transac-

tions into a block and then distributes blocks to connected peers for validation and commit.

The ordering service exists independent of the peer processes and orders transactions on a

first-come-first-serve basis for all channels on the network.

• Chaincode: Asmart contract is code – invokedbya client application external to theblockchain

network – that manages access andmodifications to the current Fabric ledger state via trans-

actions. In Hyperledger Fabric, smart contracts are packaged as chaincode. Chaincode is in-

stalled on peers and then defined and used on one or more channels. An endorsement policy

specifies for each instantiation of a chaincode which peers have to validate and endorse a

1742 Chapter 1. Canton References

https://hyperledger-fabric.readthedocs.io/
https://hyperledger-fabric.readthedocs.io/en/release-2.2/key_concepts.html

Daml SDK Documentation, 2.7.3

Fig. 32: An example Fabric blockchain network with four organizations. The ordering service has

ordering nodes for ordering and distributing blocks on each of the channels defined under the or-

dering service. Channel A includes all four organizations, while channel B includes only Org 3 and

Org 4. Authenticated client applications can send calls to their associated peers on the network.

1.44. Daml Ledger References 1743

Daml SDK Documentation, 2.7.3

transaction, such that the transaction is considered valid and part of the Fabric ledger.

• Applications: Client applications in a Fabric-based network interact with the Fabric ledger us-

ing one of the available Fabric SDKs. Applications are able to propose changes to the ledger

as well as to query the state of the ledger by using an identity issued by the organization’s

certificate authority (CA).

Architecture

In the v1 architecture of the Fabric driver, only the sequencer is integrated on top of Fabric. The other

domain components are reused from the relational database driver. The Fabric-based sequencer

supports running in a multi-writer, multi-reader topology for high availability, scalability, and trust.

The following diagrams shows the architecture of a Fabric-based domain integration.

1744 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Fabric-based Sequencer

The Fabric Sequencer Application serves as an external standalone sequencer application that par-

ticipants and other domain entities in a Canton network connect to in order to exchange ordered

messages. It is an application that runs over Fabric by a consortium of organizations.

Typically each app operates via one Fabric client that belongs to a specific organization. These Fabric

peers have visibility of the sequencermessages’ metadata (sender and recipients of themessages),

however the messages’ payloads are fully encrypted.

A Canton domain requires beside the Sequencers one Domain Manager and one or more indepen-

dently operated Mediators. All these nodes exclusively communicate with Participants via the Se-

quencer.

Participants trust the app they connect to and they can specify which one to connect to among the

available ones. Participants could verify that Sequencer Applications are reporting consistent in-

formation by connecting to many or periodically checking other apps as they all need to report the

same data.

The application supports a multi-writer, multi-reader architecture, such that multiple Fabric appli-

cations can operate on top of the same Fabric ledger. Sequencer clients within the Participants, Do-

main Manager or Mediators will communicate with the Sequencer Fabric Application and they can

read or write fromany of the available sequencer apps as they will have shared view of the Sequencer

history for the domain.

Additionally, the sameFabric setupwith adifferent channel canbeused to operate different domains

on the same Fabric infrastructure, since each channel contains a separate isolated Fabric ledger.

Sequencer Chaincode

The chaincode is implemented in Go. It supports:

• Registering new members with the sequencer

• Sending messages over the sequencer

– the messages are ordered by the Fabric ordering service and we subsequently use that

order to define counters and timestamps

– if instead the order were defined in chaincode by keeping track of the last message

counter, congestion would be created because the application would either have to pro-

cess onemessage at a time or create amechanism of batchingmessages to be processed

in one transaction

The Sequencer Application reads all transactions created from chaincode operations and keeps its

own store for a view of the sequencer history enabling them to serve read subscriptions promptly

without having to constantly query chaincode and to restart without having to re-read all the history.

1.44. Daml Ledger References 1745

Daml SDK Documentation, 2.7.3

Analysis and Limitations

Below is an analysis with regard to driver requirements (functional and non-functional).

Functional Requirements

The Fabric driver must satisfy the following functional requirements:

Synchronization Fabric’s ordering service establishes a total-order of transactions within a channel.

A Canton domain is based on a single channel.

Transparency The Fabric blockchain ensures that all sequencer nodes obtain the same set of mes-

sages in the same order as established by the ordering service. The sequencer nodes inform

their connected clients about their designated messages where the client is a recipient on.

Finality Fabric’s ordering service provides finality, i.e., there will be no ledger forks and validated

transactions will never be reverted.

Seek support for notifications The Fabric blockchain retains all sent messages and notifications. For

efficiency purposes, the sequencer node caches the messages to satisfy read operations for a

given offset without fetching the corresponding block.

Performance

The current performance we observe with the Fabric integration is around 15 tps of

throughput and average latency of 800ms. Those numbers are based on local perfor-

mance tests using the Daml Ledger API test tool with a simple 2 organizations with 1 peer

each and 1 orderer node topology and a 2 of 2 endorsement policy.

Some factors that positively contribute to the current performance are:

• Using Java for the SDK and Go for chaincode are good choices as opposed to some-

thing like Javascript for being compiled languages

• We added more memory (2GB) to each peer and orderer node in our setup, which

showed considerable performance improvement

• The simplicity of the setup (only 2 peers, one orderer and all local)

• Transactions are usually very small

• Chaincode implementation is very simple

• Some experimentswere conductedwith block cutting parameters such asmaxmes-

sage count (max number of transactions that can exist in a block before a new block

is cut) and batch timeout (max amount of time to wait before creating a block) in

order to find a good balance of throughput and latency for our applications. A good

tradeoff was found at 50 for maxmessage count and 200ms for batch timeout, with

an improvement for throughput at a slight increase in latency.

• We are using LevelDB (instead of CouchDB).

• We are using a round-robin load balancer when connecting to multiple sequencers

and using the both sequencers’ health and connectivity as a failover criteria.

This paper by IBM Research, India and this article by IBM discuss the many factors that

can influence performance. This blog post also shares some Fabric performance best

practices.

1746 Chapter 1. Canton References

http://www.mscs.mu.edu/~mascots/Papers/blockchain.pdf
https://www.ibm.com/blogs/blockchain/2019/01/answering-your-questions-on-hyperledger-fabric-performance-and-scale/
https://adlrocha.substack.com/p/adlrocha-performance-best-practices-72e

Daml SDK Documentation, 2.7.3

Reliability

Seamless fail-over for domain entities The sequencer can be deployed in a multi-writer and

multi-reader topology (i.e. multiple sequencer nodes for the same domain) to achieve

high availability. Since all Fabric sequencer nodes run on top of the same Fabric ledger, they

will all see the same data and does not matter which sequencer is being used to write to and

read from.

Additionally the Fabric sequencer node is backed by a database that caches the data read from

the Fabric ledger such that in case of a crash it won’t have to read the whole blockchain again.

Instead it just needs to start reading the blocks fromwhere it has last processed. The app also

supports crash recovery.

On the client side, round-robin load balancing is used such that if one of the sequencer nodes

goes down or becomes unhealthy clients will not route any requests to this sequencer. The

sequencer provides a health endpoint that is used by clients for this purpose. It will indicate

that it is unhealthy if it loses connection to the Fabric ledger or to its database.

Both themediator and domainmanager are also highly available via an active / passivemech-

anism (one active instance and 1-N passive replicas).

Resilience to faulty domain behavior Although Fabric supports for pluggable consensus protocols

such as crash fault-tolerant (CFT) or byzantine fault tolerant (BFT) protocols that enable the

platform to be customized to fit particular use cases and trust models, at the moment Fabric

only offers a CFT ordering service implementation based on the Raft protocol.

Backups The backup procedures of the Fabric ledger must be used. The state of the sequencer node

is just a cache and can be rehydrated from the state of the ledger.

Site-wide disaster recovery In a multi-writer, multi-reader topology, the sequencer nodes can be

hosted by different organizations and across multiple datacenters to recover from the failure

of an entire datacenter.

Resilience to erroneous behavior The Fabric sequencer node offers some resilience against an erro-

neous participant. For example, it checks that a client does not send messages to invalid re-

cipients and only allows registered and authenticated clients to send messages. Clients are

also required to sign their messages so sequencers can verify their origin, which prevents ma-

licious sequencers from creating fake messages on behalf of specific members.

Scalability

Horizontal scalability Adding an additional sequencer to a domain is simply a matter of creating a

new Fabric user and a new sequencer application with that configuration. A new Fabric or-

ganization and more Fabric peers could also be created, but this is optional. The setup will

horizontally scale as well as a Fabric ledger will, which means performance could suffer if the

Fabric topology is mademore complex by adding peers and orderer nodes, in particular if their

latency to each other is high. But there are ways to make up for that such as using a sim-

pler endorsement policy that does not include all organizations in the setup. That’s a trade-off

between performance and trust that needs to be defined by the consortium.

Large transaction support Some Fabric platforms have a limit on the size of the block (commonly

99MB). This is therefore a hard limit that this sequencer has on the size of the transactions.

1.44. Daml Ledger References 1747

Daml SDK Documentation, 2.7.3

Security

Domain entity compromise recovery Without BFT support, a compromised orderer node cannot be re-

covered from automatically. Operational procedures, such as revoking the node’s certificate,

can limit further impact. Additionally, compromised peer nodes could endorse invalid trans-

actions, but it would take a number of compromised peers enough to satisfy the endorsement

policy to create incorrectly endorsed transactions on the ledger. All sequencer nodesmust pro-

vide the same stream of messages, thus a compromised and malicious sequencer node can

be detected if their stream differs.

Standards compliant cryptography The sequencer node and the other Canton domain entities use

standard modern cryptography (EC-DSA with NIST curves and Ed25519 for signatures, AES128

GCM for symmetric encryption, SHA256 for hashes) provided by Tink/BouncyCastle. Fabric

nodes can be deployed using cryptography provided by an HSM.

Authentication and authorization Authentication is implemented such that any sequencer client

needs to be registered by the topology manager before they can connect. There are also autho-

rization checks such as making sure that the declared sender is the currently authenticated

client. And based on the type of member that is authenticated there are certain operations

which may or may not be allowed.

Secure channel (TLS) The sequencer node provides an API secured with TLS. The Fabric network

should be deployed according to its operations guide with TLS.

Distributed Trust A Fabric network can be operated by multiple organizations forming a consortium

and distributing the trust among the organizations. TheMediator(s) and DomainManager can

only be operated by a single entity, so there is no distribution of trust for these nodes.

Transaction Metadata Privacy The sequencer node and the Fabric nodes (peers, orderer) learn the

metadata of the transaction, in particular the stakeholders involved in the transaction.

Manageability

Garbage collection As Fabric is based on an immutable block-chain, processed sequencermessages

cannot be removed. However there is a preview feature that allow messages to be removed by

storing them in private data collections (which can be purged).

Upgradeability Upgrades of individual domain entitieswithminimal downtimenot yet implemented.

Semantic versioning Canton is released under semantic versioning. The sequencer gRPC API is ver-

sioned with a major version number.

Domain approved protocol versions The authentication protocol validates the version compatibility

between the sequencer nodes and the connecting node.

Reuse off-the-shelf solutions The local state of the sequencer node is stored in a relational database

(Postgres).

Metrics on communication and processing Metrics are not yet fully implemented.

Component health monitoring The sequencer node contains basic health monitoring as an admin

command.

1748 Chapter 1. Canton References

https://hyperledger-fabric.readthedocs.io/en/release-2.2/hsm.html

Daml SDK Documentation, 2.7.3

1.44.2.3 Identity Management

Identity Providing Service

Every synchronization domain requires a shared and synchronized knowledge of identities and their

associated keys among all participants and domain entities as the synchronisation protocol is built

with the principle that provided the samedata, all validatorsmust come verifiably to the same result.

The service that establishes this shared understanding in a domain is the Identity Providing Service

(IPS). From a synchronisation protocol perspective, the IPS is an abstract component and the syn-

chronisation protocol only ever interacts with the read API of the IPS. There is no assumption on how

the IPS is implemented, only the data it provides is relevant from a synchronisation perspective.

The participant nodes, the sequencer and themediator have a local component called the Identity Pro-

viding Service Client (IPS client). This component establishes the connection to the IPS of the domain

to read and validate the identity information in the domain.

The IPS client exposes a read API providing aggregated access to the domain topology information

and public keys provided by the IPS of one or more domains.

The identity providing service receives keys and certificates through some process and evaluates

the justifications, before presenting the information to the IPS clients of the participant or domain

entities. The IPS clients verify the information. The local consumers of the IPS client read API trust the

provided information without verifying the justifications, leading to a separation of synchronisation

and identity management.

Requirements

The identity providing service describes the interface between the identity management process

and the synchronisation functionality. It satisfies the high-level platform requirement on identity

information updates. The following requirements are written from the perspective of the IPS client, i.e.,

the synchronisation layer components.

• Mapping of Parties to Participants. I can query the state at a certain time and subscribe to a

stream of updates associating a known identifier of a party to a set of participants as well as

the local participant to a set of hosted parties. Mapping to a set of participants satisfies the

high-level requirement on parties using multiple participants.

• Participant Qualification. I can query the state at a certain time and subscribe to a stream of

updates informing me about the trust level of a participant indicating either untrusted (trust

level of 0) or trusted (trust level of 1).

• Participant Relationship Qualification. A party to participant relationship is qualified, re-

stricted to submission (including confirmation), confirmation, observation (read-only). This

also satisfies the high-level requirement on read-only participants.

• Domain aware mapping of Participants to Keys. I can query the state at a certain time and

subscribe to a stream of updates mapping participants to a set of keys per synchronization

domain.

• Domain Entity Keys. I can query the current state and subscribe to a stream of updates on the

keys of the domain entities.

• Lifetime and Purpose of Keys. I can learn for any key that I receive for what it can be used, what

cryptographic protocol it refers to and when it expires.

• Signature Checking. Given a blob, a key I obtained from the IPS and a signature, I can verify

that the signature is a valid signature for the given blob, signed with the respective key at a

1.44. Daml Ledger References 1749

Daml SDK Documentation, 2.7.3

certain time.

• Immutability. The history of all keys is preservedwithin the same time boundaries asmy audit

logs such that I can always audit my participant or domain entity logs.

• Evidence. For any data which I receive from the IPS I can get the set of associated evidence

such that I can prove my arguments in a legal dispute. The associated evidence contains a

descriptor which I can use to read up in the documentation on the definition of the otherwise

opaque blob.

• Race Condition Free. I can be sure that I am always certain about the validity of a key with re-

spect to a transaction such that there cannot be a disagreement on the validity of a transaction

due to an in-flight key change.

• Querying for Parties. I can query, using an opaque query statement, the IPS for a party and will

receive results based on a privacy policy not known to me.

• Party metadata. I can access metadata associated with a party for display purposes.

• Equivalent Trust Assumptions A federation protocol of the reference identity management

service needs to be based on equivalent trust assumptions as the interoperability protocol

such that there is no mismatch between the capabilities of the two.

Associated requirements that extend beyond the scope of the IPS:

• API Versioning. I can use a versioned API which supports further extensions, see our general

principles of upgradability and Software Versioning.

• GDPR compliance. The identity providing service needs to comply with regulatory require-

ments such as the GRPR right to be forgotten.

• Composability. The identity providing service needs to be composable such that I can add my

own identity providing service based on the documentation and released binary artefacts.

Identity Management Design

While the previous section introduced the IPS as an abstract concept, we describe here the concrete

implementation of our globally composable topologymanagement systemwhich incorporates iden-

tity. The design is introduced by first calling out a few basic design principles. We then introduce a

formalism for the necessary topology management transactions. Finally, we connect the formalism

to actual processes and cryptographic artefacts that describe the concrete implementation.

Design Principles

In order to understand the approach, a few key principles need to be introduced.

The synchronisation protocol is separated from the topology protocol. However, in order to leverage

the composability properties of the synchronisation protocol, an equivalent approach is required for

topology transactions. As such, given that there is no single globally trusted entity we can rely on for

synchronisation, we also can’t rely on a single globally trusted entity to establish identities, which

leads us to the first principle:

Principle 1: For global synchronization to work in reality, there cannot be a single trust anchor.

A cryptographic key pair can uniquely be identified through the fingerprint of the public key. By

owning the associated private key, an entity can always prove unambigously through a signature

that the entity is the owner of the public key. We are using this principle heavily in our system to

verify andauthorize the activities of the participants. As such, we can introduce the secondprinciple:

1750 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Principle 2: A participant is someone who can authorize and whose authorizations can be verified

(someone with a known key)

In short, a participant is someone with a key or with a set of keys that are known to belong together.

However, the above definition doesn’t mean that we necessarily know who owns the key. Ownership

is an abstract aspect of the real world and is not relevant for the synchronisation itself. Real world

ownership is only relevant for the interpretation of the meaning of some shared data, but not of the

data processing itself.

Therefore, we introduce the third principle:

Principle 3: We separate certification of system identities and legal identities (or separation of

cryptographical identity and metadata)

Using keys, we can build trust chains by having a key sign a certificate certifying some ownership or

some fact to be associated with another key. However, at the root of such chains is always the root

key. The root key itself is not certified and the legal ownership cannot be verified: we just need to

believe it. As an example, if we look at our local certificate store on our device, then we just believe

that a certain root is owned by a named certificate authority. And our believe is rooted in the trust

into our operating system provider that they have included only legitimate keys.

As such, any link between legal identities to cryptographic keys through certificates is based on a

believe that the entity controlling the root key is honest and ensured that everybody attached to the

trust-root has been appropriately vetted. Therefore, we can only believe that legal identities are prop-

erly associated, but verifying it in the absolute sense is very difficult, especially impossible online.

Another relevant aspect is that identity requirements are asymmetrical properties. While large cor-

porations want to be known by their name (BANK), individuals tend to be more closed and would

rather like that their identity is only revealed if really necessary (GDPR, HIPAA, confidential informa-

tion, bank secrecy). Also, by looking at a bearer bond for example, the owner has a much higher

interest in the identity of the obligor than the obligor has in the owner. If the obligor turns out to

be bad or fraud, the owner might loose all their money. In contrast, the obligor doesn’t really care

to whom they are paying back the bond, except for some regulatory reasons. Therefore, we conclude

the fourth principle

Principle 4: Identities on the ledger are an asymmetric problem, where privacy and publicity needs

to be carefully weighted on a case by case basis.

Formalism for a Global Composeable Topology System

Definitions

In order to construct a global composable topology system that incorporates identity, we intro-

duce a topology scheme leading to globally unique identifiers. This allows us to avoid federation,

which would require cooperation between identity providers or consensus among all participants

and would be difficult to integrate with the synchronisation protocol.

We use (pxk, s
x
k) to refer to a public/private key pair of some cryptographic scheme, where the

super-script x will provide the context of the usage of the key and the sub-script k will be used to

distinguish keys.

In the following, we use the fingerprint of a public key Ik = fingerprint(pk) in order to refer to a

key-pair (pk, sk).

1.44. Daml Ledger References 1751

Daml SDK Documentation, 2.7.3

Based on this, we use Ik , resp. (pk, sk), as an identity root key pair in the following. There can be

multiple thereof and we do not make any statement on who the owner of such a key is.

Now, we introduce a globally unique identifier as a tuple (X, Ik) , where Ik refers to the previously

introduced fingerprint of an identity root key andX is in principle some abstract identifier such that

we can verify equality. As such, (X, Ik) = (Y, Il) ifX = Y and Ik = Il . The identifier is globally unique

by definition: there cannot be a collision as we defined two identifiers to be equal by definition if

they collide. As such, the identity key Ik spans a namespace and guarantees that the namespace is,

by definition, collision free.

The unique identifier within the project is defined as

/** A namespace spanned by the fingerprint of a pub­key

*

* This is based on the assumption that the fingerprint is unique to the public­

↪→key

*/

final case class Namespace(fingerprint: Fingerprint) extends PrettyPrinting {

def unwrap: String = fingerprint.unwrap

def toProtoPrimitive: String = fingerprint.toProtoPrimitive

def toLengthLimitedString: String68 = fingerprint.toLengthLimitedString

override def pretty: Pretty[Namespace] = prettyOfParam(_.fingerprint)

}

/** a unique identifier within a namespace

* Based on the Ledger API PartyIds/LedgerStrings being limited to 255␣

↪→characters, we allocate

* ­ 64 + 4 characters to the namespace/fingerprint ﴾essentially SHA256 with␣

↪→extra bytes﴿,

* ­ 2 characters as delimiters, and

* ­ the last 185 characters for the Identifier.

*/

final case class UniqueIdentifier(id: Identifier, namespace: Namespace) extends␣

↪→PrettyPrinting {

We use the global unique identifier to identify participant nodesN = (N, Ik), parties P = (P, Ik) and
domain entitiesD = (D, Ik) (which means thatX is short for (X, Ik)). For parties P and participant

nodes N , we should use a sufficiently long random number for privacy reasons. For domains D, we

use readable names.

Incremental Changes

The topology state is build from incremental changes, so called topology transactions {+/−;ω}[sk]t

where + is the addition and − the subsequent removal. The incremental changes are not commu-

tative and are ordered by time. For a given operand ω we note that the only accepted sequences are

+ or +−, but that −+ or −− or ++ are not accepted. The t denotes the time when the change was

effected, i.e. when it was sequenced by the identity providing service.

The {.}[sk] denotes the list of keys that authorized the changeby signing the topology transaction. The

authorization rules (which keys [sk] need to sign a topology transaction {.}) depend on the command

ω. Most but not all transactions require the signatures tobenested in some form. Generally, anything

that is distributed by the identity providing service needs to be signed with its key sD and therefore

∀{.}[sk] : sD = tail [sk].

1752 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

For the sake of brevity, we will omit the identity providing service signature using sD in the following

and assume that it is always added upon distribution together with the timestamp t.

Topology Transactions

We can distinguish three types of topology transactions: identity delegations,mapping updates and

domain governance updates. In the following, we will establish what these transactions mean and

what they do and what the authorization rules are.

Delegation

The general delegation transaction is represented as

{+/−; (?, Ik) ⇒ pl}sk

where the ? is a place-holder for a specific permissioning level. The delegation transaction indicates

that a certain set of operations on the namespace spanned by the root key pair Ik is delegated to the

public key pl . The delegation is not exclusive, whichmeans that there can bemultiple keys that have

to right to sign a specific transaction on the specific namespace.

There are two types of delegations:

• namespace delegations: {+/−; (∗; Ik) ⇒ pl}[s̃k] which delegates to pl the right to do all topol-

ogy transactions on that particular namespace. The signature of such a delegated key is then

considered to be equivalent to the signature of the root key: sl ' sk . If such a namespace

delegation is a root delegation, then the delegated key is as powerful as the root key. If the root

delegation flag is set to false, then the key can do everything on that namespace, except of is-

suing NamespaceDelegation. Therefore, such a delegation with the root delegation flag set to

false effectively represents an intermediate CA, whereas with true, it’s an equivalent root key.

This operation is particularly useful to support offline storage of root keys, but as we will see

later, it is also used to roll keys.

final case class NamespaceDelegation(

namespace: Namespace,

target: SigningPublicKey,

isRootDelegation: Boolean,

) extends TopologyStateUpdateMapping {

• identifier delegations: {+/−; (X; Ik) ⇒ pl}[s̃k] which delegates the right to assignmappings to

a particular identifier (X, Ik). With this right, the key holder can assign a party to a participant

or run the party as a participant by assigning a key to it. This effectively represents a certificate.

final case class IdentifierDelegation(identifier: UniqueIdentifier, target:␣

↪→SigningPublicKey)

extends TopologyStateUpdateMapping {

From an authorization rule perspective, these delegations can delegate permissions to other keys

and can be used to verify whether a certain key is allowed to sign a topology transaction. Therefore,

we use for now the notation s̃Ik to indicate that some operation requires a signature of the root key

sIk or by a key which was directly or indirectly authorized by the root key.

1.44. Daml Ledger References 1753

Daml SDK Documentation, 2.7.3

Mapping Updates

The generic second type of topology transactions are mapping updates which are represented as

{+/−, (X, Ik) → (Y, Il, ct)}[s̃k,s̃l]

The above transaction maps one item of one namespace to something of a second namespace. For

somemapping updates, the second namespace is always equal to the first namespace and we only

require a single signature. The ct provides context to the mapping update and might include usage

restrictions, depending on the type of mapping.

For transactions that require two signatures we support the composition of the add operation

through

{+, (X, Ik) → (Y, Il, ct)}[s̃k,s̃l] = {+, (X, Ik) → (Y, Il, ct)}[s̃k] + {+, (X, Ik) → (Y, Il, ct)}[s̃l]

and the removal operation through

{−, (X, Ik) → (Y, Il, ct)}[s̃k,s̃l] = {−, (X, Ik) → (Y, Il, ct)}[s̃k]||{−, (X, Ik) → (Y, Il, ct)}[s̃l]

There are four different sub-types of valid mapping transactions:

• Domain Keys: The mapping transaction of {+, D → (pD, ct)}sD updates the keys for the do-

main entities. Valid qualifiers for ct are identity, sequencer,mediator. As every state update needs

to be signed by the domain, the domain definition corresponds to the initial seed of the identity

transaction stream {D → (pD, identity)}sD . If a participant knows the domain id of D, it can

verify that this initial seed is correctly authorized by the owner of the key governing the unique

identifier of the domain id.

• Owner to Key Mappings: The mapping transaction {+, (N, Ik) → (pl, ct)}[s̃k] updates the keys

that are associated with an owner such as a participant or a domain entity. The key purposes

can be signing and/or encryption. If more than one key is defined, all systems are supposed to

use the key that was observed first and is still active.

final case class OwnerToKeyMapping(owner: KeyOwner, key: PublicKey)

extends TopologyStateUpdateMapping {

• Party to Participant Mappings: The mapping transaction {+, (P, Ik) → (N, Il, ct)}[s̃k,s̃l] maps

a party to a participant. The context ct would call out the permissions such as submission,

confirmation or observation.

final case class PartyToParticipant(

side: RequestSide,

party: PartyId,

participant: ParticipantId,

permission: ParticipantPermission,

) extends TopologyStateUpdateMapping {

1754 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Participant State Updates

The fourth type of topology transactions are participant state updates as domain governance trans-

actions {d|a|c|p,N}sD . Here, d means disabled (participant cannot be involved in any transaction),

a means participant is active, c means participant cannot submit transactions but only confirm, p
means participant is purged and will never be back again. Participant states are owned by the oper-

ator of the committer. It is at the committers discretion to decide whether a participant is allowed

to use the domain or not.

final case class ParticipantState(

side: RequestSide,

domain: DomainId,

participant: ParticipantId,

permission: ParticipantPermission,

trustLevel: TrustLevel,

) extends TopologyStateUpdateMapping {

require(

permission.canConfirm || trustLevel == TrustLevel.Ordinary,

"participant trust level must either be ordinary or permission must be␣

↪→confirming",

)

Some Considerations

Removal Authorizations

We note that the authorization rules for the addition are more strict than for the removal: Any re-

moval can be authorized by the domain key sD such that the domain operator can prune the topol-

ogy state if necessary, which is fine, as the accessibility of a domain is anyway dependent on the

cooperation of the domain operator.

Therefore, when talking about removal authorization, we explain the authorization check the IPS will

make if it receives a removal request from an untrusted source. Consequently, all participants will

at least be aware whether a certain topology transaction removal was authorized by the domain

topology manager or by the actual authority of that topology transaction.

Revocations

One important point to note is that all topology transactions have a local effect. This means that

a removal of a root key {−, pk} will not invalidate all transactions that have been signed before by

the key directly or indirectly. Therefore, to revoke a key as in “invalidating everything the key has

signed” requires publishing a set of topology transactions together.

1.44. Daml Ledger References 1755

Daml SDK Documentation, 2.7.3

Domain Topology State

Looking at the given formalism, we candistinguish between the topology state and the domain topology

state. The difference between these two is that the topology state is comprised of all delegation and

mapping transactions. The domain topology state extends this definition by adding domain gover-

nance updates such as participant states. And the domain topology state overrides the authorization

rule by allowing a domain to remove any previous topology transaction.

Bootstrapping

Based on the above explanations, we observe that the authorized domain topology state is given

by all signed and properly authorized topology transaction which additionally have been ordered

and signed by the domain topology manager and distributed (and signed) by the sequencer. Con-

sequently, for a new participant connecting to a domain, in order to validate the topology state and

know that they are talking to the right sequencer, it only needs to know the unique-identifier of the

domain. Using this unique identifier, it can verify the authenticity and correctness of the topology

state, as it can verify the correct authorization of the corresponding topology transactions.

This is the bootstrapping problem of any Canton network: In order to connect to a domain, a par-

ticipant needs to know the domain id (a unique identifier) of a domain, which it needs to receive

through a trusted channel.

Default Party

Given that (N, Ik) and (P, Ik) are both unique identifiers which we use to refer to participants and

parties, we can introduce for every participant its default party. This provides amore straight forward

meaning of a party as being a virtualisation concept on top of the synchronisation structure.

Therefore, any party in the system can either self-host on a participant, or delegate the hosting to

another participant. Or do a mixture of both.

Submission vs Confirmation

Due to sub-transaction privacy, validating participants only learn the identity of the submitter if they

are stakeholders of the root transaction node. Amalicious participant with confirmation permissions

for a party can submit transactions in the name of the party. Such a behaviour will be detected

by any other participant hosting the party, but these participants cannot prevent the transaction

from being accepted. Therefore, the distinction between submission and confirmation permissions in

the party to participant mappings are only guaranteed to be respected by the software provided by

Digital Asset.

1756 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Topology State Accumulation

Now, we define the topology state St at time t as provided by the identity service provider of a domain

incrementally as

St = St−1 + {., ω}sk,sk′t

=
⊕
t′<t

{., ω}[s.]t′

= [(., I) ⇒ p] + [((X, I) → Y)] + [(., N)]

Here, the first expression on the last line represents the delegations, the second corresponds to the

mapping updates and the third one to the participant state updates.

We assume that the identity providing service (which is part of the committer) is presented by some-

one with a topology transaction {.}sk . Upon a vetting operation where the operator can decide if the

proposed change is acceptable, the IPS sequences, validates, signs (using the domain key sD) and

distributes the topology state changes to all affected domain entities.

Privacy by Design

A tricky question is how to provide privacy by design, allowing participants only to learn about other

parties and participants on a need to know basis, while still ensuring that enough information is

available for the participant to progress and ensuring that the information remains immutable and

verifiable.

We do this by generally restricting what is shared with participants by default. Instead of broadcast-

ing the mappingsX → Y to all participants, we broadcast T = (H(X), tid) instead.

We include a service with the committer that allows to query the data once the left hand side has

been learnt. This means that onceX ofH(X) is known, a participant can call a service that returns

the corresponding topology transactions, which in turn can be verified to be justified.

Looking at the participant to key mappingsN → K we note that by only broadcastingH(N) instead
of N , other participants cannot transact with a participant P unless they have learned P’s identity.

This is a similar property aswe seewith phone numbers. Guessing a phone number is hard. However,

once we receive a call from a phone, we know the calling number.

By restricting the data we broadcast about the party to participant mappings, we prevent two as-

pects. First, nobody can contact a party unless they have learned the party identifier before. This is

important as otherwise, any participant on the ledgermight e.g. contact all parties of another partic-

ipating bank. Second, we also protect that somebody can know how many parties e.g. a participant

manages. This prevents learning questions such as how many parties are represented by a certain

participant (how many clients does my competitor have).

1.44. Daml Ledger References 1757

Daml SDK Documentation, 2.7.3

Cross-Domain Delegations

In our design of participants and parties, we observe that a participant is a system entity whereas

a party is meant to represent some actor in the real world. In order to commoditise the ledger as a

service, we need to provide away thatmakes a party something fluid that can bemoved around from

participant. As the participant should just be a service, itmight be acceptable to keep it pinned to an

identity domain. But a party should be able to travel but still be held accountable for the obligations.

Permissioning a party on a second participant node that exists in the same domain is already pos-

sible in the present formalism: {(P, Ik) → (N2, Ik)}sk

A straight-forward extension to permission a party on a second participant in another identity

namespace is: {(P, Ik) → (N2, Il)}sk,sl Based on the additivity of such statements, we can also build

such a permission from two individually signed transactions.

The party delegation transaction supports delegating the permissioning of a party to a key outside

of the root key namespace: {(P, Ik) ⇒ pl}sk

Multi-Domain Transaction

The key challenge of the identity management aspect is to design it such that we can support

multi-domain synchronisation without requiring the committers to cooperate.

First, we note that we avoid collision problems by design using globally unique identifiers derived

from namespaces generated by root keys.

Second, we note that we do not need complete consistency of identities between the committers. All

that is required is a sufficient overlap.

We first introduce a new mapping transaction denoting the transfer permission as {P → DT } on

the source domain DS . The transfer permission means that for the given party, out-transfers of

contracts to the target domainDT are allowed. However, this does not imply that the target domain

has a corresponding permission to move the contract back. It might, but there is no guarantee.

Right now, in the transfer-out protocol, the transfer-out request check reads The target domain is ac-

ceptable to all stakeholders. By introducing {P → D} we are now explicit about what an acceptable

domain is: for all stakeholder parties of the particular contract, there is an approriate transfer per-

mission on the current domain.

However, there are edge cases we need to deal with: what happens if on domain DT , the party P
doesn’t exist? Or what happens if the participants representing P on DS are completely different

than on DT ? This can happen either due to a misconfiguration or due to a race-condition of an

inflight change.

Clearly, in such a case, the transfer must fail in a predicatable manner. Therefore, we introduce two

new rules

1) transfer-out onDS will be rejected if (P → [N])t1DS
∩ (P → [N])t0DT

= ∅

2) transfer-in onDT will be rejected if (P → [N])t1DS
∩ (P → [N])t2DT

= ∅

These rules boil down to the simple verbal requirement that at least one participant representing

the affected party needs to be present on both domains while the transfer takes place from t0 to t2.

1758 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Validation

Scenario: How to roll participant keys?

This corresponds to {+, (N, Ik) → p2}s̃k{−, (N, Ik) → p1}s̃k

Scenario: I can setup my local committer and my local participant and subsequently connect to a remote

committer.

Either locally create an identity key and get it vetted by the committer. Or get IdentifierDelegations
byanother identity key holder, load it locally into the identity store, subsequently pushing to a remote

committer.

Scenario: I can register a party on multiple participants?

{+, P → N1}{+,→ N2}

Scenario: I can introduce a new cryptographic signing scheme without loosingmy identities or I can roll a root

identity key.

Assuming that {ISk } is the original key of scheme S and we want to use scheme S′, then the following

transaction should suffice: {JS′
k }ISk . Now the new key is endorsed to act on the namespace originally

spanned by Ik . If furthermore Ik is revoked, then the new key becomes the root key. If the signature

of the old key is not trusted then the delegation needs to be “believed”.

There is a corresponding RFC for X509s for that https://tools.ietf.org/html/rfc6489

Scenario: I can migrate a party from one participant to another.

{+, (P, Ik) → (N2, Il)}Ik,Il{−, P → (N2, Ik)}Ik

Implementation

Domain Id

We assume that the domain id is shared with the connecting participant through a trusted channel.

This can be implemented as a secure out of band process or by trusting TLS server authentication

when initially requesting the domain id from the Sequencer Service.

Identity Providing Service API

The Identity Providing Service client API is defined as follows:

/** Client side API for the Identity Providing Service. This API is used to get␣

↪→information about the layout of

* the domains, such as party­participant relationships, used encryption and␣

↪→signing keys,

* package information, participant states, domain parameters, and so on.

*/

class IdentityProvidingServiceClient {

private val domains = TrieMap.empty[DomainId, DomainTopologyClient]

def add(domainClient: DomainTopologyClient): this.type = {

(continues on next page)

1.44. Daml Ledger References 1759

https://tools.ietf.org/html/rfc6489

Daml SDK Documentation, 2.7.3

(continued from previous page)

domains += (domainClient.domainId ­> domainClient)

this

}

def allDomains: Iterable[DomainTopologyClient] = domains.values

def tryForDomain(domain: DomainId): DomainTopologyClient =

domains.getOrElse(domain, sys.error("unknown domain " + domain.toString))

def forDomain(domain: DomainId): Option[DomainTopologyClient] = domains.

↪→get(domain)

}

trait TopologyClientApi[+T] { this: HasFutureSupervision =>

/** The domain this client applies to */

def domainId: DomainId

/** Our current snapshot approximation

*

* As topology transactions are future dated ﴾to prevent sequential␣

↪→bottlenecks﴿, we do

* have to "guess" the current state, as time is defined by the sequencer after

* we've sent the transaction. Therefore, this function will return the

* best snapshot approximation known.

*

* The snapshot returned by this method should be used when preparing a␣

↪→transaction or transfer request ﴾Phase 1﴿.

* It must not be used when validating a request ﴾Phase 2 ­ 7﴿; instead, use␣

↪→one of the `snapshot` methods with the request timestamp.

*/

def currentSnapshotApproximation(implicit traceContext: TraceContext): T

/** Possibly future dated head snapshot

*

* As we future date topology transactions, the head snapshot is our latest␣

↪→knowledge of the topology state,

* but as it can be still future dated, we need to be careful when actually␣

↪→using it: the state might not

* yet be active, as the topology transactions are future dated. Therefore, do␣

↪→not act towards the sequencer

* using this snapshot, but use the currentSnapshotApproximation instead.

*/

def headSnapshot(implicit traceContext: TraceContext): T = checked(

trySnapshot(topologyKnownUntilTimestamp)

)

/** The approximate timestamp

*

* This is either the last observed sequencer timestamp OR the effective␣

↪→timestamp after we observed

* the time difference of ﴾effective ­ sequencer = epsilon﴿ to elapse

*/

def approximateTimestamp: CantonTimestamp

(continues on next page)

1760 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

/** The most recently observed effective timestamp

*

* The effective timestamp is sequencer_time + epsilon﴾sequencer_time﴿, where

* epsilon is given by the topology change delay time, defined using the␣

↪→domain parameters.

*

* This is the highest timestamp for which we can serve snapshots

*/

def topologyKnownUntilTimestamp: CantonTimestamp

/** Returns true if the topology information at the passed timestamp is already␣

↪→known */

def snapshotAvailable(timestamp: CantonTimestamp): Boolean

/** Returns the topology information at a certain point in time

*

* Use this method if you are sure to be synchronized with the topology state␣

↪→updates.

* The method will block & wait for an update, but emit a warning if it is not␣

↪→available

*

* The snapshot returned by this method should be used for validating␣

↪→transaction and transfer requests ﴾Phase 2 ­ 7﴿.

* Use the request timestamp as parameter for this method.

* Do not use a response or result timestamp, because all validation steps␣

↪→must use the same topology snapshot.

*/

def snapshot(timestamp: CantonTimestamp)(implicit traceContext: TraceContext):␣

↪→Future[T]

def snapshotUS(timestamp: CantonTimestamp)(implicit

traceContext: TraceContext

): FutureUnlessShutdown[T]

/** Waits until a snapshot is available

*

* The snapshot returned by this method should be used for validating␣

↪→transaction and transfer requests ﴾Phase 2 ­ 7﴿.

* Use the request timestamp as parameter for this method.

* Do not use a response or result timestamp, because all validation steps␣

↪→must use the same topology snapshot.

*/

def awaitSnapshot(timestamp: CantonTimestamp)(implicit traceContext:␣

↪→TraceContext): Future[T]

/** Supervised version of [[awaitSnapshot]] */

def awaitSnapshotSupervised(description: => String, warnAfter: Duration = 30.

↪→seconds)(

timestamp: CantonTimestamp

)(implicit

traceContext: TraceContext

): Future[T] = supervised(description, warnAfter)(awaitSnapshot(timestamp))

/** Shutdown safe version of await snapshot */

def awaitSnapshotUS(timestamp: CantonTimestamp)(implicit

traceContext: TraceContext

): FutureUnlessShutdown[T]

(continues on next page)

1.44. Daml Ledger References 1761

Daml SDK Documentation, 2.7.3

(continued from previous page)

/** Supervised version of [[awaitSnapshotUS]] */

def awaitSnapshotUSSupervised(description: => String, warnAfter: Duration = 30.

↪→seconds)(

timestamp: CantonTimestamp

)(implicit

traceContext: TraceContext

): FutureUnlessShutdown[T] = supervisedUS(description,␣

↪→warnAfter)(awaitSnapshotUS(timestamp))

/** Returns the topology information at a certain point in time

*

* Fails with an exception if the state is not yet known.

*

* The snapshot returned by this method should be used for validating␣

↪→transaction and transfer requests ﴾Phase 2 ­ 7﴿.

* Use the request timestamp as parameter for this method.

* Do not use a response or result timestamp, because all validation steps␣

↪→must use the same topology snapshot.

*/

def trySnapshot(timestamp: CantonTimestamp)(implicit traceContext:␣

↪→TraceContext): T

/** Returns an optional future which will complete when the timestamp has been␣

↪→observed

*

* If the timestamp is already observed, we return None.

*

* Note that this function allows to wait for effective time ﴾true﴿ and␣

↪→sequenced time ﴾false﴿.

* If we wait for effective time, we wait until the topology snapshot for that␣

↪→given

* point in time is known. As we future date topology transactions ﴾to avoid␣

↪→bottlenecks﴿,

* this might be before we actually observed a sequencing timestamp.

*/

def awaitTimestamp(

timestamp: CantonTimestamp,

waitForEffectiveTime: Boolean,

)(implicit traceContext: TraceContext): Option[Future[Unit]]

def awaitTimestampUS(

timestamp: CantonTimestamp,

waitForEffectiveTime: Boolean,

)(implicit traceContext: TraceContext): Option[FutureUnlessShutdown[Unit]]

}

/** The client that provides the topology information on a per domain basis

*/

trait DomainTopologyClient extends TopologyClientApi[TopologySnapshot] with␣

↪→AutoCloseable {

this: HasFutureSupervision =>

/** Wait for a condition to become true according to the current snapshot␣

↪→approximation

(continues on next page)

1762 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

*

* @return true if the condition became true, false if it timed out

*/

def await(condition: TopologySnapshot => Future[Boolean], timeout:␣

↪→Duration)(implicit

traceContext: TraceContext

): FutureUnlessShutdown[Boolean]

}

trait BaseTopologySnapshotClient {

protected implicit def executionContext: ExecutionContext

/** The official timestamp corresponding to this snapshot */

def timestamp: CantonTimestamp

/** Internally used reference time ﴾representing when the last change happened␣

↪→that affected this snapshot﴿ */

def referenceTime: CantonTimestamp = timestamp

}

/** The subset of the topology client providing party to participant mapping␣

↪→information */

trait PartyTopologySnapshotClient {

this: BaseTopologySnapshotClient =>

/** Load the set of active participants for the given parties */

def activeParticipantsOfParties(

parties: Seq[LfPartyId]

): Future[Map[LfPartyId, Set[ParticipantId]]]

def activeParticipantsOfPartiesWithAttributes(

parties: Seq[LfPartyId]

): Future[Map[LfPartyId, Map[ParticipantId, ParticipantAttributes]]]

/** Returns the set of active participants the given party is represented by as␣

↪→of the snapshot timestamp

*

* Should never return a PartyParticipantRelationship where␣

↪→ParticipantPermission is DISABLED.

*/

def activeParticipantsOf(

party: LfPartyId

): Future[Map[ParticipantId, ParticipantAttributes]]

/** Returns Right if all parties have at least an active participant passing␣

↪→the check. Otherwise, all parties not passing are passed as Left */

def allHaveActiveParticipants(

parties: Set[LfPartyId],

check: (ParticipantPermission => Boolean) = _.isActive,

): EitherT[Future, Set[LfPartyId], Unit]

/** Returns the consortium thresholds ﴾how many votes from different␣

↪→participants that host the consortium party (continues on next page)

1.44. Daml Ledger References 1763

Daml SDK Documentation, 2.7.3

(continued from previous page)

* are required for the confirmation to become valid﴿. For normal parties␣

↪→returns 1.

*/

def consortiumThresholds(parties: Set[LfPartyId]): Future[Map[LfPartyId,␣

↪→PositiveInt]]

/** Returns the Authority­Of delegations for consortium parties. Non­consortium␣

↪→parties delegate to themselves

* with threshold one

*/

def authorityOf(parties: Set[LfPartyId]): Future[AuthorityOfResponse]

/** Returns true if there is at least one participant that satisfies the␣

↪→predicate */

def isHostedByAtLeastOneParticipantF(

party: LfPartyId,

check: ParticipantAttributes => Boolean,

): Future[Boolean]

/** Returns the participant permission for that particular participant ﴾if␣

↪→there is one﴿ */

def hostedOn(

partyId: LfPartyId,

participantId: ParticipantId,

): Future[Option[ParticipantAttributes]]

/** Returns true of all given party ids are hosted on a certain participant */

def allHostedOn(

partyIds: Set[LfPartyId],

participantId: ParticipantId,

permissionCheck: ParticipantAttributes => Boolean = _.permission.isActive,

): Future[Boolean]

/** Returns whether a participant can confirm on behalf of a party. */

def canConfirm(

participant: ParticipantId,

party: LfPartyId,

requiredTrustLevel: TrustLevel = TrustLevel.Ordinary,

): Future[Boolean]

/** Returns all active participants of all the given parties. Returns a Left if␣

↪→some of the parties don't have active

* participants, in which case the parties with missing active participants␣

↪→are returned. Note that it will return

* an empty set as a Right when given an empty list of parties.

*/

def activeParticipantsOfAll(

parties: List[LfPartyId]

): EitherT[Future, Set[LfPartyId], Set[ParticipantId]]

def partiesWithGroupAddressing(

parties: Seq[LfPartyId]

): Future[Set[LfPartyId]]

/** Returns a list of all known parties on this domain */

def inspectKnownParties(

(continues on next page)

1764 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

filterParty: String,

filterParticipant: String,

limit: Int,

): Future[

Set[PartyId]

] // TODO﴾#11255﴿: Decide on whether to standarize APIs on LfPartyId or PartyId␣

↪→and unify interfaces

}

object PartyTopologySnapshotClient {

final case class AuthorityOfDelegation(expected: Set[LfPartyId], threshold:␣

↪→PositiveInt)

def nonConsortiumPartyDelegation(partyId: LfPartyId): AuthorityOfDelegation =

AuthorityOfDelegation(Set(partyId), PositiveInt.one)

final case class AuthorityOfResponse(response: Map[LfPartyId,␣

↪→AuthorityOfDelegation])

final case class PartyInfo(

groupAddressing: Boolean,

threshold: PositiveInt, // > 1 for consortium parties

participants: Map[ParticipantId, ParticipantAttributes],

)

object PartyInfo {

def nonConsortiumPartyInfo(participants: Map[ParticipantId,␣

↪→ParticipantAttributes]): PartyInfo =

PartyInfo(groupAddressing = false, threshold = PositiveInt.one,␣

↪→participants = participants)

lazy val EmptyPartyInfo: PartyInfo = nonConsortiumPartyInfo(Map.empty)

}

}

/** The subset of the topology client, providing signing and encryption key␣

↪→information */

trait KeyTopologySnapshotClient {

this: BaseTopologySnapshotClient =>

/** returns newest signing public key */

def signingKey(owner: KeyOwner): Future[Option[SigningPublicKey]]

/** returns all signing keys */

def signingKeys(owner: KeyOwner): Future[Seq[SigningPublicKey]]

/** returns newest encryption public key */

def encryptionKey(owner: KeyOwner): Future[Option[EncryptionPublicKey]]

/** returns all encryption keys */

def encryptionKeys(owner: KeyOwner): Future[Seq[EncryptionPublicKey]]

/** Returns a list of all known parties on this domain */

def inspectKeys(

(continues on next page)

1.44. Daml Ledger References 1765

Daml SDK Documentation, 2.7.3

(continued from previous page)

filterOwner: String,

filterOwnerType: Option[KeyOwnerCode],

limit: Int,

): Future[Map[KeyOwner, KeyCollection]]

}

/** The subset of the topology client, providing participant state information */

trait ParticipantTopologySnapshotClient {

this: BaseTopologySnapshotClient =>

// used by domain to fetch all participants

@Deprecated(since = "3.0")

def participants(): Future[Seq[(ParticipantId, ParticipantPermission)]]

/** Checks whether the provided participant exists and is active */

def isParticipantActive(participantId: ParticipantId): Future[Boolean]

}

/** The subset of the topology client providing mediator state information */

trait MediatorDomainStateClient {

this: BaseTopologySnapshotClient =>

/** returns the list of currently known mediators */

@deprecated(since = "2.7", message = "Use mediatorGroups instead.")

final def mediators(): Future[Seq[MediatorId]] =

mediatorGroups().map(_.flatMap(mg => mg.active ++ mg.passive))

def mediatorGroups(): Future[Seq[MediatorGroup]]

def isMediatorActive(mediatorId: MediatorId): Future[Boolean] =

mediatorGroups().map(_.exists { group =>

// Note: mediator in group.passive should still be able to authenticate and␣

↪→process MediatorResponses,

// only sending the verdicts is disabled and verdicts from a passive␣

↪→mediator should not pass the checks

group.isActive && (group.active.contains(mediatorId) || group.passive.

↪→contains(mediatorId))

})

def isMediatorActive(mediator: MediatorRef): Future[Boolean] = {

mediator match {

case MediatorRef.Single(mediatorId) =>

isMediatorActive(mediatorId)

case MediatorRef.Group(mediatorsOfDomain) =>

mediatorGroup(mediatorsOfDomain.group).map {

case Some(group) => group.isActive

case None => false

}

}

}

def mediatorGroupsOfAll(

groups: Seq[MediatorGroupIndex]

(continues on next page)

1766 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

): EitherT[Future, Seq[MediatorGroupIndex], Seq[MediatorGroup]] =

if (groups.isEmpty) EitherT.rightT(Seq.empty)

else

EitherT(

mediatorGroups()

.map { mediatorGroups =>

val existingGroupIndices = mediatorGroups.map(_.index)

val nonExisting = groups.filterNot(existingGroupIndices.contains)

Either.cond(

nonExisting.isEmpty,

mediatorGroups.filter(g => groups.contains(g.index)),

nonExisting,

)

}

)

def mediatorGroup(index: MediatorGroupIndex): Future[Option[MediatorGroup]] = {

mediatorGroups().map(_.find(_.index == index))

}

}

/** The subset of the topology client providing sequencer state information */

trait SequencerDomainStateClient {

this: BaseTopologySnapshotClient =>

/** returns the sequencer group */

def sequencerGroup(): Future[Option[SequencerGroup]]

}

// this can be removed with 3.0

@Deprecated(since = "3.0")

trait CertificateSnapshotClient {

this: BaseTopologySnapshotClient =>

@Deprecated(since = "3.0.0")

def hasParticipantCertificate(participantId: ParticipantId)(implicit

traceContext: TraceContext

): Future[Boolean] =

findParticipantCertificate(participantId).map(_.isDefined)

@Deprecated(since = "3.0.0")

def findParticipantCertificate(participantId: ParticipantId)(implicit

traceContext: TraceContext

): Future[Option[X509Cert]]

}

trait VettedPackagesSnapshotClient {

this: BaseTopologySnapshotClient =>

/** Returns the set of packages that are not vetted by the given participant

*

* @param participantId the participant for which we want to check the package␣

↪→vettings

(continues on next page)

1.44. Daml Ledger References 1767

Daml SDK Documentation, 2.7.3

(continued from previous page)

* @param packages the set of packages that should be vetted

* @return Right the set of unvetted packages ﴾which is empty if all packages␣

↪→are vetted﴿

* Left if a package is missing locally such that we can not verify␣

↪→the vetting state of the package dependencies

*/

def findUnvettedPackagesOrDependencies(

participantId: ParticipantId,

packages: Set[PackageId],

): EitherT[Future, PackageId, Set[PackageId]]

}

trait DomainGovernanceSnapshotClient {

this: BaseTopologySnapshotClient with NamedLogging =>

def findDynamicDomainParametersOrDefault(

protocolVersion: ProtocolVersion,

warnOnUsingDefault: Boolean = true,

)(implicit traceContext: TraceContext): Future[DynamicDomainParameters] =

findDynamicDomainParameters().map {

case Right(value) => value.parameters

case Left(_) =>

if (warnOnUsingDefault) {

logger.warn(s"Unexpectedly using default domain parameters at $

↪→{timestamp}")

}

DynamicDomainParameters.initialValues(

// we must use zero as default change delay parameter, as otherwise␣

↪→static time tests will not work

// however, once the domain has published the initial set of domain␣

↪→parameters, the zero time will be

// adjusted.

topologyChangeDelay = DynamicDomainParameters.

↪→topologyChangeDelayIfAbsent,

protocolVersion = protocolVersion,

)

}

def findDynamicDomainParameters()(implicit

traceContext: TraceContext

): Future[Either[String, DynamicDomainParametersWithValidity]]

/** List all the dynamic domain parameters ﴾past and current﴿ */

def listDynamicDomainParametersChanges()(implicit

traceContext: TraceContext

): Future[Seq[DynamicDomainParametersWithValidity]]

}

trait MembersTopologySnapshotClient {

this: BaseTopologySnapshotClient =>

def allMembers(): Future[Set[Member]]

def isMemberKnown(member: Member): Future[Boolean]

(continues on next page)

1768 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

}

trait TopologySnapshot

extends PartyTopologySnapshotClient

with BaseTopologySnapshotClient

with ParticipantTopologySnapshotClient

with KeyTopologySnapshotClient

with CertificateSnapshotClient

with VettedPackagesSnapshotClient

with MediatorDomainStateClient

with SequencerDomainStateClient

with DomainTrafficControlStateClient

with DomainGovernanceSnapshotClient

with MembersTopologySnapshotClient { this: BaseTopologySnapshotClient with␣

↪→NamedLogging => }

Based on this API, the following Sync Crypto API can be built, which allows to decouple the crypto

operations used in the synchronisation protocol from the crypto protocol and identity management

implementation.

Sync Crypto Api

Within Canton, the entire identity, key and signing management is abstracted and hidden from the

synchronisation protocol behind the SyncCryptoApi.

/** impure part of the crypto api with access to private key store and knowledge␣

↪→about the current entity to key assoc */

trait SyncCryptoApi {

def pureCrypto: CryptoPureApi

def ipsSnapshot: TopologySnapshot

/** Signs the given hash using the private signing key. */

def sign(hash: Hash)(implicit

traceContext: TraceContext

): EitherT[Future, SyncCryptoError, Signature]

/** Decrypts a message using the private key of the public key given as the␣

↪→fingerprint. */

def decrypt[M](encryptedMessage: AsymmetricEncrypted[M])(

deserialize: ByteString => Either[DeserializationError, M]

)(implicit traceContext: TraceContext): EitherT[Future, SyncCryptoError, M]

@Deprecated

def decrypt[M](encryptedMessage: Encrypted[M])(

deserialize: ByteString => Either[DeserializationError, M]

)(implicit traceContext: TraceContext): EitherT[Future, SyncCryptoError, M]

/** Verify signature of a given owner

*

* Convenience method to lookup a key of a given owner, domain and timestamp␣

↪→and verify the result.

*/

(continues on next page)

1.44. Daml Ledger References 1769

Daml SDK Documentation, 2.7.3

(continued from previous page)

def verifySignature(

hash: Hash,

signer: KeyOwner,

signature: Signature,

): EitherT[Future, SignatureCheckError, Unit]

def verifySignatures(

hash: Hash,

signer: KeyOwner,

signatures: NonEmpty[Seq[Signature]],

): EitherT[Future, SignatureCheckError, Unit]

/** Verifies a list of `signatures` to be produced by active members of a␣

↪→`mediatorGroup`,

* counting each member's signature only once.

* Returns `Right` when the `mediatorGroup`'s threshold is met.

* Can be successful even if some signatures fail the check, logs the errors␣

↪→in that case.

* When the threshold is not met returns `Left` with all the signature check␣

↪→errors.

*/

def verifySignatures(

hash: Hash,

mediatorGroupIndex: MediatorGroupIndex,

signatures: NonEmpty[Seq[Signature]],

)(implicit traceContext: TraceContext): EitherT[Future, SignatureCheckError,␣

↪→Unit]

/** Encrypts a message for the given key owner

*

* Utility method to lookup a key on an IPS snapshot and then encrypt the␣

↪→given message with the

* most suitable key for the respective key owner.

*/

def encryptFor[M <: HasVersionedToByteString](

message: M,

owner: KeyOwner,

version: ProtocolVersion,

): EitherT[Future, SyncCryptoError, AsymmetricEncrypted[M]]

}

This class contains the appropriate methods in order to sign, verify signatures, encrypt or decrypt on

a per member basis. Which key and which cryptographic method is used is hidden entirely behind

this API.

The API is obtained on a per domain and timestamp basis. The SyncCryptoApiProvider combines the

information about the owner of the node, the connected domain, the cryptographic module in use

and the topology state for a particular time andprovides a factorymethod to obtain the SyncCryptoApi

for a particular domain and time combination.

1770 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

High-Level Picture

The following drawing provides a high-level overview of the identity management architecture and

flows.

Transaction Flow

The following chart lays out all components of the Canton identity management system. Some of

the components are shared between participant node and domain node, while some have slightly

different functionality. The arrow indicates data flow.

In the following, we describe how a topology command invoked on the participant node propagates

through the system. Ultimately, the component fully describing the topology state is the topology

1.44. Daml Ledger References 1771

Daml SDK Documentation, 2.7.3

providing service client (TPSC). Therefore, we can track the propagation from the command until it

reaches the IPSC.

• CLI/gRPC Topology Management Request - The topology management system is accessible

through the topology_manager_write_service, the topology_manager_read_service and the topol-

ogy_aggregation_service, which are gRPC based services. The Canton shell exposes all these

services directly through appropriate commands.

• Topology Manager Write Service - In order to change the topology state, an administrator

needs to create a new topology transaction and authorize it by signing it with an eligible key.

These authorization commands are externally accessible using the write service, exposing the

gRPC API.

• Participant Topology Manager - Every participant has a local topology manager. The partici-

pant can populate the store either by importing authorized transactions or creating new au-

thorized transactions itself. The topology manager checks every locally added transaction for

consistency and correctness.

• Participant Topology Dispatcher - The dispatcher monitors the topology state managed by

the local topology manager and tries to push the local authorized topology state to any con-

nected domain. As an example, if a party is added locally, the dispatcher tries to propagate the

corresponding topology transaction to any connected domain.

• Sequencer Connect Service - Every sequencer exposes a public service, called sequencer con-

nect service, for handshake and administrative purposes. Here, participants obtain the appli-

cable domain rules, the protocol version and the domain id.

• Domain Topology Manager Request Service - Any topology transaction upload from the do-

main service is processed through the request service. The request service is configured

with a request strategy. The request strategy inspects the topology transaction and decides

how to deal with a topology transaction. Right now, three strategies have been implemented:

auto-approve for un-permissioned domains, queue for permissioned domains (where transac-

tions are just stored for later decision in the Request Store) and reject for closed domains.

• Domain Topology Manager - Similar to the participant node topology manager, except with

the added functionality required for a domain, allowing it to set participant states. Changes to

the domain topology manager either come from the local administrator through the topology

manager write service or through accepted topology transactions from the request service. The

sequencer listens to the domain topology manager and sets up new member queues if a new

participant is added to the system.

• Domain Topology Dispatcher - The domain topology dispatcher monitors the local authorized

domain topology state. Upon a change, the dispatcher computes who needs to be informed

of the given topology transaction (i.e. all active participant nodes). Or, if a new participant

has been added, the dispatcher ensures that the first transactions a new participant will ob-

serve when connecting to the sequencer are the topology transactions. This prevents any

race-condition or inconsistent topology state.

• Message Forwarder - The topology state requires that the topology transactions are applied

in the previously established order. The message forwarder therefore ensures the absolute

guaranteed in order delivery of all topology transactions, in particular in the case of tempo-

rary delivery to sequencer failure. The message forwarder sends the topology transactions as

instructed by the dispatcher via the sequencer to all participant nodes and domain entities.

• Identity Providing Service Client - The implementation of the IPSC listens to the stream of

sequenced messages and receives the identity updates. The client inspects the message, val-

idates the signatures and appends the topology transaction to the topology state.

• Topology Aggregation Service - Inspect via gRPC the aggregated topology state as exposed by

the IPSC internally.

Not direct part of the transaction flow, but essential components for topology management are the

1772 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

following components:

• Authorized/Request/Domain Topology Store - There are several stores for topology transac-

tions. The authorized store is the set of topology transactions that have been added to the

local topology manager. The domain topology store is the store of topology transactions that

have been timestamped by the sequencer. The authorized store of a domain and the domain

topology store contain the same content, except that the authorized store can hold data which

has not yet been timestamped by the sequencer. The content of the domain topology stores

on the participant (one per connected domain) is exactly the same among all participants on

a domain. These stores are used by the synchronisation protocol.

• Topology Manager Read Service - The topology manager read service just serves inspection

purposes in order to look deeply into the topology state. The read service plugs directly into a

topology store and exposes the content via gRPC.

1.44.2.4 High-Level Requirements

As detailed in the DA ledger model, the Daml ledger interoperability protocol provides parties with a

virtual shared ledger, which contains their interaction history and the current state of their shared

Daml contracts. To access the ledger, the parties must deploy (or have someone deploy for them)

the so-called participant nodes. The participant nodes then expose the Ledger API, which enables the

parties to request changes and get notified about the changes to the ledger. To apply the changes,

the participant nodes run a synchronization protocol. We can visualize the setup as follows.

In general, the setupmight bemore complicated than shown above, as a single participant node can

provide services for more than one party and parties can be hosted on multiple participant nodes.

Note, however, that this feature is currently limited. In particular, a party hosted on multiple partic-

ipants should be on-boarded on all of them before participating to any transaction.

In this section, we list the high-level functional requirements on the Ledger API, as well as

non-functional requirements on the synchronization protocol.

1.44. Daml Ledger References 1773

Daml SDK Documentation, 2.7.3

Functional requirements

Functional requirements specify the constraints on and between the system’s observable outputs

and inputs. A difficulty in specifying the requirements for the synchronization service is that the

system and its inputs and outputs are distributed, and that the system can include Byzantine par-

ticipant nodes, i.e., participants that are malicious, malfunctioning or compromised. The system

does not have to give any guarantees to parties using such nodes, beyond the ability to recover from

malfunction/compromise. However, the systemmust protect the honestly represented parties (i.e.,

parties all of whose participant nodes implement the synchronization service correctly) from ma-

licious behavior. To account for this in our requirements, we exploit the fact that the conceptual

purpose of the ledger synchronization service is to provide parties with a virtual shared ledger and

we:

1. use such a shared ledger and the associated properties (described in the DA ledger model) to

constrain the input-output relation;

2. express all requirements from the perspective of an honestly represented party;

3. use the same shared ledger for all parties and requirements, guaranteeing synchronization.

We express the high-level functional requirements as user stories, always from the perspective of

an honestly represented party, i.e., Ledger API user, and thus omit the role. As the observable inputs

and outputs, we take the Ledger API inputs and outputs. Additionally, we assume that crashes and

recoveries of participant nodes are observable. The requirements ensure that the virtual shared

ledger describes a world that is compatible with the honestly represented parties’ perspectives, but

itmaydeviate in any respect fromwhat Byzantine nodespresent to their parties. We call suchparties

dishonestly represented parties.

Some requirements have explicit exceptions and design limitations. Exceptions are fundamental,

and cannot be improved on by further design iterations. Design limitations refer to the design of

the Canton synchronization protocol and can be improved in future versions. We discuss the conse-

quences of the most important exceptions and design limitations later in the section.

Note: The fulfillment of these requirements is conditional on the system’s assumptions (in partic-

ular, any trusted participants must behave correctly).

• Synchronization. I want the platform to provide a virtual ledger (according to the DA ledger

model) that is shared with all other parties in the system (honestly represented or not), so that

I stay synchronized with my counterparties.

• Change requests possible. I want to be able to submit change requests to the shared ledger.

• Change request identification. I want to be able to assign an identifier to all my change re-

quests.

• Change request deduplication. I want the system to deduplicate my change requests with

the same identifiers, if they are submitted within a time window configurable per participant,

so that my applications can resend change requests in case of a restart without adding the

changes to the ledger twice.

• Bounded decision time. I want to be able to learn within some bounded time from the submis-

sion (on the order of minutes) the decision aboutmy change request, i.e., whether it was added

to the ledger or not.

Design limitation: If the participant node used for the submission crashes, the bound can be

exceeded. In this case the application should fail over to another participant replica.

• Consensus. I want that all honestly represented counterparties come to the same conclusion

of either accepting or rejecting a transaction according to the DA ledger model.

1774 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

• Transparency. I want to get notified in a timely fashion (on the order of seconds) about the

changes to my projection of the shared ledger, according to the DA ledger model, so that I stay

synchronized with my counterparties.

Design limitation: If the participant has crashed, is overloaded, or in case of network failures,

the bound can be exceeded. In the case of a crash the application should fail over to another

participant replica.

Design limitation: If the submitter node is malicious it can encrypt the transaction payload

with the wrong key that my participant cannot decrypt it. I will be notified about a transaction

but able to see its contents.

• Integrity: ledger validity. I want the shared ledger to be valid according to the DA ledger model.

Exception: The consistency aspect of the validity requirement on the shared ledger can be

violated for contracts with no honestly represented signatories, even if I am an observer on the

contract.

• Integrity: request authenticity. I want the shared ledger to contain a record of a change with

me as one of the requesters if and only if:

1. I actually requested that exact change, i.e., I submitted the change via the command sub-

mission service, and

2. I am notified that my change request was added to the shared ledger, unless my partici-

pant node crashes forever,

so that, together with the ledger validity requirement, I can be sure that the ledger contains no

records of:

1. obligations imposed on me,

2. rights taken away fromme, and

3. my counterparties removing their existing obligations

without my explicit consent. In particular, I am the only requester of any such change. Note

that this requirement implies that the change is done atomically, i.e. either it is added in its

entirety, or not at all.

Remark: As functional requirements apply only to honestly represented parties, any dishon-

estly represented party can be a requester of a commit on the virtual shared ledger, even if it

has never submitted a command via the command submission service. However, this is pos-

sible only if no requester of the commit is honestly represented.

Note: The two integrity requirements come with further limitations and trust assumptions,

whenever the trust-liveness trade-offs below are used.

• Non-repudiation. I want the service to provide me with irrefutable evidence of all ledger

changes that I get notified about, so that I can prove to a third party (e.g., a court) that a contract

of which I am a stakeholder was created or archived at a certain point in time.

This item is scheduled on the Daml roadmap.

• Finality. I want the shared ledger to be append-only, so that, once I am notified about a change

to the ledger, that change cannot be removed from the ledger.

• Daml package uploads. I want to be able to upload a new Daml package to my participant

node, so that I can start using new Daml contract templates or upgraded versions of existing

ones. The authority to upload packages can be limited to particular parties (e.g., a participant

administrator party), or done through a separate API.

• Daml package notification. I want to be able to get notified about new packages distributed

to me by other parties in the system, so that I can inspect the contents of the package, either

automatically or manually.

• Automated Daml package distribution. I want the system to be able to notify counterparties

about my uploaded Daml packages before the first time that I submit a change request that

includes a contract that both comes from this new package and has the counterparty as a

1.44. Daml Ledger References 1775

Daml SDK Documentation, 2.7.3

stakeholder on it.

Limitation The package distribution does not happen automatically on first use of a package,

because manual (Daml package vetting) would lead to a rejection of the transaction.

• Daml package vetting. I want to be able to explicitly approve (manually or automatically, e.g.,

based on a signature by a trusted party) every new package sent tome by another party, so that

the participant node does not execute any code that has not been approved. The authority to

vet packages can be limited to particular parties, or done through a separate API.

Exception: I cannot approve a package without approving all of its dependencies first.

• No unnecessary rejections. I want the system to add all my well-authorized and

Daml-conformant change requests to the ledger, unless:

1. they are duplicated, or

2. they use Daml templates my counterparties’ participants have not vetted, or

3. they conflict with other changes that are included in the shared ledger prior to or at ap-

proximately the same time as my request, or

4. the processing capacity of my participant node or the participant nodes of my counter-

parties is exhausted by other change requests submitted by myself or others roughly si-

multaneously,

in which case I want the decision to include the appropriate reason for rejection.

Exception 1: This requirement may be violated whenever my participant node crashes, or if

there is contention in the system (multiple conflicting requests are issued in a short period of

time). The rejection reason reported in the decision in the exceptional case must differ from

those reported because of other causes listed in this requirement.

Exception 2: If my change request contains an exercise on a contract identifier, and I have not

witnessed (e.g., through divulgence) any actions ona contractwith this identifier inmy projection

of the shared ledger (according to the DA ledger model), then my change request may fail.

Design limitation 1: My change requests can also be rejected if a participant of some coun-

terparty (hosting a signatory or an observer) in my change request is crashed, unless some

trusted participant (e.g., one run by a market operator) is a stakeholder participant on all con-

tracts in my change request.

Design limitation 2: My change requests can also be rejected if any of my counterparties in

the change request is Byzantine, unless some trusted participant (e.g., one run by a market

operator) is a stakeholder participant on all contracts in my change request.

Design limitation 3: If the underlying sequencer queue is full for a participant, then we can

get an unnecessary rejection. We assume however that the queue size is so large that it can

be considered to be infinite, so this unnecessary rejection doesn’t happen in practice, and the

situation would be resolved operationally before the queue fills up.

Design limitation 4: If the mediator of the domain has crashed and lost the in-flight transac-

tion, which will then timeout.

• Seek support for notifications. I want to be able to receive notifications (about ledger changes

and about the decisions on my change requests) only from a particular known offset, so that

I can synchronize my application state with the set of active contracts on the shared ledger

after crashes and other events, without having to read all historical changes.

Exception: A participant can define a bound on how far in the past the seek can be requested.

• Active contract snapshots. I want the system to provide me a way to obtain a recent (on the

order of seconds) snapshot of the set of active contracts on the shared ledger, so that I can

initialize my application state and synchronize with the set of active contracts on the ledger

efficiently.

• Change request processing limited to participant nodes. I want only the following (and no

other) functionality related to change request processing:

1. submitting change requests

2. receiving information about change request processing and results

1776 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

3. (possibly) vetting Daml packages

to be exposed on the Ledger API, so that the unavailability of my or my counterparties’ applica-

tions cannot influence whether a change I previously requested through the API is included in

the shared ledger, except if the request is using packages not previously vetted. Note that this

inclusionmay still be influenced by the availability ofmy counterparties’ participant nodes (as

specified in the limitations on the requirement on no unnecessary rejections)

Resource limits

This section specifies upper bounds on the sizes of data structures. The system must be able to

process data structures within the given size limits.

If a data structure exceeds a limit, the system must reject transactions containing the data struc-

ture. Note that it would be impossible to check violations of resource limits at compile time; there-

fore the Daml compiler will not emit an error or warning if a resource limit is violated.

Maximum transaction depth: 100

Definition: Themaximumnumber of levels (except for the top-level) in a transaction tree.

Example: The following transaction has a depth of 2:

Purpose: This limit is to mitigate the higher cost of implementing stack-safe algorithms

on transaction trees. The limit may be relaxed in future versions.

Maximum depth of a Daml value: 100

Definition: The maximum numbers of nestings in a Daml value.

Example:

• The value “17” has a depth of 0.

• The value “{myField: 17}” has a depth of 1.

• The value “[{myField: 17}]” has a depth of 2.

• The value “[‘observer1’, ‘observer2’, …, ‘observer100’]” has a depth of 1.

Purpose:

1. Applications interfacing the DA ledger likely have to process Daml values and likely

are developed outside of DA. By limiting the depth of Daml values, application devel-

1.44. Daml Ledger References 1777

Daml SDK Documentation, 2.7.3

opers have to be less concerned about stack usage of their applications. So the limit

effectively facilitates the development of applications.

2. This limit allows for a readable wire format for Daml-LF values, as it is not necessary

to flatten values before transmission.

Non-functional requirements

These requirements specify the characteristics of the internal system operation. In addition to the

participant nodes, the implementation of the synchronization protocol may involve a set of addi-

tional operational entities. For example, this set can include a sequencer. We call a single deploy-

ment of such a set of operational entities a domain, and refer to the entities as domain entities.

As before, the requirements are expressed as user stories, with the user always being the Ledger API

user. Additionally, we list specific requirements for financial market infrastructure providers. Some

requirements have explicit exceptions; we discuss the consequences of these exceptions later in the

section.

• Privacy. I want the visibility of the ledger contents to be restricted according to the privacy

model of DA ledgers, so that the information about any (sub)action on the ledger is provided only

to participant nodes of parties privy to this action. In particular, other participant nodes must

not receive any information about the action, not even in an encrypted form.

Exception: domain entities operated by trusted third parties (such as market operators) may

receive encrypted versions of any of the ledger data (but not plain text).

Design limitation 1: Participant nodes of parties privy to an action (according to the ledger

privacy model) may learn the following:

– How deeply lies the action within a ledger commit.

– Howmany sibling actions each parent action has.

– The transaction identifiers (but not the transactions’ contents) that have created the con-

tracts used by the action.

Design limitation 2: Domain entities operated by trusted third parties may learn the hierar-

chical structure and stakeholders of all actions of the ledger (but none of the contents of the

contracts, such as templates used or their arguments).

• Transaction stream auditability. I want the system to be able to convince a third party (e.g., an

auditor) that they have been presented with my complete transaction stream within a config-

urable time period (on the order of years), so that they can be sure that the stream represents

a complete record of my ledger projection, with no omissions or additions.

Exception: The evidence can be linear in the size of my transaction stream.

Design limitation: The evidence need not be privacy-preserving with respect to other parties

with whom I share participant nodes, and the process can be manual.

This item is scheduled on the Daml roadmap.

• Service Auditability. I want the synchronization protocol implementation to store all requests

and responses of all participant nodeswithin a configurable time period (on the order of years),

so that an independent third party can manually audit the correct behavior of any individual

participant and ensure that all requests and responses it sent comply with the protocol.

Remarks The system operator has tomake a trade-off between preserving data for auditability

and deleting data for system efficiency (see Pruning).

This item is scheduled on the Daml roadmap.

• GDPR Compliance. I want the system to be compliant with the General Data Protection Regu-

lation (GDPR).

1778 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

• Configurable trust-liveness trade-off. I want each domain to allow me to choose from a pre-

defined (by the domain) set of trade-offs between trust and liveness for my change requests,

so that my change requests get included in the ledger even if some of the participant nodes

of my counterparties are offline or Byzantine, at the expense of making additional trust as-

sumptions: on (1) the domain entities (for privacy and integrity), and/or (2) participant nodes

run by counterparties in my change request that are marked as “VIP” by the domain (for in-

tegrity), and/or (3) participant nodes run by other counterparties in my change request (also

for integrity).

Exception: If the honest and online participants do not have sufficient information about the

activeness of the contracts used by my change request, the request can still be rejected.

Design limitation: The only trade-off allowed by the current design is through confirmation

policies. Currently, the only fully supported policies are the full, signatory, and VIP confirmation

policies. The implementation does not support the serialization of other policies. Furthermore,

integrity need not hold under other policies. This corresponds to allowing only the trade-off (2)

above (making additional trust assumptions on VIP participants). In this case, the VIP partici-

pants must be trusted.

Note: If a participant is trusted, then the trust assumption extends to all parties hosted by

the participant. Conversely, the system does not support to trust a participant for the actions

performed on behalf of one party and distrust the same participant for the actions performed

on behalf of a different party.

• Workflow isolation. I want the system to be built such that workflows (groups of change re-

quests serving a particular business purpose) that are independent, i.e. do not conflict with

other, do not affect each other’s performance.

This item is scheduled on the roadmap.

• Pruning. I want the system to provide data pruning capabilities, so that the required hot stor-

age capacity for each participant node depends only on:

1. the size of currently active contracts whose processing the node is involved in,

2. the node’s past traffic volume within a (per-participant) configurable time window

and does not otherwise grow unboundedly as the system continues operating. Cold storage

requirements are allowed to keep growing continuously with system operation, for auditability

purposes.

• Multi-domain participant nodes. I want to be able to use multiple domains simultaneously

from the same participant node.

This item is only delivered in an experimental state and scheduled on the roadmap for GA.

• Internal participant node domain. I want to be able to use an internal domain for workflows

involving only local parties exclusively hosted by the participant node.

This item is scheduled on the roadmap.

• Connecting to domains. I want to be able to connect my participant node to a new domain at

any point in time, as long as I am accepted by the domain operators.

Exception If the participant has been connected to a domain with unique contract key mode

turned on, then connecting to another domain is forbidden.

• Workflow transfer. I want to be able to transfer the processing of any Daml contract that I

am a stakeholder of or have delegation rights on, from one domain to another domain that has

been vetted as appropriate by all contract stakeholders through someprocedure defined by the

synchronization service, so that I can use domains with better performance, do load balancing

and disaster recovery.

• Workflow composability. I want to be able to atomically execute steps (Daml actions) in dif-

ferent workflows across different domains, as long as there exists a single domain to which all

participants in all workflows are connected.

This item is scheduled on the roadmap.

1.44. Daml Ledger References 1779

Daml SDK Documentation, 2.7.3

• Standards compliant cryptography. I want the system to be built using configurable cryp-

tographic primitives approved by standardization bodies such as NIST, so that I can rely on

existing audits and hardware security module support for all the primitives.

• Secure storage of cryptographic private keys. I want the system to store cryptographic private

keys in a secure way to prevent unauthorized access to the keys.

• Upgradability. I want to be able to upgrade system components, both individually and jointly,

so that I can deploy fixes and improvements to the components and the protocol without stop-

ping the system’s operation.

Design Limitation 1 When a domain needs to be upgraded to a new protocol version a new

domain is deployed and the participants migrate the active contracts’ synchronization to the

new domain.

Design Limitation 2 When a replicated node needs to be upgraded, all replicas of the node

needs to be upgraded at the same time.

• Semantic versioning. I want all interfaces, protocols and persistent data schemas to be ver-

sioned, so that version mismatches are prevented. The versioning scheme must be semantic,

so that breaking changes always bump the major versions.

Remark Every change in the Canton protocol leads to a new major version of the protocol, but

a Canton node can support multiple protocols without requiring a major version change.

• Domain approved protocol versions. I want domains to specify the allowed set of protocol

versions on the domain, so that old versions of the protocol can be decommissioned, and that

new versions can be introduced and rolled back if operational problems are discovered.

Design limitation: Initially, the domain can specify only a single protocol version as allowed,

which can change over time.

• Multiple protocol compatibility. I want new versions of system components to still support

at least one previous major version of the synchronization protocol, so that entities capable

of using newer versions of the protocol can still use domains that specify only old versions as

allowed.

• Testability of participant node upgrades on historical data. I want to be able to test new

versions of participant nodes against historical data from a time window and compare the

results to those obtained from old versions, so that I can increase my certainty that the new

version does not introduce unintended differences in behavior.

This item is scheduled on the roadmap.

• Seamless participant failover. I want the applications using the ledger API to seamlessly fail

over to my other participant nodes, once one of my nodes crashes.

Design limitation An external load balancer is required in front of the participant node replicas

to direct requests to the appropriate replica.

• Seamless failover for domain entities. I want the implementation of all domain entities to

include seamless failover capabilities, so that the system can continue operating uninterrupt-

edly on the failure of an instance of a domain entity.

• Backups. I want to be able to periodically backup the system state (ledger databases) so that

it can be subsequently restored if required for disaster recovery purposes.

• Site-wide disaster recovery. I want the system to be built with the ability to recover from a

failure of an entire data center by moving the operations to a different data center, without

loss of data.

• Participant corruption recovery. I want to have a procedure in place that can be followed to

recover from a malfunctioning or a corrupted participant node, so that when the procedure is

finished I obtain the same guarantees (in particular, integrity and transparency) as the honest

1780 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

participants on the part of the shared ledger created after the end of the recovery procedure.

• Domain entity corruption recovery. I want to have a procedure in place that can be followed

to recover a malfunctioning or corrupted domain entity, so that the system guarantees can be

restored after the procedure is complete.

This item is scheduled on the roadmap.

• Fundamental dispute resolution. I want to have a procedure in place that allows me to limit

and resolve the damage to the ledger state in the case of a fundamental dispute on the out-

come of a transaction that was added to the virtual shared ledger, so that I can reconcile the set

of active contracts with my counterparties in case of any disagreement over this set. Example

causes of disagreement include disagreement with the state found after recovering a com-

promised participant, or disagreement due to a change in the regulatory environment making

some existing contracts illegal.

This item is scheduled on the roadmap.

• Distributed recovery of participant data. I want to be able to reconstruct which of my con-

tracts are currently active from the information that the participants of my counterparties

store, so that I can recover my data in case of a catastrophic event. This assumes that the

other participants are cooperating and have not suffered catastrophic failures themselves.

This item is scheduled on the roadmap.

• Adding parties to participants. I want to be able to start using the system at any point in time,

by choosing to use a new or an already existing participant node.

• Identity information updates. I want the synchronization protocol to track updates of the

topology state, so that the parties can switch participants, and participants can roll and/or

revoke keys, while ensuring continuous system operation.

• Party migration. I want to be able to switch from using one participant node to using another

participant node, without losing the data about the set of active contracts on the shared ledger

that I amastakeholder of. Thenewparticipant nodedoesnot need toprovidemewith the ledger

changes prior to migration.

This item is scheduled on the roadmap.

• Parties using multiple participants. I want to be able to use the system through multiple

participant nodes, so that I can do load balancing, and continue using the system even if one

of my participant nodes crashes.

Design limitation The usage of multiple participants by a single party is not seamless as with

participant high availability, because ledger offsets are different between participant nodes un-

less it is a replicated participant and command deduplication state is not shared amongmul-

tiple participant nodes.

• Read-only participants. I want to be able to configure some participants as read-only, so that

I can provide a live stream of the changes to my ledger view to an auditor, without giving them

the ability to submit change requests.

• Reuse of off-the-shelf solutions. I want the system to rely on industry-standard abstractions

for:

1. messaging

2. persistent storage (e.g., SQL)

3. identity providers (e.g., Oauth)

4. metrics (e.g., MetricsRegistry)

5. logging (e.g., Logback)

6. monitoring (e.g., exposing /health endpoints)

so that I can use off-the-shelf solutions for these purposes.

• Metrics on APIs. I want the system to provide metrics on the state of all API endpoints in the

1.44. Daml Ledger References 1781

Daml SDK Documentation, 2.7.3

system, and make them available on both link endpoints.

• Metrics on processing. I want the system to providemetrics for every major processing phase

within the system.

• Component health monitoring. I want the system to providemonitoring information for every

system component, so that I am alerted when a component fails.

This item is scheduled on the roadmap.

• Remote debugability. I want the system to capture sufficient information such that I can de-

bug remotely and post-mortem any issue in environments that are not within my control (OP).

• Horizontal scalability. I want the system to be able to horizontally scale all parallelizable parts

of the system, by adding processing units for these parts.

This item is scheduled on the roadmap.

• Large transaction support. I want the system to support large transactions such that I can

guarantee atomicity of large scale workflows.

This item is scheduled on the roadmap.

• Resilience to erroneous behavior. I want that the system to be resilient against erroneous

behavior of users and participants such that I can entrust the system to handle my business.

This item is scheduled on the roadmap.

• Resilience to faulty domain behavior. I want that the system to be able to detect and recover

from faulty behaviour of domain components, such that occasional issues don’t break the sys-

tem permanently.

This item is scheduled on the roadmap.

Known limitations

In this section, we explain current limitations of Canton that we intend to overcome in future ver-

sions.

Limitations that apply always

Missing Key features

• Cross-domain transactions currently require the submitter of the transaction to transfer all

used contracts to a common domain. Cross-domain transactions without first transferring to

a single domain are not supported yet. Only the stakeholders of a contract may transfer the

contract to a different domain. Therefore, if a transaction spans several domains and makes

use of delegation to non-stakeholders, the submitter currently needs to coordinate with other

participants to run the transaction, because the submitter by itself cannot transfer all used

contracts to a single domain.

1782 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Reliability

• H2 support: The H2 database backend is not supported for production scenarios, therefore

data continuity is also not guaranteed.

Manageability

• Party migration is still an experimental feature. A party can already be migrated to a “fresh”

participant that has not yet been connected to any domains. Party migration is currently a

manual process that needs to be executed with some care.

Security

• Denial of service attacks: We have not yet implemented all countermeasures to denial of ser-

vice attacks. However the domain already protects against faulty participants sending too

many requests and message size limits protect against malicious participants trying to send

large amounts of data via a domain. Further rate limit on the ledger API protects against mali-

cious/faulty applications.

• Public identity information: The topology state of a domain (i.e., participants known to the

domain and parties hosted by them) is known to all participants connected to the domain.

Limitations that apply only sometimes

Manageability

• Multi-participant parties: Hosting a party on several participants is an experimental feature.

If such aparty is involved in a contract transfer, the transfermay result in a ledger fork, because

the ledger API is not able to represent the situation that a contract is transferred out of scope of

a participant. If one of the participants hosting a party is temporarily disabled, the participant

may end up in an outdated state. The ledger API does not support managing parties hosted on

several participants.

• Disabling parties: If a party is disabled on a participant, it will remain visible on the ledger API

of the participant, although it cannot be used anymore.

• Pruning: The public API does not yet allow for pruning of contract transfers and rotated

cryptographic keys. An offline participant can prevent the pruning of contracts by its

counter-participants.

• DAR and package management through the ledger API: A participant provides two APIs for

managing DARs and Daml packages: the ledger API and the admin API. When a DAR is uploaded

through the ledger API, only the contained packages can be retrieved through the admin API;

the DAR itself cannot. When a package is uploaded through the ledger API, Canton needs to

perform some asynchronous processing until the package is ready to use. The ledger API does

not allow for querying whether a package is ready to use. Therefore, the admin API should be

preferred for managing DARs and packages.

1.44. Daml Ledger References 1783

Daml SDK Documentation, 2.7.3

Requirement Exceptions: Notes

In this section, we explain the consequences of the exceptions to the requirements. In contrast to

the known limitations, a requirements exception is a fundamental limitation of Canton that will most

likely not be overcome in the foreseeable future.

Ledger consistency

The validity requirement on the ledger made an exception for the consistency of contracts without

honestly represented signatories. We explain the exception using the paint offer example from the

ledger model. Recall that the example assumed contracts of the form PaintOffer houseOwner painter

obligorwith the painter as the signatory, and the houseOwner as an observer (while the obligor is not a

stakeholder). Additionally, assume that we extend the model with an action that allows the painter

to rescind the offer. The resulting model is then:

Assume that Alice (A) is the house owner, P the painter, and that the painter is dishonestly repre-

sented, in that he employs a malicious participant, while Alice is honestly represented. Then, the

following shared ledgers are allowed, together with their projections for A, which in this case are just

the list of transactions in the shared ledger.

1784 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

That is, the dishonestly represented painter can rescind the offer twice in the shared ledger, even

though the offer is not active any more by the time it is rescinded (and thus consumed) for the

second time, violating the consistency criterion. Similarly, the dishonestly represented painter can

rescind an offer that was never created in the first place.

However, this exception is not a problem for the stated benefits of the integrity requirement, as the

resulting ledgers still ensure that honestly represented parties cannot have obligations imposed on

them or rights taken away from them, and that their counterparties cannot escape their existing

obligations. For instance, the example of a malicious Alice double spending her IOU:

is still disallowed even under the exception, as long as the bank is honestly represented. If the bank

was dishonestly represented, then the double spend would be possible. But the bank would not gain

anything by this dishonest behavior – it would just incur more obligations.

No unnecessary rejections

This requirement made exceptions for (1) contention, and included a design limitation for (2)

crashes/Byzantine behavior of participant nodes. Contention is a fundamental limitation, given

the requirement for a bounded decision time. Consider a sequence cr1, . . . crn of change requests,

each of which conflicts with the previous one, but otherwise have no conflicts, except for maybe cr1.
Then all the odd-numbered requests should get added to the ledger exactly when cr1 is added, and

the even-numbered ones exactly when cr1 is rejected. Since detecting conflicts and other forms of

processing (e.g. communication, Daml interpretation) incur processing delays, deciding precisely

whether crn gets added to the ledger takes time proportional to n. By lengthening the sequence of

requests, we eventually exceed any fixed bound within which we must decide on crn.

1.44. Daml Ledger References 1785

Daml SDK Documentation, 2.7.3

Crashes and Byzantine behavior can inhibit liveness. To cope, the so-called VIP confirmation policy

allows any trusted participant to add change requests to the ledger without the involvement of other

parties. This policy can be used in settings where there is a central trusted party. Today’s financial

markets are an example of such a setting.

The no-rejection guarantees can be further improved by constructing Damlmodels that ensure that

the submitter is a stakeholder on all contracts in a transaction. That way, rejects due to Byzantine

behavior of other participants can be detected by the submitter. Furthermore, if necessary, the syn-

chronization service itself couldbe changed to improve its properties in a future version, by including

so-called bounded timeout extensions and attestators.

Privacy

Consider a transaction where Alice buys some shares from Bob (a delivery-versus-payment transac-

tion). The shares are registered at the share registry SR, and Alice is paying with an IOU issued to her

by a bank. We depict the transaction in the first image below. Next, we show the bank’s projection

of this transaction, according to the DA ledger model. Below, we demonstrate what the bank’s view

obtained through the ledger synchronization protocol may look like. The bank sees that the transfer

happens as a direct consequence of another action that has an additional consequence. However,

the bank learns nothing else about the parent action or this other consequence. It does not learn

that the parent action was on a DvP contract, that the other consequence is a transfer of shares, and

that this consequence has further consequences. It learns neither the number nor the identities of

the parties involved in any part of the transaction other than the IOU transfer. This illustrates the

first design limitation for the privacy requirement.

At the bottom, we see that the domain entities run by a trusted third party can learn the complete

structure of the transaction and the stakeholders of all actions in the transaction (second design

limitations). Lastly, they also see some data about the contracts onwhich the actions are performed,

but this data is visible only in an encrypted form. The decryption keys are never sharedwith the domain

entities.

1786 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.44. Daml Ledger References 1787

Daml SDK Documentation, 2.7.3

1.44.2.5 Research Publications

Daml, Canton, and their underlying theory are described in the following research publications:

• Daml: A Smart Contract Language for Securely Automating Real-World Multi-Party Business

Workflows describes the theory underlyingDaml’s language primitives for smart contracts and

how Daml is compiled.

Alexander Bernauer, Sofia Faro, Rémy Hämmerle, Martin Huschenbett, Moritz Kiefer, Andreas

Lochbihler, Jussi Mäki, Francesco Mazzoli, Simon Meier, Neil Mitchell, Ratko G. Veprek. Daml:

A Smart Contract Language for Securely Automating Real-World Multi-Party Business Workflows. In:

arXiv:2303.03749, 2023.

Abstract: Distributed ledger technologies, also known as blockchains for enterprises, promise

to significantly reduce the high cost of automating multi-party business workflows. We argue

that a programming language for writing such on-ledger logic should satisfy three desiderata:

1. Provide concepts to capture the legal rules that govern real-world business workflows.

2. Include simple means for specifying policies for access and authorization.

3. Support the composition of simple workflows into complex ones, even when the simple

workflows have already been deployed.

We present the open-source smart contract language Daml based on Haskell with strict evalu-

ation. Daml achieves these desiderata by offering novel primitives for representing, accessing,

andmodifying data on the ledger, which aremimicking the primitives of today’s legal systems.

Robust access and authorization policies are specified as part of these primitives, and Daml’s

built-in authorization rules enable delegation, which is key for workflow composability. These

properties make Daml well-suited for orchestrating business workflows across multiple, oth-

erwise heterogeneous parties.

Daml contracts run (1) on centralized ledgers backed by a database, (2) on distributed deploy-

ments with Byzantine fault tolerant consensus, and (3) on top of conventional blockchains, as

a second layer via an atomic commit protocol.

• A Structured Semantic Domain for Smart Contracts describes how Canton relates to Daml and

the ledger model.

Extended abstract presented at Computer Security Foundations 2019.

• Authenticated Data Structures As Functors in Isabelle/HOL formalizes Canton’s Merkle tree

data structures in the theorem prover Isabelle/HOL.

– Andreas Lochbihler and Ognjen Maric. Authenticated Data Structures As Functors in Is-

abelle/HOL. In: Bruno Bernardo and Diego Marmsoler (eds.) Formal Methods for Blockchain

2020. OASIcs vol. 84, 6:1-6:15, 2020.

– DOI

– Preprint PDF

– Pre-reecorded talk

– Live presentation (1:48 to 12:50)

A longer versionwas presented at the IsabelleWorkshop 2020 (recording). The Isabelle theories

are available in the Archive of Formal Proofs.

Abstract: Merkle trees are ubiquitous in blockchains and other distributed ledger technologies

(DLTs). They guarantee that the involved systems are referring to the same binary tree, even if

each of them knows only the cryptographic hash of the root. Inclusion proofs allow knowl-

edgeable systems to share subtrees with other systems and the latter can verify the subtrees’

authenticity. Often, blockchains and DLTs use data structures more complicated than binary

trees; authenticated data structures generalize Merkle trees to such structures.

We show how to formally define and reason about authenticated data structures, their inclu-

sion proofs, and operations thereon as datatypes in Isabelle/HOL. The construction lives in the

symbolic model, i.e., we assume that no hash collisions occur. Our approach is modular and

allows us to construct complicated trees from reusable building blocks, which we call Merkle

1788 Chapter 1. Canton References

https://arxiv.org/abs/2303.03749
https://arxiv.org/abs/2303.03749
https://arxiv.org/abs/2303.03749
https://www.canton.io/publications/csf2019-abstract.pdf
https://www.daml.com
https://docs.daml.com/concepts/ledger-model/index.html
https://web.stevens.edu/csf2019/index.html
https://www.canton.io/publications/fmbc2020.pdf
https://fmbc.gitlab.io/2020/
https://doi.org/10.4230/OASIcs.FMBC.2020.6
https://www.canton.io/publications/fmbc2020.pdf
https://www.youtube.com/watch?v=A9Q4G_pCSj4
https://www.youtube.com/watch?v=mTM5D6MeBRw
https://www.canton.io/publications/iw2020.pdf
https://sketis.net/isabelle/isabelle-workshop-2020
https://www.youtube.com/watch?v=GvSnSL8eSEw
https://www.isa-afp.org/entries/ADS_Functor.html

Daml SDK Documentation, 2.7.3

functors. Merkle functors include sums, products, and function spaces and are closed under

composition and least fixpoints. As a practical application, wemodel the hierarchical transac-

tions of Canton, a practical interoperability protocol for distributed ledgers, as authenticated

data structures. This is a first step towards formalizing the Canton protocol and verifying its

integrity and security guarantees.

• A semantic domain for privacy-aware smart contracts and interoperable sharded ledgers

Lightning talk presented at Certified Proofs and Programs 2021.

Abstract:

Daml is a Haskell-based smart contract programming language used to coordinate business

workflows across trust boundaries. Daml’s semantics are defined over an abstract ledger,

which provides a clear semantics for Daml’s authorization rules, double-spending protection,

and privacy guarantees. In its simplest form, a ledger is represented as a list of commits, i.e.,

hierarchical transactions and their authorizers. This representation allows for easy reason-

ing about Daml smart contracts because the total order hides the intricacies of a distributed,

Byzantine-fault tolerant system. It is also adequate for Daml running on a single blockchain,

as it defines a total order on all transactions.

Yet, for distributed ledgers to fully eliminate data silos, smart contracts must not be tied to a

single blockchain, which would then just become another silo. Daml therefore runs on differ-

ent blockchains such as Hyperledger Fabric, Ethereum, and FISCO-BCOS aswell as off-the-shelf

databases. The underlying protocol Canton supports atomic transactions across all these

Daml ledgers. This makes Daml ledgers sharded for higher throughput as well as interoper-

able to avoid data silos.

Semantically, Canton creates a virtual shared ledger by merging the individual ledgers’ lists

of commits. The virtual shared ledger is not totally ordered, to account for the fact that there

is no global notion of time across ledgers. Still, transactions can use only contracts that have

been created within earlier transactions. This ensures that causality is respected even though

individual system users cannot see all dependencies due to the privacy rules. Canton tracks

privacy-aware causality using vector clocks.

To ensure that Daml and Canton achieve their claimed properties, we have started to formalize

the Daml ledgermodel and prove its properties in Isabelle/HOL. The twomain verification goals

are as follows:

1. Canton’s vector clock tracking correctly implements causality.

2. The synchronization due to vector clocks cannot cause deadlocks.

The challenge here is that these guarantees should hold for honest nodes in the system even

if other systems fail or behave Byzantine.

In the lightning talk, we give an idea of the ledger model, privacy-aware causality, and the cur-

rent state of the verification.

1.44.2.6 Security Architecture

Secure Cryptographic Private Key Storage

In this section we describe Canton’s two different approaches to securing the storage of crypto-

graphic private keys. When enabled, we leverage a Key Management Service (KMS) to either: (a) host

an encryption key that is used to transparently encrypt the private keys (i.e. envelope encryption) before stor-

ing them in Canton’s database; or (b) directly use a KMS to perform cryptographic operations without access

to the private keys. While using envelope encryption we make sure that an attacker who has access

to the database (e.g., a malicious database operator) cannot get access to the private keys from a

Canton node, which would compromise the transaction privacy and integrity guarantees of Canton.

If we instead decide to externalize private key storage and usage, we go one step further and protect

1.44. Daml Ledger References 1789

https://www.canton.io/publications/cpp2021-slides.pdf
https://popl21.sigplan.org/details/CPP-2021-certified-programs-and-proofs-lightning-talks/6/A-semantic-domain-for-privacy-aware-smart-contracts-and-interoperable-sharded-ledgers
https://popl21.sigplan.org/home/CPP-2021

Daml SDK Documentation, 2.7.3

against an attacker with privileged access to the node’s system that can inspect the memory.

Background

Canton uses cryptography in several ways to provide a secure, minimal trust platform. In Canton we

distinguish between three types of keys: short-term, long-term, and permanent keys.

• Short-term key: These are used to encrypt transaction payloads. The secrets for these keys are

already transmitted and stored in an encrypted form, and used only once.

• Long-term key: These are keys that are used for topology transaction signing, transaction pro-

tocol signing, and encryption of short-term key secrets.

• Permanent key: A namespace root signing key is a permanent key. It cannot be rotated without

losing the namespace, as the namespace is identified by the fingerprint of the signing key. This

is an architectural feature.

Long-term and permanent keys are by default stored in clear. Canton can, if enabled, offer confiden-

tiality at rest for these private keys. Short-term keys do not require additional protection because

they are derived from a secret that is already transmitted and stored in an encrypted form using a

long-term public encryption key.

Long-term keys should be governed by an operational security policy with a requirement to rotate

these keys periodically or if one of them is compromised.

Requirements

• The long-term keysmust not be available on disk or in storage in a way that would allow some-

one with access to the storage to view/access the key.

• The keys must not be part of Canton’s container images.

• A key administrator can rotate both the KMS key and the long-term keys in Canton.

• Historical contract data can be decrypted using old long-term, encrypted keys that have been

superseded. No old long-term keys are used in future transactions.

• Backup and subsequent restoration of the database of a participant node supports KMS key

rotation and rotation of Canton’s long-term keys.

• For high availability operation, Canton supports duplication of keys.

Note: Confidentiality at runtime for the private keys is out of scope. If envelope encryption is used

then we do not protect against an attacker that has privileged access to the node’s system and can

inspect the memory.

Protect Private Keys With Envelope Encryption and a Key Management Service

Canton can protect private keys by forcing them to be internally stored in an encrypted form so they

can’t be decrypted and used to create fraudulent transactions. This protection at rest safeguards

against malicious adversaries that get access to a node’s storage layer. Keys will only be decrypted

when being used and stored in a memory cache for fast access. We currently make use of a KMS’s

ability to securely perform this encryption/decryption of keys using a symmetric encryption key,

which we call KMS wrapper key, without ever exposing it to the outside world, as it is backed by Hard-

ware Security Modules (HSM) that move the crypto operations to a secure enclave.

1790 Chapter 1. Canton References

https://docs.daml.com/canton/usermanual/security.html
https://docs.daml.com/canton/usermanual/identity_management.html#identity-setup-guide

Daml SDK Documentation, 2.7.3

Directly encrypting the Canton private keys with a KMS wrapper key, i.e. envelope encryption, hasmul-

tiple advantages compared to storing these keys in the KMS itself:

• Reduces the impact on performance due to additional latency and the probability of throttling

KMS API requests if the thresholds are exceeded.

• Preserves Canton’s current key schemes, which remain flexible and easily modifiable. Not all

KMS implementations offer modern and fast signing schemes such as Ed25519.

The confidentiality of the Canton private long-term and permanent keys depends on the access to

the KMS wrapper key. The KMSmust be locked down appropriately:

• Export of the symmetric key must be forbidden.

• Only authorized Canton nodes can use the wrapper key for decryption.

• Usage of the wrapper key must be logged for auditability.

• Separation of duties between the KMS operator and the database operator.

1.44. Daml Ledger References 1791

https://docs.aws.amazon.com/kms/latest/developerguide/throttling.html
https://docs.aws.amazon.com/kms/latest/developerguide/throttling.html

Daml SDK Documentation, 2.7.3

Externalize Private Keys With a Key Management Service

Canton can also protect private keys by outsourcing their generation and storage to a KMS, making

use of of its API to perform necessary crypto operations such as decryption and signing. This pro-

tection safeguards against malicious adversaries that, besides access to the storage layer, can also

access the node’s system and inspect its memory. Using a KMS’s underlyingmonitoring framework

(e.g. AWS CloudTrail Logs or GCP Cloud Audit Logs) in combination with Canton logging also offers

a reliable way to maintain the security, reliability of Canton, and identify any possible misuse of its

private keys.

This improvement in security comes with drawbacks, in particular:

• Added latency resulting from the need to use a KMS to decrypt and sign messages.

• Canton’s supported schemes must match those provided by the KMS.

KMS Integration

Canton currently makes use of AWS or GCP KMSs to protect its private keys. The AWS KMS API or the

GCP KMS API are similar to a hardware security module (HSM) where cryptographic operations can

be done within the KMS using the stored keys, without exposing them outside of the KMS.

Besides offering a secure platform to create, manage, and control cryptographic keys, they also sup-

port:

• Enforcement of key usage/authorization policies;

• Access to the key usage authorization logs;

• Multi-region keys that allow for the replication of keys inmultiple regions for disaster recovery;

• Automatic rotation of keys. Note that both AWS and GCP transparently select the appropriate

KMS key to use, so they can be safely rotated without any code changes.

KMSWrapper Key Rotation

AWS and GCP KMS offer two different ways to rotate keys, either automatically or manually. By de-

fault, every symmetric key created by these KMSs is set for automatic rotation (yearly for AWS, and

user-defined for GPC) where only the key material is changed. The properties of the KMS key do not

change and there is no need to re-encrypt the data with the newly rotated key. Management of dif-

ferent key versions is done seamlessly and no changes are necessary in Canton. We recommend

the rotation of the underlying Canton long-term keys after the KMS key has been rotated. The rotation

frequency is fixed and cannot be changed.

Fig. 33: image taken from https://docs.aws.amazon.com/kms/latest/developerguide/rotate-keys.

html

1792 Chapter 1. Canton References

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://cloud.google.com/kms/docs/reference/rest
https://docs.aws.amazon.com/kms/latest/developerguide/rotate-keys.html
https://cloud.google.com/kms/docs/key-rotation
https://docs.aws.amazon.com/kms/latest/developerguide/rotate-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/rotate-keys.html

Daml SDK Documentation, 2.7.3

The manual rotation of a wrapper key requires not only the creation of a new KMS key but also the

re-encryption of our data with it. To do this Canton node administrators can request amanual rotation

of the KMS wrapper key through the Canton console.

KMS Key Rotation

When Canton’s signing and encryption keys are off-sourced to a KMS (rather than encrypted at rest

with a KMS wrapper key) their rotation has to be operated manually. Neither AWS or GCP provide

automatic asymmetric key rotation. Manual key rotation is achieved by requesting either: (1) a stan-

dard rotation of Canton’s keys, which in this particular case also involves the rotation of the underlying

KMS key, or (2) a rotation to a previously generate KMS key.

Satisfied Requirements

Our solutions: (a) private key storage protection using envelope encryption and (b) private key externaliza-

tion comply with all the previously mentioned requirements in the following ways:

• The long-term keys must not be available on disk or in storage in a way that would allow someone with access to the storage to view/access the key.

– The long-term and permanent keys are either: (a) only stored in an encrypted form in

the database (the corresponding encryption key is stored securely by the KMS in an

HSM), or (b) not stored at all by Canton.

• The keys must not be part of Canton’s container images.

– The Canton private keys are stored in the (a) database of the node or directly in the (b)

external KMS and not in the container image. Credentials to access the KMS can be

passed in via the environment when a container is created, the credentials must not

be stored in the image.

• A key administrator can both rotate the KMS key or long-term keys in Canton.

– Canton already supports manual rotation of long-term keys. In scenario (b) this also

involves the re-generation of the keys in the KMS.

– Support of KMS wrapper key rotation (b) based on either: an KMS automated annual

key rotation, or a manual rotation and re-encryption of the Canton private keys.

• Historical contract data can be decrypted using old long-term, encrypted keys that have been superseded. No old long-term keys are used in future transactions.

– Canton already supports rotation of long-term keys with a synchronized state on

which keys are active across nodes as part of topology management.

• Backup and subsequent restoration of the database of a participant node supports KMS key rotation and rotation of Canton’s long-term keys.

– Database restoration/backup is only needed for (a) protection of keys at rest and as

long as the database and the wrapper key are available, backup and restoration are not

impacted by key rotation. Replicating a KMS key inmultiple regions can alsomitigate

the impact of a failure in the primary region.

– A KMS operator must ensure its configured key store has in place a robust disaster

recovery plan to prevent the permanent loss of keys.

• For high availability operation, Canton supports duplication of keys.

– Canton supports AWS and GCP multi-region keys when enabled in the configuration,

aswell aswhen the operatormanually creates the key and just configures the existing

key id in Canton. Note: replicating keys to other regions is a manual process by the operator

and not done automatically by Canton.

1.44. Daml Ledger References 1793

Daml SDK Documentation, 2.7.3

Resilience to Malicious Participants

The Canton architecture implements the Daml Ledger Model, which has the following properties to

ensure ledger integrity:

• Model conformance;

• Signatory and controller authorization; and

• Daml ledger consensus and consistency, which contributes the most to the resilience.

An overview is presented here for how the Canton run-time is resilient to a malicious participant

with these properties.

The ledger API have been designed and tested to be resilient against amalicious application sending

requests to a Canton participant node. The focus here is on resilience to a malicious participant.

Model Conformance

During interpretation, the Daml engine verifies that a given action for a set of Daml packages is one

of the allowed actions by the party for a contract (i.e., it conforms to the model). For example in an

IOUmodel, it is valid that the actor of a transfer actionmust be the same as the owner of the contract

and invalid for a non–owner to attempt a transfer, because the IOU must only be transferred by the

owner.

Signatory and Controller Authorization

During interpretation, the Daml engine verifies the authorization of ledger actions based on the sig-

natories and actors specified in the model when compared with the party authorization in the sub-

mitter information of the command.

Daml Ledger Integrity

Canton architecture ensures the integrity of the ledger for honest participants despite the presence

of malicious participants. The key ingredients to achieving integrity are the following:

• Deterministic transaction validation to reach consensus;

• Consistent transaction ordering and validation;

• Consistency checks with at least one honest participant per signatory party; and

• Using an authenticated data structure (generalized blinded Merkle tree) for transactions that

balances consensus with privacy.

Deterministic Transaction Execution

The execution ofDaml is deterministic even though there aremultiple, distributedparticipant nodes:

given a set of Daml packages that are identified by their content and a command (create or exercise),

the result of a (sub-)transaction will always be the same for the involved participant nodes. This

property is used by Canton to reach agreement on whether a submitted (sub-)transaction is valid or

invalid – the agreement is a requirement for ledger integrity.

1794 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Consistent Transaction Ordering and Validation

Canton uses distributed conflict detection among the involved participant nodes to ensure integrity

since, by design, there is no centralized component that knows the activeness of all contracts. In-

stead all involved participants process the transactions in the same order so that if two concurrent

transactions consume the same contract only the first transaction consumes the contract and the

other transaction fails (e.g., no double spend). This means that a failed consistency check does not

necessarily mean the submitter was malicious; it may be the result of a race condition in the appli-

cation to consume the same contract. The sequencer node guarantees that all messages are totally

ordered timestamps.

The deterministic order is established with unique timestamps from the sequencer, which imple-

ments a guaranteed total order multicast; that is, the sequencer guarantees the delivery of an

end-to-end encrypted message to all all recipients. The deterministic order of message delivery re-

sults in a deterministic order of execution which ensures ledger integrity.

For finality and bounded decision times of transactions, the sequencer is immutable and

append-only. In the event of a timeout, the timeouts of transactions are consistently derived from

the sequencer timestamps so that timeouts are deterministic as well.

The set of recipients on the sequencer message can be validated by a recipient to ensure that the

other participants of the transaction have been informed as well (i.e., guaranteed communication).

Otherwise the malicious submitter would break consensus, resulting in a loss of ledger integrity

where participants hosting a signatory are not informed about a state change.

Consistency With at Least One Honest Participant per Signatory Party

Although participants can verify model conformance and authorization on their own as described in

the previous sections, the consistency check needs at least one honest participant hosting a signa-

tory party to ensure consistency. If all signatories of a contract are hosted by dishonest participants,

a transaction may use a contract even when the contract is not active.

Authenticated Data Structure for Transactions

The hierarchical transactions are represented by an authenticated data structure in the form of

a generalized blinded Merkle tree (see https://www.canton.io/publications/iw2020.pdf). At a high

level, the Merkle tree can be thought of like a blockchain in a tree format rather than a list. The

Merkle tree is used to reach consensus on the hierarchical data structurewhile the blinding provides

sub-transaction privacy. The mediator sees the shape of the transaction tree and who is involved,

but no transaction payload. The entire transaction and Merkle tree is identified by its root hash. A

recipient can verify the inclusion of an unblinded view by its hash in the tree. The mediator receives

confirmations of a transaction for each view hash and aggregates the confirmations for the entire

Merkle tree. Each participant can see all the hashes in theMerkle tree. If two participants have differ-

ent hashes for the same node, themediator will detect this and reject the transaction. Themediator

also sees the number of participants involved so it can detect a missing or additional participant.

The authenticated data structure ensures that participants process the same transaction and reach

consensus.

1.44. Daml Ledger References 1795

https://www.canton.io/publications/iw2020.pdf

Daml SDK Documentation, 2.7.3

Detection of Malicious Participants

In addition to the steps outlined above, the system has multiple approaches to detect malicious

behavior and to keep evidence for further investigation:

• Pairs of participants periodically exchange a commitment of the active contract set (ACS) for

their mutual counterparties. This ensures that any diverging views between honest partici-

pants will be detected within the ACS commitment periods and participants can repair their

mutual state.

• Non-repudiation in the form of digital signatures enables honest participants to prove that

they were honest and who was dishonest by preserving the signed responses of each partici-

pant.

Consensus & Transparency

Consensus and Transparency are high-level requirements that ensure that stakeholders are notified

about changes to their projection of the virtual shared ledger and that they come to the same con-

clusions, in order to stay synchronized with their counterparties.

Operating on the Same Transaction

The Canton protocol includes the following steps to ensure that the mediator and participants can

verify that they have obtained the same transaction tree given by its root hash:

(1) Every participant gets a “partially blinded”Merkle tree, defining the locations of the views they

are privy to.

(2) That Merkle tree has a root. That root has a hash. That’s the root hash.

(3) The mediator receives a partially blinded Merkle tree, with the same hash.

(4) The submitting participant will send an additional “root hashmessage” in the same batch for

each receiving participant. That message will contain the same hash, with recipients being

both the participant and the mediator.

(5) The mediator will check that all participants mentioned in the tree received a root hash mes-

sage and that all hashes are equal.

(6) The mediator sends out the result message that includes the verdict and root hash.

An important aspect of this process is that transaction metadata, such as a root hash message, is

not end-to-end encrypted, unlike transaction payloads which are always encrypted. The exact same

message is delivered to all recipients. In the case of the root hash message, both the participant

and the mediator who are recipients of the message get the exact samemessage delivered and can

verify that both are the recipient of the message.

1796 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

Stakeholders Are Notified About Their Views

Imagine the following attack scenarios on the transaction protocol at the point where a dishonest

submitter prepares views.

Scenario 1: Invalid View Common Data

The submitter should send a view V2 to Alice and Bob (because it concerns them both as they are

signatories), but the dishonest submitter tells the mediator that view V2 only requires the approval

of Bob, and only sends it to Bob’s participant. In this scenario both participants of Alice and Bob are

honest.

Mitigation

The view common data is incorrect, because Alice is missing as an informee for the view V2. Given

that Bob’s participant is honest, he will reject the view by sending a reject to themediator in the case

of a signatory confirmation policy and not commit the invalid view to his ledger as part of phase 7.

The two honest participants Alice and Bob thereby do not commit this invalid view to their ledger.

Scenario 2: Missing Sequencer Message Recipient

The dishonest submitter prepares a correct view common data with Alice and Bob as informees,

but the corresponding sequencer message for the view is only addressed to Bob’s participant. The

confirmation policy does not require a confirmation from Alice’s participant, e.g., VIP confirmation

policy. In this scenario both participants of Alice and Bob are honest.

Mitigation

The mitigation relies on the following two properties of the sequencer:

(1) The trust assumption is that the sequencer is honest and actually delivers a message to all des-

ignated recipients (2) A recipient learns the identities of recipients on a particular message from a

batch if it is itself a recipient of that message

The Bob participant can decrypt the view and verify the stakeholders against the set of recipients on

the sequencer message. Themapping between parties and participants is part of the topology state

on the domain and therefore the resolution is deterministic across all nodes. Seeing that the Alice

participant is not a recipient despite Alice being a signatory on the view, Bob’s participant will reject

the view if it is a VIP participant; in any case, it will not commit the view as part of phase 7. The two

honest participants Alice and Bob thereby do not commit this invalid view to their ledger.

1.44. Daml Ledger References 1797

Daml SDK Documentation, 2.7.3

Scenario 3: All Other Participants Dishonest

It is not required that the other participants besides Alice are honest. Let’s consider a variation of

the previous scenario where both the submitter and Bob are dishonest. Again Alice’s participant

node is not a recipient of a view message, although she is hosting a signatory. That means the view

is not committed to the ledger of the honest participant Alice, because she has never seen it. Bob’s

participant is dishonest and approves and commits the view, although it is malformed. However,

the Canton protocol does not provide any guarantees on the ledger of dishonest participants.

Scenario 4: Invalid Encryption of View

A view is encrypted with a symmetric key and the secret to derive the symmetric key for a view is

encrypted for each recipient of the view with their public encryption key. The dishonest submitter

produces a correct view and a complete recipient list of the corresponding sequencer message, but

encrypts the symmetric key secret for Alice with an invalid key. Alice’s participant will be notified

about the view but unable to decrypt it.

Mitigation

If the Alice participant is a confirmer of the invalid encrypted view, which is the default confirmation

policy for signatories, then she will reject the view because it is malformed and cannot be decrypted

by her.

Currently the check by the other honest participant nodes that the symmetric key secret is actually

encrypted with the public keys of the other recipients is missing and a documented limitation. We

need to use a deterministic encryption scheme to make the encryption verifiable, which is currently

not implemented.

1.44.2.7 System Architecture FAQ

What does the Sequencer do?

The sequencer nodes, together with their shared sequencer backend (blockchain or database) and

the schema of the sequencer backend (native smart contracts or database schema), provide mes-

sage delivery between Canton nodes that is guaranteed to be order consistent, delivery consistent

and multi-cast.

Multi-cast means that Alice can send a single message to multiple recipients (Carol, Dave, etc.) as

one operation.

Delivery consistent means that if Alice sends amessage to Carol and Dave, then either the message

gets delivered to both recipients, or neither.

Order consistent means that if Alice sends a message to Carol, Dave, and others, and Bob sends a

message to Carol, Dave, then Carol and Dave see themessages from Alice and Bob in the same order.

Further Reading:

• Requirements on Sequencer Domain Entity

• Domain internal components

1798 Chapter 1. Canton References

../canton/architecture/overview.html#sequencer
../canton/architecture/domains/domains.html#domain-internal-components

Daml SDK Documentation, 2.7.3

How does Canton process a transaction?

Canton’s execution model is that the submitting participant node computes the entire transac-

tion using the Daml interpreter and then decomposes it into views (also known as projections) to

other participants, and then submits those views as part of a “confirmation request” to the other

involved participants and the mediator. The participants validate the received transaction views

by re-computing them with the deterministic Daml interpreter, and then send confirmations to the

mediator. As all the participants received the data in the same order, the outcome is determinis-

tic, allowing to pin-pointmalicious behaviour. Themediator processes the confirmations and sends

out an aggregated commit message to all involved participants once sufficient confirmations are

received. All messages are sent via the sequencer.

Further Reading:

• Transaction processing in Canton

• Daml’s Execution Model

• Projections

How does Canton ensure privacy?

Most sequencer backend options have limited privacy features. To provide privacy even against the

operator of the sequencers and sequencer backend, Canton encrypts all message payloads sent via

the sequencer to be readable only by the intended recipients. That includes the transaction payloads

sent as part of confirmation requests.

Canton messages are multi-cast, meaning they can have multiple recipients, and in some cases

(e.g. commit requests) have different views for the different recipients. The submitter of a message

generates a single-use symmetric View Encryption Key for each view, and encrypts the views using

those keys. It then encrypts only a seed for that View Encryption Key using the public half of an

asymmetric Participant Encryption Keys that each Canton node publishes.

The View Encryption Keys are kept - encrypted for each receiver - with the message payload itself. A

receiving node uses their Participant Encryption key to decrypt the seed of the View Encryption Key

for each of the views they are entitled to read, and uses a key derivation function (HKDF to be precise)

to recover the View Encryption Key and read the view.

The supported encryption algorithms for asymmetric encryption (Participant Encryption Keys) and

symmetric encryption (View Encryption Keys) are listed in the documentation here.

Further Reading:

• Encryption Keys

• View Encryption Keys

• Cryptographic Key Usage

1.44. Daml Ledger References 1799

../canton/architecture/overview.html#transaction-processing-in-canton
../canton/usermanual/security.html#cryptographic-key-usage
../canton/usermanual/security.html#participant-encryption-key
../canton/usermanual/security.html#view-encryption-key
../canton/usermanual/security.html#cryptographic-key-usage

Daml SDK Documentation, 2.7.3

Where does “the golden source” of Daml Ledger data live in Canton?

The short answer is that Daml Ledger data lives both on the Canton participant nodes and on the

sequencer backend, meaning the blockchain or database enabled by the driver. The data is stored

in the two places in different ways, but remains fully consistent thanks to Canton’s deterministic

execution model.

All communication betweenCanton nodes, including the confirmation requests for transactions and

the resulting confirmations and rejections, are stored on the sequencer backend. Since Daml and

Canton are built around deterministic execution, you can thus consider that data on the sequencer

backend, together with the Participant Encryption Keys, to be a complete copy of the Daml Ledger.

On the flip side, each Participant node stores its view of the Daml Ledger in an unencrypted format

suitable for serving the Ledger API. The set of all participant nodes jointly holds the entire ledger state

and history.

Further Reading:

• Transaction processing in Canton

How is Canton able to recover from data loss?

As discussed in “Where does “the golden source” of Daml Ledger data live in Canton?”, the ledger data

lives in two places, once encrypted in the sequencer backend, and once unencrypted spread between

participant nodes. As long as you have a complete copy in either place, you can recover and continue

operation.

As longas the entire ledger history in the sequencer backend is available, and youhold aparticipant’s

Participant Encryption Keys, it is possible to recover the participant from the underlying sequencer

backend. So if you use a blockchain as the sequencer backend, and can ensure that that blockchain

stays available and uncorrupted, you can always recover from participant data loss.

Should your sequencer backend go down, but all participants are still up and running, you can con-

tinue running the system by coordinating all participant nodes to “migrate” active contracts to a

new domain, with a new sequencer backend.

Should the sequencer backend no longer have the full ledger history, for example due to a domain

switch, or because of deliberate Ledger Pruning, participants can still recover from a combination

of the partial sequencer backend and a state snapshot. Such a snapshot can come either from a

backup, or from the participants’ peers. At the time of writing this process is not fully automated

but possible through Canton’s repair endpoints.

To be able to get snapshots from peers securely, nodes regularly exchange “commitments” via the

underlying sequencer backend. You can think of these as hashes of shared state. If Alice and Bob

each run a participant, Alice’s participant will regularly communicate a hash of the state it shares

with Bob’s participant and vice versa. As the state is the same, the hash will be the same. This pro-

vides real-time consistency checks, allows participants to detect faulty behaviour in domain com-

ponents, and also helps recovery in the above scenario. Alice can ask Bob for a snapshot of her data

shared with Bob, and check its correctness by comparing it to the commitment she made on the

sequencer backend.

Further Reading:

• Repairing Participants

• Backup and Restore

1800 Chapter 1. Canton References

../canton/architecture/overview.html#transaction-processing-in-canton

Daml SDK Documentation, 2.7.3

• Ledger Pruning

1.44.3 Frequently Asked Questions

This section covers other questions that frequently arise when using Canton. If your question is not

answered here, consider searching the Daml forum and creating a post if you can’t find the answer.

1.44.3.1 Log Messages

Database task queue full

If you see the log message:

java.util.concurrent.RejectedExecutionException:

Task slick.basic.BasicBackend$DatabaseDef$@... rejected from slick.util.

↪→AsyncExecutorWithMetrics$$...

[Running, pool size = 25, active threads = 25, queued tasks = 1000, completed␣

↪→tasks = 181375]

It is likely that the database task queue is full. You can check this by inspecting the log message: if

the logged queued tasks is equal to the limit for the database task queue, then the task queue is

full. This error message does not indicate that anything is broken, and the task will be retried after

a delay.

If the error occurs frequently, consider increasing the size of the task queue:

canton.participants.participant1.storage.config.queueSize = 10000

A higher queue size can lead to better performance, because it avoids the overhead of retrying tasks;

on the flip side, a higher queue size comes with higher memory usage.

Serialization Exception

In some situations, you might observe the following log message in your log file or in the database

log file:

2022­08­18 09:32:39,150 [⋮] INFO c.d.c.r.DbStorageSingle ­ Detected an␣

↪→SQLException. SQL state: 40001, error code: 0

org.postgresql.util.PSQLException: ERROR: could not serialize access due to␣

↪→concurrent update

This message is normally harmless and indicates that two concurrent queries tried to update a

database row and due to the isolation level used, one of them failed. Currently, there are a few places

where we use such queries. The Postgres manual will tell you that an application should just retry

this query. This is what Canton does.

Canton’s general strategy with database errors is to retry retryable errors until the query succeeds.

If the retry does not succeed within a few seconds, a warning is emitted, but the query is still retried.

This means that even if you turn off the database under full load for several hours, under normal

circumstances Canton will immediately recover once database access has been restored. There is

1.44. Daml Ledger References 1801

https://discuss.daml.com

Daml SDK Documentation, 2.7.3

no reason to be concerned functionally with respect to this message. As long as the message is

logged on INFO level, everything is running fine.

However, if themessage starts to appear often in your log files, youmightwant to check the database

query latencies, number of database connections and the database load, as this might indicate an

overloaded database.

1.44.3.2 Console Commands

I received an error saying that the DomainAlias I used was too long. Where I can see the

limits of String types in Canton?

Generally speaking, you don’t need to worry about too-long Strings as Canton will exit in a safe man-

ner, and return an error message specifying the String you gave, its length and themaximum length

allowed in the context the error occurred. Nonetheless, the known subclasses of LengthLimited-

StringWrapper and the type aliases defined in the companion object of LengthLimitedString list the

limits of String types in Canton.

1.44.3.3 Bootstrap Scripts

Why do you have an additional new line between each line in your example scripts?

When we write participant1 start the scala compiler translates this into participant1.

start(). This works great in the console when each line is parsed independently. However with

a script all of its content is parsed at once, and in which case if there is anything on the line follow-

ing participant1 start it will assume it is an argument for start and fail. An additional newline

prevents this. Adding parenthesis would also work.

How can I use nested import statements to split my script into multiple files?

Ammonite supports splitting scripts into several files using two mechanisms. The old one is

interp.load.module(..). The new one is import $file.<fname>. The former will compile the

module as a whole, which means that variables defined in one module cannot be used in another

one as they are not available during compilation. The import $file. syntax however will make

all variables accessible in the importing script. However, it only works with relative paths as e.g. .

./path/to/foo/bar.sc needs to be converted into import $file.^.path.to.foo.bar and it

only works if the script file is named with suffix .sc.

How do I write data to a file and how do I read it back?

• Cantonuses Protobuf for serializationandasa result, you can leverage Protobuf towrite objects

to a file. Here is a basic example:

// Obtain the last event.

val lastEvent: PossiblyIgnoredProtocolEvent =

participant1.testing.state_inspection

.findMessage(da.name, LatestUpto(CantonTimestamp.MaxValue))

.getOrElse(throw new NoSuchElementException("Unable to find last event."))

(continues on next page)

1802 Chapter 1. Canton References

https://docs.daml.com/2.7.3/canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar LengthLimitedStringWrapper.html
https://docs.daml.com/2.7.3/canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar LengthLimitedStringWrapper.html
https://docs.daml.com/2.7.3/canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar LengthLimitedString\protect \TU\textdollar .html
https://developers.google.com/protocol-buffers/

Daml SDK Documentation, 2.7.3

(continued from previous page)

// Dump the last event to a file.

utils.write_to_file(lastEvent.toProtoV0, dumpFilePath)

// Read the last event back from the file.

val dumpedLastEventP: v0.PossiblyIgnoredSequencedEvent =

utils.read_first_message_from_file[v0.PossiblyIgnoredSequencedEvent](

dumpFilePath

)

val dumpedLastEventOrErr: Either[

ProtoDeserializationError,

PossiblyIgnoredProtocolEvent,

] =

PossiblyIgnoredSequencedEvent

.fromProtoV0(testedProtocolVersion, cryptoPureApi(participant1.config))(

dumpedLastEventP

)

• You can also dump several objects to the same file:

// Obtain all events.

val allEvents: Seq[PossiblyIgnoredProtocolEvent] =

participant1.testing.state_inspection.findMessages(da.name, None, None, None)

// Dump all events to a file.

utils.write_to_file(allEvents.map(_.toProtoV0), dumpFilePath)

// Read the dumped events back from the file.

val dumpedEventsP: Seq[v0.PossiblyIgnoredSequencedEvent] =

utils.read_all_messages_from_file[v0.PossiblyIgnoredSequencedEvent](

dumpFilePath

)

val dumpedEventsOrErr: Seq[Either[

ProtoDeserializationError,

PossiblyIgnoredProtocolEvent,

]] =

dumpedEventsP.map {

PossiblyIgnoredSequencedEvent.fromProtoV0(

testedProtocolVersion,

cryptoPureApi(participant1.config),

)(_)

}

• Some classes do not have a (public) toProto* method, but they can be serialized to a

ByteString instead. You can dump the corresponding instances as follows:

// Obtain the last acs commitment.

val lastCommitment: AcsCommitment = participant1.commitments

.received(

da.name,

CantonTimestamp.MinValue.toInstant,

CantonTimestamp.MaxValue.toInstant,

)

(continues on next page)

1.44. Daml Ledger References 1803

https://developers.google.com/protocol-buffers/docs/reference/java/com/google/protobuf/ByteString

Daml SDK Documentation, 2.7.3

(continued from previous page)

.lastOption

.getOrElse(

throw new NoSuchElementException("Unable to find an acs commitment.")

)

.message

// Dump the commitment to a file.

utils.write_to_file(

lastCommitment.toByteString,

dumpFilePath,

)

// Read the dumped commitment back from the file.

val dumpedLastCommitmentBytes: ByteString =

utils.read_byte_string_from_file(dumpFilePath)

val dumpedLastCommitmentOrErr: Either[

ProtoDeserializationError,

AcsCommitment,

] =

AcsCommitment.fromByteString(dumpedLastCommitmentBytes)

1.44.3.4 Why is Canton complaining about my database version?

Postgres

Canton is tested with Postgres 10, 11, 12, 13, and 14 – so these are the recommended versions. Canton

is also likely to work with any higher versions, but will WARN when a higher version is encountered.

By default, Canton will not start when the Postgres version is below 10.

Oracle

Canton Enterprise additionally supports using Oracle for storage. Only Oracle 19 has been tested, so

by default Canton will not start if the Oracle version is not 19.

Note that Canton’s version checks use the v$$version table so, for the version check to succeed,

this table must exist and the database user must have SELECT privileges on the table.

Using non-standard database versions

Canton’s database version checks can be disabled with the following config option:

canton.parameters.non­standard­config = yes

Note that this will disable all “standard config” checks, not just those for the database.

1804 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.44.3.5 How do I enable unsupported features?

Some alpha / beta features require you to explicitly enable them. However, please note that none of

them are supported by us in our commercial product and that turning them on will very much likely

break your system:

canton.parameters {

turn on non­standard configuration support

non­standard­config = yes

turn on support of development version support for domain nodes

dev­version­support = yes

}

canton.domains.mydomain.init.domain­parameters {

set the domain protocol version to `dev` ﴾or to any other unstable protocol␣

↪→version﴿

requires you to explicitly enable non­standard­config. not to be used for␣

↪→production.

protocol­version = dev

}

canton.participants.participant1.parameters = {

enable dev version on the participant ﴾this will allow the participant to␣

↪→connect to a domain with dev protocol version﴿

and it will turn on support for unsafe daml lf dev versions

not to be used in production and requires you to define non­standard­config =␣

↪→yes

dev­version­support = yes

}

1.44.3.6 How to troubleshoot included configuration files?

If Canton is unable to find included configuration files, please read the section on including con-

figuration files and the HOCON specification. Additionally, you may run Canton with ­Dconfig.

trace=loads to get trace information when the configuration is parsed.

1.44. Daml Ledger References 1805

https://github.com/lightbend/config/blob/master/HOCON.md#include-semantics-locating-resources

Daml SDK Documentation, 2.7.3

1.45 Test Evidence

Daml is publishing test evidence for the most important traits of tests: Security, Operability, Func-

tional and Reliability.

It can be found in the relevant releases page, under Assets.

1.46 Participant Query Store User Guide

1.46.1 Introduction

The term operational data store (ODS) usually refers to a database that mirrors the ledger and al-

lows for efficient querying. The Participant Query Store (PQS) feature acts as an ODS for the partic-

ipant node. It stores contract creation, contract archival, and exercise information in a PostgreSQL

database using a JSONB column format. You access the data using SQL over a JDBC connection.

The PQS is intended for high throughput and complex queries, for which the Canton ledger (gRPC

Ledger API) and the JSON API are not optimized. The PQS is useful for:

• Application developers to access data on the ledger, observe the evolution of data, and debug

their applications.

• Business analysts to analyze ledger data and create reports.

• Support teams to debug any problems that happen in production.

• Application operators to take a full snapshot of the ledger (from the start of the ledger to the

current latest transaction). Alternatively, they can take a partial snapshot of the ledger (be-

tween specific offsets).

• Report writers to extract historical data and then stream indefinitely (either from the start of

the ledger or from a specific offset).

There are many other uses.

In the Early Access implementation, the PQS provides a unidirectional path for exporting data from

the ledger event stream to a PostgreSQL data store. Data is exported in an append-only fashion and

provides a stable view of data for purposes such as point-in-time queries.

1.46.2 Early Access Purpose and Limitations

The Early Access (EA) release allows users to learn about the architecture and programming model

of the PQS. This enhancement to the participant node provides new capabilities that can take time to

explore. The EA release is not fully production ready, but it will rapidly become enterprise-hardened.

Since applications take time to develop, the EA version is recommended for learning and develop-

ment. As enhancements are made and gaps are closed, a new patch release will be provided.

The current limitations of the EA version are:

• PQS has not been performance optimized, so it is not yet ready for large- or high-throughput

queries.

• As is typical of EA releases, backward compatibility between EA releases may be sacrificed to

make improvements in the user experience and design of PQS. You may need to make adjust-

ments in your use through the EA period.

1806 Chapter 1. Canton References

https://github.com/digital-asset/daml/releases
https://docs.daml.com/app-dev/grpc/proto-docs.html#ledgeroffset

Daml SDK Documentation, 2.7.3

Future early access releases will remove or reduce these limitations. Please check back to this sec-

tion for announcements of a new early access release.

1.46.2.1 Early Access Release Versions

The historical table below lists the available Early Access releases of the Participant Query Store.

Click the date to download the JAR.

Date Description

2023-08-09 Initial early access release.

2023-08-31 Added OAuth support.

2023-09-06 Documentation updated. Added PQS Schema Design, Offset Management, Querying Pat-

terns, Advanced Querying Topics sections.

2023-09-18 Documentation updated. Updated command line options and added information

about using ­­pipeline­filter option.

2023-09-19 New release. JDBC driver fix to not inject ?.

­­target­postgres­autoapplyschema renamed to

­­target­schema­autoapply

2023-09-22 New release. Added pruning documentation. Environment variables now have

SCRIBE_ prefix to avoid name clashes. Updated the ­­pipeline­parties op-

tion information.

2023-09-26 New release. The filter is now applied on the DB functions, such as choices.

2023-10-06 New release. Fix a JWT audience bug. Name format change.

1.46.3 Overview

1.46.3.1 Architecture

The typical configuration is to have a separate PQS instancewith its ownDB for eachparticipant node

(shown in the figure). In this configuration, the PQS extracts contract information for all parties on

the participant node. As data is physically segregated by Daml participants and hosted Daml parties

must trust the node operator, they may trust the operator to protect the PQS privacy as well. A more

restricted configuration is possible that limits the parties for which the PQS extracts information.

A client application can access the PQS directly using a JDBC connection where the data access

rights are defined by the PostgreSQL database (left side in the figure). In this case, having access

to the database means that the user has access to all the content in the database. If finer-grained

access is needed, a read-only query service (right side in the figure) can be inserted between the

client application and the PQS. That query service can filter out what a client application can see.

This is a fairly standard pattern in the industry.

1.46. Participant Query Store User Guide 1807

https://digitalasset.jfrog.io/artifactory/scribe/scribe-v0.0.1-main%2B2986-e45c930.tar.gz
https://digitalasset.jfrog.io/artifactory/scribe/scribe-v0.0.1-main%2B3614-6b5f082.tar.gz
https://digitalasset.jfrog.io/artifactory/scribe/scribe-v0.0.1-main%2B3614-6b5f082.tar.gz
https://digitalasset.jfrog.io/artifactory/scribe/scribe-v0.0.1-main%2B3614-6b5f082.tar.gz
https://digitalasset.jfrog.io/artifactory/scribe/scribe-v0.0.1-main%2B4004-3b542d2.tar.gz
https://digitalasset.jfrog.io/artifactory/scribe/scribe-v0.0.1-main%2B4057-a74e52c.tar.gz
https://digitalasset.jfrog.io/artifactory/scribe/scribe-v0.0.1-main%2B4073-9c286ff.tar.gz
https://digitalasset.jfrog.io/artifactory/scribe/scribe-v0.0.2-main.20231006.156.4444.vbb4c8a1.tar.gz
https://www.bezkoder.com/spring-boot-jdbctemplate-crud-example/

Daml SDK Documentation, 2.7.3

To understand the format that PQS outputs into a Postgres document-oriented cache, you must un-

derstand how the ledger stores data. The Daml ledger is composed of transactions, which generate

events. An event can represent one of these situations:

• Creation of contracts (“create event”)

• Exercise of a choice on a contract (“exercise event”), which archives the contract if it is a con-

suming choice

A contract on the ledger is either created or archived. The relationships between transactions and

contracts are captured in the database as follows:

• All contracts have links (foreign keys) to the transaction in which they were created.

• Archived contracts have pointers to the transaction in which they were archived.

Transactions on the ledger are inserted into PostgreSQL concurrently, for high performance. Consis-

tency (for readers) is provided through a watermark mechanism that indicates a consistent offset

fromwhich readers can consume for a fully consistent ledger. These details aremanaged for readers

through the functions available in PostgreSQL. Depending on your needs, readersmay wish to use or

bypass these mechanisms, depending on the type of query and consistency required.

1.46.3.2 PQS Schema Design

PQS is not directly involved in querying/reading the datastore - the application is free to query it,

such as via JDBC. The objectives of the schema design is to facilitate:

• Scaleable writes: transactions are written in parallel, so writes do not need to be sequential.

• Scaleable reads: queries can be parallelized and are not blocked bywrites. They produce sensible

query plans with no unnecessary table scans.

• Ease of use: readers are able to use familiar tools and techniques to query the datastore, without

needing to understand the specifics of the schema design. Simple entry points provide access

to data in familiar ways. In particular, readers do not need to navigate the offset-based model.

• Read consistency: readers are able to achieve the level of consistency that they require, including

consistency with other ledger datastores, or with ledger commands that have been executed.

The following principles apply:

1808 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

• Append-only: only INSERTs are used, and no UPDATEs or DELETEs are used in transaction pro-

cessin.

• Offset-based: all physical tables are indexed by offset, meaning that all ledger data is known in

terms of the offset in which it was committed to the ledger.

• Implicit offset: readers can opt for queries with implicit offset, meaning they can ignore the role

of offset in their queries - but still provide a stable view of the ledger data. Much like Post-

greSQL provides MVCC capabilities without the reader needing to understand the underlying

implementation, we seek to provide a similar experience for readers of the ledger data.

• Idempotent: PQS is designed to be restarted at any time, and will not impact the integrity of

the data. This is achieved by using the offset-based model and ensuring that (other than the

datastore itself) PQS is stateless.

• Watermarks: PQS maintains a watermark of the latest contigous offset, representing the point

of the ledger that has been fully processed. This is used to ensure that the ledger data has read

consistency, without needing readers to perform pathalogical table scans to achieve this. This

resolves the uncertainty created by the parallel writes.

1.46.3.3 JSON Data

Relational databases excel at storing structured data for which the schema is known in advance.

However, they have traditionally lackedmechanisms for data that ismore dynamic or evolves. For ex-

ample, youmay want to store arbitrary Daml contracts andmight prefer not to update the database

schema every time the underlying template changes.

PostgreSQL helps manage unstructured data through native support for JSON data and allows

queries to process this data. For best performance, the PQS stores data as JSONB only.

An example query might look like this:

SELECT *

FROM contract

WHERE payload­>>'isin' = 'abc123'

ORDER BY payload­>'issuanceData'­>'issueDate'­>>'Some';

For more information on querying JSON data, see the section JSON Functions and Operators in the

PostgreSQL manual. The operators ­>, ­>>, #>, #>>, and @>may be of particular interest.

This section below summarizes how the ledger data is encoded in JSON.

1.46.3.4 Continuity

The PQS is intended for continuous operation. Upon restart after an interruption, PQS determines the

last consistent offset andcontinues incremental processing fromthat point onward. PQS terminates

when encountering any error and leaves it up to the orchestration layer (such as Kubernetes) or the

operator to determine the appropriate course of action.

1.46. Participant Query Store User Guide 1809

https://www.postgresql.org/docs/12/functions-json.html

Daml SDK Documentation, 2.7.3

1.46.3.5 High Availability

Multiple isolated instances of PQS can be instantiated without any cross-dependency. This allows

for an active-active high availability, clustering model. Please note that different instances might

not be at the same offset due to different processing rates or other factors. After querying one active

instance, it is possible for you to see results that are not yet visible on an alternative, active instance.

This requires consideration for the client to handle the situation where waiting or a retry is required

to service “at least up to” requests.

1.46.4 Installing and Starting PQS

1.46.4.1 Meeting Prerequisites

Here are the prerequisites to run PQS:

• A PostgreSQL database that can be reached from the PQS. Note that PQS uses the JSONB data

type for storing JSON data, which requires Postgres versions 11, 13, and 15.

• An empty database (recommended) to avoid schema and table collisions.

• Daml ledger as the source of events. m/TLS is supported for the participant node ledger API.

Alternatively, it can run against the Sandbox.

• Installation of The Daml Enterprise SDK.

1.46.4.2 Deploying the Scribe Component

The PQS consists of two components: the PostgreSQL database and a ledger component called Scribe,

as shown below. Scribe is packaged as a Java JAR file. To run the PQS during Early Access, retrieve

scribe.jar from this Artifactory path.

1810 Chapter 1. Canton References

https://docs.daml.com/getting-started/installation.html#install-daml-enterprise
https://digitalasset.jfrog.io/ui/native/scribe

Daml SDK Documentation, 2.7.3

1.46.4.3 Connecting the PQS to a Ledger

To connect to the participant node ledger, provide separate address and port parameters. For exam-

ple, you could specify ­­host 10.1.1.10 ­­port 6865, or in short form ­h 10.1.1.168 ­p

6865.

You do not need to pass the default host localhost and default port 6865.

To connect to a participant node, you might need to provide TLS certificates. To see options for this,

refer to the output of the ­­help command.

1.46.4.4 Authorizing PQS

If you are running PQS against a participant node’s ledger API that verifies authorization, you must

provide credentials for the OAuth Client Credentials Flow. For example:

$./scribe.jar pipeline ledger postgres­document \

­­source­ledger­auth OAuth \

­­pipeline­oauth­clientid my_client_id \

­­pipeline­oauth­clientsecret deadbeef \

­­pipeline­oauth­cafile ca.crt \

­­pipeline­oauth­endpoint https://my­auth­server/token

The type of access token that PQS expects is Audience / Scope based tokens (see “User Access To-

kens” for more information).

Scribe will obtain tokens from the Authorization Server on startup, and it will reauthenticate before

the token expires. If Scribe fails authorization, it will terminate with an error for the service orches-

tration infrastructure to respond appropriately.

If you are not authenticated, there is no user to connect to a list of readAs parties, so youmust spec-

ify the parties using the ­pipeline­parties argument. This argument acts as a filter, restricting

the data to only what’s visible to the supplied list of party identifiers.

The authentication of PQS needs to match the participant nodes (PN) setup. For example, if PQS is

run with authentication by setting OAuth and the PN is not configured to use authentication, then

an error will result. The error will have a message like requests with an empty user­id are

only supported if there is an authenticated user.

1.46.4.5 Setting Up PostgreSQL

To connect the database, create a PostgreSQL database with three users:

• Ops: Provides a way for database administrators or Scribe to access DDL for schema creation

and general maintenance.

• Writer: Allows Scribe to connect, such as during “pipeline” operations of writing the ledger.

• Reader: Supports all other users.

1.46. Participant Query Store User Guide 1811

https://auth0.com/docs/get-started/authentication-and-authorization-flow/client-credentials-flow
https://docs.daml.com/app-dev/authorization.html#user-access-tokens
https://docs.daml.com/app-dev/authorization.html#user-access-tokens

Daml SDK Documentation, 2.7.3

1.46.4.6 Connecting to the PQS PostgreSQL Data Store

The database connection is handled by the JDBC API, so you need to provide the following (all have

defaults):

• Hostname

• Port number

• Username

• Password

The following example connects to a PostgreSQL instance running on localhost on the default port,

with a user Postgres which has not set a password and a database called daml_pqs. This is a typical

setup on a developer machine with a default PostgreSQL install.

$./scribe.jar pipeline ledger postgres­document \

­­target­postgres­database daml_pqs

The next example connects to a database on host 192.168.1.12, listening on port 5432. The

database is called daml_pqs.

$./scribe.jar pipeline ledger postgres­document \

­­target­postgres­host 192.168.1.12 \

­­target­postgres­database daml_pqs

1.46.4.7 Logging

By default, the PQS logs to stderr, with INFO verbose level. To change the level, use the

­­logger­level enum option, as in the example ­­logger­level Trace.

1.46.4.8 Using Command Line Options

You can discover commands and parameters through the embedded ­­help (remember to include

pipeline before ­­help), as shown in the following example.

./scribe.jar pipeline ­­help

Usage: pipeline SOURCE TARGET [OPTIONS]

Initiate continuous ledger data export

Available sources:

ledger Daml ledger

Available targets:

postgres­document Postgres database (w/ document payload representation)

postgres­relational Postgres database (w/ relational payload representation)

Options:

­­config file Path to configuration overrides␣

↪→via an external HOCON file (optional)

­­pipeline­parties string Daml party identifiers to filter␣

↪→on (comma­separated) (default: List())

­­pipeline­oauth­clientid string Client's identifier (optional)

­­pipeline­oauth­cafile file Trusted Certificate Authority (CA)␣

↪→certificate (optional)
(continues on next page)

1812 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

­­pipeline­oauth­endpoint uri Token endpoint URL (optional)

­­pipeline­oauth­clientsecret string Client's secret (optional)

­­pipeline­filter string Filter expression determining␣

↪→which templates and interfaces to include (default: *)

­­pipeline­ledger­start [enum | string] Start offset (default: Latest)

­­pipeline­ledger­stop [enum | string] Stop offset (default: Never)

­­pipeline­datasource enum Ledger API service to use as data␣

↪→source (default: TransactionStream)

­­logger­level enum Log level (default: Info)

­­logger­mappings map Custom mappings for log levels

­­logger­format enum Log output format (default: Plain)

­­logger­pattern [enum | string] Log pattern (default: Plain)

­­target­postgres­host string Postgres host (default: localhost)

­­target­postgres­tls­mode enum SSL mode required for Postgres␣

↪→connectivity (default: Disable)

­­target­postgres­tls­cert file Client's certificate (optional)

­­target­postgres­tls­key file Client's private key (optional)

­­target­postgres­tls­cafile file Trusted Certificate Authority (CA)␣

↪→certificate (optional)

­­target­postgres­password string Postgres user password (default:␣

↪→********)

­­target­postgres­username string Postgres user name (default:␣

↪→postgres)

­­target­postgres­database string Postgres database (default:␣

↪→postgres)

­­target­postgres­port int Postgres port (default: 5432)

­­target­schema­autoapply boolean Apply metadata inferred schema on␣

↪→startup (default: true)

­­source­ledger­host string Ledger API host (default:␣

↪→localhost)

­­source­ledger­auth enum Authorisation mode (default:␣

↪→NoAuth)

­­source­ledger­tls­cafile file Trusted Certificate Authority (CA)␣

↪→certificate (optional)

­­source­ledger­tls­cert file Client's certificate (leave empty␣

↪→if embedded into private key file) (optional)

­­source­ledger­tls­key file Client's private key (leave empty␣

↪→for server­only TLS) (optional)

­­source­ledger­port int Ledger API port (default: 6865)

For more help, use the command:

./scribe.jar pipeline ­­help­verbose

Following is an example of a basic command to run PQS to extract all data, including exercises, for a

party with the display name Alice. You can replace the argument values with those that match your

environment.

$./scribe.jar pipeline ledger postgres­document \

­­pipeline­parties␣

↪→Alice::12209942561b94adc057995f9ffca5a0b974953e72ba25e0eb158e05c801149639b9 \

­­pipeline­datasource TransactionTreeStream \

­­source­ledger­host localhost \

­­source­ledger­port 6865 \

­­target­postgres­host localhost \

(continues on next page)

1.46. Participant Query Store User Guide 1813

Daml SDK Documentation, 2.7.3

(continued from previous page)

­­target­postgres­port 5432 \

­­target­postgres­database postgres \

­­target­postgres­username postgres \

­­target­postgres­password postgres

NOTE: Only postgres­document is currently implemented, with postgres­relational to follow

soon.

The ­pipeline­ledger­start argument is an enum with the following possible values:

• Latest: Use latest offset that is known or resume where it left off. This is the default behavior,

where streaming starts at the latest known end. The first time you start, this will result in PQS

callingActiveContractService to get a state snapshot, which itwill load into the_creates

table. It will then start streaming creates, archives, and (optionally) exercises from the offset

of that ActiveContractService. When you restart PQS, it will start from the point it last left

off. You should always use this mode on restart.

• Genesis: Use the first original offset of the ledger. This causes PQS to try to start from offset

0. It allows you to load historic creates, archives or (optionally) exercises from a ledger that

already has data on it. If you try to restart on an already populated database in this mode, PQS

will rewrite data if it needs to.

• Oldest: Use the oldest available (unpruned) offset on the ledger or resume where it left off.

PQS is able to start and finish at prescribed ledger offsets, specified by the arguments

­­pipeline­ledger­start and ­­pipeline­ledger­stop. The ./scribe.jar pipeline

­­help­verbose command provides extensive help information.

The ­­pipeline­filter string option needs a filter expression to determine which templates

and interfaces to include. A filter expression is a simple wildcard inclusion statement with basic

boolean logic, where whitespace is ignored. Below are some examples:

• *: everything, which is the default

• a.b.c.Bar: just this one fully qualified name

• a.b.c.*: all under the a.b.c namespace

• deadbeef..:a.b.c.Foo just this one fully qualified name from this specific package ID

• !a.b.c.Bar: everything except this fully qualified name

• a.b.c.Foo & a.b.c.Bar: this is an error because it can’t be both

• (a.b.c.Foo | a.b.c.Bar): these two fully qualified names

• (a.b.c.* & !(a.b.c.Foo | a.b.c.Bar) | g.e.f.Baz): everything in a.b.c except

for Foo and Bar, and also include g.e.f.Baz

The ­­pipeline­parties option supports the same filter expressions as the

­­pipeline­filter. So to filter for two parties alice::abc123... and bob::def567.

.., you could write ­­pipeline­parties="(alice* | bob*)". If you want to

specify a specific party then include the hash behind the party hint (i.e. Al­

ice_1::122055fc4b190e3ff438587b699495a4b6388e911e2305f7e013af160f49a76080ab).

Please note that the separator is a pipe character (|) instead of comma.

Brackets are unnecessary for simple expressions. A simple list is

­­pipeline­parties="Alice_1::122055fc4b190e3ff438587b699495a4b6388e911e2305f7e013af160f49a76080ab

| Alice_2::122053933e4803c2995e41faa8a29981ca0d1faf6b4ffbf917ba1edd0db133acb634

| Peter­1::358400000000000000000000000 Specifying the parties in a short form can

be done by using the * as a wildcard. For example, ­­pipeline­parties="Alice* |

*358400000000000000000000000" will select Alice_1, Alice_2, and Peter­1.

1814 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

More advanced expressions can make use of brackets, such as ­­pipeline­parties="Alice*

| Bob* | (participant* & !(participant3::*))".

1.46.4.9 Handling Configuration Changes

PQS initializes its behavior on startup by reading its configuration files. It currently doesn’t support

dynamic configuration updates so making a configuration change (e.g., adding a new party, new

template, or new interface) requires stopping PQS, modifying its configuration, and then starting

PQS. Then, on startup, PQS will read the updated configuration.

When the configuration changes, the default is that PQS will not go back in time (older offset) but

only move forward in time (current watermark offset and newer). If the database is dropped then

PQS can be started at the oldest, unpruned offset of the participant node and use the participant

node’s history to extract the events based on the updated configuration.

1.46.5 PQS Development

1.46.5.1 Offset Management for Querying

The following functions control the temporal perspective of the ledger, considering how you wish to

consider time as a scope for your queries. You may wish to:

• Effectively ignore time; simply query the latest available state

• Query the state of the ledger at a specific time in history

• Query the ledger events across a time range - eg. an audit-trail

• Query the ledger in a way that preserves consistency with other interactions you have had with

the ledger (reader or writer)

The following functions allow you to control the temporal scope of the ledger, which establishes the

context in which subsequent queries in the PostgreSQL session will execute:

• set_latest(offset): nominates the offset of the latest data to include in observing the

ledger. If NULL then it uses the very latest available. The actual offset that will be used, is

returned. If the supplied offset is beyond what is available, an error occurs.

• set_latest_minimum(offset): provides the minimum offset that should be used, but a

more recent offset will always be chosen. Returns an error if the nominated offset is not yet

available. Function returns the actual offset used.

• set_oldest(offset): nominates the offset of the oldest events to include in query scope. If

NULL then it uses the oldest available. Function returns the actual offset used. If the supplied

offset is beyond what is available, an error occurs.

• get_offset(time): a helper function to determine the offset of a giventime (or interval prior

to now).

Under this temporal scope, the following table functions allow access to the ledger and are used

directly in queries. They are designed to be used in a similar manner to tables or views, and allow

users to focus on the data they wish to query, with the impact of offsets removed.

• active(name): active instances of the target contracts/interfaces that existed at the time of

the latest offset

• creates(name): create events that occurred between the oldest and latest offset

• archives(name): archive events that occurred between the oldest and latest offset

• exercises(name): exercise events that occurred between the oldest and latest offset

1.46. Participant Query Store User Guide 1815

https://www.postgresql.org/docs/current/queries-table-expressions.html

Daml SDK Documentation, 2.7.3

The functions allow the user to focus on the templates/interfaces/choices they wish to query, with-

out concern for PostgreSQL name limits. The name parameter can be used with or without the pack-

age specified:

• Fully qualified: <package­id>:<module>:<template|interface|choice>

• Partially qualified: <module>:<template|interface|choice>

1.46.5.2 Querying Patterns

Several common ways to use the table functions are described next which are:

• Use the most recent available state of the ledger

• Query the ledger using a point in time

• Query the ledger from a fixed offset

• Set the oldest offset to consider

• Set the oldest and latest offset by time value

• Set a minimum offset for consistency

• Use the widest available offset range for querying

Of course, these can be combined or altered based on the purpose of the query.

Use the Most Recent Available State of the Ledger

A user who wants to query most recent available state of the ledger. This user treats the ledger

Active Contract Set as a virtual database table, and is not concerned with offsets because they want

the latest result.

This user simply wants to query the (latest) state of the ledger, without consideration for offsets.

Querying is inherently limited to one datasource, as the user has no control over the actual offset

that will be used.

In this scenario the user wishes to query all Daml templates of User within the Test.User tem-

plates, where the user is not an administrator:

set_offset_latest(NULL);

SELECT *

FROM active('Test.User:User') AS "user"

WHERE NOT "user"."admin";

By using PostgreSQL’s JSONB querying capabilities, we can join with the related Alias template to

provide an overview of all users and their aliases:

set_latest(NULL);

SELECT "user".*, alias.*

FROM active('Test.User:User') AS "user"

LEFT JOIN active('Test.User:Alias') AS alias

ON "user".payload­>>'user_id' = alias.payload­>>'user_id';

Historical events can also be accessed; by default all the history in the datastore is available for

querying. The following query will return the data associated with all User contracts that were

archived in the available history:

1816 Chapter 1. Canton References

https://www.postgresql.org/docs/current/sql-syntax-lexical.html#:~:text=maximum%20identifier%20length%20is%2063%20bytes

Daml SDK Documentation, 2.7.3

set_latest(NULL);

set_oldest(NULL);

SELECT c.*

FROM archive('Test.User:User') AS a

JOIN create('Test.User:User') AS c USING contract_id;

Query the Ledger Using a Point in Time

A report writer wants to query the ledger as of a known historical point in time, to ensure that con-

sistent data is provided regardless of where the ledger subsequently evolved.

This user can obtain a point-in-time view of the ledger, to see all non-admin User templates that

were active at that point in time:

set_latest(get_offset('2020­01­01 00:00:00+0'));

SELECT "user".*

FROM active('Test.User:User') AS "user"

WHERE NOT "user".admin;

In addition theuser can thenquery thehistory of the ledger, to seehowmanyaliaseshadhave existed

for each of these users who were active at the snapshot time

set_latest(get_offset('2020­01­01 00:00:00+0'));

set_oldest(NULL);

WITH "users" AS (

SELECT "user".*

FROM active('Test.User:User') AS "user"

WHERE NOT "user".admin

)

SELECT "user".user_id, COUNT(alias.*) AS alias_count

FROM active('Test.User:User') AS "user"

JOIN create('Test.User:Alias') AS alias

ON "user".payload­>>'user_id' = alias.payload­>>'user_id'

WHERE NOT "user".admin;

Query the Ledger from a Fixed Offset

An automation user who wants to query from fixed known offsets, still wants to write their query in

the same familiar way.

­­ fails if the datastore has not yet reached the given offset

set_latest("00000001250");

The queries will now observe active contracts from the given offset. Therefore the example queries

presented above are unchanged.

1.46. Participant Query Store User Guide 1817

Daml SDK Documentation, 2.7.3

Set the Oldest Offset to Consider

A user wants to present a limited amount of history to their users.

If readers wish to limit the event history, they can also call:

­­ fails if this offset has already been pruned

set_oldest("00000000500");

This adjustment in scope does not affect the example queries presented above.

Set the Oldest and Latest Offset by Time Value

A user wants to present a time-based view to their users, to provide reports based on point-in-time

rather than offsets

set_latest(get_offset(TIMESTAMP '2020­03­13 00:00:00+0'))

set_oldest(get_offset(INTERVAL '14 days')); ­­ history of the past 14 days

Set a Minimum Offset for Consistency

Awebsite userwhowants to query active contracts, after having completeda command (write)which

has updated the ledger. The user does not want to see a version of the ledger prior to the command

being executed.

­­ The user just executed a command at offset #00000001350.

­­ This function call will fail if the datastore has not yet reached this offset,␣

↪→in order to provide consistent reads.

­­ If it has an even more recent offset ﴾eg. 00000001355﴿ ­ this will be used␣

↪→instead.

set_latest_minimum("00000001350");

Use the Widest Available Offset Range for Querying

A user wants to enquire where the datastore is up to, in terms of offset availability.

Here the user asks for the very latest and oldest offsets available to be used, and in the process

returns what these offsets are:

SELECT set_latest(NULL) AS latest_offset, set_oldest(NULL) AS oldest_offset;

1818 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.46.5.3 Advanced Querying Topics

Reading

As outlined, there are twodistinct approachesusedwhenquerying ledger data in the datastore: state

or events.

State, in the form of the Active Contract Set, by the function active(name) uses the latest offset

only, using the following rules:

creation_offset <= latest_offset; AND

no archive_offset <= latest_offset

Events (create, exercise, archive) make use of the range oldest and latest offset:

event_offset <= latest_offset; AND

event_offset >= oldest_offset

Write Pipeline

Only advanced users should be concerned with the manner in which the write pipeline is imple-

mented. The above Read API takes into consideration the manner in which the write pipeline is

implemented, and therefore the above Read API is the recommended way to query the datastore.

However, for completeness we provide the following information.

A Daml transaction is a collection of events that take effect on the ledger atomically. However it

needs to be noted that for performance reasons these transactions are written to the datastore in

parallel, and although the datastore is written to in a purely append-only fashion, it is not guaranteed

that these transactions will become visible to readers in order. The offset-based model makes the

database’s isolation level irrelevant - so the loosest model (read uncommitted) is not harmful.

The first thing to consider when querying the datastore is the type of read consistency required. If

there is no need for consistency (eg. reading a historical contract - regardless of lifetime) then pay-

load tables can be queried directly, without any consideration of offset. Another example is a live-

nessmetric query that calculates the number of transactions in the datastore over the past minute.

Again, this could be entirely valid without consideration of the parallel-writing method.

When consistency is required, the reader must be aware of the offset from which they are reading.

This ensures they do not also read further offsets that are present, but their precedent events are

not yet stored in the database.

To achieve the level of consistency that you require, including read-consistency with other ledger

data or commands you have executed. This is achieved by providing a function that returns the

latest checkpoint offset:

­­ utility functions

create or replace function latest_checkpoint()

returns table ("offset" _transactions."offset"%type, ix _transactions.ix%type) as

↪→$$

select max(groups."offset") as "offset", max(groups."ix") as ix

from (SELECT ix ­ ROW_NUMBER() OVER (ORDER BY ix) as delta, * FROM _

↪→transactions) groups

group by groups.delta

(continues on next page)

1.46. Participant Query Store User Guide 1819

Daml SDK Documentation, 2.7.3

(continued from previous page)

order by groups.delta

limit 1;

$$ language sql;

create or replace function first_checkpoint()

returns table ("offset" _transactions."offset"%type, ix _transactions.ix%type) as

↪→$$

select t."offset" as "offset", t."ix" as ix from _transactions t order by ix␣

↪→limit 1;

Note that the Archive table represents all Archive choices in the given namespace. ie. User.

Archive and Alias.Archive in the User namespace.

1.46.5.4 JSON Format

PQS stores create and exercise arguments using a Daml-LF JSON-based encoding of Daml-LF values.

An overview of the encoding is provided below. For more details, refer to the Daml-LF page.

Values on the ledger can be primitive types, user-defined records, or variants. An extracted contract

is represented in the database as a record of its create argument. The fields of that record are prim-

itive types, other records, or variants. A contract can be a recursive structure of arbitrary depth.

These types are translated to JSON types as follows:

Primitive types

• ContractID: Represented as string.

• Int64: Represented as string.

• Decimal: Represented as string.

• List: Represented as array.

• Text: Represented as string.

• Date: Days since the Unix epoch. represented as integer.

• Time: Microseconds since the UNIX epoch. Represented as number.

• Bool: Represented as boolean.

• Party: Represented as string.

• Unit and Empty: Represented as empty records.

• Optional: Represented as object. It is a Variant with two possible constructors: None and

Some.

User-defined types

• Record: Represented as object, where each create parameter’s name is a key, and the param-

eter’s value is the JSON-encoded value.

• Variant: Represented as object, using the {constructor: body} format, such as

{"Left": true}.

1820 Chapter 1. Canton References

https://docs.daml.com/json-api/lf-value-specification.html#daml-lf-json-encoding
https://docs.daml.com/json-api/lf-value-specification.html#daml-lf-json-encoding
https://json-schema.org/understanding-json-schema/reference/index.html
https://json-schema.org/understanding-json-schema/reference/string.html
https://json-schema.org/understanding-json-schema/reference/string.html
https://json-schema.org/understanding-json-schema/reference/string.html
https://json-schema.org/understanding-json-schema/reference/array.html
https://json-schema.org/understanding-json-schema/reference/string.html
https://json-schema.org/understanding-json-schema/reference/numeric.html#integer
https://json-schema.org/understanding-json-schema/reference/numeric.html#number
https://json-schema.org/understanding-json-schema/reference/boolean.html
https://json-schema.org/understanding-json-schema/reference/string.html
https://json-schema.org/understanding-json-schema/reference/object.html
https://json-schema.org/understanding-json-schema/reference/object.html
https://json-schema.org/understanding-json-schema/reference/object.html

Daml SDK Documentation, 2.7.3

1.46.5.5 Display of Metadata-Inferred Database Schema

PQS analyzes package metadata as part of its operation and displays the required schema to the

user, as shown in the following example

$./scribe.jar datastore postgres­document schema show

[...]

/**

* generated by scribe, version: v0.0.1­main+2151­7961ecb *

**/

­­ tables

create table if not exists _transactions (

"offset" text primary key not null,

ix bigint not null,

transaction_id text,

effective_at timestamp with time zone,

workflow_id text

);

[...]

or it applies the schema on the fly idempotently (default).

$./scribe.jar pipeline ledger postgres­document ­­pipeline­party=Alice

18:27:26.799 I [zio­fiber­64] com.digitalasset.scribe.appversion.package:11␣

↪→scribe, version: v0.0.1­main+2151­7961ecb

18:27:27.159 I [zio­fiber­68] com.digitalasset.scribe.configuration.package:40␣

↪→Applied configuration:

pipeline {

datasource=TransactionStream

[...]

18:27:28.714 I [zio­fiber­67] com.digitalasset.scribe.postgres.document.

↪→DocumentPostgres.Service:36 Applying schema

18:27:28.805 I [zio­fiber­67] com.digitalasset.scribe.postgres.document.

↪→DocumentPostgres.Service:39 Schema applied

18:27:28.863 I [zio­fiber­0] com.digitalasset.scribe.pipeline.pipeline.Impl:29␣

↪→Starting pipeline on behalf of

'party­e303d252­1e35­46cb­b4e6­

↪→06538271d927::1220883670ff44119c947deeabb2e07827adff83bed3e1a897f53f73b0f61d509952

↪→'

18:27:29.043 I [zio­fiber­0] com.digitalasset.scribe.pipeline.pipeline.Impl:57␣

↪→Last checkpoint is absent.

Seeding from ACS before processing transactions with starting offset

↪→'000000000000000008'

18:27:29.063 I [zio­fiber­938] com.digitalasset.zio.daml.Ledger.Impl:191 Contract␣

↪→filter inclusive of 2 templates

and 0 interfaces

18:27:29.120 I [zio­fiber­0] com.digitalasset.scribe.pipeline.pipeline.Impl:74␣

↪→Continuing from offset 'GENESIS' and

index '0' until offset 'INFINITY'

18:27:29.159 I [zio­fiber­967] com.digitalasset.zio.daml.Ledger.Impl:191 Contract␣

↪→filter inclusive of 2 templates

and 0 interfaces

[...]

1.46. Participant Query Store User Guide 1821

Daml SDK Documentation, 2.7.3

1.46.5.6 PQS Database Schema

The following schema is representative for the exported ledger data. It is subject to change, since it

is an Early Access feature.

/**

* generated by scribe, version: v0.0.1­main+2151­7961ecb *

**/

­­ tables

create table if not exists _transactions (

"offset" text primary key not null,

ix bigint not null,

transaction_id text,

effective_at timestamp with time zone,

workflow_id text

);

create table if not exists _exercises (

event_id text primary key not null,

choice text not null,

contract_id text not null,

"offset" text not null references _transactions ("offset") on delete cascade␣

↪→on update cascade,

consuming bool,

witnesses text[],

parent text references _exercises (event_id) on delete cascade

);

create table if not exists _creates (

event_id text primary key not null,

contract_id text not null,

"offset" text not null references _transactions ("offset") on delete cascade␣

↪→on update cascade,

witnesses text[],

parent text references _exercises (event_id) on delete cascade

);

create table if not exists _archives (

event_id text primary key not null,

contract_id text not null,

"offset" text not null references _transactions ("offset") on delete cascade␣

↪→on update cascade

);

create table if not exists _mappings (

daml_fqn text primary key not null,

pg_identifier text not null unique

);

­­ PAYLOAD TABLES

create table if not exists "Alias.39p75i" (

event_id text primary key not null references _creates (event_id) on delete␣

↪→cascade,

identifier text not null,

contract_key jsonb,

payload jsonb not null

);

(continues on next page)

1822 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

create table if not exists "User.11jk59n1" (

event_id text primary key not null references _creates (event_id) on delete␣

↪→cascade,

identifier text not null,

contract_key jsonb,

payload jsonb not null

);

create table if not exists "Archive.2gpwea" (

event_id text primary key not null references _exercises (event_id) ondelete␣

↪→cascade,

identifier text not null,

argument jsonb not null,

result jsonb not null

);

create table if not exists "Alias_Change.11wa21n1" (

event_id text primary key not null references _exercises (event_id) on delete␣

↪→cascade,

identifier text not null,

argument jsonb not null,

result jsonb not null

);

create table if not exists "User_Follow.11q646ez" (

event_id text primary key not null references _exercises (event_id) on delete␣

↪→cascade,

identifier text not null,

argument jsonb not null,

result jsonb not null

);

Note that the Archive table represents all Archive choices in the given namespace, such as User.

Archive and Alias.Archive in the User namespace.

1.46.6 Operating PQS

This section discusses the common tasks to perform when operating a PQS.

1.46.6.1 Purging Excessive Historical Ledger Data

Pruning ledger data from the PQS database can help reduce storage size and improve query perfor-

mance by removing old data. PQS provides two approaches to prune ledger data: using the PQS CLI

or using the prune_to_offset PostgreSQL function.

WARNING: Calling either the prune CLI command with ­­prune­mode Force, or calling the Post-

greSQL function prune_to_offset will delete data irrevocably.

Both pruning approaches (CLI and PostgreSQL function) share the same behavior in terms of data

deletion and changes:

Active contracts are preserved under a new offset, while all other transaction-related data up to, and

including the target offset is deleted.

1.46. Participant Query Store User Guide 1823

Daml SDK Documentation, 2.7.3

The target offset, ie. the offset provided via ­­prune­target or as argument to prune_to_offset,

is the transaction with the highest offset that will be deleted by the pruning operation.

Note: If the provided offset (i.e. via ­­prune­target, or as argument to prune_to_offset) does

not have a transaction record, then the effective target offset will be the oldest transaction offset

that succeeds (is greater than) the provided offset.

When using either pruning method, the following data will be changed:

• The offset of active contracts will be moved to the oldest known offset which succeeds the

pruning target offset, i.e. the offset of the oldest transaction that is unaffected by the pruning

operation.

The following data will be deleted:

• Transactions with offsets up to and including the target offset.

• Events, archived contracts and exercise payloads associated with the deleted transactions.

The following data will be unaffected:

• Transaction related data (event, choices, or contracts) for transaction with an offset that is

greater than the effective pruning target offset.

Pruning is a destructive operation and cannot be undone. If necessary, make sure to backup your

data before performing any pruning operations.

There are some constraints when using either pruning method:

1. The provided target offset must be within the bounds of the contiguous history. If the target

offset is outside the bounds, an error will be raised.

2. The pruning operation cannot coincide with the latest consistent checkpoint of the contiguous

history. If it does, an error will be raised.

Pruning with PQS CLI

The PQS CLI provides a prune command that allows you to prune the ledger data up to a specified

offset, timestamp, or duration.

For detailed information on all available options, please run ./PQS.jar datastore

postgres­document prune ­­help­verbose.

To use theprune command, you need to provide a pruning target as an argument. The pruning target

can be an offset, a timestamp (ISO 8601), or a duration (ISO 8601):

./PQS.jar datastore postgres­document prune ­­prune­target <pruning_target>

By default, the prune command performs a dry run, which means it will only display the effects of

the pruning operationwithout actually deleting any data. To execute the pruning operation, you need

to add the ­­prune­mode Force option:

./PQS.jar datastore postgres­document prune ­­prune­target <pruning_target> ­­

↪→prune­mode Force

Instead of providing an offset as the ­­prune­target, you can use a timestamp or duration as

the pruning cutoff. For example, the following command prunes data older than 30 days (relative to

now):

1824 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

./PQS.jar datastore postgres­document prune ­­prune­target P30D

The following example prunes data up to a specific timestamp:

./PQS.jar datastore postgres­document prune ­­prune­target 2023­01­30T00:00:00.

↪→000Z

Pruning with prune_to_offset

The prune_to_offset PostgreSQL function allows you to prune ledger data up to a specified offset.

It has the samebehavior as thedatastore postgres­document prune command, except it does

not offer dry runs.

To use prune_to_offset, provide an offset as a text argument:

SELECT * FROM prune_to_offset('<offset>');

This function deletes transactions and update active contracts as described earlier in this section.

To prune data up to a specific timestamp or interval, use prune_to_offset in combination with

the get_offset function. For example, the following query prunes data older than 30 days:

SELECT * FROM prune_to_offset(get_offset(interval '30 days'));

1.46.7 Optimizing PQS

This section briefly discusses optimizing a database as an introduction. The topic is broad, and there

are many resources available. Refer to the PostgreSQL documentation for more information.

1.46.7.1 Indexing

indexes are an important tool to make queries with (JSON) expressions perform well. Here is one

example of an index:

CREATE INDEX issueDateIdx

ON contract

USING BTREE ((payload­>'issuanceData'­>'issueDate'­>>'Some'));

In this example, the index allows comparisons on the issue date. It has the additional advantage that

the results of the JSON query payload­>'issuanceData'­>'issueDate'­>>'Some' are cached

and do not have to be recomputed for every access.

PostgreSQL provides several index types, including B-tree, Hash, GiST, SP-GiST, GIN, and BRIN. Each

index type uses a different algorithm that is best suited to different types of queries. The table below

provides a basic explanation of where they can be used. For amore thorough understanding, consult

the chapter on indexes in the PostgreSQL manual.

1.46. Participant Query Store User Guide 1825

https://www.postgresql.org/docs/
https://www.postgresql.org/docs/current/indexes.html

Daml SDK Documentation, 2.7.3

Index Type Comment

Hash Compact. Useful only for filters that use =.

B-tree Can be used in filters that use <, <=, =, >=, > as well as postfix string comparisons (e.g.

LIKE ‘foo%’). B-trees can also speedupORDERBY clauses and canbeused to retrieve

subexpressions values from the index rather than evaluating the subexpressions

(i.e. when used in a SELECT clause).

GIN Useful for subset operators.

GiST,

SP-GiST

See manual.

BRIN Efficient for tables where rows are already physically sorted for a particular column.

1.46.7.2 Pagination

Pagination refers to splitting up large result sets into pages of up to n results. It can allow user

navigation such as moving to the next page to display, going to the end of the result set, or jumping

around in the middle. It can be a very effective user experience when there is a large ordered data

set. The following pagination use cases are important:

Pagination Use Case Example

Random access Accessing arbitrary pages
• Client side binary search of

results.

• A user opens random pages in a

search result.

Iteration or enumeration Accessing page 1, then page 2,

…
• Programmatic processing of all

results in batches.

For efficient pagination iteration, you first need a column to sort on. The requirements are:

1. It should be acceptable to the user to sort results on this column.

2. You need a (unique) B-tree index on this column.

3. The columnmust have unique values.

You can then perform queries like this:

SELECT *

FROM the_table

WHERE the_sort_col > ???

ORDER BY the_sort_col

LIMIT 100;

The ??? value represents the last (largest) value for the_sort_col that was previously returned.

To fetch results for the very first page, omit the WHERE clause.

Here is an example of random access to display page 10 of the search results:

SELECT *

FROM the_table

ORDER BY the_sort_col

(continues on next page)

1826 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

(continued from previous page)

LIMIT 100

OFFSET 1000;

This only makes sense if there is a B-tree index on the_sort_col.

You should assume that a large OFFSET is slow. See the chapter on LIMIT and OFFSET in the Post-

greSQL manual.

1.46.7.3 psql Tips

Type psql <dbname> on the command line to enter the PostgreSQL `REPL` (if in doubt, use post-

gres as the database name). Some useful commands are shown in the following table.

Command Description

\l List all databases.

\c db Switch to a different database.

\d List all tables in the current database.

\d table Show a table, including column types and indexes.

To create databases and users, try this:

CREATE DATABASE the_db;

CREATE USER the_user WITH PASSWORD 'abc123';

To later remove them, try this:

DROP DATABASE the_db;

DROP USER the_user;

psql can also be used for scripting:

psql postgres <<END

...

CREATE DATABASE the_db;

...

END

The script continues to execute if a command fails.

1.46.7.4 EXPLAIN ANALYZE

Type EXPLAIN ANALYZE followed by a query in psql or similar tools to get an explanation of how

the query would be executed. This is an invaluable tool to verify that a query you might want to run

uses the indexes that you think it does.

EXPLAIN ANALYZE

SELECT COUNT(*) FROM the_table;

1.46. Participant Query Store User Guide 1827

https://www.postgresql.org/docs/current/queries-limit.html

Daml SDK Documentation, 2.7.3

1.46.8 Troubleshooting

Some of the most common troubleshooting options are discussed below.

1.46.8.1 Cannot Connect to the Ledger Node

If the PQS cannot connect to the ledger node on startup, you will see a message in the logs like the

following example, and the PQS will terminate.

21:15:02.084 E [zio­fiber­0] com.digitalasset.scribe.app.ComposableApp:34␣

↪→Exception in thread

"zio­fiber­" io.grpc.StatusException: UNAVAILABLE: io exception

at

scalapb.zio_grpc.client.UnaryClientCallListener.onClose$$anonfun$1$$anonfun

↪→$1(UnaryClientCallListener.scala:61)

Suppressed:

io.netty.channel.AbstractChannel$AnnotatedConnectException: Connection refused:

localhost/[0:0:0:0:0:0:0:1]:6865

Suppressed: java.net.ConnectException: Connection refused

at java.base/sun.nio.ch.Net.pollConnect(Native Method)

at java.base/sun.nio.ch.Net.pollConnectNow(Net.java:672)

at java.base/sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.

↪→java:946)

at io.netty.channel.socket.nio.NioSocketChannel.

↪→doFinishConnect(NioSocketChannel.java:337)

at io.netty.channel.nio.AbstractNioChannel$AbstractNioUnsafe.

↪→finishConnect(AbstractNioChannel.java:334)

at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.

↪→java:776)

at io.netty.channel.nio.NioEventLoop.

↪→processSelectedKeysOptimized(NioEventLoop.java:724)

at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.

↪→java:650)

at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:562)

at io.netty.util.concurrent.SingleThreadEventExecutor$4.

↪→run(SingleThreadEventExecutor.java:997)

at io.netty.util.internal.ThreadExecutorMap$2.run(ThreadExecutorMap.java:74)

at io.netty.util.concurrent.FastThreadLocalRunnable.

↪→run(FastThreadLocalRunnable.java:30)

at java.base/java.lang.Thread.run(Thread.java:833)

io.grpc.StatusException: UNAVAILABLE: io exception

io.netty.channel.AbstractChannel.AnnotatedConnectException: Connection

refused: localhost/[0:0:0:0:0:0:0:1]:6865

java.net.ConnectException: Connection refused

To fix this, make sure that the participant node’s ledger API is accessible fromwhere you are running

the PQS.

1828 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.46.8.2 Cannot Connect to the PQS Database

If the database is not available before the transaction stream is started, the PQS will terminate and

you will see as error from the JDBC driver in the logs similar to the following example.

21:16:32.116 E [zio­fiber­0] com.digitalasset.scribe.app.ComposableApp:34␣

↪→Exception in thread

"zio­fiber­" org.postgresql.util.PSQLException: Connection to localhost:5432␣

↪→refused. Check

that the hostname and port are correct and that the postmaster is accepting TCP/

↪→IP connections.

at

org.postgresql.core.v3.ConnectionFactoryImpl.

↪→openConnectionImpl(ConnectionFactoryImpl.java:342)

at org.postgresql.core.ConnectionFactory.openConnection(ConnectionFactory.

↪→java:54)

at org.postgresql.jdbc.PgConnection.<init>(PgConnection.java:263)

at org.postgresql.Driver.makeConnection(Driver.java:443)

at org.postgresql.Driver.connect(Driver.java:297)

at java.sql/java.sql.DriverManager.getConnection(DriverManager.java:681)

at java.sql/java.sql.DriverManager.getConnection(DriverManager.java:190)

at zio.jdbc.shims.postgres$.$anonfun$1(postgres.scala:21)

at

zio.ZIOCompanionVersionSpecific.attempt$$anonfun

↪→$1(ZIOCompanionVersionSpecific.scala:103)

at zio.ZIO$.suspendSucceed$$anonfun$1(ZIO.scala:4589)

at

zio.UnsafeVersionSpecific.implicitFunctionIsFunction$$anonfun

↪→$1(UnsafeVersionSpecific.scala:27)

at zio.Unsafe$.unsafe(Unsafe.scala:37)

at zio.ZIOCompanionVersionSpecific.succeed$$anonfun

↪→$1(ZIOCompanionVersionSpecific.scala:185)

Suppressed: java.net.ConnectException: Connection refused

at java.base/sun.nio.ch.Net.pollConnect(Native Method)

at java.base/sun.nio.ch.Net.pollConnectNow(Net.java:672)

at java.base/sun.nio.ch.NioSocketImpl.timedFinishConnect(NioSocketImpl.

↪→java:547)

at java.base/sun.nio.ch.NioSocketImpl.connect(NioSocketImpl.java:602)

at java.base/java.net.SocksSocketImpl.connect(SocksSocketImpl.java:327)

at java.base/java.net.Socket.connect(Socket.java:633)

at org.postgresql.core.PGStream.createSocket(PGStream.java:243)

at org.postgresql.core.PGStream.<init>(PGStream.java:98)

at org.postgresql.core.v3.ConnectionFactoryImpl.

↪→tryConnect(ConnectionFactoryImpl.java:132)

at

org.postgresql.core.v3.ConnectionFactoryImpl.

↪→openConnectionImpl(ConnectionFactoryImpl.java:258)

at org.postgresql.core.ConnectionFactory.openConnection(ConnectionFactory.

↪→java:54)

at org.postgresql.jdbc.PgConnection.<init>(PgConnection.java:263)

at org.postgresql.Driver.makeConnection(Driver.java:443)

at org.postgresql.Driver.connect(Driver.java:297)

at java.sql/java.sql.DriverManager.getConnection(DriverManager.java:681)

at java.sql/java.sql.DriverManager.getConnection(DriverManager.java:190)

at zio.jdbc.shims.postgres$.$anonfun$1(postgres.scala:21)

at

zio.ZIOCompanionVersionSpecific.attempt$$anonfun

↪→$1(ZIOCompanionVersionSpecific.scala:103) (continues on next page)

1.46. Participant Query Store User Guide 1829

Daml SDK Documentation, 2.7.3

(continued from previous page)

at zio.ZIO$.suspendSucceed$$anonfun$1(ZIO.scala:4589)

at

zio.UnsafeVersionSpecific.implicitFunctionIsFunction$$anonfun

↪→$1(UnsafeVersionSpecific.scala:27)

at zio.Unsafe$.unsafe(Unsafe.scala:37)

at

zio.ZIOCompanionVersionSpecific.succeed$$anonfun

↪→$1(ZIOCompanionVersionSpecific.scala:185)

org.postgresql.util.PSQLException: Connection to localhost:5432 refused. Check␣

↪→that

the hostname and port are correct and that the postmaster is accepting TCP/IP␣

↪→connections.

java.net.ConnectException: Connection refused

To fix this, make sure that the database exists and is accessible from where you are running the

PQS. Also, ensure that the database username and password are correct and that the credentials to

connect to the database from the network address are set properly.

If the database connection is broken while the transaction stream was already running, you will see

a similar message in the logs, but it will be repeated. The transaction stream will be restarted with

an exponential backoff. This gives the database, network, or any other troubled resource time to get

back into shape. Once everything is in order, the stream will continue without any need for manual

intervention.

1.47 Daml Ledger Interoperability

Certain Daml ledgers can interoperate with other Daml ledgers. That is, the contracts created on

one ledger can be used and archived in transactions on other ledgers. Some Participant Nodes can

connect to multiple ledgers and provide their parties unified access to those ledgers via the Ledger

API. For example, when an organization initially deploys two workflows to two Daml ledgers, it can

later compose those workflows into a larger workflow that spans both ledgers.

Interoperability may limit the visibility a Participant Node has into a party’s ledger projection, i.e., its

local ledger, when the party is hosted onmultiple Participant Nodes. These limitations influence what

parties can observe via the Ledger API of each Participant Node. In particular, interoperability affects

which events a party observes and their order. This document explains the visibility limitations due

to interoperability and their consequences for the Transaction Service, by example and formally by

introducing interoperable versions of causality graphs and projections.

The presentation assumes that you are familiar with the following concepts:

• The Ledger API

• The Daml Ledger Model

• Local ledgers and causality graphs

Note: Interoperability for Daml ledgers is under active development. This document describes the

vision for interoperability and gives an idea of how the Ledger API services may change and what

guarantees are provided. The described services and guarantees may change without notice as the

interoperability implementation proceeds.

1830 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.47.1 Interoperability Examples

1.47.1.1 Topology

Participant Nodes connect to Daml ledgers and parties access projections of these ledgers via the

Ledger API. The following picture shows such a setup.

Fig. 34: Example topology with two interoperable ledgers

The components in this diagram are the following:

• There is a set of interoperable Daml ledgers: Ledger 1 (green) and Ledger 2 (yellow).

• Each Participant Node is connected to a subset of the Daml ledgers.

– Participant Nodes 1 and 3 are connected to Ledger 1 and 2.

– Participant Node 2 is connected to Ledger 1 only.

• Participant Nodes host parties on a subset of the Daml ledgers they are connected to. A Partic-

ipant Node provides a party access to the Daml ledgers that it hosts the party on.

– Participant Node 1 hosts Alice on Ledger 1 and 2.

– Participant Node 2 hosts Alice on Ledger 1.

– Participant Node 3 hosts the painter on Ledger 1 and 2.

1.47. Daml Ledger Interoperability 1831

Daml SDK Documentation, 2.7.3

1.47.1.2 Aggregation at the Participant

The Participant Node assembles the updates from these ledgers and outputs them via the party’s

Transaction Service and Active Contract Service. When a Participant Node hosts a party only on a

subset of the interoperable Daml ledgers, then the transaction and active contract services of the

Participant Node are derived only from those ledgers.

For example, in the above topology, when a transaction creates a contract with stakeholder Alice on

Ledger 2, then P1‘s transaction stream for Alice will emit this transaction and report the contract as

active, but Alice’s stream at P2 will not.

1.47.1.3 Enter and Leave Events

With interoperability, a transaction can use a contract whose creation was recorded on a different

ledger. In the above topology, e.g., one transaction creates a contract c1 with stakeholder Alice on

Ledger 1 and another archives the contract on Ledger 2. Then the Participant Node P2 outputs the

Create action as a CreatedEvent, but not the Exercise in form of an ArchiveEvent on the trans-

action service because Ledger 2 can not notify P2 as P2 does not host Alice on Ledger 2. Conversely,

when one transaction creates a contract c2 with stakeholder Alice on Ledger 2 and another archives

the contract on Ledger 1, then P2 outputs the ArchivedEvent, but not the CreatedEvent.

To keep the transaction stream consistent, P2 additionally outputs a Leave c1 action on Alice’s trans-

action stream. This action signals that the Participant Node no longer outputs events concerning

this contract; in particular not when the contract is archived. The contract is accordingly no longer

reported in the active contract service and cannot be used by command submissions.

Conversely, P2 outputs an Enter c2 action some time before the ArchivedEvent on the transac-

tion stream. This action signals that the Participant Node starts outputting events concerning this

contract. The contract is reported in the Active Contract Service and can be used by command sub-

mission.

The actions Enter and Leave are similar to a Create and a consuming Exercise action, respectively,

except that Enter and Leavemay occur several times for the same contract whereas there should be

at most one Create action and at most one consuming Exercise action for each contract.

These Enter and Leave events are generated by the underlying interoperability protocol. This may

happen as part of command submission or for other reasons, e.g., load balancing. It is guaranteed

that the Enter action precedes contract usage, subject to the trust assumptions of the underlying

ledgers and the interoperability protocol.

A contract may enter and leave the visibility of a Participant Node several times. For example, sup-

pose that the painter submits the following commands and their commits end up on the given

ledgers.

1. Create a contract c with signatories Alice and the painter on Ledger 2

2. Exercise a non-consuming choice ch1 on c on Ledger 1.

3. Exercise a non-consuming choice ch2 on c on Ledger 2.

4. Exercise a consuming choice ch3 on c on Ledger 1.

Then, the transaction tree stream that P2 provides for A contains five actions involving contract c:

Enter, non-consuming Exercise, Leave, Enter, consuming Exercise. Importantly, P2 must not omit

the Leave action and the subsequent Enter, even though they seem to cancel out. This is because

their presence indicates that P2‘s event stream for Alice may miss some events in between; in this

example, exercising the choice ch2.

1832 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

The flat transaction stream by P2 omits the non-consuming exercise choices. It nevertheless con-

tains the three actions Enter, Leave, Enter before the consuming Exercise. This is because the Par-

ticipant Node cannot know at the Leave action that there will be another Enter action coming.

In contrast, P1 need not output the Enter and Leave actions at all in this example because P1 hosts

Alice on both ledgers.

1.47.1.4 Cross-ledger Transactions

With interoperability, a cross-ledger transaction can be committed on several interoperable Daml

ledgers simultaneously. Such a cross-ledger transaction avoids some of the synchronization over-

head of Enter and Leave actions. When a cross-ledger transaction uses contracts from several Daml

ledgers, stakeholders may witness actions on their contracts that are actually not visible on the

Participant Node.

For example, suppose that the split paint counteroffer workflow from the causality examples is com-

mitted as follows: The actions on CounterOffer and PaintAgree contracts are committed on Ledger 1.

All actions on Ious are committed on Ledger 2, assuming that some Participant Node hosts the Bank

on Ledger 2. The last transaction is a cross-ledger transaction because the archival of the CounterOf-

fer and the creation of the PaintAgreement commits on Ledger 1 simultaneously with the transfer of

Alice’s Iou to the painter on Ledger 2.

For the last transaction, Participant Node 1 notifies Alice of the transaction tree, the two archivals

and the PaintAgree creation via the Transaction Service as usual. Participant Node 2 also output’s the

whole transaction tree on Alice’s transaction tree stream, which contains the consuming Exercise of

Alice’s Iou. However, it has not output the Create of Alice’s Iou because Iou actions commit on Ledger

2, onwhich Participant Node 2 does not host Alice. So Alicemerelywitnesses the archival even though

she is an informee of the exercise. The Exercise action is thereforemarked asmerely beingwitnessed

on Participant Node 2’s transaction tree stream.

In general, an action ismarked asmerely being witnessedwhen a party is an informee of the action,

but the action is not committed on a ledger on which the Participant Node hosts the party. Unlike

Enter and Leave, such witnessed actions do not affect causality from the participant’s point of view

and therefore provide weaker ordering guarantees. Such witnessed actions show up neither in the

flat transaction stream nor in the Active Contracts Service.

For example, suppose that the Create PaintAgree action commits on Ledger 2 instead of Ledger 1,

i.e., only the CounterOffer actions commit on Ledger 1. Then, Participant Node 2 marks the Create

PaintAgree action also asmerely being witnessed on the transaction tree stream. Accordingly, it does

not report the contract as active nor can Alice use the contract in her submissions via Participant

Node 2.

1.47.2 Multi-ledger Causality Graphs

This section generalizes causality graphs to the interoperability setting.

Every active Daml contract resides on at most one Daml ledger. Any use of a contract must be com-

mitted on the Daml ledger where it resides. Initially, when the contract is created, it takes up res-

idence on the Daml ledger on which the Create action is committed. To use contracts residing on

different Daml ledgers, cross-ledger transactions are committed on several Daml ledgers.

However, cross-ledger transactions incur overheads and if a contract is frequently used on a Daml

ledger that is not its residence, the interoperability protocol can migrate the contract to the other

1.47. Daml Ledger Interoperability 1833

Daml SDK Documentation, 2.7.3

Daml ledger. The process of the contract giving up residence on the origin Daml ledger and taking

up residence on the target Daml ledger is called a contract transfer. The Enter and Leave events on

the transaction stream originate from such contract transfers, as will be explained below. Moreover,

contract transfers are synchronization points between the origin and target Daml ledgers and there-

fore affect the ordering guarantees. We therefore generalize causality graphs for interoperability.

Definition »Transfer action« A transfer action on a contract c is written Transfer c. The informees

of the transfer actions are the stakeholders of c.

In the following, the term action refers to transaction actions (Create, Exercise, Fetch, and No-

SuchKey) as well as transfer actions. In particular, a transfer action on a contract c is an action

on c. Transfer actions do not appear in transactions though. So a transaction action cannot have a

transfer action as a consequence and transfer actions do not have consequences at all.

Definition »Multi-Ledger causality graph« A multi-ledger causality graph G for a set Y of Daml

ledgers is a finite, transitively closed, directed acyclic graph. The vertices are either transac-

tions or transfer actions. Every action is possibly annotated with an incoming ledger and an

outgoing ledger from Y according to the following table:

Action incoming ledger outgoing ledger

Create no yes

consuming Exercise yes no

non-consuming Exercise yes yes

Fetch yes yes

NoSuchKey no no

Transfer maybe maybe

For non-consuming Exercise and Fetch actions, the incoming ledger must be the same as the

outgoing ledger. Transfer actions must have at least one of them. A transfer action with both

set represents a complete transfer. If only the incoming ledger is set, it represents the partial

information of an Enter event; if only outgoing is set, it is the partial information of a Leave

event. Transfer actions with missing incoming or outgoing ledger annotations referred to as

Enter or Leave actions, respectively.

The action order generalizes to multi-ledger causality graphs accordingly.

In the example for Enter and Leave events where the painter exercises three choices on contract c with

signatories Alice and the painter, the four transactions yield the following multi-ledger causality

graph. Incoming and outgoing ledgers are encoded as colors (green for Ledger 1 and yellow for Ledger

2). Transfer vertices are shown as circles, where the left half is colored with the incoming ledger and

the right half with the outgoing ledger.

Fig. 35: Multi-Ledger causality graph with transfer actions

Note: As for ordinary causality graphs, the diagrams for multi-ledger causality graphs omit transi-

tive edges for readability.

1834 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

As an example for a cross-domain transaction, consider the split paint counteroffer workflow with the

cross-domain transaction. The corresponding multi-ledger causality graph is shown below. The last

transaction tx4 is a cross-ledger transaction because its actions have more than one color.

Fig. 36: Multi-Ledger causality graph for the split paint counteroffer workflow on two Daml ledgers

1.47.2.1 Consistency

Definition »Ledger trace« A ledger trace is a finite list of pairs (ai, bi) such that bi - 1 = ai for all i >

0. Here ai and bi identify Daml ledgers or are the special value NONE, which is different from all

Daml ledger identifiers.

Definition »Multi-Ledger causal consistency for a contract« Let G be a multi-ledger causality

graph and X be a set of actions from G on a contract in c. The graph G is multi-ledger con-

sistent for the contract c on X if all of the following hold:

1. If X is not empty, then X contains a Create or at least one Enter action. If it contains a

create, then this create precedes all other actions in X. If it does not, then there exists one

Enter action that precedes all other actions in X.

2. X contains at most one Create action.

3. If X contains a consuming Exercise action act, then act follows all other actions in X in G‘s

action order.

4. All Transfer actions in X are ordered with all other actions in X.

5. For every maximal chain in X (i.e., maximal totally ordered subset of X), the sequence of

(incoming ledger, outgoing ledger) pairs is a ledger trace, using NONE if the action does

not have an incoming or outgoing ledger annotation.

The first three conditions mimic the conditions of causal consistency for ordinary causality graphs.

They ensure that Create actions come first and consuming Exercise actions last. An Enter action

takes the role of a Create if there is no Create. The fourth condition ensures that all transfer actions

are synchronization points for a contract. The last condition about ledger traces ensures that con-

tracts reside on only one Daml ledger and all usages happen on the ledger of residence. In particular,

the next contract action after a Leavemust be an Enter.

For example, the above multi-ledger causality graph with transfer actions is multi-ledger consistent for

c. In particular, there is only one maximal chain in the actions on c, namely

Create c -> tf1 -> ExeN B c ch1 -> tf2 -> ExeN B c ch2 -> tf3 -> ExeN B c ch3,

and for each edge act1 -> act2, the outgoing ledger color of act1 is the same as the incoming ledger

color of act2. The restriction to maximal chains ensures that no node is skipped. For example, the

(non-maximal) chain

1.47. Daml Ledger Interoperability 1835

Daml SDK Documentation, 2.7.3

Create c -> ExeN B c ch1 -> tf2 -> ExeN B c ch2 -> tf3 -> Exe B c ch3

is not a ledger trace because the outgoing ledger of the Create action (yellow) is not the same as the

incoming ledger of the non-consuming Exercise action for ch1 (green). Accordingly, the subgraph

without the tf1 vertex is not multi-ledger consistent for c even though it is a multi-ledger causality

graph.

Definition »Consistency for a multi-ledger causality graph« Let X be a subset of actions in a

multi-ledger causality graph G. Then G ismulti-ledger consistent for X (or X-multi-ledger con-

sistent) if G is multi-ledger consistent for all contracts c on the set of actions on c in X. G is

multi-ledger consistent if G is multi-ledger consistent on all the actions in G.

Note: There is no multi-ledger consistency requirement for contract keys yet. So interoperability

does not provide consistency guarantees beyond those that come from the contracts they reference.

In particular, contract keys need not be unique and NoSuchKey actions do not check that the con-

tract key is unassigned.

The multi-ledger causality graph for the split paint counteroffer workflow is multi-ledger consistent. In

particular all maximal chains of actions on a contract are ledger traces:

contract maximal chains

Iou Bank A Create -> Fetch -> Exercise

ShowIou A P Bank Create -> Exercise

Counteroffer A P Bank Create -> Exercise

Iou Bank P Create

PaintAgree P A Create

1.47.2.2 Minimality and Reduction

When edges are added to an X-multi-ledger consistent causality graph such that it remains acyclic

and transitively closed, the resulting graph is again X-multi-ledger consistent. The notionsminimally

consistent and reduction therefore generalize from ordinary causality graphs accordingly.

Definition »Minimal multi-ledger-consistent causality graph« An X-multi-ledger consistent

causality graph G is X-minimal if no strict subgraph of G (same vertices, fewer edges) is an

X-multi-ledger consistent causality graph. If X is the set of all actions in G, then X is omitted.

Definition »Reduction of a multi-ledger consistent causality graph« For an X-multi-ledger con-

sistent causality graph G, there exists a unique minimal X-multi-ledger consistent causality

graph reduceX(G) with the same vertices and the edges being a subset of G. reduceX(G) is called

the X-reduction of G. As before, X is omitted if it contains all actions in G.

Since multi-ledger causality graphs are acyclic, their vertices can be sorted topologically and the

resulting list is again a causality graph, where every vertex has an outgoing edge to all later vertices.

If the original causality graph is X-consistent, then so is the topological sort, as topological sorting

merely adds edges.

1836 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

1.47.2.3 From Multi-ledger Causality Graphs to Ledgers

Multi-Ledger causality graphs G are linked to ledgers L in the Daml Ledger Model via topological sort

and reduction.

• Given amulti-ledger causality graph G, drop the incoming and outgoing ledger annotations and

all transfer vertices, topologically sort the transaction vertices, and extend the resulting list of

transactions with the requesters to obtain a sequence of commits L.

• Given a sequence of commits L, use the transactions as vertices and add an edge from tx1 to

tx2 whenever tx1‘s commit precedes tx2‘s commit in the sequence. Then add transfer vertices

and incoming and outgoing ledger annotations as needed and connect themwith edges to the

transaction vertices.

This link preserves consistency only to some extent. Namely, if a multi-ledger causality graph is

multi-ledger consistent for a contract c, then the corresponding ledger is consistent for the contract

c, too. However, amulti-ledger-consistent causality graph does not yield a consistent ledger because

key consistency may be violated. Conversely, a consistent ledger does not talk about the incoming

and outgoing ledger annotations and therefore cannot enforce that the annotations are consistent.

1.47.3 Ledger-aware Projection

A Participant Node maintains a local ledger for each party it hosts and the Transaction Service out-

puts a topological sort of this local ledger. When the Participant Node hosts the party on several

ledgers, this local ledger is an multi-ledger causality graph. This section defines the ledger-aware

projection of an multi-ledger causality graph, which yields such a local ledger.

Definition »Y-labelled action« An action with incoming and outgoing ledger annotations is

Y-labelled for a set Y if its incoming or outgoing ledger annotation is an element of Y.

Definition »Ledger-aware projection for transactions« Let Y be a set of Daml ledgers and tx a

transaction whose actions are annotated with incoming and outgoing ledgers. Let Act be the

set of Y-labelled subactions of tx that the party P is an informee of. The ledger-aware projec-

tion of tx for P on Y (P-projection on Y) consists of all the maximal elements of Act (w.r.t. the

subaction relation) in execution order.

Note: Every action contains all its subactions. So if act is included in the P-projection on Y of tx, then

all subactions of act are also part of the projection. Such a subaction act’may not be Y-labelled itself

though, i.e., belong to a different ledger. If P is an informee of act’, the Participant Node will mark act’

as merely being witnessed on P‘s transaction stream, as explained below.

The cross-domain transaction in the split paint counteroffer workflow, for example, has the following pro-

jections for Alice and the painter on the Iou ledger (yellow) and the painting ledger (green). Here, the

projections on the green ledger include the actions of the yellow ledger because a projection includes

the subactions.

1.47. Daml Ledger Interoperability 1837

Daml SDK Documentation, 2.7.3

Definition »Projection for transfer actions« Let act be a transfer action annotated with an incom-

ing ledger and/or an outgoing ledger. The projection of act on a set of ledgers Y removes the

annotations from act that are not in Y. If the projection removes all annotations, it is empty.

The projection of act to a party P on Y (P-projection on Y) is the projection of act on Y if P is a

stakeholder of the contract, and empty otherwise.

Definition »Multi-Ledger consistency for a party« Anmulti-ledger causality graph G is consistent

for a party P on a set of ledgers Y (P-consistent on Y) if G is multi-ledger consistent on the set

of Y-labelled actions in G of which P is a stakeholder informee.

The notions of X-minimality and X-reduction extend to a party P on a set Y of ledgers accordingly.

Definition »Ledger-aware projection for multi-ledger causality graphs« Let G be a multi-ledger

consistent causality graph and Y be a set of Daml ledgers. The projection of G to party P

on Y (P-projection on Y) is the P-reduction on Y of the following causality graph G’, which is

P-consistent on Y:

1838 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

• The vertices of G’ are the vertices of G projected to P on Y, excluding empty projections.

• There is an edge between two vertices v1 and v2 in G’ if there is an edge from the G-vertex

corresponding to v1 to the G-vertex corresponding to v2.

If G is a multi-ledger consistent causality graph, then the P-projection on Y is P-consistent on Y, too.

For example, the multi-ledger causality graph for the split paint counteroffer workflow is projected as fol-

lows:

1.47. Daml Ledger Interoperability 1839

Daml SDK Documentation, 2.7.3

1840 Chapter 1. Canton References

Daml SDK Documentation, 2.7.3

The following points are worth highlighting:

• In Alice’s projection on the green ledger, Alice witnesses the archival of her Iou. As explained

in the Ledger API Ordering Guarantees below, the Exercise action is marked as merely being wit-

nessed in the transaction stream of a Participant Node that hosts Alice on the green ledger but

not on the yellow ledger. Similarly, the Painter merely witnesses the Create of his Iou in the

Painter’s projection on the green ledger.

• In the Painter’s projections, the ShowIou transaction tx3 is unordered w.r.t. to the CounterOffer

acceptance in tx4 like in the case of ordinary causality graphs. The edge tx3 -> tx4 is removed by

the reduction step during projection.

The projection of transfer actions can be illustrated with the Multi-Ledger causality graph with transfer

actions. The A-projections on the yellow and green ledger look as follows. The white color indicates

that a transfer action has no incoming or outgoing ledger annotation. That is, a Leave action is white

on the right hand side and an Enter action is white on the left hand side.

1.47.4 Ledger API Ordering Guarantees

The Transaction Service and the Active Contract Service are derived from the local ledger that the

Participant Node maintains for the party. Let Y be the set of ledgers on which the Participant Node

hosts a party. The transaction tree stream outputs a topological sort of the party’s local ledger on Y,

with the following modifications:

1. Transfer actions with either an incoming or an outgoing ledger annotation are output as Enter

and Leave events. Transfer actions with both incoming and outgoing ledger annotations are

omitted.

2. The incoming and outgoing ledger annotations are not output. Transaction actions with an

incoming or outgoing ledger annotation that is not in Y are marked as merely being witnessed

if the party is an informee of the action.

3. Fetch nodes and NoSuchKey are omitted.

The flat transaction stream contains precisely the CreatedEvents, ArchivedEvents, and the En-

ter and Leave actions that correspond to Create, consuming Exercise, Enter and Leave actions in

transaction trees on the transaction tree stream where the party is a stakeholder of the affected

contract and that are not marked as merely being witnessed.

Similarly, the active contract service provides the set of contracts that are active at the returned

offset according to the flat transaction stream. That is, the contract state changes of all events from

the transaction event stream are taken into account in the provided set of contracts.

The ordering guarantees for single Daml ledgers extend accordingly. In particular, interoperability en-

sures that all local ledgers are projections of a virtual shared multi-ledger causality graph that con-

1.47. Daml Ledger Interoperability 1841

Daml SDK Documentation, 2.7.3

nects to the Daml Ledger Model as described above. The ledger validity guarantees therefore extend

via the local ledgers to the Ledger API.

1.48 Non-repudiation

The non-repudiation middleware, API and client library are only available in Daml Enterprise and are

currently an Early Access Feature in Alpha status.

When you are issuing a command over the Ledger API, there is an implicit trust assumption between

the issuer of the command and the operator of the participant that the latter will not issue com-

mands on behalf of the former.

The non-repudiation middleware and its client library are a Daml Enterprise exclusive feature that

allows ledger operators to run participant nodes that will require each command to come with a

verifiable cryptographic signature, which will persisted by the operator. As the sole owner of the pri-

vate key used to sign the command, the authenticity of the command is thus verified and preserved,

ensuring that an operator cannot issue a command on behalf of the user and that the user cannot

repudiate the command.

Note that this is an early access feature: its status is currently under development and further feed-

back can change how certain details might work once the feature is declared a stable part of Daml

Enterprise. If you are interested in this feature, you are welcome to use it and give us feedback that

will shape how this feature will ultimately come to be.

1.48.1 Architecture

The non-repudiation system consists of three components:

• the non-repudiation middleware is a reverse proxy that sits in front of the Ledger API that veri-

fies command signatures and forwards the signed command to the actual participant node

• the non-repudiation API is a web server used by the operator to upload new certificates and

verify repudiation claims

• the non-repudiation client is a gRPC interceptor that can be used alongside any gRPC client on

the JVM, including the official Java bindings, that will ensure that commands are signed with

a given private key

1.48.2 Run the Server-side Components

The server-side components are the middleware and the API. Both can be run as a single process by

running the non-repudiation fat JAR provided as part of Daml Enterprise.

Note that at the current stage you need to also have a PostgreSQL server running where signed com-

mands will be persisted.

The following example shows how to run the non-repudiation server components by connecting to a

participant at localhost:6865 and proxying it to the 6866 port, using the given PostgreSQL instance

to persist signed commands and certificates.

java ­jar /path/to/the/non­repudiation.jar ­­ledger­host localhost ­­ledger­port␣

↪→6865 ­­proxy­port 6866 ­­jdbc url=jdbc:postgresql:nr,user=nr,password=nr

For details on how to run them, please run the fat JAR with the ­­help command line option.

1842 Chapter 1. Canton References

https://www.digitalasset.com/products/daml-connect

Daml SDK Documentation, 2.7.3

1.48.3 Use the Client

The client is a gRPC interceptor which is available to Daml Enterprise users (hence, it’s not available

on Maven Central).

The Maven coordinates for the library are com.daml:non-repudiation-client.

The following example shows how to use this interceptor with the official Java bindings

PrivateKey key = readYourPrivateKey();

X509Certificate certificate = readYourX509Certificate();

NettyChannelBuilder builder = NettyChannelBuilder.forAddress(hostname, port);

builder.intercept(SigningInterceptor.signCommands(key, certificate));

DamlLedgerClient client = DamlLedgerClient.newBuilder(builder).build();

client.connect();

1.48.4 Non-repudiation Over the HTTP JSON API

The non-repudiationmiddleware acts exclusively as a reverse proxy in front of the Ledger API server: if

youwant to use the HTTP JSON API youwill need to run your ownHTTP JSON API server and start it with

a certificate that will be used to sign every command issued by the HTTP JSON API to the participant.

The HTTP JSON API bundled with Daml Enterprise has the following extra command line options that

must be used to run an HTTP JSON API server against the non-repudiation middleware:

• –non-repudiation-certificate-path: the path to the X.509 certificate containing the public counter-

part to the private key that will be used to sign the commands

• –non-repudiation-private-key-path: the path to the file containing the private key that will be used

to sign the commands

• –non-repudiation-private-key-algorithm: the name of the cryptographic algorithm of the private

key (for a list of names supported in the OpenJDK: https://docs.oracle.com/javase/8/docs/

technotes/guides/security/StandardNames.html#KeyFactory)

1.48.5 TLS Support

At the current stage the non-repudiation feature does not support running against secure Ledger API

servers. This will be added as part of stabilizing this feature.

1.48. Non-repudiation 1843

https://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html#KeyFactory
https://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html#KeyFactory

Bibliography

[Cit1] Jones, S. Peyton, Jean-Marc Eber, and Julian Seward. “Composing contracts: an adventure in

financial engineering.” ACM SIG-PLAN Notices 35.9 (2000): 280-292.

[Cit2] Jones, SL Peyton, and J. M. Eber. “How to write a financial contract”, volume “Fun Of Program-

ming” of “Cornerstones of Computing.” (2005).

1844

	Table of contents
	Canton References
	An Introduction To Multi-Party Applications and Daml
	Multi-Party Applications
	Why Do Multi-Party Applications Matter?
	What Is a Multi-Party Application?
	Important Concepts in Multi-Party Applications
	Key Architectural Concepts in Daml
	Transfer Example Using Daml
	Next Steps

	System Requirements
	Feature/Component System Requirements

	Installing the SDK
	Install the Dependencies
	Choose Daml Enterprise or Daml Open Source
	Install Daml Open Source SDK
	Windows 10
	Mac and Linux

	Install Daml Enterprise
	Download Manually
	Next Steps

	Setting JAVA_HOME and PATH Variables
	Windows
	Set the JAVA_HOME Variable
	Set the PATH Variable

	Mac OS
	Linux
	Set the JAVA_HOME Variable
	Set the PATH Variable
	Verify the Changes

	Manually Installing the SDK
	Getting Started with Daml
	Prerequisites
	Run the App

	App Architecture
	The Daml Model
	TypeScript Code Generation
	The UI

	Your First Feature
	Daml Changes
	Messaging UI
	MessageList Component
	MessageEdit Component
	MainView Component

	Run the Updated UI
	Next Steps

	Testing Your Web App
	Set Up the Tests
	Example: Log In and Out
	Accessing UI Elements
	Writing CSS Selectors
	The Full Test Suite

	Overview: Important Considerations When Building Applications With Daml
	Overall Considerations
	Developer Considerations
	Operational Considerations
	Next Steps

	Write Smart Contracts with Daml
	An Introduction to Daml
	Basic Contracts
	Daml Ledger Basics
	Daml Files and Modules
	Templates
	Signatories
	Next Up

	Test Templates Using Daml Script
	Script Basics
	Run the Scripts
	Test for Failure
	Archive Contracts
	View the Ledger and Ledger History
	Exercises
	Next Up

	Data Types
	Native Types
	Assemble Types
	Tuples
	Lists
	Records
	Variants and Pattern Matching

	Manipulate Data
	Contract Keys
	Next Up

	Transform Data Using Choices
	Choices as Methods
	Choices as Delegation
	Choices In the Ledger Model
	The Archive Choice

	A Simple Cash Model
	Next Up

	Add Constraints to a Contract
	Template Preconditions
	Assertions
	Time on Daml Ledgers
	Time in Test Scripts

	Actions and do Blocks
	Pure Expressions Compared to Actions
	Actions and Impurity
	Chain Actions With do Blocks
	Wrap Values in Actions

	Failing Actions
	A Sample Action
	Errors
	Next Up

	Parties and Authority
	Preventing IOU Revocation
	Use Propose-Accept Workflows for One-Off Authorization
	Use Role Contracts for Ongoing Authorization
	Daml’s Authorization Model
	An Authorization Example

	Next Up

	Composing Choices
	Daml Projects
	Project Structure
	Project Overview
	Composed Choices and Scripts
	Daml’s Execution Model
	Observers
	Privacy
	Divulgence

	Next Up

	Daml Interfaces
	Context
	Interface Definition
	Interface Instances
	Using an Interface

	Exception Handling
	Next Up

	Work with Dependencies
	DAR, DALF, Daml-LF, and the Engine
	Hashes and Identifiers
	Dependencies and Data Dependencies
	Structuring Projects
	Next Up

	Functional Programming 101
	The Haskell Connection
	Functions
	Function Application
	Infix Functions
	Type Constraints
	Pattern Matching in Arguments
	Functions Everywhere
	Lambdas

	Control Flow
	Branching
	If … Else
	Control Flow as Expressions
	Branching in Actions

	Looping
	Folds
	Maps
	Recursion
	Folds and Maps in Action Contexts

	Next Up

	Introduction to the Daml Standard Library
	The Prelude
	Important Types From the Prelude
	Lists
	Tuples
	Optional
	Either

	Typeclasses
	Important Typeclasses From the Prelude
	Eq
	Ord
	Show
	Functor
	Applicative Functor
	Actions
	Semigroups and Monoids
	Additive and Multiplicative

	Important Modules in the Standard Library
	Search the Standard Library
	Search for Functions by Name
	Search for Functions by Signature

	Next Up

	Good Design Patterns
	The Initiate and Accept Pattern
	Motivation
	Implementation
	Trade-offs

	The Multiple Party Agreement Pattern
	Motivation
	Implementation

	The Delegation Pattern
	Motivation
	Implementation

	The Authorization Pattern
	Motivation
	Authorization

	The Locking Pattern
	Motivation
	Implementation
	Lock by Archiving
	Consuming Choice
	Archiving Contract
	Trade-offs

	Lock by State
	Trade-offs

	Lock by Safekeeping
	Trade-offs

	Diagram Legends

	Test Daml Contracts
	Daml Test Tooling
	Debug, Trace, and Stacktraces
	Diagnose Contention Errors
	Common Errors
	ContractId Not Found During Interpretation
	ContractId Not Found During Validation
	fetchByKey Error During Interpretation
	fetchByKey Dispute During Validation
	lookupByKey Dispute During Validation

	Avoid Race Conditions and Stale References
	Collisions Due to Ignorance

	Checking Coverage
	Flags Controlling Test Set
	Flags Controlling Serialization
	Flags Controlling Report
	Define templates, choices, and interfaces
	Start testing
	Template creation coverage
	Template choice exercise coverage
	Interface choice exercise coverage

	Checking Coverage of External Dependencies
	Definitions
	Local Definitions
	External Definitions
	External, Internal, and “Any” Coverage
	Serializing Results Workflows
	Single Test Iteration
	Multiple Test Aggregation
	Test Failure Recovery

	Excluding Choices from the Coverage Report
	Example: Excluding Archive Choices
	Example: Excluding Choices from a Specific Module
	Excluding Choices from Serialized Reports

	Next Up

	Next Steps

	Integrate Daml with Off-Ledger Services
	Building Applications
	Daml Application Architecture
	Backend
	Frontend
	Authorization
	Developer Workflow
	Command Deduplication
	Deal With Failures
	Crash Recovery
	Fail Over Between Ledger API Endpoints

	Deal With Time

	Parties and Users On a Daml Ledger
	Parties in SDK 2.0 and Subsequent
	Party ID Hints and Display Names
	Authorization and User Management
	Working with Parties
	Daml Script
	Daml Triggers
	Navigator
	Java Bindings
	Create-daml-app and UIs

	JSON API
	HTTP JSON API Service
	Run the JSON API
	Start a Daml Ledger
	Start the HTTP JSON API Service
	Basic
	Standalone JAR
	With Query Store
	Access Tokens
	Party-specific Requests
	Using User Tokens
	Using Claim Tokens
	Auth via HTTP
	Auth via WebSockets

	HTTP Status Codes
	Successful Response, HTTP Status: 200 OK
	Successful Response with a Warning, HTTP Status: 200 OK
	Failure, HTTP Status: 400 | 401 | 404 | 500
	Examples

	Create a New Contract
	HTTP Request
	HTTP Response

	Create a Contract with a Command ID
	Exercise by Contract ID
	HTTP Request
	HTTP Response

	Exercise by Contract Key
	HTTP Request
	HTTP Response

	Create and Exercise in the Same Transaction
	HTTP Request
	HTTP Response

	Fetch Contract by Contract ID
	HTTP Request
	Contract Not Found HTTP Response
	Contract Found HTTP Response

	Fetch Contract by Key
	HTTP Request
	Contract Not Found HTTP Response
	Contract Found HTTP Response

	Get All Active Contracts
	HTTP Request
	HTTP Response

	Get All Active Contracts Matching a Given Query
	HTTP Request
	Empty HTTP Response
	Nonempty HTTP Response
	Nonempty HTTP Response With Unknown Template IDs Warning

	Fetch Parties by Identifiers
	HTTP Response
	Response With Unknown Parties Warning

	Fetch All Known Parties
	HTTP Response

	Allocate a New Party
	HTTP Request
	HTTP Response

	Create a New User
	HTTP Request
	HTTP Response

	Get Authenticated User Information
	HTTP Request
	HTTP Response

	Get Specific User Information
	HTTP Request
	HTTP Response

	Delete Specific User
	HTTP Request
	HTTP Response

	List Users
	HTTP Request
	HTTP Response

	Grant User Rights
	HTTP Request
	HTTP Response

	Revoke User Rights
	HTTP Request
	HTTP Response

	List Authenticated User Rights
	HTTP Request
	HTTP Response

	List Specific User Rights
	HTTP Request
	HTTP Response

	List All DALF Packages
	HTTP Request
	HTTP Response

	Download a DALF Package
	HTTP Request
	HTTP Response, status: 200 OK
	HTTP Response With Error, Any Status Different from 200 OK

	Upload a DAR File
	HTTP Request
	HTTP Response, Status: 200 OK
	HTTP Response With Error

	Metering Report
	HTTP Response

	Streaming API
	Error and Warning Reporting
	Error and Warning Examples
	Contracts Query Stream
	Fetch by Key Contracts Stream

	Healthcheck Endpoints
	Liveness Check
	Readiness Check

	Daml-LF JSON Encoding
	Codec Library
	Type-directed Parsing
	ContractId
	Decimal
	Input
	Output

	Int64
	Input
	Output

	Timestamp
	Input
	Output

	Party
	Unit
	Date
	Text
	Bool
	Record
	Input
	Output

	List
	TextMap
	GenMap
	Optional
	Input
	Output

	Variant
	Enum

	Query Language
	Fallback Rule
	Simple Equality
	Comparison Query
	Appendix: Type-aware Queries
	Appendix: Known Issues
	When Using Oracle, Queries Fail if a Token Is Too Large

	Using JavaScript Client Libraries with Daml
	Use the JavaScript Code Generator
	Generate and Use Code
	Primitive Daml Types: @daml/types
	Daml to TypeScript Mappings
	Records
	Variants
	Sum-of-products
	Enums
	Templates and Choices

	@daml/react
	@daml/ledger
	@daml/types

	JSON API Production Setup
	Production Setup
	Query Store
	Configuring
	Managing DB permissions with start-mode
	Data Continuity
	Behavior Under High Load
	Running a Query
	Storage Overview
	Well-Matched Use Cases
	Ill-Matched Use Cases

	Security and Privacy
	Architecture
	Components

	Scaling and Redundancy
	Scaling creates and exercises
	Scaling Queries
	Hitting a Scaling Bottleneck
	Set Up the HTTP JSON API Service To Work With Highly Available Participants

	Logging
	Metrics
	Enable and Configure Reporting
	Types of Metrics
	Counter
	Meter
	Timers
	Metrics Reference
	daml.http_json_api.incoming_json_parsing_and_validation_timing
	daml.http_json_api.response_creation_timing
	daml.http_json_api.db_find_by_contract_key_timing
	daml.http_json_api.db_find_by_contract_id_timing
	daml.http_json_api.command_submission_ledger_timing
	daml.http_json_api.websocket_request_count

	The Ledger API
	What’s in the Ledger API
	How to Access the Ledger API
	Daml-LF
	When You Need to Know About Daml-LF

	The Ledger API Services
	Overview
	Glossary

	Submit Commands to the Ledger
	Command Submission Service
	Change ID
	Application-specific IDs
	Command Deduplication
	Explicit contract disclosure (experimental)
	Command Completion Service
	Command Service

	Read From the Ledger
	Transaction Service
	Transaction and transaction Trees
	Verbosity
	Transaction Filter
	Active Contracts Service
	Verbosity
	Transaction Filter
	Event Query Service (EXPERIMENTAL)

	Utility Services
	Party Management Service
	User Management Service
	Identity Provider Config Service
	Package Service
	Ledger Identity Service (DEPRECATED)
	Ledger Configuration Service
	Version Service
	Pruning Service
	Metering Report Service

	Testing Services
	Time Service

	Java Bindings
	Overview
	Generate Code
	Connect to the Ledger: LedgerClient

	Reference Documentation
	Get Started
	Set Up a Maven Project
	Connect to the Ledger
	Perform Authorization
	Connect Securely
	Advanced Connection Settings

	Example Projects
	Generate Java Code from Daml
	Introduction
	Understand the Generated Java Model
	Map Daml Primitives to Java Types
	Understand Escaping Rules
	Understand the Generated Classes
	Records (a.k.a Product Types)
	Templates
	Variants (a.k.a Sum Types)
	Enums
	Parameterized Types
	Convert a Value of a Generated Type to a Java Bindings Value
	Create a Value of a Generated Type from a Java Bindings Value
	Non-exposed Parameterized Types
	Convert Optional Values
	Convert Collection Values
	Daml Interfaces

	Java Bindings Example Project
	Set Up the Example Projects
	Example Project
	PingPongMain.java
	PingPongProcessor.runIndefinitely()
	Output

	Daml IOU Quickstart Tutorial
	Download the Quickstart Application
	Folder Structure
	Understand IOUs
	Run the Application Using Prototyping Tools
	Try the Application
	Get Started with Daml
	Develop with Daml Studio
	Test Using Daml Script
	Integrate With the Ledger
	Next Steps

	Python Bindings
	Use the Ledger API With gRPC
	Get Started
	Protobuf Reference Documentation
	Example Project
	About the Example Project

	Daml Types and Protobuf
	Error Handling

	Ledger API Reference
	com/daml/ledger/api/v1/active_contracts_service.proto
	GetActiveContractsRequest
	GetActiveContractsResponse
	ActiveContractsService

	com/daml/ledger/api/v1/admin/config_management_service.proto
	GetTimeModelRequest
	GetTimeModelResponse
	SetTimeModelRequest
	SetTimeModelResponse
	TimeModel
	ConfigManagementService

	com/daml/ledger/api/v1/admin/identity_provider_config_service.proto
	CreateIdentityProviderConfigRequest
	CreateIdentityProviderConfigResponse
	DeleteIdentityProviderConfigRequest
	DeleteIdentityProviderConfigResponse
	GetIdentityProviderConfigRequest
	GetIdentityProviderConfigResponse
	IdentityProviderConfig
	ListIdentityProviderConfigsRequest
	ListIdentityProviderConfigsResponse
	UpdateIdentityProviderConfigRequest
	UpdateIdentityProviderConfigResponse
	IdentityProviderConfigService

	com/daml/ledger/api/v1/admin/metering_report_service.proto
	GetMeteringReportRequest
	GetMeteringReportResponse
	MeteringReportService

	com/daml/ledger/api/v1/admin/object_meta.proto
	ObjectMeta
	ObjectMeta.AnnotationsEntry

	com/daml/ledger/api/v1/admin/package_management_service.proto
	ListKnownPackagesRequest
	ListKnownPackagesResponse
	PackageDetails
	UploadDarFileRequest
	UploadDarFileResponse
	PackageManagementService

	com/daml/ledger/api/v1/admin/participant_pruning_service.proto
	PruneRequest
	PruneResponse
	ParticipantPruningService

	com/daml/ledger/api/v1/admin/party_management_service.proto
	AllocatePartyRequest
	AllocatePartyResponse
	GetParticipantIdRequest
	GetParticipantIdResponse
	GetPartiesRequest
	GetPartiesResponse
	ListKnownPartiesRequest
	ListKnownPartiesResponse
	PartyDetails
	UpdatePartyDetailsRequest
	UpdatePartyDetailsResponse
	UpdatePartyIdentityProviderRequest
	UpdatePartyIdentityProviderResponse
	PartyManagementService

	com/daml/ledger/api/v1/admin/user_management_service.proto
	CreateUserRequest
	CreateUserResponse
	DeleteUserRequest
	DeleteUserResponse
	GetUserRequest
	GetUserResponse
	GrantUserRightsRequest
	GrantUserRightsResponse
	ListUserRightsRequest
	ListUserRightsResponse
	ListUsersRequest
	ListUsersResponse
	RevokeUserRightsRequest
	RevokeUserRightsResponse
	Right
	Right.CanActAs
	Right.CanReadAs
	Right.IdentityProviderAdmin
	Right.ParticipantAdmin
	UpdateUserIdentityProviderRequest
	UpdateUserIdentityProviderResponse
	UpdateUserRequest
	UpdateUserResponse
	User
	UserManagementService

	com/daml/ledger/api/v1/command_completion_service.proto
	Checkpoint
	CompletionEndRequest
	CompletionEndResponse
	CompletionStreamRequest
	CompletionStreamResponse
	CommandCompletionService

	com/daml/ledger/api/v1/command_service.proto
	SubmitAndWaitForTransactionIdResponse
	SubmitAndWaitForTransactionResponse
	SubmitAndWaitForTransactionTreeResponse
	SubmitAndWaitRequest
	CommandService

	com/daml/ledger/api/v1/command_submission_service.proto
	SubmitRequest
	CommandSubmissionService

	com/daml/ledger/api/v1/commands.proto
	Command
	Commands
	CreateAndExerciseCommand
	CreateCommand
	DisclosedContract
	ExerciseByKeyCommand
	ExerciseCommand

	com/daml/ledger/api/v1/completion.proto
	Completion

	com/daml/ledger/api/v1/contract_metadata.proto
	ContractMetadata

	com/daml/ledger/api/v1/event.proto
	ArchivedEvent
	CreatedEvent
	Event
	ExercisedEvent
	InterfaceView

	com/daml/ledger/api/v1/event_query_service.proto
	GetEventsByContractIdRequest
	GetEventsByContractIdResponse
	GetEventsByContractKeyRequest
	GetEventsByContractKeyResponse
	EventQueryService

	com/daml/ledger/api/v1/experimental_features.proto
	AcsActiveAtOffsetFeature
	CommandDeduplicationFeatures
	CommandDeduplicationPeriodSupport
	ExperimentalCommitterEventLog
	ExperimentalContractIds
	ExperimentalExplicitDisclosure
	ExperimentalFeatures
	ExperimentalOptionalLedgerId
	ExperimentalSelfServiceErrorCodes
	ExperimentalStaticTime
	ExperimentalUserAndPartyLocalMetadataExtensions
	CommandDeduplicationPeriodSupport.DurationSupport
	CommandDeduplicationPeriodSupport.OffsetSupport
	CommandDeduplicationType
	ExperimentalCommitterEventLog.CommitterEventLogType
	ExperimentalContractIds.ContractIdV1Support

	com/daml/ledger/api/v1/ledger_configuration_service.proto
	GetLedgerConfigurationRequest
	GetLedgerConfigurationResponse
	LedgerConfiguration
	LedgerConfigurationService

	com/daml/ledger/api/v1/ledger_identity_service.proto
	GetLedgerIdentityRequest
	GetLedgerIdentityResponse
	LedgerIdentityService

	com/daml/ledger/api/v1/ledger_offset.proto
	LedgerOffset
	LedgerOffset.LedgerBoundary

	com/daml/ledger/api/v1/package_service.proto
	GetPackageRequest
	GetPackageResponse
	GetPackageStatusRequest
	GetPackageStatusResponse
	ListPackagesRequest
	ListPackagesResponse
	HashFunction
	PackageStatus
	PackageService

	com/daml/ledger/api/v1/testing/time_service.proto
	GetTimeRequest
	GetTimeResponse
	SetTimeRequest
	TimeService

	com/daml/ledger/api/v1/transaction.proto
	Transaction
	TransactionTree
	TransactionTree.EventsByIdEntry
	TreeEvent

	com/daml/ledger/api/v1/transaction_filter.proto
	Filters
	InclusiveFilters
	InterfaceFilter
	TransactionFilter
	TransactionFilter.FiltersByPartyEntry

	com/daml/ledger/api/v1/transaction_service.proto
	GetFlatTransactionResponse
	GetLatestPrunedOffsetsRequest
	GetLatestPrunedOffsetsResponse
	GetLedgerEndRequest
	GetLedgerEndResponse
	GetTransactionByEventIdRequest
	GetTransactionByIdRequest
	GetTransactionResponse
	GetTransactionTreesResponse
	GetTransactionsRequest
	GetTransactionsResponse
	TransactionService

	com/daml/ledger/api/v1/value.proto
	Enum
	GenMap
	GenMap.Entry
	Identifier
	List
	Map
	Map.Entry
	Optional
	Record
	RecordField
	Value
	Variant

	com/daml/ledger/api/v1/version_service.proto
	FeaturesDescriptor
	GetLedgerApiVersionRequest
	GetLedgerApiVersionResponse
	UserManagementFeature
	VersionService

	com/daml/ledger/api/v2/command_completion_service.proto
	CompletionStreamRequest
	CompletionStreamResponse
	CommandCompletionService

	com/daml/ledger/api/v2/command_service.proto
	SubmitAndWaitForTransactionResponse
	SubmitAndWaitForTransactionTreeResponse
	SubmitAndWaitForUpdateIdResponse
	SubmitAndWaitRequest
	CommandService

	com/daml/ledger/api/v2/command_submission_service.proto
	SubmitReassignmentRequest
	SubmitReassignmentResponse
	SubmitRequest
	SubmitResponse
	CommandSubmissionService

	com/daml/ledger/api/v2/commands.proto
	Commands

	com/daml/ledger/api/v2/completion.proto
	Completion

	com/daml/ledger/api/v2/event_query_service.proto
	Archived
	Created
	GetEventsByContractIdResponse
	EventQueryService

	com/daml/ledger/api/v2/package_service.proto
	GetPackageRequest
	GetPackageStatusRequest
	ListPackagesRequest
	PackageService

	com/daml/ledger/api/v2/participant_offset.proto
	ParticipantOffset
	ParticipantOffset.ParticipantBoundary

	com/daml/ledger/api/v2/reassignment.proto
	AssignedEvent
	Reassignment
	UnassignedEvent

	com/daml/ledger/api/v2/reassignment_command.proto
	AssignCommand
	ReassignmentCommand
	UnassignCommand

	com/daml/ledger/api/v2/state_service.proto
	ActiveContract
	GetActiveContractsRequest
	GetActiveContractsResponse
	GetConnectedDomainsRequest
	GetConnectedDomainsResponse
	GetConnectedDomainsResponse.ConnectedDomain
	GetLatestPrunedOffsetsRequest
	GetLatestPrunedOffsetsResponse
	GetLedgerEndRequest
	GetLedgerEndResponse
	IncompleteAssigned
	IncompleteUnassigned
	ParticipantPermission
	StateService

	com/daml/ledger/api/v2/testing/time_service.proto
	GetTimeRequest
	GetTimeResponse
	SetTimeRequest
	TimeService

	com/daml/ledger/api/v2/transaction.proto
	Transaction
	TransactionTree
	TransactionTree.EventsByIdEntry

	com/daml/ledger/api/v2/transaction_filter.proto
	TransactionFilter
	TransactionFilter.FiltersByPartyEntry

	com/daml/ledger/api/v2/update_service.proto
	GetTransactionByEventIdRequest
	GetTransactionByIdRequest
	GetTransactionResponse
	GetTransactionTreeResponse
	GetUpdateTreesResponse
	GetUpdatesRequest
	GetUpdatesResponse
	UpdateService

	com/daml/ledger/api/v2/version_service.proto
	GetLedgerApiVersionRequest
	VersionService

	Scalar Value Types

	How Daml Types are Translated to Protobuf
	Notation
	Records and Primitive Types
	Variants
	Contract Templates
	Create a Contract
	Receive a Contract
	Exercise a Choice

	How Daml Types are Translated to Daml-LF
	Primitive Types
	Tuple Types
	Data Types
	Record Declarations
	Variant Declarations
	Enum Declarations
	Banned Declarations

	Type Synonyms
	Template Types
	Template Data Types
	Choice Data Types

	Names with Special Characters

	Create Your Own Bindings
	Build Ledger Commands
	Create Command
	Exercise Command

	Summary
	Links

	Daml Off-Ledger Automation
	Write Off-Ledger Automation Using Daml
	Daml Script
	Usage
	Party Management
	Queries
	Interfaces
	Run a Script

	Use Daml Script for Ledger Initialization
	Migrate From Scenarios

	Use Daml Script with the IDE Ledger
	Use Daml Script in Canton
	Hints for synchronizing contracts on multiple-participant Canton

	Run Daml Script Against Ledgers with Authorization
	Run Daml Script Against the HTTP JSON API

	Daml Triggers - Off-Ledger Automation in Daml
	How To Think About Triggers
	Sample Trigger
	Daml Trigger Basics
	Run a No-Op Trigger
	Diversion: Updating Message
	AutoReply
	Command Deduplication
	Authorization
	When Not to Use Daml Triggers
	Trigger Service
	Start the Trigger Service
	Endpoints
	Start a Trigger
	HTTP Request
	HTTP Response
	Stop a Trigger
	HTTP Request
	HTTP Response
	List Running Triggers
	HTTP Request
	HTTP Response
	Status of a Trigger
	HTTP Request
	HTTP Response
	Upload a New DAR
	HTTP Request
	HTTP Response
	Liveness Check
	HTTP Request
	HTTP Response
	Readiness Check
	HTTP Request
	HTTP Response
	Metrics
	Enable and Configure Reporting
	Reported Metrics
	Authorization
	Enable Authorization
	Obtain Authorization
	Example
	Login via Redirect
	Login via Popup

	Auth Middleware
	Features
	Auth Middleware API
	Obtain Access Token
	HTTP Request
	HTTP Response
	Request Authorization
	HTTP Request
	Refresh Access Token
	HTTP Request
	HTTP Response
	Daml Ledger Claims

	OAuth 2.0 Auth Middleware
	OAuth 2.0 Configuration
	Request Templates
	Authorization Request
	Arguments
	Returns
	Example
	Token Request
	Arguments
	Returns
	Example
	Refresh Request
	Arguments
	Returns
	Example
	Deployment Notes
	Metrics
	Liveness and Readiness Endpoints
	Liveness Check
	HTTP Request
	HTTP Response
	Readiness Check
	HTTP Request
	HTTP Response

	Errors
	Command Deduplication
	How Command Deduplication Works
	How to Use Command Deduplication
	Known Processing Time Bounds
	Error Handling
	Failure Scenarios
	Unknown Processing Time Bounds
	Error Handling
	Failure Scenarios

	Authorization
	Introduction
	Acquire and Use Access Tokens
	Access Tokens and Rights
	Access Token Formats
	User Access Tokens
	Audience-Based Tokens
	Scope-Based Tokens
	Requirements for User IDs
	Identity providers

	Custom Daml Claims Access Tokens

	Explicit Contract Disclosure (Alpha)
	Contract Read Delegation
	Read delegation using explicit contract disclosure

	How do stakeholders disclose contracts to submitters?
	Attaching a disclosed contract to a command submission
	Trading the stock with explicit disclosure

	Resource Management in Daml Application Design
	Managing Latency and Throughput
	Problem Definition
	Possible Throughput Bottlenecks in Order of Likelihood
	Solutions

	Avoid Contention Issues
	Contention in Daml
	Reduce Contention
	Example Application with Techniques for Reducing Contention
	The Example Minimal Settlement System
	Basic functional requirements for the example application
	Practical and security requirements for the example application
	Performance measurement in the example application

	Prepare Transactions for Contention-Free Parallelism
	Non-UTXO Alternative Ledger Models
	Simple Strategies for UTXO Ledger Models
	Batch transactions sequentially
	Use sequential processing or batching per asset type and owner

	Shard Asset Positions for UTXO Ledger Models
	Shard total asset positions without global constraints
	Shard total asset positions with global constraints

	Managing Active Contract Set (ACS) Size
	Problem Definition
	Relational Databases
	Solutions

	HTTP JSON API Service

	Upgrading and Extending Daml Applications
	Extending Daml Applications
	Upgrading Daml Applications
	Daml Upgrade Overview
	Structure Upgrade Contracts
	Build and Deploy carbon-1.0.0
	Create carbon-1.0.0 Certificates
	Build and Deploy carbon-2.0.0
	Build and Deploy carbon-upgrade
	Upgrade Existing Certificates from carbon-1.0.0 to carbon-2.0.0
	Further Steps

	Automating the Upgrade Process
	Structure the Upgrade
	Implementation of the Daml Script
	Implementation of the Daml Trigger
	Deploy and Execute the Upgrade

	Developer Tools
	Daml Assistant (daml)
	Full Help for Commands
	Configuration Files
	Global Config File (daml-config.yaml)
	Project Config File (daml.yaml)
	Recommended build-options

	Build Daml Projects
	Manage Releases
	Terminal Command Completion
	Run Commands Outside of the Project Directory

	Canton Console
	Introduction
	Run the Canton Console Against the Sandbox
	Built-in Documentation
	Interact With the Sandbox

	Deploy to a Generic Daml Ledger
	Connect via TLS
	Configure Request Timeouts

	Daml REPL
	Usage
	What Is in Scope at the Prompt?
	Using Daml REPL Without a Ledger
	Connecting via TLS
	Connection to a Ledger With Authorization
	Using Daml REPL to Convert to JSON

	Daml Studio
	Install
	Create Your First Daml File
	Supported Features
	Symbols and Problem Reporting
	Hover Tooltips
	Daml Script Results
	Daml Snippets

	Common Script Errors
	Abort, Assert, and Debug
	Missing Authorization on Create
	Missing Authorization on Exercise
	Contract Not Visible

	Work with Multiple Packages

	Daml Sandbox
	Run With Authorization
	Generate JSON Web Tokens (JWT)
	Generate RSA keys
	Generate EC keys

	Run With TLS
	Command-line Reference
	Metrics
	Enable and Configure Reporting
	Types of Metrics
	Gauge
	Counter
	Meter
	Histogram
	Timers
	Database Metrics

	List of Metrics
	daml.commands.delayed_submissions
	daml.commands.failed_command_interpretations
	daml.commands.submissions
	daml.commands.valid_submissions
	daml.commands.validation
	daml.commands.input_buffer_capacity
	daml.commands.input_buffer_length
	daml.commands.input_buffer_delay
	daml.commands.max_in_flight_capacity
	daml.commands.max_in_flight_length
	daml.execution.get_lf_package
	daml.execution.lookup_active_contract_count_per_execution
	daml.execution.lookup_active_contract_per_execution
	daml.execution.lookup_active_contract
	daml.execution.lookup_contract_key_count_per_execution
	daml.execution.lookup_contract_key_per_execution
	daml.execution.lookup_contract_key
	daml.execution.retry
	daml.execution.total
	daml.index.db.connection.api.server.pool
	daml.index.db.get_active_contracts
	daml.index.db.get_completions
	daml.index.db.get_flat_transactions
	daml.index.db.get_ledger_end
	daml.index.db.get_ledger_id
	daml.index.db.get_transaction_trees
	daml.index.db.load_all_parties
	daml.index.db.load_archive
	daml.index.db.load_configuration_entries
	daml.index.db.load_package_entries
	daml.index.db.load_packages
	daml.index.db.load_parties
	daml.index.db.load_party_entries
	daml.index.db.lookup_active_contract
	daml.index.db.lookup_configuration
	daml.index.db.lookup_contract_by_key
	daml.index.db.lookup_flat_transaction_by_id
	daml.index.db.lookup_maximum_ledger_time
	daml.index.db.lookup_transaction_tree_by_id
	daml.index.db.store_configuration_entry
	daml.index.db.store_ledger_entry
	daml.index.db.store_package_entry
	daml.index.db.store_party_entry
	daml.index.db.store_rejection
	daml.indexer.last_received_record_time
	daml.indexer.last_received_offset
	daml.indexer.current_record_time_lag
	daml.indexer.ledger_end_sequential_id
	daml.lapi
	daml.lapi.return_status
	daml.services
	jvm

	Navigator
	Navigator Functionality
	Starting Navigator
	Logging In
	Logging in as a Party

	Viewing Templates or Contracts
	Listing templates
	Listing contracts
	Viewing contracts based on a template
	Viewing template and contract details

	Using Navigator
	Creating contracts
	Exercising choices
	Advancing time

	Authorizing Navigator
	Advanced Usage
	Customizable table views
	Using Navigator with a Daml Ledger

	Daml Profiler
	Usage
	Caveats

	Daml Codegen
	Introduction
	Run the Daml Codegen
	Command Line Configuration
	Project File Configuration (Java)

	Daml Finance Documentation
	Content
	Starting Points
	Releases
	Daml SDK 2.7.0
	Stable Packages
	Early Access Packages
	Deprecated Packages

	Daml SDK 2.6.0
	Stable Packages
	Early Access Packages
	Deprecated Packages

	Daml SDK 2.5.0
	Stable Packages
	Early Access Packages
	Deprecated Packages

	Overview
	Introduction
	Purpose
	Design Goals
	Scope
	Use Cases
	Exploring the Library
	Demo Application

	Architecture
	Interface Layer
	Implementation Layer
	Versioning and Compatibility

	Building Applications
	Installing Daml Finance
	Application Architecture
	Using Daml Codegen

	Extending Daml Finance
	Custom Holding Implementations
	Custom Account Implementations
	Custom Instrument Implementations
	Custom Lifecycle Implementations
	Custom Settlement Implementations

	Concepts
	Asset Model
	Instrument
	Signatories
	Keys and Versioning
	Interfaces
	Implementations

	Holding
	Signatories
	Properties of Holdings
	Interfaces
	Implementations

	Account
	Signatories
	Keys
	Interfaces
	Implementations

	Example setups
	Currency
	Equity
	OTC Swap

	Settlement
	Workflow
	Instruct
	Allocate and Approve
	Execute
	Remarks

	The components in detail
	Route provider
	Settlement factory
	Instruction
	Batch

	Remarks and further references

	Lifecycling
	Approach
	Single Source of Truth
	Instrument Versioning

	Workflow
	Creating the event
	Processing the event
	Claiming the effect
	Settlement

	Components
	Events
	Lifecycle Rule
	Claim Rule
	Effects

	Instruments
	Bonds
	Equites
	Options
	Swaps
	Other Instruments
	How to use the Token Instrument packages
	How to create a Token Instrument
	How to lifecycle a Token Instrument

	How to use the Bond Instrument packages
	How to use a Bond Instrument in your application
	How to Create a Bond Instrument
	Fixed Rate
	Floating Rate
	Callable
	Inflation Linked
	Zero Coupon

	Frequently Asked Questions
	How do I transfer or trade a bond?
	How do I process coupon payments for a bond?
	How do I redeem a bond?
	How do I view the terms of a bond instrument?

	How to use the Equity Instrument packages
	How to use an Equity Instrument in your application
	The Equity Interface
	Dividend
	Bonus issue
	Dividend option
	1. Using a dividend option instrument
	2. Using multiple distribution events

	Rights Issue
	Rights Subscription
	Stock split
	Reverse Stock Split

	Merger
	Frequently Asked Questions
	How do I transfer or trade an Equity?
	How do I process dividend payments for an Equity?

	How To Use the Option Extension Package
	How To Create an Option Instrument
	European Options
	Physically settled European Option
	Cash-settled European Option

	Barrier Option
	Dividend Option

	Frequently Asked Questions
	How do I transfer or trade an option?
	How do I calculate settlement payments for an option?

	How To Use the Swap Instrument Packages
	Prerequisites
	How To Create a Swap Instrument
	Interest Rate
	Currency
	Foreign Exchange
	Credit Default
	Asset
	FpML

	Frequently Asked Questions
	Why do the swaps have an issuer?

	How to use the Generic Instrument packages
	How to create a Generic Instrument
	Define the Claim of a Bond
	Define the Claim of a European Option

	How to lifecycle a Generic Instrument
	Election based lifecycling of Contingent Claims based instruments

	Contingent Claims
	Introduction
	The Model
	Composition and Extensibility
	Concerning Type Parameters
	The Time Parameter
	The Asset Parameter
	The Observation Parameter
	The Value Parameter

	Lifecycling
	Pricing (Experimental)
	References

	Packages
	Interface Packages
	Daml.Finance.Interface.Holding
	Changelog
	Daml.Finance.Interface.Holding - Changelog
	Version 2.0.0

	Daml.Finance.Interface.Account
	Changelog
	Daml.Finance.Interface.Account - Changelog
	Version 2.0.0

	Daml.Finance.Interface.Settlement
	Changelog
	Daml.Finance.Interface.Settlement - Changelog
	Version 2.0.0

	Daml.Finance.Interface.Lifecycle
	Changelog
	Daml.Finance.Interface.Lifecycle - Changelog
	Version 2.0.0

	Daml.Finance.Interface.Instrument.Base
	Changelog
	Daml.Finance.Interface.Instrument.Base - Changelog
	Version 2.0.0

	Daml.Finance.Interface.Claims
	Changelog
	Daml.Finance.Interface.Claims - Changelog
	Version 2.0.0

	Daml.Finance.Interface.Data
	Changelog
	Daml.Finance.Interface.Data - Changelog
	Version 3.0.0
	Version 2.0.0

	Daml.Finance.Interface.Types.Common
	Changelog
	Daml.Finance.Interface.Types.Common - Changelog
	Version 1.0.1

	Daml.Finance.Interface.Types.Date
	Changelog
	Daml.Finance.Interface.Types.Date - Changelog
	Version 2.0.1
	Version 2.0.0

	Daml.Finance.Interface.Util
	Changelog
	Daml.Finance.Interface.Util - Changelog
	Version 2.0.0

	ContingentClaims.Core
	Changelog
	ContingentClaims.Core - Changelog
	Version 2.0.0

	Daml.Finance.Interface.Instrument.Bond
	Changelog
	Daml.Finance.Interface.Instrument.Bond - Changelog
	Version 1.0.0
	Version 0.2.1

	Daml.Finance.Interface.Instrument.Equity
	Changelog
	Daml.Finance.Interface.Instrument.Equity - Changelog
	Version 0.3.0

	Daml.Finance.Interface.Instrument.Generic
	Changelog
	Daml.Finance.Interface.Instrument.Generic - Changelog
	Version 2.0.0

	Daml.Finance.Interface.Instrument.Option
	Changelog
	Daml.Finance.Interface.Instrument.Option - Changelog
	Version 0.2.0

	Daml.Finance.Interface.Instrument.Swap
	Changelog
	Daml.Finance.Interface.Instrument.Swap - Changelog
	Version 0.3.0
	Version 0.2.1

	Daml.Finance.Interface.Instrument.Token
	Changelog
	Daml.Finance.Interface.Instrument.Token - Changelog
	Version 2.0.0

	Implementation Packages
	Daml.Finance.Holding
	Changelog
	Daml.Finance.Holding - Changelog
	Version 2.0.0
	Version 1.0.2
	Version 1.0.1

	Daml.Finance.Account
	Changelog
	Daml.Finance.Account - Changelog
	Version 2.0.0
	Version 1.0.1

	Daml.Finance.Settlement
	Changelog
	Daml.Finance.Settlement - Changelog
	Version 2.0.0
	Version 1.0.2
	Version 1.0.1

	Daml.Finance.Lifecycle
	Changelog
	Daml.Finance.Lifecycle - Changelog
	Version 2.0.0
	Version 1.0.1

	Daml.Finance.Data
	Changelog
	Daml.Finance.Data - Changelog
	Version 2.0.0
	Version 1.0.1

	Daml.Finance.Claims
	Changelog
	Daml.Finance.Claims - Changelog
	Version 2.0.0
	Version 1.0.1

	Daml.Finance.Util
	Changelog
	Daml.Finance.Util - Changelog
	Version 3.0.0
	Version 2.0.0

	ContingentClaims.Lifecycle
	Changelog
	ContingentClaims.Lifecycle - Changelog
	Version 2.0.0

	ContingentClaims.Valuation
	Changelog
	ContingentClaims.Valuation - Changelog
	Version 0.2.1

	Daml.Finance.Instrument.Bond
	Changelog
	Daml.Finance.Instrument.Bond - Changelog
	Version 1.0.0
	Version 0.2.1

	Daml.Finance.Instrument.Equity
	Changelog
	Daml.Finance.Instrument.Equity - Changelog
	Version 0.3.0
	Version 0.2.1

	Daml.Finance.Instrument.Generic
	Changelog
	Daml.Finance.Instrument.Generic - Changelog
	Version 2.0.0
	Version 1.0.1

	Daml.Finance.Instrument.Option
	Changelog
	Daml.Finance.Instrument.Option - Changelog
	Version 0.2.0

	Daml.Finance.Instrument.Swap
	Changelog
	Daml.Finance.Instrument.Swap - Changelog
	Version 0.3.0
	Version 0.2.1

	Daml.Finance.Instrument.Token
	Changelog
	Daml.Finance.Instrument.Token - Changelog
	Version 2.0.0
	Version 1.0.1

	Tutorials
	Getting Started tutorials
	Prerequisites
	Download the code for the tutorials
	Structure of the Code and Dependencies
	Holdings
	Run the script
	Create Account, Holding, and Instrument Factories
	Open Alice’s and Bob’s Accounts
	Create the Cash Instrument
	Deposit Cash in Alice’s Account

	Frequently Asked Questions
	What are accounts used for?
	Why do we need factories?

	Summary

	Transfer
	Run the Script
	Transfer Cash from Alice to Bob

	Frequently Asked Questions
	How does the Transfer workflow work?
	Why is Alice an observer on Bob’s account?

	Exercises
	Split the Holding to Transfer the Right Amount
	Temporary Account Disclosure

	Summary

	Settlement
	Overview of the Process
	Run the Script
	Frequently Asked Questions
	Why do we need a route provider?
	Why do we need a settlement factory?
	Can we use a different settler?
	What if one party wants to cancel the settlement?

	Summary

	Lifecycling
	Overview of the Process
	Run the Script
	Frequently Asked Questions
	Which party should create and sign the lifecycle rules and events?
	Which parties typically take which actions in the lifecycle workflow?
	Which party should take the role as lifecycler?
	Which party is the provider of the Effect?
	Can an instrument act as its own lifecycle rule?
	Can I integrate a holding ownership change (of the target instrument) within lifecycling?

	Summary

	Settlement tutorials
	Download the code for the tutorials
	Enhanced Transfers
	Configuring Account Controllers
	Dual Control
	Discretionary
	Sovereign
	Unilateral

	Summary

	Internal Settlement
	Understanding Internal Settlement with Examples
	Wrapped Transfer
	Credit and Debit
	Pass Through

	Summary

	Intermediated Settlement
	Understanding Intermediated Settlement with Examples
	Wrapped Transfers: A Detailed Analysis
	Route Provider: An Alternative Approach

	Summary

	Lifecycling tutorials
	Download the code for the tutorials
	Time-based lifecycling (using a fixed rate bond)
	Run the Script
	Instrument and Holding
	Lifecycle Events and Rule

	Frequently Asked Questions
	Which party should create and sign the lifecycle rules and events?
	Which parties typically take which actions in the lifecycle workflow?

	Summary

	Observations (using a floating rate bond)
	Run the Script
	Instrument and Holding
	Lifecycle Events and Rule

	Frequently Asked Questions
	Which party should create the observations?

	Summary

	Election-based lifecycling (using a callable bond)
	Run the Script
	Instrument and Holding
	Lifecycle Events and Rule

	Frequently Asked Questions
	Which party should create the elections?
	What if a bond can only be called on some coupon dates?

	Summary

	Payoff Modeling tutorials
	Download the code for the tutorials
	Basic builders
	Builders
	Zero
	One
	Scale
	Give, And
	When

	Structuring financial instruments
	Fixed Rate Bond
	FX Forward

	Summary

	Observations
	Equity forward payoff
	Floating Rate Note
	Interest Rate Swap
	Summary

	Advanced Topics
	Intermediated Lifecycling of an Instrument
	Create the Instrument
	Define an Intermediated Settlement Route
	Define a Lifecycle Event
	Lifecycle the Bond Instrument
	Non-atomic Settlement
	Atomic Settlement
	Frequently Asked Questions
	What if one party wants to cancel the settlement?

	How to leverage Contingent Claims in custom instrument implementations
	Template Definition
	The Claims Interface
	How to define the redemption claim
	How to define the coupon claims

	Evolving the Instrument over time
	Including market observables
	Different ways to create and store the Contingent Claims tree
	Which approach is preferred?

	Reference
	Glossary
	Account
	Instrument
	Holding
	Fungibility
	Transferability
	Locking
	Crediting / Debiting
	Disclosure
	Settlement
	Lifecycling

	Patterns
	Factory pattern
	Reference pattern
	View of an interface contract and the GetView choice

	Daml Finance
	ContingentClaims.Core.Builders
	Functions

	ContingentClaims.Core.Claim
	Functions

	ContingentClaims.Core.Internal.Claim
	Data Types

	ContingentClaims.Core.Observation
	Data Types
	Functions

	ContingentClaims.Core.Util.Recursion
	Functions

	ContingentClaims.Lifecycle.Lifecycle
	Data Types
	Functions

	ContingentClaims.Lifecycle.Util
	Functions

	ContingentClaims.Valuation.MathML
	Typeclasses

	ContingentClaims.Valuation.Stochastic
	Typeclasses
	Data Types
	Functions

	Daml.Finance.Account.Account
	Templates
	Data Types

	Daml.Finance.Claims.Lifecycle.Rule
	Templates

	Daml.Finance.Claims.Util
	Functions

	Daml.Finance.Claims.Util.Builders
	Data Types
	Functions

	Daml.Finance.Claims.Util.Date
	Data Types
	Functions

	Daml.Finance.Claims.Util.Lifecycle
	Functions

	Daml.Finance.Data.Numeric.Observation
	Templates
	Data Types

	Daml.Finance.Data.Reference.HolidayCalendar
	Templates
	Data Types
	Functions

	Daml.Finance.Data.Time.DateClock
	Templates
	Data Types
	Functions

	Daml.Finance.Data.Time.DateClock.Types
	Data Types

	Daml.Finance.Data.Time.DateClockUpdate
	Templates
	Data Types

	Daml.Finance.Data.Time.LedgerTime
	Templates
	Data Types

	Daml.Finance.Holding.Fungible
	Templates
	Data Types

	Daml.Finance.Holding.NonFungible
	Templates
	Data Types

	Daml.Finance.Holding.NonTransferable
	Templates
	Data Types

	Daml.Finance.Holding.Util
	Functions

	Daml.Finance.Instrument.Bond.Callable.Factory
	Templates
	Data Types

	Daml.Finance.Instrument.Bond.Callable.Instrument
	Templates
	Data Types

	Daml.Finance.Instrument.Bond.FixedRate.Factory
	Templates
	Data Types

	Daml.Finance.Instrument.Bond.FixedRate.Instrument
	Templates
	Data Types

	Daml.Finance.Instrument.Bond.FloatingRate.Factory
	Templates

	Daml.Finance.Instrument.Bond.FloatingRate.Instrument
	Templates
	Data Types

	Daml.Finance.Instrument.Bond.InflationLinked.Factory
	Templates
	Data Types

	Daml.Finance.Instrument.Bond.InflationLinked.Instrument
	Templates
	Data Types

	Daml.Finance.Instrument.Bond.Util
	Data Types
	Functions

	Daml.Finance.Instrument.Bond.ZeroCoupon.Factory
	Templates
	Data Types

	Daml.Finance.Instrument.Bond.ZeroCoupon.Instrument
	Templates
	Data Types

	Daml.Finance.Instrument.Equity.Factory
	Templates
	Data Types

	Daml.Finance.Instrument.Equity.Instrument
	Templates
	Data Types

	Daml.Finance.Instrument.Generic.Factory
	Templates
	Data Types

	Daml.Finance.Instrument.Generic.Instrument
	Templates
	Data Types

	Daml.Finance.Instrument.Generic.Lifecycle.Rule
	Templates

	Daml.Finance.Instrument.Option.BarrierEuropeanCash.Factory
	Templates
	Data Types

	Daml.Finance.Instrument.Option.BarrierEuropeanCash.Instrument
	Templates
	Data Types

	Daml.Finance.Instrument.Option.Dividend.Factory
	Templates
	Data Types

	Daml.Finance.Instrument.Option.Dividend.Instrument
	Templates
	Data Types

	Daml.Finance.Instrument.Option.Dividend.Election
	Templates

	Daml.Finance.Instrument.Option.EuropeanCash.Factory
	Templates
	Data Types

	Daml.Finance.Instrument.Option.EuropeanCash.Instrument
	Templates
	Data Types

	Daml.Finance.Instrument.Option.EuropeanPhysical.Factory
	Templates
	Data Types

	Daml.Finance.Instrument.Option.EuropeanPhysical.Instrument
	Templates
	Data Types

	Daml.Finance.Instrument.Option.Util
	Functions

	Daml.Finance.Instrument.Swap.Asset.Factory
	Templates
	Data Types

	Daml.Finance.Instrument.Swap.Asset.Instrument
	Templates
	Data Types

	Daml.Finance.Instrument.Swap.CreditDefault.Factory
	Templates

	Daml.Finance.Instrument.Swap.CreditDefault.Instrument
	Templates
	Data Types

	Daml.Finance.Instrument.Swap.Currency.Factory
	Templates
	Data Types

	Daml.Finance.Instrument.Swap.Currency.Instrument
	Templates
	Data Types

	Daml.Finance.Instrument.Swap.ForeignExchange.Factory
	Templates
	Data Types

	Daml.Finance.Instrument.Swap.ForeignExchange.Instrument
	Templates
	Data Types

	Daml.Finance.Instrument.Swap.Fpml.Factory
	Templates
	Data Types

	Daml.Finance.Instrument.Swap.Fpml.Instrument
	Templates
	Data Types

	Daml.Finance.Instrument.Swap.Fpml.Util
	Data Types
	Functions

	Daml.Finance.Instrument.Swap.InterestRate.Factory
	Templates
	Data Types

	Daml.Finance.Instrument.Swap.InterestRate.Instrument
	Templates
	Data Types

	Daml.Finance.Instrument.Token.Factory
	Templates
	Data Types

	Daml.Finance.Instrument.Token.Instrument
	Templates
	Data Types

	Daml.Finance.Interface.Account.Account
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Account.Factory
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Account.Util
	Functions

	Daml.Finance.Interface.Claims.Claim
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Claims.Dynamic.Instrument
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Claims.Types
	Data Types

	Daml.Finance.Interface.Data.Numeric.Observation
	Interfaces
	Data Types

	Daml.Finance.Interface.Data.Numeric.Observation.Factory
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Data.Reference.HolidayCalendar
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Data.Reference.HolidayCalendar.Factory
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Data.Reference.Time
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Holding.Base
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Holding.Factory
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Holding.Fungible
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Holding.Transferable
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Holding.Util
	Functions

	Daml.Finance.Interface.Instrument.Base.Instrument
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Instrument.Bond.Callable.Factory
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Instrument.Bond.Callable.Instrument
	Interfaces
	Data Types

	Daml.Finance.Interface.Instrument.Bond.Callable.Types
	Data Types

	Daml.Finance.Interface.Instrument.Bond.FixedRate.Factory
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Instrument.Bond.FixedRate.Instrument
	Interfaces
	Data Types

	Daml.Finance.Interface.Instrument.Bond.FixedRate.Types
	Data Types

	Daml.Finance.Interface.Instrument.Bond.FloatingRate.Factory
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Instrument.Bond.FloatingRate.Instrument
	Interfaces
	Data Types

	Daml.Finance.Interface.Instrument.Bond.FloatingRate.Types
	Data Types

	Daml.Finance.Interface.Instrument.Bond.InflationLinked.Factory
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Instrument.Bond.InflationLinked.Instrument
	Interfaces
	Data Types

	Daml.Finance.Interface.Instrument.Bond.InflationLinked.Types
	Data Types

	Daml.Finance.Interface.Instrument.Bond.ZeroCoupon.Factory
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Instrument.Bond.ZeroCoupon.Instrument
	Interfaces
	Data Types

	Daml.Finance.Interface.Instrument.Bond.ZeroCoupon.Types
	Data Types

	Daml.Finance.Interface.Instrument.Bond.Types
	Data Types

	Daml.Finance.Interface.Instrument.Equity.Factory
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Instrument.Equity.Instrument
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Instrument.Generic.Factory
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Instrument.Generic.Instrument
	Interfaces
	Data Types

	Daml.Finance.Interface.Instrument.Option.BarrierEuropeanCash.Factory
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Instrument.Option.BarrierEuropeanCash.Instrument
	Interfaces
	Data Types

	Daml.Finance.Interface.Instrument.Option.BarrierEuropeanCash.Types
	Data Types

	Daml.Finance.Interface.Instrument.Option.Dividend.Factory
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Instrument.Option.Dividend.Instrument
	Interfaces
	Data Types

	Daml.Finance.Interface.Instrument.Option.Dividend.Types
	Data Types

	Daml.Finance.Interface.Instrument.Option.Dividend.Election.Factory
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Instrument.Option.EuropeanCash.Factory
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Instrument.Option.EuropeanCash.Instrument
	Interfaces
	Data Types

	Daml.Finance.Interface.Instrument.Option.EuropeanCash.Types
	Data Types

	Daml.Finance.Interface.Instrument.Option.EuropeanPhysical.Factory
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Instrument.Option.EuropeanPhysical.Instrument
	Interfaces
	Data Types

	Daml.Finance.Interface.Instrument.Option.EuropeanPhysical.Types
	Data Types

	Daml.Finance.Interface.Instrument.Option.Types
	Data Types

	Daml.Finance.Interface.Instrument.Swap.Asset.Factory
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Instrument.Swap.Asset.Instrument
	Interfaces
	Data Types

	Daml.Finance.Interface.Instrument.Swap.Asset.Types
	Data Types

	Daml.Finance.Interface.Instrument.Swap.CreditDefault.Factory
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Instrument.Swap.CreditDefault.Instrument
	Interfaces
	Data Types

	Daml.Finance.Interface.Instrument.Swap.CreditDefault.Types
	Data Types

	Daml.Finance.Interface.Instrument.Swap.Currency.Factory
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Instrument.Swap.Currency.Instrument
	Interfaces
	Data Types

	Daml.Finance.Interface.Instrument.Swap.Currency.Types
	Data Types

	Daml.Finance.Interface.Instrument.Swap.ForeignExchange.Factory
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Instrument.Swap.ForeignExchange.Instrument
	Interfaces
	Data Types

	Daml.Finance.Interface.Instrument.Swap.ForeignExchange.Types
	Data Types

	Daml.Finance.Interface.Instrument.Swap.Fpml.Factory
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Instrument.Swap.Fpml.FpmlTypes
	Data Types

	Daml.Finance.Interface.Instrument.Swap.Fpml.Instrument
	Interfaces
	Data Types

	Daml.Finance.Interface.Instrument.Swap.Fpml.Types
	Data Types

	Daml.Finance.Interface.Instrument.Swap.InterestRate.Factory
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Instrument.Swap.InterestRate.Instrument
	Interfaces
	Data Types

	Daml.Finance.Interface.Instrument.Swap.InterestRate.Types
	Data Types

	Daml.Finance.Interface.Instrument.Token.Factory
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Instrument.Token.Instrument
	Interfaces
	Data Types

	Daml.Finance.Interface.Instrument.Token.Types
	Data Types

	Daml.Finance.Interface.Lifecycle.Effect
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Lifecycle.Election
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Lifecycle.Election.Factory
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Lifecycle.Event
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Lifecycle.Event.Distribution
	Interfaces
	Data Types

	Daml.Finance.Interface.Lifecycle.Event.Replacement
	Interfaces
	Data Types

	Daml.Finance.Interface.Lifecycle.Event.Time
	Interfaces
	Data Types

	Daml.Finance.Interface.Lifecycle.Observable.NumericObservable
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Lifecycle.Observable.TimeObservable
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Lifecycle.Rule.Claim
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Lifecycle.Rule.Lifecycle
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Settlement.Batch
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Settlement.Factory
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Settlement.Instruction
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Settlement.RouteProvider
	Interfaces
	Data Types
	Functions

	Daml.Finance.Interface.Settlement.Types
	Data Types

	Daml.Finance.Interface.Types.Common.Types
	Data Types

	Daml.Finance.Interface.Types.Date.Calendar
	Data Types

	Daml.Finance.Interface.Types.Date.Classes
	Typeclasses

	Daml.Finance.Interface.Types.Date.DayCount
	Data Types

	Daml.Finance.Interface.Types.Date.RollConvention
	Data Types

	Daml.Finance.Interface.Types.Date.Schedule
	Data Types

	Daml.Finance.Interface.Util.Common
	Functions

	Daml.Finance.Interface.Util.Disclosure
	Interfaces
	Data Types
	Functions

	Daml.Finance.Lifecycle.Effect
	Templates
	Data Types

	Daml.Finance.Lifecycle.Election
	Templates
	Data Types

	Daml.Finance.Lifecycle.ElectionEffect
	Templates
	Data Types

	Daml.Finance.Lifecycle.Event.Distribution
	Templates
	Data Types

	Daml.Finance.Lifecycle.Event.Replacement
	Templates
	Data Types

	Daml.Finance.Lifecycle.Rule.Claim
	Templates
	Data Types

	Daml.Finance.Lifecycle.Rule.Distribution
	Templates
	Data Types

	Daml.Finance.Lifecycle.Rule.Replacement
	Templates
	Data Types

	Daml.Finance.Lifecycle.Rule.Util
	Data Types
	Functions

	Daml.Finance.Settlement.Batch
	Templates
	Data Types

	Daml.Finance.Settlement.Factory
	Templates

	Daml.Finance.Settlement.Hierarchy
	Data Types
	Functions

	Daml.Finance.Settlement.Instruction
	Templates
	Data Types

	Daml.Finance.Settlement.RouteProvider.IntermediatedStatic
	Templates

	Daml.Finance.Settlement.RouteProvider.SingleCustodian
	Templates

	Daml.Finance.Util.Common
	Functions

	Daml.Finance.Util.Date.Calendar
	Functions

	Daml.Finance.Util.Date.DayCount
	Functions

	Daml.Finance.Util.Date.RollConvention
	Functions

	Daml.Finance.Util.Date.Schedule
	Functions

	Daml.Finance.Util.Disclosure
	Functions

	Intro
	Introduction to Canton
	Overview and Assumptions
	Canton 101
	A Basic Example
	Transaction Processing in Canton
	Conflict Detection
	Time in Canton
	Subtransaction privacy

	Domain Entities
	Sequencer
	Mediator
	Topology Manager

	Participant-internal Canton Components
	Transactions
	Sequencer Client
	Identity Client

	System Model And Trust Assumptions
	System Model
	General Trust Assumptions
	Assumptions Relevant for Privacy
	Assumptions Relevant for Liveness

	Canton Demo
	Getting Started
	Installation
	Starting Canton
	The Example Topology
	Connecting The Nodes
	Canton Identities and Provisioning Parties
	Creating Parties
	Extracting Identifiers
	Provisioning Smart Contract Code
	Executing Smart Contracts
	Privacy
	Your Development Choices
	Automation using bootstrap scripts
	What Next?

	Daml SDK and Canton
	Starting Canton
	Running the Create Daml App Example
	Connecting to participant2

	What Next?

	Composability
	Part 1: A multi-domain workflow
	Setting up the topology
	Creating the IOU and the paint offer
	Contracts and Their Domains
	Transferring a contract
	Atomic acceptance
	Completing the workflow
	Performing transfers automatically
	Details of the automatic-transfer transactions

	Take aways

	Part 2: Composing existing workflows
	Existing workflows
	Required changes
	Preparation using the existing workflows
	The paint offer-accept workflow
	Making the offer
	Transfers are not atomic
	Accepting the paint offer
	Automatic transfer-in

	Continuing the existing workflows
	Take aways

	Versioning
	Canton release version
	For application developers and operators
	For Canton participant and domain operators
	Canton protocol version
	Features and protocol versions
	Configuring the protocol version
	Minimum protocol version
	Support and bug fixes

	Obtaining Canton
	Choosing Open-Source or Enterprise Edition
	Downloading the Open Source Edition
	Downloading the Enterprise Edition
	Installing Canton
	Downloading Canton
	Your Topology
	Environment Variables
	Selecting your Storage Layer
	Persistence using Postgres

	Setting up a Participant
	Secure the APIs
	Configure Applications, Users and Connection

	Setting up a Domain
	Secure the APIs
	Next Steps

	Multi-Node Setup

	Running in Docker
	Obtaining the Docker Images
	Starting Canton
	Configuring Logging
	Supplying custom configuration and DARs
	Exposing the ledger-api to the host machine
	Running Postgres in Docker

	Static Configuration
	Configuration reference
	Configuration Compatibility
	Advanced Configurations
	Configuration Mixin
	Multiple Domains
	Fail Fast Mode
	Init Configuration

	Enterprise Drivers
	Oracle Domain
	Fabric Domain
	Tutorial
	User Manual
	Run with Docker Compose
	Cleanup
	Using the Canton Binary instead of docker
	Blockchain Explorer

	Fabric Setup
	Block Cutting Parameters and Performance
	Authorization
	Endorsement Policies
	High Availability

	Ethereum Domain
	Introduction
	The Ethereum Demo
	Prerequisites
	Introduction
	Simple Scenario
	Advanced Scenario
	Running a scenario
	Generating a Clean Testnet
	Customization of the Besu network
	Customization of the Demo Configuration

	Error codes
	TLS configuration
	Ethereum accounts and wallets
	Deployment of the sequencer contract
	Manual deployment

	Requirements for the Ethereum Network
	Throughput
	Latency

	Trust Properties of the Ethereum Sequencer Integration
	High Availability

	High Availability (HA)
	Intro to HA in Canton
	Overview
	Participant Nodes
	Domains
	Replication
	Databases
	Health Check

	Replicating Participant Nodes
	High-Level System Design
	Shared Database

	Leader Election
	Exclusive Lock Acquisition
	Lock ID Allocation

	Prevent Passive Replica Activity
	Lock Loss and Failover

	HA on the Domain
	Sequencer
	Database Sequencer
	Consistency and the Database Sequencer
	Failing Sequencer Nodes and the Database Sequencer
	Recovering Sequencer Nodes

	Mediator

	HA for Production Systems
	HA and Horizontal Scaling
	Introduction
	Target audience

	High Availability From a Business Perspective
	Availability
	Time-based availability
	Aggregate request availability

	Resiliency
	Other Common Metrics / RTO and RPO
	HA Cost Trade-Offs

	Use Cases By Role
	Distributed Application Provider
	Deploy a domain
	Connect a new participant node
	Prepare domain infrastructure for adding new participant nodes

	Distributed Application User
	Upload the distributed application DAR files

	Site Reliability Engineer (SRE)
	Monitor systems

	Implementing HA and Scaling Deployments
	Basic Daml Deployment
	Architecture for HA and Scaling
	HTTP JSON API and Participant Node Services
	Sequencer Service
	Sequencer service load balancing options
	Blockchain domains
	SQL domains

	Mediator Service
	Domain Manager Service
	Trigger Service

	HA Deployment Solution for Production
	HA in the Cloud
	Database Options
	Amazon RDS for PostgreSQL, Multi-AZ with two readable standbys
	Amazon Aurora DB cluster
	Aurora global database

	High Availability Usage
	Domain Manager
	HA Setup on Oracle
	Mediator
	Running a Stand-Alone Mediator Node
	HA Configuration

	Sequencer
	Total Node Count
	External load balancer
	Client-side load balancing

	Participant
	Domain Connectivity during Fail-over
	Manual Trigger of a Fail-over
	Load Balancer Configuration

	Disaster Recovery (DR)
	Persistence
	Postgres
	SSL

	Oracle
	Installation and Setup of Oracle
	Default Character Set and Collations
	Database Replication
	Setup Oracle Schemas

	Configuring Canton Nodes for Oracle
	Performance Tuning
	Operating System Modifications
	System Container Configuration (CDB)

	General Settings
	Max Connection Settings
	Queue Size

	Backup and Restore
	Order of Backups
	Restore Caveats
	Incomplete Command Deduplication State
	Application State Reset
	Private Keys

	Postgres Example

	Database Replication for Disaster Recovery
	Synchronous Replication

	Canton Administration Quickstart
	Command-line Arguments
	Selecting a Configuration
	Run Modes
	Interactive Console
	Daemon
	Headless Script Mode
	Interactive Server Process using Screen

	Java Virtual Machine Arguments

	Canton Console
	Remote Administration
	Node References
	Help
	Lifecycle Operations
	Timeouts
	Code-Generation in Console
	Canton Administration APIs

	Console Commands
	Top-level Commands
	Participant Commands
	Database
	Health
	Domain Connectivity
	Packages
	DAR Management
	DAR Sharing
	Party Management
	Key Administration
	Topology Administration
	Ledger API Access
	Transaction Service
	Command Service
	Command Completion Service
	Active Contract Service
	Package Service
	Party Management Service
	Ledger Configuration Service
	Ledger Api User Management Service
	Ledger Api Metering Service

	Composability
	Ledger Pruning
	Bilateral Commitments
	Participant Repair
	Resource Management
	Replication

	Multiple Participants
	Domain Administration Commands
	Health
	Database
	Participants
	Sequencer
	Mediator
	Key Administration
	Parties
	Service
	Topology Administration

	Domain Manager Administration Commands
	Setup
	Health
	Database
	Sequencer Connection
	Key Administration
	Parties
	Service
	Topology Administration

	Sequencer Administration Commands
	Sequencer
	Health
	Database

	Mediator Administration Commands
	Mediator
	Health
	Database
	Sequencer Connection

	Monitoring
	Introduction
	Hands-On with the Daml Enterprise - Observability Example

	Golden Signals and Key Metrics Quick Start
	Set Up Metrics Scraping
	Enable the Prometheus Reporter
	Prometheus-Only Metrics
	Deprecated Reporters

	Metrics
	Participant Metrics
	canton.<domain>.conflict-detection.sequencer-counter-queue
	canton.<domain>.conflict-detection.task-queue
	canton.<domain>.dirty-requests
	canton.<domain>.protocol-messages.confirmation-request-creation
	canton.<domain>.protocol-messages.confirmation-request-size
	canton.<domain>.protocol-messages.transaction-message-receipt
	canton.<domain>.request-tracker.sequencer-counter-queue
	canton.<domain>.request-tracker.task-queue
	canton.<domain>.sequencer-client.application-handle
	canton.<domain>.sequencer-client.delay
	canton.<domain>.sequencer-client.event-handle
	canton.<domain>.sequencer-client.handler.actual-in-flight-event-batches
	canton.<domain>.sequencer-client.handler.max-in-flight-event-batches
	canton.<domain>.sequencer-client.load
	canton.<domain>.sequencer-client.submissions.dropped
	canton.<domain>.sequencer-client.submissions.in-flight
	canton.<domain>.sequencer-client.submissions.overloaded
	canton.<domain>.sequencer-client.submissions.sends
	canton.<domain>.sequencer-client.submissions.sequencing
	canton.commitments.compute
	canton.db-storage.<service>.executor.queued
	canton.db-storage.<service>.executor.running
	canton.db-storage.<service>.executor.waittime
	canton.db-storage.<storage>
	canton.db-storage.<storage>.load
	canton.db-storage.alerts.multi-domain-event-log
	canton.db-storage.alerts.single-dimension-event-log
	canton.dirty_requests*
	canton.max_dirty_requests*
	canton.prune
	canton.prune.max-event-age
	canton.updates-published
	daml.cache.evicted_weight*
	daml.cache.evictions*
	daml.cache.hits*
	daml.cache.misses*
	daml.commands.delayed_submissions
	daml.commands.failed_command_interpretations
	daml.commands.max_in_flight_capacity
	daml.commands.max_in_flight_length
	daml.commands.reassignment_validation
	daml.commands.submissions
	daml.commands.submissions_running
	daml.commands.valid_submissions
	daml.commands.validation
	daml.db.commit.duration.seconds*
	daml.db.compression.duration.seconds*
	daml.db.exec.duration.seconds*
	daml.db.query.duration.seconds*
	daml.db.translation.duration.seconds*
	daml.db.wait.duration.seconds*
	daml.execution.cache.contract_state.register_update
	daml.execution.cache.key_state.register_update
	daml.execution.cache.read_through_not_found
	daml.execution.cache.resolve_divulgence_lookup
	daml.execution.cache.resolve_full_lookup
	daml.execution.engine
	daml.execution.engine_running
	daml.execution.get_lf_package
	daml.execution.lookup_active_contract
	daml.execution.lookup_active_contract_count_per_execution
	daml.execution.lookup_active_contract_per_execution
	daml.execution.lookup_contract_key
	daml.execution.lookup_contract_key_count_per_execution
	daml.execution.lookup_contract_key_per_execution
	daml.execution.retry
	daml.execution.total
	daml.execution.total_running
	daml.executor.runtime.completed*
	daml.executor.runtime.duration.seconds*
	daml.executor.runtime.idle.duration.seconds*
	daml.executor.runtime.running*
	daml.executor.runtime.submitted*
	daml.index.active_contracts_buffer_size
	daml.index.completions_buffer_size
	daml.index.db.active_contract_lookup_batch_size
	daml.index.db.active_contract_lookup_buffer_capacity
	daml.index.db.active_contract_lookup_buffer_delay
	daml.index.db.active_contract_lookup_buffer_length
	daml.index.db.compression.create_argument_compressed
	daml.index.db.compression.create_argument_uncompressed
	daml.index.db.compression.create_key_value_compressed
	daml.index.db.compression.create_key_value_uncompressed
	daml.index.db.compression.exercise_argument_compressed
	daml.index.db.compression.exercise_argument_uncompressed
	daml.index.db.compression.exercise_result_compressed
	daml.index.db.compression.exercise_result_uncompressed
	daml.index.db.flat_transactions_stream.translation
	daml.index.db.lookup_active_contract
	daml.index.db.lookup_key
	daml.index.db.reassignment_stream.translation
	daml.index.db.translation.get_lf_package
	daml.index.db.tree_transactions_stream.translation
	daml.index.flat_transactions_buffer_size
	daml.index.ledger_end_sequential_id
	daml.index.lf_value.compute_interface_view
	daml.index.package_metadata.decode_archive
	daml.index.package_metadata.view_init
	daml.index.transaction_trees_buffer_size
	daml.indexer.current_record_time_lag
	daml.indexer.events*
	daml.indexer.last_received_record_time
	daml.indexer.ledger_end_sequential_id
	daml.indexer.metered_events*
	daml.lapi.streams.acs_sent
	daml.lapi.streams.active
	daml.lapi.streams.completions_sent
	daml.lapi.streams.transaction_trees_sent
	daml.lapi.streams.transactions_sent
	daml.lapi.streams.update_trees_sent
	daml.parallel_indexer.input_buffer_length
	daml.parallel_indexer.inputmapping.batch_size
	daml.parallel_indexer.output_batched_buffer_length
	daml.parallel_indexer.seqmapping.duration
	daml.parallel_indexer.updates
	daml.services.index.<operation>
	daml.services.index.in_memory_fan_out_buffer.prune
	daml.services.index.in_memory_fan_out_buffer.push
	daml.services.index.in_memory_fan_out_buffer.size
	daml.services.read.<operation>
	daml.services.write.<operation>
	daml.services.write.submit_transaction.count

	Domain Metrics
	canton.<component>.sequencer-client.application-handle
	canton.<component>.sequencer-client.delay
	canton.<component>.sequencer-client.event-handle
	canton.<component>.sequencer-client.load
	canton.db-storage.<service>.executor.queued
	canton.db-storage.<service>.executor.running
	canton.db-storage.<service>.executor.waittime
	canton.db-storage.<storage>
	canton.db-storage.<storage>.load
	canton.db-storage.alerts.multi-domain-event-log
	canton.db-storage.alerts.single-dimension-event-log
	canton.mediator.max-event-age
	canton.mediator.outstanding-requests
	canton.mediator.requests
	canton.mediator.sequencer-client.handler.actual-in-flight-event-batches
	canton.mediator.sequencer-client.handler.max-in-flight-event-batches
	canton.mediator.sequencer-client.submissions.dropped
	canton.mediator.sequencer-client.submissions.in-flight
	canton.mediator.sequencer-client.submissions.overloaded
	canton.mediator.sequencer-client.submissions.sends
	canton.mediator.sequencer-client.submissions.sequencing
	canton.sequencer.db-storage.<storage>
	canton.sequencer.db-storage.<storage>.load
	canton.sequencer.db-storage.alerts.multi-domain-event-log
	canton.sequencer.db-storage.alerts.single-dimension-event-log
	canton.sequencer.db-storage.general.executor.queued
	canton.sequencer.db-storage.general.executor.running
	canton.sequencer.db-storage.general.executor.waittime
	canton.sequencer.db-storage.locks.executor.queued
	canton.sequencer.db-storage.locks.executor.running
	canton.sequencer.db-storage.locks.executor.waittime
	canton.sequencer.db-storage.write.executor.queued
	canton.sequencer.db-storage.write.executor.running
	canton.sequencer.db-storage.write.executor.waittime
	canton.sequencer.max-event-age
	canton.sequencer.processed
	canton.sequencer.processed-bytes
	canton.sequencer.sequencer-client.handler.actual-in-flight-event-batches
	canton.sequencer.sequencer-client.handler.max-in-flight-event-batches
	canton.sequencer.sequencer-client.submissions.dropped
	canton.sequencer.sequencer-client.submissions.in-flight
	canton.sequencer.sequencer-client.submissions.overloaded
	canton.sequencer.sequencer-client.submissions.sends
	canton.sequencer.sequencer-client.submissions.sequencing
	canton.sequencer.subscriptions
	canton.sequencer.time-requests
	canton.topology-manager.sequencer-client.handler.actual-in-flight-event-batches
	canton.topology-manager.sequencer-client.handler.max-in-flight-event-batches
	canton.topology-manager.sequencer-client.submissions.dropped
	canton.topology-manager.sequencer-client.submissions.in-flight
	canton.topology-manager.sequencer-client.submissions.overloaded
	canton.topology-manager.sequencer-client.submissions.sends
	canton.topology-manager.sequencer-client.submissions.sequencing

	Health Metrics
	daml_health_status

	gRPC Metrics
	daml_grpc_server_duration_seconds
	daml_grpc_server_messages_sent_total
	daml_grpc_server_messages_received_total
	daml_grpc_server_started_total
	daml_grpc_server_handled_total
	daml_grpc_server_messages_sent_bytes
	daml_grpc_server_messages_received_bytes

	HTTP Metrics
	daml_http_requests_duration_seconds
	daml_http_requests_total
	daml_http_websocket_messages_received_total
	daml_http_websocket_messages_sent_total
	daml_http_requests_payload_bytes
	daml_http_responses_payload_bytes
	daml_http_websocket_messages_received_bytes
	daml_http_websocket_messages_sent_bytes

	Java Execution Service Metrics
	daml_executor_pool_size
	daml_executor_pool_core
	daml_executor_pool_max
	daml_executor_pool_largest
	daml_executor_threads_active
	daml_executor_threads_running
	daml_executor_tasks_queued
	daml_executor_tasks_executing_queued
	daml_executor_tasks_stolen
	daml_executor_tasks_submitted
	daml_executor_tasks_completed
	daml_executor_tasks_queue_remaining

	Pruning Metrics
	daml_services_pruning_prune_started_total
	daml_services_pruning_prune_completed_total

	JVM Metrics
	runtime_jvm_gc_time
	runtime_jvm_gc_count
	runtime_jvm_memory_area
	runtime_jvm_memory_pool

	Logging
	Viewing Logs
	Detailed Logging

	Tracing
	Sampling
	Known Limitations
	Traces

	Node Health Status
	Health Checks
	gRPC Health Check Service
	HTTP Health Check

	Health Dumps
	Remote Health Dumps

	Example Monitoring Setup
	Container Setup
	Intended Use
	Network Configuration
	Postgres Setup
	Domain Setup
	Participant Setup
	Logstash
	Elasticsearch
	Kibana
	cAdvisor
	Prometheus
	Grafana
	Dependencies
	Docker Images
	Running Docker Compose

	Connecting to Nodes
	Remote configurations
	Getting Started

	Kibana Log Monitoring
	Grafana Metric Monitoring
	Monitoring Choices
	Use Docker Log Drivers
	Use GELF Docker Log Driver
	Use Logstash
	Use Elasticsearch/Kibana
	Use Prometheus/Grafana

	Logging Improvements

	Glossary
	cAdvisor
	Docker Log Driver
	Docker Plugins
	ECS
	Elasticsearch
	ELK
	GELF
	Grafana
	Graylog
	Logstash
	Loki
	Loki Log Driver
	MinIO
	OpenTelemetry
	Prometheus
	Syslog

	Identity Management
	Introduction
	What is a Canton Identity?
	Unique Identifier
	Topology Transactions
	Legal Identities
	Life of a Party
	Participant Onboarding
	Default Initialization
	Identity Setup Guide

	User Identity Management
	Cookbook
	Manage Users
	Create
	Update
	Inspect
	Decommission
	Configure a default Participant Admin

	Adding a new Party to a Participant
	Migrate Party to Another Participant Node
	Party on Two Nodes
	Manually Initializing a Node
	Keys Initialization
	Domain Initialization
	Participant Initialization

	Common Operational Tasks
	Manage Dars and Packages
	Uploading DARs
	Inspecting DARs and Packages
	Understanding Package Vetting
	Removing Packages and DARs
	Removing DARs
	Main package of the DAR is in use
	Main package of the DAR can’t be automatically removed

	Removing Packages
	Package is in use
	Force-removing packages

	Upgrading
	Upgrade Canton Binary
	Preparation
	Back Up Your Database
	Test your Configuration
	Migrating the Database
	Test Your Upgrade
	Version Specific Notes
	Upgrade to Release 2.7
	Activation of unsupported features
	Breaking changes around console commands
	Unique contract key deprecation
	Causality tracking
	Besu and Fabric drivers
	Removal of deploy_sequencer_contract
	Ledger API error codes
	Upgrade to Release 2.5
	Upgrade to Release 2.4
	Upgrade to Release 2.3

	Change the Canton Protocol Version
	Upgrade the Domain to a new Protocol Version
	Hard Domain Connection Upgrade
	Expected Performance

	Soft Domain Connection Upgrade

	Auth0 Example Configuration
	Configure Auth0
	Create an API
	Create an Application
	Create a Rule
	Create a User

	Start Daml
	Sandbox
	OAuth 2.0 Middleware
	Trigger Service

	Configure Web Server
	Test the Setup

	Security
	Cryptographic Key Usage
	Supported Cryptographic Schemes in Canton
	Key Generation and Storage
	Public Key Distribution using Topology Management
	Common Node Keys
	Participant Node Keys
	Participant Namespace Signing Key
	Signing Key
	Participant Encryption Key
	View Encryption Key
	Ledger API TLS Key

	Domain Topology Manager Keys
	Domain Namespace Signing Key
	Signing Key

	Sequencer Node Keys
	Signing Key
	Ethereum Sequencer
	Fabric Sequencer
	Public API TLS Key

	Mediator Node Keys
	Signing Key

	Domain Node Keys
	Canton Console Keys

	Cryptographic Key Management
	Rotating Canton Node Keys
	Namespace Intermediate Key Management
	Moving the Namespace Secret Key to Offline Storage
	Identifier Delegation Key Management
	Key Management Service Setup
	Running Canton with a KMS
	Canton Configuration of a KMS
	Configure AWS Credentials and Permissions
	Canton Configuration for Encrypted Private Key Storage
	Revert Encrypted Private Key Storage
	Manual wrapper key rotation
	Canton Configuration for External Key Storage and Usage
	Setup with Pre-Generated Keys
	Participant Node Migration to KMS Crypto Provider
	Manual KMS key rotation
	Auditability
	Logging

	Ledger-API Authorization

	Scaling and Performance
	Network Scaling
	Node Scaling
	Performance and Sizing
	Batching
	Asynchronous Submissions
	Storage Estimation
	Set Up Canton to Get the Best Performance
	System Design / Architecture
	Hardware and Database
	Configuration

	Advanced Ledger Operations
	Manage Domains
	Permissioned Domains
	Domain Rules
	Dynamic domain parameters
	Recover From a Small Max Request Size

	Manage Domain Entities
	Setting up a Distributed Domain With a Single Console
	Setting up a Distributed Domain With Separate Consoles
	Adding new sequencers to distributed domain

	Ledger Pruning
	Enable Automatic Pruning
	Monitoring Pruning Progress
	Best Practices
	Current Limitations

	Participant Pruning
	Impacts on Daml Applications
	How the Daml Ledger API is Affected
	Other Limitations
	How Pruning Affects Index DB Administration
	Determine a Suitable Pruning Offset

	Participant Metering
	Generate a Metering Report
	Example
	Output

	API Configuration
	Default Ports
	Administration API
	TLS Configuration
	Keep Alive
	Max Inbound Message Size
	Participant Configuration
	Ledger API
	JWT Authorization
	Leeway Parameters for JWT Authorization
	Configuring the Target Audience for JWT Authorization

	Domain Configurations
	Public API
	Authentication Token
	TLS Encryption

	Usage of native libraries by Netty

	Sequencer Connections
	Participant Connections
	Connect Using Macros
	Connect to Local Sequencers
	Connect to Remote Sequencers
	Connect to High-Availability Sequencers
	Connect Using Register

	Inspect Connections
	Modify Connections
	Update a Custom TLS Trust Certificate

	Enable and Disable Connections

	Mediator and Domain Manager

	Repairing Nodes
	Preparation
	Importing an actual Ledger
	Repairing Participants

	Recovering from a Lost Domain
	Repairing an actual Topology
	Repair Macros

	Clone Identity
	Importing existing Contracts

	Troubleshooting Guide
	Introduction
	Enable Information Gathering
	Key Knowledge
	Log Files
	Using LNAV to View Log Files
	Setup Issues
	Timeout Errors
	Auth Errors
	Performance Issues
	How to Measure Database Performance
	How to Diagnose Slow Database Queries
	How to find the Bottleneck
	Theory
	Practical

	Contention
	Why do you get contention
	How To Change Your Model To Avoid Undesired Contention
	How To Find Contention

	Use Bisection to Narrow Down the Root Cause

	Error Codes
	Overview
	Glossary
	Anatomy of an Error
	Error Description
	Additional Machine-Readable Information
	Prevent Security Leaks in Error Codes
	Work With Error Codes

	Error Codes In Canton Operations
	Error Categories
	Machine Readable Information
	Example
	Error Categories Inventory
	TransientServerFailure
	ContentionOnSharedResources
	DeadlineExceededRequestStateUnknown
	SystemInternalAssumptionViolated
	AuthInterceptorInvalidAuthenticationCredentials
	InsufficientPermission
	SecurityAlert
	InvalidIndependentOfSystemState
	InvalidGivenCurrentSystemStateOther
	InvalidGivenCurrentSystemStateResourceExists
	InvalidGivenCurrentSystemStateResourceMissing
	InvalidGivenCurrentSystemStateSeekAfterEnd
	BackgroundProcessDegradationWarning
	InternalUnsupportedOperation

	Error Codes Inventory - Daml
	1. ParticipantErrorGroup
	1.1. ParticipantErrorGroup / CommonErrors
	REQUEST_TIME_OUT
	SERVER_IS_SHUTTING_DOWN
	SERVICE_INTERNAL_ERROR
	SERVICE_NOT_RUNNING
	UNSUPPORTED_OPERATION

	1.2. ParticipantErrorGroup / IndexErrors
	1.2.1. ParticipantErrorGroup / IndexErrors / DatabaseErrors
	INDEX_DB_INVALID_RESULT_SET
	INDEX_DB_SQL_NON_TRANSIENT_ERROR
	INDEX_DB_SQL_TRANSIENT_ERROR

	1.3. ParticipantErrorGroup / LedgerApiErrors
	HEAP_MEMORY_OVER_LIMIT
	LEDGER_API_INTERNAL_ERROR
	MAXIMUM_NUMBER_OF_STREAMS
	PARTICIPANT_BACKPRESSURE
	THREADPOOL_OVERLOADED

	1.3.1. ParticipantErrorGroup / LedgerApiErrors / AdminServices
	CONFIGURATION_ENTRY_REJECTED
	INTERNALLY_INVALID_KEY
	PACKAGE_UPLOAD_REJECTED

	1.3.1.1. ParticipantErrorGroup / LedgerApiErrors / AdminServices / IdentityProviderConfigServiceErrorGroup
	IDP_CONFIG_ALREADY_EXISTS
	IDP_CONFIG_BY_ISSUER_NOT_FOUND
	IDP_CONFIG_ISSUER_ALREADY_EXISTS
	IDP_CONFIG_NOT_FOUND
	INVALID_IDENTITY_PROVIDER_UPDATE_REQUEST
	TOO_MANY_IDENTITY_PROVIDER_CONFIGS

	1.3.1.2. ParticipantErrorGroup / LedgerApiErrors / AdminServices / PartyManagementServiceErrorGroup
	CONCURRENT_PARTY_DETAILS_UPDATE_DETECTED
	INTERNAL_PARTY_RECORD_ALREADY_EXISTS
	INTERNAL_PARTY_RECORD_NOT_FOUND
	INVALID_PARTY_DETAILS_UPDATE_REQUEST
	MAX_PARTY_DETAILS_ANNOTATIONS_SIZE_EXCEEDED
	PARTY_NOT_FOUND

	1.3.1.3. ParticipantErrorGroup / LedgerApiErrors / AdminServices / UserManagementServiceErrorGroup
	CONCURRENT_USER_UPDATE_DETECTED
	INVALID_USER_UPDATE_REQUEST
	MAX_USER_ANNOTATIONS_SIZE_EXCEEDED
	TOO_MANY_USER_RIGHTS
	USER_ALREADY_EXISTS
	USER_NOT_FOUND

	1.3.2. ParticipantErrorGroup / LedgerApiErrors / AuthorizationChecks
	INTERNAL_AUTHORIZATION_ERROR
	PERMISSION_DENIED
	STALE_STREAM_AUTHORIZATION
	UNAUTHENTICATED

	1.3.3. ParticipantErrorGroup / LedgerApiErrors / CommandExecution
	FAILED_TO_DETERMINE_LEDGER_TIME

	1.3.3.1. ParticipantErrorGroup / LedgerApiErrors / CommandExecution / Interpreter
	CONTRACT_DOES_NOT_IMPLEMENT_INTERFACE
	CONTRACT_DOES_NOT_IMPLEMENT_REQUIRING_INTERFACE
	CONTRACT_ID_COMPARABILITY
	CONTRACT_ID_IN_CONTRACT_KEY
	CONTRACT_NOT_ACTIVE
	CREATE_EMPTY_CONTRACT_KEY_MAINTAINERS
	DAML_AUTHORIZATION_ERROR
	DAML_INTERPRETATION_ERROR
	DAML_INTERPRETER_INVALID_ARGUMENT
	DISCLOSED_CONTRACT_KEY_HASHING_ERROR
	FETCH_EMPTY_CONTRACT_KEY_MAINTAINERS
	INTERPRETATION_DEV_ERROR
	INTERPRETATION_USER_ERROR
	NON_COMPARABLE_VALUES
	TEMPLATE_PRECONDITION_VIOLATED
	UNHANDLED_EXCEPTION
	WRONGLY_TYPED_CONTRACT

	1.3.3.1.1. ParticipantErrorGroup / LedgerApiErrors / CommandExecution / Interpreter / LookupErrors
	CONTRACT_KEY_NOT_FOUND

	1.3.3.2. ParticipantErrorGroup / LedgerApiErrors / CommandExecution / Package
	ALLOWED_LANGUAGE_VERSIONS
	PACKAGE_VALIDATION_FAILED

	1.3.3.3. ParticipantErrorGroup / LedgerApiErrors / CommandExecution / Preprocessing
	COMMAND_PREPROCESSING_FAILED

	1.3.4. ParticipantErrorGroup / LedgerApiErrors / ConsistencyErrors
	CONTRACT_NOT_FOUND
	DISCLOSED_CONTRACT_INVALID
	DUPLICATE_COMMAND
	DUPLICATE_CONTRACT_KEY
	INCONSISTENT
	INCONSISTENT_CONTRACTS
	INCONSISTENT_CONTRACT_KEY
	INVALID_LEDGER_TIME
	SUBMISSION_ALREADY_IN_FLIGHT

	1.3.5. ParticipantErrorGroup / LedgerApiErrors / PackageServiceError
	DAR_NOT_SELF_CONSISTENT
	DAR_VALIDATION_ERROR
	PACKAGE_SERVICE_INTERNAL_ERROR

	1.3.5.1. ParticipantErrorGroup / LedgerApiErrors / PackageServiceError / Reading
	DAR_PARSE_ERROR
	INVALID_DAR
	INVALID_DAR_FILE_NAME
	INVALID_LEGACY_DAR
	INVALID_ZIP_ENTRY
	ZIP_BOMB

	1.3.6. ParticipantErrorGroup / LedgerApiErrors / RequestValidation
	INVALID_ARGUMENT
	INVALID_DEDUPLICATION_PERIOD
	INVALID_FIELD
	LEDGER_ID_MISMATCH
	MISSING_FIELD
	NON_HEXADECIMAL_OFFSET
	OFFSET_AFTER_LEDGER_END
	OFFSET_OUT_OF_RANGE
	PARTICIPANT_PRUNED_DATA_ACCESSED

	1.3.6.1. ParticipantErrorGroup / LedgerApiErrors / RequestValidation / NotFound
	LEDGER_CONFIGURATION_NOT_FOUND
	PACKAGE_NOT_FOUND
	TEMPLATES_OR_INTERFACES_NOT_FOUND
	TRANSACTION_NOT_FOUND

	1.3.7. ParticipantErrorGroup / LedgerApiErrors / WriteServiceRejections
	DISPUTED
	OUT_OF_QUOTA
	PARTY_NOT_KNOWN_ON_LEDGER
	SUBMITTER_CANNOT_ACT_VIA_PARTICIPANT
	SUBMITTING_PARTY_NOT_KNOWN_ON_LEDGER

	1.3.7.1. ParticipantErrorGroup / LedgerApiErrors / WriteServiceRejections / Internal
	INTERNALLY_DUPLICATE_KEYS
	INTERNALLY_INCONSISTENT_KEYS

	Error Codes Inventory - Canton
	1. GrpcErrors
	ABORTED_DUE_TO_SHUTDOWN

	2. ParticipantErrorGroup
	2.1. Errors
	ACS_COMMITMENT_INTERNAL_ERROR

	2.1.1. MismatchError
	ACS_COMMITMENT_ALARM
	ACS_COMMITMENT_MISMATCH
	ACS_MISMATCH_NO_SHARED_CONTRACTS

	2.2. LedgerApiErrors
	HEAP_MEMORY_OVER_LIMIT
	LEDGER_API_INTERNAL_ERROR
	MAXIMUM_NUMBER_OF_STREAMS
	PARTICIPANT_BACKPRESSURE
	THREADPOOL_OVERLOADED

	2.2.1. CommandExecution
	FAILED_TO_DETERMINE_LEDGER_TIME

	2.2.1.1. Package
	ALLOWED_LANGUAGE_VERSIONS
	PACKAGE_VALIDATION_FAILED

	2.2.1.2. Preprocessing
	COMMAND_PREPROCESSING_FAILED

	2.2.1.3. Interpreter
	CONTRACT_DOES_NOT_IMPLEMENT_INTERFACE
	CONTRACT_DOES_NOT_IMPLEMENT_REQUIRING_INTERFACE
	CONTRACT_ID_COMPARABILITY
	CONTRACT_ID_IN_CONTRACT_KEY
	CONTRACT_NOT_ACTIVE
	CREATE_EMPTY_CONTRACT_KEY_MAINTAINERS
	DAML_AUTHORIZATION_ERROR
	DAML_INTERPRETATION_ERROR
	DAML_INTERPRETER_INVALID_ARGUMENT
	DISCLOSED_CONTRACT_KEY_HASHING_ERROR
	FETCH_EMPTY_CONTRACT_KEY_MAINTAINERS
	INTERPRETATION_DEV_ERROR
	INTERPRETATION_USER_ERROR
	NON_COMPARABLE_VALUES
	TEMPLATE_PRECONDITION_VIOLATED
	UNHANDLED_EXCEPTION
	WRONGLY_TYPED_CONTRACT

	2.2.1.3.1. LookupErrors
	CONTRACT_KEY_NOT_FOUND

	2.2.2. AdminServices
	CONFIGURATION_ENTRY_REJECTED
	INTERNALLY_INVALID_KEY
	PACKAGE_UPLOAD_REJECTED

	2.2.2.1. PartyManagementServiceErrorGroup
	CONCURRENT_PARTY_DETAILS_UPDATE_DETECTED
	INTERNAL_PARTY_RECORD_ALREADY_EXISTS
	INTERNAL_PARTY_RECORD_NOT_FOUND
	INVALID_PARTY_DETAILS_UPDATE_REQUEST
	MAX_PARTY_DETAILS_ANNOTATIONS_SIZE_EXCEEDED
	PARTY_NOT_FOUND

	2.2.2.2. UserManagementServiceErrorGroup
	CONCURRENT_USER_UPDATE_DETECTED
	INVALID_USER_UPDATE_REQUEST
	MAX_USER_ANNOTATIONS_SIZE_EXCEEDED
	TOO_MANY_USER_RIGHTS
	USER_ALREADY_EXISTS
	USER_NOT_FOUND

	2.2.2.3. IdentityProviderConfigServiceErrorGroup
	IDP_CONFIG_ALREADY_EXISTS
	IDP_CONFIG_BY_ISSUER_NOT_FOUND
	IDP_CONFIG_ISSUER_ALREADY_EXISTS
	IDP_CONFIG_NOT_FOUND
	INVALID_IDENTITY_PROVIDER_UPDATE_REQUEST
	TOO_MANY_IDENTITY_PROVIDER_CONFIGS

	2.2.3. ConsistencyErrors
	CONTRACT_NOT_FOUND
	DISCLOSED_CONTRACT_INVALID
	DUPLICATE_COMMAND
	DUPLICATE_CONTRACT_KEY
	INCONSISTENT
	INCONSISTENT_CONTRACTS
	INCONSISTENT_CONTRACT_KEY
	INVALID_LEDGER_TIME
	SUBMISSION_ALREADY_IN_FLIGHT

	2.2.4. PackageServiceError
	DAR_NOT_SELF_CONSISTENT
	DAR_VALIDATION_ERROR
	PACKAGE_SERVICE_INTERNAL_ERROR
	SHUTDOWN_INTERRUPTED_PACKAGE_VETTING

	2.2.4.1. Reading
	DAR_PARSE_ERROR
	INVALID_DAR
	INVALID_DAR_FILE_NAME
	INVALID_LEGACY_DAR
	INVALID_ZIP_ENTRY
	ZIP_BOMB

	2.2.5. WriteServiceRejections
	DISPUTED
	OUT_OF_QUOTA
	PARTY_NOT_KNOWN_ON_LEDGER
	SUBMITTER_CANNOT_ACT_VIA_PARTICIPANT
	SUBMITTING_PARTY_NOT_KNOWN_ON_LEDGER

	2.2.5.1. Internal
	INTERNALLY_DUPLICATE_KEYS
	INTERNALLY_INCONSISTENT_KEYS

	2.2.6. AuthorizationChecks
	INTERNAL_AUTHORIZATION_ERROR
	PERMISSION_DENIED
	STALE_STREAM_AUTHORIZATION
	UNAUTHENTICATED

	2.2.7. RequestValidation
	INVALID_ARGUMENT
	INVALID_DEDUPLICATION_PERIOD
	INVALID_FIELD
	LEDGER_ID_MISMATCH
	MISSING_FIELD
	NON_HEXADECIMAL_OFFSET
	OFFSET_AFTER_LEDGER_END
	OFFSET_OUT_OF_RANGE
	PARTICIPANT_PRUNED_DATA_ACCESSED

	2.2.7.1. NotFound
	LEDGER_CONFIGURATION_NOT_FOUND
	PACKAGE_NOT_FOUND
	TEMPLATES_OR_INTERFACES_NOT_FOUND
	TRANSACTION_NOT_FOUND

	2.2.7.2. Error
	STATE_REQUEST_VALIDATION

	2.3. TransactionErrorGroup
	2.3.1. TransactionRoutingError
	AUTOMATIC_TRANSFER_FOR_TRANSACTION_FAILED
	ROUTING_INTERNAL_ERROR
	UNABLE_TO_GET_TOPOLOGY_SNAPSHOT

	2.3.1.1. MalformedInputErrors
	DISCLOSED_CONTRACT_AUTHENTICATION_FAILED
	INVALID_DISCLOSED_CONTRACT
	INVALID_DOMAIN_ALIAS
	INVALID_DOMAIN_ID
	INVALID_PARTY_IDENTIFIER
	INVALID_SUBMITTER

	2.3.1.2. TopologyErrors
	INFORMEES_NOT_ACTIVE
	NOT_CONNECTED_TO_ALL_CONTRACT_DOMAINS
	NO_COMMON_DOMAIN
	NO_DOMAIN_FOR_SUBMISSION
	NO_DOMAIN_ON_WHICH_ALL_SUBMITTERS_CAN_SUBMIT
	SUBMITTERS_NOT_ACTIVE
	SUBMITTER_ALWAYS_STAKEHOLDER
	UNKNOWN_CONTRACT_DOMAINS
	UNKNOWN_INFORMEES
	UNKNOWN_SUBMITTERS

	2.3.1.3. ConfigurationErrors
	INVALID_PRESCRIBED_DOMAIN_ID
	MULTI_DOMAIN_SUPPORT_NOT_ENABLED
	SUBMISSION_DOMAIN_NOT_READY

	2.3.2. SubmissionErrors
	CHOSEN_MEDIATOR_IS_INACTIVE
	CONTRACT_AUTHENTICATION_FAILED
	DOMAIN_BACKPRESSURE
	DOMAIN_WITHOUT_MEDIATOR
	MALFORMED_REQUEST
	NOT_SEQUENCED_TIMEOUT
	PACKAGE_NOT_VETTED_BY_RECIPIENTS
	PARTICIPANT_OVERLOADED
	SEQUENCER_DELIVER_ERROR
	SEQUENCER_REQUEST_FAILED
	SUBMISSION_DURING_SHUTDOWN

	2.3.3. SyncServiceInjectionError
	COMMAND_INJECTION_FAILURE
	NODE_IS_PASSIVE_REPLICA
	NOT_CONNECTED_TO_ANY_DOMAIN

	2.3.4. LocalReject
	2.3.4.1. MalformedRejects
	LOCAL_VERDICT_BAD_ROOT_HASH_MESSAGES
	LOCAL_VERDICT_CREATES_EXISTING_CONTRACTS
	LOCAL_VERDICT_FAILED_MODEL_CONFORMANCE_CHECK
	LOCAL_VERDICT_MALFORMED_PAYLOAD
	LOCAL_VERDICT_MALFORMED_REQUEST

	2.3.4.2. ConsistencyRejections
	LOCAL_VERDICT_DUPLICATE_KEY
	LOCAL_VERDICT_INACTIVE_CONTRACTS
	LOCAL_VERDICT_INCONSISTENT_KEY
	LOCAL_VERDICT_LOCKED_CONTRACTS
	LOCAL_VERDICT_LOCKED_KEYS

	2.3.4.3. TimeRejects
	LOCAL_VERDICT_LEDGER_TIME_OUT_OF_BOUND
	LOCAL_VERDICT_SUBMISSION_TIME_OUT_OF_BOUND
	LOCAL_VERDICT_TIMEOUT

	2.3.4.4. TransferInRejects
	TRANSFER_IN_ALREADY_COMPLETED
	TRANSFER_IN_CONTRACT_ALREADY_ACTIVE
	TRANSFER_IN_CONTRACT_ALREADY_ARCHIVED
	TRANSFER_IN_CONTRACT_IS_LOCKED

	2.3.4.5. TransferOutRejects
	TRANSFER_OUT_ACTIVENESS_CHECK_FAILED

	2.3.5. CommandDeduplicationError
	MALFORMED_DEDUPLICATION_OFFSET

	2.3.6. Error
	TRANSFER_COMMAND_VALIDATION

	2.4. SyncServiceError
	PARTY_ALLOCATION_WITHOUT_CONNECTED_DOMAIN
	SYNC_SERVICE_ALARM
	SYNC_SERVICE_ALREADY_ADDED
	SYNC_SERVICE_DOMAIN_BECAME_PASSIVE
	SYNC_SERVICE_DOMAIN_DISABLED_US
	SYNC_SERVICE_DOMAIN_DISCONNECTED
	SYNC_SERVICE_DOMAIN_MUST_BE_OFFLINE
	SYNC_SERVICE_DOMAIN_STATUS_NOT_ACTIVE
	SYNC_SERVICE_INTERNAL_ERROR
	SYNC_SERVICE_UNKNOWN_DOMAIN

	2.4.1. SyncDomainMigrationError
	BROKEN_DOMAIN_MIGRATION
	INVALID_DOMAIN_MIGRATION_REQUEST

	2.4.2. DomainRegistryError
	DOMAIN_REGISTRY_INTERNAL_ERROR
	TOPOLOGY_CONVERSION_ERROR

	2.4.2.1. ConfigurationErrors
	CANNOT_ISSUE_DOMAIN_TRUST_CERTIFICATE
	DOMAIN_PARAMETERS_CHANGED
	INCOMPATIBLE_UNIQUE_CONTRACT_KEYS_MODE
	INVALID_DOMAIN_CONNECTION
	MISCONFIGURED_STATIC_DOMAIN_PARAMETERS
	SEQUENCERS_FROM_DIFFERENT_DOMAINS_ARE_CONFIGURED

	2.4.2.2. HandshakeErrors
	DOMAIN_ALIAS_DUPLICATION
	DOMAIN_CRYPTO_HANDSHAKE_FAILED
	DOMAIN_HANDSHAKE_FAILED
	DOMAIN_ID_MISMATCH
	SERVICE_AGREEMENT_ACCEPTANCE_FAILED

	2.4.2.3. ConnectionErrors
	DOMAIN_IS_NOT_AVAILABLE
	FAILED_TO_CONNECT_TO_SEQUENCER
	FAILED_TO_CONNECT_TO_SEQUENCERS
	GRPC_CONNECTION_FAILURE
	PARTICIPANT_IS_NOT_ACTIVE

	2.4.3. TrafficControlError
	TRAFFIC_CONTROL_DOMAIN_ID_NOT_FOUND
	TRAFFIC_CONTROL_STATE_NOT_FOUND

	2.5. AdminWorkflowServices
	CAN_NOT_AUTOMATICALLY_VET_ADMIN_WORKFLOW_PACKAGE

	2.6. RepairServiceError
	CONTRACT_PURGE_ERROR
	INVALID_ACS_SNAPSHOT_TIMESTAMP
	INVALID_ARGUMENT_REPAIR
	UNAVAILABLE_ACS_SNAPSHOT
	UNSUPPORTED_PROTOCOL_VERSION_PARTICIPANT

	2.7. IndexErrors
	2.7.1. DatabaseErrors
	INDEX_DB_INVALID_RESULT_SET
	INDEX_DB_SQL_NON_TRANSIENT_ERROR
	INDEX_DB_SQL_TRANSIENT_ERROR

	2.8. PruningServiceError
	INTERNAL_PRUNING_ERROR
	NON_CANTON_OFFSET
	PRUNING_NOT_SUPPORTED_IN_COMMUNITY_EDITION
	SHUTDOWN_INTERRUPTED_PRUNING
	UNSAFE_TO_PRUNE

	2.9. CantonPackageServiceError
	PACKAGE_OR_DAR_REMOVAL_ERROR

	2.10. ParticipantReplicationServiceError
	PARTICIPANT_REPLICATION_INTERNAL_ERROR
	PARTICIPANT_REPLICATION_NOT_SUPPORTED_BY_STORAGE

	2.11. CommonErrors
	REQUEST_TIME_OUT
	SERVER_IS_SHUTTING_DOWN
	SERVICE_INTERNAL_ERROR
	SERVICE_NOT_RUNNING
	UNSUPPORTED_OPERATION

	3. EthereumErrors
	3.1. ConfigurationErrors
	AHEAD_OF_HEAD
	ATTEMPT_TO_CHANGE_IMMUTABLE_VALUE
	BESU_VERSION_MISMATCH
	ETHEREUM_CANT_QUERY_VERSION
	MANY_BLOCKS_BEHIND_HEAD
	NOT_FREE_GAS_NETWORK
	WRONG_EVM_BYTECODE

	3.2. TransactionErrors
	ETHEREUM_TRANSACTION_INVALID
	ETHEREUM_TRANSACTION_RECEIPT_FETCHING_FAILED
	ETHEREUM_TRANSACTION_SUBMISSION_FAILED

	4. TopologyManagementErrorGroup
	4.1. TopologyManagerError
	DUPLICATE_TOPOLOGY_TRANSACTION
	INCREASE_OF_LEDGER_TIME_RECORD_TIME_TOLERANCE
	INVALID_DOMAIN
	INVALID_TOPOLOGY_TX_SIGNATURE_ERROR
	NO_APPROPRIATE_SIGNING_KEY_IN_STORE
	NO_CORRESPONDING_ACTIVE_TX_TO_REVOKE
	PUBLIC_KEY_NOT_IN_STORE
	REMOVING_KEY_DANGLING_TRANSACTIONS_MUST_BE_FORCED
	REMOVING_LAST_KEY_MUST_BE_FORCED
	SECRET_KEY_NOT_IN_STORE
	SERIAL_MISMATCH
	TOPOLOGY_MANAGER_ALARM
	TOPOLOGY_MANAGER_INTERNAL_ERROR
	TOPOLOGY_MAPPING_ALREADY_EXISTS
	UNAUTHORIZED_TOPOLOGY_TRANSACTION

	4.1.1. DomainTopologyManagerError
	ALIEN_DOMAIN_ENTITIES
	FAILED_TO_ADD_MEMBER
	MALICOUS_OR_FAULTY_ONBOARDING_REQUEST
	PARTICIPANT_NOT_INITIALIZED
	WRONG_DOMAIN
	WRONG_PROTOCOL_VERSION

	4.1.2. ParticipantTopologyManagerError
	CANNOT_VET_DUE_TO_MISSING_PACKAGES
	DANGEROUS_KEY_USE_COMMAND_REQUIRES_FORCE
	DANGEROUS_VETTING_COMMANDS_REQUIRE_FORCE
	DEPENDENCIES_NOT_VETTED
	DISABLE_PARTY_WITH_ACTIVE_CONTRACTS_REQUIRES_FORCE
	UNINITIALIZED_PARTICIPANT

	4.1.3. Domain
	DOMAIN_NODE_INITIALISATION_FAILED

	4.1.3.1. GrpcSequencerAuthenticationService
	CLIENT_AUTHENTICATION_FAULTY
	CLIENT_AUTHENTICATION_REJECTED

	4.2. DomainTopologySender
	TOPOLOGY_DISPATCHING_DEGRADATION
	TOPOLOGY_DISPATCHING_INTERNAL_ERROR

	5. ConfigErrors
	CANNOT_PARSE_CONFIG_FILES
	CANNOT_READ_CONFIG_FILES
	CONFIG_SUBSTITUTION_ERROR
	CONFIG_VALIDATION_ERROR
	GENERIC_CONFIG_ERROR
	NO_CONFIG_FILES

	6. CommandErrors
	CONSOLE_COMMAND_INTERNAL_ERROR
	CONSOLE_COMMAND_TIMED_OUT
	NODE_NOT_STARTED

	7. DatabaseStorageError
	DB_CONNECTION_LOST
	DB_STORAGE_DEGRADATION

	8. HandshakeErrors
	DEPRECATED_PROTOCOL_VERSION

	9. FabricErrors
	9.1. ConfigurationErrors
	FABRIC_AHEAD_OF_HEAD
	FABRIC_MANY_BLOCKS_BEHIND_HEAD

	9.2. TransactionErrors
	FABRIC_TRANSACTION_INVALID
	FABRIC_TRANSACTION_PROPOSAL_SUBMISSION_FAILED
	FABRIC_TRANSACTION_SUBMISSION_FAILED

	10. SequencerError
	INVALID_ACKNOWLEDGEMENT_SIGNATURE
	INVALID_ACKNOWLEDGEMENT_TIMESTAMP
	INVALID_ENVELOPE_SIGNATURE
	INVALID_LEDGER_EVENT
	INVALID_SEQUENCER_PRUNING_REQUEST_ON_CHAIN
	INVALID_SUBMISSION_REQUEST_SIGNATURE
	MAX_REQUEST_SIZE_EXCEEDED
	MISSING_SUBMISSION_REQUEST_SIGNATURE_TIMESTAMP
	MULTIPLE_MEDIATOR_RECIPIENTS

	11. EnterpriseGrpcVaultServiceError
	INVALID_KMS_KEY_ID
	NO_ENCRYPTED_PRIVATE_KEY_STORE_ERROR
	REGISTER_KMS_KEY_INTERNAL_ERROR
	WRAPPER_KEY_ALREADY_IN_USE_ERROR
	WRAPPER_KEY_DISABLED_OR_DELETED_ERROR
	WRAPPER_KEY_NOT_EXIST_ERROR
	WRAPPER_KEY_ROTATION_INTERNAL_ERROR

	12. MediatorError
	MEDIATOR_INTERNAL_ERROR
	MEDIATOR_INVALID_MESSAGE
	MEDIATOR_RECEIVED_MALFORMED_MESSAGE
	MEDIATOR_SAYS_TX_TIMED_OUT

	13. ProtoDeserializationError
	PROTO_DESERIALIZATION_FAILURE

	14. ResilientSequencerSubscription
	SEQUENCER_FORK_DETECTED
	SEQUENCER_SUBSCRIPTION_LOST

	15. Clock
	SYSTEM_CLOCK_RUNNING_BACKWARDS

	Troubleshooting
	Error: “<X> is not authorized to commit an update”
	Error: “Argument is not of serializable type”
	Modeling Questions
	How To Model an Agreement With Another Party
	How To Model Rights
	How To Void a Contract
	How To Represent Off-ledger Parties
	How To Limit a Choice by Time
	How To Model a Mandatory Action
	When to Use Optional

	Testing Questions
	How To Test That a Contract Is Visible to a Party
	How To Test That an Update Action Cannot Be Committed

	Getting Help
	Support Expectations

	Portability, Compatibility, and Support Durations
	Ledger API Compatibility: Application Portability
	List of Ledger API Versions Supported by Daml
	Summary of Ledger API Changes

	Driver and Participant Compatibility: Network Upgradeability
	Participant database migration

	SDK, Runtime Component, and Library Compatibility: Daml Upgradeability
	Ledger API Support Duration

	Daml Ecosystem Overview
	Architecture
	Daml Networks
	Daml drivers

	Participant Nodes
	Ledger API
	Daml Components
	Runtime Components
	Libraries
	Generated Code
	Developer Tools / SDK

	Status Definitions
	Early Access Features
	Deprecation
	Comparison of Statuses

	Feature and Component Statuses
	Ledger API
	Runtime Components
	Libraries
	Developer Tools

	Releases and Versioning
	Versioning
	Cadence
	Support Duration
	Release Notes
	Process

	Glossary of concepts
	Key Concepts
	Daml
	Daml Language
	Daml Ledger
	Canton Ledger

	Canton Protocol
	Synchronization Technology
	Daml Drivers

	Daml Language Concepts
	Contract
	Active Contract, Archived Contract

	Template
	Choice
	Consuming Choice
	Preconsuming Choice
	Postconsuming Choice

	Nonconsuming Choice
	Disjunction Choice, Flexible Controllers

	Party
	Signatory
	Observer
	Controller
	Choice Observer
	Stakeholder
	Maintainer

	Authorization, Signing
	Standard Library
	Agreement
	Create
	Exercise
	Daml Script
	Contract Key
	DAR File, DALF File

	Developer Tools
	Assistant
	Studio
	Sandbox
	Navigator
	Navigator GUI

	Building Applications
	Application, Ledger Client, Integration
	Ledger API
	Command Submission Service
	Command Completion Service
	Command Service
	Transaction Service
	Active Contract Service
	Package Service
	Ledger Identity Service
	Ledger Configuration Service

	Ledger API Libraries
	Java Bindings
	Python Bindings

	Reading From the Ledger
	Submitting Commands, Writing To the Ledger
	Commands

	Participant Node
	Sub-transaction Privacy
	Daml-LF
	Composability
	Trust Domain

	Canton Concepts
	Domain
	Private Contract Store
	Virtual Global Ledger
	Mediator
	Sequencer
	Domain Identity Manager
	Consensus

	Daml Example Applications
	Daml Language References
	Daml Language Cheat Sheet
	Language Reference
	Overview: Template Structure
	Template Outline Structure
	Choice Structure
	Choice Body Structure

	Reference: Templates
	Template Name
	Template Parameters
	Implicit Record
	this and self
	Template-local Definitions
	Signatory Parties
	Observers
	Choices
	Serializable Types
	Agreements
	Preconditions
	Contract Keys and Maintainers
	Interface Instances

	Reference: Choices
	choice First or controller First
	Choice Name
	Controllers
	Contract Consumption

	Preconsuming Choices
	Postconsuming Choices
	Non-consuming Choices
	Return Type

	Choice Arguments
	Choice Body
	Deprecation of controller first syntax
	Migrating
	Turning off the warning

	Reference: Updates
	Background
	Binding Variables
	do
	archive
	create
	exercise
	exerciseByKey
	fetch
	fetchByKey
	visibleByKey
	lookupByKey
	abort
	assert
	getTime
	return
	let
	this

	Reference: Data Types
	Built-in Types
	Table of built-in primitive types
	Escaping Characters
	Time

	Lists
	Sum a List

	Records and Record Types
	Data Constructors
	Access Record Fields
	Update Record Fields
	Parameterized Data Types

	Type Synonyms
	Function Types

	Algebraic Data Types
	Product Types
	Sum Types
	Pattern Matching

	Reference: Built-in Functions
	Work with Time
	Work with Numbers
	Work with Text
	Work with Lists
	Fold

	Reference: Expressions
	Definitions
	Values
	Functions

	Arithmetic Operators
	Comparison Operators
	Logical Operators
	If-then-else
	Let

	Reference: Functions
	Defining Functions
	Partial Application
	Functions are Values
	Generic Functions

	Reference: Daml File Structure
	File Structure
	Imports
	Libraries
	Comments
	Contract Identifiers

	Reference: Daml Packages
	Building Daml Archives
	Inspecting DARs
	Import Daml Packages
	Import a Daml package via Dependencies
	Import a Daml Archive via data-dependencies
	Reference Daml Packages Already On the Ledger

	Handling Module Name Collisions

	Reference: Contract Keys
	What Can Be a Contract Key
	Specify Maintainers
	Contract Lookups
	fetchByKey
	visibleByKey
	lookupByKey

	exerciseByKey
	Example

	Reference: Exceptions
	Builtin Errors
	User-defined Exceptions
	Throw Exceptions
	Catch Exceptions

	Reference: Interfaces
	Configuration
	Interface Declaration
	Interface Name
	Implicit abstract type
	Interface Methods
	Interface View Type
	Interface Choices
	Empty Interfaces

	Interface Instances
	interface instance clause
	interface instance clause in the interface
	Empty interface instance clause

	Interface Functions
	interfaceTypeRep
	toInterface
	fromInterface
	toInterfaceContractId
	fromInterfaceContractId
	coerceInterfaceContractId
	fetchFromInterface

	Required Interfaces
	Interface Functions

	The standard library
	Prelude
	Typeclasses
	Data Types
	Functions

	DA.Action
	Functions

	DA.Action.State
	Data Types
	Functions

	DA.Action.State.Class
	Typeclasses

	DA.Assert
	Functions

	DA.Bifunctor
	Typeclasses

	DA.BigNumeric
	Functions

	DA.Date
	Data Types
	Functions

	DA.Either
	Functions

	DA.Exception
	Typeclasses
	Data Types

	DA.Foldable
	Typeclasses
	Functions

	DA.Functor
	Functions

	DA.Internal.Interface.AnyView
	Typeclasses
	Functions

	DA.Internal.Interface.AnyView.Types
	Data Types

	DA.List
	Functions

	DA.List.BuiltinOrder
	Functions

	DA.List.Total
	Functions

	DA.Logic
	Data Types
	Functions

	DA.Map
	Functions

	DA.Math
	Functions

	DA.Monoid
	Data Types

	DA.NonEmpty
	Functions

	DA.NonEmpty.Types
	Data Types

	DA.Numeric
	Functions

	DA.Optional
	Functions

	DA.Record
	Typeclasses

	DA.Semigroup
	Data Types

	DA.Set
	Data Types
	Functions

	DA.Stack
	Data Types
	Functions

	DA.Text
	Functions

	DA.TextMap
	Functions

	DA.Time
	Data Types
	Functions

	DA.Traversable
	Typeclasses
	Functions

	DA.Tuple
	Functions

	DA.Validation
	Data Types
	Functions

	GHC.Show.Text
	Functions

	GHC.Tuple.Check
	Functions

	Daml Script Library
	Daml.Script
	Data Types
	Functions

	Daml Trigger Library
	Daml.Trigger
	Typeclasses
	Data Types
	Functions

	Daml.Trigger.Assert
	Data Types
	Functions

	Daml.Trigger.LowLevel
	Typeclasses
	Data Types
	Functions

	Daml Ledger References
	Daml Ledger Model
	Structure
	Actions and Transactions
	Ledgers

	Integrity
	Valid Ledgers
	Consistency
	Contract Consistency
	Key Consistency
	Ledger Consistency
	Internal Consistency

	Conformance
	Authorization
	Signatories, Agreements, and Maintainers
	Authorization Rules
	Examples

	Valid Ledgers, Obligations, Offers and Rights

	Causality and Local Daml Ledgers
	Causality Examples
	Stakeholders of a Contract See Creation and Archival in the Same Order
	Signatories of a Contract and Stakeholder Actors See Usages After the Creation and Before the Archival
	Commits Are Atomic
	Non-Consuming Usages in Different Commits May Appear in Different Orders
	Out-of-Band Causality Is Not Respected
	Divulged Actions Do Not Induce Order
	The Ordering Guarantees Depend on the Party

	Causality Graphs
	Consistency
	From Causality Graphs to Ledgers

	Local Ledgers
	Ledger API Ordering Guarantees
	Explaining the Causality Examples

	Privacy
	Contract Observers and Stakeholders
	Choice Observers
	Projections
	Privacy Through Authorization
	Divulgence: When Non-Stakeholders See Contracts

	Daml: Define Contract Models Compactly
	Exceptions
	Structure
	Consistency
	Transaction Normalization
	Authorization
	Privacy
	Relation to Daml Exceptions

	Identity and Package Management
	Identity Management
	Provisioning Identifiers
	Identifiers and Authorization
	Identifiers and the Real World

	Package Management
	Package Formats and Identifiers
	Package Management API
	Package Vetting
	Package Upgrades

	Time on Daml Ledgers
	Ledger Time
	Record Time
	Guarantees
	Ledger Time Model
	Assign Ledger Time

	Canton Advanced Architecture
	Contract Keys in Canton
	Domains with Uniqueness Guarantees
	Non Unique Contract Keys Mode
	Examples of Semantic Differences
	Double Key Creation
	False lookupByKey Negatives
	Semantics of fetchByKey and Positive lookupByKey
	Canton’s Implementation of Keys
	Workarounds for Recovering Uniqueness
	Setting: Single Maintainer, Single Participant Node
	Command ID Deduplication
	Generator Contract
	Setting: Single Maintainer, Multiple Participants
	Setting: Multiple Maintainers
	Formal Semantics of Keys in Canton

	Domain Architecture and Integrations
	Domain-specific Requirements
	Functional Requirements
	Non-Functional Requirements
	Reliability
	Scalability
	Security
	Manageability

	Domain-Internal Components
	Drivers
	Canton Domain on Ethereum
	Smart contract Sequencer.sol

	Canton Domain on Fabric
	Introduction to Hyperledger Fabric
	Components of the Fabric Blockchain Network
	Architecture
	Fabric-based Sequencer
	Sequencer Chaincode
	Analysis and Limitations
	Functional Requirements
	Performance
	Reliability
	Scalability
	Security
	Manageability

	Identity Management
	Identity Providing Service
	Requirements

	Identity Management Design
	Design Principles
	Formalism for a Global Composeable Topology System
	Definitions
	Incremental Changes
	Topology Transactions
	Delegation
	Mapping Updates
	Participant State Updates
	Some Considerations
	Removal Authorizations
	Revocations
	Domain Topology State
	Bootstrapping
	Default Party
	Submission vs Confirmation
	Topology State Accumulation
	Privacy by Design
	Cross-Domain Delegations
	Multi-Domain Transaction
	Validation

	Implementation
	Domain Id
	Identity Providing Service API
	Sync Crypto Api
	High-Level Picture
	Transaction Flow

	High-Level Requirements
	Functional requirements
	Resource limits
	Non-functional requirements
	Known limitations
	Limitations that apply always
	Missing Key features
	Reliability
	Manageability
	Security
	Limitations that apply only sometimes
	Manageability

	Requirement Exceptions: Notes
	Ledger consistency
	No unnecessary rejections
	Privacy

	Research Publications
	Security Architecture
	Secure Cryptographic Private Key Storage
	Background
	Requirements
	Protect Private Keys With Envelope Encryption and a Key Management Service
	Externalize Private Keys With a Key Management Service
	KMS Integration
	KMS Wrapper Key Rotation
	KMS Key Rotation
	Satisfied Requirements

	Resilience to Malicious Participants
	Model Conformance
	Signatory and Controller Authorization
	Daml Ledger Integrity
	Deterministic Transaction Execution
	Consistent Transaction Ordering and Validation
	Consistency With at Least One Honest Participant per Signatory Party
	Authenticated Data Structure for Transactions
	Detection of Malicious Participants

	Consensus & Transparency
	Operating on the Same Transaction
	Stakeholders Are Notified About Their Views
	Scenario 1: Invalid View Common Data
	Mitigation
	Scenario 2: Missing Sequencer Message Recipient
	Mitigation
	Scenario 3: All Other Participants Dishonest
	Scenario 4: Invalid Encryption of View
	Mitigation

	System Architecture FAQ
	What does the Sequencer do?
	How does Canton process a transaction?
	How does Canton ensure privacy?
	Where does “the golden source” of Daml Ledger data live in Canton?
	How is Canton able to recover from data loss?

	Frequently Asked Questions
	Log Messages
	Database task queue full
	Serialization Exception

	Console Commands
	I received an error saying that the DomainAlias I used was too long. Where I can see the limits of String types in Canton?

	Bootstrap Scripts
	Why do you have an additional new line between each line in your example scripts?
	How can I use nested import statements to split my script into multiple files?
	How do I write data to a file and how do I read it back?

	Why is Canton complaining about my database version?
	Postgres
	Oracle
	Using non-standard database versions

	How do I enable unsupported features?
	How to troubleshoot included configuration files?

	Test Evidence
	Participant Query Store User Guide
	Introduction
	Early Access Purpose and Limitations
	Early Access Release Versions

	Overview
	Architecture
	PQS Schema Design
	JSON Data
	Continuity
	High Availability

	Installing and Starting PQS
	Meeting Prerequisites
	Deploying the Scribe Component
	Connecting the PQS to a Ledger
	Authorizing PQS
	Setting Up PostgreSQL
	Connecting to the PQS PostgreSQL Data Store
	Logging
	Using Command Line Options
	Handling Configuration Changes

	PQS Development
	Offset Management for Querying
	Querying Patterns
	Use the Most Recent Available State of the Ledger
	Query the Ledger Using a Point in Time
	Query the Ledger from a Fixed Offset
	Set the Oldest Offset to Consider
	Set the Oldest and Latest Offset by Time Value
	Set a Minimum Offset for Consistency
	Use the Widest Available Offset Range for Querying

	Advanced Querying Topics
	Reading
	Write Pipeline

	JSON Format
	Primitive types
	User-defined types

	Display of Metadata-Inferred Database Schema
	PQS Database Schema

	Operating PQS
	Purging Excessive Historical Ledger Data
	Pruning with PQS CLI
	Pruning with prune_to_offset

	Optimizing PQS
	Indexing
	Pagination
	psql Tips
	EXPLAIN ANALYZE

	Troubleshooting
	Cannot Connect to the Ledger Node
	Cannot Connect to the PQS Database

	Daml Ledger Interoperability
	Interoperability Examples
	Topology
	Aggregation at the Participant
	Enter and Leave Events
	Cross-ledger Transactions

	Multi-ledger Causality Graphs
	Consistency
	Minimality and Reduction
	From Multi-ledger Causality Graphs to Ledgers

	Ledger-aware Projection
	Ledger API Ordering Guarantees

	Non-repudiation
	Architecture
	Run the Server-side Components
	Use the Client
	Non-repudiation Over the HTTP JSON API
	TLS Support

	Bibliography
	Bibliography

